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Abstract

Insects can be mapped using a method called Scheimpflug Lidar (LIght Detec-
tion And Ranging). Sending out light in the near infrared range and detecting
the backscattered echo, it is possible to resolve flying organisms in range and
time. Insect observations can be distinguished from the background signal
through adaptive thresholding.

The detected signal will contain two components; one from light that has
scattered on the insect body, and the second due to the wing-beats cycles of
the insect. Further, the shape of the wing-beat signal may contain several
harmonics due to non harmonic motion and specular reflections.

The wing-beat frequency (WBF) of an insect can be found using a parametriza-
tion model where the wing-beat component of signal is projected on a number
of harmonic functions. Projections using different possible WBF are done, and
the frequency that generates the lowest residual is chosen as the WBF of the
signal. Previously, the model has been used in short frequency ranges around a
WBF estimated from the signal and the power spectrum of the signal since the
model is biased towards minimum possible frequency and Nyqvist frequency.

In this thesis, three different compensation methods to overcome the fre-
quency preferences of the model has been investigated with promising results.
Further, range biasing and detection limits of the system has been investigated,
showing that a longer exposure time makes it possible to detect signals with
almost five times as low intensity and reduced the apparent size of the insect.
Regarding the range biasing, the system generally detects more observations
at short ranges due to higher sensitivity. However, when the range increases a
higher amount of observations with long transit time is detected.
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Abbreviations

DoFregr Degrees of freedom in regressor
DoFbody Degrees of freedom in envelope
FoV Field of view
OCS Optical cross-section
PoF Plane of sharp focus
ToF Time of flight
WBF Wing beat frequency



Symbols

Symbol Quantity Unit

a Apparent size [mm]
Bp Pixel - receiver optics distance [mm]
C Linear regression coefficient [mm2]
d Tissue path length [mm]
Drec Diameter of receiver telescope [mm]
Dtrans Diameter of transmitting telescope [mm]
fmin Minimum observable frequency for an observation [Hz]
fmax Maximum observable frequency for an observation [Hz]
fi Test frequency i [Hz]
fN Nyqvist frequency [Hz]
fsample Sample frequency [Hz]
Frec Focal length of receiver telescope [mm]
Ftrans Focal length of transmitting telescope [mm]
g Anisotropy factor -
hmax Number of sine/cosine functions in regressor [#]
Hpix Pixel height [µm]
I Intensity [uint16]
l Number of time samples of observation signal [#]
L Baseline separation [mm]
Npix Number of pixels [#]
p Pixel number -
P0 Laser power [W]
r Distance [m]
Rterm Reflectance of termination target [%]
Resi Sum of squared residual for test frequency fi [mm2]
Resbody Body residual [mm2]
R̂esbody Analytical body residual [mm2]
Resregr Regressor residual [mm2]
R̂esregr Analytical regressor residual [mm2]
Restot Total residual [mm2]
R̂estot Analytical total residual [mm2]
S Laser spot size [mm2]
∆t Observation transit time [ms]
τ Wing-beat period [ms]
W Size of sliding minimum [#]
Wpix Pixel width [µm



δpix Pixel coverage [#]
γp Observed scattering angles [◦]
λ Central wavelength of laser [nm]
µa Absorption coefficient [cm−1]
µe Extinction coefficient [cm−1]
µs Scattering coefficient [cm−1]
µs′ Reduced scattering coefficient [cm−1]
σobs Optical cross-section for observation [mm2]
σ̂ Least squares fit of observation signal [mm2]
φ Swing angle [◦]
Φl,1+2hmax Regressor of harmonics -
θ Tilt angle of sensor [◦]
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Chapter 1

Introduction

1.1 Medical and ecological background
Malaria is one of the diseases that kill most people over the world today. In
2015 almost 450 000 people died [1] which makes the malaria mosquito the
deadliest animal in the world.

Mosquitoes normally feed on nectar, but in several mosquito species the
females need human blood to produce eggs. After mating the females seek
a human host for blood by following the body odor (CO2, ocentanol). After
feeding on blood, the females rest for a couple of days while digesting the
bloodmeal and develop eggs. When the females have laid their eggs, in or close
to water, the reproduction cycle repeats until the female dies [2].

A mosquito can only be infected by malaria by feeding on a human host
who bears the malaria parasite. The parasite does not transmit to the eggs,
so a human is only infected if they are bit by a mosquito that has fed on a
malaria infected host in a previous instance [3]. A mosquito lives roughly 2
weeks in nature, meaning that the females only mate once, maybe twice, in
their lifetime. The probability that the mosquito both has been infected and
has mated twice is small, but due to the large number of mosquitoes, there are
over 200 million malaria cases every year [1].

Unfortunately, there is no fully protecting vaccine or medicine for malaria
today. The main product is malaria prophylaxes which serves both as vaccine
and medicine. However, some parasites have become resistant to some prophy-
laxes and therefore it is important to do preventative work to avoid malaria.
Today the preventative work mainly consists of mosquito spray and bed-net
campaigns. Unfortunately, neither the sprays or the nets give full protection;
in Tanzania for example, a prevention program [4–6] resulted in the mosquitoes
changing their activity pattern during the day.

To be able to do more preventive work like draining of wet areas and urban
planning, it is of importance to be able to monitor mosquitoes and their habits,
especially since there are several mosquito species that are active in different
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areas, at different times of the year, that are infectious to different degree
and have different behavior. Further, it is necessary to be able to distinguish
the females from the males to get a more more detailed understanding of the
ecology of either gender.

The easiest and most common way to monitor mosquitoes is using mosquito
traps. Traps can attract mosquitoes in several ways, for example by CO2, light
traps or human bait. Trapping mosquitoes, it is easy to study how many
mosquitoes from different species that are captured in different areas, at differ-
ent times of the year. The drawbacks with traps are that they might be biased
towards some species, it is hard to cover large areas, and they have low time
resolution.

(a) (b)

Figure 1.1: a) Image of a female aedes aegypti. b) Image of mosquito traps
in Tanzania, [5].

1.2 Entomological Lidar
An alternative to conventional traps is to detect insects using entomological
Lidar [7–9], (laser radar), which can be used to detect and map aerosols and
particles in the atmosphere by detecting the backscattered echo of a laser [10–
13]. For example, entomological Lidar has earlier been used to map insect
density and speed [14], and to monitor insect pests in crops [15,16].
A Lidar setup usually consist of a laser connected to an expanding telescope,
and a receiving telescope that focuses the backscattered light onto a detector.
Using a pulsed laser, the echoes can be range resolved using time of flight
(ToF) [17–21] as illustrated in Figure 1.2.

Apart from the pulsed laser technique, another method for range resolved
Lidar using a continuous laser can be used [2, 22]. However, this was previ-
ously pursued using a telescope baseline separation between the telescopes in
the order of hundreds of meters and hence a wide angle objective is required.
Unfortunately, the aperture size is compromised when the acceptance angle is
high which means a lower light collection efficiency. To be able to detect insect
echoes from the full range of the laser beam with a compact setup, at a low
cost and with high efficiency, a method called Scheimpflug Lidar, that uses the
Scheimpflug principle [23,24] has been used [25].
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Figure 1.2: Image of the concept of atmospheric Lidar.

1.3 Modulation spectroscopy
The detected insect signal will contain a component due to the light scattered
on the body of the insect, as well as a component due to light scattered on the
beating wings [26–30]. The fundamental wing-beat frequency, (WBF), which
can vary in a range between 10-1000 kHz depending on insect species [31]
depend on the flight speed, acceleration and ambient temperature [32–35].

The wing-beat signal may contain several harmonics due to harmonic mo-
tion and specular reflections [36]. The full modulation spectra of insects has
been studied using an electro-optical tool [37–39] and can be used for insect
classification [37] since species with similar fundamental WBF can vary in har-
monic content, as can be seen in Figure 1.3.

Comparing mosquitoes to other insects, mosquitoes have a higher WBF
than several other species. Female mosquitoes typically have a WBF around
400-600 Hz and males around 600-800 Hz [40,41].

The fundamental WBF of the signal can be found using a model trying
to fit a number of harmonics containing the WBF to the signal. Since the
WBF is unknown, a vector with test frequencies is defined. For each test
frequency the body signal is obtained with a sliding minimum filter given by
the test frequency. A regressor consisting of a number of harmonics containing
the current test frequency and overtones of it is fit to the signal. When all
frequencies in the test vector has been tested, the frequency that results in the
fit with the lowest residual is chosen as WBF.
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Figure 1.3: Modulation power as a function of frequency for two different
insect observations. The two observations have the same WBF but the strength
of the overtones differ.

1.4 Aim
The drawback with the described frequency selection method is that the model
favors high and low frequencies, which means that it has not been possible to
test frequencies in the full range from 1 to the Nyqvist frequency with reliable
results. Instead, the range of the test frequencies has earlier been limited to
a small span around a preliminary WBF obtained from the time series of the
insect [42]. The aim of this thesis is to investigate the frequency preference of
the model and find a way to compensate for the methodological biasing in the
frequency and range domains.
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Chapter 2

Light-tissue interaction

2.1 Single scattering events
Single scattering of light on particles depends on the particle size. Assuming
only elastic scattering, Rayleigh scattering is applicable when considering small
particles with a particle diameter much smaller than the wavelength of the light.
If the particle diameter is in the same magnitude as the wavelength, or larger,
Mie scattering can be used.

The scattering cross-section for Rayleigh scattering is dependent on the
wavelength to a factor µs,R ∝ 1/λ4, whereas Mie scattering has a scattering
coefficient dependent of the wavelength to a factor µs,M ∝ 1/λ2 [43]. Except
for the lower dependence on the wavelength, Mie scattering is highly dependent
on the particle size [44], and has a lower fraction of backscattering.

2.2 Multiple scattering in tissue
When illuminating tissue with light, the photons can be transmitted to the
tissue where they can undergo multiple scattering and absorption. If the optical
properties are known, the propagation of light in tissue can be modeled by
the Radiative Transfer Equation, (RTE). The RTE can be solved using the
diffusion equation [45] if the sample size is small than the mean free path. In
case of larger tissue chromophores, the photomigration in tissue can instead
be described by a random walk model [46]. In the model, the probability
distributions of the step size and the deflection angle is used to predict the
next scattering event.

The distribution of Mie scatterers can be approximated by the Henyey-
Greenstein scattering phase function [47].
From the Henyey-Greenstein function, the scattering coefficient, µs, that gives
the probability of scattering per unit path length, can be obtained. To com-
pensate for the anisotropy, g, the scattering coefficient is most often expressed
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as the reduced scattering coefficient

µ
′

s = µs(1− g). (2.1)

Absorption can be applied according to Beer Lambert’s law,

I = I0e
µacd, (2.2)

where c is the concentration, d is the path length before absorption, and µa
is the absorption coefficient giving the probability of absorption per unit path
length. The total attenuation in the tissue can be described by the extinction
coefficient,

µe = µ
′

s + µa. (2.3)

2.3 Light-insect interaction
The wings of an insect are thin, (about 400 nm), and dry, and can be de-
scribed as a multilayer thin film [48] consisting of chitin and melanin. When
illuminated, the backscattered light is either a specular reflection from the ut-
most layer, or a diffuse reflection from the underlying layers. Considering the
insect body, the light can be either scattered on the surface, or entering the
tissue where the photons undergo multiple scattering and absorption. Since
only a fraction of the diffuse light will be scattered 180◦, there are losses due
to absorption and omni-directionally scattered light.

Figure 2.1: Illustration of losses in intensity due to omni-directional scatter-
ing.

The wings beat and will therefore give rise to a strong specular backscattered
signal when the wing surface coincide with the optical axis, and a weak signal
when coinciding with the laser beam. This results in a signal that consist of a
broad constant contribution from the body with high intensity wing-beats on
top, as can be seen in Figure 2.2.
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Figure 2.2: Time series of an observation. The signal consists of a signal
from the body and the signal from the wings.
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Chapter 3

Instrumentation

3.1 Scheimpflug lidar
Backscattered echoes from different ranges, r, will be projected with sharp
focus at different distances, Bp, from the lens plane of the receiving telescope.
Echoes from infinite depth are projected on a distance corresponding to the
focal length of the receiving telescope, Bp = Frec, and as the range decreases, Bp

will increase. In order to obtain sharp focus over a long range the Scheimpflug
principle [23,24] is implemented in the setup. That is done by placing the first
pixel, p1, of the line array sensor in the focus of the receiving telescope and
then tilt the line array sensor with an angle θ, as can be seen in Figure 3.1. By
increasing the length of the sensor, or increasing the tilt angle, θ, to maximum,
echoes from shorter ranges can be projected.

The plane of sharp focus, (PoF), is given by the Scheimpflug and Hinge
intersects, i.e. a plane where the lens plane and the image plane intersect, as
well as two planes parallel to those. The intersects and the geometry of the
setup are drawn in Figure 3.1. In case of a Lidar system, the setup has to be
arranged so that the PoF coincides with the laser beam [25].

Due to the triangular geometry of the setup, the range resolution of a
Scheimpflug Lidar system is tangential. The resolution is limited by the camera
pixel size, the telescope baseline separation distance, L, and the field of view,
(FoV) of the camera (that increases with range). In comparison to a ToF
Lidar system [17–21] where the range resolution is limited by the pulse width,
a Scheimpflug system has a higher resolution at short distances. The temporal
resolution of the Scheimpflug Lidar system is limited by the read-out-speed of
the camera.
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Figure 3.1: Drawing of the setup. Echoes from different ranges, r, are pro-
jected with sharp focus at different distances, Bp, from the recieving lens. Hence
the image plane, (line array sensor), is tilted by an angle θ, in relation to the
laser beam and lens plane of the receiving telescope. The result is that signals
from an infinite depth are projected on the fist pixel placed in the focal piont of
the receiving lens, (Bp = Frec), and signals from shorther ranges are projected
at pixels with a longer Bp. The plane in which sharp focus is obtained, (which
should coincide with the laser beam) is given by the Scheimpflug and Hinge
intersects, i.e. a plane where the lens plane and the image plane intersect, as
well as two planes parallel to those.

3.2 Experimental setup
The setup includes a 808 nm 3.2 W diode laser, transmitting through an
expanding refractor telescope (diameter 102 mm and focal length 500 mm).
Backscattered light is collected with a Newtonian telescope (diameter 205 mm
and focal length 800 mm) and focused onto a line array sensor which is tilted 45
degrees in relation to the optical axis of the receiving telescope. The telescopes
are mounted on a telescope mount with a baseline separation distance L = 814
mm. To facilitate alignment and focusing, a monitoring camera is mounted
between the the telescopes.

The laser, which is aligned horizontally and terminated on a neoprene target
with a reflectance of approximately 4%, is connected to a multiplexing driver
triggered by the camera strobe. The triggering enables modulated measure-
ments where the laser is intermittently switched on and off between exposures,
meaning that every second recorded line will include the backscattered echo
from the laser, (on slot), and every second recorded line will be a a recording
of the optical background signal, (off slot). The optical background signal is
later used to subtract the background from the on slot.

An image of the setup can be seen in Figure 3.2 and the system parameters
can be seen in Table 3.1.
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Figure 3.2: Image of the setup when used in the field.

Table 3.1: Table of the system parameters.

Parameter Symbol Value [unit]

Receiver telescope focal length Frec 800 [mm]
Transmitting telescope focal length Ftrans 500 [mm]

Receiver telescope diameter Drec 205 [mm]
Transmitter telescope diameter Dtrans 102 [mm]
Baseline separation distance L 814 [mm]

Laser wavelength λ 808 [nm]
Laser power P0 3.2 [W]

Number of pixels Npix 2048 [#]
Pixel width Wpix 14 [µm]
Pixel height Hpix 200 [µm]

Reflectance termination plate Rterm 4 [%]
Laser spot size S 233× 25 [mm2]

3.3 Range calibration

The observed scattering angles between the laser beam and a pixel p, is given
by

γp = tan−1(L/r). (3.1)
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The relation between the distance, r, an echo origins from, and which pixel, p,
the echo is projected on is given by

r =
L[pWpix(sin(θ)− cos(θ)tan(φ)) +Bp]

pWpix(cos(θ) + sin(θ)tan(φ)) +Bptan(φ)
. (3.2)

where Bp for a pixel p is given by

Bp =
rtermFrec
rterm − Frec

− pWpixsin(θ), (3.3)

The swing angle φ, i.e. the angle between the laser beam and the receiver axis,
is given by

φ = tan−1(L/rterm)− tan−1(
ptermWpixcos(θ)(rterm − Frec)

rtermFrec
). (3.4)

where pterm is the pixel on which the echo from the termination plate at distance
rterm is positioned.
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Chapter 4

Data analysis

4.1 Raw data processing
The raw data, in 16 bit unsigned integer format, is read into matrices in Matlab,
one file containing 10 seconds of collected data at all ranges at a time. The
background (off slot) is subtracted from the data (on slot) by subtracting a
mean of the two neighboring off slots from every on slot. An image of a typical
file during dusk can be seen in Figure 4.1. The insects can be seen as the small
yellow dots (high intensities) and the the small regions of higher intensity with
a periodic structure arising from the wing beats.

Figure 4.1: From the original time-range map, the insect signals can be seen
as small areas with a periodic structure arising from the wing beats.

4.1.1 Insect thresholding and extraction
From the file, the minimum, median and maximum intensities are obtained, as
can be seen in Figure 4.2. The threshold for what is considered to be an insect,
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corresponding to a signal-to-noise ratio, SNR = 2, is set to

Ithresh = Imed + 5 ∗ Iiqr, (4.1)

where Imed is the median and and Iiqr is the interquartile range intensity of
every time sample. A plot of maximum, median and minimum intensities for
the same file as in Figure 4.1 can be seen in Figure 4.2.

Figure 4.2: The maximum, median and minimum intensities for each time
and range can be extracted from the file. This is used to set a threshold for an
insect observation intensity.

Identification of positions corresponding to insects in the time-range file are
done using a binary mask. The mask maps the positions that have an OCS
exceeding the threshold intensity. The edges of the insect area is eroded with
a 1 pixel × 3 time samples window to omit observations that are too short to
be analyzed. Further, it is dilated with a 5 pixel × 30 time samples window
to include flanks of observations which are not above threshold and make sure
no observations are analyzed twice. The resulting binary mask is used to to
determine which positions in the original time-range map that are extracted
and saved as an insect observation in time and range.

All range pixels associated with one time sample for a specific observation
are then summed into a time series. The time series, range-time map and other
relevant observation and file parameters are saved into a .mat-file that is used
for the frequency analysis. A schematic flowchart of the raw data processing
can be seen i Figure 4.3.
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Figure 4.3: The process during the raw data processing starts with reading the
files and obtaining the median, minimum and maximum intensities for every
time sample in the file. The intensities are converted to OCS, and the insect
observations can be identified in OCS using set thresholding and extraction
parameters.

4.1.2 OCS and apparent size calibration
The intensity of the time series is calibrated from counts in uint16 to optical
cross-section (OCS), σobs, in units of mm2 as done by Brydegaard [26,49–51],

σobs =
σterm ∗ r2

obs(Iobs(r) − Imed(r))

(Imed(r) ∗ r2
term)

. (4.2)

where the optical cross-section at the termination can be calculated as

σterm = S ∗Rterm, (4.3)

where R is the reflectance of the termination plate and S is the illuminated
area on the termination, which can be seen i Figure 4.4.
Further, the size of a detected insect is calibrated in terms of apparent size,

a =
r · cos(θ)δpixWpix

Frec
, (4.4)

where δpix is the maximum number of range pixels associated with one separate
time sample.
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Figure 4.4: Image of the laser spot on the termination plate.

4.2 Finding the fundamental wing beat frequency
The time series will consist of the reflection from the body of the insect and the
reflections from the wing beats. There are several ways to find the WBF from
a detected time series. The WBF can be estimated byWBF = 1

τ
where τ is an

estimation of the time between the wing beats [42]. Other methods include us-
ing Cepstrum analysis [52], finding the WBF by Hilbert-Huang transform [53],
or Fourier transform [42]. In Figure 4.5 a time series and a Fourier transformed
time series can be seen, showing the WBF, the transit time, δt, and the wing
beat period, τ , [42].
The problem with these methods is that the wing beats in the time series are
often irregular, and the power spectra are often noisy and may contain side
lobes, which results in a lower frequency than the actual WBF is considered to
be the WBF.

4.2.1 Paramerization model
Another way of finding the WBF, developed by Brydegaard [36], is to fit a
number of harmonics containing the WBF and overtones to the time series.
Since the WBF is unknown, harmonics containing all possible WBF for the
observation are fit to the signal, one frequency at a time.

The lowest possible WBF is given by the transit time of the observation.
A criterion of three wing-beats within the time series is defined, resulting in
a minimum possible WBF, fmin = 3

∆t
. The maximum possible WBF is the

Nyqvist frequency fN =
fsample

2
. When all possible frequencies has been tested,

the frequency that yields the fit with the lowest residual is chosen to be the
WBF.

For every frequency fi that is tested, the body contribution, b, of the signal
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Figure 4.5: The WBF can be obtained using the median peak distance in the
power spectrum or by using the time difference between the peaks in the time
series.

is obtained using a sliding window that slides through the signal and chooses
the lowest value of OCS within the window to represent the body contribution.
The window size depends on the current test frequency as W = 2∗fN

fi
, rounded

to closest integer. The size of the window, W , is related to the degrees of
freedom, (DOF’s) as

DoFbody =
l

W
,

rounded to closest integer, where l is the number of time samples in the time
series. Further, the time series corresponding to the body contribution is
smoothed with a Gaussian filter with full width half maximum FWHM = W

2
,

and the noise level of the corresponding time samples are added.
The signal arising from wing beats is the difference between the original time

series and the body time series. The wing signal is reconstructed by projecting
the time series on a regressor, Φ, consisting of a number of harmonic functions
with the current test frequency and overtones of it.

Φl,1+2hmax =

17




b1 b1 sin(2πh1fit1) b1 cos(2πh1fit1) b1 sin(2πh2fit1) . . . b1 cos(2πhmaxfit1)
b2 b2 sin(2πh1fit2) b2 cos(2πh1fit2) b2 sin(2πh2fit2) . . . b2 cos(2πhmaxfit2)
...

...
...

... . . . ...
bl bl sin(2πh1fitl) bl cos(2πh1fitl) bl sin(2πh2fitl) . . . bl cos(2πhmaxfitl)


The variable

hk = 1, 2...hmax = 1, 2...bfN
fi
c

is a counter, giving the number of sine and cosine functions respectively. By
multiplying the current test frequency with hk, the first sine and cosine func-
tions in the regressor will contain the current frequency being tested as WBF,
the second sine and cosine functions contain the first overtone, etc. This means
that the number of columns in the regressor, i.e. the degrees of freedom in the
regressor, is given by

DoFregr = 1 + 2hmax,

corresponding to one unknown constant, hmax sine functions and hmax cosine
functions. Multiplying with b1,2..l corresponds to weighing the regressor with
the the OCS contribution from the body. The weighing is done since there
would be no signal from the wing beats unless the body of the insect is in the
laser beam. An illustration of the weighing of the regressor can be seen in
Figure 4.6.

Figure 4.6: Illustration of the weighing effect of the harmonic functions.

Using linear regression, (least squares method),

C = (ΦTΦ)−1Φσobs (4.5)

σ̂ = Φ · C, (4.6)
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a fit of the time series is obtained and the sum of squares residual,

resi =
l∑

j=1

(σobs,j − σ̂j)2, (4.7)

between the fit and the time series for the current test frequency is saved.
This results in a frequency dependent residual vector, Restot, with a residual

value resi for every tested frequency, fi, and the frequency that yield the lowest
residual is chosen as WBF.

4.2.2 Frequency preference of the model
If a signal that does not contain any frequency would be seeded into the model,
the residual curve should be flat. If a signal containing a frequency is seeded
into the model, the expected residual curve should be flat, except for dips cor-
responding to the frequency of the signal and the overtones of this frequency.
Unfortunately the model is biased toward the extremes, it either chooses a high
frequency, which is referred to as the right ditch, or a low frequency, referred
to as the left ditch, as can be seen in Figure 4.7.

Figure 4.7: Illustration of the two ditches. If the model chooses a low fre-
quency DoFregr is larger than the number of sample points in the time series
and a transform is obtained. If the model chooses a high frequency, the window
size is small and follows the time series up in the wings.

The frequency preferences of the model is investigated by seeding the parametriza-
tion model with 1000 empty observations, (data that does not contain any in-
sect observation and hence no frequency), of different transit times, which can
be seen in Figure 4.8.
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Figure 4.8: Residual vector when seeding data that does not contain any
observation into the parametrization model.

The residual curve, Restot, in Figure 4.8 can be split into two pieces, Restot =
Resbody · Resregr. Resbody arises from the sliding window, i.e. the residual if
the body is fit to the signal, and Resregr arises due to the harmonics, i.e. the
residual if the regressor would not be weighed with the body. This can be seen
in Figure 4.9.

Figure 4.9: a) Residual vector from the regressor as a function of frequency.
When DoFregr increases for lower frequencies, the residual decreases. b) Resid-
ual vector from the sliding as a function of frequency. When DoFbody increases
for higher frequencies, the residual decreases.

As it can be seen from Figure 4.9, the sliding window gives rise to a step
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behavior favoring high frequencies. That is a result of the size of the sliding
window. The window size can at minimum be 2 time samples, resulting in
the lowest value of every second sample point in the time series describing the
body. In that case the body time series itself almost describes the original
time series. Passing these specific frequencies where the window size changes,
for example around 700 Hz where it changes from W = 2 to W = 3 and
the body contribution suddenly is described by every third value in the time
series, results in a sudden decrease in DoFbody and hence a sharp increase in
the residual.

Considering Resregr there is a similar step behavior. The steps are de-
creasing towards lower frequencies as a result of an increasing DoFregr. For
frequencies up to fi = 1

τ
, DoFregr is larger than the number of sample points

in the time series. Hence there will be one or more harmonics to describe every
point in the time series, and the fit is a transform yielding zero residual. The
shorter transit the time of the observation, the higher the lowest observable
frequency that yields a transform becomes.

In order to properly determine the wing-beat frequency in an insect signal,
the frequency preferences of the model have to be evaluated and accounted
for. Three main alternatives to compensate for frequency preferences have
been investigated in this thesis; using an general analytic function, observation
specific function, and lifting up the residual curve at every DoFregr change or
change in window size.

Compensation method - Analytic function
The first alternative is to use an analytic expression to reconstruct the step
behavior of the residual curve,

R̂estot = R̂esregr · R̂esbody = (1− DoFregr
l

) · (1− DoFbody
l

). (4.8)

The resulting analytical function for an observation with l = 100 can be seen
in Figure 4.10.
The original residual curve is then divided by the analytical function in order
to compensate for the preferences towards low and high frequencies.

Compensation method - Analytical function using Resbody
The second alternative is to compensate for the preferences towards high fre-
quencies by division between the original residual curve and the body residual
Resbody. The preference towards lower frequencies cannot compensated for in
the same manner by division with Resregr, since that would erase the dips for
matching WBF as as well. Instead, the step shape of Resregr is found by fit-
ting Resregr to the analytical function describing the regressor residual in the
previous method, multiplied with an extra factor in order to better match the
observation specific shape. The final expression is described as

R̂estot,i = (1− DoFregr,i
l

) · lc ·Resbody, (4.9)
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Figure 4.10: Total analytical function and analytical residual curves for the
body and the regressor for an observation with l = 100.

where l is the number of time samples in the time series, and the exponent c
is an unknown variable, found by a fminsearch function in Matlab.

Compensation method - Lifting
The third alternative is to use two vectors, Dbody and Dregr, that gives the
number of DoF’s in the sliding window and regressor for every frequency re-
spectively. For every two consecutive frequencies where the DoFbody or DoFregr
changes, the difference between the corresponding residual values are added to
the the residuals of lower frequencies before the DoF change.

4.2.3 Fine tuning
When model biases are accounted for, the frequency that gives the lowest resid-
ual is chosen to be the WBF. Since only a limited number of frequencies are
tested originally, the analysis is done once more in a 5% range around the
chosen WBF, to obtain a frequency resolution of 0.5 Hz. The process of the
frequency analysis can be seen in the flowchart in Figure 4.11.
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Figure 4.11: The frequency analysis includes extracting the observation data
obtained from the main process. If the observation has at least three wing-beats
it is analyzed. A model is constructed for a number of test frequencies, and
the frequency yielding the lowest residual is selected as the WBF. The model
consists of a sliding window that slides through the time series and and chooses
the lowest value of OCS in the window to build a body vector. The wing beats are
constructed using a regressor with a constant and set of harmonic functions,
which depends on the test frequency. Using linear regression (least squares
method) a fit of the time series is obtained and the sum of squares residual of the
fit and the time series is saved in a residual vector with a residual corresponding
to every test frequency. Model biasing is compensated for and the frequency
that gives the lowest residual after compensation is chosen as WBF. Finally,
the WBF is fine tuned in a small range around the chosen WBF.
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Chapter 5

Field campaigns

5.1 Ivory Coast field campaign
The first part of the data was collected during a field campaign in Yamous-
soukro in Ivory Coast, using a Scheimpflug Lidar system with a sample fre-
quency of 1750 or 3500 Hz. The system was aligned horizontally and termi-
nated after 516 m. The system and termination positions can be seen in Figure
5.1.

Figure 5.1: Map over the system and termination positions in Ivory Coast.

The data from Ivory Coast is used to investigate how the detection limits in
terms of apparent size and OCS change when the sample frequency changes.
The data is recorded just before dawn (04.30-06.30 am), at two different days
with clear sky condition. This period is chosen since it is the time closest to
dawn/dusk when the insects activity peak, where recordings using both sample
frequencies without setup problematics and with similar weather conditions
could be obtained. The number of observations recorded can be seen in Figure
5.2.
Images of the the system and the campus can be seen in Figure 5.3.
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Figure 5.2: Histogram over the recording times for the observation used to
investigate the detection limit.

Figure 5.3: a) On our way to eat lunch b) Working with the setup on the
roof outside the lab c) Samuel is cutting branches that would interrupt the laser
beam. d)African morning sun from the window where the setup was placed. e)
Group picture with Professor Jérémie Zoueu who was our contact person, and
Benoit Kouakou, a PhD student who works with Lidar.
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5.2 Tanzania field campaign
The other part of the data comes from measurements in Lupiro in Tanzania
where a Scheimpflug Lidar system was recording data of insect activity during
five days. The laser beam was aligned horizontally over a field in the outer part
of the village. The setup parameters were identical to the one used in Ivory
Coast, except that it was terminated after 595 m and had a constant sample
frequency of 3500 Hz. The system and termination positions, as well as the
house where the system was placed can be seen in Figure 5.4.

(a) (b)

Figure 5.4: a) Map over the system and termination positions in Tanzania.
b) Image of the laser beam in Tanzania.

In this thesis, approximately 120 000 insect observations from August 31 to
September 1 are used to study the range dependent biases of background light
and transit times of the observation. Further, a sample of 1000 observations
from dusk (ca 7.00 pm) August 31 is used to study the frequency preferences
of the model.
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Chapter 6

Results

6.1 Detection limit
The relation between OCS and apparent size can be seen in Figure 6.1, showing
that the relation between the apparent size and OCS has the same gradient
when using 1750 Hz and 3500 Hz, but the curve for 1750 Hz is shifted towards
lower OCS. Studying the distribution of OCS and apparent size in Figure 6.1
it can be seen that the limit of detectable OCS decrease with almost a fac-
tor 10 when decreasing the sample frequency from 3500 to 1750, whereas the
detectable apparent size is increased with a factor 1.1.

Figure 6.1: Scatter plot of apparent size vs OCS and Biomass spectrum of
apparent size and OCS. The limits for detectable OCS decrease with almost a
factor 10 when the sample frequency is decreased to half. Further, the detectable
apparent size is increased with a factor 1.1.
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In Figure 6.2, range dependent biomass spectra can be seen for 1750 and 3500
Hz, showing the change in detectable OCS, while the range distribution is
unchanged.

Figure 6.2: Range dependent biomass spectra using a sample frequency of
1750 Hz and 3500 Hz. Using a sample frequency of 1750 Hz, the detectable
OCS decrease approximately from 1 mm2 to 0.5 mm2. The sample frequency
does not affect the range distribution of observations.

6.2 Range biasing
In Figure 6.3, the relation between transit time and range for the approximately
120000 observations from 18.37 August 31 to 10.37 September 1, 2016, can
be seen. Most observations have rather short transit times, (<50 ms), and
more observations are detected at shorter ranges. However, the number of
observations with long transit times increase with increasing ranges.
In Figure 6.4, the range dependent background, median, minimum and noise
level intensity, averaged from 3 minutes of recordings during dusk and mid day
August 31, is plotted. During dusk, the background level is approximately
constant, while there is a range dependence during day. Further, a scatter plot
between background level and noise level can be seen in Figure 6.4, showing a
linear relation between background and noise levels during day.
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Figure 6.3: Transit time for the almost 120 000 observations during the first
two days of the measurements in Tanzania. Most observations are short and
are detected close to the system. However, when the range increase, a higher
amount of observation with longer transit times are detected.
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Figure 6.4: Background, median, minimum and noise level intensity as a
function of range during day and dusk. Scatter plot between background level
and noise level during day and dusk.During dusk, the relation between noise and
background level appears to be constant, while the there is a linearly dependence
during day.
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6.3 Frequency preference compensation
In Figure 6.5, residual curves after compensation can be seen for a 30 ms ob-
servation with clear wing-beats. In Figure 6.6, 6.7 and 6.8 residual curves after
compensation can be seen using the analytical function, analytical function
with observation specific Resbody, and the lifting method, respectively. The
chosen WBF for the three methods are marked in with an arrow.

Figure 6.5: Residual curves for the three compensation methods for a clear
observation. The chosen WBF is color-coded and marked. The lifting method
and the the method using the observation body residual chooses the correct WBF
whereas the method using analytical function chooses a WBF around 700 Hz.

Figure 6.6: Residual curve and compensation curve using an analyticaal func-
tion for example observation 2. The chosen WBF is marked. The steps arising
due to a DoF change are still present and the residual have an even higher bias
towards higher frequencies.

It can be seen from Figure 6.5 and 6.6 that compensation using an analytical
function, results in a residual curve biased towards high frequencies. Further,
the function does not succeed in compensation for the steps in the residual
curve.
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Figure 6.7: Residual curve and compensation curve using analytical R̂esregr
and Resbody. The chosen WBF is marked. Even after compensation there
are remaining steps in the residual and there is a small bias towards higher
frequencies.

Figure 6.8: Residual curve and compensation curve using the lifting method.
The chosen WBF is marked in the power spectrum. An overcompensation using
the lifting method can be seen around 100 and 300 Hz, resulting in an increased
residual.

Using the observation body residual instead, there are still steps present in
some cases, even if they are not as pronounced as when using an analytical
function. Further, there is a remaining bias towards higher frequencies. This
can be seen in Figure 6.5 and 6.7.
The lifting method is biased towards lower frequencies due to the largerDoFregr
for low frequencies, as can be seen in Figure 6.5. Further, in some observations,
there are DOF changes in a dip, resulting in overcompensation when lifting the
curve up, as around 300 Hz in Figure 6.8.

The distribution of the WBF of 580 observations for the three methods
can be seen in Figure 6.9. The method using an analytical function is biased
towards frequencies above 700 Hz, i.e. where DOFbody changes, whereas the
method using an observation body residual and the lifting method gives a more
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similar distribution. However, using the observation body residual gives an
increased amount chosen WBF around 290 Hz, 438 Hz and 500 Hz, and hence
seems to have a higher likelihood of choosing frequencies at DoF changes.

Figure 6.9: WBF distribution for the three compensation methods using 1000
test observations. No compensation, or compensation using the analytical func-
tion results in a clear bias toward higher frequencies. The lifting method and
the method using the observation body residual results in more observations
with lower WBF, which coincides with manual WBF selection. Further, there
are small peaks around known DoF changes when using the observation body
residual, e.g. round 210 Hz, 290 Hz 500 Hz and 700 Hz.
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Chapter 7

Discussion

7.1 Detection limit
Investigating the detection limit of the system shows that there is a connection
between the sample frequency and the smallest OCS that can be detected, as
seen in Figure 6.1. A lower sample frequency means that the exposure time is
longer, the laser pulse energy is higher, and hence it is easier to detect insects
giving rise to low intensity signals given that exposure time does not exceed
transit time. The shift towards higher apparent sizes using a lower sample
frequency can be explained by that the insect have time to cover more range
pixels during an exposure.

7.2 Range biasing
From Figure 6.4 it can be seen that there is a clear dependence on range
regarding the background level during the day. That might be due to sunlight,
clouds, branches that are shadowing the sun etc. However, since mosquitoes
in general are active during dusk and dawn and measurements naturally would
take place during those times of the day, where the background level seems to
be constant, this might not be a problem worth emphasizing.

Considering Figure 6.3, more observations are detected at short ranges,
which is an effect of the range-dependent sensitivity.

Further, the number of observations with long transit times increase with
range. This is partly due to the expansion of the beam width at longer dis-
tances, so an insect flying straight through the beam has a longer transit dis-
tance. In reality, some insects are flying along the beam. In that case the insect
is considered to be detected on the median range for the observation. Insects
that flies along the whole beam and hence have a longer transit time are then
considered to be detected at longer ranges than insects that fly along the beam
only at short ranges. The main reason to the range dependent transit time
is, however, the increasing probe volume, which is the region where the laser
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beam overlaps with the field of view of the camera.

7.3 Frequency preference compensation

Analytical function
The main problem with the analytical function is that while the observation
residuals vary depending on l as well as the size and shape of the body and
wing-beats, the analytical compensation curve only depend on l without taking
the shape and size of body and wings into account.

In Figure 4.10, it can be seen how the the stepwise residual increase is equal
for all steps of the analytical R̂esregr, which is not the case for the observa-
tion residual Resregr. Further, in the analytical function, R̂esbody the residual
difference for every step is increasing towards higher frequencies, which is not
in accordance with the observation residual Resbody. Studying Figure 6.5 and
6.6, it can be seen that the shape and step sizes of the uncompensated residual
curves can differ between observations to a large extent.

Due to the mismatch of the step-sizes in the observation residual and the
compensation curve, steps will still be present in the residual after compensa-
tion. This is mainly a problem regarding regressor residual, as the analytical
expression R̂esregr have a higher gradient for low frequencies than Resregr. The
result is a compensation method that is biased towards higher frequencies, as
can be seen in Figure 6.9.

Analytical function using Resbody

As can be seen from the results part, using the observation body residual
is a suitable compensation method in some cases. The main problem is the
mismatch of the step height in the Resbody and R̂estot that results in a small
"false peak". In case of short and unclear observations that lack sharp real
peaks, the model find one of the false peaks. In Figure 6.9, this is seen as
biasing towards frequencies with DoF changes according to Figure 4.8, for
example, 700 Hz, 500 Hz, 438 Hz and 210 Hz.

Step lifting
As can be seen from Figure 6.5 and 6.8, the lifting method is a good alternative
in some cases. The main problem is the overcompensation that occurs when
there is a DoF change that coincides with the WBF or an overtone at low
frequencies.
Apart from the frequency preference of the model, there are other factors that
will affect the result of the frequency distribution. The data contains lots of
insufficient observations that lack clear wing-beats, which often coincide with a
short transit time. As can be seen from Figure 4.8 and 4.9, a shorter transit time
leads to sharper steps and a sinusoidal behavior in the residual curves. If the
observation also lack clear wing-beats, the results is that that either a frequency
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corresponding to a DoF change, the frequency of the body contribution, or a
random frequency due to the sinusoidal behavior is chosen as WBF.
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Chapter 8

Conclusions and outlook

The investigation of the detection limit suggests that a lower sample frequency
means a lower detectable OCS which was as expected. However, only two
different sample frequencies are compared in the study. To be able to come to
significant conclusions the detection limit should be investigated further.
Regarding the range biasing, the most important results are that less observa-
tions are detected at longer ranges, and transit times are longer at increasing
ranges, which should be kept in mind when investigating transit times of ob-
servations.
The parametrization model has shown to be a reasonable method to find the
WBF of the time series in the full frequency range, when compensating for the
frequency preferences of the model. Unfortunately, neither of the compensation
methods that has been tested is problem free.

Presently, the lifting method is the method that gives accurate WBF for
most observations. The two remaining problems with the lifting method are
when the WBF coincide with a change in DoF, and the low frequency biasing
due to the sinusoidal shape of the body time series, is not as frequent as the
DoF change biasing in the other two models.

Most of the observations where the model does not find the WBF accurately
have short transit time, lack clear wing-beats, etc. Several criteria to sort out
low-quality observations, such as shape and size of the body and wing-beats,
has been investigated during the year and should be investigated further. Being
able to sort out observations that the model is unable to analyze would reduce
the biasing that can be seen in the WBF distribution, and facilitate further
improvement of the compensation methods.
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Appendix

Matlab codes
Raw data processing

1 clear all
2 close all
3 clc
4

5 % Define directory of files
6

7 dn='J:\Field Campaign Yamoussoukro\20170409\';
8

9 fn=dir([dn '*.dat']);
10 [~,ind]=sort([fn.datenum]);
11

12 % Define geometry and system parameters
13

14 noFiles=length(fn);
15 noPix=2048;
16 clock=20;
17 SNR=2;
18 tDiff=0;
19

20 marginToTerm=4;
21 shrink=ones(1,3);
22

23 transFoc=0.5;
24 transDiam=0.102;
25

26 recFoc=0.8;
27 recDiam=0.205;
28

29 pixLength=200e-6;
30 pixPitch=14e-6;
31 sensTilt=45;
32

33 sepDist=0.814;
34 termDist=516;%598;
35

36 spotWidth=0.233;
37 spotHeight=0.025;
38 termRefl=0.04;
39

40 P1=polyfit([0 termDist],[transDiam spotWidth],1);
41 P1=@(r) P1(1)*r+P1(2);
42 P2=polyfit([0 termDist],[transDiam spotHeight],1);



43 P2=@(r) P2(1)*r+P2(2);
44

45 % Define struct to save obs variables
46 observation=[];
47

48 frDark=zeros(noPix,noFiles);
49 frMin=zeros(noPix,noFiles);
50 frMed=zeros(noPix,noFiles);
51 frMax=zeros(noPix,noFiles);
52 frIqr=zeros(noPix,noFiles);
53 frThresh=zeros(noPix,noFiles);
54 frTermIntensity=zeros(1,noFiles);
55 frTermPos=zeros(1,noFiles);
56 frTermWidth=zeros(1,noFiles);
57 frTime=zeros(1,noFiles);
58 frRange=zeros(noPix,noFiles);
59 frProbeVol=zeros(1,noFiles);
60 frOCSconv=zeros(noPix,noFiles);
61 frTermOCS=zeros(noPix,noFiles);
62 frMinDet=zeros(noPix,noFiles);
63 frMaxDet=zeros(noPix,noFiles);
64

65 % Read every file
66 for k=2:noFiles
67

68 %% Opens, reads and shapes the file
69 fid=fopen([dn fn(k).name],'r','b');
70

71 noLines=fread(fid,1,'*uint16');
72 [~]=fread(fid,1,'*uint16');
73 [~]=fread(fid,1,'*uint32');
74

75 newLine=fread(fid,1,'*uint8');
76

77 timeStamp=zeros(noLines,1);
78 slotIncr=zeros(noLines,1);
79 slotInd=zeros(noLines,1);
80 Draw=[];
81

82 l=1;
83 while newLine==1
84

85 timeStamp(l)=fread(fid,1,'*uint32');
86 slotIncr(l)=fread(fid,1,'*uint16');
87 slotInd(l)=fread(fid,1,'*uint8');
88 Draw(:,l)=fread(fid,noPix,'*uint16');
89

90 l=l+1;
91 newLine=fread(fid,1,'*uint8');
92 end
93

94 while noLines>size(Draw,2)
95 timeStamp(end)=[];
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96 slotIncr(end)=[];
97 slotInd(end)=[];
98 noLines=noLines-1;
99 end

100 while slotInd(end)~=0
101 Draw(:,end)=[];
102 timeStamp(end)=[];
103 slotIncr(end)=[];
104 slotInd(end)=[];
105 noLines=noLines-1;
106 end
107 fclose(fid);
108

109 Draw=flipud(Draw);
110

111 brightSlots=find(slotInd);
112 darkSlots=find(~slotInd);
113

114 bgr=interp1(timeStamp(darkSlots),Draw(:,darkSlots)',...
115 timeStamp(brightSlots),'linear')';
116 D=Draw(:,brightSlots)-bgr;
117 noLines=size(D,2);
118

119 %% Uses the file name to define when the file was recorded
120 name=fn(k).name;
121 temp = datetime(fn(k).datenum, 'ConvertFrom', 'datenum');
122 temp = temp + hours(tDiff);
123 TanzaTime = datenum(temp);
124

125 frTime(k)=TanzaTime;
126

127 %% Retrieve statistics
128 frDark(:,k)=median(Draw(:,darkSlots),2);
129

130 Dsort=sort(D,2);
131 frMin(:,k)=Dsort(:,1);
132 frMed(:,k)=Dsort(:,round(end/2));
133 frMax(:,k)=Dsort(:,end);
134 frIqr(:,k)=Dsort(:,round(3/4*end))-Dsort(:,round(1/4*end));
135 frThresh(:,k)=frMed(:,k)+SNR*abs(frMed(:,k)-frMin(:,k));
136

137 D=D-repmat(frMed(:,k),1,noLines);
138

139 %% Termination
140 [frTermIntensity(k),frTermPos(k)]=max(frMed(:,k));
141 termEnd=frTermPos(k)-1+find(frMed(frTermPos(k):end,k)>...
142 frTermIntensity(k)./2,1,'last');
143 termStart=flipud(frMed(:,k));
144 termStart=frTermPos(k)+1-find(termStart((2049-frTermPos(k)):end)...
145 <frTermIntensity(k)/2,1,'first');
146 frTermWidth(k)=termEnd-termStart+1;
147 frTermIntensity(k)=sum(frMed(termStart:termEnd,k));
148
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149 %% Regions of interest
150 ROImask=zeros(noPix,noLines);
151 ROImask(1:(frTermPos(k)-marginToTerm*frTermWidth(k)),:)=1;
152 FOVregion=1:(frTermPos(k));
153

154 %% Range vector
155 termPixDist=1/(1/recFoc-1/termDist);
156 pix_y=sind(sensTilt)*pixPitch*(noPix/2-(1:noPix)');
157 termPix_z=sqrt(termPixDist^2-pix_y(frTermPos(k))^2);
158 pix_z=cosd(sensTilt)*pixPitch*(1:noPix)';
159 pix_z=flipud(pix_z)+termPix_z;
160 pix_z=pix_z-(pix_z(frTermPos(k))-pix_z(end));
161

162 termAng=atand(sepDist/termDist);
163 termPixAng=atand(pix_y(frTermPos(k))/pix_z(frTermPos(k)));
164 alpha=termAng-termPixAng;
165

166 pixAng=atand(pix_y./pix_z);
167 rAng=pixAng+alpha;
168

169 frRange(:,k)=sepDist./tand(rAng);
170 dr = interp1((frRange(1:(end-1),k)+frRange(2:end,k))/2,diff(frRange(:,k)),...
171 frRange(:,k),'pchip','extrap');
172

173 %% Probe Volume
174 beamWidth=P1(frRange(FOVregion,k));
175 beamHeight=P2(frRange(FOVregion,k));
176 FOVwidth=pixLength*frRange(FOVregion,k)./pix_z(FOVregion);
177 FOVheight=sind(sensTilt)*pixPitch*frRange(FOVregion,k)./pix_z(FOVregion);
178

179 probeVolWidth=min(beamWidth,FOVwidth);
180 probeVolHeight=min(beamHeight,FOVheight);
181

182 probeVolume=dr(FOVregion).*probeVolWidth.*probeVolHeight;
183 frProbeVol(k)=sum(probeVolume(1:frTermPos(k)));
184

185 %% OCS calibration
186 frTermOCS(k)=probeVolWidth(frTermPos(k))*probeVolHeight(frTermPos(k))*termRefl;
187 frOCSconv(:,k)=frTermOCS(k)*frRange(:,k).^2./(frMed(:,k)*...
188 frRange(frTermPos(k),k)^2);
189 frOCSconv((length(FOVregion)+1):end,k)=0;
190

191 OCSmap=D.*repmat(frOCSconv(:,k),1,noLines);
192

193 frMinDet(:,k)=frOCSconv(:,k).*(frThresh(:,k)-frMed(:,k));
194 frMaxDet(:,k)=frOCSconv(:,k).*((2^16-1)-frMed(:,k));
195

196 %% Find insect observations
197 Dmask=(D>repmat(frThresh(:,k)-frMed(:,k),1,noLines)).*ROImask;
198 Dmask=imerode(Dmask,shrink);
199 Dmask=imdilate(Dmask,grow);
200

201 T=bwconncomp(Dmask);
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202

203 %% Extract and parameterize observations
204 entry=[];
205 if T.NumObjects>0
206 for l=1:T.NumObjects
207 [rr,tt]=ind2sub(size(D),T.PixelIdxList{l});
208

209 entry(l).fn=k;
210

211 entry(l).rInd=min(rr):max(rr);
212 entry(l).tInd=min(tt):max(tt);
213

214 entry(l).rtMap=OCSmap(entry(l).rInd,entry(l).tInd).*...
215 Dmask(entry(l).rInd,entry(l).tInd);
216 entry(l).bsTS=sum(entry(l).rtMap,1);
217 entry(l).time=datevec(frTime(k))+[0 0 0 0 0 timeStamp...
218 (brightSlots(round(mean(entry(l).tInd))))];
219 entry(l).time=datenum(entry(l).time);
220 entry(l).dt=length(entry(l).tInd)/fs;
221

222 entry(l).centralPix=round(mean(entry(l).rInd));
223

224 entry(l).range=frRange(entry(l).centralPix,k);
225

226 [~,entry(l).pixCoverage]=mode(tt);
227 entry(l).appSize=sind(sensTilt)*pixPitch*entry(l).pixCoverage* ...
228 entry(l).range/sqrt(pix_y(entry(l).centralPix)^2+...
229 pix_z(entry(l).centralPix)^2);
230 end
231

232 observation=[observation entry];
233

234 end
235

236 %% Saving
237 disp('Saving...')
238 dn2 = 'C:\Users\Alexandra\Documents\Master_Matlab\Master_matFilesElf\FA_in\';
239 save([dn2 'FA_in_Elf14_300short.mat'],'observation','frDark','frMin','frMed', ...
240 'frMax','frIqr','frThresh','frTermIntensity','frTermPos','frTermWidth', ...
241 'frTime','frRange','frProbeVol','frOCSconv','frTermOCS','frMinDet','frMaxDet')
242 disp('Saved.')
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Frequency analysis

1 % Required variables for this function: observation time series,
2 %sample frequency and noise amplitude
3 function eventOut = FA(event)
4

5 t_ser = event.OCSevent';
6 l_event = length(t_ser);
7 f_sample = event.f_sample;
8 max_t = l_event/event.f_sample;
9 t = linspace(0,max_t,l_event);

10

11 %% Create Pow spec and freq vectors
12

13 % max meas freq is Nyqvist frequency
14 Freq_max = event.f_sample/2;
15

16 % min 3 wingbeats
17 Freq_min = 3/(max_t);
18

19 % Create test frequency vector
20 fminind = ceil(Freq_min/(Freq_max - 1)/500);
21 Freq_test = linspace(Freq_min,Freq_max,501-fminind);
22

23 %% Enter freq an loop, if the event fulfill the conditions
24

25 if findpeaks(t_ser) > 2
26

27 % Loop through and find np harmonics
28

29 for f = 1:length(Freq_test)
30 %
31 period = 2*Freq_max/Freq_test(f);
32 body_np = bodyFilt(t_ser,Freq_test(f),Freq_max,event.half_noise);
33 wings_np = t_ser - body_np;
34

35 % Build regressor
36 harm_np = [ones(l_event,1)];
37

38 for h = 1:floor((Freq_max/Freq_test(f)))
39

40 harm_np = [harm_np sin(2*pi*h*Freq_test(f)*t)' cos(2*pi*h*Freq_test(f)*t)'];
41

42 end
43

44 % Body weighing
45 regr_np = harm_np.*repmat(body_np,[1 size(harm_np,2)]);
46

47 coeff_np = regr_np\t_ser;
48 coeff_wing = harm_np\t_ser;
49 coeff_body = body_np\t_ser;
50

53



51 t_ser_fit_np = regr_np*coeff_np;
52 resi_np(f) = sum((t_ser - t_ser_fit_np).^2)/l_event;
53

54 wingfit = harm_np*coeff_wing;
55 resiwing(f) = sum((t_ser - wingfit).^2)/l_event;
56

57 bodyfit = body_np*coeff_body;
58 resibody(f) = sum((t_ser - bodyfit).^2)/l_event;
59

60 end
61

62 %% Preference compensation
63

64 h = floor(Freq_max./Freq_test);
65 DOF_regr = 1+(2.*h);
66

67 W = round(2.*Freq_max./Freq_test);
68 DOF_wind = l_event./W;
69

70 Res_regr = (1-(DOF_regr./l_event));
71 Res_wind = (1-(DOF_wind./l_event));
72 Res_tot = Res_regr.*Res_wind;
73

74 % Alternative 1 - Analytical function
75

76 Res_1 = resi_np./Res_tot;
77

78 % Alternative 2 - resibody
79

80 resi_p = resi_np./resibody;
81 c = resi_p(1);
82 height = resi_p;
83 X = DOF_regr./l_event;
84 fitcoeff = fminsearch(@wingan,[c,4],[],X,l_event,height);
85 height = (1-X).*fitcoeff(1).*(l_event.^(1/fitcoeff(2)));
86

87 Res_2 = resi_p./height;
88

89 % Alternative 3 - lifting it up
90

91 Res_3 = resi_np;
92

93 for u = 1:length(DOF_wind)-1
94

95 if DOF_wind(u) ~= DOF_wind(u+1)
96

97 if u == 1
98

99 Res_3(u) = Res_3(u) + (Res_3(u+1) - Res_3(u));
100

101 else
102 Res_3(1:u) = Res_3(1:u) + (Res_3(u+1)-Res_3(u));
103 Res_3(u) = (Res_3(u-1) + Res_3(u+1))/2;
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104

105 end
106 end
107

108 if DOF_regr(u) ~= DOF_regr(u+1)
109

110

111 if u == 1
112

113 Res_3(u) = Res_3(u) + (Res_3(u+1) - Res_3(u));
114

115 else
116 Res_3(1:u) = Res_3(1:u) + (Res_3(u+1)-Res_3(u));
117 Res_3(u) = (Res_3(u-1) + Res_3(u+1))/2;
118

119 end
120

121 end
122 end
123

124 % Find min res - change res dep on method
125 res = Res_3
126 [res_fin,f0ind] = min(res);
127 f0_p = Freq_test(f0ind);
128

129

130 %% Fine tuning
131

132 test_reg = linspace(0.95*f0_p,1.05*f0_p,round((1.05*f0_p-0.95*f0_p)/0.5));
133

134

135 for f = 1:length(test_reg)
136

137 body = bodyFilt(t_ser,test_reg(f),Freq_max,event.half_noise);
138 wings = t_ser - body;
139

140 harm = [ones(l_event,1)];
141

142 for h = 1:floor((Freq_max/test_reg(f)))
143

144 harm = [harm sin(2*pi*h*test_reg(f)*t)' cos(2*pi*h*test_reg(f)*t)'];
145

146 end
147

148 regr = harm.*repmat(body_np,[1 size(harm,2)]);
149

150 coeff = regr\wings;
151

152 t_ser_fit = regr*coeff;
153 resi_fine(f) = sum((wings - t_ser_fit).^2)/l_event;
154

155 end
156
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157 [res_ft,ind_ft] = min(resi_fine);
158 f0 = test_reg(ind_ft);
159

160

161 %% Build up correct fit
162

163 body_p = bodyFilt(t_ser,f0,Freq_max,event.half_noise);
164 wings_p = t_ser - body_p;
165

166 DC = ones(l_event,1);
167 harm_p = [DC];
168

169 for h = 1:floor(Freq_max/f0_p)
170

171 harm_p = [harm_p sin(2*pi*h*f0_p*t)' cos(2*pi*h*f0_p*t)'];
172

173 end
174

175 regr_p = harm_p.*repmat(body_p,[1 size(harm_p,2)]);
176

177 coeff_p = regr_p\wings_p;
178

179 t_ser_fit_p = regr_p*coeff_p;
180 t_ser_res_p = sum((wings_p - t_ser_fit_p).^2)/l_event;
181

182 %% Save event parameters to event struct
183 event.harmDOF = DOF_regr(f);
184 event.bodyDOF = DOF_wind(f);
185

186 ...
187 else
188 event.harmDOF = NaN;
189 event.bodyDOF = NaN;
190 ...
191 end
192

193

194 eventOut = event;
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Body time series

1 % Sliding window creating body time series
2 % Requires, time series, current test WBF, f_s and noise amplitude
3 function bodyVect=bodyFilt(ts,f0,fs,noiseAmp)
4

5 L=round(2*fs/f0);
6

7 odd=mod(L,2); % Check if window is even or odd sized
8

9 if odd
10

11 tsb=imerode(ts,ones(L,1)); % Sliding minimum
12

13 else
14

15 tsb=imerode(ts,ones(L,1)); % Sliding minimum
16

17 tsb=(tsb(1:(end-1))+tsb(2:end))/2; % interpolation
18

19 tsb=[tsb(1); tsb];
20

21 end
22

23 W=normpdf(0:L,L/2,L/(4*sqrt(2*log(2))))/sum(normpdf(0:L,L/2,L/(4*sqrt(2*log(2))))); % Gauss, remember to start at zero for symmetry
24 tsb = conv(tsb,W,'same');
25

26 bodyVect=tsb+noiseAmp;
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