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Abstract

In this master’s thesis a method for estimating the fractal dimension from Transmission Electron
Microscope (TEM) images of soot aggregates has been developed, and also applied to TEM images
of soot sampled from a mini-CAST soot generator. The problem to estimate the fractal dimension,
a 3D property, from a 2D image is undetermined. To solve this, TEM images were synthesised
based on projections of numerically calculated soot aggregates with specified fractal dimensions.
The images were used to calibrate a machine learning approach with the output of a fractal image
analysis method, called the Box Counting dimension, as fractal feature. The created calibrations
show a strong correlation between the Box Counting dimension and the fractal dimension. This
verify that the Box Counting dimension as a feature extracts the fractal properties from a TEM
image. Two different versions of Box Counting, named standard-Box Counting and random-Box
Counting with the difference in how the boxes are generated, have been tested and compared. The
random-Box Counting method was found to give the most reliable calibration and estimations.
This calibration is similar to a corresponding one produced with the same method in previous
work. 55 TEM images of soot sampled from the cold gas exhaust of a mini-CAST soot generator
were analysed. A preprocessing algorithm was applied on each image followed by an estimation of
the fractal dimension where the calibrations were used. The resulting mean of all fractal dimension
estimations from the random-Box Counting method was 1.94. The evaluated fractal dimensions
in this work is somewhat higher compared to studies probing flame soot and possible reasons are
discussed.

Examensarbetet har utvecklat en metod för att estimera den fraktala dimensionen fr̊an Transmis-
sions Elektron Mikroskop (TEM) bilder av sot aggregat som skapats med hjälp av en mini-CAST
sotgenerator. Det är ett underbestämt problem att estimera den fraktala dimensionen, en 3D
egenskap, fr̊an 2D bilder. Lösningen är syntetiserade TEM bilder som baserats p̊a projektioner av
numeriskt simulerade aggregat med specifika fraktala dimensioner. Bilderna användes för att kali-
brera en maskininlärningsmetod med värdet fr̊an en fraktal bildanalysmetod, kallad Box Counting
dimensionen, som fraktalfeature. De skapade kalibreringarna visar en stark korrelation mellan Box
Counting dimensionen och den fraktala dimensionen. Detta verifierar att Box Counting dimen-
sionen, som feature, extraherar de fraktala egenskaperna fr̊an en TEM bild. Tv̊a olika versioner
av Box Counting, kallade standard-Box Counting och random-Box Counting med skillnad i hur
boxarna genereras, har testats och jämförts. Random-Box Counting metoden visade sig ge den
mest p̊alitliga kalibreringen och de mest p̊alitliga estimeringarna. Denna kalibrering är lik en
motsvarande kalibrering som skapats med hjälp av samma metod i ett tidigare arbete. 55 TEM
bilder av sot som samplats fr̊an den kalla avgasluften av en mini-CAST sotgenerator har analy-
serats. En förbehandling av varje bild följdes av en estimering av den fraktala dimensionen där
kalibreringarna fr̊an maskininlärningen användes. Det resulterande medelvärdet av alla estimer-
ade fraktala dimensioner fr̊an random-Box Counting metoden var 1.94. De evaluerade fraktala
dimensionerna i detta arbete är lite högre jämfört med studier som samplat sot direkt i flammor
och möjliga orsaker diskuteras.
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Chapter 1

Introduction

Since the dawn of time humans have searched for patterns. From finding constellations in the
stars to the search for Romanescos in the clouds. Naturally it can be expanded to finding patterns
inside patterns. Here the phenomenon of self-similarity might arise. For example, zooming in on
one sub cone of a Romanesco cauliflower, see Figure 1.2, will almost repeat the exact same pattern
as the one seen in the whole vegetable. Self-similarity is connected to the world of fractal geometry,
which is a concept introduced by the mathematician Benoit B. Mandelbrot. His legacy includes
work about fractals in nature [1] which is exactly what this master’s thesis will explore. Here we
will be zooming in about 100 000 times into the small world of soot aggregates and their fractal
geometry.

First consider, what is soot? A soot particle is a solid substance mainly consisting of carbon
and to less extent hydrogen [2]. Soot aggregates or soot clusters are clusters of these particles.
The creation of soot aggregates starts with the collision of particles. Larger aggregates are then
mostly created through cluster-cluster collision. Since all aggregates, independent of size, are built
up of sub-aggregates created from the same process they will possess self-similar properties. This
also means that soot aggregates have fractal properties.

In urban areas soot is mainly produced from the combustion of fossil fuels. The global soot
emissions are one of the main causing factors for the global warming [3]. The presence of soot in the
atmosphere contribute to so-called climate forcing through absorption of the solar radiation both
on the ground and in the air. In the end this leads to an increase of the earth surface temperature.
In addition to the environmental viewpoint, soot emissions are strongly connected to health risks
[4]. Meta-analyses indicate that the fraction of people affected by respiratory and cardiovascular
diseases increase for people living in areas with high particulate air pollution.

The motivation for the present study on the properties of soot is connected to two currently
ongoing connected projects at Lund University. The first one, at Combustion Physics, is a study
of the optical properties of soot by Phd. S. Török and Prof. P.-E. Bengtsson. In this project soot
is produced with a so-called mini-CAST soot generator. The generator simply produces soot from
combustion of propane gas. The produced soot can be tuned to have different properties from
nascent small relatively transparent soot to mature larger strongly absorbing soot. The focus of
the project is on measuring the absorption properties together with scattering properties of soot.
Results show interesting differences in scattering properties for the tuned soot aggregates which are
related to their fractal properties. The second project is theoretical work done by Prof. A. Karls-
son, Electro and Information Technology, in collaboration with P.-E. Bengtsson. By the means
of theoretical calculations and synthesised aggregates the optical properties of soot are studied.
One input parameter for computing the synthesised aggregates is a fractal parameter called the
fractal dimension. The results so far show a critical correlation between the fractal dimension of a
synthesised aggregate and its scattering properties.

This master’s thesis aims to act as a bridge between these two projects. Both projects investi-
gate the optical properties of soot aggregates but in different realms, the real and simulated. If soot
aggregates with the same fractal dimension are studied in both projects, the agreement between
measurements and calculations would be improved. In the end this will increase the knowledge of,
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and improve, the current models for the optical properties of soot aggregates.

To act as a bridge the work presented in this master’s thesis needs to estimate the fractal di-
mension of soot aggregates. Here two questions follow: What is the fractal dimension and how can
it be estimated for soot aggregates?

The fractal dimension is a property not that different from the topological dimension where a
curve has the topological dimension 1, a surface 2 and volume 3. The difference is the possibility
for non integer fractal dimensions. All possible fractal dimensions include the continuous interval
of real values between 1 and 3. As a short example explaining the fractal dimension, a straight line
will both have the topological and fractal dimension 1. Though as the line evolves into a curve the
fractal dimension increases. Adding more turns, especially sharp ones, on the curve will increase
it further. It should be noted that the fractal dimension is not the most intuitive concept, a more
elaborate discussion on it is found in the theory.

To calculate the fractal dimension value, one way is too use image analysis on Transmission
Electron Microscope (TEM) images of soot aggregates, just like the one in Figure 1.3. But this
creates a problem. The fractal dimension of a soot aggregate is a 3D property and trying to esti-
mate it from a 2D image is an undetermined problem, meaning it is impossible to know the correct
answer. In this project the problem of not knowing the correct answer is solved with the use of syn-
thesised TEM images. These are projected from soot clusters simulated with tunable algorithms
for generation of fractal like aggregates, which is exactly what Prof. A. Karlsson use in his project
introduced above. Now the correct fractal dimension for each TEM image is known. The images
are used to calibrate a machine learning approach where the output of a fractal image analysis
method, called the Box Counting dimension, is used as the fractal feature. Machine learning is
a general term connected to using data driven learning rather than explicit programming. The
method can thereby learn from the input and output in previous data to predict the output of new
input data. This approach of synthesising TEM images and calibrating a machine learning method
for estimating the fractal dimension of soot aggregates has been applied in the work of Wozniak
et al. [5]. This master’s thesis is mostly a reproduction of their method. The differences between
the projects lie in using different simulation and projection methods for synthesising TEM images
and an improved description of an automated preprocessing algorithm which can be applied on
TEM images. The methods used in this report are generally faster versions.

The aim of the thesis is two-fold:

• To develop an accurate image analysis method for estimating the fractal dimension from
TEM images of soot aggregates using synthesised TEM images.

• Applying the developed method on real TEM images of soot aggregates.

To estimate the fractal dimension this work will, as mentioned, use a machine learning approach.
Machine learning is a process applying the concept, the more data the better, where the data in
this project will be synthesised TEM images. For it to be practical, with the aspect of time, to
apply the pipeline of synthesising images and calibration. Much focus and work has been put into
fast implementations of the used methods.

Behind the visualisation of all results of this project, lie more than 4000 lines of code. These
are a mix of the languages C, C++, Python, Matlab, BASH and Julia which together form a flow
of data, creating files, images and plots illustrated in the flowchart in Figure 1.1.
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Cluster Simulation

TEM Preprocessing

Cluster Analysis
Box Counting

Cluster Projection

Real TEM images

Preprocessed TEM
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Synthesised TEM 
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Simulated Clusters

estimations

Methods

Figure 1.1: Flowchart of all implemented methods and how they interact with the data in this project where
Df is the final fractal dimension estimations of the real TEM images. The ellipses represent implemented
methods and the rectangles are data produced with these methods.

The report will continue with a chapter containing theory on producing the synthesised TEM
images, image analysis methods for preprocessing images and retrieving fractal parameters. This
is followed by the results and discussion of images and plots mainly produced by the calibration
and fractal dimension estimation of real TEM images. The final chapter contains the conclusions
of the discussion and how they relate to the aims introduced above.
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Figure 1.2: A Romanesco Cauliflower with clear self-similarity at different scales and fractal properties.

Figure 1.3: Example of a Transmission Electron Microscope image with two soot aggregates produced from a
soot generator. Note that the soot aggregates consists of primary soot particles, which are roughly spherical
and have diameters around 20 nm.
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Chapter 2

Theory

2.1 Fractals

The defining properties of fractals are revealed when observing them at different scales. Here
the pattern in each scale will be similar which is called self-similarity. For example, theoretical
fractals often have perfect self-similarity. Scaling them will repeat the exact same pattern over and
over. One theoretical fractal, with perfect self-similarity, called the Koch snowflake is illustrated
in Figure 2.1.

Koch Snowflake, 0 recursions Koch Snowflake, 1 recursions Koch Snowflake, 2 recursions

Koch Snowflake, 6 recursions

Figure 2.1: This is an illustration of the Koch snowflake, a theoretical fractal with perfect self-similarity at
different scales. The top row of images show how the fractal is produced. In each recursion step all lines
are divided into four new lines with a third of its original length. This is repeated indefinitely. Six such
recursions are shown in the last image.

To connect self-similarity and scaling to the fractal dimension it is interesting to look at the
fractal scaling equation:

NL ∼ L−Df . (2.1)

For fractal scaling the relation above should hold where NL is the number of sticks with length
L needed to measure the length of an object with the fractal dimension Df . Solving the fractal
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scaling equation for Df with two NL, L combinations gives:

NL ∼ L−Df ,

logNL ∼ −Df logL,

Df = −∆ logNL
∆ logL

.

(2.2)

For the fractal scaling equation to make any sense it will be applied to the snowflake above as
an example. Here the length of the fractal will be measured using two sticks with different lengths.
The first one will have the length L1 = 1 and the second one L2 = 1

3 . When measuring the straight
line in the top leftmost image in Figure 2.1 with the first stick, it fits perfectly, meaning that one
stick was needed to measure its length, N1 = 1. Now using the second stick the resolution is
suddenly improved to measure the same line in the top middle image of Figure 2.1 which is divided
into four lines where each line has a third of the previous line’s length. Conveniently the new stick
also has a third of the previous stick’s length and therefore four sticks are needed to measure the
length, N2 = 4. Inserting the values into the resulting expression for Df in Eq. (2.2) gives:

Df = − log(N2)− log(N1)

log(L2)− log(L1)
= 1.26. (2.3)

So each time the scale is doubled the length of the snowflake curve will be 21.26 ≈ 2.39 times larger.
The Koch snowflake is not just a set of lines with one dimension, but something more, something
with fractal dimension 1.26.

The next equation is connected to both the fractal scaling equation and aggregates. It is called
the fractal equation [5], note the similarity of names, and is shown below.

np = kf

(
RG
rp

)Df

. (2.4)

Here np is the number of particles in the aggregate, kf is called the fractal prefactor which among
other things is a measure of how much the particles in the cluster overlap in relation to hard
spheres in contact, RG is the radius of gyration for the aggregate, rp is the radius of each particle
and Df is as you might have guessed the fractal dimension. The fractal equation is widely used to
describe the fractal properties of aggregates, including soot aggregates. For soot aggregates it is
used in a certain method to estimate the fractal dimension from TEM images.

Relating the fractal dimension to real soot aggregates Table 2.1 shows results of fractal dimen-
sion estimations in some previous works.

Table 2.1: Estimated values of the fractal dimension for soot aggregates from previous works. The soot
aggregates used for these calculations have been sampled in a flame burning with either diesel or ethene.
The methods mentioned here will be explained later in section 2.4.

Wozniak et al. [5], using the Minimum Bounding Rectangle
method

1.88

Wozniak et al. [5], using the random-Box Counting method 1.66
Dobbins and Megaridis [6], using the Minimum Bounding
Rectangle method

1.62 & 1.74

2.2 Cluster Simulation of aggregates with predefined fractal
dimension

The simulation of fractal-like clusters is a problem present in multiple science-fields. There are a
number of different methods to perform this, e.g. in Wozniak et al. [5], Thouy and Jullien [7] and
Skorupski et al. [8]. In this master’s thesis two different simulation methods have been used. The
first one is based on the method found in Thouy and Jullien [7]. This is a Cluster-Cluster (CC)
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model, meaning that in each step of the algorithm two clusters of particles are merged. The second
model is a Particle-Cluster (PC) method described in Skorupski et al. [8]. Here each step of the
algorithm adds a single particle to the current aggregate. Both methods require the input of a
specific number of particles (np) and a fractal dimension (Df ∈ [1, 3]) to produce a corresponding
aggregate.

2.2.1 Cluster-Cluster aggregation model in unit grid

This method is as mentioned based on the description by Thouy and Jullien [7]. In their article a
more thorough deduction of formulas are shown which will not be included here. The algorithm
simplifies the clusters into an integer lattice, meaning that the coordinates for each particle in a
cluster can only take integer values. The method is also restricted to only produce clusters with
np = 2n, n ∈ N particles. For notation, a cluster of particles can be described using a list of
point-coordinates for each particle in the cluster. The points are in 3D and will be denoted ri for
the i’th particle in the aggregate.

Now to produce an aggregate with 2n particles, first 2n−1 clusters with two particles in each
are created. The creation is performed randomly meaning that the second particle is randomly
inserted into one of the three possible directions relative the first one. It should be noted that
this is the only part of the algorithm containing a random component. Then as mentioned the
clusters should be merged together and the algorithm only describes how this is done for two
general clusters with equal number of particles and the rest should be performed recursively. Each
recursive step uses the clusters produced in the last step merging them together, resulting in half
as many clusters until there is only one cluster left.

But to understand the algorithm it is good to have some formulas fresh in memory. One way
to describe the size of a cluster is using the Radius of Gyration (RG). This is calculated as

RG =

√√√√ 1

n

n∑
i=1

|ri − rG|2, (2.5)

where rG is the centre of gravity of the cluster. If two clusters with equal number of particles are
merged the radius of gyration of the merged cluster (RG) can be calculated from the radius of
gyration of the previous clusters (RG1 and RG2) together with their respective centre of gravities
(rG1 and rG2) as

R2
G =

(R2
G1 +R2

G2)

2
+
|Γ|2

4
, (2.6)

where
Γ = rG1 − rG2. (2.7)

As mentioned, the created clusters should have a predefined fractal dimension. This can be
achieved through preserving the fractal dimension of the clusters in each merging. With the
assumption that the two clusters about to be merged have the equal known fractal dimension Df .
The new problem is to preserve this fractal dimension after the merging. The solution will use a
reformulation of the fractal equation (2.4):

np ∼ RDf

G,np
. (2.8)

To both preserve Df and double the number of particles when merging two clusters a restriction
is set on how the radius of gyration for the new aggregate can change. The only flexible part in
the new radius of gyration is |Γ|2. From Eq. (2.6) it can be seen that |Γ|2 should be described by
the following expression:

|Γ|2 = k2
R2
G1 +R2

G2

2
, (2.9)

where the fractal dimension is a component of k as:

k = 2
√

41/Df − 1. (2.10)
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Now in practice the following equation will be used instead of (2.9):

|Γ|2 = k2
R2
G1 +R2

G2

2
+ 1. (2.11)

The 1 here is introduced for the formula to work for the base case with two N = 1 clusters and for
larger clusters it will have insignificant effect.

Now to the real algorithm of merging two general clusters with equal number of particles while
preserving the fractal dimension. First all possible ways of combining the clusters, excluding those
with particles overlapping, are found. Since particles only exist in an integer lattice this is a finite
number of combinations. For each combination a value (δΓ) describing how good it preserves the
fractal dimension, where smaller is better, is calculated as:

δΓ =

(
|Γ|2 − k2R

2
G1 +R2

G2

2
− 1

)2

. (2.12)

The combination with the smallest value is chosen as the merged cluster. To explain the appearance
of δΓ it might be easier to look at the previous representation of |Γ|2 in (2.11) which describes its
optimal value for preserving the fractal dimension. Now it is more intuitive that the best cluster
is the one minimising the difference between the real |Γ|2 for a certain combination of the two
clusters and the optimal one.

Most of the cons for this method such as the restrictions of a lattice grid, slow computation
and the restricted number of particles in an aggregate has been mentioned. Though there is one
advantage. Cluster-Cluster aggregation is a realistic way of producing aggregates since it follows
the theory of the production of real soot aggregates.

2.2.2 Particle-Cluster aggregation model in a continuous space

The second model is as mentioned described in Skorupski et al. [8]. It adds a single particle to
the cluster in each aggregation step while still preserving the fractal dimension. To preserve the
fractal dimension the new particle should be added at a certain radius from the cluster’s centre of
gravity. This radius |Γ|2 is described by [8]:

|Γ|2 =
npr

2
p

np − 1

(
np
kf

) 2
Df

− npr
2
p

np − 1
− npr2p

(
np − 1

kf

) 2
Df

. (2.13)

Here np is the number of particles in the cluster after the particle is added, rp the radius of each
particle, kf the fractal prefactor which is set to 1.593 just as in Wozniak et al. [5] and Df the preset
fractal dimension of the resulting cluster. But the first thing to do in this method is to create a two
particle cluster at random. It can be performed by taking two uniform random numbers, θ̂ ∈ [0, π]

and φ̂ ∈ [0, 2π). The second particle is set, with spherical coordinates, to (2rp, θ̂, φ̂) with the first
particle as origin. Thereafter the same following procedure is repeated for adding a single particle
(A) to the cluster until the desired number of particles is reached.

1. The radius |Γ| for the new particle A from the cluster’s centre of gravity C is calculated
using Eq. (2.13).

2. The particles in the cluster with radius r matching the condition |r−|Γ|| < 2rp are extracted.
These are particles on which A can be attached while still fulfilling the radius condition.

3. One of these particles B with radius rB from C is chosen at random.

4. For the radius condition to be met the angle ∠ACB is restricted to one value α. This angle
can be calculated using Eq. (A.1) with |CA| = |Γ|, |CB| = rB and |AB| = 2rp.

5. There is now one degree of freedom left for A to be attached to B. The freedom is the
angle β ∈ [0, 2π) of the vector CA’s rotation around CB. The angle can be extracted from
a uniform distribution and finding the cartesian coordinates for A is performed using the
rotations described in Appendix B.
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6. Check if A is colliding with any other particles in the cluster.

if yes for the 25th time [8]: goto 3
if yes: goto 5
if no: add particle A to cluster

In addition to this procedure two problems were encountered which were not accounted for in the
algorithm described by Skorupski et al. [8]. Here special cases have been adapted.

• If the radius of the new particle is larger than the radius of the particle farthest away from
the centre. The solution is to insert the new particle on this particle as far away from the
cluster centre as possible. Occurs for Df values close to 1.

• If the radius is too small. Meaning that all of a large number of attempted insertions of the
new particle has resulted in collisions with previous particles. The solution is to increment
the radius and try again. Occurs for Df values close to 3.

The pros and cons for the PC simulation method follows the same pattern as for the CC method,
but inverted. Here the advantage is a fast algorithm with continuous coordinates for an arbitrary
number of particles in the clusters. The drawback is an unrealistic way of producing aggregates
by adding one particle at a time and for large preset fractal dimensions (Df > 2.9) the algorithm
has a tendency to get slow because of the second special case above.

2.3 Cluster Projection, synthesising TEM images from sim-
ulated clusters

The principle of a Transmission Electron Microscope is mostly the same as a regular microscope
[9] with the difference that a TEM uses electrons and the regular microscope photons. The main
advantage of a TEM is that it has much higher resolution. To such degree that macromolecules,
such as soot aggregates, can be viewed.

The projection of simulated aggregates should imitate the operation of a TEM. One approach
to this problem of projecting a 2D image from 3D points is connected to the camera matrix. This
is a matrix with three rows and four columns. The general camera matrix (C) includes information
of the camera centre, its rotation, the focal length, etc. With the camera matrix a 3D point (X)
as column vector, which could be the centre of a simulated particle, can easily be projected into a
pixel value (x) from simple matrix multiplication:

x ∼ CX. (2.14)

To be able to compute the multiplication X must be a 4 long column vector and x a 3 long column
vector. This is called homogeneous coordinates where a third or fourth homogeneous coordinate
is added in two and three dimensions respectively. Converting from normal to homogeneous co-
ordinates is simple. Just add the homogeneous coordinate as a 1. To convert the homogeneous
coordinate back, first scale the whole vector so that the homogeneous coordinate is 1. Then it can
be removed. This explains the proportionality in Eq. (2.14) where x should be scaled to get the
homogeneous coordinate as 1.

The camera matrix can be simplified into an intrinsic- (K 3x3), rotation- (R 3x3) and translation-
(t 3x1) matrix on the form:

C = K[R t]. (2.15)

The intrinsic matrix contains information of the camera such as focal length (f), conversion from
measuring units to pixels (sx and sy), skew (γ) and the centre of an image in pixels (u0, v0). A
model for the intrinsic matrix is the following:

K =


f
sx

γ u0
0 f

sy
v0

0 0 1

 . (2.16)
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The rotation matrix is connected to the rotation of the camera’s coordinate system. It describes the
inverse rotation from the cartesian coordinate vectors to the camera’s coordinates. For example,
the camera’s direction vector (v) be calculated using the z unit vector as:

v = RT

0
0
1

 . (2.17)

At last the translation matrix (column vector) does not describe the real camera centre. Instead
the real camera centre (T) can be calculated as T = −RT t. t somehow describes the camera
centre after all points has been rotated by R.

A special case for the camera, called an affine camera, is when the camera centre is set at infinity.
This is an interesting approximation when observing objects far away or small object where large
magnification has been used. To apply this, the camera matrix in Eq. (2.15) is modified to:

C = K

[
R t
0 1

]
, (2.18)

where R and t now only has two rows. For further reading about the camera matrix and computer
vision problems see Hartley and Zisserman [10].

Wozniak et al. [5] use a 3D overlap between particles where they try to mimic the morphology
of real soot aggregates while projecting them. This is described using an overlapping factor C3D

described below:

C3D =
2rp − d3D

2rp
, (2.19)

where d3D is the real distance between the centres of two particles and rp is the radius of each
particle. They used the overlapping factor, C3D = 0.2 for synthesising TEM images which is
estimated from the corresponding overlap in real TEM images of soot aggregates.

2.4 Cluster Analysis, methods for estimating the fractal di-
mension from TEM images

Just like for the simulation, two methods are described here, with the addition of a small variation
of the second one. They are explained in Wozniak et al. [5] with the names: Minimum Bounding
Rectangle (MBR) method and Box Counting method, with the variation as the Modified Box
Counting method. The first one is based on the fractal equation (2.4) while the others are based
on the fractal scaling equation (2.1).

2.4.1 Minimum Bounding Rectangle

Even though this is a method widely used it has no specific name in e.g. Köylü et al. [11] and
Dobbins and Megaridis [6]. But Wozniak et al. [5] decided to name it after the way it needs the
input images to be rotated and cropped. This should be performed in a way as to minimise the
area of the resulting image, in other words finding the minimum bounding rectangle. The method
then has its base in two estimations. The first one is an estimation of the radius of gyration as the
characteristic length of the minimum bounding rectangle. In an image with pixels height/length as
L and the width W of this rectangle the characteristic length is

√
LW . Now the fractal equation

(2.4) can be rewritten as:

np = kLW

(√
LW

rp

)Df

. (2.20)

It can be seen that the only changes are that RG and kf are exchanged for
√
LW and kLW , where

kLW is connected to kf .
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Continuing with the second estimation which determines the number of particles in a fractal
aggregate from the following equation:

np = kα

(
Aa
Ap

)α
. (2.21)

Aa is the total projected area of the aggregate and Ap is the projected area of one particle in
the aggregate. The number of projected particles are estimated inside the parenthesis and using
the constants kα and α it is expanded to 3D. The values for the constants have been empirically
calculated to kα = 1.155 and α = 1.095, which according to Wozniak et al. [5] are taken from the
most convincing source.

By combining Eq. (2.20) and Eq. (2.21) and taking the logarithm, the following expression is
obtained.

log

[
kα

(
Aa
Ap

)α]
= log np = log kLW +Df log

(√
LW

rp

)
. (2.22)

For each image the unknown parameters are Aa, Ap, L, W and rp, which can be calculated with
image analysis. Using multiple images of soot aggregates with the same fractal dimension multiple
points will be found in the log-log relation above. The slope of a simple linear regression (see
section 2.5.3) of these points will estimate Df . This restricts the method to only being able to
estimate the mean fractal dimension for a set of images of projected aggregates.

The theory above is what was used in the implementation of the MBR algorithm for this
master’s thesis. Though Wozniak et al. [5] mention something obvious about kLW , it depends

on Df . Connecting Eq. (2.20) and Eq. (2.4) give kLW = kf

(
Rg√
LW

)Df

. In Eq. (2.22) kLW is

considered to be constant which will not be true for all fractal dimensions. In the early stages
of this project the MBR method was tested. However since the results were not satisfying and
additionally there were time limitations, further tests were stopped at this stage. Now it seems like
the problem of a non constant kLW , mentioned in this paragraph, might be the reason. Though
further results and discussion concerning this method has been excluded.

2.4.2 Box Counting

The Box Counting method is used to estimate fractal dimension values though it is limited to
estimate the fractal dimension up to two dimensions. These estimations will be called the Box
Counting dimensions. It is based on Eq. (2.1), which is repeated below.

NL ∼ L−D
box
f . (2.23)

It can be rewritten to the following relation by taking the logarithm on both sides of the propor-
tionality.

logNL ∼ −Dbox
f logL. (2.24)

The hard thing when implementing this equation in an image is how to calculate the number
of sticks NL with length L needed to measure the object. The method solves this by counting
boxes. The image is simply divided into a grid of boxes with a certain side-length L of each box.
The number of boxes (NL) with the object inside are counted for grids with different box-sizes.
Now a simple linear regression can be applied to estimate Dbox

f from the relation in Eq. (2.24).
This estimated fractal dimension of the Box Counting methods will be called the Box Counting
dimension.

Wozniak et al. [5] mention a problem with the standard-Box Counting method. Dealing with
images with a finite resolution result in cropped boxes on the edges of the image. So the total box
area counted changes between grids with different box-sizes. They solve the problem by using a
Modified Box Counting method which will be called random-Box Counting in this report. Here
instead of putting the boxes in a grid they are sampled from a uniform distribution to random
coordinates in the image. With an equal number of boxes for each scale the area of all boxes will
be scale dependent. To solve this the number of counted boxes is normalized by the area of one

13



box for each scale, transforming Eq. (2.24) to

log
NL
L2
∼ −Dbox

f logL. (2.25)

Wozniak et al. [5] have used the random-Box Counting dimension as main feature in a machine
learning method calibrated with synthesised TEM images of simulated soot aggregates. Their
result included a calibration for estimating the fractal dimension from the random-Box Counting
dimension and the number of particles in an aggregate. It is shown in Figure 2.2. For each image
they used a set of 17 different box side-lengths for the counting. They were [2, 3, 4, 5, 6, 8, 10,
13, 16, 20, 25, 32, 40, 50, 63, 79, 100] pixels wide. To create the calibration they used in their own
words TEM images from thousands of synthetic aggregates. The aggregates had different fractal
dimensions (Df = 1.2, 1.3, . . . , 2.8) and number of particles (n = 5, 10, 30, 50, 100, 400).
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Figure 2.2: The image shows a calibration of the random-Box Counting method produced by Wozniak
et al. [5]. With the knowledge of Box Counting dimension and number of particles for an image of a soot
aggregate the colour in that point represents the estimated fractal dimension. The image has been produced
from images with fractal dimensions [1.1, 1.2, . . . , 2.9] and number of particles [10, 30, 50, 100, 400].

2.5 Image analysis methods

As seen in Figure 1.3 a real TEM image of soot has a noisy background level which must be
removed prior to the analysis step. This is one of the problems which should be taken care of using
the image analysis methods explained below. Implementations of these methods can for example
be found in the OpenCV library or the image processing toolbox in Matlab.

2.5.1 Image convolution

In this work 2D discrete convolution, also known as filtering, has been used. If one looks at the
1D case the formula for discrete convolution is the following [12]:

(f ∗ g)[n] =

M∑
m=−M

f [m]g[n−m], (2.26)
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where the functions f and g only have a finite support in [−M,M ]. This can easily can be expanded
to a 2D version on the form:

(f ∗ g)[n, o] =

M∑
p=−M

M∑
m=−M

f [m, p]g[n−m, o− p]. (2.27)

Image convolution can be very useful when a specific operation should be performed for each pixel
and the neighbouring ones in an image.

2.5.2 Image gradient with pre smoothing

A greyscale image can be seen as a surface in 3D where the third dimension is the greyscale value.
When imagined like this it is easy to see that this surface has a slope in both the x and y direction,
in other words a vector for the derivative of the greyscale values in x and y direction. Calculating
this derivative vector for all pixels in an image the result is called the image gradient. Taking
the euclidean-norm of each pixel vector will result in the magnitude of the gradient. The large
pixel values in the magnitude of the image gradient correspond to large greyscale changes in the
original image. Though taking the derivative is an operation amplifying noise. Therefore it might
be preferred to perform noise removal in the image first, by smoothing. A non normalised Gaussian
smoothing kernel to convolute with an image is on the form:

p(x, y) = e−(x
2+y2)/(2σ2), (2.28)

where p(x, y) is the value at pixel point x, y in the kernel and σ is a value for the width of the
smoothing top. Figure 2.3 shows an example of a Gaussian smoothing kernel.
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Figure 2.3: Example of a Gaussian smoothing kernel. When convoluted with an image noise is removed
and the resulting image is blurried. This example kernel is a 61x61 pixel image with σ = 3 in Eq. (2.28).

Instead of doing one smoothing and then taking the derivative both can be performed in one
kernel. By taking the respective derivative of the Gaussian kernel in p for x and y in Eq. (2.28)
the result is:

px ∼ xe(x
2+y2)/(2σ2),

py ∼ ye(x
2+y2)/(2σ2).

(2.29)
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Figure 2.4 shows the derivatives of the kernel in Figure 2.3. Using these kernels in the image
convolution will result in the magnitude of the image gradient.
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Figure 2.4: Example of a Gaussian smoothing and derivative kernel combined in x- (left) and y-direction
(right). These are derivatives of the kernel found in Figure 2.3.

2.5.3 Multiple Linear Regression

From a large number of data points (y, X) a linear model can be estimated to the data. Here y
is some kind of output in the form of a column vector with assumed linear dependence on input
values X. X is a matrix where each row corresponds to input values for output in the same row
of y. The model will then be:

y = Xβ + ε, (2.30)

where β are weights in a column vector with one weight for each input parameter and ε is assumed
to be normally distributed, zero mean, noise. The weights β should be fitted using multiple linear
regression.

There are different ways to find the optimal estimation for β. One is using the least squares
approach where the goal is to choose an estimation β̂ minimising the loss function:

L(β̂) = |ε|2 = |y −Xβ̂|2, (2.31)

meaning
β̂ = argminβL. (2.32)

Taking the matrix derivative [13], setting it to zero, then solving for β̂ results in:

d

dβ
L(β̂) = −2XT (y −Xβ̂) = 0,

XTy −XTXβ̂ = 0,

β̂ = (XTX)−1XTy.

(2.33)

A simple linear regression is a special case of the multiple one with the model:

y = β0 + β1x + ε. (2.34)

2.5.4 Image threshold

To go from a greyscale image to a binary image with only 0 (black) and 1 (white) as pixel values,
the image can be thresholded. The greyscale is often a value in each pixel between 0 and 255.
Taking the threshold is simply changing all pixels with a greyscale value above a certain value
(called the threshold) to 1. The remaining pixels values are set to 0.
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2.5.5 Morphological operations

Morphological operations are important in image analysis and the following is a brief explanation
of how they work, the interested reader is encouraged to read further in Jähne [12]. In the work
of this master’s thesis the operations have only been performed on binary images, meaning that
the values of the pixels are either 0 or 1. Here the objects in the image are defined as all pixels
with value 1. The morphological operations operate only on one pixel and its neighbours at a
time which can either make objects in an image smaller (erosion) or larger (dilation). Erosion and
dilation are the two main morphological operations. Both operations need a kernel which in turn
is a small binary image describing how much the objects should change. For each pixel in the
image the following procedure is done. The middle pixel of the kernel is set on top of the image
pixel. All pixels in the kernel are compared to their corresponding ones in the image. If the image
is eroded the new pixel value is chosen as 1 only if all 1 values in the kernel are matched with ones
in the image. For dilation the new value is chosen to 1 if at least one of the ones in the kernel
corresponds to a 1 in the image. For all other combinations the new value is zero. The dilation
and erosion procedures are illustrated in Figures 2.5 and 2.6.

The dilation and erosion can be combined. Imagine an erosion followed by a dilation. This is
called an opening and for a binary image it will remove noise as seen in Figure 2.7

Figure 2.5: The left image is eroded using a 5x5 square pixel kernel resulting in the right one.

Figure 2.6: The left image is dilated using a 5x5 square pixel kernel resulting in the right one.
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Figure 2.7: The left image is opened using a 5x5 square pixel kernel resulting in the right one.

2.5.6 Finding connected components

The connected components in an image are connected pixels with a similar property. For example
in a binary image this property could be white pixels with value 1. Two pixels are connected if they
are adjacent in the image. Adjacent could either be four or eight connectivity meaning that either
the four closest or the eight closest pixels are classified as adjacent. The connected components
for the property of white pixels in a binary image will be islands of white surrounded by black.

2.5.7 Filling holes in image objects

In a binary image holes in objects can be filled with image analysis. In this image the background
and holes are black and the objects are white. It can be performed in three steps [14].

1. Flood fill the input image from its edges creating a new image. Here the black connected
components which also are connected to the image edges are found and their values are
changed to white. This image is white everywhere except for the holes.

2. Invert this image, now the holes are the only white parts.

3. Take an or operation for each two corresponding pixels in the original and resulting image of
the previous step. The result of the or operation on two binary pixels is white if at least one
of the two pixels are white and black otherwise. Now the background will be black for both
images, resulting in black. The object will be white in the original image and black in the
inverted, resulting in white. The holes will be black in the original but white in the inverted,
also resulting in white.

2.5.8 Finding the minimum bounding rectangle

This problem is also known as finding the minimum area rectangle and is described by Eberly [15].
It finds the general, possibly rotated, minimal rectangle containing a set of points, for example in
an image. To do this one can first find the convex hull of all points. This is an ordered subset
of the points. The ordered points create a polygon area which includes all points in the set.
It can be proved that one of the minimum bounding rectangle’s sides must contain one of the
edges in the convex hull polygon. One can iterate through all edges and for each, calculate the
minimum rectangle containing that edge. Of all these rectangles the one with the smallest area is
the minimum bounding rectangle for all points in the set.
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Chapter 3

Results and Discussion

Together with the results of extensive simulations, projections and analyses of data, I have during
this thesis also taken images of real soot aggregates using a Transmission Electron Microscope.
With the help of Thi Kim Cuong Le, Johan Simonsson and Per-Erik Bengtsson, samples of soot
were taken from a mini-CAST soot generator on so-called TEM grids. Each grid contained soot
from a specific operation point of the generator. The operation points are defined through the
relation between three different gas flows to the generator flame; propane, air and nitrogen. They
are denoted OP1 to OP7 where OP1 contains the largest most mature soot.

The grids were inserted one by one into the TEM and images of soot aggregates were taken.
Among them were 55 TEM images of soot aggregates from Operation Point 1 (OP1), one example
is shown in Figure 1.3. These are the images used in the Cluster Analysis of real TEM images.

3.1 Cluster Simulation and Projection

The simulation algorithms described in the theory were implemented and illustrations of four
output aggregates from the Cluster-Cluster (CC) method can be seen in Figure 3.1. Corresponding
illustrations for the Particle-Cluster (PC) method are found in Figure 3.2. It should be noted how
the PC simulated clusters have a more realistic appearance compared to the CC simulated ones.
When comparing the clusters with fractal dimension 1.1 for each method the unit lattice grid is
intrusive for the CC simulated cluster whereas using continuous coordinates is a more natural
approach, seen in the PC simulated cluster.
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Figure 3.1: Four simulated aggregates using the CC simulation method with 128 particles and different
preset fractal dimension. Both are shown in the title of each plot.

Figure 3.2: Similar to the images in Figure 3.1 but with PC simulated aggregates.

The simulated aggregates are then projected as synthesised TEM images. Examples of the
projections of the aggregates in Figure 3.2 are shown in Figure 3.3. These are binary black and
white images which are not realistic TEM images compared to the TEM image in Figure 1.3.
The choice of binary projection output is based on the fact that the Box Counting methods,
described in section 2.4.2, take binary images as input. With projection directly to binary images
the preprocessing step for each image prior to the analyse methods can be removed. The drawback

20



of unrealistic projections is therefore more than compensated for by faster execution time.
The projection implementation first takes a random projection angle as a 3D vector. An affine

camera matrix is created with the direction of this vector looking at the centre of gravity of the
cluster. The affine camera is motivated as a valid approximation from the large amplification
used in a TEM. With the camera matrix the points of all particles in the simulated aggregate are
projected into a 2D plane. The minimum bounding rectangle of these points are calculated and
all points are rotated to have the sides of this rectangle parallel to the x- and y-axis. The rotated
points are transformed using an intrinsic matrix with the scale and image centre calculated for the
whole cluster to fit in a 1028x1028 pixel image. With the coordinates of each particle in the image,
they are inserted one by one as filled circles of white with a radius matching the 3D overlap used
by Wozniak et al. [5], mentioned in section 2.3. The aggregate in the projected image has been
rotated to its minimum bounding rectangle, though with the constant value of 1028x1028 pixels
there might be redundant black pixels close to the edges. These pixels are removed as the final
step in the projection algorithm.

Figure 3.3: One projection of each aggregate shown in Figure 3.2.

The projected image of an aggregate is largely dependent on the projection angle. From just
one or two images it is hard to make any conclusions about the general projection behaviour of
aggregates with a certain number of particles and fractal dimension. To get around this problem,
large datasets of projected aggregates were produced. Each dataset consists of projections of aggre-
gates with equal number of particles and fractal dimension. Combining the output of an analysing
method for a whole dataset will give a more general description of the projection behaviour in it.

Each dataset consists of 1000 projected images of simulated aggregates. All aggregates are
projected once. For the CC method, datasets with [16, 32, 64, 128, 256] particles were produced,
due to the restriction in number of particles. The PC method instead used the particle numbers
[10, 30, 50, 100, 400], mimicking the ones used by Wozniak et al. [5] in their calibration, which is
shown in Figure 2.2. For each number of particles and simulation method, sets with preset fractal
dimensions [1.10, 1.11, 1.12 . . . , 2.89, 2.90] were created.

The choices for all numbers in the last paragraph is a balance between execution time, maximis-
ing dataset size and precision of results. The precision of results, is connected to the choice of the
fractal dimension interval, the lowest and largest values are excluded. When they were included
it resulted in impossible calibrations. For these fractal dimensions the Box Counting dimensions
were no longer strictly increasing with the fractal dimension. Meaning the same Box Counting
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dimension corresponded to multiple fractal dimensions. Since none of the real soot aggregates seem
to have fractal dimensions outside the range [1.1, 2.9] these datasets were excluded.

Together, all datasets consist of 1 810 0001 synthesised TEM images from an equal number of
simulated aggregates. The total execution time simulating and projecting these datasets is less
than 12 hours.

3.2 Cluster Analysis with Box Counting

As explained in the theory section 2.4.2, the Box Counting methods counts boxes. This is done
for boxes with different sizes where only the boxes with the object inside are counted. An example
of how the boxes are counted is shown in Figure 3.4 for the top right aggregate in Figure 3.3. At
the right and lower edges of the images the cropping of boxes in the grid is seen, mentioned in the
theory of the standard-Box Counting method.

With the counted boxes a line is fitted to the log-log plot of the number of boxes to the side-
lengths of the boxes for a single image. Figure 3.5 shows this plot for the image used in Figure
3.4. The same box side-lengths as Wozniak et al. [5] have been used. There is also a modified
version of the method called random-Box Counting. Examples of the random-Box Counting boxes
are shown in Figure 3.6 where the corresponding log-log plot is shown in Figure 3.7.

Figure 3.4: A cluster with three different standard-Box Counting grids in foreground. The green boxes are
the ones counted in the method.

12 (simulation methods) x 5 (number of different number of particles) x 181 (number of different fractal dimen-
sions) x 1000 (simulations and projections per dataset)
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Figure 3.5: A log-log plot of the standard-Box Counting method’s number of boxes to the side-length of the
boxes. The resulting estimated Box Counting dimension is shown in the title of the plot. It is equal to the
slope of the line fitted to the points.

Figure 3.6: Illustration of the random-Box Counting method in a similar way as Figure 3.4. When used
for the real calibration and analysis 215 boxes are used compared to the 32 ones seen in these images.
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Figure 3.7: The same plot as in Figure 3.5 but for the random-Box Counting method.

The Box Counting methods only produce an estimation for the fractal dimension in 2D as
mentioned. To avoid confusion it is important to remember that there are two methods and there
are outputs from these methods. The methods will be called standard-Box Counting and random-
Box Counting. Though the output 2D estimate of the fractal dimension will for both methods be
called the Box Counting dimension.

The Box Counting dimension was used as a feature in a machine learning method estimating the
3D fractal dimension. Though alone it will not suffice. The number of particles in an aggregate also
has a large influence on the input projections. It is easy to visualise a projection of an aggregate
with just a few particles and the difference to one with many. The projection of the one with fewer
particles is more probable to be perceived as having a larger fractal dimension, and Box Counting
dimension, compared to the corresponding projection with more particles. Therefore the number
of particles in an aggregate is also included as a feature.

When the Cluster-Cluster simulation method was used in the analysis the result reflected the
unrealistic appearance of its aggregates. This is the reason for why further results and discussion
of this method have been excluded.

For a single dataset there will be 1000 different Box Counting dimensions. To understand the
Box Counting methods it is important to see how these values are distributed, both for a single
dataset and for datasets with different fractal dimensions. These distributions can be described
statistically with the stochastic variables Df for the fractal dimension and Dbox

f for Box Counting

dimension. Plots estimating the 2D intersection probability density function, P (Df ∩Dbox
f ), have

been produced which will be called uncertainty plots. They are shown in Figures 3.8 and 3.9
where the distributions have been estimated for PC datasets with 400 particles. The difference
between them is that Figure 3.8 is produced with the standard-Box Counting and Figure 3.9 with
the random-Box Counting method. The estimations are calculated with a 2D histogram method.

From the uncertainty plots it can be seen that the random-Box Counting has a wider dis-
tribution of Box Counting dimensions for each fractal dimension, especially for the lower ones.
Intuitively this might seem like a bad property of the random-Box Counting method. Though
from the possible projections of an aggregate with low fractal dimension this wider distribution
is quite reasonable. If the projections in the dataset with the lowest fractal dimension and 400
particles are studied there are images looking in the direction of the particle chain of the aggre-
gates. The chain can be seen in the top left projection in Figure 3.3. These projections are in the
most extreme case just a dot which is perceived to be aggregates with a large fractal dimension,
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they should be reflected as large Box Counting dimensions. It seems like these images have been
incorrectly classified as too low Box Counting dimensions with the standard-Box Counting method.
The random-Box Counting method has more reasonable estimations.

The uncertainty plots creates the possibility to calculate the distribution of fractal dimension
values conditioned on the Box Counting dimension:

P (Df |Dbox
f ) =

P (Df ∩Dbox
f )

P (Df )
. (3.1)

This is applied by choosing a Box Counting dimension on the x-axis and following the colour
distribution along the y-axis. Two plots for the conditioned distributions have been produced for
each Box Counting method. The distributions are conditioned on one of their respective lowest
and largest Box Counting dimensions. The plots are shown for the standard-Box Counting method
in Figure 3.10 and random-Box Counting in Figure 3.11, together with estimations of the standard
deviation of these distributions. The standard deviation can be interpreted as the uncertainty of
the fractal dimension estimation for the conditioned Box Counting dimension. Larger standard
deviation corresponds to a larger uncertainty. Mutual for both methods is a larger uncertainty
of the fractal dimension estimation for large Box Counting dimensions compared to the lower
ones. This is reasonable. Connected to the previous discussion about projection angle a majority
of aggregates can be projected from a direction to look like an aggregate with a large fractal
dimension. These projections will produce large Box Counting dimensions. In contrary only
aggregates with low fractal dimensions can be projected to look like an aggregate with low fractal
dimension which will correspond to low Box Counting dimensions. Inverting this reasoning gives
that low Box Counting dimensions can only correspond to low fractal dimensions where large Box
Counting dimensions can correspond to a wide interval of fractal dimensions. This is reflected in
the conditioned probabilities in Figures 3.10 and 3.11. The large uncertainty for high Box Counting
dimensions is a result of losing the third dimension when projecting a 2D image of a 3D aggregate.

The uncertainty for estimating the fractal dimension from the conditioned plots is also compared
between the Box Counting methods. The values show that the standard-Box Counting method
has a lower uncertainty than the random-Box Counting method, but the differences are slim. It
might be that the differences are not large enough to be statistically significant.
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Figure 3.8: The so called uncertainty plot which is an estimation of the intersection probability density
function, P (Df ∩ Dbox

f ). Here Df is the stochastic variable for the fractal dimension and Dbox
f is the

stochastic variable for the standard-Box Counting dimension. The x-axis is the Box Counting dimension,
the y-axis is the fractal dimension and the colour is the probability. It has been calculated for the datasets
with 400 particles.
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Figure 3.9: The same plot as in Figure 3.8 with the difference of using the random-Box Counting method.
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Figure 3.10: These plots are Probability Density Functions for the fractal dimension conditioned on two
different Box Counting dimensions. The conditioned Box Counting dimension together with an estimation
of the standard deviation s of the distributions are shown in the titles. The plots are calculated from the
uncertainty plot in Figure 3.8.
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Figure 3.11: The same plots as in Figure 3.10 with the difference of using the uncertainty plot for the
random-Box Counting method in Figure 3.9.

Each dataset, with a certain number of particles and fractal dimension, will result in 1000
different Box Counting dimensions. The mean of all these values for each dataset is calculated.
This is assumed to be the general Box Counting dimension for the combination of number of
particles and fractal dimension which results in a 3D point for each dataset. The coordinates are:
Box Counting mean dimension, number of particles in aggregate and fractal dimension. These
points for all datasets are used to calibrate the machine learning method where the calibration is
represented by a colour plot. The x-axis are Box Counting dimensions, y-axis are the number of
particles and the colour is the fractal dimension value. The colours of the area between the 2D
points of all datasets are filled using linear interpolation. For a new image with unknown fractal
dimension the Box Counting dimension can be calculated and number of particles counted. The
colour of this point in the calibration plot is the estimated fractal dimension. There will also be
invalid white coloured points where no estimation of fractal dimension is possible.

There are two different analysis methods which will each have a calibration when used with
the PC datasets. The standard-Box Counting calibration is found in Figure 3.12 and random-Box
Counting calibration in Figure 3.13. General comments on the calibrations are that larger Box
Counting dimensions correspond to larger fractal dimensions and aggregates with fewer particles
have larger Box Counting dimensions for most of the fractal dimensions. Both of these properties
are consistent with previous discussions and this correlation between the Box Counting dimension
and the fractal dimension clearly show that the Box Counting dimension extracts the fractal
properties of the projection of an aggregate.
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When comparing the calibrations of the analysis methods in Figures 3.12 and 3.13. There are
two clear differences. The random-Box Counting method seems to translate the Box Counting
dimensions to larger values and decrease the Box Counting dimension span. Just from the cali-
brations it is hard to say anything about which one is better than the other. It will be revisited in
the discussion of the Cluster Analysis of real TEM images in section 3.4.

This thesis has reproduced the method of Wozniak et al. [5]. They used the random-Box
Counting method together with synthesised TEM images projected from PC simulated clusters.
Therefore the PC calibration with random-Box Counting in Figure 3.13 should be compared to the
corresponding one in Figure 2.2 by Wozniak et al. [5]. The implementation in this report seems to
result in a smaller span of Box Counting dimensions for the lowest number of particles and a wider
one for the largest number of particles. Another difference is a much smoother colour gradient for
each number of particles in Figure 2.2. This is preferred since it will give a lower uncertainty in
fractal dimension estimation depending on the Box Counting dimension. Since both images should
have been produced with the same methods it is interesting to discuss why they differ which could
be connected to either the synthesising of TEM images or the random-Box Counting method.
After looking at thousands of synthesised TEM images produced in this project they seem to be
realistic. Both the different number of particles and fractal dimensions looks to be fulfilled in the
output images. This leaves the question of whether the random-Box Counting methods are equal.
All results from the implementation in this report show nothing suspicious about it and there is
no ambiguity concerning their explanation of the method. It is hard to know what creates the
difference without comparing their implementation to the one used in this report. It should also
be noted that even though the calibrations are different they are also very similar.
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Figure 3.12: The calibration of the standard-Box Counting method. Here the datasets from the Particle-
Cluster simulation method have been used. For an image of a soot aggregate with calculated Box Counting
dimension and counted number of particles, the fractal dimension can be estimated as the colour in that
point in the image.
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Figure 3.13: A calibration as in Figure 3.12 but with the random-Box Counting method.

3.3 Preprocessing of real TEM images

The final pipeline of the preprocessing will be visualised using the soot cluster found in Figure 1.3.
The goal of the preprocessing is to get a binary image where only the white parts are cluster and
everything else is black. To make the rest of the visualisation more intuitive the inverse of the
image is taken, making the brighter parts cluster just like for the expected output. This inverted
image is found in Figure 3.14. For each cluster the number of particles are also counted by hand.
Here it should be noted that this is a very subjective approach of attempting to calculate the
number of particles in 3D from a 2D projection.

To end up with a preprocessed binary image one method is to threshold it. Looking at the
inverted image, in Figure 3.14, this will be difficult. Comparing the pixels in the corners of the
image, the top left ones seem to be brighter than the lower right. The continuous change in
background light affects both the background and the cluster in the image. Meaning, a good
threshold value will be difficult to find for the whole image. In the end the continuous change
in background light must be removed. This is done in three steps. First a rough background
segmentation is performed, giving the result found in Figure 3.15. The background segmentation
is a separate method with the following steps. First the magnitude of the image gradient is
calculated and thresholded. This will find almost all edges of the clusters. The result is dilated
with a quite large kernel to fill up holes in these edges. The rest of the holes in the clusters are
then filled with the method described in section 2.5.7 resulting in a rough cluster estimate where
the inverse is a rough background estimate. The second part of removing the continuous change in
background light is to use the pixels classified as background in a multiple linear regression model.
A few regression models were tested and the best one was a second degree, 2D polynomial on the
form:

g(r, c) = a0 + a1r + a2c+ a3r
2 + a4c

2 + a5rc, (3.2)

where g(r, c) is the background greyscale value for pixel-row r and pixel-column c and ax are model
parameters to be estimated. The third step use the parameters calculated from the regression and
computes a new image with only the estimation of the continuous change in background light. For
the example it will, just like in the inverted image, be brighter in the top left corner and darker in
the lower right one. This image is subtracted from the real image. The result is shown in Figure
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3.16, and reusing the rough background segmentation leaves the problem of finding the foreground
in Figure 3.17.

Back to the first problem of finding a good threshold for the image. Now what is a good
threshold? When a threshold was optimised for one image it apparently only sufficed for that one,
meaning a more generic solution was needed. Since the problem is to find a greyscale value the
distribution of the greyscale pixel values was estimated. The distribution can be estimated as the
histogram of the pixels greyscale values which is found in the left plot of Figure 3.18, the histogram
value of the black pixels has been excluded since it is huge. Looking at the histogram these two
Gaussian-like peaks were found for almost every image which seem to describe the image quite well.
The first peak from the left mostly corresponds to the noisy background pixels and the second one
the cluster pixels. The middle of the first Gaussian-like peak is chosen as a compromise between
getting as much cluster as possible while still restricting noise. The peak is found as the global
maximum of the histogram after the following processing. First it is smoothed using a median
smoothing filter, removing narrow peaks. Then the second peak often was larger than the first
one. This was fixed by lowering it from the multiplication with the following linear function,

f(x) = 1− x

255
, (3.3)

where x is the greyscale value on the x-axis in the histogram plot. Now the right plot in Figure
3.18 has been calculated and the local maximum of the first Gaussian-like peak is also the global
maximum of the whole histogram.

The threshold value calculated in the previous part is used with the image in Figure 3.17
and the thresholded image is shown in Figure 3.19. The resulting image has a noisy background
close to the aggregate. This noise is removed using the morphological opening operation which
also removes parts of the aggregates. To compensate for this and retrieve optimal results a small
dilation is also applied to the image. This results in the image in Figure 3.20. Using the method
of finding the connected components with four connectivity, described in section 2.5.6, will now
solve two problems. Too small clusters which mostly are remnants of noise can be removed. Also
multiple clusters in the same image are separated and the final segmentation is shown in Figure
3.21. The two clusters are saved, rotated and cropped to their minimum bounding rectangle, in
different files.

The preprocessing was applied to the 55 TEM images taken on OP1 soot clusters. It managed
to find 52 different soot clusters. These processed clusters are, together with the counted number
of particles for each one, the results of the preprocessing of the real TEM images.

The preprocessing algorithm could not produce a viable segmentation for some clusters. This
mostly depended on the histogram not following the assumed pattern of Gaussian-like peaks and
the wrong threshold was found. Two more examples of preprocessing output are shown in Figure
3.22. The left one is an example of a good cluster segmentation though the right one is poor. At
the edges of this aggregate, small circles of white can be found which seem to be out of place.
These are the result of noise remaining after the opening operation. The noise have been dilated
and connected to the main aggregate component in the image and is thereby classified as aggregate
in the final segmentation. The right image in Figure 3.22 is a cluster with fewer particles, for which
the preprocessing in general outputs poor segmentations.
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Figure 3.14: The inversion of the image shown in Figure 1.3

Figure 3.15: The white pixels in this image are together the rough estimation of the background pixels in
Figure 3.14. They were found using a thresholded gradient followed by a dilation and finalised with a filling
of possible white holes in the black parts of the image.
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Figure 3.16: The result after the continuous change in background light has been subtracted from the image
in Figure 3.14.

Figure 3.17: The remaining pixels to classify as non-black after the normalisation. A combina-
tion/multiplication of the inverse of the image in Figures 3.15 and the image in Figure 3.16.
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Figure 3.18: The left image shows a histogram of the pixels greyscale values from the image in Figure
3.16. The x-axis in the plots represents the greyscale pixel intensities. The number of pixels with zero value
(black) are excluded since they are both to many and not interesting. The right plot shows the output after
processing the histogram in the left plot. This finds the Gaussian-like peak with the lowest greyscale value
as the global maximum (red dot).

Figure 3.19: Resulting image after using the found threshold in Figure 3.18 on the image in Figure 3.17.
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Figure 3.20: The image in Figure 3.19 after noise removal by the morphological opening operation followed
by a small dilation.

Figure 3.21: The resulting clusters found as two different ones and saved to different files rotated and
cropped to their respective minimum bounding rectangle.
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Figure 3.22: The result of preprocessing two real TEM images of OP1 soot clusters.

3.4 Cluster Analysis of real TEM images

From the preprocessing, the analysis of 52 soot clusters now awaits. For the standard-Box Counting
and random-Box Counting method, example results for four different aggregates are shown in
Figures 3.23 and 3.24. Here the Box Counting dimension, number of particles and estimated
fractal dimension are shown in the image titles. To get a feeling of the result for all the real soot
aggregates two visualisations have been produced. First plots visualising the dependence between
the counted number of particles and the estimated fractal dimension of real TEM images are shown
in Figure 3.25 for standard-Box Counting and Figure 3.26 for the random-Box Counting method.
Their points have also been plotted in the calibrations from PC simulation and Box Counting
methods in Figures 3.27 and 3.28. At last the number of real soot images valid to each calibration
and the mean of all estimated fractal dimensions for the different methods are summarised in Table
3.1.

The values in Table 3.1 can be compared to the ones from previous works in Table 2.1. The
results in this report are generally larger than the ones in previous works, especially when comparing
the corresponding values of 1.94 and 1.66. One of the more obvious possible reasons for the larger
mean of estimated fractal dimensions is the preprocessing step. It might alter the real TEM images
in a way, which increase the Box Counting dimensions compared to the preprocessing methods of
Wozniak et al. [5] for example. The preprocessing also included manual counting of particles which
might have a large uncertainty. Another reason might be connected to the soot aggregates used
in the Cluster Analysis of real TEM images. They have been sampled from the cold gas exhaust
of a mini-CAST soot generator at Operation Point 1. This should be compared to the sampling
inside flames by Wozniak et al. [5] and Dobbins and Megaridis [6]. There is a possibility that the
soot aggregates fold themselves when cooled in the exhaust of the generator, thereby obtaining a
larger fractal dimension. This means that the soot aggregates in the TEM images studied in this
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master’s thesis could actually have a larger fractal dimension compared to the ones in previous
works.

The plots in Figures 3.25 and 3.26 visualise the dependence between the fractal dimension
estimations and number of particles for the Box Counting methods. For both methods there
seem to be a larger variation in estimations for fewer particles which decrease with the increase
of particles. The shape, and fractal properties, of an aggregate with few particles depends more
on the location of every single particle compared to one with more particles. Since there always
will be a variation of the particle locations for aggregates the shape of aggregates with fewer
particles will vary more. Therefore the result of a larger variation of estimated fractal dimensions
for aggregates with fewer particles seems valid. Otherwise no specific differences between the Box
Counting methods are found, excepting generally lower estimations of fractal dimensions for the
random-Box Counting method.

The standard-Box Counting method have a few invalid points. They are found as the points in
white parts of the calibration in Figure 3.27, where they all seem to have too large Box Counting
dimensions. This could be connected to soot aggregates without fractal properties. Wozniak et al.
[5] have assumed that aggregates with fewer than 10 particles lack fractal properties. Though
looking at the points in Figure 3.27, one invalid aggregate has at least 50 particles. This aggregate
should have fractal properties, meaning that there is a suspicion of the Box Counting dimension
for the standard-Box counting method on these TEM images to be wrong.

Table 3.1: Summarising the number of valid soot aggregates (N) of the original 52 and the mean of all
the estimated fractal dimensions (Df ) from the use of different estimation methods. Invalid points are all
combinations of N and Box Counting dimensions corresponding to white points in the calibrations.

Calibration and Cluster Analysis method N Df

Calibration in Figure 3.12 with standard-Box Counting 46 2.13
Calibration in Figure 3.13 with random-Box Counting 52 1.94

DBox
f : 1.869, Particles: 25, Df : 1.945

DBox
f : 1.882, Particles: 55, Df : 2.23

DBox
f : 1.794, Particles: 170, Df : 1.735 DBox

f : 1.903, Particles: 35, Df : nan

Figure 3.23: Four preprocessed real TEM images of soot aggregates. In the title of each, the Box Counting
dimension, the number of counted particles and the estimated fractal dimension is shown. Here the cali-
bration in Figure 3.12 have been used. nan is short for not a number, meaning that this combination of
Box Counting dimension and number of particles is outside the valid area of the calibration.
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DBox
f : 1.882, Particles: 25, Df : 1.941

DBox
f : 1.865, Particles: 55, Df : 2.003

DBox
f : 1.786, Particles: 170, Df : 1.667 DBox

f : 1.894, Particles: 35, Df : 2.185

Figure 3.24: The same content as Figure 3.23 but with the random-Box Counting method and the calibration
in Figure 3.13.
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Figure 3.25: The counted number of particles in each aggregate plotted together with their estimated fractal
dimension. These fractal dimensions have been estimated using the calibration from PC simulation and
standard-Box Counting found in Figure 3.12.
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Figure 3.26: The same content as Figure 3.25 but with estimations using the random-Box Counting method.
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Figure 3.27: Visualisation of where standard-Box Counting dimensions and number of particles are found
as points in the calibration. The calibration is the same as in Figure 3.12.
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Figure 3.28: The same content as Figure 3.27 but with the calibration in Figure 3.13.
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Chapter 4

Conclusions

The estimation of the fractal dimension from TEM images of soot aggregates is a problem where
no obvious preferred method seems to exist. To use the Box Counting dimension as a feature in
a machine learning approach is one of the newer ones. It has been interesting to implement and
compare it to previous results of fractal dimension estimations on TEM images of soot aggregates.

The flowchart in Figure 1.1 show a visualisation of the connections between all data and methods
in this master’s thesis. It can be seen that everything is a reproduction and melding of previously
developed methods. The following are the three main conclusions of using the machine learning
approach with the Box Counting dimension for estimating the fractal dimension in TEM images.
First of all, it will be close to impossible to develop an accurate method for estimating fractal
dimension from projections with large Box Counting dimensions. This is connected to the loss
of information in projecting a 3D aggregate into a 2D image. Secondly, a strong correlation
between the Box Counting dimension and the fractal dimension can be seen in the calibrations.
This verifies that the Box Counting dimension as a feature extracts the fractal properties from a
TEM image which is promising for the future development of the method. Thirdly, two different
Box Counting methods has been studied in this report and it is interesting to determine which
one is most accurate. The standard-Box Counting method is connected to most of the negative
attributes found in the discussion of the Box Counting methods. Examples of these attributes are:
the facts for Wozniak et al. [5] to disregard it, the thin distribution of Box Counting dimensions
for low fractal dimensions and the invalid calibration points. In the end the random-Box Counting
calibration is the best one from the results in this report.

The random-Box Counting calibration and method has been applied to the real TEM images
which results in one fractal dimension estimation for each image. The mean value of all these frac-
tal dimension estimations is 1.94. This is a large value compared to corresponding estimations of
previous works in Table 2.1, which could be connected to the difference in sampling methods. The
soot in the TEM images of this project are sampled from the cold gas exhaust of a soot generator
whereas the previous works sampled soot from inside a flame. There is a possibility that the soot
aggregates, during the transport and cooling through the exhaust of the generator, increase their
fractal dimension by folding themselves. This would mean that the soot aggregates in the TEM
images used in this master’s thesis actually have a larger fractal dimension compared to the ones
used in previous studies.

To further improve the accuracy and understanding of this combination of methods, it is interesting
to focus improvement and development on the following:

• Tune the parameters and possibly change the pipeline of the preprocessing algorithm to
improve its performance and see how it affects the Box Counting dimensions.

• Expand the preprocessing algorithm to include a program counting particles in an aggregate.

• Explore the possibility of using the greyscale in a TEM image as a feature of the third
dimension.
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Appendix A

Calculating angle for a general triangle where all sides are known

∠ACB = a cos

( |CA|2 + |CB|2 − |AB|2
2|CA||CB|

)
. (A.1)
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Appendix B

Method for creating a vector with a certain tilt and rotation in relation to another vector This
method concerns the 3D points A, B and C where only A is unknown. The following restrictions
are set for the unknown point:

• The vector CA have the length rA.

• The angle ∠ACB is α.

• The Rotation for CA around the vector CB is β.

A can be calculated with the following algorithm.

1. Convert the point (B − C) to spherical coordinates (rB , θ, φ).

2. Create a point with spherical coordinates (rA, α, β) and convert it to cartesian coordinates.
Call this point Â

3. Perform two rotations on this point. First around the y-axis with angle θ and then around
the z-axis with angle φ. This is performed with the following matrix multiplications:

Ârot =

cos(φ) − sin(φ) 0
sin(φ) cos(φ) 0

0 0 1

 cos(θ) 0 sin(θ)
0 1 0

− sin(θ) 0 cos(θ)

 Â. (B.1)

4. Translate the point to C as origin and

A = Ârot + C. (B.2)

42



Bibliography

[1] B.B. Mandelbrot and R. Pignoni. The fractal geometry of nature, volume 173. WH freeman
New York, 1983.

[2] H. Omidvarborna, A. Kumar, and D.S. Kim. Recent studies on soot modeling for diesel
combustion. Renewable and Sustainable Energy Reviews, 48:635 – 647, 2015.

[3] J. Hansen and L. Nazarenko. Soot climate forcing via snow and ice albedos. Proceedings of
the National Academy of Sciences of the United States of America, 101:423–428, 2004.

[4] A. Seaton, D. Godden, W. MacNee, and K. Donaldson. Particulate air pollution and acute
health effects. The Lancet, 345:176 – 178, 1995.

[5] M. Wozniak, F.R.A. Onofri, S. Barbosa, J. Yon, and J. Mroczka. Comparison of methods
to derive morphological parameters of multi-fractal samples of particle aggregates from TEM
images. Journal of Aerosol Science, 47:12 – 26, 2012.

[6] R.A. Dobbins and C.M. Megaridis. Morphological Description of Flame-Generated Materials.
Combustion Science and Technology, 71:95–109, 5 1990.

[7] R. Thouy and R. Jullien. A cluster-cluster aggregation model with tunable fractal dimension.
Journal of Physics A (Mathematical and General), 27:2953 – 2963, 1994.

[8] K. Skorupski, J. Mroczka, T. Wriedt, and N. Riefler. A fast and accurate implementation of
tunable algorithms used for generation of fractal-like aggregate models. Physica A: Statistical
Mechanics and its Applications, 404:106 – 117, 2014.

[9] Central Microscopy Research Facility, University of Iowa. Transmission Electron Microsopy.
https://cmrf.research.uiowa.edu/transmission-electron-microscopy. Accessed: 2017-09-26.

[10] R. I. Hartley and A. Zisserman. Multiple View Geometry in Computer Vision. Cambridge
University Press, second edition, 2004.
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