
Implementation of the Todd-Coxeter Algorithm to Finitely Presented Groups

Tomas Reed

Advisor: Prof. Arne Meurman

The mathematician, carried along on his flood of symbols, dealing apparently with
purely formal truths, may still reach results of endless importance for our description of

the physical universe.
Karl Pearson

Popular Science Description

Symmetry is something humans comprehended thousands of years ago. It appears in all aspects of
our lives; in art, architecture, poetry, carpets and rugs, music and nature. The human eye is attracted
to symmetry and objects that look symmetric. The perfect mirror image and the order, we cannot
resist it.

If we would like to take the notion of symmetry, and define it mathematically, how can we do that?
It was the ingenuity of the French mathematician Évariste Galois, who invented a language which is
needed for showing that a polynomial of degree five and above does not possess a ”nice” solution using
the mathematical operations we know from school (addition, subtraction, multiplication, division, and
taking the nth root). The new language that emerged is what we have today as ”group theory”. In
some sense, Galois studied the ”symmetry of the equations”, and the reason such a solution is not
possible is because the equations have ”the wrong kind of symmetry” as Ian Stewart says in [Ste08].
It is necessary to say that mathematicians before Galois had already got results in group theory,
but Galois was the one to understand the structure and to use it for his attack on the problem of
polynomial solutions. As Israel Herstein writes in [Her64]:

Very often in mathematics the crucial problem is to recognize and to discover what are
the relevant concepts; once this is accomplished the job may be more than half done.

Group theory is the language of mathematics to describe and measure the notion of symmetry.
We all have the understanding of what symmetry is, but a concrete, down to earth, way of describing
it is:

Symmetry is not a number or a shape, it is a transformation - a way to move an object.
If the object looks the same after being transformed, then the transformation concerned
is a symmetry.
[Ste08]

Think about a square. Now rotate the square 90 degrees counterclockwise. Do it again. Is there
any visual difference between what we have started with and what we finished with? Hopefully you
answer this questions with ”no”. The rotation of 90 degrees counterclockwise you did is called a
transformation. The object looks the same after the transformation. So the transformation concerned
is a symmetry. In a similar way, we can draw an imaginary horizontal line right in the middle of the
square. If we take the upper half of the square and the lower half of the square and switch their places,
we will get the same figure of a square. This is again a symmetry.

The group structure in mathematics allows us to study objects in which symmetry is built into
them. In some sense, this is the simplest structure we have. We take a set of objects (does not need
to be numbers or functions. It can be anything, including puppies and kittens), and allowing one
operation on the elements of the set, such that they satisfy some axioms. This is very simple and
yields a beautiful theory.

It turns out that group theory has a deep connection with other physical sciences. For example,
in chemistry, symmetry is used in order to classify molecules by their shape. Moreover, chemists use
symmetry in studying crystals (See Dan Shechtman, awarded the 2011 Nobel Prize in Chemistry).
Physicists also use group theory, for example, in quantum mechanics. Biologists use group theory in
molecular systems biology.

While there is a formal mathematical definition for the group structure, usually it is the case where
we need to show that a certain structure is a group. However, in some cases we would like to take
an arbitrary set of objects and from them to build a group in which some elements may or may
not satisfy conditions we dictate. So how do we do it? Here comes the phrase ”presentation of a

group”. Presentation of a group is exactly the way to solve this problem. We take elements that we
want to generate (to ”create”) the group and adding (if we want) some prescribed conditions on these
elements. Of course, it requires more details to build it which can be found in this work.

Abstract
This work presents the notion of free groups and the definition of a group using generators and

relations. We use the Todd-Coxeter Algorithm in order to solve the coset enumeration problem
for the finitely presented groups: D4, A4, A5, S3, S4, S5, PSL2(7), PSL2(9). Then we use these
presentations in order to prove the exceptional isomorphisms A5 ∼= PSL2(5) ∼= SL2(4), PSL2(9) ∼=
A6 and SL3(2) ∼= PSL2(7).

To my family

acknowledgment

I would like to express my special thanks of gratitude to my advisor, Prof. Arne Meurman, who
introduced me to the wonderful world of combinatorial group theory. I would also like to thank him
for the guidance, patience, help and for contributing from his abundance experience, knowledge and

wisdom. It was an honor for me to get a glimpse to his world and way of thinking.

Contents

1 Introduction 1

2 Free Groups 3

3 The Todd-Coxeter Algorithm 6
3.1 Identifying groups with their presentations . 10

4 Exceptional Isomorphisms 16

5 Appendix 18

References 21

”Being a mathematician is a bit like being a manic depressive: you spend your life
alternating between giddy elation and black despair.”

Steven G. Krantz, A Primer of Mathematical Writing

1 Introduction

The concept of group theory was first grasped and used by Galois (although without definition),
who used it in a paper explaining the conditions for a polynomial to be solvable by radicals. The
(axiomatized) definition we use today is due to Heinrich Weber and Walther von Dyck. Except an
interesting research area in mathematics (not just in algebra, but also, for example, in topology),
groups are used in physics, chemistry, material science and computer science. Groups, in some sense,
are the mathematical way of describing symmetry. So not many words are needed to understand the
abundance of groups in our lives.

During the first half of the 20th century there were two meanings of the term ’abstract group’:

(1) The axomatized definition (associativity, identity and inverses).

(2) Definition using generators and defining relations.

The second meaning was due to Walther von Dyck. Von Dyck published a paper in 1882 named
”Gruppentheoretische Studien” (studies in group theory), [Dyc82], where he first introduced the notion
of a group defined by generators and relations (however, did not prove the existence of such a group).
This marked the rise of the subject called Combinatorial Group Theory. Combinatorial group theory
can be thought of as the study of free groups and groups defined by generators and relations, or
shorter, by a presentation.

A presentation of a group consists of a set X and a set R of relations on the elements of X.
The elements of X are called generators and the elements of R are called relators. It is denoted as
〈X | R〉. The presentation is called finite if both X and R are finite sets, and we say that the group
is finitely presented. This way of representing a group has a few advantages, including an easy way of
understanding the relations between the elements, for calculation purposes and compact view of the
group. In addition, we can create groups that satisfy some relations that we dictate, so we have some
power (although it might be that unintentionally we created the trivial group or other well-known
groups). However, given a presentation, it is almost impossible to analyze the group and answer
questions such as ”is the group finite? infinite?”, ”is it Abelian?” or ”is it the trivial group?”. We
shall see an example later.

Free groups are groups of the form 〈X |〉; that is, with no nontrivial relations between the genera-
tors. A nontrivial relation is not a relation that comes from the axioms of a group, such as xx−1 = e.
We start by defining free groups and then show that they indeed exist. Free groups are important, as
we prove that every group is isomorphic to a factor group of a free group.

We all know that a subgroup of a group induces a partition of this group, and by Lagrange’s
theorem all the pieces of this partition (i.e. cosets) are of the same cardinality. Now, let us look at
the following problem: Given a finite group (presented by generators and relations), with unknown
order, and given a subgroup of this group in which the order is known, how can we find the order of
the group? Coset enumeration (counting the cosets) is a solution to this problem. If we know the
number of pieces comprising the group, and each has the same size, it is easy to calculate the order of
the group. In this work, we chose subgroups in which we thought we can calculate their order. As we
said, it is almost impossible to analyze a group by its presentation, so by taking a subgroup we could
only conjecture its order and in the worst case to get an upper bound to the order of the group.

The method we used for the coset enumeration is the Todd-Coxeter Algorithm. This is not the
only method that exist for coset enumeration. However, as Todd and Coxeter write in their paper
[TC36] from 1936:

”... in fact, the method can be reduced to a purely mechanical process, which becomes a
useful tool with a wide range of application”.

1

A coin has two sides, so the Todd-Coxeter Algorithm. One of the main reasons for the title of this
thesis is given as a Theorem 3.4 in [Coh99]:

Theorem. Suppose the index of H in G is finite. Any Todd-Coxeter coset enumeration procedure in
which it is taken care of that

(i) each row of each table is completely filled (or deleted) after a finite number of steps, and

(ii) there are only finitely many steps between two scannings of the tables for coincidences,

will terminate.

An additional problem is that the algorithm does not give any maximum limit for the number of
steps required to achieve the goal. In fact, even for finite groups, in practical terms, it can happen
that the machine will run out of memory or just break down before the procedure ends! However, it
is unfair to blame the algorithm for that, since no algorithm can decide in a finite number of steps if
a finite presentation is the trivial group, a problem that has been proved to be undecidable.

Then we use the presentations we found in order to prove some special and intriguing isomorphisms.
These proofs become easier once our target is to show that these groups have the same presentation.
This is thanks to Theorem 2.3, called Von Dyck Theorem, that says that a group defined by generators
and relations is the largest possible such group, and thus, yields a surjective homomorphism on
any group with the same number of generators and satisfying the same relations.

The work is concluded with an appendix on the GAP software. We give a basic and non-extensive
explanation on how to use the GAP software to obtain a coset table. GAP uses the Todd-Coxeter
Algorithm for finitely presented groups to enumerate the cosets. GAP also has additional package for
interactive Todd-Coxeter Algorithm and one can see the process step-by-step. The interested reader
can find the package and a manual file at https://www.gap-system.org/Packages/itc.html. We thought
it will be appropriate to add the appendix since doing the enumeration by hand, even for relatively
small groups, is time-consuming, prone to errors and generally a difficult task (the author can testify).

2

”If you don’t like your analyst, see your local algebraist!”.
Gert Almkvist (founder and director of The Institute for Algebraic Meditation)

2 Free Groups

A useful way of specifying a group G is by generators and relations. In this case, we are given a list
of generators such that the group consists of products of powers of these generators, with a list of
equations (called relations) that the generators must satisfy. However, in order to define the notion
of presentation of a group by generators and relations, we must do some groundwork.

Definition 1. If X is a subset of a group F , then F is a free group with basis X if for every
group G and any function f : X → G there is a unique homomorphism φ : F → G such that
φ(x) = f(x), ∀x ∈ X.

Using a commutative diagram, the definition can be seen as

X F

G

f
φ

Having a definition is nice but it does not mean that such an object exists. We would like to show
that a free group indeed exists, and we shall do it using the following construction: Given a set X.
If X = ∅, then F is defined to be the trivial group {e}. If X 6= ∅, let X−1 be a set with the same
cardinality as X and be disjoint from X, i.e., X ∩X−1 = ∅. Choose a bijection from X to X−1 and
denote the image of x ∈ X by x−1. Finally, choose a singleton that is disjoint from X ∪ X−1 and
denote this element by 1.

Definition 2. A word on X is a sequence (a1, a2, . . .) with ai ∈ X ∪X−1 ∪ {1} such that for some
n ∈ Z+ we have ak = 1, ∀k ≥ n. The constant sequence (1, 1, . . .) is called the empty word and is
denoted by 1.

Definition 3. A word (a1, a2, . . .) is said to be reduced if:

• ∀x ∈ X, the elements x and x−1 are not adjacent.

• If an = 1 then ak = 1 for all k ≥ n.

In particular, the empty word is reduced.

Now, every non-empty reduced word is of the form (xλ1
1 , . . . , xλnn , 1, . . .) where n ∈ Z+ and

λi = ±1, i = 1, . . . , n. Let us use a shortened and easier way to write such a reduced word. We
shall write such a word as xλ1

1 xλ2
2 · · ·xλnn .

Note: Two reduced words xλ1
1 xλ2

2 · · ·xλnn and yδ11 y
δ2
2 · · · yδmm are equal if and only if m = n and

xi = yi, λi = δi, i = 1, 2, . . . n, or they are both 1. Thus, we can say that the map from X to F (X)
with x 7→ x1 is injective. From now on we shall identify X with its image and treat X as a subset of
F (X).

Let us now define a binary operation on the set F (X): the empty word 1 is to act as the identity
element; that is, w · 1 = 1 · w = w, ∀w ∈ F (X). The natural way to define the product on two
non-empty reduced words xλ1

1 xλ2
2 · · ·xλnn and yδ11 y

δ2
2 · · · yδmm is by concatenation. However, it might

be that the product in this case will not yield a reduced word. For example, x1x2x3 and x−1
3 x−1

2 x4
yield x1x2x3x

−1
3 x−1

2 x4, which is not reduced. We need to be careful and take care of such cases.
Thus, our definition of such product will still be by concatenation but with solution to such a case:

3

if xλ1
1 xλ2

2 · · ·xλnn and yδ11 y
δ2
2 · · · yδmm are two non-empty reduced words, assuming n ≤ m, let k be the

largest integer (0 ≤ k ≤ n) such that xλn−j
n−j = y

−δj+1
j+1 for j = 0, 1, . . . , k − 1. Then define:

(xλ1
1 xλ2

2 · · ·x
λn
n)(yδ11 y

δ2
2 · · · y

δm
m) :=



xλ1
1 xλ2

2 · · ·x
λn−k
n−k y

δk+1
k+1 · · · yδmm if k < n

y
δn+1
n+1 · · · yδmm if k = n < m

1 if k = n = m

If n > m, then the product defined analogously. The definition insures that the product of reduced
words is again a reduced word.

We are now ready to prove that the set F (X) that we have constructed is a group.

Theorem 2.1. If X is a non-empty set and F (X) is the set of all reduced words on X, then F (X) is
a group under the product we defined above. Moreover, F (X) = 〈X〉.

Proof. Since 1 is the identity element, and each element xλ1
1 xλ2

2 · · ·xλnn has an inverse, x−λn
n · · ·x−λ1

1 ,
all we have to prove is that the operation is associative. For proving this, we are going to present
a bijection from F (X) to a group, which satisfies that homomorphism property. This will enforce
associativity in F (X).
For each x ∈ X and δ = ±1, let αxδ be the map from F (X) to F (X) with 1 7→ xδ and

xλ1
1 xλ2

2 · · ·x
λn
n 7→


xδxλ1

1 xλ2
2 · · ·xλnn if xδ 6= x−δ1

1

xλ2
2 · · ·xλnn if xδ = x−δ1

1

Since αxδ ◦ αx−δ = 1F (X) = αx−δ ◦ αxδ , then each αxδ is a bijection (permutation) of F (X).
Let F0 be the group generated by {αx | x ∈ X}. The map φ : F (X) → F0 given by 1 7→ 1 and
xλ1

1 xλ2
2 · · ·xλnn 7→ α

x
δ1
1
◦ · · · ◦ α

xδnn
is surjective, with the homomorphism property. Assume φ is not

injective. Then it sends a word xλ1
1 xλ2

2 · · ·xλnn 6= 1 to the identity map of F (X). The image of the word
xλ1

1 xλ2
2 · · ·xλnn is α

x
δ1
1
◦ · · · ◦ α

xδnn
which maps 1 to xλ1

1 xλ2
2 · · ·xλnn 6= 1, so it is not the identity map of

F (X). Thus, φ is injective. From the discussion we see that φ is bijection. In addition, since φ satisfies
the homomorphism property, then φ(a(bc)) = φ(a)φ(bc) = φ(a)(φ(b)φ(c)), and since F0 is a group, we
can apply its associativity into the last term to get φ(a)(φ(b)φ(c)) = (φ(a)φ(b))φ(c) = φ((ab)c), and
since φ is injective, then a(bc) = (ab)c, which proves the associativity in F (X).

After showing that F (X) is a group, all we have to do is to show that it is a free group on the set
X.

Theorem 2.2. F (X) is a free group on the subset X.

Proof. Let G be any group and let f : X → G be a set-map. We want to show that there exists
a unique homomorphism from F (X) to G that when restricted to X it agrees with f(x), ∀x ∈ X.
Define f̄ : F → G by f̄(1) = 1, and if xλ1

1 xλ2
2 · · ·xλnn is a non-empty reduced word on X, define

f̄(xλ1
1 xλ2

2 · · ·xλnn) := f(x1)λ1 · · · f(xn)λn . It is obvious that f̄ is homomorphism from F (X) to G, and
f, f̄ agree on all x ∈ X. Let us now show that f̄ is unique. Assume g : F (X) → G is another
homomorphism that agrees with f on all x ∈ X. Then we have g(xλ1

1 xλ2
2 · · ·xλnn) = g(xλ1

1) · · · g(xλnn) =
g(x1)λ1 · · · g(xn)λn = f(x1)λ1 · · · f(xn)λn =: f̄(xλ1

1 xλ2
2 · · ·xλnn). Thus, f̄ is unique.

Corollary 2.2.1. Every group G is the homomorphic image of a free group.

Proof. Let X be a set of generators of G and let F be the free group on X. By Theorem 2.2 the
inclusion map X → G induces a unique homomorphism f̄ : F → G such that x 7→ x ∈ G. Since
G = 〈X〉, the function f̄ constructed in Theorem 2.2 is a surjective homomorphism onto G.

From Corollary 2.2.1 and the first isomorphism theorem we get that

4

Corollary 2.2.2. Every group is isomorphic to a factor group of a free group.

So, in order to describe a group G = 〈X〉 up to isomorphism, all we need is the set X, the free
group F (X) and the kernel of the epimorphism F � G of Corollary 2.2.1, call it N . Now, if w =
xλ1

1 xλ2
2 · · ·xλnn ∈ F is a generator of N , then under the epimorphism F � G, we get that w 7→

xλ1
1 xλ2

2 · · ·xλnn = e ∈ G. The equation xλ1
1 xλ2

2 · · ·xλnn = e ∈ G is called a relation on the generators
xi. So, a given group G can be completely described by a set of generators of G and a suitable set of
relations on these generators. This description will not be unique as we can have different choices for
X and different choices for the set of (suitable) relations.

Conversely, if we get a set X and a set Y of reduced words on X, we can find a group G with
X as generators and all the relation w = e ∈ G, w ∈ Y are satisfied. Let F be the free group on
X and N the normal subgroup generated by Y (normal closure). Let G be the factor group F/N
and identify X with its image in F/N under the natural homomorphism F � F/N . Then G is a
group generated by X, and by our construction all the relations w = e (w ∈ Y) are satisfied since
w = xλ1

1 xλ2
2 · · ·xλnn ∈ Y =⇒ xλ1

1 xλ2
2 · · ·xλnn ∈ N =⇒ xλ1

1 Nxλ2
2 N · · ·xλnn N = N , which means that

xλ1
1 xλ2

2 · · ·xλnn = e ∈ G = F/N .

Finally, we have arrived at the desired definition:

Definition 4. Let X be a set, and Y a set of reduced words on X. A group G is said to be the
group defined by generators x ∈ X and relations w = e (w ∈ Y) provided that G ∼= F/N , where
F is the free group on X and N the normal subgroup of F generated by Y . We say that 〈X | Y 〉 is a
presentation of G.

The following theorem, by Walther von Dyck, tells us that a group defined by generators and
relation is the maximal group in certain sense.

Theorem 2.3 (Von Dyck). Let X be a set, Y a set of reduced words on X, and G the group defined
by the generators x ∈ X and relations w = e (w ∈ Y). If H is any group such that H = 〈X〉 and H
satisfies all the relations w = e (w ∈ Y), then there is an epimorphism G� H.

Proof. See [Hun80] (Theorem 9.5).

5

”I’m afraid that the following syllogism may be used by some in the future.

Turing believes machines think
Turing lies with men

Therefore machines do not think

Yours in distress,
Alan”

From a letter sent by Alan Turing to Norman Routledge, February 1952

3 The Todd-Coxeter Algorithm

The time has arrived to describe the algorithm presented by Todd and Coxeter in 1936, [TC36]. This
is an algorithm for solving the coset enumeration problem. In a coset enumeration problem we try to
find the index of a finitely generated subgroup in a finitely presented group. In theory, if the index is
finite, the process stops at some point. If the procedure succeeds and the process stops, this method
also gives us, implicitly, a permutation representation of G on the right cosets of H. Moreover, if G
is finite, we can get an upper bound for the order of G. In their original paper, Todd and Coxeter
discuss the method for a finite group, although the finiteness of the group does not impact the success
of the procedure.

Let G be the finitely presented group

G := 〈g1, g2, . . . , gn | r1(g1, g1, g2, . . . , gn) = e, . . . , rm(g1, g1, g2, . . . , gn) = e〉

or shorter G := 〈E | R〉 where E := {g1, g2, . . . , gn} and R := {ri(g1, g1, g2, . . . , gn) | i = 1, 2, . . .m}
where each relator ri(g1, g1, g2, . . . , gn) is a word in g1, g2, . . . , gn and e is the identity of G, and let H
be the subgroup of G generated by the set S of words,

S := {s1(g1, g1, g2, . . . , gn), . . . , sp(g1, g1, g2, . . . , gn)}

that is, H := 〈S〉.

The algorithm is based on two simple facts:

1. If s ∈ S, then Hs = H.

2. If r(g1, . . . , gn) is a relator, then for any coset Hx, x ∈ G we have Hxr(g1, . . . , gn) = Hx. So
if r(g1, . . . , gn) = gi1 . . . git where each gij is a generator or an inverse of a generator, then:
H0 := Hx,H1 := H0gi1 , H2 := H1gi2 , . . . , Hj := Hj−1gij is defined, then Ht = H0.

Now, for the procedure itself: for each word that generates the subgroup H we maintain a one-line
table, called a subgroup table. The row is labeled as 1 for the coset H itself. The columns are
labeled by the factors of the generator of the word. That is, if sj = gi1 . . . gik is a generator of H, then
we have k + 1 columns.

Subgroup Table
gi1 gi2 . . . gik

1 1

If we look at the table as a matrix of order 1× (k + 1), then the entry (1, gij) in the table, if defined,
is the number of the coset we get from the multiplication 1 · gi1 · · · gij .

For each relator, r(g1, . . . , gn) we have a relation table. Relation tables will give us information
in case two cosets which have numbered differently are the same. If a relation acts on two cosets
in exactly the same way, then these cosets must be identical. The rows of the relation tables are
labeled with the numbering we defined for the cosets. Similarly to the subgroup table, given a relator
ri = gi1 · · · gik , we have k + 1 columns.

6

Relation table for ri = gi1 · · · gik
gi1 gi1 . . . gik

1 1
2 2
...

...
t t
...

...

As in the subgroup table, the entry (n, gij) if defined, is the coset we get from the multiplication
n · gi1 · gi2 · · · gij . Since we know that ri = gi1 · · · gik = e, we get that Hxri = Hx. So the entry (n, gik)
is n.

Finally, we would like to have a table that keeps track for us on the result of multiplications. This
table is the coset table. The rows will be labeled with the numbers of the cosets, and the columns
will be labeled by the generators of G and their inverses (unless a generator is an involution). The
entry (n, gi), if defined, is n · gi for the coset n and the generator gi.

When the last entry in a row of a relation table or a subgroup table is filled in, we get an extra
piece of information, in the form of n · g = l, for some cosets n, l and a generator g. This extra piece
of information is called a deduction. When getting a deduction we can face three situations:

(i) The entries (n, g) and (l, g−1) are still empty. In this case, we just fill the number l in the entry
(n, g) and the number n in the entry (l, g−1). We also insert this information into all other
relevant places in the other tables.

(ii) The entry (n, g) is already filled with the number l. In this case, the deduction brings no new
information.

(iii) At least one of the entries (n, g) or (l, g−1) in the coset tables is filled with a number different
from l or n, respectively. In this case, we conclude that we have two different numbers to the
same coset. This phenomenon is called a coincidence. When a coincidence is found, we replace
both numbers by the smaller one in all places they occur.

The process terminates when all the entries of the coset, relation and subgroup tables are filled. From
now on we shall refer to the Todd-Coxeter Algorithm as TCA.

We would like to give a detailed example of the TCA for the group S4, using generators and rela-
tions, as follows:

G := 〈a, b, c | a2 = b2 = c2 = e, (ab)3 = e, (bc)3 = e, (ac)2 = e〉 (1)

and taking the subgroup

H := 〈a, b〉.

However, before we begin the example, let us prove some useful proposition that we shall use
throughout the text:

Lemma 3.1. The set of transpositions {(1, k) | 1 ≤ k ≤ n} generate Sn, for n ≥ 2.

Proof. We know that every element in Sn can be written as a product of transpositions. So it is enough
to show that every transposition in Sn can be written as an element of the group 〈{(1k) | 1 ≤ k ≤ n}〉.
So let (i, j), i 6= j be a transposition in Sn. Then we have that (i, j) = (1, j)(1, i)(1, j) as desired.

Proposition 3.1. The set of transpositions {(12), (23), . . . , (n− 1, n)} generate Sn, for n ≥ 2.

7

Proof. Since by Lemma 3.1 the set {(1k) | 1 ≤ k ≤ n} generates Sn, it is enough to show that for
all 1 ≤ k ≤ n, the transposition (1, k) ∈ 〈(12), (23), . . . , (n − 1, n)〉 for all 1 ≤ k ≤ n. For k = 1
we get the identity which is obviously in the group, and for k = 2 we get (1, 2) which is also in the
group. Assume that (1, k) is in 〈(12), (23), . . . , (n − 1, n)〉, where 1 ≤ k < n, and let us show that
(1, k + 1) ∈ 〈(12), (23), . . . , (n− 1, n)〉. Then, (1, k + 1) = (1, k)(k, k + 1)(1, k), as desired.

First, we define three cosets and try to fill in the tables. Then we will be able to see whether we need
to define more cosets in order to complete the tables, or not.
We define:

1 := H, 2 := 1c, 3 := 2b.

The subgroup tables are already closed, and as expected, we did not gain any additional information
from them.

Subgroup Tables

a

1 1
b

1 1

However, from the definitions and the relations in the group G, we can immediately derive the
following: 2c = 1, 3b = 2, as b and c are of order 2. We should note that there are a few possible ways
to fill in the tables. One can start from the left or from the right and then can continue using and
any combination of them. Nevertheless, eventually one arrives at the same result.

Now, let us start filling in the coset and relation tables:

Coset table

a b c

1 1 1 2
2 2 3 1
3 2 3

Relation tables for a2 = e, b2 = e, c2 = e

a a

1 1 1
2 2 2
3 3

b b

1 1 1
2 3 2
3 2 3

c c

1 2 1
2 1 2
3 3 3

Relation table for (ab)3 = e

a b a b a b

1 1 1 1 1 1 1
2 2 3 3 2
3 3 2 2 3

Relation table for (ac)2 = e

a c a c

1 1 2 2 1
2 2 1 1 2
3 3 3

8

Relation table for (bc)3 = e

b c b c b c

1 1 2 3 3 2 1
2 3 3 2 1 1 2
3 2 1 1 2 3 3

In the process of filling in the tables we have received the following deductions, 2a = 2, 3c = 3,
which we have underlined in the table, in the place we got them.

Now, one can define one more coset and continue, or to define a few more at once. As we shall
see, it is enough to define only one more coset, namely, 4 := 3a to complete all the tables. However,
since we would like to demonstrate the notion of ”coincidences” we shall take the latter approach: we
shall define three more cosets at once: 4 := 3a, 5 := 4b, 6 := 4c. Continuing filling in the tables gives

a b a b a b

1 1 1 1 1 1 1
2 2 3 4∗ 4∗ 3 2
3 4 5∗ 3∗ 2 2 3
4 3 2 2 3 5 4
5 3 2 2 3 4 5
6 3 2 2 3 4 6

a b c

1 1 1 2
2 2 3 1
3 45 2 3
4 3 54 6
5 3 4
6 4

From this relation table we receive the following deductions: 4b = 4 and 5a = 3. However, as we
see in the coset table, the place of 4b is already filled with 5. Therefore, we get a coincidence: cosets
4 and 5 are the same coset of H in the group G. Similarly, the place of 3a is already filled with 4 in
the coset table, which means, as have already discovered, that 4 and 5 are the same coset. We note
that coincidences are marked in the tables with asterisk(*). Equipped with the previous information,
let us continue to the other relation tables.

a c a c

1 1 2 2 1
2 2 1 1 2
3 4 6∗ 3∗ 3
4 3 3 4 4
5 3 3 4 5
6 3 3 4 6

a b c

1 1 1 2
2 2 3 1
3 45,6 2 3
4 3 54 6
5 3 4
6 3 4

From this relation table we get the information that 6a = 3 or, equivalently, 3a = 6. This yields
another coincidence: this time we get that cosets 4 and 6 are the same cosets of H in G. So, from
the last two coincidences we have 4 = 5 = 6. These coincidences yield full information about the
multiplication of all the elements we have, or in other words, we filled in the whole coset table, and
thus can fill in the rest of the tables completely. As we said in the description of the algorithm, we
take the smallest integer in a coincidence to represent the equal cosets.

a b c

1 1 1 2
2 2 3 1
3 45,6 2 3
4 3 54 64
5 3 4 4
6 3 4 4

9

a a

1 1 1
2 2 2
3 4 3
4 3 4
5 3 5
6 3 6

b b

1 1 1
2 3 2
3 2 3
4 5 4
5 4 5
6 4 6

c c

1 2 1
2 1 2
3 3 3
4 6 4
5 4 5
6 4 6

b c b c b c

1 1 2 3 3 2 1
2 3 3 2 1 1 2
3 2 1 1 2 3 3
4 4 4 4 4 4 4
5 4 4 4 4 4 5
6 4 4 4 4 4 6

Eventually, we receive four different cosets of H in G, which are 1,2,3 and 4. This means that
[G : H] = 4, and since |H| ≤ 6 then we get an upper bound to the order of G, that is, |G| ≤ 24. On
the other hand, by Proposition 3.1 we see that the three transpositions (12), (23), (34), of which the
generators of G act on the cosets 1,2,3 and 4, generate S4 and by Theorem 2.3 we get an epimorphism
from G onto S4 (or equivalently, S4 is a homomorphic image of G), which means that |G| ≥ 24. All
in all, we get that |G| = 24 and thus G ∼= S4. We have just proved the following theorem:

Theorem 3.1. The group S4 has the presentation using generators and relation given in (1).

However, there is a problem. Given an arbitrary presentation of a group using generators and
relations, it is sometimes unclear with which group we are dealing with. Using TCA may not help
in this case. Indeed, if we take a subgroup of the abstract group, and the index of it in the abstract
group is not finite, then there is no guarantee that the TCA stops. Another disadvantage of arbitrary
presentations is that we might waste our time dealing with a complicated presentation of the trivial
group, as seen in the following examples.

Taking the presentation G := 〈a, b, c | a3 = b3 = c4 = e, ac = ca−1, aba−1 = bcb−1〉 (from
[MKS04]) with the subgroup H := 〈a, b〉. Defining the cosests 1 := H, 2 := 1c, 3 := 2b, 4 := 3c, 5 :=
4c, 6 := 5a, 7 := 4a, 8 := 3b yields a total collapsing immediately after a few steps. In fact, the above
presentation of the trivial group is not unique. Another presentation of the trivial group, taken from
[Fra03], is the presentation 〈x, y | y2x = y, yx2y = x〉 (take the subgroup H defined by H := 〈x〉
and the cosets: 1 := H, 2 := 1y, 3 := 2y, 4 := 3y to verify by the TCA). Also, the presentations
G := 〈a, b | a2ba−1 = e, ab−1a−1 = e〉 (from [Pei97]) and G := 〈a, b | aba−1 = b2, bab−1 = a2〉 (from
[Löh17]) are the trivial group. So we have already four presentations of the trivial group!

3.1 Identifying groups with their presentations

We shall now use the TCA to identify more groups with their presentation using generators and
relations. For obvious reasons of saving space, the environment and laziness of the author, we should
give only our coset definitions, the (full) coset table and list of deductions and coincidences. The
reader is warmly advised to do the process on their own, or to use a computerized algebra software,
for example, GAP.

(1) D4 ∼= G := 〈a, b | a2 = e, b4 = e, (ab)2 = e〉

Let us recall that the group Dn is the group of symmetries of a regular n-gon, called the nth
dihedral group. This is a finite group of order 2n (n rotations and n reflections). We consider the
case n = 4. Then we have the group of symmetries of a square. There are 4 rotations and 4 reflections.

10

So we have 8 elements in this group. If we take a to be the reflection operator and b to be the rotation
operator, then we claim that: D4 ∼= G := 〈a, b | a2 = e, b4 = e, (ab)2 = e〉 where taking the subgroup
H := 〈a〉. Using the TCA with the definitions 1 := H, 2 := 1b, 3 := 2b, 4 := 3b, we get the deductions
4b = 1, 2a = 4 and 3a = 3, with no coincidences. The coset table is

a b b−1

1 1 2 4
2 4 3 1
3 3 4 2
4 2 1 3

So we get 4 distinct cosets with at most 2 elements in each one which gives the upper bound
8 for the order of G. We see that the permutation representation is given by a 7→ (24) ∈ S4, and
b 7→ (1234) ∈ S4. It is easy to see that (1234), (24) generate D4 ((1234) rotates the square by 90
degrees (say counterclockwise), and (24) reflects two vertices). Moreover, (24)(1234) = (14)(23) (we
do multiplication from right to left) which has order 2 (disjoint transpositions). Thus, we found
generators of D4 that satisfy the relations of G, so by Theorem 2.3 there is an epimorphism from G
onto D4, which gives now the lower bound of the order of G, namely 8. Therefore, we get that G ∼= D4.

(2) S3 ∼= 〈a, b | a2 = b2 = e, (ab)3 = e〉

We have already shown in detail the presentation of the group S4 in which S3 is a subset of. Thus,
the resemblance of the presentation to that of S4 is reasonable. We are taking the subgroup H of G to
be H := 〈a〉. With the definition of the cosets 1 := H, 2 := 1b, 3 := 2a, we get the deduction 3b = 3
and the coset table

a b

1 1 2
2 3 1
3 2 3

From the algorithm we have received that |G| ≤ 6. The permutation representation is given by
a 7→ (23), b 7→ (12) which by Proposition 3.1 generates S3, and (23)(12) = (132), so the relations in
G are satisfied, and thus by Theorem 2.3 we get |G| ≥ 6, so S3 ∼= G.

(3) S5 ∼= G
G := 〈a, b, c, d | a2 = b2 = c2 = d2 = e, (ab)3 = (bc)3 = (cd)3 = e, (ac)2 = (bd)2 = (ad)2 = e〉.

We continue with the symmetric groups and arriving at S5. This is one of the cases when we
cannot avoid coincidences. Even after doing the process and trying to present the results as efficient
and ”engineered” as possible, we must sometime (without knowing) define some redundant cosets.

Taking H to be H := 〈a, b, c〉, we define the cosets as follows: 1 := H, 2 := 1d, 3 := 2c, 4 :=
3d, 5 := 4b, 6 := 5a. Then we get the deductions 4c = 2, 2b = 2, 5c = 5, 6c = 6, 5d = 5, 2a = 2, 3a =
3, 6b = 6, 6d = 6, and the coincidence 3 = 4.

a b c d

1 1 1 1 2
2 2 2 34 1
3 3 5 2 43
4 3 5 2 3
5 6 43 5 5
6 5 6 6 6

11

Here we had to define the coset 4 in order to get the distinct cosets 5 and 6. So, from the process we
get that the index |G : H| is 5, which means that our upper bound of |G| is 5 · 24 = 120. We also
get the permutation representation a 7→ (45), b 7→ (34), c 7→ (23) and d 7→ (12) (do not confuse the
numbering of the elements in S5 with the numbering in the TCA). As we have already proved, the
images of a, b, c and d generate S5. We leave it as an exercise to the reader to check that the relations
in G hold for these elements of S5. Again we use Theorem 2.3 to get a surjective homomorphism
which implies the desired isomorphism.

(4) A4 ∼= G := 〈a, b, c | a2 = b2 = c3 = e, ab = ba, ca = abc, cb = ac〉

Recall that An is the alternating group on n letters and is a subgroup of Sn whose elements are
the even permutations in Sn. The order of An is n!/2 (the even and odd permutations partition Sn).
We define H now to be the coset H := 〈c〉, and use the following enumeration: 1 := H, 2 := 1b, 3 :=
1a, 4 := 3b. We get the deductions: 4a = 2, 4c = 3, 3c = 2, 2c = 4 and no coincidences were observed.
The coset table looks as follows:

a b c c−1

1 3 2 1 1
2 4 1 4 3
3 1 4 2 4
4 2 3 3 2

As we see, we have four cosets which give an upper bound of 12 elements. The permutation
representation in this case is given by a 7→ (13)(24), b 7→ (12)(34), c 7→ (243). These elements belong
to A4 and generate a subgroup of order 2 · 2 · 3 = 12, so they generate A4. If the reader is not tired
already (as the author is), then they are invited to check that the relations in G are satisfied by the
above elements of A4.

(5) A5 ∼= G := 〈a, b | a5 = b3 = e, (ab)2 = e〉

Taking H := 〈a〉, define the following cosets:

1 := H, 2 := 1b, 3 := 1b−1, 4 = 3a, 5 = 4a, 6 := 5a, 7 := 2a, 8 := 7a
9 := 8a, 10 := 9b, 11 := 8b−1, 12 := 10b, 13 := 10a−1, 14 := 12a, 15 := 13b

a b c c−1

1 1 2 1 37
2 73 37 6 1
3 4 1 2 2
4 5 6 3 11
5 6 10 4 12
6 2 11 5 4
7 84 1 2 2
8 9 6 7 11
9 6 10 8 12
10 11 12 13 9
11 12 84 10 6
12 14 95 11 10
13 10 15 14 14
14 13 13 12 15
15 15 14 15 13

We get three coincidences which are 3 = 7, 4 = 8, 5 = 9. Thus, we have index 12 of H in
G. So our upper bound this time is 5 · 12 = 60. This time we shall not look for the permutation
representation. We are going to find two generators of A5 which satisfy the relations of G, and which

12

yield an epimorphism onto A5. We claim that α := (12345) and β := (153) generates A5. Indeed, the
order of 〈α, β〉(≤ A5) must be divisible by 3, 5 and 2 (since the order of, for example, αβ is 2), by
Lagrange’s theorem. So the order of 〈α, β〉 must be at least 30. However, 〈α, β〉 has a subgroup of
order 4 (αβ has order 2, and γ which we get by defining ω = α2βα−2 and γ = ω(αβ)ω−1 has order
2), so the order must also must be divisible by 4. So the order is at least 60. But this is the order of
A5. So |〈α, β〉| = 60 =⇒ 〈α, β〉 = A5. We can immediately see that α5 = e = β3 and αβ = (23)(45)
which is of order 2. So our choice of generators is good (obviously), and they satisfy the relations in
G. So we can use Theorem 2.3 to get again the desired isomorphism.

So far we have dealt with permutation groups. Let us now look at some different but interesting
groups which have matrices as their elements. However, we do what mathematicians like to do, which
is to define some notions and then prove some theorems.

Definition 5. Let F be a field. Then the set GLn(F) := {A ∈ Mn(F) | det(A) 6= 0} is called the
general linear group. If F is a finite field with q elements, we write GLn(q). The binary operation
in this group is matrix multiplication.

An interesting case is when the determinant of an element in GLn(F) is 1.

Definition 6. Let F be a field. Then the set SLn(F) := {A ∈ Mn(F) | det(A) = 1} is called the
special linear group. The special linear group is a subgroup of GLn(F).

Theorem 3.2. If F is a finite field with q elements, then

|GLn(q)| = (qn − 1)(qn − q)(qn − q2) · · · (qn − qn−1).

Proof. From linear algebra we know that a square matrix is invertible if and only if its rows/columns
are linearly independent, when seen as vectors in the appropriate space. Let us try to count how
many options we have to choose an n linearly independent columns to form a matrix in GLn(F).
The first vector can be any non-zero vector, so we have qn − 1 ways to choose it. The second vector
shall not be a multiple of the first vector (including the zero vector), but other than that we have
no restrictions, so it can be chosen in qn − q ways (the field has q elements which yield q multiples
of the first vector). Assume now that we have chosen k linearly independent vectors and we want to
choose the k + 1th vector to be linearly independent of the previous vectors. The vector v is linearly
dependent on the vectors v1, . . . , vk if and only if we can write v = α1v1 + · · ·αkvk. So in F there are
qk such sums, so we exclude them in our counting to get qn − qk. Therefore, taking all into account
yields (qn − 1)(qn − q)(qn − q2) · · · (qn − qn−1) different ways to choose an n × n invertible matrices.
Thus, |GLn(q)| = (qn − 1)(qn − q)(qn − q2) · · · (qn − qn−1).

Let us now look at SLn(q). Consider the map det : GLn(q) → F ∗ := F \ {0} with A 7→ det(A).
As we recall from linear algebra, det(AB) = det(A) det(B), so the determinant function is a group
homomorphism. Moreover, if we look at the kernel of this homomorphism we discover that ker(det) =
SLn(q). Also, it is easy to see that the map det is onto F ∗.

Since we are going to deal with 2 × 2 matrices, let us zoom down from dimension n to 2. We
would like to find now the order of SL2(q). From Theorem 3.2 for matrices of dimension 2 we get
|GL2(q)| = (q2 − 1)(q2 − q). Since the map det is onto F ∗, we get by Lagrange’s theorem that
|GL2(q) : SL2(q)| = q − 1, and thus

|SL2(q)| = |GL2(q)|
q − 1 = (q2 − 1)q = (q − 1)q(q + 1). (2)

We would like to continue our construction, and to arrive at the following

Definition 7. The centre of the group G is the set Z(G) := {x ∈ G | xg = gx, ∀g ∈ G}. The centre
is an Abelian subgroup of G.

We can easily see that the centre of SL2(F) is {I, −I} (when the characteristic of F is not 2, since
then I = −I), as the identity matrices commute with every other matrix. We have finally arrived at
our main definition:

13

Definition 8. Let Z(SLn(F)) be the centre of SLn(F). The factor group SLn(F)/Z(SLn(F)) is
called the projective special linear group and is denoted by PSLn(F).

Since the centre is a normal subgroup of SL2(q), then we know that (assuming char(F) 6= 2)

|SL2(q)/Z(SL2(q))| = |SL2(q) : Z(SL2(q))| = (q − 1)q(q + 1)
2 .

In case and char(F)=2, then Z(SL2(F)) is the trivial group and therefore, SL2(F) = PSL2(F) and
|PSL2(F)| = (q − 1)q(q + 1).

(6) PSL2(7) ∼= G := 〈a, b, w | a7 = b3 = w2 = e, bab−1 = a2, (bw)2 = e, (aw)3 = e〉

We are in search for finding the generators of PSL2(7) that satisfy the above relations. We are
going to use Bruhat decomposition in order to break down SL2(7) and to help us in this journey.

Definition 9. We define the following subgroups of SL2(F):

• B :=
{(

a b
0 d

)
| ad = 1

}
⊂ SL2(F) called the Borel subgroup.

• U :=
{(

1 b
0 1

)
| b ∈ F

}
⊂ B

• H :=
{(

a 0
0 a−1

)
| a ∈ F ∗

}
⊂ B

We can easily see that U / B and that B = UH. The following theorem tells us that

Theorem 3.3. SL2(F) = B ∪BwB, where w =
(

0 1
−1 0

)
∈ SL2(F)

Proof. See [Lan02].

For PSL2(7) we need a finite field with 7 elements. So the natural field to take is Z7. Now, we

can see that U =
〈
α :=

(
1 1
0 1

)〉
and H =

〈
β :=

(
3 0
0 5

)〉
, in SL2(7). The reader is invited to

check that the relations in G are satisfied by α and β and w (α has order 7, β has order 3, and w has
order 2) in PSL2(7). Moreover, as we have in Theorem 3.3, α, β, w generate SL2(7) and thus, their
images generate PSL2(7). So we have an epimorphism from G onto PSL2(7), which means that G
has order of at least 168.

We now use the TCA with the following definitions of cosets, where taking B := 〈a, b〉 as the
subgroup: 1 := B, 2 := 1w, 3 := 2a, 4 := 3a, 5 := 4a, 6 := 5b, 7 := 3b, 8 := 3w. We get the following
deductions:

7a = 6, 2b = 2, 8a = 2, 4b = 3, 7b = 4, 5a = 7, 6a = 8, 6b = 8, 8b = 5, 7w = 6, 4w = 5,

with no coincidences. The coset table we get is

a b w a−1 b−1

1 1 1 2 1 1
2 3 2 1 8 2
3 4 7 8 2 4
4 5 3 5 3 7
5 7 6 4 4 8
6 8 8 7 7 5
7 6 4 6 5 3
8 2 5 3 6 6

14

So we get index 8, which yields the upper bound of 8 · 7 · 3 = 168. So, as in previous examples we
get our desired isomorphism; that is,

PSL2(7) ∼= 〈a, b, w | a7 = b3 = w2 = e, bab−1 = a2, (bw)2 = e, (aw)3 = e〉.

Our last example is quite similar to the previous but contains a bit more detail.

(7) PSL2(9) ∼= G

G := 〈a, b, c, w | a3 = b3 = w2 = c4 = e, (cw)2 = e, cac−1 = b−1,

cbc−1 = a, (aw)3 = e, ab = ba, wabw = ab−1c−1wab−1〉

In this case we need a field with nine elements. It is not obvious what is the natural field to
choose. We choose the field Z3[i] := {a + bi | a, b ∈ Z3}. We again go to the Bruhat decomposition,

but this time we get that U =
〈
α :=

(
1 1
0 1

)
, β :=

(
1 i
0 1

)〉
and H =

〈
γ :=

(
1 + i 0

0 i− 1

)〉
,

in SL2(9). These elements, together with w =
(

0 1
−1 0

)
, satisfy the relations in G and generate

SL2(9). Thus, Theorem 2.3 gives us a lower bound of 360. Now let us see what the TCA gives us:
define the cosets

1 := B := 〈a, b, c〉, 2 := 1w, 3 := 2a, 4 := 3c, 5 := 4c, 6 := 5c, 7 := 4a, 8 := 5b, 9 := 3b−1, 10 := 8w.

We get the following deductions:

9c = 7, 2c = 2, 2b = 4, 7c = 8, 3b = 7, 7w = 9, 7b = 9, 5a = 2, 8a = 4, 10c = 9, 6b = 2, 9a = 10
3w = 5, 4w = 4, 6a = 9, 4b = 6, 3a = 5, 8b = 10, 10a = 6, 6w = 6, 10b = 5, 6c = 3, 8c = 10,

with no coincidences. The coset table is

a b c w a−1 b−1 c−1

1 1 1 1 2 1 1 1
2 3 4 2 1 5 6 2
3 5 7 4 5 2 9 6
4 7 6 5 4 8 2 3
5 2 8 6 3 3 10 4
6 9 2 3 6 10 4 5
7 8 9 8 9 4 3 9
8 4 10 10 10 7 5 7
9 10 3 7 7 6 7 10
10 6 5 9 8 9 8 8

So the index that we get from the process is 10 and |G| ≤ 10 · 32 · 4 = 360. So from both the upper
and lower bound we get the desired isomorphism.

15

”It is my experience that proofs involving matrices can be shortened by 50 percent if one
throws the matrices out.”

E. Artin, Geometric Algebra

4 Exceptional Isomorphisms

We have not worked so hard on the TCA just to describe it. We would like to use the results of the
presentations to get isomorphisms between groups that at first sight do not seem to be related. We
shall show that A5 ∼= PSL2(5) ∼= SL2(4), PSL2(9) ∼= A6 and that SL3(2) ∼= PSL2(7).

Let us work on the isomorphism A5 ∼= SL2(4). We take the field with four elements defined
by F4 := Z2[x]/(x2 + x + 1). We denote the elements in F4 by {0, 1, x, x + 1}. We also note that

x2 = x+ 1. Thus, every element in SL2(4) has the form
(
a b
c d

)
with a, b, c, d ∈ F4 and ad− bc = 1.

We are going to show now that the matrices A :=
(
x 1
1 0

)
and B :=

(
0 1
1 1

)
generates SL2(4).

Indeed, the order of A is 5, the order of B is 3 and the order of AB is 2. Thus, by Lagrange’s
theorem the order of the group 〈A,B〉 must be divisible by 5, 3 and 2. Therefore, the order is at
least 30. However, from A and B we can produce a Klein-4 subgroup V of G: define the elements
C := A2BA−2 and D := C(AB)C−1, and the subgroup 〈AB,D〉 generates V . Thus, the order of
〈A,B〉 must also be divisible by 4. So the order of 〈A,B〉 is at least 60. From Equation (2) we get
that |SL2(4)| = 3 · 4 · 5 = 60, so 〈A,B〉 = SL2(4). As we pointed out already, the orders of A,B and
AB are 5,3 and 2, respectively. Therefore, A and B also satisfy the relations of the presentation of
A5, and by Theorem 2.3 we get epimorphism of A5 onto SL2(4). However, both are of order 60, so
the epimorphism is an isomorphism, and A5 ∼= SL2(4). The (enthusiastic) reader is invited to verify

that the matrices A :=
(

2 1
−1 0

)
and B :=

(
−1 −1
1 0

)
generate PSL2(5) and satisfy the relations

appearing in the presentation of A5. Thus, we get the isomorphisms A5 ∼= PSL2(5) ∼= SL2(4).
We move on to show that SL3(2) ∼= PSL2(7). It is left to the reader to check that the matrices

A :=

 0 0 1
1 0 1
0 1 0

, B :=

 1 0 0
0 0 1
0 1 1

 and W :=

 1 0 0
0 0 1
0 1 0

 have orders 7,3 and 2, respectively

(for keeping your sanity, you may want to use Matlab or Maple for that). However, SL3(2) is a
simple group (which means that it does not have a proper normal subgroup). But in 〈A,B,W 〉
the subgroup 〈AWB〉 is of order 4, so the order must be divisible by 4 as well. Thus, the order
of 〈A,B,W 〉 is at least 84. If it is 84, then it means that 〈A,B,W 〉 is a proper normal subgroup
of SL3(2) (as |SL3(2) : 〈A,B,W 〉| = 2), which cannot happen as SL3(2) is simple. Every subgroup
induces a partition on the group. By Lagrange’s theorem every coset has the same number of elements.
Therefore, a cell in a partition (which is not the trivial partition) cannot contain more than a half of
the elements of the group, so it must be that 〈A,B,W 〉 = SL3(2). Now, from Theorem 2.3 we get
our desired isomorphism, namely, SL3(2) ∼= PSL2(7).

We are going to show the last exceptional isomorphism; that is, PSL2(9) ∼= A6. As we have done
until now, we are going to have elements that satisfy the relations in PSL2(9) and generate A6. This
will give us the desired isomorphism implied by Theorem 2.3.

It is easy to find two elements of order 3 in A6, namely α := (123) and β := (456). They are also
commutative since they are disjoint. We also want an element that conjugate α to β−1 and conjugate

β to α. Thus, we can define γ ∈ S6 as γ :=
(

1 2 3 4 5 6
6 5 4 1 2 3

)
= (1634)(25). By trial and error

one finds that ω := (13)(25) is the missing part of order 2 (γω = (1634)(25)(13)(25) = (14)(36) and
αω = (123)(13)(25) = (253), and the ugly relation can be checked manually by the reader). We can
see that the group G := 〈α, β, γ, ω〉 generate the element αωβ = (253)(456) = (25643) of order 5,
so the order of the group must be divisible by 5. So the order of G is at least 60. However, 〈α, β〉
generate a group of order 9. So the order of G must be divisible also by 9. The least common multiple

16

of 9 and 60 is 180, so the order of G is at least 180. But as we claimed in the previous discussion,
|A6 : G| = 2 and A6 is a simple group, which leads to a contradiction (in fact, for every n ≥ 5, we have
An is a simple group). Thus, G = A6. So the generators of A6 satisfy the relations in the presentation
of PSL2(9), and thus we get an epimorphism (by Theorem 2.3) which is actually an isomorphism, so
PSL2(9) ∼= A6.

17

There are two ways to do great mathematics. The first way is to be smarter than
everybody else. The second way is to be stupider than everybody else – but persistent.

Raoul Bott

5 Appendix

Here we shall give a short and simple account for building a finite presentation of a group using the
software GAP. Let us note that GAP is distributed freely, and installation files are available for Linux,
Mac and Windows. It is distributed under the GPL license. We use the GAP manual in order to
provide the explanation below. The manual can be found on
https://www.gap-system.org/Manuals/doc/ref/manual.pdf.
More information can be found on the GAP website
https://www.gap-system.org/.

According to Definition 4, we define the presentation of a group using factoring the free group by
the relations, namely F/N . To do so, we first need to define the free group F (we shall use lower case
letters in the code) by the command FreeGroup as follows

gap> f :=FreeGroup (”a” , ”b”) ;
<fp group on the gene ra to r s [a , b]>

(In order to suppress the output here use double semicolon ;;). We have generated a free group on
the letters ’a’ and ’b’.

In the definition of the FreeGroup we gave the names ’a’ and ’b’. Alternatively, it is possible to
write the number of generators we want and the software will give them names automatically. For
example:

gap> f :=FreeGroup (3) ;
< f r e e group on the gene ra to r s [f1 , f2 , f 3]>

Since our first example in this work is done on S4, we continue this tradition and remember that
the presentation of S4 given by (1). Note: We used equations ω = e on the relators. However, there is
no need to equate the relations to the identity as it is done automatically. We access to our generators
of the free group by the position they were defined in the command. For example, ’a’ is in position
1, so we access it by typing f.1 and similarly for ’b’ and ’c’ (It is also possible to use the command
AssignGeneratorVariables(f) to access ’a’, ’b’ and ’c’). In order to define the factor group, we use
the ’/’ symbol as follows:

gap> f :=FreeGroup (”a” , ”b” , ” c ”) ; ;
gap> g:= f / [f . 1ˆ2 , f . 2ˆ2 , f . 3ˆ2 , (f . 1∗ f . 2) ˆ 3 , (f . 2∗ f . 3) ˆ 3 , (f . 1∗ f . 3) ˆ 2] ;
<fp group on the gene ra to r s [a , b , c]>

Now our presentation of S4 is complete. We can get the order of the group by typing Size(g), get-
ting the generators and the relations in the group by GeneratorsOfGroup(g) and RelatorsOfFpGroup(g),
respectively. We can also get a faithful (injective) premutation representation by IsomorphismPermGroup(g).

But this is not why we have chosen to add an appendix on GAP. For finitely presented groups
GAP uses the Todd-Coxeter Algorithm for coset enumeration. Obviously, no one would like to do the
process for larger groups by hand, so we review here the commands to achieve the coset tables.

First, we need to define which subgroup we would like to operate on. In order to do so we use
the command Subgroup(G,gens), where G is the group and gens are the generators of the subgroup.
Continuing our example of S4:

18

gap> h:=Subgroup (g , [g . 1 , g . 2]) ;

Note that now we are dealing with the elements of the group ’g’ and not of the group ’f’, so
the generators will be accessed by g.1, g.2 and g.3. To get the coset table we use the command
CosetTable(g,h). The value returned is a list of lists, and it appears as

gap> CosetTable (g , h) ;
[[1 , 2 , 4 , 3] , [1 , 2 , 4 , 3] , [1 , 3 , 2 , 4] , [1 , 3 , 2 , 4] ,
[2 , 1 , 3 , 4] , [2 , 1 , 3 , 4]]

In order to get a matrix view of the table we use the commands PrintArray and TransposedMat.
The PrintArray command prints the array as a matrix. However, this is not the modern view of the
coset table we have used in this work. This matrix is transposed. Thus, we need to use the command
TransposedMat to get the same structure of matrix we used in our work. First we transpose the
matrix and then print it in a tabular view. For convenience reasons, it is useful to give the coset table
a name. So the code for getting a coset table might look like

gap> tab := CosetTable (g , h) ;
[[1 , 2 , 4 , 3] , [1 , 2 , 4 , 3] , [1 , 3 , 2 , 4] , [1 , 3 , 2 , 4] ,
[2 , 1 , 3 , 4] , [2 , 1 , 3 , 4]]
gap> PrintArray (TransposedMat (tab)) ;
[[1 , 1 , 1 , 1 , 2 , 2] ,

[2 , 2 , 3 , 3 , 1 , 1] ,
[4 , 4 , 2 , 2 , 3 , 3] ,
[3 , 3 , 4 , 4 , 4 , 4]]

The columns we get correspond to a, a−1, b, b−1 and c, c−1 (since in S4 the generators are of
order 2, they are inverses of themselves, so the columns of each generator and its inverse are identical).
Moreover, we can get the index of h in g by the command Index(gr,sub). Notice that since there
are different ways of defining the cosets in the TCA, we might get different coset tables. However, it
does not matter which representative we take from the equivalence class.

19

Errata

• Page 10, paragraph after Theorem 3.1: the sentence ”Indeed, if we take ... then there is no
guarantee that the TCA stops.” should be ”Indeed, if we take... then the algorithm never
stops.”

• In page 11, in the paragraph immediately after , ignore the sentences that start with ”This is one
of the cases...” and end with ”... we must sometime (without knowing) define some redundant
cosets.”.

• Page 12, the header of the coset table of A5 should be

a b a−1 b−1

• Page 15, line 9: the field Z3[i] := {a+ bi | a, b ∈ Z3} should be defined as Z3[i] := {a+ bi | a, b ∈
Z3, i =

√
−1}

• Page 16, line 7: the sentence ”We are going to show now that ... generates SL2(4).” should be
”We are going to show now that ... generate SL2(4).”

• Page 16, line 22: reference for simplicity of SL3(2) is [Lan02].

• Page 17, line 2: reference for simplicity of An, n ≥ 5 is [Rot95].

20

References

[Coh99] Arjeh Cohen. Some Tapas of Computer Algebra. Berlin, Heidelberg: Springer Berlin Hei-
delberg, 1999.

[Dyc82] Walther Dyck. “Gruppentheoretische Studien”. In: Mathematische Annalen 20.1 (Mar.
1882), pp. 1–44.

[Fra03] John Fraleigh. A first course in abstract algebra. Addison-Wesley, 2003.
[Gal13] Joseph Gallian. Contemporary abstract algebra. Brooks/Cole Cengage Learning, 2013.
[Gar86] Cyril Gardiner. Algebraic structures. E. Horwood Halsted Press, 1986.
[Her64] Israel Herstein. Topics in algebra. Xerox College Publ, 1964.
[Hun14] Thomas Hungerford. Abstract algebra : an introduction. Brooks/Cole Cengage Learning,

2014.
[Hun80] Thomas Hungerford. Algebra. Springer New York, 1980.
[Joh97] D. L. Johnson. Presentations of Groups. 2nd ed. London Mathematical Society Student

Texts. Cambridge University Press, 1997.
[Lan02] Serge Lang. Algebra. Springer, 2002.
[Löh17] Clara Löh. Geometric group theory : an introduction. Cham, Switzerland: Springer, 2017.
[MKS04] W. Magnus, A. Karrass, and D. Solitar. Combinatorial Group Theory: Presentations of

Groups in Terms of Generators and Relations. Dover books on mathematics. Dover Pub-
lications, 2004.

[Neu82] Neubüser. “An elementary introduction to coset table methods in computational group
theory”. In: Groups - St Andrews 1981. Ed. by E.F Robertson C.M Campbell. London
Mathematical Society Lecture Notes Series 71. Cambridge University Press, 1982.

[Pei97] David Peifer. “An Introduction to Combinatorial Group Theory and the Word Problem”.
In: Mathematics Magazine 70.1 (1997), pp. 3–10.

[Rot95] Joseph Rotman. An introduction to the theory of groups. New York: Springer-Verlag, 1995.
[Ser97] Seress. “An Introduction to Computational Group Theory”. In: Notices of the American

Mathematical Society 44.6 (1997).
[Ste08] Ian Stewart. Why beauty is truth : the history of symmetry. New York London: BasicBooks

Perseus Running distributor, 2008.
[TC36] J. A. Todd and H. S. M. Coxeter. “A practical method for enumerating cosets of a finite

abstract group”. In: Proceedings of the Edinburgh Mathematical Society 5.1 (1936), pp. 26–
34.

21

