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Abstract

The accuracy and portability of depth cameras have increased by a lot in recent
years, which allows for advanced 3D scanning of the environment for robotic
applications. In this thesis we have developed a system that uses a depth cam-
era mounted on a robot arm to identify and localize arbitrary objects, and give
hints on how to move the camera to get better localization results. The system
works by generating virtual views of objects to identify them in a point cloud
generated by the depth camera. This data is then used to estimate a pose of
the object, and generate a hint on where to move the camera next. After a new
point cloud is taken, it is merged with the previous cloud which allows the
system to iteratively get more confident in the identification and pose of the
object.

Keywords: Robotics, point clouds, object identification, pose estimation, localiza-
tion, point cloud merging, hint system, next best view
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Chapter 1
Introduction

In this section we provide some background information, explain the problem we want to
solve and give a quick overview of our proposed solution. We also write about related
works, and our contribution to this field.

1.1 Vision Systems for Robotics
Industrial robots today are very efficient at picking up objects in a predefined, structured
environment. This is however not sufficient for the increase in human-robot collaboration
and interactions where robots need to be able to adapt to changes in unstructured environ-
ments. To make this possible, robots need some kind of vision system that allows them
to see the world and find objects to interact with. This vision system needs to be both
accurate and give as much information as possible about the environment.

Oneway to give robots vision is to use two-dimensional imageswith depth information,
also known as 2.5D images, RGB-D images or point clouds. These depth images were
mostly captured before by using triangulation with two RGB cameras. Nowadays however,
it is possible to pick up a single low-cost RGB-D camera that measures both the depth
and the color for each pixel, which allows for quick generation of detailed point clouds
describing the environment. These point clouds can then be used to find and localize
objects by analyzing the environment.

1.2 Problem Description
Giving robots vision using depth images is not more complicated than mounting a depth
camera on the robot, preferably on a moving part that allows the robot to gather more
information by looking at the environment from different angles. All data that the robot
captures then needs to be processed in a smart way to improve the robot’s knowledge
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1. Introduction

of its environment. This is done by using various methods for object identification and
localization, which have been heavily researched and developed in the last couple of years.
There has however been very little work done in combining these methods to get a system
capable of identifying and localizing objects with the addition of improving the results
by taking multiple images from different camera viewpoints in an efficient manner. We
want to investigate if a system like this can be built, and if the results from this system
are good enough to be used in robotic applications. The system should be able to capture
multiple point clouds to iteratively improve the identification and localization results for
each new cloud. It should also suggest where to move the camera in order to gain as much
information as possible andmore quickly and accurately identify and localize objects when
there exists an ambiguity between similar looking objects. Is a system like this possible
to build? Are the results good enough to be usable for robotic applications? Can the
system handle arbitrary objects and have an easy method of adding new objects that can
be identified and localized?

1.3 Related Work
This section will go through some of the work that has been done related to the object
identification, pose estimation, point cloud merging and hint system. Some of this work
has been directly used in this thesis and some are covering different methods that could
potentially be used to improve the results of this thesis.

R. B. Rusu et al. have created the Fast Point Feature Histograms (FPFH) [1], which are
robust multi-dimensional local features used for pose estimation in this thesis. They also
propose a sample consensus algorithm used for pose estimation that is partially used in
this thesis. This is closely related to the excellent resources and documentation available
at the website for the Point Cloud Library [2], which we have used extensively in our work.
Another approach for pose estimation is by D. Aiger et al. using 4-points congruent sets
[3]. This approach does not rely on normals and features, and is thus more applicable for
objects consisting of primitive shapes.

H. Ali andN. Figueroa have implemented the FPFH features to estimate poses of planar
metallic objects [4]. This work is very similar to ours in regards to the pose estimation,
however they also rely on ICP to fine tune the first rough pose estimation they get using a
sample consensus algorithm with FPFH features. In our work we have avoided ICP since
the time requirement would be too big when registering multiple views from multiple
objects. They are also using only one object, and not multiple arbitrary objects as we are
in our work.

Dirk Holz et al. have created a mobile robot bin picking solution [5], which is some-
what similar to our work but using a slightly different approach. Their work uses primitive
shape models, instead of feature based models, expressed as graphs to find objects and do
grasp planning. They merge multiple point clouds taken of the same bin to acquire new
data, however their method for merging is not based on robot position data and instead
uses registration. Their method for determining the next best view is somewhat similar to
ours where they look at information gain and traveling costs for moving to a new view.

The object identification for this thesis is heavily inspired by thework ofW.Wohlkinger
andM. Vincze and their publication in [6]. They faced the same problem of object identifi-
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cation of RGB-D images using CAD models. Their solution was to render synthetic range
images offline of the CAD models. These synthetic range views are then used online to
recognize objects using a global feature called the Ensemble of Shape Functions (ESF). In
[7], W. Wohlkinger and M. Vincze continue their work in [6] by extending the classifica-
tion to include a large number of objects. This would have been interesting for our thesis if
we decided to expand our model base. They use a method called locally sensitive hashing
in order to quickly access the identified model when dealing with a model database of as
many as 2500 models with 200,000 synthetically rendered views.

The idea of our hint system emerged originally from the inspiration of object identifi-
cation in [6] and [7]. The ability to render synthetic views of our CAD models gave us the
idea of creating a view-graph for each model where each view was given an absolute value
regarding the quality of each view. The concept of our hint system is mostly referred to
as the Next Best View (NBV) in the literature. The objective of finding the next best view
in a scene has been researched as early as in 1988 by S. A. Hutchinson, R. L. Cromwell,
and A. C. Kak in [8]. They faced the problem of selecting the next best sensing view-
point in order to disambiguate between multiple model hypotheses. They approached the
problem in the same way as we do by offline simulating different viewpoints of a CAD
object from a tessellated sphere and recording the visible sensor features from each view-
point. By doing this they reduced the problem of finding the next best view into a simple
graph-search problem which is also how we solved it. To find the next best viewpoint they
searched through the aspect graph to predict new sensor readings and checked if these
were enough to eliminate the ambiguity between the model hypotheses. There are two
main differences between our work and [8]. The first one being the way we distinguish
and handle views that are similar for different models. We propose a method to predict
these similarities offline and assign an absolute value for each viewpoint describing the
ability to distinguish between two similar models and model hypothesis. The second main
difference is that we also suggest three other measures for the quality of a viewpoint, the
visibility, quality of surface normals and quality of local features. A view which maxi-
mizes the distinguishability of two objects might not be optimal regarding other qualities
of the view. The possibility of generating an online aspect graph was introduced by C.
McGreavy, L. Kunze and N. Hawes in [9]. In their application they used a mobile robot
to recognize and estimate 6DOF poses for objects. They argue that the implementation of
online aspect graphs enables them to update the graph during runtime and thus compensate
for obstruction and occlusion in real-time. They use a two stage approach for generating
their aspect graph. The first stage uses an environmental analysis which eliminates poten-
tial new viewpoints that are occluded by the surrounding environment. The second stage
uses a model analysis which computes the visible surface area for each view. The next best
view is then selected as the view that maximizes the visibility of the object. However, their
choice of next best view only maximizes the visibility of the object and does not take into
account other qualities such as local features and surface normals. They also do not use
previous data (e.g. merging of point clouds from previous views) for their next view. We
believe however that the usage of previous point clouds from previous views will increase
the model identification and pose estimation. Another example of building aspect graphs
online is the work by C. Maniatis, M. Saval-Calvo, R. Tyleček and R. B. Fisher in [10]. In
their work they try to track visible areas of a workspace by minimizing occlusion. They
achieve this by capturing a complete 3D scene by using multiple depth sensors around a
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work area and updating the 3D scene for each point cloud. In order to track visible areas
they updated their 3D scene point cloud for each sample. They define their objective as
finding the dynamic next best view (DNBV) with the main goal of overcoming dynamic
occlusions. Similar to our approach they define new camera viewpoints by creating a dis-
crete set of camera positions on a tessellated sphere. For each camera viewpoint they
assign a cost-function which incorporates the visibility, occlusion, distance traveled, and
robot joint movement. Their next view point is then simply the viewpoint with smallest
cost-function value. Although the work in [10] does not focus on object recognition and
pose estimation, it is interesting to see how they overcame difficult problems such as object
occlusions and robot joint movement limitations.

1.4 Contributions

Our main contribution is a system with a pipeline that incorporates object identification,
6DOF pose estimation, point cloud merging and next best viewpoint selection. By using a
modified version of the PCL render-views-tessellated-sphere-function, we contribute with
an object identification subsystemwhich has the ability to generate all essential data offline
that can later be used by the system. The object identification subsystem uses the proposed
method in [6], and we contribute with some evaluations of other proposed identification
methods for 2.5D data in [11], [12] and [13]. Our proposed method of defining the quality
of a viewpoint by using normal-, feature- and distinguish-utility values is to our extent
unique. Our method for finding the next viewpoint by using graph search is not necessarily
unique, however, we propose a method for continuously collecting better data by moving
the sensor along a generated path which leads to the most optimal viewpoint. We also
contribute with a method for merging multiple clouds using robot data that is much faster
and more accurate than regular merging using feature-based registration.

Our system can be used in robotics applications that require object identification and
localization of arbitrary objects. It is designed to be easy to use and requires very little
setup outside of installing the Point Cloud Library.

The development of the system has been split to allow us to work as independently as
possible on the different parts of the system, however there has also been some collabo-
ration on certain parts. The work has been regularly discussed and planned to make sure
that the different parts of the system fit together, and that each one knows what the other is
doing. There has also been a lot of work done outside of the parts mentioned in this report,
as we have had to develop many smaller tools to help us test or debug certain aspects of
the system.

Alexander has mainly been working with the pose estimation, the scene merging in-
cluding the camera-to-hand calibration, and the main program that executes all different
parts of the system. Andreas has mainly been working on the hint system and the object
identification which includes the generation of offline data as well as accessing and storing
the data online.
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1.5 Outline of Report

1.5 Outline of Report
The report starts with theoretical background in Section 2, laying the foundation of the
theory used in this thesis. Then follows a description of the system structure in Section 3
where the details concerning the different subsystems are explained as well as our general
approach. After the system structure description we present the results from the different
subsystems in Section 4 as well as the results evaluating the complete interconnected sys-
tem. The results and overall performance of the system and subsystems are then discussed
in Section 5 where we also bring up different improvements that could have been done in
order to achieve better results and performance. Finally in Section 6 we summarize our
work and reflect upon achieving our main goals and objectives.
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Chapter 2
Theoretical Background

This section will cover some theoretical background that is needed for understanding later
parts of this report. In Section 2.1 some definitions for point clouds are explained, in
Section 2.4 the definition for a pose used in this is explained, in Section 2.5 some of the
technology behind depth cameras is explained.

2.1 Point Clouds
In this section, some basic definitions for point clouds are explained. These definitions are
used extensively in the rest of this report.

2.1.1 Definition
A point cloud is a set of points in 3D. A point is usually represented in Euclidean space
by its Cartesian coordinates (x, y, z), and sometimes also its RGB color. Usually a point
cloud is captured using some kind of sensor that has the ability to measure the distance
to a number of points in its field of view. The different sensors have different parameters
that may give rise to differently looking point clouds, but most of them have the structure
explained above.

In this report a point cloud is sometimes called a "cloud" for simplicity. Also, in this
report a "scene" is defined as a point cloud that contains one or many objects that should
be identified and localized by the system.

2.1.2 Downsampling
Point clouds can have varying point density based on what sensor captured the cloud,
and they can also have different densities in different areas of the cloud. This is often
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2. Theoretical Background

due to certain surfaces having better or worse properties for certain sensors. One common
method used to make sure a point cloud has the same density everywhere is to downsample
the cloud. Downsampling also saves a lot of memory and speeds up computations, with
the disadvantage that some accuracy may be lost. This is commonly done using a voxel
grid filtering approach. A voxel is simply a 3-dimensional box with a certain side-length
(known as leaf size), and a voxel grid filter divides the point cloud into a grid of voxels.
All points inside a voxel are replaced by a new point at the mean position of all the points
in the voxel. The new density of the point cloud is thus defined by the leaf size, where a
larger leaf size gives a lower density, and a smaller leaf size gives a higher density.

2.1.3 Normal Estimation
Finding the normal of each point is crucial to be able to compute features that will be
explained later. There are many ways of estimating the normal of a point, and in this
work we have used a simple but effective approach. Estimating the normal of a point is
equivalent to estimating the normal of a plane tangent to the point. This plane can be
found using least-squares plane fitting for all points in a certain radius around the point of
interest. This approach gives one of two possible signs for the normal, where only one of
them would be the correct one. There is no real mathematical way of finding the correct
sign for the normal, but since a 2.5D depth image is taken from a certain viewpoint, all
normals must be facing towards the viewpoint to be valid. In other words, to determine if a
normal n for a point p is pointing towards the viewpoint origin vp, we apply the following
formula which computes the angle between two vectors in R3:

cos(θ) =
n · vp

‖n‖ ‖vp‖
(2.1)

n is the normal vector for the point p and vp = p − vp is the vector pointing from
the viewpoint origin vp to the point p. If this value is less than zero i.e. θ > π

2 then we
have a correct pointing normal that points towards the viewpoint origin. In fact, using our
constraint that cos(θ) < 0 we can simplify Equation 2.1 to:

n · vp < 0 (2.2)

to determine if a normal is correctly aligned, since the denominator of Equation 2.1 is
always strictly positive (‖n‖ ‖vp‖ ≥ 0).

2.2 Features
Points in a point cloud are only defined by their (x, y, z) coordinates, and in some cases
their color. This does not saymuch about the properties of a point or its underlying surface.
To compare points there needs to be some way to describe how one point is different
from another in regards to the surface that the point is located on. A feature aims to
describe the difference between a point and the other points around it, which can be seen
as describing a point’s properties or underlying surface. Features usually consists of a
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2.2 Features

couple of values computed between one point and another, where the values are usually
distances or angles between the normals of the points. It is important that the features are
well defined and independent of the viewpoint of the cloud, this means that if the cloud is
rotated or translated, the features should remain the same.

The main reason to use features is to find points in two clouds that are similar, so called
point correspondences, which will be further explained in the next sections. However,
every registration method that is based on features will struggle when point clouds contain
mostly primitive shapes such as planes, cylinders, spheres etc. The reason for this is that
points on these shapes typically have the same features. As an example there is no way
to differentiate a point close to an edge of a plane and a point in the middle of the same
plane. There is also no way to differentiate points on different planes, as they all have the
same features since their underlying surfaces look the same. This creates a big problem
when finding point correspondences, as a point on a plane might be similar to many other
points that also lie on planes. This is something to keep in mind when considering the use
of features.

Features can be divided into two groups, local and global features, which are further
explained in the upcoming two sections.

2.2.1 Local Features
Local features are good at describing the local geometry of the object. A local feature is
usually computed by taking the nearest neighbors of the feature point and comparing cer-
tain distances and angles between the points. The nearest neighbors are mainly determined
in two ways. The first way is by simply taking the N nearest neighbors of the feature point
determined by the Euclidean distance in R3. The second way is by creating a sphere with
predefined radius and the center located at the feature point. The neighbors are then the
points located inside the sphere. Local features are robust to noise and occlusion.

Three local features called Point Feature Histogram (PFH), Fast Point Feature His-
togram (FPFH) and Signature of Histograms of Orientations (SHOT) will be described in
the sections below.

Point Feature Histogram (PFH) Point Feature Histograms is a popular and
well used local feature proposed by [14]. The feature is computed by comparing the nor-
mals in the proximity of the feature point. This is done by first creating point pairs in the
k-neighborhood of the feature point, see Figure 2.1.

For each source and target point pair (ps, pt) in this neighborhood a coordinate frame is
constructed on the source point ps. The source point is always the point with the smallest
angle between the point normal and the line connecting the two points. The coordinate
frame can be seen in Figure 2.2 and the axes of the coordinate frame are determined as:

u = ns

v = (pt − ps) × u
w = u × v

(2.3)

With the uvw frame, the four values α, φ, θ and d (see Figure 2.2) can be computed
using the normals ns and nt of the two points:

17



2. Theoretical Background

Figure 2.1: Point pairs for the PFH feature. Image from
http://pointclouds.org

Figure 2.2: The uvw frame and the computed values α, φ, θ and
d. Image from http://pointclouds.org

α = w · nt

d = ||(pt − ps)||2

φ = u ·
pt − ps

d
θ = tan−1(w · nt, u · nt)

(2.4)

These values are then binned into a final histogram. The quality of the estimated feature
is highly determined by the quality of the estimated surface normals.

Fast Point Feature Histogram (FPFH) The computational complexity for
PFH is according to [1] O(nk2) where n is the number of keypoints. That is why [1]
developed the Fast Point FeatureHistogram (FPFH)which has the improved computational
complexity to O(nk). Most of the descriptiveness of the feature is also said to be the same
for PFH and FPFH.

The computation of the FPFH is done by first calculating the simplified point feature
histogram (SPFH) for all keypoints and their neighbors. The final calculation of the FPFH
is then done by:
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2.2 Features

Figure 2.3: A visual representation of the neighbors and their in-
fluence for the computation of the FPFH. The neighbors of the
feature point are determined by the search radius r, however some
point pairs outside of r will still contribute to the final value
(though at most 2r) [1].

FPFH(p) = SPFH(p) +
1
k

k∑
i=1

1
wk
· SPFH(pk) (2.5)

where wk is the distance between the keypoint p and a neighbor point pk in R3. The
visual representation of the computation and neighbor influence can be seen in Figure 2.3,
which shows that some point pairs might be counted twice (indicated by 2).

Signature of Histograms of Orientations (SHOT) The Signature of
Histograms of Orientations (SHOT) feature is a local feature introduced by [15] and is a
combination of signatures and histograms. It is a very robust and descriptive local feature
as well as computationally effective. It uses a unique and repeatable local reference frame
to compute the descriptor. First a set of local histograms is computed for the geometry
created by the sphere in Figure 2.4. The sphere is divided along the radial, azimuth and
elevation axes with 8 azimuth divisions, 2 elevation divisions and 2 radial divisions. This
results in 32 local histograms which are then used to compute the final descriptor. For
each local region that makes up a local histogram, the angle between the feature point and
the normals of the points within the region is calculated and binned into a histogram. The
authors of [15] also recommends that the final descriptor is normalized to sum up to 1 for
robustness to variations of the point density.
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Figure 2.4: A visual representation of the local region used to
compute the SHOT descriptor. The sphere centered at the feature
point is divided 8 times along the azimuth axis, 2 times along the
elevation axis and 2 times along the radial axis. However, for sim-
plicity only 4 azimuth divisions are shown here [15].

2.2.2 Global Features
Global features are good at describing the whole geometry of an object. Instead of esti-
mating features at specific keypoints as in the local case, one feature for the whole object
is computed. This implies that the object is pre-segmented from the scene. Global fea-
tures are less robust to noise and occlusion and are heavily dependent on good object seg-
mentation. Global features are however good at describing objects with low geometrical
variation such as household objects and man-made objects.

Viewpoint Feature HistogramVFH The viewpoint feature histogram (VFH)
is a global feature proposed by [12]. The feature is used to explain the object geometry
with respect to its viewpoint using surface normals. The viewpoint feature histogram
consist of two components, a viewpoint component and a surface shape component. The
viewpoint component is computed by measuring the angle between the view direction and
each normal in the cluster, which is then binned into a histogram. The view direction is
simply the normalized vector between the sensor and the center of mass of the cluster (see
Figure 2.5). The second component is the surface shape component which is a modified
version of the local feature FPFH (Section 2.2.1). Instead of computing local features at
certain keypoints, the FPFH is computed at the center of mass with a radius large enough
to encapsulate the whole cluster. The normal of the center of mass is set to the viewpoint
direction. The resulting histograms from the two components (1 for the viewpoint and 3
for the extended FPFH) are concatenated into one final histogram for the feature.
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Figure 2.5: The Viewpoint Feature Histogram uses the viewpoint
of the scene by measuring the angle between each surface normal
and the viewpoint direction. The viewpoint direction is the vector
pointing from the sensor origin to the center of mass of the cluster
[12].

Clustered Viewpoint Feature Histogram CVFH The VFH global fea-
ture is not very robust to sensor noise and performance is reduced even for partial occlu-
sions. To address this performance issue the authors of [13] came up with the Clustered
Viewpoint Feature Histogram (CVFH). This global feature processes the segmented point
cloud by first removing points with high curvature normals, such as sharp edges and noise,
in order to later create smooth and stable regions using a smooth region growing algorithm.
This creates new stable clusters which are then used instead to compute the global feature
(see Figure 2.6). For each new cluster a VFH global feature is computed. The authors of
[13] also describe the use of a camera roll histogram in order to recover the 6DOF pose of
the object.

Figure 2.6: The smooth region growing algorithm is used to cre-
ate new stable clusters (represented by different colors). The left
image is the original point cloud representing a milk carton and
the right image is the point cloud containing two new stable clus-
ter regions (blue and green points, the red points do not belong to
any cluster) [13].

Global Signature of Histograms of Orientations (GSHOT) The
Global Signature of Histograms of Orientations (GSHOT) is just an extended version of
the local SHOT feature to work as a global feature. This is done by computing one SHOT
feature at the objects center of mass with a radius large enough to include the hole object.
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Ensemble of Shape Functions (ESF) Ensemble of Shape Functions (ESF)
introduced by [6] is especially designed for 3D CAD object identification where synthetic
views of the CAD models are generated (more about synthetic views in Section 3.4.1).
The authors claim that the ESF feature is robust and suited for real-time applications and
does not require any preprocessing or normal estimation.

The ESF feature is computed by first dividing the (pre-segmented) point cloud into a
voxel grid (see Figure 2.7).

Figure 2.7: A 64x64x64 voxel grid created from a point cloud
captured by a depth sensor [6].

For each point, three random points are chosen from which 3 point pairs are created.
These point pairs are then used to calculate three shape functions D2, D3 and A3.

D2 This function is used to compute the distances between each point pair. The
line connecting each point pair (see Figure 2.8) is then categorized as either IN, OUT or
MIXED. IN corresponds to the line being completely inside the surface, OUT corresponds
to the end points belonging to different surfaces and MIXED is a combination of both. All
categories IN, OUT, and MIXED are assigned a histogram and the point pairs are binned
into those accordingly. The D2 function also has one extra histogram measuring the ratio
of the lines in MIXED being on the surface. In total the D2 shape function accounts for
four distinct histograms.

Figure 2.8: Point pairs and their lines. The green lines are in-
side the surface, red lines have end points belonging to different
surfaces and blue lines are are mixture of both [6].
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D3 This function calculates the area formed by three points as in Figure 2.9. The
same methodology is applied here as in D2, the areas are divided into IN, OUT, and
MIXED and binned accordingly.

Figure 2.9: Areas formed by the point pairs [6].

A3 The last shape function computes the angle between the lines of the point pairs
as can be seen in Figure 2.10. The opposing line then determines the classification (IN,
OUT or MIXED) creating three additional distinct histograms.

Figure 2.10: Angles formed by the lines from the point pairs [6].

In total there will be 10 histograms describing the underlying surface of the object.
As mentioned above the ESF produces its feature value by randomly choosing points in

the voxel grid. This implies that the feature value will differ when recomputing the feature
value for the same cluster and thus making the ESF feature nondeterministic. According
to the authors in [6], on average the ESF feature is able to find the correct view with an
accuracy of 90% within the ten nearest neighbors.

2.2.3 Feature Matching
Feature matching is used in order to find point correspondences between point clouds.
A point correspondence is a point that is similar for both point clouds. This similarity
is usually represented by geometry for point clouds which means that if two points from
different point clouds share common geometry then the points are said to be similar or
correspondences. Feature matching can be used for object identification using global fea-
tures (explained in Section 3.5) and object pose estimation using local features (explained
in Section 2.3).
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Performing feature matching is the same for global and local features. In Figure 2.11
we see an example from the paper in [6] where a pre-rendered point cloud of a mug and a
banana is matched to a real point cloud of a mug. In this case the histograms are matched
and a score regarding the match is computed. We see clearly that the histograms of the
pre-rendered mug and real mug are a better match than the pre-rendered banana and the
real mug.

Figure 2.11: Matching of a point cloud captured by a real depth
sensor and two pre-rendered point clouds of a mug and a banana.
The green histograms correspond to the real object and the red
curve corresponds to the pre-rendered objects [6].

The score of the match is computed by taking the norm of the difference between
the histograms of two features. What kind of norm depends on what features you use.
For instance, the matching of the ESF global feature is best computed by the L1-norm
(Equation 2.6) as suggested by [6] whereas the matching of SHOT and FPFH features
might be better computed by the L2-norm (Equation 2.7):

L1-norm: m = ‖h1 − h2‖L1 =

N∑
i=1

|h1(i) − h2(i)| (2.6)

L2-norm: m = ‖h1 − h2‖L2 =

N∑
i=1

(
h1(i) − h2(i)

)2 (2.7)

where m is the matching score, h1 and h2 are the feature histograms (or descriptors),
h is the value at position i of the histogram and N the size of the histogram.

2.3 Registration
Registration is the method used when aligning different point clouds with each other. The
goal is to find a transformation of one point cloud such that it fits as well as possible with
another point cloud. Naturally, a part of the first point cloud needs to be visible in the
second point cloud, such that it can be seen how the point clouds fit together. The overlap
between the point clouds is used as ameasurement of howwell the point clouds are aligned.
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Many of the common methods for registration are based on point correspondences.
Point correspondences use features which, explained above, aim to describe the underlying
surface of a point and can be used to compare how similar different points are. In the case
of registration of two point clouds, usually local features are used. The idea is to find a point
in the first point cloud that has the same features as a point in the second point cloud, this is
called a point correspondence. These two points can then be assumed to be the same point
expressed in both clouds. By finding a number of these correspondences a transformation
from one cloud to the other can be computed, such that all point correspondences align.

However, when a point cloud is captured by a sensor there is always noise present.
This noise can lead to inaccurate normal and feature computations. This can in turn lead
to false point correspondences between clouds, which will lead to bad transformations.
It is therefore important that the registration method is fast and robust even in the pres-
ence of noise, which usually entails some form of early correspondence rejection, and an
evaluation of the transformation to determine if it is accurate enough.

Themost common implementation of this method is using a RANSAC loop. RANSAC
stands for RANdom SAmple Consensus and is an iterative method that is well suited for
data with outliers due to noise. It has many uses in different fields, but has been particularly
useful in computer vision. As the name suggests, the method is based on using the least
possible number of random samples from a dataset to fit some model parameters. The
method then checks how many inliers the model gets, where an inlier is defined as an
element in the dataset that is consistent with the model. This is done for a number of
iterations, and the model with the most inliers is chosen in the end.

The way RANSAC is used for registration is the following. At least three point cor-
respondences are necessary when finding a transformation from one cloud to another, as
three point correspondences completely define all 6 degrees of freedom needed (position
and rotation). Three points are thus chosen in one of the clouds, and three points with
similar features are chosen in the second cloud. A transformation is then computed and
one of the clouds is transformed into the other. The method then computes the number
of inliers, which is defined as the number of points in one cloud that are close to points
in the other cloud, based on some distance threshold. To allow for comparison between
clouds of different sizes, the "inlier fraction" is usually used instead of counting the num-
ber of inliers. The inlier fraction is defined as the number of inliers in one cloud divided
by the number of points in that cloud, and can be seen as a fraction of how well the clouds
overlap. An inlier fraction of 1 would then mean that both clouds completely overlap, and
an inlier fraction of 0 means that the clouds do not overlap at all. After this is done, the
loop restarts by choosing three new points. This is done for a number of iterations and the
transformation with the highest number of inliers (or highest inlier fraction) is chosen as
the final transformation.

Due to noise and points with similar features, many of the point correspondences are
not correspondences at all and will thus result in a bad transformation. It is expensive to
compute the transformation between the two corresponding point sets and it is thus impor-
tant to find and reject wrong correspondences as early as possible. This can be done using
various correspondence rejection methods (also known as prerejective methods), and the
one used in this thesis is based on geometric constraints [16]. The method simply com-
pares the distances between all points in one point set, with the same distances between all
points in the second point set. If the distances are too different (defined by a threshold),
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all points are rejected and the RANSAC loop is restarted by picking new point correspon-
dences. This works based on the fact that the same points in two clouds will always have
the same distances between them regardless of how the rest of the clouds look. If this
is not the case, the points are not correspondences and can be rejected. In this way no
transformation has to be computed which decreases the execution time by a lot.

2.4 Pose of an Object
The pose of an object is defined as the position and rotation of the object in a scene. The
position in Cartesian space is given by the (x, y, z) coordinates of the object’s center of
mass. The rotation can be represented in many ways, in this thesis we have used both
Euler angles (ZYX convention) and quaternions. There are thus 6 degrees of freedom
for each object that needs to be found to completely identify the pose of the object. The
position and rotation of an object can be represented as a transformation matrix, which is
defined as the following

T =
(
R t
0 1

)
Where T is the transformation matrix, R is the rotation matrix and t is the translation
vector. When this transformation matrix is left-multiplied with a point in homogeneous
coordinates, it will both rotate and translate the point according to R and t respectively.
This can be used to efficiently transform point clouds, where the transformation matrix
is left-multiplied with each point in the cloud. In other words, the pose of an object in a
scene is the transformation matrix applied to the object such that it fits perfectly into the
scene.

Worth noting is that the pose of an object in a scene is defined in the coordinate system
of the scene, which is the same as the coordinate system for the camera that captured the
scene. To be able to use the pose of an object to, for example, pick up the object using a
robot, the pose needs to be transformed from the camera coordinate system to the robot
coordinate system. Transformations between camera and robot coordinate systems are
explained further in Section 3.6.2.

2.5 Depth Sensors
This section explains what a 2.5D image is and how they are captured by depth sensors
such as the depth camera used in this thesis.

2.5.1 2.5D Images
A camera with a depth sensor, like the Intel Realsense SR300 camera this thesis uses, is
able to capture images with depth information. Each pixel in the 2D image is assigned a
depth value which enables the camera to capture so called 2.5D images. The reason they
are not called 3D images is because only the visible part, not the complete part, of the 3D
environment is captured.
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2.5.2 Capturing 2.5D Images
One way to acquire 2.5D or range images is by using triangulation with a stereo camera
setup. At least two cameras are required in order to use triangulation where a point in 3D
is projected into the 2D camera images. By finding point correspondences in the images
one can setup a set of equations and solve for the corresponding 3D point.

Structured light can also be used to capture range images. A depth sensor using struc-
tured light is composed of two cameras and a projector (light source). The light source
projects patterns onto the environment (usually in the infrared spectrum) which become
distorted by the surrounding objects. This distortion is then captured by the cameras which
uses this information along with triangulation to solve for the depth image of the scene.

Time-of-flight cameras are also a popular alternative of capturing range images. They
work by measuring the delay of a light pulse emitting from a light source. Using the speed
of light, this delay can be used to calculate the distance traveled by the light.

2.5.3 Intel SR300 Depth Camera
The Intel RealSense SR300 is a consumer grade depth camera mainly designed for human-
computer interaction. It contains a regular RGB camera, an infrared camera and an infrared
projector, and thus uses structured light to measure depth. It has an operating range of
about 0.3 to 2 meters and is very small, measuring in at 110 mm in width, 12.6 mm in
height and 4.1 mm at its thickest point. It is sold for around $100 as of this writing,
making it very affordable compared to similar products.
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Chapter 3
System Structure

This section will explain the different parts of our system in detail. Section 3.1 gives
an overview of the system, and explains how the different parts fit together to form the
pipeline. Section 3.2 explains the point cloud capturer. Section 3.3 explains how the
raw point clouds are segmented to find interesting clusters. Section 3.4 explains how the
synthetic views are rendered and how the data is generated offline. Section 3.5 explains
how the object identification works. Section 3.6 explains how multiple scenes are merged
together using data from the robot. Section 3.7 explains how the pose estimation works.
Finally, section 3.8 explains how our implemented hint systemworks. The models referred
to in this section can be found in Figure 4.1 in Section 4.

3.1 Overview
The entire system consists of a couple of separate subsystems that each have their own
tasks and that can be modified as long as the inputs and outputs remain the same. Figure
3.1 shows a high level overview of the system. Circles symbolize point clouds, rectangles
symbolize subsystems and triangles symbolize output data. All subsystems in this figure
are explained in detail in the following sections, but will be summarized here to give the
reader an understanding of each subsystem’s role in the system.

The first subsystem in the pipeline is the point cloud capturer. This subsystem is re-
sponsible for capturing point clouds (also known as scenes) using the Intel RealSense
SR300 depth sensor, and save the clouds in PCD format [17]. The point cloud (named
single cloud in the figure) is then processed by the segmentation subsystem, that segments
the cloud into clusters. The clusters are then used in the object identification subsystem,
that identifies the most probable objects that each cluster represents, this data is the "ID
data" triangle in the figure. The single cloud is also merged with any previous clouds (if
they exist) using the scene merging subsystem, which is visualized by the arrow to itself.
The merged cloud is then segmented and used in the pose estimation subsystem together
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Figure 3.1: A high level overview of the system. Note that the
linking of data for the pose estimation has been omitted to not
clutter the figure.

with the results from object identification and any pose estimation results from previous
clouds (visualized by the arrow to itself). This subsystem estimates the poses for the ob-
jects found in each cluster, which is the "Pose data" triangle in the figure. Finally, the pose
data is sent to the hint system that generates a hint for where the camera should be placed to
capture a new point cloud that will give as much information as possible about the object.
This hint is shown to the user, that then decides where to capture the next point cloud.

3.2 Point Cloud Capturer
The point cloud capturer uses the Intel RealSense SDK for Windows [18], which has since
been discontinued in favor of Intel RealSense SDK 2.0 also known as librealsense [19].
The subsystem is written in C# and consists of a simple window with two live camera
feeds, one for color information and one for depth information. There is a single button
that captures a point cloud and saves it as a PCD file. A screenshot of the program can be
seen in Figure 3.2.

3.3 Segmentation
A point cloud of a scene usually contains many points that are not particularly useful for
object recognition or pose estimation. For example, if the goal is to find a mug in a scene
which contains the mug and some other objects on a table, the only necessary points are
those that belong to the mug. All other points can be removed since they do not directly
contribute to finding the mug. These unnecessary points both slow down execution of
algorithms and lead to poorer results.

30



3.3 Segmentation

Figure 3.2: A screenshot of the point cloud capturer program.
The left part of the window shows a live feed from the RGB cam-
era, and the right part of the window shows a live feed from the
depth camera, with closer points being more white than far away
points.

3.3.1 Removal of Unnecessary Points
There are many different ways of removing unnecessary points from a point cloud depend-
ing on the application. For example, if there is guaranteed to be a large flat surface (like
the top of a table) in every point cloud, one can find and remove the largest plane in every
cloud (using a RANSAC loop). However, this would cause problems if a point cloud does
not contain a table, since the program would still remove the largest plane. This could then
remove a plane in the object of interest. The program will thus be limited to only point
clouds containing objects on a flat surface and will not work well for any arbitrary point
cloud.

A more accurate way of removing unnecessary data is by using background removal.
This requires the user to capture a point cloud of the background of a scene which can then
be subtracted from a new scene containing objects. Since it might be hard to get the entire
background in one point cloud, one can capture multiple clouds of the background and
merge them together using the method explained in Section 3.6. The subtraction works
by removing points in the new scene that are close (defined by some radius) to points in
the background scene. In this way interesting objects can quickly be segmented from the
background. However, due to inaccuracy and jitter in the depth sensors, this subtraction
is far from perfect. Despite this we found this method to work well for our purposes, but
it does require the user to be able to capture the background before the objects of interest
are placed into the scene. This might be a limitation for some applications.

After either the plane or the background has been removed, the clouds are also down-
sampled. As explained in Section 2.1.2 this normalizes the point cloud density and saves
a lot of memory while speeding up computations on the cloud.

In our work we use background subtraction if the user has created a background cloud,
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otherwise the system falls back to using plane segmentation. However, even when using
background subtraction we still find the largest plane in the scene which is used later in
the hint system, explained in Section 3.8.

3.3.2 Clustering
The point clouds usually consist of clusters of dense points after unnecessary points have
been removed from the point cloud (either using plane removal, background removal or
some other method). These clusters may be partially connected to each other by areas of
points with less density than the clusters. The clusters are found and segmented from the
cloud using a Euclidean cluster extraction method. This is a method very similar to a flood
fill and the algorithm works as follows [20].

1. Create an empty list of clusters C, and an empty queue of points Q

2. For every point pi ∈ P, where P is the input point cloud, do the following:

(a) Add pi to the queue Q

(b) For every point pi ∈ Q do the following:

i. Find the set of neighbors Pi
k of pi in a sphere with radius r

ii. For every neighbor pk
i ∈ Pk

i , check if the point has been processed, if not
add it to Q

(c) When all points in Q have been processed, add the points in Q to the list of
clusters C and set Q to an empty list

3. The algorithm is finished when all points pi ∈ P have been processed

A limit on how many points should be required for a cluster to be valid is also used, this
will remove small clusters that are most likely not part of an object. After running this
algorithm the cloud will be split up in clusters represented as ’subclouds’, that can then be
used by the other parts of the system.

3.4 Offline Training and Data Generation
In order to speed up online recognition and pose estimation we generate all necessary data
for the models offline. We start of by generating synthetic views of the CAD models. For
each view we then estimate global and local features. The global features will be used
for online model recognition and to detect similar views between models and the local
features will be used for online 6DOF pose estimation. We also compute utility-values for
each view describing the overall quality of the view, which will be used later in the hint
system.

32



3.4 Offline Training and Data Generation

3.4.1 Synthetic View Rendering
The model base for the system consists of CADmodels which are complete 3D objects. In
order to identify and estimate poses for the 2.5D cluster point clouds we need to create a
set of 2.5D views of our CAD models. However, capturing all 2.5D views of a model with
a real depth sensor can be cumbersome and time consuming. It is also error prone since
some views might be missed. That is why we decided to use a virtual rendering program
that generates synthetic 2.5D view point clouds of the CADmodels. This is done by using
PCL and a function that render views from a tessellated sphere. It enables us to capture all
views of an object using just the CAD model as input. The function puts a virtual camera
uniformly on either the faces (triangles) or vertices on a tessellated sphere with the CAD
model in the center. The sphere is generated by a regular icosahedron which can be seen
in Figure 3.3. The tessellation level determines how many times the triangles are divided
in the original icosahedron. A tessellation level of 0 means that the regular icosahedron is
used with 12 vertices and 20 faces. A tessellation level equal to 1 means that all triangles
are divided one time (see Figure 3.4) thus creating 42 vertices and 80 faces. A tessellation
level of 2 means that the triangles are divided 2 times creating 162 vertices and 320 faces
and so on.

Figure 3.3: This figure shows the regular icosahedron (left) along
with tessellation level 1 (middle) and 2 (right) [21].

Figure 3.4: Dividing a triangle (face) one time when using a tes-
sellated icosahedron means inserting an extra vertice on the link
between two existing vertices (middle). Each new vertice is then
connected according to the image creating four new triangles.

By choosing to put the virtual camera on either the faces or the vertices and applying
a tessellation level of 0 and 1 we can choose whether to render 12, 20, 42, 80, 162 or 320
views. In Figure 3.5 we see some of the synthetic views rendered from a CAD model of a
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wireless xbox controller (see Figure 4.1 in Section 4 for a description of the wireless xbox
controller model).

Figure 3.5: Rendered synthetic range images of a CAD model.

Using the information from the tessellated sphere we can construct a graph where
each node is a camera position and rotation, and every link is a connection to the nearest
neighbors (nearest views). We call this a view-graph and it is illustrated in Figure 3.8
where a tessellated sphere with tessellation level 1 is used.

We decided to render 80 views of each model by using a tessellation level equal to 1
and putting the virtual camera on the faces of the sphere. This proved to capture a sufficient
amount of data for each model.

3.4.2 Processing Rendered Views
The rendered 2.5D view point clouds has to be processed tomimic the real 2.5D views from
the camera sensor. First the view point clouds are downsampled using the same voxelsize
as the real 2.5D point clouds from the depth sensor. Just like the real sensor the virtually
rendered views might have disconnected clusters of the object as can be seen in Figure 3.6.
These are processed by only keeping the largest cluster in the view thus removing smaller
clusters. The clusters are extracted by the use of Euclidean cluster extraction as explained
in Section 3.3.2. The final processed versions and the original point clouds can be seen in
Figure 3.7.

After the processing of the rendered 2.5D view point clouds the normals for each view
are estimated. In order to have correct pointing normals (normals should be pointing in
the direction of the sensor origin) the viewpoint for the normal estimation in PCL has to be
placed at the virtual camera position for each view. We used the setKSearch(int k) method
in PCL with k = 10. This provided good normals without dealing with NaN-values which
can occur when using the setRadiusSearch(double radius) method in PCL.

As a final step all views are merged in order to create a complete point cloud model of
the rendered CADmodel. This is easily done by just adding all view point clouds into one
large point cloud. This is possible since all view point clouds have the same pose which is
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(a) Original rendered point cloud (left) and pro-
cessed point cloud (right). Notice the smaller clus-
ter in the left cloud that has been removed in the
processed cloud.

(b) Original rendered point cloud (left) and pro-
cessed point cloud (right). The size of the cluster
matters for each rendered view. Only the largest
cluster is kept.

Figure 3.6: When processing the rendered 2.5D views only the
largest clusters are kept. Smaller clusters (encircled by red) are
discarded in the final processed point cloud.

(a) Original rendered point cloud (left) and pro-
cessed point cloud (right) of the wireless xbox
controller model.

(b) Original rendered point cloud (left) and pro-
cessed point cloud (right) of the wireless xbox
controller model.

Figure 3.7: This figure illustrates the rendered view point clouds
before (left) and after (right) processing.

the pose of the original CAD model. The final merged point cloud of the complete model
is then downsampled using the same voxelgrid size as before. The fact that all view point
clouds have the same transformation will be used later when merging views and finding
better views in the hint system. The same transformation for a view point cloud can be
used on other view point clouds of the same model as well. The complete model for the
wireless xbox controller model and its view-graph can be seen in Figure 3.8.
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Figure 3.8: View-graph and complete model. Each white sphere
corresponds to a virtual camera position. Each camera position
is represented by a node in the view-graph and each node has a
connection to its nearest neighbor.

3.4.3 Estimating Global and Local Features
As global features we decided to use ESF features. These features are very easy to estimate
in PCL without estimating any normals or keeping track of view-direction. We compared
the results of matching global SHOT, CVFH and ESF features (see Section 2.2.2). When
matching global SHOT features the results were mostly good. However, the global SHOT
features seemed to be very sensitive to missing parts and minor occlusion. The CVFH
features did not perform very well either. The clusters obtained from the smooth-region-
growing algorithmwere not consistent between the rendered views and the real views from
the sensor.

As local features we decided to use FPFH features. These are widely used features for
local registration and are very fast to compute. This is important since the local features
for parts of the scene need to be computed online.

3.4.4 Detecting Similar Models
One of the big problems of object recognition is when there are similarly looking views
among the models. Say we have two simple models, cube A and cube B with equal dimen-
sions (see Figure 3.10). A is a solid cube and B is a cube with a circular hole carved into
one of its sides. It is not hard to realize that for some views it is not possible to distinguish
between these models and in order to separate these models we have to look at the side
containing the circular hole.

By matching each of the rendered views with the existing models and their views we
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can detect which views that are similar and label them. If we identify this view during the
online recognition phase we can use our view-graph to search for views that separate the
models better.

The matching of objects is done by taking two models and their global features. Each
model has N views and thus N global ESF features. Let us say the models are called A and
B. We start by matching model A with model B which will be denoted later on as A→ B.
For the first view V A

1 in model A we take the global feature for that view and match it with
all the views V B

k , k = 1, . . . ,N and their global features in model B. An illustration of this
can be seen in Figure 3.9. This will give us 80 matching scores: mV A

1→V B
k

k , k = 1, . . . ,N
for the first view V A

1 in model A. We then select the lowest matching score and assign this
value to the first view V A

1 in model A:

uA→B
1 = min

(
mV A

1→V B
1

1 , mV A
1→V B

2
2 , . . . , mV A

1→V B
N

N

)
(3.1)

If we get a low score for uA→B
1 , then there exists some view V B

k in model B which is
very similar to the first view V A

1 in model A. We do this for all views in model A which
will give us a set of values uA→B

k , k = 1, . . . ,N for each viewV A
k in model A, all describing

the worst case or the best matching view in model B. This is then also repeated for model
B by matching model B with model A, denoted by B→ A.

Figure 3.9: This figure illustrates the procedure of finding similar
views for two models A and B. Each view in A is matched with all
views in B to find the best matching view. Each view V in A will
get a set of matching scores m for which the minimum matching
score is selected.

It is important to note that matching model A with B is not the same as matching
model B with A. We illustrate this by an example where we have two models A and B.
Model A is a solid cube and model B is solid cube except for one side which contains a
circular hole (see Figure 3.10). We then place a depth camera around both objects with
viewpoint directions perpendicular to all sides of the objects. This results in six views for
both objects, each view capturing one side of the cube. As we can see in Figure 3.10, the
matching A→ B will yield a lowmatching score for all views in model A. This is expected
since all views V A

k , k = 1, . . . , 6 for model A are identical to the views V B
k , k = 2, . . . , 6

for model B. However, when we match B → A we will have a low matching score for the
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views V B
k , k = 2, . . . , 6 and a high score for the first view V B

1 containing the circular hole.
There is not any similar view in A for V B

1 in B so the lowest matching score uA→B
1 will be

high and thus uA→B
1 6= uB→A

1 .

Figure 3.10: An example illustrating the matching order of two
models. For this figure we have two models A and B which are
cubes of identical dimensions. Model B has a circular hole on one
of its sides. A camera is then placed around both objects capturing
a 2.5D view of each side of the objects, giving us a total of six
views of each model. These views are then matched in the same
manner as in Figure 3.9 and the lowest score is selected for each
view. The matching score is located to the left of each view, the
arrows indicate the best matching view.

When adding a new model to the system we count the number of rendered views with
low distinguishability and a warning message is displayed if the ratio of views with low
distinguishability is higher than 50%. This enables the system to warn the operator if he

38



3.4 Offline Training and Data Generation

or she decides to add a very similar model to the existing model base (which will make
the identification process very hard for these models).

3.4.5 Utilities
For each rendered view a number of utilities are computed to determine the quality of the
view. This quality measure will later be used in the hint system to search for better views.
There are many quality measures for a given view but we decided to focus on four values;
visibility, normals, features and distinguishability. As mentioned in Section 1.4 we came
up with all utility values, except the view-utility, on our own.

View-Utility
The view-utility for a rendered view of a point cloud is a measure of how much of the
object that was visible for the given view. This is typically referred to as the entropy in
related works regarding the next best view. A high view-utility means that a large part of
the object is visible. The view-utility is computed by taking the number of points in each
point cloud for all the rendered views. All these values are then normalized between 1 and
0 by applying the following formula:

ui(x) =
x −min

max −min
(3.2)

where ui(x) is the view-utility for view i = 0, . . . , 79, x is the number of points in the
point cloud for view i and max, min are the maximum and minimum number of points for
all views respectively.

Normal-Utility
The normal-utility is a measure of the quality of the normals for a rendered view. Many
depth sensors such as the Intel RealSense SR300 camera suffer from noise when the sur-
face normals of the object points are close to perpendicular with respect to the viewpoint
direction. In order to incorporate this into our system we decided to count the number
of "bad normals" for each view. A bad normal is defined by first measuring the angle θ
between the normal and the viewpoint direction (see Equation 2.1 in Section 2.1.3). If the
angle θ is less than 110 degrees the normal is considered a bad normal. The final utility
value is computed by:

ui(x) =
x −min

max −min
(3.3)

where ui(x) is the normal-utility for view i = 0, . . . , 79, x is the number of bad normals
in the point cloud for view i and max, min are the maximum and minimum number of
bad normals for all views respectively. This also results in normalizing the normal-utility
between 1 and 0.
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Feature-Utility
The feature-utility is a measure of how unique the local features of visible points are for a
certain view. Having more points with unique or distinct local features in a view leads to
faster andmore accurate pose estimation due tomore easily finding point correspondences.

The feature-utility is computed by first finding distinct features in a view. This is done
by computing the average feature for the current view, and selecting the points with fea-
tures that differ a lot from the average feature, based on a threshold. These points are
called distinct points. A score is then computed where a point with a close to average
feature is worth 1 point, but a point with a distinct feature is worth 10 points. This score
is then compared to the same score for different views of the same object, and all scores
are normalized between 0 and 1. This means that the view with the least distinct features
will have a feature-utility of 0, while the view with the most distinct features will have a
feature-utility of 1.

Distinguish-Utility
The distinguish-utility is a measure of how similar two objects are. When detecting sim-
ilar views, each view is given a distinguish-utility which determines if the view is distin-
guishable from the other model and its views. If a view is very similar to another view
for another model then the matching of these views will be high and thus given a low
distinguish-utility and vice versa.

The distinguish-utility is computed by matching the global ESF features as explained
in Section 3.4.4. A good match between two views means that the matching score is low
(typically less than 0.2) and a bad match yields a higher matching score. A good match for
two views results in a bad distinguish-utility because these views will be hard to distinguish
from. From Section 3.4.4 we get that the distinguish-utility for model A when matching
with model B is computed by:

uA→B
i = min

(
mV A

i →V B
1

1 , mV A
i →V B

2
2 , . . . , mV A

i →V B
79

79

)
(3.4)

where uA→B
i is the distinguish-utility for view i = 0, . . . , 79 when matching model A

withmodel B. A distinguish-utility close to 1 has good distinguishability and a distinguish-
utility close to 0 has bad distinguishability. Notice in Equation 3.4 that the distinguish-
utility is not normalized. The normalization is carried out later online when running the
hint system, as will be explained in Section 3.8.

3.5 Object Identification
For a systemwithmanymodels it is time consuming to perform a 6DOF pose estimation on
all object and their views in order to determine which model is best. To solve this problem
we implemented an object recognition pipeline that gives the most probable models.

There are many ways of performing 3D object recognition. Implicit Shape Model [11]
is a method that relies on local features. Each model is trained using the local features
and given a code-book with code-words containing activation strategies. Each code-word
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votes for the center of mass of the model and is then used online to determine which
model is present using a voting scheme. For the implementation of Implicit Shape Model
in PCL we found that it is suitable for complete 3D object identification and less suitable
for identification of objects captured with a RGB-D camera which only produces 2.5D
images.

We decided to use global features matching, which is also very popular ([6], [7], [22],
[23]). As described in Section 2.2.2, a global feature is computed for the whole point
cloud and encodes the whole geometry of the object. Capturing all different views offline
of a model enables us to create a list of global features for each model, each feature cor-
responding to a synthetic view. We then estimate a global feature for each unknown point
cloud cluster and match it to the precomputed lists of global features giving us a set of the
best matching models and their best matching views. Each matching view for each model
is given a matching score which depicts the quality of the match. The score is computed
by taking the L1-norm of the difference between two ESF feature histograms (as explained
in Section 2.2.3) and a low score indicates a good match. Remember from Section 2.2.2
that for ESF features, the correct view is found with an accuracy of 90% within the 10 best
matching views for a model. This means that if we have a point cloud cluster of an object
for a specific view and search for the best matching view in our list of ESF features, we
will with 90% certainty find the correct view within the 10 best matching views for that
model. As a result, for the identification of an unknown point cloud cluster, we save the
10 best matching views for the 10 best matching models.

The search for matching global features is done using ordinary linear search which
has a computational complexity of O(n). Since we are only dealing with a few models (at
most 50), resulting in at most 50 · 80 = 4000 global features to search through, this is not
a major problem. However, dealing with a database consisting of up to 100,000 models
would have had some performance issues when using linear search. The authors in [7]
overcame this problem by using locality sensitive hashing to fast access the appropriate
models. They claim that the time complexity of the search using this technique reduces
from O(n) to O(1).

It is worth mentioning that the identification method described above using global
descriptor matching is only suitable for 2.5D images captured by a single depth camera.
Using the complete 3D scene or merged point clouds will not yield good results.

3.6 Scene Merging

This section will explain the methods used for merging two scenes using data from the
robot. The camera is mounted on the robot’s hand using a special tool as can be seen
in Figure 3.11. This allows for using the position and rotation of the robot hand in the
robot coordinate system to compute the relation between two scenes captured from differ-
ent views, and use this data to merge the scenes. The scenes are considered successfully
merged when one scene is transformed into the other scene such that the common points
in both scenes overlap perfectly.
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Figure 3.11: The camera mounted on the hand of a YuMi robot.

3.6.1 Fetching Robot Data
The ABB Robot Web Services API [24] is used to fetch data from the robot in a simple
way. This is a platform that can interact with the robot controller using the HTTP protocol
which allows for communication with the robot in a flexible way. The position and rotation
of the robot hand can be read using this platform in a few lines of code, without requiring
any special libraries or languages. To access the data on this platform we use Curl [25].
Curl is a library for transferring data using various protocols, and in this case using HTTP.
This is used together with the Robot Web Services to get the hand position and rotation
data from the robot. The data is fetched as HTML code which is then processed to find
certain tags that give the position (x, y, z) and rotation (as a quaternion) of the hand. This
data is then used to create the transformation matrix for the hand (see Section 2.4).

3.6.2 Robot-Camera Calibration
To avoid needing to hard code the position and rotation of the camera in relation to the
robot hand, we instead use a point-picking method to compute the transformation between
the camera and the robot hand, from now on known as the camera-to-hand transformation.
This requires the user to capture at least three point clouds from different angles and pick
at least three corresponding points in all clouds. This is then used together with the robot
data to compute the camera-to-hand transformation. This only needs to be done once as
long as the camera does not change position or rotation in relation to the hand. The rela-
tion between the robot coordinate systems and the camera coordinate systems can be seen
in Figure 3.12. This figure shows the setup used when finding the camera-to-hand trans-
formation using three point clouds captured from different camera positions and rotations.
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Figure 3.12: The robot camera system.

The robot’s base coordinate system is denoted "Base", and the hand coordinate systems
are denoted "Hand 1", "Hand 2" and "Hand 3" for the different positions and rotations
of the hand. The transformation from hand x to the base coordinate system is given by
THx→B, and this transformation is computed by the robot controller. The transformation
from the camera to either hand is given by TC→H , and this is the unknown transformation
that should be found using the points picked by the user. Note that this transformation is
the same for all camera orientations, since the camera is assumed to never change orien-
tation in relation to the hand. The point denoted PB in Figure 3.12 is a known point in the
base coordinate system. This point is assumed to be visible in all camera orientations and
is called PC1, PC2 and PC3 for camera 1, 2 and 3 respectively.

Defining the system like this makes it possible to derive an expression for TC→H . This
is done by first finding expressions for PC1, PC2 and PC3 in the following way.

PC1 = TH→CTB→H1PB = T−1
C→HT−1

H1→BPB (3.5)
PC2 = TH→CTB→H2PB = T−1

C→HT−1
H2→BPB (3.6)

PC3 = TH→CTB→H3PB = T−1
C→HT−1

H3→BPB (3.7)

By solving Equation 3.6 for PB and inserting it into Equation 3.5 the following relation
between PC1 and PC2 is found.

PC1 = T−1
C→HT−1

H1→BTH2→BTC→HPC2 (3.8)

In the same way, by solving Equation 3.7 for PB and inserting it into Equation 3.5 the
following relation between PC1 and PC3 is found.

PC1 = T−1
C→HT−1

H1→BTH3→BTC→HPC3 (3.9)
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The only unknown variable in these equations is TC→H which can be solved by expressing
Equation 3.8 and 3.9 as a non-linear least squares minimization problem in the following
way.

min
TC→H

∑
i

(
Pi

C1 − T−1
C→HT−1

H1→BTH2→BTC→HPi
C2

)2
(3.10)

min
TC→H

∑
i

(
Pi

C1 − T−1
C→HT−1

H1→BTH3→BTC→HPi
C3

)2
(3.11)

Where Pi
C1 is point i in camera 1, Pi

C2 is the corresponding point in camera 2 and Pi
C3 is

the corresponding point in camera 3. Note that PB is not present in these equations, thus
it is only necessary to know points in the camera coordinate systems and not in the robot
base coordinate system. This makes calibration much easier for the user.

Equation 3.10 and 3.11 can be joined to form one equation in the following way.

min
TC→H

∑
i

([
Pi

C1 − T−1
C→HT−1

H1→BTH2→BTC→HPi
C2

Pi
C1 − T−1

C→HT−1
H1→BTH3→BTC→HPi

C3

])2

(3.12)

The two equations are simply put in a matrix which is then minimized as before.
When TC→H has been computed, it can be used in the following way to merge any two

point clouds captured with the camera as long as the camera is not moved in relation to
the robot hand.

PCX = T−1
C→HT−1

HX→BTHY→BTC→HPCY (3.13)

PCX would then be all points in one cloud with corresponding robot hand transformation
THX→B, and PCY all points in the other cloud with corresponding robot hand transformation
THY→B. Since all transformations are known, PCY can be directly transformed into the
coordinate system of PCX , and thus any two clouds can be merged very quickly after the
calibration has been done.

This minimization was implemented using a non-linear least squares minimization
method called "lsqnonlin" in MATLAB. The minimization tries to find the camera-to-
hand transformation by minimizing Equation 3.12 with respect to TC→H , which is defined
using 7 unknown parameters. These unknown parameters are the four parameters making
up a quaternion for the rotation, and three parameters for the translation in each axis.

3.6.3 Advantages Compared to Registration
Merging two point clouds can also be done using registration as explained in Section 2.3.
This method is very similar to the method explained above, but instead of a user manually
picking points they are automatically found by using features. Themethod then tries to find
the transformation between two point clouds as in Equation 3.13, however it will find the
direct transformation and not the four different robot transformations since it does not use
any robot data. This means that the transformation will only be valid for these two clouds,
and when new clouds should be merged it needs to find new corresponding points and redo
the computations. This is why the points need to be found automatically, otherwise a user
would have to pick points for every cloud they want to merge which defeats the point of
the system.
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Finding corresponding points automatically requires that the scenes have points with
good features that allow for accurate registration, which might be problematic if the scene
does not contain objects with distinct shapes. The scenes also contain many points which
will slow down and decrease the accuracy of the registration algorithm. To get a higher
accuracy the ICP algorithm can be used after registration, but this takes time as well. These
problems are non-existent when using the robot data for merging, however this requires
the camera to be mounted on a robot which is not practical in many applications.

3.7 Pose Estimation
This section will explain the various steps taken in the pose estimation subsystem. The
pose estimation depends on older pose estimation results, which makes it a bit complicated
to explain in a straight forward manner. For this reason, this section starts off with a high-
level overview that roughly explains the goal and method of the pose estimation before
going into the details.

3.7.1 Overview
The goal of the pose estimation is to use identification data for each cluster in a scene
to find the best poses of the identified objects in that cluster, where a pose is defined as
both position and rotation of an object. The basic idea of the pose estimation is to use the
methods explained in Section 2.3 to register an object view to the cluster. The identification
data contains identified objects and their most probable views for each cluster. However,
the identification only works for single clouds, and to get increasingly better pose results
for each new cloud, the identification data needs to be available for merged clouds as well.
This is because the pose estimation relies on inlier fractions to determine how good a pose
is, and thus it will get more accurate when more clouds are merged and more points are
available in the merged cloud. For this reason there needs to be a way to link the object
identification data from the single cloud to the merged cloud. To get even better results
the pose estimation uses historical data from the pose estimation on the previous cloud,
which allows it to get more accurate for every new cloud. This means that there needs to
be a way of linking pose estimation data from the previous cloud as well. The linking of
identification and pose data is explained in Section 3.7.2.

The final result of the pose estimation is the following. Every cluster will have a list
of objects, and every object in this list contains at least one object view. This means that
the pose estimation has managed to fit this object view into the cluster with a sufficiently
high inlier fraction. Each object view will also have the pose (transformation) for that
object view in the cluster, as well as the inlier fraction for that transformation. The pose
estimation also applies the final transformation on the complete object cloud and computes
the inlier fraction, this can be seen as an accuracy measurement of how well the complete
object fits into the cluster. The more points are on the object in the scene, the higher this
accuracy will be (assuming that the pose is correct). In this way there can bemany different
objects with many different views and transformations for the same cluster, and they can
be sorted from best to worse using the inlier fraction.
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3.7.2 Linking Data to Merged Cloud
Linking clusters from different clouds is necessary to allow the latest merged cloud to use
current identification data and previous pose data. The segmentation subsystem will not
segment all clouds into the same clusters since the segmentation is different depending on
the position of the points in a cloud. This means that the latest single cloud might have
more or less clusters compared to the latest merged cloud. The goal of the “linker” is to link
identification data (from the latest single cloud) to the latest merged cloud, such that the
clusters in the merged cloud are identified according to the latest identification data. This
is done by linking the clusters of the single cloud to the clusters of the merged cloud, to see
which single cloud clusters correspond to which merged cloud clusters. When this is done
the identification data for a single cloud cluster can then be used for the corresponding
merged cloud cluster.

The way the clusters are linked is fairly simple. All clusters in the single cloud are first
transformed using the robot data such that they are in the same coordinate system as the
merged cloud. Then the following algorithm is executed

1. Select a cluster Cs in the single cloud

2. For each cluster Cm in the merged cloud

(a) If any point in Cs is identical to any point in Cm, the clusters are linked

This method takes advantage of the fact that every merged cloud contains every previous
single cloud. By transforming the clouds to the same coordinate system, the points will
perfectly line up and can easily be compared.

In the same way the linker is used to link the previous merged cloud to the current
merged cloud, such that pose data for the previous merged cloud can be used in the current
merged cloud. This is done in the same way as for the single cloud. After the linking is
done, the latest merged cloud now has both identification data and pose estimation data
for most clusters, except for those clusters that were not found in any previous cloud. This
data is used in the view merging.

3.7.3 View Merging
As explained in the overview, the pose estimation uses merged views from the latest iden-
tification data and previous pose data to estimate the best poses for clusters in the latest
merged cloud. This is done by merging the object views from the previous pose data with
the object views from the latest identification data, and use these merged views when esti-
mating the new poses. The reason for using object views instead of the entire object model
is to get better feature correspondences in the registering phase. The features on the full
object model can be vastly different compared to a cluster in the scene since occluded
points in the cluster will affect its features. These points are not occluded in the object
model, which will give rise to different features. By using identified views for the pose
estimation we can avoid this problem and get better and fast pose estimation.

The view merging function is fairly simple. It loops through the previous pose data
and finds all objects in the pose data that are also identified in the latest single cloud. If an
object has a good pose in the previous merged cloud, and the same object is identified in
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the latest single cloud (although with different views), then there is a high chance that it is
the correct object. Some of the best views from the previous pose data is then merged with
some of the best views from the latest identification data for the same object, to form new
merged views which are added to a list. Due to the way the views are created (see Section
3.4.1) this is simply done by adding the two view point clouds together. When this has
been done for all poses in the previous pose data, some of the best unused views from the
latest identification data is added to the list as well. Keep in mind that these are not merged
views, they are simply taken straight from the identification data, and their purpose is to
avoid that the pose estimation gets “stuck” on only using previous data. If the previous
data is not good, the pose estimation needs to get new views such that it can continue, and
this can be seen as a sort of “exploration” of possible views for the cluster. The list with
all merged views is then used in the registration which gives new poses where these views
fit in.

3.7.4 Registration
One problem with finding the pose of object views without distinct shapes is that they fit
well into many different clusters. For example, an object view consisting of mostly a plane
can fit well into any cluster containing a similar plane, even if the rest of the cluster looks
vastly different. To solve this one can register the cluster to the object views instead of
the object views to the cluster. This means finding a transformation such that the cluster
is transformed onto an object view with a sufficiently high inlier fraction for the cluster.
If the inlier fraction is too low (defined by a hard threshold), the cluster does not fit well
with the object view and that object view can be discarded. Note that the inlier fraction
for the object view can be rather high in this case, if the object view fits well in the cluster.
This first step of the pipeline can be seen in the left part of Figure 3.13. In this figure C
is a cluster and V1,V2 and V3 are object views. A transformation for the cluster to each
object view is found, which is visualized as TC−>VX in the figure, where X is either 1, 2 or
3. The green check mark signals that the cluster fit well into the object view, while the red
cross signals that the cluster did not fit well into the object view. By registering the cluster
to the object view many clusters can be immediately and quickly discarded due to low
inlier fraction. The remaining clusters will then go on to the next stage of the registering
process.

The object views that the cluster fit well into are certain to be somewhat similar in
shape to the cluster. These object views now need to be registered to the cluster to find the
object views that fits the best. This is done by simply registering each object view to the
cluster and computing the object view inlier fraction for each one. The transformation of
the object views can then be sorted on inlier fraction to find the best poses. This can be
seen on the right side of Figure 3.13. In this figure the object viewV2 has an inlier fraction
that is too low, and it is discarded. V1 has an inlier fraction above the threshold and is thus
chosen as the best object view and its transformation TV1−>C is chosen as the best pose for
this cluster. This is done for each cluster found in the original scene, where each cluster
will have different object views depending on the results from the object identification.

In practice, the pose estimation is done by finding the 10 best (with respect to in-
lier fraction) transformations for the object view in the cluster. These 10 transformations
are then grouped in the transformation space, meaning that similar transformations are
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Figure 3.13: The pose estimation pipeline for one cluster. The
cluster is first registered to each object view to determine if the
cluster fits well into the object view. The object views that passed
this first phase are registered to the cluster to find the final trans-
formation.

grouped together and form a transformation cluster (not to be confused with point cloud
clusters). Transformations are defined as similar if the distance and rotations between
them are smaller than certain thresholds. The average transformation and the average in-
lier fraction is then computed for each transformation cluster, and the final transformation
is chosen as the one with the highest average inlier fraction.

The registration is implemented using a RANSAC loop with a prerejection step that is
based on geometric constraints between point sets, as was explained in Section 2.3.

3.8 Hint System
The hint system is the final stage of the pipeline. The task of the hint system is to reject bad
poses, correct viewpoints from the pose estimation and decide where the camera should
be moved in order to collect better data.

3.8.1 Determining Valid Nodes
For each pose result the identified view and pose is loaded into the hint system along
with the associated view-graph and complete point cloud for the model (the definition and
appearance of the view-graph is explained in Section 3.4.1). The view-graph and complete
point cloud for themodel are then transformed using the estimated pose to fit into the scene.
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We can then later on select new camera positions by picking nodes in the transformed view-
graph. For practical reasons however, we would only like to chose nodes that are above
the work table (moving the camera to a position underneath the table is neither possible
nor preferable). We would thus only like to chose between the nodes that are positioned
above the work table.

The equation of the estimated plane inR3 from the segmentation in Section 3.3 is given
by:

ax + by + cz + d = 0 (3.14)

where (a, b, c, d) are the plane coefficients. The normal n of the plane is given by:
n = (a, b, c) and the distance from an arbitrary point p = (x0, y0, z0) to the plane is given
by:

D =
ax0 + by0 + cz0 + d
√

a2 + b2 + c2
(3.15)

where D is the distance from the point p to the plane. If D > 0 then the point is located
on the same side as the direction of the normal vector and equivalently if D < 0 then the
point p is on the opposite side. We can always assume that the camera is located above the
work table and facing downwards. By always having the plane normal aligned towards the
sensor viewpoint (the position of the camera) we can define that points that are above the
plane, i.e. on the same side as the direction of the normal vector, are in fact also above the
table. Using this information we can select nodes in the graph that are positioned above
the plane and thus also above the table by imposing:

D =
ax0 + by0 + cz0 + d
√

a2 + b2 + c2
> 0 (3.16)

Since the denominator is always strictly positive in Equation 3.16, we can simplify it
into:

D = ax0 + by0 + cz0 + d > 0 (3.17)

We will denote nodes that are above the table (D ≥ 0) as valid nodes and nodes that
are below the table (D < 0) as invalid nodes. For practical reasons, we also only validate
nodes that are above the table by a certain threshold: D ≥ dthr , where dthr was set to 10
cm.

3.8.2 Pose Rejection and Viewpoint Correction
While an estimated pose might have a large amount of inliers, it is not guarantied that the
pose is valid in terms of the real world. In the real world the robot has a camera mounted on
the robot arm and a work table where all objects are placed. The pose estimation however
ignores all these facts and solely tries to find a match with as many inliers as possible. As
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a result, the best pose and viewpoint for that pose that comes out of the pose estimation
might be a pose or viewpoint that is located underneath the table. That is why the hint
system first performs a validation test in order to reject bad poses. After the validation
test, the identified viewpoint is corrected to align with the real camera and its viewpoint.

Pose Rejection
First we perform a validation test that rejects bad poses where the complete model is lo-
cated inside or partly underneath the table. It is safe to assume that the objects are not
embedded into the table. The way this is done is by checking if there are any points in the
complete model that are below the estimated plane from the segmentation in Section 3.3.
For each point in the complete model we use Equation 3.17 to see if any point is below the
plane. Of course some poses might have one or two points that are theoretically below the
plane depending on how well the plane was estimated during the segmentation. In order
not to reject these poses a threshold is also introduced here in which only poses that have
any points below a certain threshold are rejected. This threshold was experimentally set
to 1 cm which means that a pose that has a complete model for which there is any point
below the plane by 1 cm is rejected.

Identified Viewpoint Correction
The poses from the pose estimation are estimated using the identified synthetic view point
clouds V as explained in Section 3.4.1. The identification of these views are not perfect
which is why the pose estimation uses the 8 best matching views from the object identifi-
cation. However, it is not guarantied that the best matching pose has the correct viewpoint
(the correct viewpoint being the viewpoint of the real camera). That is why we use our
view-graph to search for the node which has the best viewpoint alignment with the real
camera. We do this by measuring the angle between the z-axis of each valid node in the
view-graph and the real camera, using Equation 2.1 in Section 2.1.3. We then select the
node with the smallest angle and thus the smallest z-axis difference (the z-axis is always
the view-direction of the camera). Once we have found the correct viewpoint and corre-
sponding point cloud from this view, we recompute the inlier fraction to determine if this
still remains a good pose. If the pose is good then the inlier fraction should not differ that
much from the original viewpoint of the pose (in fact, the inlier fraction might be even
better given the correct viewpoint). If however the inlier fraction for the corrected view-
point is below a certain threshold we can reject the pose in the same way that was done in
Section 3.7.4.

Once the validation test and camera correction have been carried out we end up with
two sets of pose results, valid and invalid. If there are no valid pose results for a cluster
then the hint system notifies this to the operator. For scenes with valid pose results, the
model with the best pose is selected according to the inlier fraction. All other models with
valid pose results are considered similar models and a strategy to distinguish between these
models will be explained later using the combined distinguish-utility.
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3.8.3 Definition of a Good View
In order to search for a better viewwe need to define what makes a view better than another
view. We decided to let this be determined by an absolute value where a high value yields
a better view compared to a view with low value. This value is a weighted sum of four
utilities; view-utility, normal-utility, feature-utility and distinguish-utility which where all
explained in Section 3.4.5.

The distinguish-utility for a given view is determined by how similar the identified
model is with respect to the other similar models and their views. Let us say we have
a scene and a cluster within that scene that we have successfully identified as model A.
This model also has an estimated pose with the highest number of inliers in the scene
and thus the best matching model. Let us also say that the models B and C have valid
pose estimations but with lower amounts of inliers than model A for their poses. The
inlier fractions for model B and C are though sufficiently high enough not to draw the
conclusion that we identified model A. In order to distinguish between these models we
have to move towards a view that maximizes the distinguish-utility for these models. As
explained in Section 3.4.5, the distinguish-utility is determined by the matching score of
two models. So in our example we have a set of distinguish-utilities for model A and B
and their rendered views, and model A and C and their rendered views. So in order to
distinguish between model A and B we would like to move towards a view that maximizes
the distinguish-utility for model A and B. Likewise for model A and C we have to move
towards a view that maximizes the distinguish-utility for model A and C. This raises the
question of how to move towards a view that maximizes the distinguish-utility between all
similar models, in this case model A, B and C.We solved this by combining all distinguish-
utilities for the identified model A and the similar models by:

uCombined
i = max(uA→B

i , uA→C
i , . . .) (3.18)

where uCombined
i is the combined distinguish-utility for model A given the similar mod-

els B, C,... for view i. After combining the distinguish-utilities we normalize them as we
have done for all other utility values (see Section 3.4.5).

The equation for the summed utility value fi for a view i can be seen below in Equation
3.19.

fi(u) = wT · u = w1 · u1 + w2 · u2 + w3 · u3 + w4 · u4 (3.19)

w =


w1
w2
w3
w4

 , u =


u1
u2
u3
u4


where w is a weight vector and u is the utility value vector containing the four different

utilities for the given view i described above (u1 = view-utility, u2 = normal-utility, u3 =
feature-utility and u4 = combined distinguish-utility). All utilities are normalized between
1 and 0 and by applying the constraint |w| = w1 + w2 + w3 + w4 = 1 we also get that
f (u) ∈ [1, 0].
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In case we do not find any similar models, e.g. if only model A is present in our valid
pose results, we only add the other three utilities to the weighted sum:

fi(u) = wT · u = w′1 · u1 + w′2 · u2 + w′3 · u3 (3.20)

w =

w
′
1

w′2
w′3

 , u =

u1
u2
u3


where u1 = view-utility, u2 = normal-utility, u3 = feature-utility. In order to still fulfill

the constraint f (u) ∈ [1, 0] we have to modify the weights w1,w2 and w3. This was done
by adding an equal amount of w4 to all other weights:

w′1 = w1 +
w4

3
(3.21)

w′2 = w2 +
w4

3
(3.22)

w′3 = w3 +
w4

3
(3.23)

The choosing of weights was not a trivial task as will be explained later in Section 5.5.
However, we ultimately decided to use the combination wT =

(
2
9

2
9

2
9

1
3

)
which puts

more weight on the distinguish-utility while still having equal weights for the view, normal
and feature-utilities.

3.8.4 The Search for an Optimal View
Once the summed utility fi(x) has been computed for each view i in the graph, the search
for an optimal view with better utility begins. As explained in Section 3.4.1, each model
has a graph where each rendered view has a node (virtual camera position) and links that
are connected to the nearest neighbors of the node (see Figure 3.8).

The view with the best utility is sought for using the valid nodes in the graph. This is
done by simply going through all the valid nodes and picking the node that has the highest
summed utility f (x).

3.8.5 Path to Optimal View
Finding the most optimal view given the current view is a relatively simple problem. How-
ever, we do not want our system to necessarily jump directly to the most optimal view if the
view is located far away from the current view. The goal of our system is to continuously
retrieve data and thus obtain a better pose estimation over time. So instead of making a
"big jump" to the most optimal view, we would like to collect as many good views as we
can along the way. To implement this we decided to use the Dijkstra’s search algorithm
which explores all paths starting at the current node and ending at the destination node
(the node with the best summed utility). To choose which path is the most optimal one we
introduced a cost function that penalizes big jumps and prioritizes views with high utility
along the way. We also made the graph containing the valid nodes completely connected
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meaning that between each pair of valid nodes there exists a link, implementing the pos-
sibility of going from any valid node within the graph instead of just moving along the
existing links in the graph. So in theory it would be possible to make a big jump from the
starting node (currently identified node) to the best node with the highest summed util-
ity. To prevent this though we decided to implement a cost function that prevents the path
from making big leaps in the graph and still prioritizing views with high utilities. The cost
function for a given path is given in Equation 3.24.

J( fi(x), d) = g( fi(x)) + h(d) (3.24)

where fi(x) is the summed utility for a given view i, g( fi(x)) the cost function for the
utility of the next view and h(d) is the cost function for traveling the Euclidean distance d
to the next view.

The way we decided to implement the functions g and h was purely experimental by
trying out different functions. We wanted to have something that really penalized big
jumps and still had a linear behavior for small to medium jumps (skipping one or maybe
two bad view-nodes). An exponential function fulfills both of these criteria. We also
wanted a function for g that prioritized a good view-node over a bad view-node even though
the path of the bad view-node is shorter than the path of the good view-node. Instead of
searching for the shortest path in distance we would search for longer paths that have better
view-nodes. This would make it more expensive to jump to a closer view-node with low
utility than exploring a longer path that has better view-nodes with higher utilities.

3.8.6 Moving the Camera to a Better View
The hint system suggests a trajectory or path that leads the camera to an optimal viewwhile
still collecting as much good data as possible along the path as possible. However, it is
worth noting that the path is only a suggestion and the operator does not need to traverse the
path in order to get to the optimal view. Although, if the operator wants to move according
to the path then the next position for the robot hand needs to be computed. As explained
earlier, the view-graph is transformed to fit the scene according to the transformation given
by the best valid pose estimation. The position and rotation for the next viewpoint for the
camera is thus given directly in the view-graph. The problem is that the transformation
of the next viewpoint is for the camera base coordinates so we have to apply a change of
basis in order to get the transformation for the robot base coordinates. This change of basis
is found by taking the current position of the robot hand and applying the transformation
from the robot hand to the camera. In other words:

C = TR
H→BTR

C→H (3.25)

where C is a basis transformation from the camera base coordinates to robot base
coordinates, TR

H→B is the current position of the robot hand in robot base coordinates and
TR

C→H is the camera-to-hand transformation estimated through the calibration in Section
3.6.2. So if we now apply this to the next position we get:
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TR
Cnext
= CTC

Cnext
(3.26)

where TR
Cnext

is the next position for the camera in robot base coordinates, TC
Cnext

is the
next position for the camera in camera base coordinates andC is the change of basis trans-
formation. So now we have the next position for the camera in robot base coordinates
and to get get this position for the robot hand we apply the inverse of the camera-to-hand
transformation:

TR
Hnext
= TR

Cnext
(TR

C→H)−1 (3.27)

3.8.7 Using Past Data
It is important that the hint system keeps track of previous camera positions in order to
not suggest the camera to move to an already visited camera view. That is why the hint
system saves the current camera position for all scenes. If the hint system detects that
there exists data from previous views it loads all previous camera positions. For all pose
estimation results it then tries to find all views that aligns with the current and previous
camera positions using the same method as explained in Section 3.8.2. All nodes that
share the same or similar viewpoint as the previous camera viewpoints are marked as
invalid nodes. Doing this will prevent the graph-search from visiting and suggesting these
nodes again.
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Chapter 4
Results

This section shows and explains the results of each subsystem and of the entire system as a
whole. Section 4.1 shows the resulting raw and unprocessed point cloud from the SR300
camera, obtained from the point cloud capturer. Section 4.2 shows the segmentation of the
point cloud from the point cloud capturer which results in a number of unknown clusters.
Section 4.3 shows the results from the identification of an unknown point cloud cluster.
Section 4.4 shows the results from the calibration program used to find the camera-to-hand
transformation as well as the resulting merged point clouds. In Section 4.5 we show the
results from the pose estimation on each identified cluster. Section 4.6 then shows how the
hint system computes a new and better view. Finally, in Section 4.7 we show the results
from the complete system with all subsystems interconnected. The models referred to in
this section can be found in Figure 4.1.
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(a) Playstation 3 con-
troller. Model accessed
from GrabCAD[26]

(b) Playstation 4 controller.
Model accessed from Grab-
CAD [26]

(c) Wireless xbox controller.
This CADmodel is scanned using
a depth sensor with high detail.
This is the wireless version which
contains a small battery pack un-
derneath the controller. Model
accessed from Thingiverse [27].

(d) Wired xbox controller. This
is the wired version of the con-
troller which doesn’t contain a bat-
tery pack underneath. Apart from
that, this model is identical to the
wireless version. Model accessed
from GrabCAD [26].

(e) Wood object.
This is a small wooden
structure which con-
tains a little holding
place for a small object
on the top.

(f) Wood object with
ball. This is a wooden
structure with a small
ball located in the
holding place. Apart
from the small ball,
this model is identical
to the "Wood object".

(g) Listerine
bottle. This is
a CAD model
of a Listerine
mouthwash
bottle. Model
accessed from
GrabCAD [26].

Figure 4.1: A list of all the CAD models used for this thesis. The
models were accessed from GrabCAD Community [26] and Thin-
giverse [27] (except for the wood structure models).
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4.1 Point Cloud Capturer
As explained in Section 3.2, the point cloud capturer simply captures point clouds using
the Intel RealSense SR300 depth sensor. A typical point cloud can be seen in Figure 4.2.
The left part of the figure shows the scene visualized as a regular 2D image, and the right
part shows the same scene visualized as a point cloud. This shows the shadows that occur
in point clouds, which are caused by the fact that the sensor is unable to capture points
behind obscuring surfaces.

(a) A scene visualized using a regular 2D image. (b) The same scene visualized as a point cloud.

Figure 4.2: A typical point cloud of a scene.

4.2 Segmentation
The results for the segmentation using plane removal can be seen in Figure 4.3. Figure
4.3(a) shows the original point cloud straight from the point cloud capturer. The objects
are lying on a green table which is mostly flat. Figure 4.3(b) shows the point cloud with the
largest plane removed. It can be seen that due to imperfections in the depth sensor, some
parts of the plane are not removed, mainly at the edges of the plane. Figure 4.3(c) shows
the downsampled point cloud. This is downsampled using a leaf size of 3 millimeters.
Figure 4.3(d) shows the clustered point cloud. It can be seen that some small clusters of
points visible in the previous figure are now gone. This is because the system requires a
certain number of points in each cluster, otherwise the cluster is not valid. Figure 4.3(e) is
the same figure as before, but with all clusters in a different color to more easily distinguish
them. It can be seen that the clustering is not perfect, and some objects are joined into the
same cluster.

A similar result is achieved when using segmentation based on background subtrac-
tion. Figure 4.4 shows the same scene as for the plane segmentation, but segmented using
background subtraction. Usually background subtraction results in a better segmentation
since small variations in the background are taken into account as well. The effect of im-
perfections in the sensor is also decreased when merging many views of a background,
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which will make the segmentation results better. This can be seen when comparing Figure
4.3(e) with Figure 4.4(b), in the former figure the Lego bricks and the cylinder to the left
of the scene are joined in one cluster (blue points), but in the latter the two objects are
different clusters (yellow and cyan points). The explanation for this is that the background
segmentation has managed to more accurately remove part of the background between
these objects, which allows them to be separated.

The adjustable parameters used for the segmentation are the following. Downsample
leaf size is 3 millimeters. The maximum distance from a point to a plane to count as an
inlier is 3 millimeters. The number of iterations used when finding a plane using RANSAC
is 200. Themaximum distance between points to count as an inlier when using background
segmentation is 6 millimeters. The radius used when estimating normals is 4 millimeters.
The maximum distance between two points to belong in the same cluster is 1.1 times the
leaf size, or 3.3 millimeters. The minimum number of points in a cluster is 200, and the
maximum is basically infinite.
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4.2 Segmentation

(a) The original point cloud. (b) The same cloud with the largest plane re-
moved.

(c) The downsampled cloud. (d) The clustered cloud.

(e) Same as (d), but with each cluster visualized
in a different color.

Figure 4.3: Segmentation results when using plane removal.
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(a) The same scene as in 4.3(a), but with the back-
ground subtracted.

(b) The clustered cloud.

Figure 4.4: Segmentation results when using background subtrac-
tion.

4.3 Object Identification
In this section we show the identification results from one scene containing the wireless
xbox controller model (see Figure 4.5). In the scene we have performed segmentation on
the original scene point cloud and obtained the cluster representing the object. A visual
representation of the identification results is shown in Figure 4.6, accompanied by Table
4.1 showing all the most significant data from the identification result.

Figure 4.5: Original point cloud of the scene captured by the cam-
era containing a wireless xbox controller.

The identification of the cluster containing the wireless xbox controller model is shown
in Figure 4.6 where the best identified view as well as the view-graph are displayed. The
matching score of the global ESF features which determines the quality of the match, is
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shown in Table 4.1. We display the 10 best matching views for two models. The reason
for this, as mentioned in Section 2.2.2, is because within the ten best matching views for
the ESF feature we will with 90% certainty find the correctly identified view.

(a) Visual representation of the identification process. The original scene point cloud is segmented into
clusters. Each cluster is then matched with the trained model base to find the best matching synthetic view-
point-cloud.

(b) The view-graph for the identified model. The green
sphere is the position of the virtual camera that rendered
the best matching view in (a)

Figure 4.6: A visual representation of the identification results
from the scene in Figure 4.5.
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Wired xbox controller
View Score
76 0.075
72 0.087
14 0.090
24 0.095
9 0.098
11 0.104
15 0.104
8 0.123
27 0.134
79 0.139

Wireless xbox controller
View Score
12 0.087
8 0.088
15 0.092
11 0.102
14 0.105
9 0.110
52 0.119
13 0.133
4 0.135
48 0.142

Table 4.1: The matching score from the identification of the wire-
less xbox controller. The first column shows the synthetic view in-
dex and the second column shows the matching score. The score
is computed by taking the L1-norm (see Equation 2.6) for the dif-
ference between the cluster histogram and the synthetic view his-
togram. A low score approximately between 0.05 − 0.2 indicates
a good match. As we can see, both the wireless and wired xbox
controller models have similar matching score which is expected
since we cannot differentiate between these models from the cur-
rent view (see Figure 4.1). Only the matching scores from two
models were shown here for simplification.

4.4 Scene Merging
The calibration program with point picking used to find the unknown camera-to-hand
transformation is shown in Figure 4.7. In this figure there are three different clouds taken
from different angles, and the user has picked a couple of corresponding points in all
clouds. The points can be seen as red spheres in each cloud. When this is done the data
is sent to a compiled MATLAB script that uses a non-linear least squares minimization to
find the camera-to-hand transformation as explained in Section 3.6.2. When the transfor-
mation has been found the clouds can be merged, which is shown in Figure 4.8. Figure
4.8(a) shows all clouds in the same viewer, without any attempt at merging them. Figure
4.8(b) shows all clouds after using robot data and the camera-to-hand transformation to
merge them. It can be seen that there are less shadows in this merged scene since the points
come from three different angles. With a good calibration (well chosen points and enough
difference in camera angles for the clouds) the merging is very good with an offset of 2-3
mm at most. The non-linear least squares minimization function used is the "lsqnonlin"
function in MATLAB.

The adjustable parameters that were changed from default for this function are the
following. FunctionTolerance and OptimalityTolerance was set to 1.0 · 10−10 and Max-
FunctionEvaluations was set to 2000. The starting point for the transformation was very
close to the actual transformation.
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Figure 4.7: The calibration program with point picking.

(a) The point clouds shown in the same viewer. (b) The point clouds after merging using robot
data and camera-to-hand transformation.

Figure 4.8: The merged clouds.

4.5 Pose Estimation
Figure 4.9 shows a good pose for an object view of the wood object model. In this figure
the pose seems to fit well, but it is hard for the system to measure that since the inlier count
is still very low due to a lack of points in the cluster. This can be seen by the many red
points in Figure 4.9(b).

Figure 4.10 shows a bad pose for an object view of the wood object model in the same
cluster as in Figure 4.9. In this figure the pose does not fit well, but again it is hard for
the system to measure it since it still has quite a few inliers. However, we can see that this
pose has fewer inliers than the pose in Figure 4.9(a).

Figure 4.11 shows two point clouds of a scene taken from different angles, as well as
the identified views for the wood object model in both scenes, and the final merged view
of these two views. This merged view would be used in the pose estimation of the merged
scene consisting of the two scenes in the figure.

The adjustable parameters we have used for the view merging is the following. For
each object found in the previous pose estimation results, 2 of its best views are merged
with 8 of its best views from the current object identification results. We have a maximum
of 40 merged views to limit the time the pose estimation takes.
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(a) A good pose found for one view of the
wood object model.

(b) The same pose as in (a) applied to the full
CAD model of the wood object.

Figure 4.9: A good pose estimation of the wood object model.
Gray points are the cluster, green points are object inliers and red
points are object outliers.

(a) A bad pose found for one view of the
wood object model.

(b) The same pose as in (a) applied to the full
CAD model of the wood object.

Figure 4.10: A bad pose estimation of the wood object model.
Gray points are the cluster, green points are object inliers and red
points are object outliers.
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(a) A scene where the underside of the wood
object model is visible.

(b) The same scene as (a) taken from another
camera angle.

(c) An identified view of the wood object
model in scene (a).

(d) An identified view of the wood object
model in scene (b).

(e) The resulting merged view after merging
the views in (c) and (d).

Figure 4.11: Two camera angles for the same scene, their identi-
fied views and the final merged view to be used for pose estimation.
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Figure 4.12 shows the results of the cluster-to-object registration in the pose estimation
subsystem. The gray cloud is the cluster, which is the lower base of the YuMi robot. The
green cloud is the object view, which is a controller. A pose for the object view could
probably be found such that the inlier fraction is high by jamming the controller into the
robot base. However, the system first registers the cluster to the controller, and since it will
get a very low inlier fraction for that registration this object view is immediately discarded.
Without this form of rejection, the controller would get matched into the cluster and have
a fairly high inlier fraction.

Figure 4.12: An object view of a controller (green cloud) that was
rejected by the pose estimation because the cluster (gray cloud)
could not fit into it with high enough inlier fraction.

The adjustable parameters we have used in the pose estimation are the following.
Downsample leaf size is 3 millimeters. The radius used when estimating local features
is 15 millimeters. Number of iterations for each pose estimation is 10,000. The maximum
distance between points two count as inliers is 1.5 times the leaf size, or 4.5 millimeters.
The similarity threshold between edge lengths of the underlying geometrical correspon-
dence rejector in the sample consensus method is 0.8. The minimum inlier fraction needed
for a cluster when being registered to an object view is 0.5. The minimum inlier fraction
needed for an object view when being registered to a cluster 0.1.

4.6 Hint System
In this section we first show how the pose rejection and viewpoint correction works for the
hint system as well as sorting out the valid and invalid nodes in the view-graph. We then
try to visually explain the impact of the different utilities as well as the weighted sum of
utilities in the view-graph.
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4.6.1 Determining Valid Nodes
From Section 3.8.1 we concluded that valid nodes that are positioned 10 cm above the
working table in front of the robot. This was achieved by selecting the nodes that were
10 cm above the estimated plane from the segmentation algorithm. In Figure 4.13(a) we
see a scene with the estimated plane and transformed view-graph for a pose. The red
point cloud represents the complete model which is transformed into the scene with the
estimated pose. In Figure 4.13(b) we see the valid nodes marked by green spheres and
invalid nodes marked by red spheres. Determining the valid nodes will assure that the hint
system later only searches through the set of valid nodes to find a new position.

(a) In this figure we see the estimated plane as well
as the fitted view-graph for a given pose.

(b) Here all valid nodes are marked by a green
sphere and the invalid nodes are marked by red
spheres. A valid node is a node that is located 10
cm abode the estimated plane.

Figure 4.13: These figures display the transformed view-graph
and valid nodes for a scene. The view-graph is centered around
the identified object by applying the same transformation as the
estimated pose from the pose estimation algorithm. The real cam-
era position is marked by a coordinate system and a white box.

4.6.2 Pose Rejection and Viewpoint Correction
In Section 3.8.2 we explained that some of the poses and their identified viewpoint from
the pose estimation algorithm are incorrect with respect to the real world. There was a
validation test followed by a viewpoint correction performed on the pose estimation data
to determine whether a pose was valid or invalid. The validation test examines if the
complete model for a pose had any part underneath the working table. In Figure 4.14 we
see an example of a pose that is marked as invalid due to the complete model being partly
underneath the table.

Pose estimations that pass the validation test are then given new viewpoints that corre-
sponds to the real camera viewpoint. If a pose uses previous data and has multiple merged
scenes then all identified views are aligned according to the current and previous camera
locations. In Figure 4.15 we see three examples of viewpoint correction. In the first Fig-
ure 4.15(a) we see an example of a single viewpoint correction. The identified view from
the pose estimation is for convenience here marked by a black sphere and as we can see,
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Figure 4.14: Validation test for an estimated pose. The complete
model for this pose is partly located underneath the table which
means that this pose is invalid

it is incorrect with respect to the real camera viewpoint (the white box). The estimated
pose however is very good so we should not discard this pose but rather fix the viewpoint
to align with the real camera. In the second Figure 4.15(b) we see a similar viewpoint
correction for the wood object model. The identified viewpoint from the estimated pose
is located underneath the table and so we search for the view that aligns the best with the
real camera instead. The problem here is that for the new viewpoint that aligned with the
real camera, the inlier fraction is very low (in fact it is almost zero). A pose with an inlier
fraction this low would not pass as a valid pose during the pose estimation so we mark this
pose with corrected viewpoint as invalid. Finally in the third Figure 4.15(c) we see mul-
tiple viewpoint corrections for both current and previous camera positions. All corrected,
identified views are marked by white spheres and the current and previous camera view-
points and positions are marked by white boxes (previous camera positions are marked by
smaller white boxes).
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(a) A viewpoint correction for an estimated pose.
The identified view from the pose estimations is
marked by a black sphere and the corrected view-
point is marked by a white sphere. The corrected
viewpoint is aligned with the real camera view-
point.

(b) Another viewpoint correction for an estimated
pose of the wood object model. The identified view-
point from the pose estimation is located below the
plane. The point cloud corresponding to the cor-
rected viewpoint (white sphere) is however invalid
due to low amount of inliers in the cluster.

(c) Viewpoint corrections for multiple viewpoints.
This occurs when the hint system detects previous
merged data. All viewpoints are aligned with the
current camera position (white box) and previous
camera positions (small white boxes).

Figure 4.15: These images displays the camera viewpoint correc-
tion performed by the hint system. A viewpoint or multiple view-
points from the pose estimation is corrected to align with the real
camera viewpoints. Corrected viewpoints are marked by white
spheres.

4.6.3 Utilities
In this section we show visually how the utilities work by using the rendered views. Each
utility will be displayed first and at the end we show what the weighted sum of utilities
look like. The explanation of all utilities can be found in Section 3.4.5. All examples
will contain the utilities of the wood object model and the wireless xbox controller model.
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A sample of 25 views is shown with a color scheme for which a green point cloud is
equivalent with high utility value and a red point cloud is equivalent with low utility value.

View-Utilities
The view-utility is a measurement of how much of the object that is visible for a view. In
Figure 4.16 we see the view-utilities for both objects. It is easy to see that a high view-
utility means that we see a bigger portion of the object for that view. The low utility values
are mostly due to the Euclidean cluster extraction which was explained in Section 3.3.2
and 3.4.2 where we only keep the largest cluster if the point cloud for a rendered view was
disconnected. The view-utility will thus help the system pick views that display a larger,
connected part of the object.

(a) The view-utility for 25 rendered views of the wireless xbox controller
model.

(b) The view-utility for 25 rendered views of the wood object model.

Figure 4.16: The view-utilities for the wireless xbox controller
and the wood object.
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Normal-Utilities
The normal-utility is a measurement of the quality of the surface normals for a view. A bad
surface normal points perpendicular or close to perpendicular to the viewpoint direction of
the camera which will most likely lead to measurement noise and outliers for that surface
using the depth sensor. In Figure 4.17 we see the normal-utilities for the wireless xbox
controller model and the wood object model. The normal-utilities tend to favor views
where the normals of flat surfaces are not perpendicular to the camera viewpoint which is
exactly what we want.

(a) The normal-utility for 25 rendered views of the wireless xbox controller
model.

(b) The normal-utility for 25 rendered views of the wood object model.

Figure 4.17: The normal-utilities for the wireless xbox controller
and the wood object.

Feature-Utilities
The feature-utilities are a measurement of the quality of the local features for a view. Fig-
ure 4.18(a) shows the feature-utility for 25 different views of the wireless xbox controller
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model. Due to the wireless xbox controller having distinct features on both the front and
back, there is not a big difference between these views. However, generally the views
showing the underside of the controller have a higher score due to very distinct features
around the edges of the battery pack. The side views have a very low score since there is
no interesting geometry there and most points have identical features.

Figure 4.18(b) shows the feature-utilities for 25 different views of the wood object
model. For this object it is much more apparent what sort of views lead to higher feature-
utility. It can be seen that views which showmore edges and corners have a higher feature-
utility. This is because most of this object consists of planes where points will have the
same features, but the edges and corners will have vastly different features and thus they
will be more distinct.

(a) The feature-utility for 25 rendered views of the wireless xbox controller
model.

(b) The feature-utility for 25 rendered views of the wood object model.

Figure 4.18: The feature-utilities for the wireless xbox controller
and the wood object.
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Distinguish-Utilities
The distinguish-utility is a measurement of how similar two objects are and how much we
can distinguish between them for different views. A low utility value means that the view
is very similar to another view for another object. This time we decided to show the utility
values for four models. The first two models are "Wood object" and "Wood object with
ball" which are two very similar objects of a wooden structure. "Wood object with ball"
is the exact same object as "wood object" but with a small ball located in a small holding
place. The last two objects are the wireless and wired xbox controller models which are
also very similar to each other. The wireless xbox controller model is a controller which
is wireless and thus contains a battery pack underneath the controller. The wired xbox
controller model is, as the name suggests, a wired controller and does not have a battery
pack underneath the controller. Remember from section 3.4.4 that the distinguish-utilities
are computed by matching two models and extracting the best matching score for each
view. Remember also that the matching of model A with B is not the same as the matching
of model B with A.

In Figure 4.19 and 4.20 we see the distinguish-utilities for all models and their most
similar model. For Figure 4.19 we see that the utility value is high for views where we see
the holding place and ball which are, not surprisingly, the views where we can distinguish
between these models. The views with low utility values are views that are identical with
respect to the other model and thus non-distinguishable. We see the same principle for
Figure 4.20, i.e. views with high utility are views that show the bottom of the controller
where the battery pack is (or is not) located. Views on top of the controller (where all
buttons are located) are identical and thus very hard to distinguish between and so these
views are given a very low utility value.

Notice also in both Figure 4.19 and 4.20 how the sequence of matching the models
yields different results. In e.g. Figure 4.19(a) and 4.19(b) we see that the view in the first
row and third column have different color and thus also different utility value. In Figure
4.19(a) we matched the "Wood object" model with the "Wood object with ball" model and
in Figure 4.19(a) we did the opposite i.e. matched "Wood object with ball" with "Wood
object".
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(a) The distinguish-utility for 25 rendered views of the wood object model.

(b) The distinguish-utility for 25 rendered views of the wood object with ball
model.

Figure 4.19: The distinguish-utilities for the wooden structure
with and without ball.
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(a) The distinguish-utility for 25 rendered views of the wireless xbox con-
troller model.

(b) The distinguish-utility for 25 rendered views of the wired xbox controller
model.

Figure 4.20: The distinguish-utilities for the wired and wireless
xbox controller.
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Summed Utilities
The summed utilities are the result of combining all utilities according to Equation 3.19.
The weights used here are: wT =

(
2
9

2
9

2
9

1
3

)
. We show the results in the same way as

for the distinguish-utilities i.e. for the model pairs "Wood object" vs "Wood object with
ball" and "Wireless xbox controller" vs "Wired xbox controller". These results are what
the hint system uses in order to find a new and better view.

The summed utilities are shown in Figures 4.21 and 4.22. Note that using different
weights will have different impact on the summed utilities.

(a) The summed utility for 25 rendered views of the wood object model.

(b) The summed utility for 25 rendered views of the wood object with ball
model.

Figure 4.21: The summed utilities for the wooden structures with
and without ball.
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(a) The summed utility for 25 rendered views of the wireless xbox controller
model.

(b) The summed utility for 25 rendered views of the wired xbox controller
model.

Figure 4.22: The summed utilities for the wired andwireless xbox
controller.
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4.7 System Function Evaluation
In this section we show the complete functionality of the system. The task of the hint
system is to suggest a better viewpoint given the currently identified viewpoint. It searches
through the valid nodes and finds the most optimal one using the weighted sum of utility
values. It also suggests a trajectory or path that takes the camera from the current view
to the most optimal view. This path is supposed to penalize big jumps in the graph and
prioritize good views along the way. In all the figures displayed in this section we have the
following color scheme. The nodes marked as white spheres are the identified views and
the white boxes are the current and previous camera position (the large box indicates the
current camera position and the small boxes indicate previous camera positions). All valid
nodes are colored according to their utility value where a high utility value is marked by a
green sphere and a low utility value is marked by a red sphere. Invalid nodes are blacked
out. The most optimal view is marked by a blue sphere and the path leading towards the
optimal view is colored with blue lines. To visualize the estimated pose we transform the
complete model (red point cloud) with the estimated pose to fit the scene. We also show
the accuracy for each model in the scene which is a measure of how many inliers there are
for the complete model.

We ran two experiments, one for the wireless xbox controller model and one for the
wood object model. The experiments start in a viewpoint where no or small distinction can
be made between the models. We then moved the camera along the suggested path by the
hint system in order to gather more and better data. This was done three times capturing
three views for each experiment. The idea is that the pose estimation and identification of
each model are supposed to get better the more data we collect.

4.7.1 Initial View
In Figure 4.23 and 4.24 we see how the hint system works for the initial view of a scene.
We see that the matching pose of the wireless xbox controller model in Figure 4.23 is bad
simply due to not having enough data to make a good pose estimation. The hint system
suggests that wemove upwards with the camera to capture a new and better view. Note that
the hint system only follows the matching model and not the actual cluster in the scene. In
this case moving upwards will probably capture more of the backside of the controller and
thus correct the pose. We also see that the best matching similar model was the playstation
3 controller model. The most probable reason why the wired xbox controller model did
not show up as a similar model was because it did not have any valid pose results.

In Figure 4.24 we see the initial view for the wood object model. As we can see the
initial pose estimation is far from perfect which is due to not having enough data in order
to make a good pose estimation. We thus need to move the camera to a new position to
collect more data. The same phenomenon is seen here as in Figure 4.23 in which the
view-graph is centered and transformed according too the fitted model and not the cluster.
However, moving the camera to the next suggested view will also here lead to more data
which will improve the pose estimation.
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Figure 4.23: Initial view of the wireless xbox controller model.
The matching pose of the object is incorrect. However, the hint
system is unaware of this fact and thinks that the controller is
facing upwards when in fact the controller is facing downwards.
Nonetheless, The hint system suggest that we move up to get a bet-
ter view. This will probably lead to a better view of the controller
and thus correct the pose.

Figure 4.24: Initial view of the wood object model. As we can see
the match from the pose estimation is poor and we need to collect
more data to make a better estimate.
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4.7.2 Second View
In Figure 4.25 we see the result of moving the camera according to the hint system for the
initial view. Luckily, we now have a better view of our object and so the pose estimation
for our model is aligned with the cluster. However, the hint system still did not detect the
wired xbox controller model as a similar model which means that the pose estimation still
has not found any valid pose for this model. The hint system did not detect any similar
models so it tries to maximize the other utility values in order to get a better view (this was
explained in Section 3.8.3).

In Figure 4.26 we see the second and merged view for the wood object model. Since
we received more data for the second view we are now able to make a better pose estimate
for the model. We have two similar models for this scene, "Wood object with ball" and
"Listerine bottle". In order to maximize the distinguish-utility for these models the hint
system suggest that we move the camera above the object in order to get a better view of
the holding place (which does not contain a ball for our current model). It might have been
better to ignore or put less weight on distinguishing between the "Wood object" and the
"Listerine bottle" since the accuracy is very low for this model.

Figure 4.25: Second view of the wireless xbox controller model.
We now have a better view of the controller and thus we also get
a much better pose estimation of the controller.
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Figure 4.26: Second view of the wood object model. We defi-
nitely got a better pose estimate this time compared to the initial
view. However, the pose is still not sufficient and we still have two
similar models to distinguish from.
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4.7.3 Third View
In the third and final view we should have more data in order to make a better pose esti-
mation and better distinguish between similar models than from the initial view. In Figure
4.27 we see the third view for the wireless xbox controller model. The accuracy for the
wireless box controller model is much higher for this view than the other views. Also note
that in this view the hint system successfully managed to detect the wired xbox controller
model as a similar model. This is because for this view the pose estimation for the wired
xbox controller model was sufficiently good and thus passed as a valid pose during the
pose estimation. The reason why we probably will not get a better difference in accu-
racy for these models is because of the way we measure the accuracy. The accuracy is a
number describing the fraction of inliers for the complete model. Both the wireless xbox
controller and the wired xbox controller are very similar except for the battery pack on the
back meaning that the only difference in accuracy is completely due to the battery pack
(which is only a small part of the complete controller).

In Figure 4.28 we see the third and final merged view for the wood object model. This
time we can probably make the assumption that we with high probability identified the
"Wood object" model due to the low accuracy for the "Wood object with ball" model.
Notice however that the pose still is not good enough and more data probably needs to be
received in order to make a better pose estimate. This could be achieved by putting more
weight on the feature-utility and thus collecting more views with better features.

Figure 4.27: Third and final view of the wireless xbox controller
model. We now have decent accuracy for the pose estimation. No-
tice also that the wired xbox controller model now has a valid pose
from the pose estimation and thus appears as a similar model. The
difference in accuracy for both models suggests that we are more
likely to be looking at the wireless xbox controller as opposed to
the wired xbox controller.
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Figure 4.28: Third and final view of the wood object model. Due
to the low accuracy of the "Wood object with ball" we can probably
assume that we identified the "Wood object". As the red point
cloud suggests the pose still needs to be improved which could be
achieved by finding views that maximizes the feature-utility.

For both experiments we see that with more data the system is able to estimate better
poses and achieve higher confidence for the object identification. The hint system always
tries to find a better view which means that if we reach the optimal view, the hint system
will search for the second most optimal view and so on until there are no valid nodes
left. The advantage of our hint system, as opposed to just moving the camera randomly to
collecting more data, is that we are guaranteed to move the camera in an optimal manner
and collecting better views.
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Chapter 5
Discussion

In this section we will go through the limitations of the system and how the system could
be improved.

5.1 Point Cloud Capturer
The point cloud capturer works well but is inconvenient to use since it requires Windows
while the rest of the system runs on Linux. This could be solved by using "librealsense"
(which is now officially supported by Intel and is also known as "Intel RealSense SDK
2.0") instead of the currently used "Intel RealSense SDK for Windows". It also takes
around 1 second to capture a point cloud, which is too long if it were to be used for some
real-time application. We believe this could be improved when switching to librealsense
and further improved by writing the program in C++ instead of C#.

5.2 Scene Merging
We spent a lot of time working on the scene merging before we got it to work sufficiently
well. Most of the problems are related to the calibration where the unknown camera-to-
hand transformation is found. The point picking method we use is not ideal to get an
accurate calibration of the system. Even a small error when picking corresponding points
can produce a large offset when multiple clouds are merged. This small error might occur
because the user picks a wrong point, or because the point cloud from the camera does
not have the required precision for the point that the user picks. The latter is especially
noticeable when the camera is positioned too close to an object, then the points on that
object will not be positioned correctly in relation to the points around the object. This is
simply a limitation in the depth camera, but it is not easily noticed when calibrating the
system and the user might think that something else is wrong.
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Even a good calibration might have a small offset (around 1mm) whenmerging certain
clouds due to imprecisions when picking points. An interesting idea to fix this might be
to run an automatic registration method after two clouds have been merged, which could
then fix this small offset. ICP is a well researched and widely used registration method that
works well for aligning two clouds that are already very close. However, it takes a long time
if there are many points in the cloud, and it would have to be done every time a new cloud
should be merged. It might however be possible to use the results from the ICP algorithm
to fine tune the camera-to-hand transformation, which would allow the calibration to be
better for every new cloud that is captured.

A better way of doing calibration would be to use already existing calibration tech-
niques for RGB cameras. These usually consist of taking multiple images of a checker-
board pattern from many different angles, and using that to compute the extrinsic parame-
ters of the cameras which would give the position and rotation of all camera angles. This
could then be used in a similar way as the calibration method in Section 3.6.2 to find the
camera-to-hand transformation. This is possible since the depth sensor has a built-in RGB
camera. We did some tests on this but had a few problems with the accuracy of the extrin-
sic parameters. Due to lack of time and since we already had a sufficiently good calibration
method we did not continue developing this method.

5.3 Object Identification
The object identification is able to successfully identify which views corresponding to
which objects that are most likely present in the scene. One major problem however is the
way the synthetic views are rendered offline. In the real world the point clouds from the
depth sensor are cluttered with sensor noise and outliers. The synthetic rendered views
however do not share these traits and thus capture perfect range images of the objects.
This had some limitations when it came to the recognition of certain views with lots of
sensor noise such as when the surface normals are pointing perpendicular to the viewing
direction of the depth sensor. This was however compensated for later in the hint system
by using the normal-utility (Section 3.4.5). The usage of the normal-utility thus limited
the system from suggesting views that contained so called "bad normals".

We also noticed that views with occlusion resulted in lower performance for the object
identification. This was probably a limitation of the ESF global feature which was used to
match the model views with the scene. The problem of successfully identifying objects in
views with occlusion is a well researched area. The biggest problem probably arises from
the usage of global features for the object identification. Global features are well known
for not being well suited for dealing with point cloud occlusion. A better solution could
have been to use implicit shape model as suggested in [11] where they use local features
for the identification. Local features such as the SHOT feature are much better at handling
with occlusion. The reason why we did not use implicit shape model was explained in
Section 3.5. We did not get any good results for the implementation in PCL but maybe
another implementation would have worked better.

Another approach for the object identification would have been to also make use of the
RGB data from the camera. Many methods exist within computer vision which recognize
objects using 2D images. Neural networks for instance are very popular and successful
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methods which identify objects with 2D images. A combination of these methods along
with our existing pipeline would have been very interesting to implement.

5.4 Pose Estimation
The biggest limitation for the pose estimation is speed. It is set to run for a fixed number
of iterations even if it finds the perfect pose on the first iteration of the algorithm. For
large objects and clusters (containing many points) each iteration can take quite some
time and most of that time might be wasted if a perfect pose has already been found. We
have registered times of 1-2 minutes to find a pose of an object for some clusters, even on
computers with very good hardware. The speed could be improved in many ways by using
smarter algorithms that adapt the number of iterations necessary based on the results of
previous iterations. It would also be interesting to try a method that estimates the pose for
all object views at the same time, instead of completely finishing the pose estimation for
one object view before starting on the next. By running one iteration on one object view,
and then switching over to run one iteration on the next object view etc., the system could
quickly see which object views give better results and filter them out quickly. This would
avoid wasting time on estimating poses for object views which will not have better poses
than other object views.

Another part of the pose estimation that could be improved is the view merging. Cur-
rently the system only merges a hard coded number of views. It might happen that all
these views are wrong and the system is unable to find any good pose using these views.
It would then be good if the system continued to merge new views which would allow it to
continue searching for a good pose until it has tried all possible view combinations, or un-
til a timeout specified by the user has passed. This could also be used in the opposite way,
meaning that the system would stop after it has found a very good pose and it is unlikely
that it would find a better one. We believe that smart algorithms like this could improve
both the results and the execution time by a lot.

5.5 Hint System
Our suggested hint system implementation achieves decent results but there are many
things that could have been done differently. The utilities in our current implementation
of the hint system are static and do not change when running the system. Let us say that
we have collected data for a view Va in our system. The node na corresponding to view
Va in our view-graph has the nearest neighboring nodes nb, nc and nd . Since nb, nc and nd
are neighboring nodes to na we get that visiting these nodes, given that we have already
visited na, will result in a low amount of new data. Most of the object for nb, nc and nd
have already been seen for na. However, our existing hint system does not take this into
account and will suggest neighboring nodes to already visited nodes even though visiting
these nodes will not lead to any significant amount of new data. A better way would thus
have been to keep track of shared data between nodes and continuously update the utilities
for each node given the current state. The easiest way to implement this would probably be
to use dynamic, state driven utility weights w. These weights would change when running
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the system and thus change the utility for some nodes for a given state.
The hint system was not either able to detect whether more data should be collected

in order to better distinguish between objects or if more data should be collected in order
to make a more accurate 6DOF pose estimation. In some cases we would want to put
more weight on the distinguish-utility in order to separate and correctly identify similar
models and in some cases we would like to collect better features in order to make a better
6DOF pose estimation. As mentioned before our current implementation uses static utility
weights and thus to solve this we would need to have dynamic weights that change over
time. If the system detects that there are similar models and that we cannot distinguish
between them then the hint system would have to put more weight on the distinguish-
utilities instead. Likewise, if the system detects that there are no similar models and that
the current pose estimation does not have a sufficient amount of inliers in order to make
a good 6DOF pose estimation, the hint system would have to put more weight on the
feature-utilities in order to prioritize views with better local features.

Some improvement could also have been done concerning the utility values. The intro-
duction of more utility values could definitely have made a difference for our hint system.
One utility in particular is something that describes the point density and connectivity of
a point cloud. Small and narrow objects were likely to be removed completely due to out-
liers and sensor noise. Imagine an object consisting of two boxes connected by a small
and narrow rod. Due to sensor noise characteristics it is very likely that the rod will be re-
moved during scene preprocessing (removing outliers and extracting clusters) which will
result in two separate clusters instead of one for the complete object. By measuring the
point density for the rendered synthetic views of our object we could detect views where
this would appear and compensate for it by giving these views a lower utility value.

One big feature for our hint system is the ability to detect similar objects by matching
models offline and detecting similar views. As can be seen in the results we did achieve
good results for most of our objects that were very similar. However, this method was
far from perfect as can be seen in Figure 4.19 in the last row and first column. Here we
see that the views for both models are identical and so the distinguish-utility for that view
should have been very low. Instead we see that this value is slightly higher than moderate
which suggest that this view for both models has moderate distinguish ability. Outliers
like this were present in some model view-graphs and could have some negative impact
on the overall online performance of the hint system. We believe that the ESF features for
flat surfaces such as planes are inconsistent which would explain why these views are seen
as "different" when matching the ESF features.

Our current implementation of the hint system (and system in general) only uses data
from the depth sensor and thus ignores the RGB-data. If we look at the work in [8], we
see that they chose the next best sensor viewpoint by minimizing the ambiguity between
different predicted model hypothesis. The key difference between their implementation
and our is that they include the possibility of choosing between different sensor viewpoints
instead of just one. In some cases when distinguishing between two objects it could be as
simple as just comparing their colors using the RGB data. In other cases, the next best
camera viewpoint for distinguishing between similar models might be closer and more
optimal when using the RGB data, as opposed to using the depth data.

Compensation for environmental occlusion caused by other objects could have some
major effects as well for our hint system. In [9] and [10] they define the next best view
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by minimizing or excluding occlusions by creating an octree voxel map representation of
the scene point cloud. The first and probably easiest way to implement compensation for
occlusion into our hint system would be to use the approach in [9] where a viewpoint is
eliminated for any kind of occlusion. This would enable us to detect nodes (or viewpoints)
in our view-graph that are occluded by other objects in the scene and a simple way to com-
pensate for this would be to mark these nodes as invalid. The second and more dynamic
approach would be to use the method in [10]. They define a vector that keeps track of the
current number of projected occluded voxels for each camera viewpoint. They then define
a hard threshold that eliminates a viewpoint if the number of occluded voxels exceeds that
threshold. Introducing a new dynamic utility value that keeps track of the number of oc-
cluded voxels could thus have been a solution for our hint system. For more informations
about these methods we refer to the work in [9] and [10].

In our thesis we implement our system using the ABB YuMi robot which has two
independently working robot arms. A problem arises when both arms are actuated, which
is a main feature of the YuMi robot. If the camera is mounted on one arm, then a natural
behavior of the hint system would be to avoid colliding or obstructing the other robot
arm. In some cases the second robot arm might also be occluding an object from different
viewpoints. Introducing robot joint movement limitation and collision detection would
thus have had a great impact on the performance of our hint system. A similar problem is
found and solved in [10] where they incorporate the robot joint movement as a cost in their
cost-function. They introduce this cost in order to limit large changes in the robot joint
space configuration. Though their problem is not exactly the same as ours, their approach
of incorporating the robot joint movement in the cost function could also be applied in our
implementation. Again, this cost would be introduced as a utility value in our hint system
which would decrease the possibility of moving the robot arm and camera to a viewpoint
which is non-optimal with respect to the other robot arm.

5.6 Overall
As mentioned above, the modification that we believe would improve almost all aspects of
this system is to use the color data in the point clouds. In our work we have ignored the
color data in the algorithms, and only used it for visualization purposes. The color data can
be used in feature descriptors which could improve the results from the identification, pose
estimation and hint system. This would however require color data on the CAD models as
well, which increases the work needed to add new objects to the system.

The system works well for the objects that we have tested in our work, but more testing
is necessary to see how well it works for different objects. In general, objects with more
geometrically interesting areas that give more distinct features should be easier to both
identify and localize. It is hard to know how the system would perform for objects that
are mainly primitive shapes, like cubes, cylinders, spheres etc. since these objects do
not contain many distinct features. For these objects it might be beneficial to use some
other pose estimation method that is more focused on primitive shapes, as explained in the
related works section. This would definitely be an interesting continuation of our work, to
add more objects of different geometry and see how well the system performs. This could
also be used to see how many clouds are needed on average before a good pose is found
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for different objects. In our tests we need on average 2 to 3 clouds before we get a good
identification and pose estimation of an object. However, if there are many similar objects,
more clouds may be needed to get good results since certain parts of these objects have to
be captured in the clouds before the system can know which object it is looking at.

We have tested the system with some small objects as well, that were somewhere
around 2x2x1 centimeters in size, but we got bad results. The main problem is that the
depth camera smooths the edges of objects, which is especially noticeable for such small
objects. This causes the cluster of the object to be very different compared to the rendered
views of the object, which makes it hard to find a good pose. The results might be better
with other depth cameras that are more intended for high-detail environment scans.

The system we have developed is mainly usable for robotic applications that have the
possibility of mounting a depth camera to a robot arm. Ideally the depth camera would be
integrated in the arm such that the robot still has the ability of using other tools with the
same arm. The system could be extended to allow the robot to follow the hints automati-
cally and not rely on a human guiding it, which would further improve the usability of the
system.

It was difficult to compare our complete system with other related works. This was
mainly due to the fact that there did not exist a "general" or "state-of-the-art" system which
uses our design. As a result, there was not any data for which we could evaluate our system
and compare it to other related work. When examining the different subsystems such as
the object identification and pose estimation there exist many sets of data for which one
can evaluate these subsystems. However, this thesis did not propose any new and unique
methods for these subsystems, the evaluation for these methods are instead verified in [6]
and [1].
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Chapter 6
Conclusion

In this master’s thesis we developed a system for CAD object identification and 6DOF pose
estimation in robotics. The identification was performed using global descriptor matching
with synthetically rendered views of CAD models. For each identified view we then esti-
mated a 6DOF pose for the object in the scene by matching local features using a robust
RANSAC feature matching algorithm. The pose estimation and identification was then
further improved by our hint system which suggested where the robot should move the
camera in order to get a better view. Not only did we get a better view but we also kept
track of our previous camera positions and data. Wemerged the previous point clouds with
our new point cloud and thus gained more information describing the 3D scene for each
new view. Thanks to our hint system and merging of point clouds we steadily improved the
object identification and pose estimation as opposed to just moving the camera randomly
in order to get more data.

There is much research in the area of finding a better viewpoint such as [8], [10] and
[9]. However, our solution used an offline training algorithm to generate utility values
describing the absolute quality of a view. The quality mainly depended on four values:
visibility, surface normals quality, local features quality and distinguishability between
similar models. Our method of detecting similar models and distinguishing between them
using global ESF matching was also different and achieved good results. Another signif-
icant difference was the way we handled merging of previous point clouds. By using the
previous point clouds we iteratively gained more information and was able to identify and
estimate more accurate poses over time.

We draw the conclusion that it is possible to build a system with object identification
and localization using a depth camera. By moving the camera to better views as suggested
by the hint system and merging all new point clouds the results were good enough to be
usable for robotic applications. Adding new objects was very easy, and the user feedback
for the results were clear and easy to understand. However, more objects with varying ge-
ometry needed to be tested to make sure that the system was robust even for many different
objects, especially objects consisting of primitive shapes like cubes and cylinders.
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