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Chapter 1

Introduction and motivation

1.1 Introduction

Numerical methods have, since their inception, been applied in support of development

and design of numerous productive industries. The ability to simulate and predict

behavior and properties without the expense of physical prototypes and tests offers a

huge advantage with benefits in cost, time and quality of the end product. The exact

area of application may vary, examples include structural stress, aerodynamic drag and

distribution of heat.

1.2 Motivation

This work will deal specifically with algorithms intended for use in simulating heat

distribution of materials with different heat properties while being in contact with each

other. The specific problem that initiated this search for efficient algorithms was one

raised by the introduction of reusable launch vehicles, in particular the first stage of

the Falcon 9 developed by SpaceX [1]. The demands placed by reusability require a

good understanding of the structural and heat properties of the rocket engine and also

pose fundamental questions such as “for how many launches can the engine nozzle be

expected to retain structural integrity before it would require replacement or repair?”

1



Chapter 1. Introduction and motivation 2

Figure 1.1: Engine test of a Merlin rocket engine, used by the company SpaceX [F1]

In this example, the engine nozzle is subject to massive forces and the heat distribution

will depend on the interaction of several materials with different thermal properties. To

name some: the composite engine nozzle is cooled by a cooling fluid led through pipes

in its interior while the same composite will be subject to the fuel being ignited in the

combustion chamber and then blasted out through the nozzle. The nozzle itself will be

interacting with the surrounding air before it leaves the atmosphere.

While this was the motivating problem for this work, it is not hard to imagine other

possible applications. One could be the brake system on a high-performance car. Here

friction caused by a hard brake will cause immense heat which will distribute among the

different components of the brake system and adjoining parts such as the wheels [2].

Figure 1.2: Disc brake of a high-performance car [F2]
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Another possible application would be in simulating a refrigerator (or a heat pump) as

this can also be modeled as a three-field problem.

Figure 1.3: Refrigerator schematic [F3] and a simple three-field model.

Essentially, we wish to create algorithms that take advantage of the various thermal

properties of different materials interacting with each other.

1.3 Method

The first decision when creating an algorithm to simulate the heat of a combination of

materials is whether to use a monolithic approach in which the code is tailored to the

problem specifically. The alternative is a partitioned approach in which the heat equation

is solved independently for each material. Here the different solvers are being coordinated

by a mother program and communicating by selected data transfers that are sending

boundary temperature and gradients between the solvers. The partitioned method offers

modular advantages allowing the solver to be quickly adapted for new problems as well

as in coupling different materials such as in the numerical simulation of fluid-structure

interaction [3]. A partitioned approach also offers the attractive advantage of reusing

existing solvers for new problems. This work will study a partitioned approach.

Another decision must be whether the algorithm is to be a direct solver, solving the

problem directly to machine accuracy or if an iterative method is to be used. In high

dimensional systems the computational cost of a direct solver may become very high

while an iterative method can deliver an approximate solution given a set tolerance but

also offers challenges in predicting and guaranteeing the speed of convergence. In this

work we will primarily study iterative methods. One of the basic methods of managing

the coupling is the Dirichlet-Neumann iteration [3]. To satisfy the coupling conditions

at the interface, Dirichlet- and Neumann data are sent between the sub-solvers in each

iteration in a sequential manner. There have been several studies examining convergence
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behavior of different implementations of the Dirichlet-Neumann iteration [4][5][6][7][8].

The author, however, is not aware of any study which presents an explicit analysis for

the three field case. Our hope is that by focusing on the one-dimensional case, we will

be able to gain explicit analytical predictions for the convergence behavior that will give

us some predictive power in higher dimensions as well.

1.4 Overview

This work studies the convergence properties of variants of an iterative partitioned

Dirichlet-Neumann iteration derived from the heat equation. We will be using a finite

element method to discretize all sub-domains.

We begin by looking at the two-domain problem to confirm results from an earlier work

and then move on to construct three different three-domain solvers. For all algorithms

considered, we perform a convergence analysis by analytically reducing the full solver

into a fixed-point iteration acting on the interfaces alone. This gives us an iteration

matrix whose spectral radius determines the speed of convergence. This allows us to

predict convergence rates given material coefficients.

It is worth noting that while we only consider the steady-state case, earlier analysis [3]

shows that the convergence behavior with a time discretization added is dominated by

the convergence rate predicted by material properties. The methods presented in this

thesis are thus likely not limited to the steady state case but extend directly to the

time-dependent case. Furthermore it has been shown [3] that in the two-field case, the

asymptotic convergence rates of the 2D case are consistent with the 1D case. There are

therefore grounds for hope that the same will hold true in the three-field case.

1.4.1 Organization

Chapter 2 introduces the mathematical background followed by the finite element dis-

cretization. In Chapter 3, the two field case is presented together with a convergence

analysis of the iterative solver. In Chapter 4 we construct three iterative solvers for the

three field case and present a convergence analysis for each. In Chapter 5 the predic-

tions made in Chapters 3 and 4 are tested in numerical experiments and we give some

examples of real-world applications. In Chapter 6 we present the conclusions of the work

together with some recommendations for further study.



Chapter 2

Theoretical background

2.1 Linear fixed point iteration

The analysis in this work will be based on extracting a fixed point iteration from the

Dirichlet-Neumann iteration. Specifically, we will formulate a Dirichlet-Neumann iter-

ation that aims to solve a problem on two or three sub-domains. From this we will

extract a linear fixed point iteration acting only on the boundary points separating the

domains. This will allow us to use basic properties of linear fixed point iterations to

predict the convergence of the underlying Dirichlet-Neumann iteration.

Given a (finite dimensional) linear system Ax = b where A ∈ Rn×n and x, b ∈ Rn, we

may rewrite it in fixed point form as x = Bx + b, where B = I − A, is the iteration

matrix. The fixed point iteration then becomes, starting with some initial guess x0;

xn+1 = Bxn + b. (2.1)

Here xn is the nth approximation of the unique fixed point x∗ satisfying x∗ = Bx∗+ b.

Then we have the following theorem [9] :

Theorem 2.1. For the (linear, finite dimensional) fixed point iteration (2.1) the follow-

ing holds

xn → x∗, ∀x0 ⇐⇒ ρ(B) < 1

where ρ(B) = max{ |σ| : σ is eigenvalue of B } is the spectral radius.

Furthermore, we have the following theorem about the rate of convergence [9] :

Theorem 2.2. If ρ(B) < 1 then, for any x0, the iterates of the linear fixed point

iteration (2.1) satisfy

lim sup
n→∞

||xn − x∗||
1
n ≤ ρ(B)

5
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so, if 0 < ρ(B) < 1, the linear fixed point iteration converges linearly with a root-

convergence factor of at most ρ(B).

2.2 Boundary conditions

When solving differential equations on well-defined regions, one needs to specify the

boundary conditions that are valid along the boundaries of those regions. In this work we

will be dealing with two different boundary conditions, the Dirichlet boundary condition

and the Neumann boundary condition. The Dirichlet condition gives the value of the

function in a certain point. The Neumann condition gives the value of the normal

derivative [10].

2.3 Dirichlet-Neumann iteration

The Dirichlet-Neumann iteration is a basic method in both domain decomposition and

fluid-structure interaction [3]. Its working principle is dividing a domain into sub-

domains and then solving a differential equation in each separately with alternating

boundary conditions. A simple example is as follows: consider that we wish to solve

some differential equation in Ω ⊂ R with given Dirichlet boundary conditions. Ω is

divided into two sub-domains Ω1∪Ω2 = Ω. We denote the interface Γ = Ω1∩Ω2. Given

an initial guess for the solution value on the interface u0
Γ, we construct the iteration in

Fig. 2.1:

Figure 2.1: Example of one step of a Dirichlet-Neumann iteration Here each bar
denotes a Dirichlet condition and the star denotes a Neumann condition.

Each phase of this iteration has two steps. First we solve the equation in Ω1 with

Dirichlet boundary conditions on both sides. Then, using the values obtained when
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solving Ω1, we construct a Neumann condition on the left side in Ω2. With this we find

a new value for the solution on the boundary u1
Γ as we solve the equation in Ω2.

For an increasing number of domains, successively more variations become possible in

how the Dirichlet and Neumann conditions can be ordered. In this work, we will begin

with the two field case as presented in Fig. 2.1 and then move on to construct and

investigate methods for the three field case.

2.4 Why the 1D Poisson’s equation?

We wish to examine the convergence behavior for an algorithm designed to solve the heat

equation for materials with different material properties. We begin by looking at the

general form of the unsteady transmission problem [3]. We consider a domain Ω ⊂ Rd

which is divided into two sub-domains Ω1∪Ω2 = Ω, with transmission conditions at the

interface Γ = Ω1 ∩ Ω2.

αm
∂um(x,t)

∂t −∇(λm∇um(x, t)) = 0 ; t ∈ [tstart, tend],x ∈ Ωm ⊂ Rd ; m = 1, 2

um(x, t) = 0 ; t ∈ [tstart, tend], um(x, t) ∈ ∂Ωm\Γ

u1(x, t) = u2(x, t) ; x ∈ Γ

λ1
∂u1(x,t)
∂n1

= λ2
∂u2(x,t)
∂n2

; x ∈ Γ

um(x, 0) = u0
m(x) ; x ∈ Ωm

(2.2)

where nm is the outward normal to Ωm. The constants λ1 and λ2 denote the thermal

conductivities of the materials of Ω1 and Ω2. The constants α1 and α2 are given by

αm = ρmCm where ρm is the density and Cm the heat capacity of the materials in Ω1

and Ω2. This transmission problem corresponds to solving two coupled heat equations,

where u(x, t) denotes the temperature.

As we wish to study in particular the dependence on the material coefficients λ and to

find explicit predictions for the rate of convergence, we keep things simple and look at

the 1D steady-state case. Thus we consider the case where d = 1 and ∂um(x,t)
∂t = 0. The

first equation of (2.2) then becomes

− λm∆um(x) = 0 ; x ∈ Ωm ⊂ R ; m = 1, 2. (2.3)

These are Laplace equations. The fact that we will concentrate on the dependence of

the material properties represented by λ, makes the study of the Laplace equation alone

somewhat troublesome. This is because, in (2.3), we can divide both sides with λm thus



Chapter 2. Theoretical background 8

eliminating it from this equation. In order to force a dependence we move onto the

Poisson equation. The right-hand-side f can physically be interpreted as a heat source

or sink within the material. We then wish to solve



−λm∆um(x) = fm ; x ∈ Ωm ⊂ R ; m = 1, 2

um(x) = 0 ; um(x) ∈ ∂Ωm\Γ

u1(x) = u2(x) ; x ∈ Γ

λ1
∂u1(x)
∂n1

= λ2
∂u2(x)
∂n2

; x ∈ Γ.

(2.4)

Here the first equation is the governing equation, the second and third gives us Dirichlet

conditions and the fourth gives us a Neumann condition. Numerically, for a non-zero f ,

this will correspond to solving the general heat equation for a non-zero ∂u
∂t term.

2.5 Theoretical derivation

We use a finite element method for the discretization. Suppose we have a domain Ω ∈ R
that is divided into two sub-domains Ω = Ω1 ∪ Ω2. The sub-domains Ω1 and Ω2 are

joined at an interface Γ = Ω1 ∩ Ω2. We use the equations from (2.4), futhermore we

restrict ourselves to the case where f
∣∣
Γ

= 0 .

Given a uniform grid {x1, x2, ..., xn}, define test functions:

φk(x) =


x−xk−1

∆x ;x ∈ (xk−1, xk]

xk+1−x
∆x ;x ∈ (xk, xk+1]

0 ; else.

2.5.1 Interior points

We approximate the solution by a sum of test functions;

u ≈
∑
i

ûiφi. (2.5)

Then we insert this expression into the governing equation from (2.4), ∆u = −f , and

multiply both sides with a test function φj , and then integrate both sides. Here we set

λ = 1 as this constant has no bearing on the derivation:∫
I
uxxφjdx = −

∫
I
fφjdx. (2.6)
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We now apply partial integration:

∫
I
(u)xxφjdx = (u)xφj

∣∣∣
I
−
∫
I
(u)x(φi)xdx (2.7)

and note that the first term disappears as all test functions have compact support. We

need thus only consider the integral. Inserting the sum;

∫
I
(u)x(φi)xdx =

∫
I
(
∑
i

ûiφi)x(φj)xdx =
∑
i

ûi

∫
I
(φi)x(φj)xdx. (2.8)

We look closer at the last integral: by construction of the test functions it follows that

when i, j differ by more than one, the resulting integral is zero. When i=j:

∫
I
(φi)x(φi)xdx =

1

∆x2

∫ 2∆x

0
1dx =

2

∆x
(2.9)

when i and j differ by one:∫
I
(φi)x(φj)xdx =

1

∆x2

∫ ∆x

0
−1dx =

−1

∆x
. (2.10)

2.5.2 Boundary

Inserting the sum we get, for the left hand side (LHS):

∫
I
uxxφjdx =

∫
I
(
∑
i

ûiφi)xxφjdx =
∑
i

ûi

∫
I
(φi)xxφjdx. (2.11)

We now rewrite the last integral using partial integration.

Here we take note of the coupling condition from (2.4):

λ1
∂u1

∂n1

∣∣∣
Γ

= −λ2
∂u2

∂n2

∣∣∣
Γ
. (2.12)

Next, we note that the active test functions along the boundary will be φn1 , φΓ and φ1
2.

In respective cells Ωn
1 ,Ω

1
2 we thus have:

In Ωn
1 :, u1 = ûn1φ

n
1 + ûΓφΓ In Ω1

2:, u2 = ûΓφΓ + û1
2φ

1
2

First we note that, if φj is a nodal basis function for a node on Γ we can rewrite the

fourth equation of (2.4) using Green’s formula [3]
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Figure 2.2: Boundary point with surrounding test functions

∫
∂Ωi

∂ui
∂ni

φjds =

∫
Ωi

(∆uiφj +∇ui∇φj)dx =

∫
Ωi

(−fφj +∇ui∇φj)dx. (2.13)

Now if we consider the second part of the last expression in particular, the right hand

side (RHS) of the coupling condition in (2.12) becomes:

λ1

∫
∂Ωn1

∂u1

∂n1
φjds = λ1

∫
Ωn1

(−fφj)dx+ λ1

∫
Ωn1

(∇u1∇φj)dx =: fΓ
1 + λ1

∫
Ωn1

(∇u1∇φj)

(2.14)

and with analog notation the left hand side becomes:

λ2

∫
∂Ω1

2

∂u2

∂n1
φjds =: fΓ

2 + λ2

∫
Ω1

2

(∇u2∇φj). (2.15)

We approximate further by assuming fΓ
1 = fΓ

2 = 0. This lets us ignore the fΓ
i -terms

which simplifies the analysis and for our intended applications these terms will be very

small and thus should not affect the convergence analysis. Next we insert the expressions

for u1 and u2 where they are expressed with their basis functions.

RHS:

λ1

∫
Ωn1

(∇u1∇φj) = λ1

∫
Ωn1

(∇(ûn1φ
n
1 + ûΓφΓ)∇φj) = λ1

∫
Ωn1

(
ûn1 × (−1) + ûΓ× (+1)

)
∇φj .

(2.16)

LHS:

−λ2

∫
Ω1

2

(∇u2∇φj) = −λ2

∫
Ω1

2

(∇(ûΓφΓ+û1
2φ

1
2)∇φj) = −λ2

∫
Ω1

2

(
ûΓ×(−1)+û1

2×(+1)
)
∇φj .

(2.17)

We then get:

λ1

∆x

∫
Ωn1

(
ûn1 × (−1) + ûΓ × (+1)

)
∇φΓ =!

−λ2

∆x

∫
Ω1

2

(
ûΓ × (−1) + û1

2 × (+1)
)
∇φΓ (2.18)

which, after taking into account that the sign of ∇φΓ changes:

λ1

∆x2
(ûΓ − ûn1 ) =!

λ2

∆x2
(û1

2 − ûΓ). (2.19)
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Here ûn1 denotes the last entry in the vector û1 containing the interior points in the first

domain. It can equivalently be expressed the dot product of vectors eTn û1, analogosly

û1
2 = eT1 û2.



Chapter 3

Two-field case

Here we consider the case where the domain Ω is split into two domains of equal length

and identical discretization, the sole difference being that the interface between them

is adjoined to the second domain Ω2. Ω = Ω1 ∪ Ω2, Ω1 ∩ Ω2 = Γ. For the purpose of

this work, n will denote the number of interior points of Ω1 and Ω2 respectively. Ω as a

whole will thus have 2n+ 3 points, the two domains, start, end and boundary. We will

use the same iteration as described in Fig. 2.1. That is we first solve Ω1 with Dirichlet

conditions on both sides, and then solve Ω2 with a Dirichlet condition on the right side

and a Neumann condition on the left side, updating the boundary value.

Figure 3.1: Division into two domains of equal length

We use the approximation for ∆u as derived in (2.9) & (2.10). This discretization gives

us the following system for Ω1:

A1x = b1 (3.1)

where

12
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A1 =
1

∆x2



2 −1 0 . . . 0

−1 2 −1
. . .

...

0 −1 2
. . . 0

...
. . .

. . .
. . . −1

0 . . . 0 −1 2


∈ Rn×n (3.2)

and

b1 =



f1
1
λ1

+ ustart
dx2

f2
1
λ1

...
fn−1
1
λ1

fn1
λ1

+ uΓ
dx2


∈ Rn. (3.3)

Here the first and last entries in (3.3) contain the terms from the Dirichlet conditions.

The solution obtained from solving this side will be denoted u1 = (u1
1, u

2
1, . . . , u

n
1 )T . For

Ω2, the system matrix is identical in structure but it has one more unknown, as solving

this side also gives us a new value for uΓ.

A2 =
1

∆x2



−λ2 λ2 0 . . . 0

−1 2 −1
. . .

...

0 −1 2
. . . 0

...
. . .

. . .
. . . −1

0 . . . 0 −1 2


∈ R(n+1)×(n+1) (3.4)

the corresponding vector is then:

b2 =



λ1
∆x2 (ûΓ − ûn1 )

f1
2
λ2

...
fn−1
2
λ2

fn2
λ2

+ uend
dx2


∈ R(n+1). (3.5)

The top entry of b2 combined with the first row of A2 enforce the Neumann condition.

The solution obtained by this system is denoted u2 = (uΓ, u
1
2, u

2
2, . . . , u

n
2 )T . The first

row of this system corresponds to the equation (2.19).

Below is a pseudo-code of the iteration used.
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Algorithm 1 Iteration given intial guess u0
Γ and endpoints ustart, uend

1: flag=True
2: uΓ = u0

Γ

3: Construct A1, A2 as in (3.2) and (3.4)
4: for flag=True do
5: Construct b1 as in (3.3)
6: Obtain u1 by solving A1x = b1
7: Construct b2 as in (3.5)
8: Obtain u2 by solving A2x = b2
9: uoldΓ = uΓ

10: Extract new uΓ from u2

11: If |uoldΓ − uΓ| < tol set flag=False
12: end for
13: return (ustart,u1,u2, uend) as solution.

3.1 Two-field case analysis

We rewrite the system presented by reordering the unknowns. The combined matrix for

the two-field case can then be expressed as Au = f where:

A =


A

(1)
II 0 A

(1)
IΓ

0 A
(2)
II A

(2)
IΓ

A
(1)
ΓI A

(2)
ΓI AΓΓ

 (3.6)

and

u =


u

(1)
I

u
(2)
I

uΓ

 ; f =


f1

f2

fΓ

 . (3.7)

Here u
(i)
I denote the interior points of Ωi and uΓ denotes the boundary between Ω1 and

Ω2. This notation allows us to separate the components as follows.

Interface to interface

A
(1)
ΓΓ =

λ1

∆x2
; A

(2)
ΓΓ =

λ2

∆x2
. (3.8)

Interior points

A
(1)
II =

λ1

∆x2



2 −1 0 . . . 0

−1 2 −1
. . .

...

0 −1 2
. . . 0

...
. . .

. . .
. . . −1

0 . . . 0 −1 2


;A

(2)
II =

λ2

∆x2



2 −1 0 . . . 0

−1 2 −1
. . .

...

0 −1 2
. . . 0

...
. . .

. . .
. . . −1

0 . . . 0 −1 2


; (3.9)
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points to interface

A
(1)
IΓ =

−λ1

∆x2
eN ; A

(2)
IΓ =

−λ2

∆x2
e1; (3.10)

and

A
(1)
ΓI =

−λ1

∆x2
eN

T ; A
(2)
ΓI =

−λ2

∆x2
e1

T . (3.11)

Here ei denotes the vector containing 1 at the i-th position and zeros everywhere else.

We now extract the relevant sub-systems. We begin by looking at the first step of the

method where Ω1 is solved with Dirichlet boundary conditions on both sides. This gives

us the following equation:

A
(1)
II u

(1)(k+1)

I +A
(1)
IΓu

k
Γ = f1.

Inserting the values and rearranging:

A
(1)
II u

(1)(k+1)

I = f1 +
λ1

∆x2
eNu

k
Γ,

we thus have

u
(1)(k+1)

I = A
(1)−1

II (f1 +
λ1

∆x2
enu

k
Γ). (3.12)

We move on to the second step of the iteration where we solve Ω2 with Neumann

condition on the left side and Dirichlet condition on the right side.

[
A

(2)
II A

(2)
IΓ

A
(2)
ΓI Ã

(2)
ΓΓ

][
u

(2)(k+1)

I

u
(k+1)
Γ

]
=

[
f̃2

f̃Γ

]
. (3.13)

Which in our case is:

λ2

∆x2



2 −1 0 . . . 0 −1

−1 2 −1
. . . 0 0

0
. . .

. . .
. . .

. . .
...

...
. . . −1 2 −1 0

0 . . . 0 −1 2 0

−1 0 . . . 0 0 1





u1(k+1)

2

u2(k+1)

2
...
...

un
(k+1)

2

uk+1
Γ


=



f1
2

f2
2
...
...

fn2
λ1

∆x2 (un
(k+1)

1 − ukΓ)


. (3.14)
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From this we get two equations:

A
(2)
II u

(2)(k+1)

I − λ2

∆x2
uk+1

Γ = f2 (3.15)

and

− λ2

∆x2
e1

Tu
(2)(k+1)

I +
λ2

∆x2
uk+1

Γ =
λ1

∆x2
(en

Tu
(1)(k+1)

I − ukΓ). (3.16)

Rewriting (3.15) we get

u
(2)(k+1)

I = A
(2)−1

II (f2 +
λ2

∆x2
e1u

k+1
Γ ). (3.17)

Rewriting (3.16):

λ2

∆x2
u

(k+1)
Γ1

=
λ1

∆x2
en

Tu
(1)(k+1)

I − λ1

∆x2
ukΓ +

λ2

∆x2
e1

Tu
(2)(k+1)

I (3.18)

multiplying both sides by ∆x2

λ2
:

u
(k+1)
Γ1

=
λ1

λ2
en

Tu
(1)(k+1)

I − λ1

λ2
ukΓ + e1

Tu
(2)(k+1)

I . (3.19)

Inserting the expressions for the interior points (3.12) and (3.17) into (3.19):

uk+1
Γ =

λ1

λ2
en

T (A
(1)−1

II (f1 +
λ1

∆x2
enu

k
Γ))− λ1

λ2
ukΓ + e1

T (A
(2)−1

II (f2 +
λ2

∆x2
e1u

k+1
Γ )).

As we are searching for a relation between ukΓ and uk+1
Γ , we simplify the expression and

collect all terms not dependent on either into φ:

uk+1
Γ =

λ2
1

λ2∆x2
en

TA
(1)−1

II enu
k
Γ −

λ1

λ2
ukΓ +

λ2

∆x2
e1

TA
(2)−1

II e1u
k+1
Γ + φ.

Rearranging:

(1− λ2

∆x2
e1

TA
(2)−1

II e1)uk+1
Γ = (

λ2
1

λ2∆x2
en

TA
(1)−1

II en −
λ1

λ2
)ukΓ + φ.

Finally, dividing both sides with (1− λ2
∆x2e1

TA
(2)−1

II e1):

uk+1
Γ =

λ2
1

λ2∆x2en
TA

(1)−1

II en − λ1
λ2

1− λ2
∆x2e1TA

(2)−1

II e1
ukΓ + φ̃. (3.20)

This is a fixed point iteration of the form seen in (2.1). As the iteration matrix is of

dimension 1× 1, it is a scalar and the spectral radius is given by its absolute value. We
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thus have:

ρ(B) =

∣∣∣∣∣
λ2

1
λ2∆x2en

TA
(1)−1

II en − λ1
λ2

1− λ2
∆x2e1TA

(2)−1

II e1

∣∣∣∣∣ =

∣∣∣∣∣λ1

λ2

∣∣∣∣∣
∣∣∣∣∣ λ1

∆x2en
TA

(1)−1

II en − 1

1− λ2
∆x2e1TA

(2)−1

II e1

∣∣∣∣∣. (3.21)

We now consider that the A
(i)
II ’s are tridiagonal Toeplitz matrices, that is to say they are

of the form A
(i)
II = Tridiagonal(a, b, c). This is a well studied structure and in particular

the general form of the eigendecomposition of symmetric tridiagonal Toeplitz-matrices

is known [11]. Given:

A
(i)−1
II = Tridiag(

−λi
∆x2

,
2λi
∆x2

,
−λi
∆x2

)−1 = V D−1
i V (3.22)

where Di is the diagonal consisting of the eigenvalues. The matrix V is common for all

symmetric, tridiagonal Toeplitz-matrices. It is given by [11]:

vij =
1√∑n

k=1 sin2( kπ
n+1)

sin(
ijπ

n+ 1
). (3.23)

Further, if A = tridiag(c, b, a) its eigenvalues and eigenvectors are given by [11]

σj = b+ 2a

√
c

a
cos(

jπ

n+ 1
) (3.24)

xij =
c

a

i
2

sin(
ijπ

n+ 1
). (3.25)

Looking at A
(i)−1
II specifically we have:

A
(m)
ΓI A

(m)−1

II A
(m)
IΓ =

−λm
∆x2

eTA
(m)−1

II

−λm
∆x2

e =
−λm
∆x2

eTV D−1
m V
−λm
∆x2

e = (∗). (3.26)

Now we denote the diagonal matrix containing the inverse eigenvaluesD−1
m = diag(α1, ..., αN ),

further we have symmetry in V as vi,j = vj,i:

(∗) =
( λm

∆x2

)2
n∑
i=1

αiv
2
1,i =

( λm
∆x2

)2
n∑
i=1

sin2( iπ
n+1)

(
∑n

k=1 sin2( kπ
n+1))(2λm

∆x2 + λm cos( iπ
n+1))

. (3.27)
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Pulling out λm

(∗) =
( λm

∆x4

) n∑
i=1

sin2( iπ
n+1)

(
∑n

k=1 sin2( kπ
n+1))( 2

∆x2 + cos( iπ
n+1))

. (3.28)

In our case we have:

B =

λ2
1

λ2∆x2en
TA

(1)−1

II en − λ1
λ2

1− λ2
∆x2e1TA

(2)−1

II e1
=

λ2
1

λ2∆x2en
TV D−1

2 V en − λ1
λ2

1− λ2
∆x2e1TV D

−1
2 V e1

(3.29)

here (neglecting the normalization term in (3.23))

e1
TV =

√
2

n+ 1
(sin

( 1π

n+ 1

)
, sin

( 2π

n+ 1

)
, ..., sin

( nπ

n+ 1

)
) (3.30)

thus:

e1
TV D−1 =

∆x2

2λ2

√
2

n+ 1

(
sin
(

π
n+1

)
1− cos

(
π
n+1

) , sin
(

2π
n+1

)
1− cos

(
2π
n+1

) , ..., sin
(
nπ
n+1

)
1− cos

(
nπ
n+1

)). (3.31)

Further we have:

V e1 =

√
2

n+ 1
(sin

( 1π

n+ 1

)
, sin

( 2π

n+ 1

)
, ..., sin

( nπ

n+ 1

)
)T (3.32)

thus

e1
TA

(i)−1

II e1 = e1
TV D−1

j V e1 =
∆x2

λj(n+ 1)

n∑
i=1

sin2
(
iπ
n+1

)
1− cos

(
iπ
n+1

) =
∆x3

λj

n∑
i=1

sin2
(
iπ
n+1

)
1− cos

(
iπ
n+1

) .
(3.33)

We write out the other combinations as well:

V en =

√
2

n+ 1
(sin

( nπ

n+ 1

)
, sin

( 2nπ

n+ 1

)
, ..., sin

( n2π

n+ 1

)
)T (3.34)

en
TV =

√
2

n+ 1
(sin

( nπ

n+ 1

)
, sin

( 2nπ

n+ 1

)
, ..., sin

( n2π

n+ 1

)
) (3.35)

en
TV D−1 =

∆x2

2λ2

√
2

n+ 1

(
sin
(
nπ
n+1

)
1− cos

(
π
n+1

) , sin
(

2nπ
n+1

)
1− cos

(
2π
n+1

) , ..., sin
(
n2π
n+1

)
1− cos

(
nπ
n+1

)).
Finally

en
TV D−1

j V en =
∆x2

2λj

2

n+ 1

n∑
i=1

sin2
(
inπ
n+1

)
1− cos

(
iπ
n+1

) =
∆x3

λj

n∑
i=1

sin2
(
inπ
n+1

)
1− cos

(
iπ
n+1

) . (3.36)
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Inserting:

B =

λ2
1

λ2∆x2en
TA

(1)−1

II en − λ1
λ2

1− λ2
∆x2e1TA

(2)−1

II e1
=

λ2
1

λ2∆x2
∆x3

λ1

(∑n
i=1

sin2
(
inπ
n+1

)
1−cos

(
iπ
n+1

))− λ1
λ2

1− λ2
∆x2

∆x3

λ2

∑n
i=1

sin2
(
iπ
n+1

)
1−cos

(
iπ
n+1

) (3.37)

=
λ1

λ2

∆x

(∑n
i=1

sin2
(
inπ
n+1

)
1−cos

(
iπ
n+1

))− 1

1−∆x
∑n

i=1

sin2
(
iπ
n+1

)
1−cos

(
iπ
n+1

) =
−λ1

λ2

1−∆x
∑n

i=1

sin2
(
inπ
n+1

)
1−cos

(
iπ
n+1

)
1−∆x

∑n
i=1

sin2
(
iπ
n+1

)
1−cos

(
iπ
n+1

) .
We wish to simplify this further, for this we look at the term sin2

(
inπ
n+1

)
and use the

relation ∆x = 1/(n+ 1). We then have:

sin2
( inπ
n+ 1

)
= sin2

(
(1−∆x)iπ

)
. (3.38)

We now separate the two cases were i is either odd or even:

sin
(
(1−∆x)iπ

)
= sin

(
iπ −∆xiπ

)
=

− sin
(
∆xiπ

)
; i even

sin
(
∆xiπ

)
; i odd.

(3.39)

We can now rewrite B as:

B =
−λ1

λ2

1−∆x
∑n

i=1

sin2
(

∆xiπ
)

(1−cos
(
iπ∆x

)
)

1−∆x
∑n

i=1

sin2
(

∆xiπ
)

(1−cos
(
iπ∆x

)
)

=
−λ1

λ2
. (3.40)

We thus have:

ρ(B) =
λ1

λ2
. (3.41)

By theorem 2.1. the necessary and sufficient condition for convergence is thus λ1
λ2
< 1.
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3.2 Whole domain solver

For the purpose of comparison we construct a separate solver which solves (2.4) on the

whole domain directly as opposed to by iteration. The system is given by:

A =
1

∆x2



2λ1 −λ1 0 . . . . . . . . . . . . . . . 0

−λ1 2λ1 −λ1
. . .

...

0
. . .

. . .
. . .

. . .
...

...
. . . −λ1 2λ1 −λ1

. . .
...

...
. . . −λ1 λ1 + λ2 −λ2

. . .
...

...
. . . −λ2 2λ2 −λ2

. . .
...

...
. . .

. . .
. . .

. . . 0
...

. . . −λ2 2λ2 −λ2

0 . . . . . . . . . . . . . . . 0 −λ2 2λ2



∈ R(2n+1)×(2n+1)

(3.42)

and

b1 =
[
f1

1 + ustart
dx2 , f2

1 , . . . fn1 , fΓ, f1
2 , . . . fn−1

2 , fn2 + uend
dx2

]T
∈ R2n+1 (3.43)

with A ∈ R(3n+2)×(3n+2) and b ∈ R3n+2. Here ustart and uend denote the start- and

end-point values, respectively.



Chapter 4

Three-field case

We now extend the method to a three-field domain. We extend the two field problem

Figure 4.1: Division into three domains of equal length

from (2.4), we have Ω = Ω1 ∪ Ω2 ∪ Ω3 and interfaces Γ1 = Ω1 ∩ Ω2 and Γ2 = Ω2 ∩ Ω3.

−λm∆um(x) = fm ; x ∈ Ωm ⊂ R ; m = 1, 2, 3

um(x) = 0 ; um(x) ∈ ∂Ωm\{Γ1,Γ2}

u1(x) = u2(x) ; x ∈ Γ1

u2(x) = u3(x) ; x ∈ Γ2

λ1
∂u1(x)
∂n1

= λ2
∂u2(x)
∂n2

; x ∈ Γ1

λ2
∂u2(x)
∂n2

= λ3
∂u3(x)
∂n3

; x ∈ Γ2.

(4.1)

The previous derivations still hold true, what is new is that we now have two section

boundary points in uΓ1 and uΓ2 . The general idea for the iteration will be to start with

an initial guess for (uΓ1 , uΓ2), then to solve the sections, starting by using the initial

guesses as end-points. There are several ways one could go about constructing such an

algorithm, in this work three variants are studied in detail.

21
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The first method solves the equation (4.1) on Ω1 using Dirichlet boundary conditions

on both sides and then sequentially solving the equation on Ω2 and Ω3 with Dirichlet

condition on the right hand side and with Neumann conditions on the left hand side,

each updating the value at the boundary.

The second method solves the equation on section Ω1 and Ω3 with the initial guesses

as endpoint and startpoint respectively, then solving the equation on Ω2 and using the

boundary condition derived above to obtain new values for both section boundary points.

The models are explained in detail below.

The third method is analogous in structure to the second method but it begins by solving

the equation on Ω2.

4.1 Three-section split - Method 1

One iteration step of Method 1 is presented in Fig. 4.2:

Figure 4.2: Division into three domains of equal length, star denotes Neumann con-
dition being enforced, bar denotes Dirichlet

We write the combined matrix:
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A
(1)
II 0 0 A

(1)
IΓ1

0

0 A
(2)
II 0 A

(2)
IΓ1

A
(2)
IΓ2

0 0 A
(3)
II 0 A

(3)
IΓ2

A
(1)
Γ1I

A
(2)
Γ1I

0 AΓ1Γ1 0

0 A
(2)
Γ2I

A
(3)
Γ2I

0 AΓ2Γ2





u
(1)
I

u
(2)
I

u
(3)
I

uΓ1

uΓ2


=



f1

f2

f3

fΓ1

fΓ2


. (4.2)

Here u
(i)
I denotes the solution values in the interior points of Ωi and uΓi denotes the

solution values on the boundaries. We now wish to extract subsystems, and begin by

step 2 of the algorithm, that is solving the equation on Ω2 with Neumann conditions on

the left hand side and Dirichlet boundary condition on the right hand side. When we

extract sub-systems, we have to rearrange the system as we no longer have access to all

the solution values. For example, in the second step of the iteration, the value of uΓ2

is treated as a Dirichlet boundary condition and is thus moved into the term f̃Γ1 . The

second step can thus be expressed:

[
A

(2)
II A

(2)
IΓ1

A
(2)
Γ1I

Ã
(2)
Γ1Γ1

][
u

(2)(k+1)

I

u
(k+1)
Γ1

]
=

[
f̃2

f̃Γ1

]
(4.3)

which in our case is:

λ2

∆x2



2 −1 0 . . . 0 −1

−1 2 −1
. . . 0 0

0
. . .

. . .
. . .

. . .
...

...
. . . −1 2 −1 0

0 . . . 0 −1 2 0

−1 0 . . . 0 0 1





u1(k+1)

2

u2(k+1)

2
...
...

un
(k+1)

2

u
(k+1)
Γ1


=



f1
2

f2
2
...
...

fn2 +
λ2ukΓ2
∆x2

λ1
∆x2 (un

(k+1)

1 − ukΓ1
)


. (4.4)

From this we get two equations:

A
(2)
II u

(2)(k+1/2)

I +A
(2)
IΓ1

u
(k+1)
Γ1

= A
(2)
II u

(2)(k+1/2)

I − λ2

∆x2
e1u

(k+1)
Γ1

= f2 +
λ2

∆x2
enu

k
Γ2

(4.5)

and

− λ2

∆x2
e1

Tu
(2)(k+1)

I +
λ2

∆x2
u

(k+1)
Γ1

=
λ1

∆x2
(en

Tu
(1)(k+1)

I − ukΓ1
). (4.6)
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Rewriting (4.5) we get

λ2

∆x2
e1u

(k+1)
Γ1

= A
(2)
II u

(2)(k+1)

I − f2 −
λ2

∆x2
enu

k
Γ2
. (4.7)

Rewriting (4.6):

λ2

∆x2
u

(k+1)
Γ1

=
λ1

∆x2
en

Tu
(1)(k+1)

I − λ1

∆x2
ukΓ1

+
λ2

∆x2
e1

Tu
(2)(k+1)

I . (4.8)

Now we do the same thing for step 3; this system is analogous to step two in (4.4),

here we solve the equation on Ω3 with Neumann conditions on the left hand side and

Dirichlet boundary condition on the right hand side. The system is:

λ3

∆x2



2 −1 0 . . . 0 −1

−1 2 −1
. . . 0 0

0
. . .

. . .
. . .

. . .
...

...
. . . −1 2 −1 0

0 . . . 0 −1 2 0

−1 0 . . . 0 0 1





u1(k+1)

3

u2(k+1)

3
...
...

un
(k+1)

3

u
(k+1)
Γ2


=



f1
3

f2
3
...
...

fn3
λ2

∆x2 (un
(k+1)

2 − ukΓ2
)


. (4.9)

From this we get two equations:

A
(3)
II u

(3)(k+1)

I +A
(3)
IΓ1

u
(k+1)
Γ2

= A
(3)
II u

(3)(k+1)

I − λ3

∆x2
e1u

(k+1)
Γ2

= f3 (4.10)

and

− λ3

∆x2
e1

Tu
(3)(k+1)

I +
λ3

∆x2
u

(k+1)
Γ2

=
λ2

∆x2
en

Tu
(2)(k+1)

I − λ2

∆x2
ukΓ2

. (4.11)

We now rewrite equations (4.8) and (4.11) that we have obtained from the two systems

and divide both sides with the respective λi
∆x2 :

u
(k+1)
Γ1

=
λ1

λ2
en

Tu
(1)(k+1)

I − λ1

λ2
ukΓ1

+ e1
Tu

(2)(k+1)

I (4.12)

u
(k+1)
Γ2

=
λ2

λ3
en

Tu
(2)(k+1)

I − λ2

λ3
ukΓ2

+ e1
Tu

(3)(k+1)

I . (4.13)
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Writing out the formulas for the interior points, the first equation is simply solving on

Ω1 with Dirichlet conditions on both sides, the other two follow from (4.5) and (4.10).

u
(1)(k+1)

I = A
(1)−1

II (f1 +
λ1

∆x2
enu

k
Γ1

) =: A
(1)−1

II b1 (4.14)

u
(2)(k+1)

I = A
(2)−1

II (f2 +
λ2

∆x2
e1u

(k+1)
Γ1

+
λ2

∆x2
enu

k
Γ2

) (4.15)

u
(3)(k+1)

I = A
(3)−1

II (f3 +
λ3

∆x2
e1u

(k+1)
Γ2

). (4.16)

Inserting into (4.12):

u
(k+1)
Γ1

=
λ1

λ2
en

TA
(1)−1

II (f1+
λ1

∆x2
enu

k
Γ1

)−λ1

λ2
ukΓ1

+e1
TA

(2)−1

II (f2+
λ2

∆x2
e1u

(k+1)
Γ1

+
λ2

∆x2
enu

k
Γ2

).

Rewriting and collecting all terms not dependent on the boundary values into Φ1:

u
(k+1)
Γ1

=
λ2

1

λ2∆x2
en

TA
(1)−1

II enu
k
Γ1
−λ1

λ2
ukΓ1

+
λ2

∆x2
e1

TA
(2)−1

II e1u
(k+1)
Γ1

+
λ2

∆x2
e1

TA
(2)−1

II enu
k
Γ2

+Φ1.

As we wish to find u
(k+1)
Γ1

(ukΓ1
, ukΓ2

), we move all u
(k+1)
Γ1

terms to one side:

(1− λ2

∆x2
e1

TA
(2)−1

II e1)u
(k+1)
Γ1

=
λ2

1

λ2∆x2
en

TA
(1)−1

II enu
k
Γ1
−λ1

λ2
ukΓ1

+
λ2

∆x2
e1

TA
(2)−1

II enu
k
Γ2

+Φ1.

Dividing:

u
(k+1)
Γ1

=

λ2
1

λ2∆x2en
TA

(1)−1

II enu
k
Γ1
− λ1

λ2
ukΓ1

+ λ2
∆x2e1

TA
(2)−1

II enu
k
Γ2

+ Φ1

1− λ2
∆x2e1TA

(2)−1

II e1
. (4.17)

As we later wish to represent this as a linear fixed point iteration, we separate the uΓ’s;

all terms not dependent on the boundary values merge into Φ̃1.

u
(k+1)
Γ1

=
(

λ2
1

λ2∆x2en
TA

(1)−1

II en − λ1
λ2

)

1− λ2
∆x2e1TA

(2)−1

II e1
ukΓ1

+
λ2

∆x2e1
TA

(2)−1

II en

1− λ2
∆x2e1TA

(2)−1

II e1
ukΓ2

+ Φ̃1. (4.18)

We now do the same for u2
Γ, inserting (4.15) and (4.16) into (4.13).

u
(k+1)
Γ2

=
λ2

λ3
en

TA
(2)−1

II (f2+
λ2

∆x2
e1u

(k+1)
Γ1

+
λ2

∆x2
enu

k
Γ2

)−λ2

λ3
ukΓ2

+e1
TA

(3)−1

II (f3+
λ3

∆x2
e1u

(k+1)
Γ2

).

Rewriting and collecting all terms not dependent on the boundary values into Φ2:

u
(k+1)
Γ2

=
λ2

2

λ3∆x2
en

TA
(2)−1

II e1u
(k+1)
Γ1

+
λ2

2

λ3∆x2
en

TA
(2)−1

II enu
k
Γ2
−λ2

λ3
ukΓ2

+
λ3

∆x2
e1

TA
(3)−1

II e1u
(k+1)
Γ2

+Φ2.
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As before, we wish to find u
(k+1)
Γ2

(ukΓ1
, ukΓ2

), we move all u
(k+1)
Γ2

terms to one side:

(1− λ3

∆x2
e1

TA
(3)−1

II e1)u
(k+1)
Γ2

=
λ2

2

λ3∆x2
en

TA
(2)−1

II e1u
(k+1)
Γ1

+
λ2

2

λ3∆x2
en

TA
(2)−1

II enu
k
Γ2
−λ2

λ3
ukΓ2

+Φ2.

To integrate this into the linear fixed point iteration, we separate the uΓ’s; all terms not

dependent on the boundary values merge into Φ̃2.

u
(k+1)
Γ2

=

λ2
2

λ3∆x2en
TA

(2)−1

II e1

1− λ3
∆x2e1TA

(3)−1

II e1
uΓk+1

1
+

(
λ2

2
λ3∆x2en

TA
(2)−1

II en − λ2
λ3

)

1− λ3
∆x2e1TA

(3)−1

II e1
ukΓ2

+ Φ̃2. (4.19)

We may write (4.18) and (4.19) as:

u
(k+1)
Γ1

= a1u
k
Γ1

+ b1u
k
Γ2

+ Φ̃1 (4.20)

u
(k+1)
Γ2

= a2u
(k+1)
Γ1

+ b2u
k
Γ2

+ Φ̃2 = a2(a1u
k
Γ1

+ b1u
k
Γ2

+ Φ̃1) + b2u
k
Γ2

+ Φ̃2 (4.21)

where:

a1 =

λ2
1

λ2∆x2en
TA

(1)−1

II en − λ1
λ2

1− λ2
∆x2e1TA

(2)−1

II e1
(4.22)

b1 =
λ2

∆x2e1
TA

(2)−1

II en

1− λ2
∆x2e1TA

(2)−1

II e1
(4.23)

a2 =

λ2
2

λ3∆x2en
TA

(2)−1

II e1

1− λ3
∆x2e1TA

(3)−1

II e1
(4.24)

b2 =

λ2
2

λ3∆x2en
TA

(2)−1

II en − λ2
λ3

1− λ3
∆x2e1TA

(3)−1

II e1
. (4.25)

We get the following fixed point iteration (as defined in (2.1)):[
u

(k+1)
Γ1

u
(k+1)
Γ2

]
=

[
a1 b1

a1a2 (a2b1 + b2)

][
ukΓ1

ukΓ2

]
+

[
Φ̃1

a2Φ̃1 + Φ̃2

]
. (4.26)

As we wish to find maxi(|σi|), we would want to have the explicit forms of the eigen-

values. To calculate these, we have to recall some of the basic properties of the inverses

of tridiagonal Toeplitz matrices. Recall that as we saw in (3.22),(3.23) and (3.24), the

matrix:
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M =
λ

∆x2



2 −1 0 . . . 0

−1 2 −1
. . .

...

0
. . .

. . .
. . . 0

...
. . . −1 2 −1

0 . . . 0 −1 2


∈ Rn×n (4.27)

has eigenvalues

σj =
2λ

∆x2
− 2λ

∆x2
cos

(
jπ

n+ 1

)
(4.28)

with corresponding eigenvectors:

vj =



sin
( 1jπ
n+1

)
sin
( 2jπ
n+1

)
sin
( 3jπ
n+1

)
...

sin
( njπ
n+1

)


. (4.29)

As M is a real valued positive definite symmetric matrix, we can decompose it as:

M = V DV T (4.30)

where V are orthogonal matrices composed of the eigenvectors. Further we have sym-

metry such that V = V T . The inverse then becomes:

M−1 = V D−1V (4.31)

and we have

M = V DV (4.32)

where:

V =

√
2

n+ 1



sin
(

1π
n+1

)
sin
(

2π
n+1

)
. . . sin

(
nπ
n+1

)
sin
(

2π
n+1

)
sin
(

4π
n+1

) . . .
...

sin
(

3π
n+1

) . . .
. . .

...
...

. . . sin
( (n−1)(n−1)π

n+1

)
sin
(n(n−1)π

n+1

)
sin
(
nπ
n+1

)
. . . sin

(n(n−1)π
n+1

)
sin
(
n2π
n+1

)


∈ Rn×n. (4.33)

Note that V is identical for all matrices of the form Tridiag(−λi
∆x2 ,

2λi
∆x2 ,

−λi
∆x2 ), only D

differs.
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And D is the diagonal matrix with

D =



2λ
∆x2 − 2λ

∆x2 cos

(
π
n+1

)
2λ

∆x2 − 2λ
∆x2 cos

(
2π
n+1

)
. . .

2λ
∆x2 − 2λ

∆x2 cos

(
nπ
n+1

)


∈ Rn×n

(4.34)

and D−1 is the diagonal matrix containing the corresponding inverses.

Now we look at the terms used in the iteration matrix in (4.26). The first thing to note

is that a1 in (4.22) is identical to B in (3.40). We thus have:

a1 =

λ2
1

λ2∆x2en
TA

(1)−1

II en − λ1
λ2

1− λ2
∆x2e1TA

(2)−1

II e1
=
−λ1

λ2
. (4.35)

As we move on to the other terms, we will need to use (3.33) and (3.36). We also write

out the other relevant combinations ei
TV D−1

i V ej , due to the symmetry of V we have:

e1
TV D−1

i V en = en
TV D−1

i V e1 =
∆x3

λi

n∑
i=1

sin
(
iπ
n+1

)
sin
(
inπ
n+1

)
1− cos

(
iπ
n+1

) . (4.36)

We can now begin with b1 from (4.23):

b1 =
λ2

∆x2e1
TA

(2)−1

II en

1− λ2
∆x2e1TA

(2)−1

II e1
=

λ2
∆x2

∆x3

λ2

∑n
i=1

sin
(
iπ
n+1

)
sin
(
inπ
n+1

)
1−cos

(
iπ
n+1

)
1− λ2

∆x2
∆x3

λ2

∑n
i=1

sin2
(
iπ
n+1

)
1−cos

(
iπ
n+1

)

=

∆x
∑n

i=1

sin
(
iπ
n+1

)
sin
(
inπ
n+1

)
1−cos

(
iπ∆x

)
1−∆x

∑n
i=1

sin2
(
iπ
n+1

)
1−cos

(
iπ∆x

) =

∆x
∑n

i=1

sin
(
iπ∆x

)
(−1)i+1 sin

(
iπ∆x

)
1−cos

(
iπ
n+1

)
1−∆x

∑n
i=1

sin2
(
iπ∆x

)
1−cos

(
iπ∆x

)

=

∆x
∑n

i=1

(−1)i+1 sin2
(
iπ∆x

)
1−cos

(
iπ∆x

)
1−∆x

∑n
i=1

sin2
(
iπ∆x

)
1−cos

(
iπ∆x

) ‘ =
∆x
∑n

i=1(−1)i+1(cos(iπ∆x) + 1)

1−∆x
∑n

i=1(cos(iπ∆x) + 1)
.

Here we used (3.39) and the Pythagorean identity. Before we go on simplifying, let us

first consider a2 from (4.24), using the symmetry from (4.36) and the fact that all λi in

the divisor cancel out as seen in (3.37):
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λ3

λ2
a2 =

λ2
∆x2en

TA
(2)−1

II e1

1− λ3
∆x2e1TA

(3)−1

II e1
=

λ2
∆x2e1

TA
(2)−1

II en

1− λ2
∆x2e1TA

(2)−1

II e1
= b1. (4.37)

As a2 and b1 only differ by a scalar multiplication, finding the value of one will give us the

value of both. Numerical tests were carried out for different discretizations, suggesting

that:

b1 =
λ3

λ2
a2 =

∆x
∑n

i=1

sin
(
iπ
n+1

)
sin
(
inπ
n+1

)
1−cos

(
iπ∆x

)
1−∆x

∑n
i=1

sin2
(
iπ
n+1

)
1−cos

(
iπ∆x

) =! 1. (4.38)

We now wish to analytically show that this is true for all n. Using this assumption will

be helpful as it allows us to simplify the problem into a single sum. Rewriting:

∆x
n∑
i=1

sin
(
iπ
n+1

)
sin
(
inπ
n+1

)
1− cos

(
iπ∆x

) =! 1−∆x
n∑
i=1

sin2
(
iπ
n+1

)
1− cos

(
iπ∆x

)
n∑
i=1

sin
(
iπ
n+1

)
sin
(
inπ
n+1

)
+ sin

(
iπ
n+1

)
sin
(
iπ
n+1

)
1− cos

(
iπ∆x

) =! n+ 1

using the identities from (3.39) and splitting the sums into even and odd parts:

=
n∑

i,odd

sin
(
iπ
n+1

)
sin
(
iπ
n+1

)
+ sin

(
iπ
n+1

)
sin
(
iπ
n+1

)
1− cos

(
iπ∆x

) +
n∑

i,even

− sin
(
iπ
n+1

)
sin
(
iπ
n+1

)
+ sin

(
iπ
n+1

)
sin
(
iπ
n+1

)
1− cos

(
iπ∆x

) .

The even part is zero, we are left with the odd part:

=
n∑

i,odd

2 sin2
(
iπ
n+1

)
(1− cos

(
iπ
n+1

)
)

=trig.identity

n∑
i,odd

2
1− cos2

(
iπ
n+1

)
(1− cos

(
iπ
n+1

)
)

=
n∑

i,odd

2
(

cos(
iπ

n+ 1
) + 1

)
.

=
n∑

i,odd

2 +
n∑

i,odd

2 cos(
iπ

n+ 1
) =! n+ 1. (4.39)

We now consider the cases where n is even and odd separately1.

1The author thanks D. Svensson Seth for his help in completing this proof.
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n even

We then have:
n∑

i,odd

2 = n. (4.40)

It remains to show that

n∑
i,odd

2 cos(
iπ

n+ 1
) =! 1. (4.41)

We re-index the sum

2

n/2−1∑
j=0

cos

(
(2j + 1)π

n+ 1

)
= 2

n/2∑
k=1

cos

(
(2k − 1)π

n+ 1

)

and note

2

n/2∑
k=1

cos

(
(2k − 1)π

n+ 1

)
+ 2

n/2∑
l=1

cos

(
2lπ

n+ 1

)
=

2

n/2∑
k=1

cos

(
(2k − 1)π

n+ 1

)
+ 2

n/2∑
k=1

cos

(
(n+ 2− 2k)π

n+ 1

)
= 0

where we reversed the order of summation in the second sum. Since [12]

cos

(
(2k − 1)π

n+ 1

)
+ cos

(
(n+ 2− 2k)π

n+ 1

)
= 2 cos

(
1

2

(
(2k − 1)π

n+ 1
+

(n+ 2− 2k)π

n+ 1

))
cos

(
1

2

(
(2k − 1)π

n+ 1
− (n+ 2− 2k)π

n+ 1

))
(4.42)

where

cos

(
1

2

(
(2k − 1)π

n+ 1
+

(n+ 2− 2k)π

n+ 1

))
= cos

(π
2

)
= 0.

Hence it is sufficient to show

2

n/2∑
l=1

cos

(
2lπ

n+ 1

)
= −1.

We apply the formula for the Dirichlet kernel [13]

1 + 2

m∑
l=1

cos(lx) =
sin((m+ 1/2)x)

sin(x/2)
.
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With m = n/2 and x = 2π
n+1 the right hand side becomes

sin
(

(n/2 + 1/2) 2π
n+1

)
sin
(

2π
2(n+1)

) =
sin (π)

sin
(

π
n+1

) = 0

so the desired formula (4.38) follows, i.e., that when n is even, we have b1 = 1.

n odd

We then have:
n∑

i,odd

2 = n+ 1. (4.43)

It remains to show that (re-indexing the sum again);

n∑
i,odd

2 cos(
iπ

n+ 1
) = 2

(n−1)/2∑
j=0

cos

(
(2j + 1)π

n+ 1

)
= 2

(n−1)/2+1∑
k=1

cos

(
(2k − 1)π

n+ 1

)
=! 0.

(4.44)

We can pair the k:th term with the ((n+ 3)/2− k):th term, for any 1 ≤ k ≤ (n+ 1)/2.

Summing these terms gives the same expression as in (4.42) so the terms in the sum

cancel pairwise this way. However, there is one exceptional case if (n+1)/2 is odd. This

means that we have an odd number of terms in the sum so naturally we get one term

which we cannot pair with another term in this way. However it is the ((n−1)/4+1):th

term with j = (n− 1)/4 so we can evaluate this term separately and get

cos

(
(2(n− 1)/4 + 1)π

n+ 1

)
= cos

(π
2

)
= 0.

Thus (4.38) also holds true when n is odd, and we have:

b1 =

∆x
∑n

i=1

sin
(
iπ
n+1

)
sin
(
inπ
n+1

)
1−cos

(
iπ∆x

)
1−∆x

∑n
i=1

sin2
(
iπ
n+1

)
1−cos

(
iπ∆x

) = 1. (4.45)

�

Finally we go onto b2 from (4.25):



Chapter 4. Three-field case 32

b2 =

λ2
2

λ3∆x2en
TA

(3)−1

II en − λ2
λ3

1− λ3
∆x2e1TA

(2)−1

II e1
=

λ2
2

λ3∆x2
∆x3

λ2

∑n
i=1

sin2
(
inπ
n+1

)
1−cos

(
iπ
n+1

) − λ2
λ3

1− λ3
∆x2

∆x3

λ3

∑n
i=1

sin2
(
iπ
n+1

)
1−cos

(
iπ
n+1

) .

We can rewire this in the same way we did for B in (3.37):

b2 =
−λ2

λ3

1−∆x
∑n

i=1

sin2
(
inπ
n+1

)
1−cos

(
iπ
n+1

)
1−∆x

∑n
i=1

sin2
(
iπ
n+1

)
1−cos

(
iπ
n+1

) =
−λ2

λ3
.

We thus have:

a1 =

λ2
1

λ2∆x2en
TA

(1)−1

II en − λ1
λ2

1− λ2
∆x2e1TA

(2)−1

II e1
=
−λ1

λ2
(4.46)

b1 =
λ2

∆x2e1
TA

(2)−1

II en

1− λ2
∆x2e1TA

(2)−1

II e1
= 1 (4.47)

a2 =

λ2
2

λ3∆x2en
TA

(2)−1

II e1

1− λ3
∆x2e1TA

(3)−1

II e1
=
λ2

λ3

λ2
∆x2en

TA
(2)−1

II e1

1− λ3
∆x2e1TA

(3)−1

II e1
=
λ2

λ3
(4.48)

b2 =

λ2
2

λ3∆x2en
TA

(2)−1

II en − λ2
λ3

1− λ3
∆x2e1TA

(3)−1

II e1
=
−λ2

λ3
. (4.49)

Inserting the values into the matrix in (4.26) we have:[
−λ1
λ2

1
−λ1
λ3

λ2
λ3

+ −λ2
λ3

]
=

[
−λ1
λ2

1
−λ1
λ3

0

]
(4.50)

with eigenvalues:

σ1,2 = −1

2

λ1

λ2
±

√
1

4

λ2
1

λ2
2

− λ1

λ3
. (4.51)

Note: This result shows us that as λ1
λ3
→ 0 the spectral radius of the iteration matrix

|σ|max → λ1
λ2

, which is the convergence speed of the two field case considered earlier.

Below is the pseudo-code for Method 1.
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Algorithm 2 Method 1: Iteration given intial guess (u0
Γ1
, u0

Γ2
) and endpoints ustart, uend

1: flag=True
2: (uΓ1 , uΓ2) = (u0

Γ1
, u0

Γ2
)

3: Construct A1, A2, A3 as in (3.9), (4.4) and (4.9)
4: while flag=True do
5: Construct b1 as in (4.14)
6: Obtain u1 by solving A1x = b1
7: Construct b2 as in (4.4)
8: Obtain u2 by solving A2x = b2
9: uoldΓ1

= uΓ1

10: Extract new uΓ from u2

11: Construct b3 as in (4.9)
12: Obtain u3 by solving A3x = b3
13: uoldΓ2

= uΓ2

14: Extract new uΓ2 from u3

15: If ||(uoldΓ1
, uoldΓ2

)− (uΓ1 , uΓ2)|| < tol set flag=False
16: end while
17: return (ustart,u1,u2,u3, uend) as solution.

4.2 Three-section split - Method 2

One iteration step of Method 2 is presented in Fig. 4.3:

Figure 4.3: Division into three domains of equal length, star denotes Neumann con-
dition being enforced, bar denotes Dirichlet

We write the combined matrix:
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A
(1)
II 0 0 A

(1)
IΓ1

0

0 A
(2)
II 0 A

(2)
IΓ1

A
(2)
IΓ2

0 0 A
(3)
II 0 A

(3)
IΓ2

A
(1)
Γ1I

A
(2)
Γ1I

0 AΓ1Γ1 0

0 A
(2)
Γ2I

A
(3)
Γ2I

0 AΓ2Γ2





u
(1)
I

u
(2)
I

u
(3)
I

uΓ1

uΓ2


=



f1

f2

f3

fΓ1

fΓ2


. (4.52)

We now wish to extract subsystems, we apply the same procedure as we did in (4.3).

We begin by step 2 of the algorithm, that is solving Ω2 with a Neumann condition on

the left hand side and a Dirichlet boundary condition on the right hand side.

[
A

(2)
II A

(2)
IΓ1

A
(2)
Γ1I

Ã
(2)
Γ1Γ1

][
u

(2)(k+1/2)

I

u
(k+1)
Γ1

]
=

[
f̃2

f̃Γ1

]
. (4.53)

Which in our case is:

λ2

∆x2



2 −1 0 . . . 0 −1

−1 2 −1
. . . 0 0

0
. . .

. . .
. . .

. . .
...

...
. . . −1 2 −1 0

0 . . . 0 −1 2 0

−1 0 . . . 0 0 1





u1(k+1/2)

2

u2(k+1/2)

2
...
...

un
(k+1/2)

2

u
(k+1)
Γ1


=



f1
2

f2
2
...
...

fn2 +
λ2ukΓ2
∆x2

λ1
∆x2 (un

(k+1)

1 − ukΓ1
)


. (4.54)

From this we get two equations:

A
(2)
II u

(2)(k+1/2)

I +A
(2)
IΓ1

u
(k+1)
Γ1

= A
(2)
II u

(2)(k+1/2)

I − λ2

∆x2
e1u

(k+1)
Γ1

= f2 +
λ2

∆x2
enu

k
Γ2

(4.55)

and

− λ2

∆x2
e1

Tu
(2)(k+1/2)

I +
λ2

∆x2
u

(k+1)
Γ1

=
λ1

∆x2
(en

Tu
(1)(k+1)

I − ukΓ1
). (4.56)

Rewriting (4.55) we get

λ2

∆x2
e1u

(k+1)
Γ1

= A
(2)
II u

(2)(k+1/2)

I − f2 −
λ2

∆x2
enu

k
Γ2
. (4.57)
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Rewriting (4.56):

λ2

∆x2
u

(k+1)
Γ1

=
λ1

∆x2
en

Tu
(1)(k+1)

I − λ1

∆x2
ukΓ1

+
λ2

∆x2
e1

Tu
(2)(k+1/2)

I . (4.58)

Now we do the same thing for step 4 where we solve the equation on Ω2 with a Neumann

condition on the right hand side, updating uΓ2 , and a Dirichlet condition on the left hand

side.

[
A

(2)
II A

(2)
IΓ1

A
(2)
Γ1I

Ã
(2)
Γ2Γ2

][
u

(2)(k+1)

I

u
(k+1)
Γ2

]
=

[
f̃2

f̃Γ2

]
. (4.59)

In our case this corresponds to:

λ2

∆x2



2 −1 0 . . . 0 0

−1 2 −1
. . . 0 0

0
. . .

. . .
. . .

. . .
...

...
. . . −1 2 −1 0

0 . . . 0 −1 2 −1

0 0 . . . 0 −1 1





u1(k+1)

2

u2(k+1)

2
...
...

un
(k+1)

2

u
(k+1)
Γ2


=



f1
2 +

λ2u
(k+1)
Γ1

∆x2

f2
2
...
...

fn2
λ3

∆x2 (u1(k+1)

3 − ukΓ2
)


. (4.60)

Again this gives us two equations:

A
(2)
II u

(2)(k+1)

I +A
(2)2

IΓ1
u

(k+1)
Γ2

= A
(2)
II u

(2)(k+1)

I − en
λ2

∆x2
u

(k+1)
Γ2

= f2 + e1
λ2

∆x2
u

(k+1)
Γ1

(4.61)

and

A
(2)2

Γ1I
u

(2)(k+1)

I +Ã
(2)
Γ2Γ2

u
(k+1)
Γ2

= −enT
λ2

∆x2
u

(2)(k+1)

I +
λ2

∆x2
u

(k+1)
Γ2

=
λ3

∆x2
(e1

Tu
(3)(k+1)

I −ukΓ2
).

(4.62)

Rewriting (4.61):

en
λ2

∆x2
u

(k+1)
Γ2

= A
(2)
II u

(2)(k+1)

I − f2 − e1
λ2u

(k+1)
Γ1

∆x2
. (4.63)

Rewriting (4.62):

λ2

∆x2
u

(k+1)
Γ2

=
λ3

∆x2
e1

Tu
(3)(k+1)

I − λ3

∆x2
ukΓ2

+ en
T λ2

∆x2
u

(2)(k+1)

I . (4.64)
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We now rewrite equations (4.58) and (4.64) that we have obtained from the two systems

and divide both sides with the respective λi
∆x2 :

u
(k+1)
Γ1

=
λ1

λ2
en

Tu
(1)(k+1)

I − λ1

λ2
ukΓ1

+ e1
Tu

(2)(k+1/2)

I (4.65)

u
(k+1)
Γ2

=
λ3

λ2
e1

Tu
(3)(k+1)

I − λ3

λ2
ukΓ2

+ en
Tu

(2)(k+1)

I . (4.66)

We now write out the formulas for the interior points, (4.67) and (4.69) come from

solving the system on Ω1 and Ω3 with Dirichlet conditions on both sides, (4.68) and

(4.70) follow from (4.57) and (4.63).

u
(1)(k+1)

I = A
(1)−1

II (f1 +
λ1

∆x2
enu

k
Γ1

) (4.67)

u
(2)(k+1/2)

I = A
(2)−1

II (f2 +
λ2

∆x2
e1u

(k+1)
Γ1

+
λ2

∆x2
enu

k
Γ2

) (4.68)

u
(3)(k+1)

I = A
(3)−1

II (f3 +
λ3

∆x2
e1u

k
Γ2

) =: A
(3)−1

II b3 (4.69)

u
(2)(k+1)

I = A
(2)−1

II (f2 +
λ2

∆x2
e1u

(k+1)
Γ1

+
λ2

∆x2
enu

(k+1)
Γ2

). (4.70)

Inserting into (4.65):

u
(k+1)
Γ1

=
λ1

λ2
en

TA
(1)−1

II (f1+
λ1

∆x2
enu

k
Γ1

)−λ1

λ2
ukΓ1

+e1
TA

(2)−1

II (f2+
λ2

∆x2
e1u

(k+1)
Γ1

+
λ2

∆x2
enu

k
Γ2

)

=
λ1

λ2
en

TA
(1)−1

II f1 +
λ2

1

λ2∆x2
en

TA
(1)−1

II enu
k
Γ1
− λ1

λ2
ukΓ1

+ e1
TA

(2)−1

II f2+

λ2

∆x2
e1

TA
(2)−1

II e1u
(k+1)
Γ1

+
λ2

∆x2
e1

TA
(2)−1

II enu
k
Γ2
.

Moving the u
(k+1)
Γ1

to one side and collecting terms not depending on earlier iterations

into Φ:

(1− λ2

∆x2
e1

TA
(2)−1

II e1)u
(k+1)
Γ1

=
λ2

1

λ2∆x2
en

TA
(1)−1

II enu
k
Γ1
− λ1

λ2
ukΓ1

+
λ2

∆x2
e1

TA
(2)−1

II enu
k
Γ2

+ Φ1

where

Φ1 =
λ1

λ2
en

TA
(1)−1

II f1 + e1
TA

(2)−1

II f2.

Dividing:

u
(k+1)
Γ1

=

λ2
1

λ2∆x2en
TA

(1)−1

II enu
k
Γ1
− λ1

λ2
ukΓ1

+ λ2
∆x2e1

TA
(2)−1

II enu
k
Γ2

+ Φ1

1− λ2
∆x2e1TA

(2)−1

II e1
(4.71)
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here A
(1)−1

II and A
(2)−1

II are inverses of tridiagonal Toeplitz matrices as seen in (3.22).

As we later wish to represent the relation between uk+1
Γi

and ukΓi as a matrix, we separate

those terms. The terms that do not depend on the boundary points are collected into

Φ̃1.

u
(k+1)
Γ1

=
(

λ2
1

λ2∆x2en
TA

(1)−1

II en − λ1
λ2

)

1− λ2
∆x2e1TA

(2)−1

II e1
ukΓ1

+
λ2

∆x2e1
TA

(2)−1

II en

1− λ2
∆x2e1TA

(2)−1

II e1
ukΓ2

+ Φ̃1. (4.72)

We now wish to find the analogous equation for u
(k+1)
Γ2

, for this we use equation (4.66):

u
(k+1)
Γ2

=
λ3

λ2
e1

Tu
(3)(k+1)

I − λ3

λ2
ukΓ2

+ en
Tu

(2)(k+1)

I . (4.73)

Inserting the formulae for u
(3)(k+1)

I (4.69) and u
(2)(k+1)

I (4.70):

u
(k+1)
Γ2

=
λ3

λ2
e1

TA
(3)−1

II (f3+
λ3

∆x2
e1u

k
Γ2

)−λ3

λ2
ukΓ2

+en
TA

(2)−1

II (f2+
λ2

∆x2
e1u

(k+1)
Γ1

+
λ2

∆x2
enu

(k+1)
Γ2

)

=
λ3

λ2
e1

TA
(3)−1

II f3 +
λ2

3

λ2∆x2
e1

TA
(3)−1

II e1u
k
Γ2
− λ3

λ2
ukΓ2

+ en
TA

(2)−1

II f2+

λ2

∆x2
en

TA
(2)−1

II e1u
(k+1)
Γ1

+
λ2

∆x2
en

TA
(2)−1

II enu
(k+1)
Γ2

.

We collect all terms not dependent on the boundary values into Φ2:

=
λ2

3

λ2∆x2
e1

TA
(3)−1

II e1u
k
Γ2
− λ3

λ2
ukΓ2

+
λ2

∆x2
en

TA
(2)−1

II e1u
(k+1)
Γ1

+
λ2

∆x2
en

TA
(2)−1

II enu
(k+1)
Γ2

+ Φ2,

where:

Φ2 =
λ3

λ2
e1

TA
(3)−1

II f3 + en
TA

(2)−1

II f2. (4.74)

Dividing:

u
(k+1)
Γ2

=

λ2
3

λ2∆x2e1
TA

(3)−1

II e1u
k
Γ2
− λ3

λ2
ukΓ2

+ λ2
∆x2en

TA
(2)−1

II e1u
(k+1)
Γ1

+ Φ2

1− λ2
∆x2enTA

(2)−1

II en
. (4.75)

Separating, all terms not dependent on the boundary values are collected into Φ̃2:

u
(k+1)
Γ2

=
(

λ2
3

λ2∆x2e1
TA

(3)−1

II e1 − λ3
λ2

)

1− λ2
∆x2enTA

(2)−1

II en
ukΓ2

+
λ2

∆x2en
TA

(2)−1

II e1

1− λ2
∆x2enTA

(2)−1

II en
u

(k+1)
Γ1

+ Φ̃2. (4.76)
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Now note: on the right hand side we have dependance on u
(k+1)
Γ1

. For simpler further

calculations we introduce the following notation for (4.72) and (4.76):

u
(k+1)
Γ1

= a1u
k
Γ1

+ b1u
k
Γ2

+ Φ̃1 (4.77)

u
(k+1)
Γ2

= a2u
(k+1)
Γ1

+ b2u
k
Γ2

+ Φ̃2. (4.78)

We now insert the formula for u
(k+1)
Γ1

into the second equation:

u
(k+1)
Γ1

= a1u
k
Γ1

+ b1u
k
Γ2

+ Φ̃1 (4.79)

u
(k+1)
Γ2

= a2(a1u
k
Γ1

+ b1u
k
Γ2

+ Φ̃1) + b2u
k
Γ2

+ Φ̃2 = a1a2u
k
Γ1

+ a2b1u
k
Γ2

+ b2u
k
Γ2

+ a2Φ̃1 + Φ̃2.

(4.80)

This allows us to write the system as a fixed point iteration of the form seen in (2.1):

[
u

(k+1)
Γ1

u
(k+1)
Γ2

]
=

[
a1 b1

a1a2 (a2b1 + b2)

][
ukΓ1

ukΓ2

]
+

[
Φ̃1

a2Φ̃1 + Φ̃2

]
(4.81)

where two coefficients can be directly read off those calculated for Method 1. From

(4.46) we have:

a1 =

λ2
1

λ2∆x2en
TA

(1)−1

II en − λ1
λ2

1− λ2
∆x2e1TA

(2)−1

II e1
=
−λ1

λ2
(4.82)

and from (4.47):

b1 =
λ2

∆x2e1
TA

(2)−1

II en

1− λ2
∆x2e1TA

(2)−1

II e1
= 1. (4.83)

The others are also obtained directly from earlier results, but require some additional

rewriting.

a2 =
λ2

∆x2en
TA

(2)−1

II e1

1− λ2
∆x2enTA

(2)−1

II en

(3.36)(4.36)
=

∆x
∑n

i=1

sin
(
iπ
n+1

)
sin
(
inπ
n+1

)
1−cos

(
iπ
n+1

)
1−∆x

∑n
i=1

sin2
(
inπ
n+1

)
1−cos

(
iπ
n+1

)
(3.39)

=

∆x
∑n

i=1

sin
(
iπ
n+1

)
sin
(
inπ
n+1

)
1−cos

(
iπ
n+1

)
1−∆x

∑n
i=1

sin2
(
iπ
n+1

)
1−cos

(
iπ
n+1

)
(4.45)

= 1.

(4.84)



Chapter 4. Three-field case 39

Finally;

b2 =

λ2
3

λ2∆x2e1
TA

(3)−1

II e1 − λ3
λ2

1− λ2
∆x2enTA

(2)−1

II en
=
−λ3

λ2

1− λ3
∆x2e1

TA
(3)−1

II e1

1− λ2
∆x2enTA

(2)−1

II en
=(4.49)

−λ3

λ2
. (4.85)

The eigenvalues, denoted σi, of the iteration matrix in (4.81) can then be expressed as:

σ1,2 =
a1 + (a2b1 + b2)

2
±

√(
a1 + (a2b1 + b2)

2

)2

− a1(a2b1 + b2) + a1a2b1. (4.86)

We now insert the values into our system matrix:

[
−λ1
λ2

1
−λ1
λ2

1 + −λ3
λ2

]
(4.87)

and we have eigenvalues:

σ1,2 =
−λ1
λ2

+ 1 + −λ3
λ2

2
±

√( −λ1
λ2

+ 1 + −λ3
λ2

2

)2

− λ1λ3

λ2
2

. (4.88)

Below is the pseudo-code for Method 2.

Algorithm 3 Method 2: Iteration given intial guess (u0
Γ1
, u0

Γ2
) and endpoints ustart, uend

1: flag=True
2: (uΓ1 , uΓ2) = (u0

Γ1
, u0

Γ2
)

3: Construct A1, A3, as in (3.9) A1
2, A2

2 as in (4.54) and (4.60).
4: while flag=True do
5: Construct b1 as in Method 1
6: Obtain u1 by solving A1x = b1
7: Construct b12 as in (4.54)
8: Obtain u1

2 by solving A1
2x = b12

9: uoldΓ1
= uΓ1

10: Extract new uΓ from u2

11: Construct b3 as in (4.69)
12: Obtain u3 by solving A3x = b3
13: Construct b22 as in (4.60)
14: Obtain u2

2 by solving A2
2x = b22

15: uoldΓ2
= uΓ2

16: Extract new uΓ2 from u2
2

17: If ||(uoldΓ1
, uoldΓ2

)− (uΓ1 , uΓ2)|| < tol set flag=False
18: end while
19: return (ustart,u1,u

2
2,u3, uend) as solution.
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4.3 Three-section split - Method 3

Finally we introduce a third algorithm, this method is built with the same ”building

blocks” we used in Method 2, the only difference being the location of the respective

Dirichlet/Neumann conditions. One iteration step of Method 3 is presented in Fig. 4.4:

Figure 4.4: Method 3 - here we start by solving the middle part, using the initial
guess as Dirichlet conditions. As before, star denotes Neumann condition, bar denotes

Dirichlet condition

For example, step 1 in Method 3 is structurally step 1 in Method 2 but it is moved from

Ω1 to Ω2, step 2 in Method 3 is structurally step 2 in Method 2 but it is moved from

Ω2 to Ω3 and so on. Thus, for the sake of brevity we leave out the explicit construction

as it is analogous to Method 2. We can further exploit this to significantly shorten our

analysis of Method 3, as we already know the form of the needed equations from Method

2. We write out the formulas for the interior points:

u
(2)(k+1/2)

I = A
(2)−1

II (f2 +
λ2

∆x2
e1u

k
Γ1

+
λ2

∆x2
enu

k
Γ2

) (4.89)

u
(3)(k+1)

I = A
(3)−1

II (f3 +
λ3

∆x2
e1u

(k+1)
Γ2

) (4.90)
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u
(2)(k+1)

I = A
(2)−1

II (f2 +
λ2

∆x2
e1u

k
Γ1

+
λ2

∆x2
enu

(k+1)
Γ2

) (4.91)

u
(1)(k+1)

I = A
(1)−1

II (f1 +
λ1

∆x2
enu

(k+1)
Γ1

). (4.92)

For the boundaries we then have, analogous to (4.64) and (4.58):

− λ3

∆x2
e1

Tu
(3)(k+1)

I +
λ3

∆x2
u

(k+1)
Γ2

=
λ2

∆x2
(en

Tu
(2)(k+1/2)

I − ukΓ2
) (4.93)

and

− λ1

∆x2
en

Tu
(1)(k+1)

I +
λ1

∆x2
u

(k+1)
Γ1

=
λ2

∆x2
(e1

Tu
(2)(k+1)

I − ukΓ1
). (4.94)

Rewriting and inserting the formulas for the interior points:

− λ3

∆x2
e1

Tu
(3)(k+1)

I +
λ3

∆x2
u

(k+1)
Γ2

=
λ2

∆x2
(en

Tu
(2)(k+1/2)

I − ukΓ2
) (4.95)

u
(k+1)
Γ2

=
λ2

λ3
(en

Tu
(2)(k+1/2)

I − ukΓ2
) + e1

Tu
(3)(k+1)

I (4.96)

=
λ2

λ3
en

TA
(2)−1

II (f2 +
λ2

∆x2
e1u

k
Γ1

+
λ2

∆x2
enu

k
Γ2

)− λ2

λ3
ukΓ2

+ e1
Tu

(3)(k+1)

I .

Collecting the terms not dependent on the boundary points into Φ2:

=
λ2

2

λ3∆x2
en

TA
(2)−1

II e1u
k
Γ1

+
λ2

2

λ3∆x2
en

TA
(2)−1

II enu
k
Γ2
− λ2

λ3
ukΓ2

+
λ3

∆x2
e1

TA
(3)−1

II e1u
(k+1)
Γ2

+ Φ2.

Moving all u
(k+1)
Γ2

terms to one side:

u
(k+1)
Γ2

(1− λ3

∆x2
e1

TA
(3)−1

II e1) =
λ2

2

λ3∆x2
en

TA
(2)−1

II e1u
k
Γ1

+
λ2

2

λ3∆x2
en

TA
(2)−1

II enu
k
Γ2
− λ2

λ3
ukΓ2

+ Φ2.

Dividing and collecting all terms not dependent on boundary values into Φ̃2:

u
(k+1)
Γ2

=

λ2
2

λ3∆x2en
TA

(2)−1

II e1

1− λ3
∆x2e1TA

(3)−1

II e1
ukΓ1

+
(

λ2
2

λ3∆x2en
TA

(2)−1

II en − λ2
λ3

)

1− λ3
∆x2e1TA

(3)−1

II e1
ukΓ2

+ Φ̃2.

Using the values of Method 1, specifically (4.48) and (4.46), we get:

u
(k+1)
Γ2

=
λ2

λ3
ukΓ1
− λ2

λ3
ukΓ2

+ Φ̃2. (4.97)
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Moving on to the Γ1 boundary, inserting (4.91) and (4.92) into (4.94):

− λ1

∆x2
en

Tu
(1)(k+1)

I +
λ1

∆x2
u

(k+1)
Γ1

=
λ2

∆x2
(e1

Tu
(2)(k+1)

I − ukΓ1
) (4.98)

u
(k+1)
Γ1

=
λ2

λ1
e1

Tu
(2)(k+1)

I − λ2

λ1
ukΓ1

+ en
Tu

(1)(k+1)

I

=
λ2

λ1
e1

TA
(2)−1

II (f2 +
λ2

∆x2
e1u

k
Γ1

+
λ2

∆x2
enu

(k+1)
Γ2

)− λ2

λ1
ukΓ1

+ en
TA

(1)−1

II (f1 +
λ1

∆x2
enu

(k+1)
Γ1

).

Collecting all terms not dependent on the boundary values into Φ1:

=
λ2

2

λ1∆x2
e1

TA
(2)−1

II e1u
k
Γ1

+
λ2

2

λ1∆x2
e1

TA
(2)−1

II enu
(k+1)
Γ2

− λ2

λ1
ukΓ1

+
λ1

∆x2
en

TA
(1)−1

II enu
(k+1)
Γ1

+ Φ1.

Moving all u
(k+1)
Γ1

terms to one side:

u
(k+1)
Γ1

(1− λ1

∆x2
en

TA
(1)−1

II en) =
λ2

λ1
(
λ2

∆x2
e1

TA
(2)−1

II e1 − 1)ukΓ1
+

λ2
2

λ1∆x2
e1

TA
(2)−1

II enu
(k+1)
Γ2

+ Φ1.

Dividing, collecting all terms not dependent on the boundary values into Φ̃1

u
(k+1)
Γ1

=
λ2

λ1

( λ2
∆x2e1

TA
(2)−1

II e1 − 1)

1− λ1
∆x2enTA

(1)−1

II en
ukΓ1

+
λ2

λ1

λ2
∆x2e1

TA
(2)−1

II en

1− λ1
∆x2enTA

(1)−1

II en
u

(k+1)
Γ2

+ Φ̃1.

Again, using the formula from Method 2, specifically (4.85) and (4.84) where we use the

symmetry property (4.36) for the second term:

u
(k+1)
Γ1

= −λ2

λ1
ukΓ1

+
λ2

λ1
u

(k+1)
Γ2

+ Φ̃1. (4.99)

Inserting (4.97) into (4.99):

u
(k+1)
Γ1

= −λ2

λ1
ukΓ1

+
λ2

λ1
(
λ2

λ3
ukΓ1
− λ2

λ3
ukΓ2

+ Φ̃2) + Φ̃1. (4.100)

We thus have:

u
(k+1)
Γ1

= −λ2

λ1
ukΓ1

+
λ2

2

λ1λ3
ukΓ1
− λ2

2

λ1λ3
ukΓ2

+ Φ̃2 + Φ̃1 (4.101)

u
(k+1)
Γ2

=
λ2

λ3
ukΓ1
− λ2

λ3
ukΓ2

+ Φ̃2 (4.102)

which gives us the fixed point iteration:
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[
u

(k+1)
Γ1

u
(k+1)
Γ2

]
=

[
−λ2
λ1

+
λ2

2
λ1λ3

− λ2
2

λ1λ3

+λ2
λ1

−λ2
λ1

][
ukΓ1

ukΓ2

]
+

[
Φ̃1 + Φ̃2

Φ̃2

]
(4.103)

where the matrix has the eigenvalues:

σ1,2 =
λ2

2λ1λ3
(−λ1 + λ2 − λ3 ±

√
(λ1 − λ2 + λ3)2 − 4λ1λ3). (4.104)

Below is the pseudo-code for Method 3. Note that the equations referenced give the

structure of the matrices and vectors, while the values have to be changed to account

for the changed positioning.

Algorithm 4 Method 3: Iteration given intial guess (u0
Γ1
, u0

Γ2
) and endpoints ustart, uend

1: flag=True
2: (uΓ1 , uΓ2) = (u0

Γ1
, u0

Γ2
)

3: Construct A2 analogously to (3.9), A3 and A1 analogously to (4.54) and (4.60).
4: while flag=True do
5: Construct b12 analogously to b1 in Method 1
6: Obtain u1

2 by solving A2x = b12
7: Construct b3 analogously to b12 in (4.54)
8: Obtain u3 by solving A3x = b3
9: uoldΓ2

= uΓ2

10: Extract new uΓ2 from u3

11: Construct b22 analogously to b1 in Method 1
12: Obtain u2

2 by solving A2x = b22
13: Construct b1 analogously to b22 as in (4.60)
14: Obtain u1 by solving A1x = b1
15: uoldΓ1

= uΓ1

16: Extract new uΓ1 from u1

17: If ||(uoldΓ1
, uoldΓ2

)− (uΓ1 , uΓ2)|| < tol set flag=False
18: end while
19: return (ustart,u1,u

2
2,u3, uend) as solution.
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4.4 Summary - comparing the three methods

We now have explicit formulae for the spectral radii of the fixed point iterations of all

three methods. The spectral radius associated with Method 1 is given by (4.51):

max|σM1
1,2 | = max

∣∣∣∣− 1

2

λ1

λ2
±

√
1

4

λ2
1

λ2
2

− λ1

λ3

∣∣∣∣. (4.105)

The spectral radius associated with Method 2 is given by (4.88):

max|σM2
1,2 | = max

∣∣∣∣ −λ1
λ2

+ 1 + −λ3
λ2

2
±

√( −λ1
λ2

+ 1 + −λ3
λ2

2

)2

− λ1λ3

λ2
2

∣∣∣∣, (4.106)

finally, spectral radius associated with Method 3 is given by (4.104):

max|σM3
1,2 | = max

∣∣∣∣ λ2

2λ1λ3
(−λ1 + λ2 − λ3 ±

√
(λ1 − λ2 + λ3)2 − 4λ1λ3)

∣∣∣∣. (4.107)

We now wish to examine closer where the respective methods are convergent. To this

end, we consider some limit cases of the formulae for the spectral radii.

Method 1 (4.51) is efficient when λ1 � λ2 and λ1 � λ3;

max|σM1
1,2 | = max

∣∣∣∣− 1

2

λ1

λ2
±

√
1

4

λ2
1

λ2
2

− λ1

λ3

∣∣∣∣→ 0 ; when
λ1

λ2
→ 0 and

λ1

λ3
→ 0. (4.108)

Method 2 (4.88) is efficient when λ1 ≈ λ2 and λ3 � λ2 but equally so when λ2 ≈ λ3

and λ1 � λ2;

max|σM2
1,2 | = max

∣∣∣∣ −λ1
λ2

+ 1 + −λ3
λ2

2
±

√( −λ1
λ2

+ 1 + −λ3
λ2

2

)2

− λ1λ3

λ2
2

∣∣∣∣→ 0 ;

when either

(
λ1

λ2
→ 1 and

λ3

λ2
→ 0

)
or

(
λ3

λ2
→ 1 and

λ1

λ2
→ 0

)
.

(4.109)

Method 3 (4.104) is efficient when λ2 � λ1 and λ2 � λ3;

max|σM3
1,2 | = max

∣∣∣∣ λ2

2λ1λ3
(−λ1 + λ2 − λ3 ±

√
(λ1 − λ2 + λ3)2 − 4λ1λ3)

∣∣∣∣→ 0 ;

when

(
λ2

2λ1
→ 0

)
and

(
λ2

2λ3
→ 0

)
.

(4.110)
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4.5 Whole domain solver

As in the two field case, we construct a direct solver so that we may compare the results

to that of the iterations. It solves (4.1) directly and the system is given by:

A =
1

∆x2



2λ1 −λ1 0 . . . . . . . . . . . . . . . . . . . . . . . . 0

−λ1 2λ1 −λ1
. . .

...

0
. . .

. . .
. . .

. . .
...

...
. . . −λ1 2λ1 −λ1

. . .
...

...
. . . −λ1 λ1 + λ2 −λ2

. . .
...

...
. . . −λ2 2λ2 −λ2

. . .
...

...
. . .

. . .
. . .

. . .
. . .

...
. . . −λ2 2λ2 −λ2

. . .
...

...
. . . −λ2 λ2 + λ3 −λ3

. . .
...

...
. . . −λ3 2λ3 −λ3 0

...
. . .

. . .
. . .

. . .

0 . . . . . . . . . . . . . . . . . . . . . . . . 0 −λ3 2λ3



and

b1 =
[
f1

1 + ustart
dx2 , f2

1 , . . . fn1 , fΓ1 , f1
2 , . . . fn2 , fΓ2 , f1

3 , . . . fn−1
3 , fn3 + uend

dx2

]T
with A ∈ R(3n+2)×(3n+2) and b ∈ R3n+2. Here ustart and uend denote the start- and

end-point values, respectively.



Chapter 5

Numerical results

The aim of the first part of this chapter is to confirm that the formulas found analytically

for the spectral radii do indeed predict the rate of convergence for each of the three

algorithms discussed. To this end we will present four sets of examples for each of the

three algorithms. Our measure of success will be if the behavior of the error is parallel

to a power-function of the spectral radius (see Theorem 2.2). Specifically we want to

see:

C|σ|iteration be parallel to ||udirect − uiteration||2. (5.1)

Where C is an arbitrary constant, |σ| is the spectral radius, udirect denotes the solution

obtained by the whole domain solver and uiteration is the solution given at the current

iteration.

To illustrate the behavior of the different solvers we will also plot the solutions obtained

from the Dirichlet-Neumann iterations (denoted: Iterative) together with the analytical

solutions as in 5.1.1 and 5.2.1 below (Analytical), and the solutions obtained from the

full system solvers in 3.2 and 4.5 (Direct).

5.1 Two field domain

We wish to numerically test if the spectral radius given in (3.41) provides an accurate

estimator for the convergence rates. Toward this purpose we define a test problem and

find its solution analytically.

46
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5.1.1 Test problem and analytical solution

We consider a system as depicted in Fig. 2.1, with Ω1 = [0, 1],Ω2 = [1, 2],Γ = Ω1 ∩ Ω2:

−∆um(x) = π2

λm
sin(πx) ;x ∈ Ωm ⊂ R ; m = 1, 2

um(x) = 0 ; um(x) ∈ ∂Ωm\Γ

u1(x) = u2(x) ; x ∈ Γ

λ1
∂u1(x)
∂x = λ2

∂u2(x)
∂x ; x ∈ Γ.

(5.2)

The equation −∆u(x) = π2

λ sin(πx) has the general solution:

u(x) =
sin(πx)

λ
+ C2x+ C1 (5.3)

with:

u′(x) =
π cos(πx)

λ
+ C2. (5.4)

With different values for λ, we have to fulfill boundary conditions as well as continuity

in uΓ and the coupling condition for the first derivate in uΓ.

u1(0) = 0 (5.5)

u1(1) = u2(1) (5.6)

λ1u
′
1(1) = λ2u

′
2(1) (5.7)

u2(2) = 0. (5.8)

Solving the resulting linear system gives us the general solution

u1(x) =
sin(πx)

λ1
(5.9)

u2(x) =
sin(πx)

λ2
. (5.10)

This gives us an exact form which we can compare against numerical results for different

values of λ1 and λ2.
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5.1.2 Numerical results

In the tests below the following values are held constant: ustart = uend = 0 and u0
Γ = 0.5.

We begin by looking at the case where λ1 = λ2 = 1, i.e., we predict a spectral radius of

1, and thus we expect to see no convergence.
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n=60 - Two field case - convergence, λ1 =1,λ2 =1
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Figure 5.1: Two-field case – λ1 = 1, λ2 = 1

Indeed, in Fig. 5.1 (left) we that the iterative solution has not converged onto the direct

solution. We also see a flat behavior of the error on the convergence plot on the right.

We now look at the case where λ1 = 2, λ2 = 4, here we expect convergence as the

spectral radius is now 0.5: Fig. 5.2
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Figure 5.2: Two-field case – λ1 = 2, λ2 = 4

As expected, we see a solution which matches the complete domain solver and the con-

vergence behavior is as predicted. We also note that the error reaches its numerical

lower limit around iteration 49 after which it levels out. We now look at an example

where we predict convergence but change the relation between λ1 and λ2 as well as the

discretization ∆x to convince us that the prediction still holds true. Different discretiza-

tions, both larger and smaller were tried, without influencing the rate of convergence,

an example for n = 20 is pictured in Fig. 5.3, where λ1 = 3 and λ3 = 8.
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Figure 5.3: Two-field case – λ1 = 3, λ2 = 8

As in the previous case, all solutions and predictions match. We see that the error

reaches its numerical lower limit, this time around iteration 34. Finally we consider a

case where we do not predict convergence at all, namely λ1 = 1.1, λ2 = 1, Fig. 5.4:
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Figure 5.4: Two-field case – λ1 = 1.1, λ2 = 1

In the left frame we see that the solution has ”exploded”. We also note that the rate by

which the error grows is accurately predicted by the spectral radius.

5.2 Three field domain

Similar to the two field case, we test if the spectral radii given by (4.51), (4.88) and

(4.104) provide accurate estimators for the convergence rates.

5.2.1 Test problem and analytical solution

As before we consider:

−∆u =
π2

λ
sin(πx). (5.11)
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This has the general solution:

u(x) =
sin(πx)

λ
+ C2x+ C1 (5.12)

with:

u′(x) =
π cos(πx)

λ
+ C2. (5.13)

We now extend the function from two to three domains (as depicted in Fig.4.1), Ω1 =

[0, 1),Ω2 = [1, 2],Ω3 = (2, 3] with different values for λ, we have to fulfill boundary

conditions as well as continuity in uΓ and the coupling condition of the first derivate in

uΓ1 and uΓ2 .

u1(0) = 0

u1(1) = u2(1)

λ1u
′
1(1) = λ2u

′
2(1)

u2(2) = u3(2)

λ2u
′
2(2) = λ3u

′
3(2)

u3(3) = 0.

Solving the resulting linear system gives us the general solution

u1(x) =
sin(πx)

λ1
(5.14)

u2(x) =
sin(πx)

λ2
(5.15)

u3(x) =
sin(πx)

λ3
. (5.16)

This gives us an exact form which we can compare against numerical results for different

values of λ1, λ2 and λ3.



Chapter 5. Numerical results 51

5.2.2 Method 1

The initial guess is constant across all examples with (u0
Γ1
, u0

Γ2
) = (1, 2). We begin by

looking at the case where all λ = 1, where we predict neither convergence nor divergence,

Fig. 5.5:
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Figure 5.5: Three-field case, Method 1 – λ1 = 1, λ2 = 1, λ3 = 1, |σmax| = 1

On the left side we see that the iterative solution does not align with the direct solution.

On the right side we see a flat behavior of the error, consistent with a spectral radius of

one. We now move on to a case where we expect convergence.
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Figure 5.6: Three-field case, Method 1 – λ1 = 1, λ2 = 2, λ3 = 3, |σmax| ≈ 0.5771

On the left side of Fig. 5.6 (where λ1 = 1, λ2 = 2, and λ3 = 3) we see a complete

solution matching the direct solver. On the right we see that the error follows the

predicted behavior until iteration 64 were it levels out at around 10−14. We now look

at another example where we predict convergence but at a significantly faster rate.
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Figure 5.7: Three-field case, Method 1 – λ1 = 1, λ2 = 8, λ3 = 300, |σmax| ≈ 0.0864

Fig. 5.7 (where λ1 = 1, λ2 = 8, and λ3 = 300) we see a complete solution matching

the whole domain solver with the iteration reaching numerical limit around iteration

16. The behavior of the error is accurately predicted by the spectral radius. Finally we

consider a case where we predict divergence.
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Figure 5.8: Three-field case, Method 1 – λ1 = 3, λ2 = 1, λ3 = 3, |σmax| ≈ 2.6180

On the left side of Fig. 5.8 (where λ1 = 3, λ2 = 1, and λ3 = 3) we see that solution

has ”exploded” and on the right that the rate by which the error grows is accurately

predicted by the spectral radius.
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5.2.3 Method 2

The initial guess is constant across all examples with (u0
Γ1
, u0

Γ2
) = (1,−1). We begin by

looking at the case where all λ = 1 and we have a spectral radius of 1, Fig. 5.9:
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Figure 5.9: Three-field case, Method 2 – λ1 = 1, λ2 = 1, λ3 = 1, |σmax| = 1

We see that the iterative solution does not match that of the direct solver and that the

error behavior is flat. We do observe a ”sawtooth” pattern consisting of three repeating

points but the trend is accurately predicted by the spectral radius. We now look at a

case where we predict convergence. Fig. 5.10 illustrates the case where λ1 = 1, λ2 = 2

and λ3 = 3.
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Figure 5.10: Three-field case, Method 2 – λ1 = 1, λ2 = 2, λ3 = 3, |σmax| ≈ 0.8660

We see that the solution matches the whole domain solver and that the error behavior is

accurately predicted by the spectral radius. We also note that we still see a ”sawtooth”

pattern in the error. Next we look at another case where convergence is predicted but

at a faster rate. Fig. 5.11 shows the case with λ1 = 1, λ2 = 50 and λ3 = 60.



Chapter 5. Numerical results 54

0.0 0.5 1.0 1.5 2.0 2.5 3.0
x

0.2

0.0

0.2

0.4

0.6

0.8

1.0

y

n=40 - Three field case - M2, λ1 =1,λ2 =50,λ3 =60

Iterative
Analytical
Direct

0 5 10 15 20 25 30 35
Iteration

10-25

10-23

10-21

10-19

10-17

10-15

10-13

10-11

10-9

10-7

10-5

10-3

10-1

101

E
rr

o
r 

/ 
P
re

d
ic

te
d
 b

e
h
a
v
io

r

n=40 - Three field case - M2 convergence, λ1 =1,λ2 =50,λ3 =60

||udirect−uiteration||2
C(maxi |σi |)iteration

Figure 5.11: Three-field case, Method 2 – λ1 = 1, λ2 = 50, λ3 = 60, |σmax| ≈ 0.1549

Again we see that the iteration solution matches the whole domain solver and that the

error follows the power function of the spectral radius. We still see some ”sawtooth”

behavior of the error function but the trend follows the prediction. Finally we look at a

case where we predict divergence; Fig. 5.12 (λ1 = 2, λ2 = 3, λ3 = 10):
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Figure 5.12: Three-field case, Method 2 – λ1 = 2, λ2 = 3, λ3 = 10, |σmax| ≈ 1.6667

We that the solution has ”exploded” and that the growth of the error is accurately

predicted by the spectral radius.
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5.2.4 Method 3

The initial guess is constant across all examples with (u0
Γ1
, u0

Γ2
) = (1,−1). Again we

begin by looking at the case where all λ = 1 and the spectral radius equals 1, Fig. 5.13:
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Figure 5.13: Three-field case, Method 3 – λ1 = 1, λ2 = 1, λ3 = 1, |σmax| = 1

As predicted, we see a flat behavior of the error and non-matching iterative and direct

solutions. We also note that while this behavior is identical to that observed in the first

example of Method 2, the plot is not. That is to say, we can see that the methods are

different by how they approach the initial guess.
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Figure 5.14: Three-field case, Method 3 – λ1 = 2, λ2 = 1, λ3 = 3, |σmax| ≈ 0.4082

Fig. 5.14 illustrates the case where λ1 = 2, λ2 = 1 and λ3 = 3. We see the predicted

convergence with a saw-tooth behavior similar to that seen in Method 2. The solution

matches the direct solver as expected.
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Next we consider another case where we predict convergence; Fig. 5.14 (λ1 = 50, λ2 =

1, λ3 = 50):

0.0 0.5 1.0 1.5 2.0 2.5 3.0
x

1.0

0.8

0.6

0.4

0.2

0.0

0.2

y

n=40 - Three field case - M3, λ1 =50,λ2 =1,λ3 =50

Iterative
Analytical
Direct

0 2 4 6 8 10 12
Iteration

10-19

10-17

10-15

10-13

10-11

10-9

10-7

10-5

10-3

10-1

101

E
rr

o
r 

/ 
P
re

d
ic

te
d
 b

e
h
a
v
io

r

n=40 - Three field case - M3 convergence, λ1 =50,λ2 =1,λ3 =50

||udirect−uiteration||2
C(maxi |σi |)iteration

Figure 5.15: Three-field case, Method 3 – λ1 = 50, λ2 = 1, λ3 = 50, |σmax| = 0.02

Indeed we see convergence up to machine limits after 10 iterations. Again the spectral

radius accurately predicts the rate of convergence. Finally we look at a case where we

predict divergence; Fig. 5.16 (λ1 = 1, λ2 = 3, λ3 = 2):
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Figure 5.16: Three-field case, Method 3 – λ1 = 1, λ2 = 3, λ3 = 2, |σmax| ≈ 2.1213

As predicted we see divergence and the solution has ”exploded”. The error grows at the

rate predicted by the spectral radius.

5.2.5 Final overview

Building on the analysis in 4.4, we can gain a better understanding of the convergence

properties of the three methods by visualizing their respective spectral radii using a heat

map. As λ1 and λ3 are interchangeable in the three field case as they only determine

from which direction the problem is solved, we hold λ2 constant.

Note that the y-axis on the two plots represent different values as taking smaller values

for λ3 in Method 1 quickly results in spectral radii far larger than 1 .
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Figure 5.17: Visualization of spectral radius of selected values for Method 1 and
Method 2, holding λ2 = 50 constant.

But if we consider that λ1 and λ3 are interchangeable in applications of Method 1, then

a fair comparison between Methods 1 and 2 could be done by assuming that we always

choose the order such that λ1 and λ3 are placed optimally. Doing this allows us to

compare the Methods with the same axes without Method 1 ”exploding”. Method 3

can’t be represented in the same area without its spectral radius becoming extremely

large and thus it is shown for a different set of λ-values.
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Figure 5.18: Visualization of spectral radius of selected values for Method 1, Method
2 and Method 3, holding λ2 = 100 constant.
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Now we see the same diagonal symmetry axis emerge for Method 1 as is also seen for

Methods 2 and 3.

We see that the three methods have distinctly different and to a large extent complemen-

tary areas of fast convergence. The final step in assessing the strength of our combined

toolbox is of course to choose the optimal method in addition to checking the optimal

directional order for Method 1.

One way to do this is to begin with Method 1 and then gradually add the other methods

in areas where they perform better. We begin by combining the optimal implementation

of Method 1 with Method 2.

1 100 200
λ1

200

100

1

λ
3

Combined Methods optimal choice - λ2 =100

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Figure 5.19: Combined Method 1 and Method 2 – Visualization of the smallest
spectral radius for selected values, holding λ2 = 100 constant.

We see that Method 2 offers benefits in convergence when both λ1 ≤ λ2 and λ3 ≤ λ2

in that it does offer more efficient solutions within parts of this area when compared to

Method 1. Even inside the square where this holds true Method 1, is better along the

axes close to the origin. We now add Method 3 to our visualization.
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Figure 5.20: Combined Method 1, Method 2 and Method 3 – Visualization of the
smallest spectral radius for selected values, holding λ2 = 100 constant.

We see that Method 3 significantly improves the performance where both λ2 ≤ λ1 and

λ2 ≤ λ1. Now that we have all three methods combined we can consider much wider

intervals for λ1 and λ3 without ever exceeding a spectral radius of one.
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This gives us our grand overview:
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Figure 5.21: Visualization of the smallest spectral radius for selected values, holding
λ2 = 100 constant.

What we see is a collection of methods that thrive on differences. In this example

λ2 = 100 and we see that along the axes where either λ1 = 100 or λ3 = 100, we

have larger spectral radii, at some points approaching one. Yet by combining our three

methods we readily reach the areas where the coefficients are different, in many cases

with a very quick convergence.
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5.2.6 Real world examples

Until now we have treated the λ’s as arbitrarily chosen numbers for the purpose of

convergence analysis. The λ in the equation (2.2) represents the thermal conductivity

of a material. We now introduce some examples on how the algorithms would perform

for some possible real world applications [14][15]1. All units are W/(mK). The spectral

radius of the method best suited for a particular combination is written in bold.

λ1 λ2 λ3 M1|σmax| M2|σmax| M3|σmax|

Steel(54) Coolant (0.063) Copper(401) 857 6364 0.0012

Water(0.58) Glass(1.05) Water(0.58) 1 0.5524 1.81

Steel(54) Iron(80) Copper(401) 0.3669 3.79 1.12

Oak (0.17) Air(0.024) Steel(54) 7.01 2249 0.1411

Air(0.024) Copper(401) Coolant (0.063) 0.6172 0.9998 106326793

Air(0.024) Water(0.58) Steel(54) 0.0211 92 24

Brass(109) Copper(401) Brass(109) 1 0.2718 3.68

Steel(54) Engine oil(0.15) Steel(54) 360 360 0.0028

Air(0.024) Copper(401) Air(0.024) 1 0.9999 279134985

These examples illustrate how the three methods complement each other. For each

example we get at the very least a mathematically convergent method and in several

cases we get very fast convergence. The last example is useful to illustrate that while the

best method gives a nominally convergent algorithm with M2|σmax| = 0.9999, it would

be unacceptably slow for practical applications.

Summarizing; this collection of methods provides a potentially very strong tool for itera-

tive solutions of the three field case but it is highly sensitive to the problem parameters.

1Coolant values are specifically Fluorinert FC-77



Chapter 6

Conclusions and comments

We have confirmed earlier results on the convergence behavior of the two-field case.

Further we have created three algorithms for solving the 1D three-field case and analyzed

their convergence by rewriting them as fixed-point iterations acting on the boundary

points. The spectral radii of these fixed-point iteration-matrices depend only on material

properties and they have been shown to give reliable estimates for the convergence of

the whole iterative solution.

We have also shown that different choices of sequencing the Dirichlet-Neumann iteration

can result in quantitatively different and in many cases complementary convergence

properties. Summing up:

• The spectral radii of the fixed-point iterations acting on the boundaries are accu-

rate predictors of the total solution error in all cases considered.

• The rate of convergence in the 1D three-field case depends only on the material

properties, not on the discretization.

• By choosing where to impose either Neumann or Dirichlet boundary conditions

and by what sequence they are carried out, we can construct algorithms with

different convergence properties.

• Choosing the method based on problem parameters is crucial to be able to achieve

the fastest convergence rates.

• The choice of best method does not guarantee fast convergence, i.e., there are

combinations where neither of the three methods delivers fast convergence.

62
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6.1 Recommendations for further study

We have shown for the 1D three field case, that by choosing different order and different

combinations of Dirichlet-Neumann conditions, we can create algorithms with quantita-

tively different convergence properties. The dream would of course be having a suitable

algorithm for any combination of values. We improve our toolbox incrementally every

time we develop a new method which better reaches some areas when compared to the

methods we had before. A natural continuation of the work would thus be examining

what other combinations, if any, are possible.

As noted in the beginning of this work, there is reason to believe that the 1D convergence

rates could match the asymptotic convergence behavior of the 2D case. It would be

highly desirable if we could use the results of this work to predict convergence behavior

in higher dimensions, studying if this is indeed the case is another natural continuation.

Our algorithms were constructed specifically for the three field case. Their method

of construction could be extended to any n-field case. It could be of interest to see

what behavior we see as we add fields, perhaps one could even find systematic changes

and thus gain a general formula for generating the best possible method for any n-field

problem.

A final project with an end-user in mind, provided this approach proves its extended

usefulness as speculated above, would be to collect all known algorithms into a mother

program. It would take material constants as its input and generate the most suit-

able program for the specific problem given, together with an estimator for the rate of

convergence.
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