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Abstract

The physics of interacting many-body systems is a very complex and challenging
subject. Therefore one in general needs to use simplified models and approximate
methods for studying these systems theoretically. In this work we study the
exchange-correlation (xc) potential for the Hubbard-Holstein (HH) model for
the application of Density Functional Theory (DFT) to the same.

The Hohenberg-Kohn theorem and the two sets of Kohn-Sham equations are
derived for the HH-model extending a procedure outlined in previous work. The
xc-potentials for the fermions and bosons respectively are then derived analyt-
ically as functions of the density n and phononic displacement x for a single
HH-site in contact with a heat bath, generalizing the procedure for the pure
Hubbard model. The potential for the HH-site is found to have a smaller gap
at half filling than for the Hubbard model, due to a rescaling of the effective
electron-electron interaction. It also has an additional term linear in (n − 1).
The xc-potentials are used to study two simple systems, an Andersson impurity
dimer and a four-site chain of HH-sites. The results are compared to those of an
exact solution and to the Hartree-Fock (HF) solution. For the dimer the DFT-
method performs consistently better than the HF-method, while the results for
the chain are more ambiguous.

However, the central result of this thesis is to produce xc-potentials for an in-
finitely coordinated Bethe lattice, using Dynamical Mean Field Theory (DMFT).
The potentials for a small but representative set of interaction parameters are
presented and compared to the analytical potential. The potentials are similar
in that they do not exhibit much structure, and they behave very similarly far
from half filling. Close to half filling they show more differences, as the analytic
potential is always discontinuous around half filling while the potential attained
via DMFT is only discontinuous for large electron-electron interactions.
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1 Introduction

The physics of many-body systems is very complex and poses some of the major
challenges in modern physics. The cause of this complexity is that in most
many-body systems of interest, each particle interacts with every other particle,
resulting in a problem which expands rapidly in size and quickly becomes too
complicated to solve exactly. In order to treat these complicated systems, many
different approaches have been taken, and multiple approximation methods have
been developed. One which is commonly employed is density functional theory
(DFT), which was developed during the -60’s by Hohenberg, Kohn and Sham
[10, 16], and for which Kohn got the Nobel prize in chemistry in 1998. The basic
idea of DFT is to remodel the interacting system as an auxiliary, non-interacting
one with the same particle density as the fully interacting system. This is done
by subjecting the auxiliary system to an effective potential which gives rise to
the correct particle density. It can be shown that the particle density is enough
to uniquely define any expectation value of the original system, and thus the
full many-body wavefunction does in principle not need to be evaluated, if the
particle density can be found. These ideas are presented in more detail in section
1.2.

In DFT, the primary challenge is moved from finding the interacting many-
body wave function into finding the effective potential of the auxiliary system, or
rather the part of this effective potential referred to as the exchange correlation
(xc) potential. This quantity is defined as the contribution which describes the
exchange and correlation effects of the full system, or more simply: the com-
plicated part. This is, just as finding the full many-body wave function, an
in principle impossible task. For certain types of systems good approximations
of this potential have however been developed, and DFT can be used to accu-
rately predict some properties of actual, physical systems, such as inter-atomic
distances.

Another tool that can be used to gain a better understanding of many-body
physics is simplified model systems. These can be studied both in order to in-
vestigate qualitative behaviour which can be compared to experimental results,
as well as to compare different approximation schemes to exact solutions, and to
each other. For example, an extensive amount of work has been done on the Hub-
bard model [13, 14, 8], which is a very simple lattice model that only accounts
for next-neighbour hopping and an on-site electron-electron Coulomb interac-
tion, U . This makes it useful for studying systems with strong electron-electron
interactions, so called strongly correlated systems. This thesis considers another
rather simple lattice model, called the Hubbard-Holstein (HH) model [25]. This
models combines the Hubbard-model with another model, the Holstein model
[11], which describes an on-site interaction between fermions and bosons. The
Holstein model thus accounts for the interaction between electrons and lattice
vibrations (phonons). To study the HH-model would then be interesting in order
to gain better understanding of systems which experience both strong correlation
effects and strong electron-phonon interactions. The HH-model is described in



more detail in section 1.1.
Besides fundamental scientific curiosity, a convincing motivation for study-

ing the HH-model is the wish to gain better understanding of superconductivity,
in particular at high temperature. In 1957 Bardeen, Cooper and Schrieffer for-
mulated the BCS-theory, which explains the physics of conventional supercon-
ductors [3]. This theory shows that at low enough temperatures electrons will
form Cooper pairs, which are bosonic quasi particles consisting of two electrons
of opposite spin, indirectly attracted to each other through interactions with
the lattice. It also succeeds in describing other properties of superconducting
materials, although it falls short in explaining high temperature superconduc-
tors, discovered in 1986 [4]. These are materials that are superconducting at
temperatures higher than predicted by the BSC-theory, and they are still not
well understood. There is experimental evidence that lattice vibrations plays a
role also in high temperature superconductors, and that these materials exhibit
strong correlation effects. For example strong isotope effects and peculiar elec-
tron dispersion has been observed in certain high temperature superconductors
[9, 18]. The HH-model is the simplest model possible which accounts for both
strong electron-electron repulsion and electron-phonon interactions. Extracting
the xc-potential for the HH-model could thus help give insight to the behaviour
of high temperature superconductors, by providing the possibility of an approx-
imate description of them using DFT.

Another area where the model is of direct interest is ultra cold atoms. In these
systems atoms are cooled to extremely low temperatures (T � 1 K) and trapped
by an optical lattice. These setups permit to adjust and fine tune parameters
which can not be easily changed in conventional solids, such as the band width
and on-site interaction. This type of experiments could therefore be a very direct
way of testing theoretical predictions of the model.

This masters project is, however, not directly concerned with any experi-
mental applications. Rather, it presents a sample of the HH-model xc-potential
for a small set of different electron-electron and electron-phonon interactions, as
well as an analytical xc-potential for the special case of a single HH-site system
coupled to a heat bath. This analytical potential is obtained via an extension of
the work done for the Hubbard model in [24, 26, 22], and it is used to simulate
a simple system.

In this section the theoretical background for the thesis is presented, describ-
ing the model and the methods used to solve it, and in the next section the
theoretical work done during this thesis is presented. In 2.1 we show that the
concept of DFT makes sense for the HH-model by generalizing the proof in [23],
and in section 2.2 the xc-energy for the HH-model is separated from the total
energy, as this quantity is needed for the data analysis in section 4.3. We then
develop an analytical expression for the xc-potential of a single HH-site in con-
tact with a heat bath. This analytical potential is obtained as an extension of
the treatment of [24, 26] and [22], by considering the electron-phonon interaction
of the HH-model in addition to the electron-electron interaction of the pure Hub-
bard model. This is presented in section 2.3. The phonons are found to rescale
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the effective electron repulsion, so that for phonon couplings similar in strength
to the electronic interaction U , the effective electron interaction can even become
attractive.

The theory concerning the simulations performed during this project is pre-
sented in section 3 along with the specific systems that were simulated. The
analytical potential developed in section 2.3 is used to study the behaviour of a
dimer consisting of one HH-site and one non-interacting site serving as the heat
bath. The results, presented in section 4.1, are compared to the exact solution
and also to the Hartree-Fock (HF) solution, which is briefly described in section
1.2.3. It is found that the analytical xc-potential in general performs better than
the HF-potential, but not always.

The main goal of the thesis however was to attain the xc-potential using a
more realistic model than the single-site dimer in contact with the heat bath.
This was done with a code which uses Dynamical Mean Field Theory (DMFT) to
find the local Green’s function for a Bethe lattice (see section 1.3.5), from which
the xc-potential can be derived [1]. The DMFT method and the concept of
Green’s functions are discussed in section 1.3. The procedure is a generalization
to that of [15] where the same was done for the Hubbard model in 3D. However,
these simulations require a vast amount of computational effort to converge.
Therefore we focused on attaining data for a small but representative set of
parameters U and g, presented in section 4.3. In section 4.4 the results are
discussed and the analytical and DMFT-results are compared to each other.

Finally section 5 provides a short summary of the work that has been done
during the course of this thesis project, as well as an outlook with suggestions
on further developments on the topic.

1.1 The Hubbard-Holstein model

The Hubbard-Holstein (HH) Hamiltonian is a model lattice Hamiltonian. It
describes a many-body system of electrons tightly bound to the lattice sites,
accounting for local interactions between the electrons and between electrons
and on-site lattice vibrations. The electrons are tightly bound in the sense that
they can only hop between next neighbour sites. The atomic orbitals of the lattice
sites are used as the fermionic basis states and the bosonic number states as the
phononic basis. Defining the fermionic and bosonic annihilation and creation
operators acting at a lattice site i as ai,σ/a†i,σ and bi/b†i respectively, where σ =↑
/ ↓ denotes spin, the HH-Hamiltonian can be written as:

HHH = −t
∑

〈ij〉

(
a†iaj +H.c.

)
+ U

∑

i

n̂i↑n̂i↓ +
∑

i

vin̂i

︸ ︷︷ ︸
He

+
∑

i

(
ω0b†ibi +

√
2ηx̂i

)

︸ ︷︷ ︸
Hph=Hph0 +Hphext

+
√

2g
∑

i

x̂i(n̂i − 1)

︸ ︷︷ ︸
He−ph

(1)
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Here n̂iσ = a†iσaiσ is the fermionic number operator, and x̂i = (b†i + bi)/
√

2 is
the phononic displacement operator with the units chosen to that h̄ = ω0m = 1,
m being the nuclear mass. Wherever the spin-subscript is missing, a sum over
spins has already been performed, so that a†iaj =

∑
σ a†iσajσ, and n̂i = n̂i↑ + n̂i↓.

The system is chosen to be spin-compensated, so that 〈n̂i↑〉 = ni↑ = ni↓ = ni/2.
We start by examining the first part of the expression above, He, which is

known as the Hubbard Hamiltonian. It was considered by Hubbard and others
in 1963 as a way of describing narrow band transition metals which were not well
described by other model systems used at the time [13, 14, 8]. The first term
of the Hubbard-Hamiltonian describes the hopping of electrons between sites,
where t is the magnitude of this hopping, 〈ij〉 denotes nearest neighbours and
H.c. stands for hermitian conjugate. The electrons can thus only hop directly
between nearest neighbour sites. This term accounts in the simplest way possible
for the kinetic energy of the model. The magnitude of t describes the overlap
between the basis states, and thus the model will approach the atomic limit as
t decreases. The middle term in He is the Hubbard term, which accounts for
an on-site interaction of strength U between electrons. This is a repulsive term
which can describe the strong correlation effects found in some types of materials.
The third term in He accounts for any on-site or external potential.

The second part, Hph = Hph
0 + Hph

ext, is a purely phononic Hamiltonian where
the phonons are modelled as harmonic oscillators with frequency ω0 and an
external potential η. This potential is merely used as a tool to facilitate the
analytical calculations.

The last term, Hph−e is the Holstein-term which describes the interaction
between electrons and phonons of strength g. It was introduced in 1959 by T.
Holstein for the purpose of studying polarons [11]. This term will act attractively
on the electrons, as shown in the following section.

1.1.1 The Lang-Firsov Transformation

The Lang-Firsov (LF) transformation is a unitary transformation which diago-
nalizes the phononic parts of the Hamiltonian HHH and moves the effects of the
electron-phonon coupling into the electronic part He by a rescaling of the hopping
parameter t. It is useful for this thesis as it allows for some simplifications of the
analytical calculations, by replacing the coupling term He−ph and the external
phononic potential Hph

ext in the phononic part of HHH by a shift. The procedure
amounts to a spatial translation of the phonon coordinates.

The transformed Hamiltonian H̃ is given by:

H̃ = eiSHe−iS (2)

where S is defined as:

S = −
√

2

ω0

∑

i

p̂i(g[n̂i − 1] + η) (3)

Here
√

2p̂i = i(b†i − bi) is the phonon momentum operator at site i.
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The translational operator translating the spatial coordinate by a distance a
looks like: T = e−ip̂a, and by analogy the LF-transformation thus corresponds
to a ”translation” a = â =

√
2(g[n̂i − 1] + η)/ω0. The transformed Hamiltonian

H̃ looks explicitly like:

H̃ =
∑

i

[
ṽn̂i + Ũ n̂i↑n̂i↓

]
−
∑

〈ij〉

(
t̃ija

†
iaj + h.c

)

︸ ︷︷ ︸
H̃e

+
∑

i

ω0b̃†i b̃i

︸ ︷︷ ︸
H̃ph0

−(η − g)2

ω0

(4)

which looks like a Hubbard Hamiltonian (H̃e) with rescaled parameters plus a
diagonal bosonic Hamiltonian (H̃ph

0 ), with the introduction of a shift −(η−g)2/ω0

as anticipated. The electrons and phonons are now coupled via the rescaled
electronic hopping parameter t̃ij instead of the coupling term. The rescaled
parameters ṽ, Ũ and t̃ij are defined according to:

Ũ = U − 2g2

ω0

ṽ = v +
g2

ω0

− 2gη

ω0

(5)

t̃ij = tei
√

2g(p̂i−p̂j)/ω0

In obtaining the expressions above it is important to not forget that n̂i =
n̂↑i+n̂↓i and n̂2

i,σ = n̂i,σ, as we are still dealing with operators and not expectation

values. It is also noted that the rescaled hopping parameter t̃ij is now an operator
and not a number.

For a system without the kinetic term of the electrons, such as the single site
in contact with a bath examined in section 2.3, the Lang-Firsov transformation
is more explicit in first quantization. Starting from the non-transformed purely
phononic Hamiltonian, Hph, we have:

ω0

2
(p̂2 + x̂2) +

√
2η0x̂ =

ω0

2

(
p̂2 + (x̂ + x0)2

)
− η2

0

ω0

(6)

where x0 =
√

2η0/ω0 is the equilibrium position of the harmonic oscillator.

1.2 A short introduction to DFT

DFT is an in principle exact method for treating ground states of many-body
systems. It reformulates quantum mechanics into a density-dependent theory
which allows for a remapping of an interacting many-body system into non-
interacting system with the same density. This greatly reduces the computa-
tional effort required to solve the many-body system, which is the key feature of

5



DFT as compared to other methods. The remapping of the interacting to a non-
interacting system is what poses the primary challenge in DFT, as it requires the
so called exchange-correlation potential (xc-potential), which is a highly compli-
cated object. The aim of this thesis has been to investigate the xc-potential
for the HH-model. The reason to study the xc-potential for this rather simple
model is that for practical applications of DFT the xc-potential of a reference
system is used to approximate that of the actual system of interest, as the exact
xc-potential is in general not available. Therefore it is informative to study the
HH-model and compare it to the Hubbard model to gain qualitative understand-
ing of the role phonons play in the properties of the xc-potential as well as in
the behaviour of materials with strong correlation effects.

1.2.1 Ground State Formalism

The basic procedure within DFT is outlined in two different papers written in
the 60’s [10, 16]. In the first paper Hohenberg and Kohn show how quantum
mechanics can be reformulated to depend on the particle charge density n of a
system, rather than the wavefunction. This is done by expressing the full ground
state energy of the system as a functional of the density n, E0[n(r)] = E0[n],
which means that the total energy E0 depends on the full density distribution
n(r) at all points in space. It is then shown how there is a one-to-one mapping
between the ground state particle density n and the ground state energy E0.
This is referred to as the Hohenberg-Kohn (HK) theorem. Other proofs of this
theorem have also been developed, among them one presented by Schönhammer
et al [23], which is an extension to the constrained search method by Levy [19].
This approach is more general than the original proof and allows for reformulation
in other densities than just the particle density, such as the current density. The
constrained search method is used in section 2.1 to verify the legitimacy of using
DFT in the particular case of the HH-model.

In the second paper, Kohn and Sham demonstrate how the theorem of Ho-
henberg and Kohn could be used to formulate a method for treating a many-body
system of interacting particles via a non-interacting system of the same density,
referred to as the Kohn-Sham (KS) system. This treatment can be argued for by
the following: For the fully interacting system the total energy can be divided
into different contributions. The total kinetic energy T can be separated into
the contribution from a non-interacting system of the same density, T0, and the
contribution which comes from interactions between the particles, Txc, so that
T = T0 + Txc. The rest of the energy can be divided into the contribution from
the external potential, Eext, the Hartree energy EH , which is obtained with the
Hartree approximation (see 1.2.3) and the reminder εxc, which comes from inter-
actions not considered at the Hartree level. Thus the total energy can be written
as:

E0[n] = T0[n] + Eext[n] + EH [n] + Exc[n] (7)

where Exc = Txc + εxc. All the contributions are functionals of the density n. As
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E0[n] is a ground state energy, the variational principle gives that:

0 = δE0 =

∫
dn

(
δT0[n]

δn
+
δEext[n]

δn
+
δEH [n]

δn
+
δExc[n]

δn

)

=

∫
dn

(
δT0[n]

δn
+ vext[n] + vH [n] + vxc[n]

)
(8)

where vxc[n] thus contains the contributions from both Txc and εxc.
Then we consider the corresponding KS-system, described by the many-body

wavefunction |Ψks〉, which by definition is non-interacting and has the same
density as the fully interacting ground state. As the particles in the KS-system
are non-interacting, |Ψks〉 can be written as a Slater determinant of the single
particle wavefunctions |φλ〉, resulting in a set of equations looking like:

(
T + vks[n]n̂

)
|φλ〉 = ελ |φλ〉 (9)

where T is the kinetic energy operator. The KS-potential vks must be chosen
such that the density of the KS-system equals the density of the fully interact-
ing system. The HK-theorem guarantees that there is no more than one such
potential. A suitable choice for the KS-potential is, from equation (8):

vks = vext + vH + vxc (10)

so that the KS-system will indeed have the same density as the interacting sys-
tem. Expressed like this, all the physics beyond the Hartree level is contained in
the xc-potential.

The density of the KS-system is given by

n(r) =
∑

λ

∣∣φλ(r)
∣∣2 (11)

where λ runs over all occupied states and a sum over spins has already been
performed. Once the density is found, any observable can in principle also be
determined from the one-to-one correspondence between the density and the full
many-body wavefunction of the interacting system. There are however several
problems arising along the way. As mentioned above, the HK-theorem guarantees
that there is no more than one potential for the KS-system which reproduces the
correct density. It does not, however, guarantee the existence of such a potential,
which is referred to as the problem of v−representability [19]. Even if there exists
an xc-potential corresponding to the system of interest, it is far from trivial to
actually find this potential. Often the Local Density Approximation (LDA) is
employed to simplify this task, in which the xc-potential is assumed local, i.e.
it is considered a function of the local density instead of a density functional.
Mathematically this is expressed as:

vxc[n(r)]
LDA−−→ vxc(n(r)) (12)
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Even so, there is no method for constructing the xc-potential for an arbitrary
system, and thus for practical calculations the xc-potential of a reference sys-
tem, such as the interacting free-electron gas or the Hubbard model, is used as
an approximation of the actual xc-potential. It is thus clear within where the
primary limitations of the DFT-method lies. Then to increase the versatility of
DFT, the xc-potential of more intricate reference systems needs to be extracted,
which is the essential aim of this thesis.

1.2.2 Time-Dependent (TD)DFT

The DFT-formalism can also be extended to time dependent systems, as initially
shown by Runge and Gross in 1983 [21]. To construct the framework for TDDFT-
calculations, we start in a similar way as for the time-independent case, by setting
up the equations for the time-dependent Kohn-Sham system:

(
T + vks(t)

)
|φλ(t)〉 = i

∂

∂t
|φλ(t)〉 (13)

and similarly to before we get the density as

n(r, t) =
∑

λ

∣∣φλ(r, t)
∣∣2 (14)

where the density now carries a time argument t in addition to the spatial ar-
gument r. Equation (14) is, like for the ground state-formulation, by definition
equal to the density of the fully interacting system.

The time dependence of the KS-Hamiltonian in equation (13) comes from the
time dependence of the KS-potential, which can be divided into the external,
Hartree- and xc-potentials as in equation (10). The time dependence of the
external potential is trivial, and for the model studied in this project the Hartree
potential is a function (and not a functional) of the density meaning that all
intricate time dependence of the system, such as memory effects, needs to be
accounted for by the xc-potential.

Thus the exact time-dependent xc-potential is an object which depends on
the density not only at all points in space, as in the ground-state formulation, but
also at all points in time. Therefore it is common practice to, in addition to the
LDA, also assume that the density-dependence of vxc is local in time, or adiabatic.
This approximation is true in the limit where vks changes infinitely slow. This
approximation is called the Adiabatic Local Density Approximation (ALDA) and
has been used in this project for all time dependent DFT-calculations.

1.2.3 The Hartree and Hartree-Fock approximations for the HH-
model

The Hartree approximation is one of the first approximation schemes developed
for many-body systems. The basic assumption is that the many-body wavefunc-
tion can simply be written as a product state of single particle wavefunctions,
and the ground state is defined as the product state with the lowest energy.

8



One of the greatest shortcomings of this method is that it doesn’t recognize the
antisymmetry of the electronic wavefunction, and it therefore misses both ex-
change and correlation effects. In practice it is not used much because of this,
as much of the physics is lost with the lack of these contributions. However, it
still accounts for a considerable contribution to the total energy, and thus to the
KS-potential. Therefore it is considered within DFT in order to isolate the part
of the KS-potential which contains the exchange and correlation effects.

The Hartree-Fock (HF) method is another many-body approximation scheme
where the basic assumption is instead that the many-body wavefunction can be
constructed as a Slater determinant of single particle orbitals, which is the sim-
plest way to construct a many-particle solution that satisfies the antisymmetry
of the fermionic wavefunction. The variational principle is used to find the HF
ground state wavefunction as the Slater determinant with the lowest energy. The
HF-method has been widely used, and is the first approximation method which
recognizes the antisymmetry of the fermionic wavefunction, therefore accounting
for the so called exchange-effects from fermion-fermion interactions.

The HH-Hamiltonian in equation (1) considers only one orbital per site and
has a spin-explicit form of the Hubbard term. For this way of formulating the
HH-Hamiltonian it can be shown that the contribution from considering the full
Hartree-Fock scheme instead of only the Hartree scheme is zero. Therefore the
potential vH , which usually in DFT refers to the Hartree potential coming from
cosidering the Hartree approximation, will throughout the rest of this thesis be
referred to as the Hartree-Fock potential instead. This we do in order to make
explicit how there is no Fock-contribution in the xc-potential of the HH-model
in this project.

The HF-energy, EH , and HF-potentials, vH and ηH , for the HH-model are:

EH(n, x) =
∑

i

U
n2
i

4
+
√

2g
∑

i

(ni − 1)xi

vH(n, x) =
∑

i

U
ni
2

+
√

2g
∑

i

xi (15)

ηH(n, x) = g
∑

i

(ni − 1)

where vH enters the electronic and ηH the bosonic KS-Hamiltonian respectively.
The KS-equations for the HH-model are derived in section 2.1.

1.3 The Green’s functions formalism and Dynamical Mean
Field Theory (DMFT)

Dynamical Mean Field Theory (DMFT) is a non-perturbative method which
finds an approximate single particle Green’s function of a system through a self
consistency scheme. The Green’s function is a very powerful object through
which much can be learned about the system it describes, such as the spectrum,

9



total energy and all single-particle expectation values. The single particle Green’s
function formalism is for example used when studying the behaviour of single
charges moving in a field in electrodynamic problems. Also when studying a
many-body system it is for many purposes sufficient to find the single particle
Green’s function, which then describes the propagation of a particle in a field
given by all the other particles. Compared to DFT, DMFT has the advantage
of not being in need of complicated a priori input, such as the xc-potential, but
the disadvantage of being computationally much more taxing.

DMFT has been used in this project to find the total energy of the HH-
model for an infinitely coordinated Bethe lattice. This lattice is characterized
by not having any closed loops, and the coordination refers to the number of
nearest neighbours at each lattice site. This is thus a rather non-physical lattice
model, but is used as it reduces the computational effort needed to find the
Green’s function, and it could still yield qualitatively interesting results. The
Bethe lattice is discussed in more detail in section 1.3.5. Once the total energy
is found, the xc energy can be separated from the rest and differentiated with
respect to the electronic density, n, and phononic displacement, x, to find the
xc-potentials vxc and ηxc respectively. The DMFT method can thus be used
to find an xc-potential. This potential is exact so far as the DMFT-scheme is
exact, which is in the limit of infinite dimensions. The xc-potential then allows
for investigation of more elaborate systems at a much lower computational cost
using (TD)DFT and the (A)LDA approximation.

1.3.1 Zero-temperature Green’s functions

As mentioned above, the Green’s function is a very useful object, through which
several interesting properties of a system can be obtained. In quantum mechan-
ics, the most important object is the wave function, which is the solution to the
Shrödinger equation:

[
ih̄
∂

∂t
− H(r)

]
ψ(r, t) = 0 (16)

The Schrödinger equation is a linear, partial differential equation which is first
order in time, and thus this discussion is valid for any such differential equa-
tion. As the Hamiltonian H in the above equation is time independent, this
formulation only considers the equilibrium state. For a treatment of a system
out of equilibrium, a time dependent Hamiltonian has to be introduced. The
mathematical Green’s function corresponding to the single particle Schrödinger
equation is defined as the object g(z, z′) which solves:

[
ih̄
∂

∂t
− H(r)

]
g(z, z′) = δ(z − z′) (17)

where the operator H is a time-independent, linear, hermitian operator and z =
r, t. As H is time-independent, the absolute time arguments of g(z, z′), t and
t′, are not important but only the difference between them, ∆t = t − t′. The
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Green’s function g(z, z′) must also obey the same boundary conditions as the
single particle wavefunction ψ(z).

To briefly understand some of the analytical behaviour of the Green’s func-
tion, we start by expressing g(z, z′) = g(r, r′,∆t) via it’s Fourier transform w.r.t
∆t:

g(r, r′,∆t) =

∫
dω

2π
e−iω∆tg(r, r′, ω) (18)

By substituting (18) into (17) we get

(
h̄ω − H(r)

)
g(r, r′, ω) = δ(r− r′)→

g(r, r′, ω) =
∑

n

φn(r)φ∗n(r′)

h̄ω − En
(19)

where the last line has been obtained by expressing δ(r− r′) = 〈r|r′〉, inserting
a completeness relation and letting H(r) act on the states |φn〉 after solving for
g(r, r′, ω).

We can now see that g(r, r′, ω) is analytic in the complex ω-plane, save for the
simple poles on the real axis (as H is Hermitian) corresponding to the eigenvalues
of H, En. It is from this clear that g(r, r′, ω) contains information about the
energy levels of the system described by the Hamiltonian H.

To regain the time-dependent Green’s function from equation (18) a limit-
ing procedure must be performed in order to evaluate the Fourier integral, as
g(r, r′, ω) is not analytic on the real axis otherwise.

g±(r, r′,∆t) = lim
η→0

∫
dω

2π
e−iω∆t

∑

n

φn(r)φ∗n(r′)

h̄ω − En ± iη

=
±iθ(±∆t)

h̄

∑

n

e−iEn∆t/h̄φn(r)φ∗n(r′) (20)

Here the integral form of the Heavyside function θ(t) has been used to reach
the last line. It can be seen that depending on the sign of ∆t we get different
Green’s functions, g+ and g−. These are referred to as the retarded and advanced
Green’s function, respectively.

The Green’s function usually referred to within physics is a single particle
Green’s function which is defined as:

G(z, z′) = −i 〈ψ0|T[ψ̂(z)ψ̂†(z′)] |ψ0〉 (21)

where |ψ0〉 is the many-body Heisenberg ground state and ψ̂(z) is the Heisenberg
field operator which destroys a particle (creates a hole) at z. For simplicity h̄ has
now been set to one, which will be true throughout the rest of the discussion.
T is the time ordering operator which reflects the behaviour of the Heavyside
function in equation (20):
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T[ψ̂(z)ψ̂†(z′)] =

{
ψ̂(r, t)ψ̂†(r′, t′) t > t′

±ψ̂†(r′, t′)ψ̂(r, t) t′ > t
(22)

where the plus sign corresponds to bosons and the minus sign to fermions. For a
non-interacting system the expression in equation (21) reduces to g+ +g−, which
can be seen by expressing (21) in the so called Lehmann representation (see e.g
[7]).

G(z, z′) in equation (21) is referred to as the time ordered Green’s function.
It describes the propagation of a particle at z added to the system at z′ when
t > t′, and the propagation of a hole when t′ > t. As a result of this, Green’s
functions are also referred to as propagators. The spin component of the fields ψ̂
and ψ̂† has been omitted for simplicity, as spin symmetry is assumed throughout
this thesis. Technically the single particle Green’s function does however carry
two spin indices, meaning the equations above only consider one spin channel.

1.3.2 Temperature Green’s functions

The program used to obtain the data for this thesis evaluated the Matsubara or
temperature Green’s function to obtain information about the system. Therefore
this section will give a short review on this extension of the Green’s function
formalism.

The temperature Green’s function is defined as the thermal average of the
Green’s functions corresponding to all basis states, where the Hamiltonian is that
of the grand canonical ensemble:

K = H−
∑

i

µn̂i (23)

Here µ is the chemical potential and n̂ is the number operator. This substi-
tution is convenient as it allows the possibility to vary the number of particles
in the system by varying µ. The grand partition function Z and the statistical
operator ρ̂T are written as

Z =
∑

n

〈ψn| e−βK |ψn〉 = e−βΩ (24)

ρ̂T =
e−βK

Z
= eβ(Ω−K) (25)

where β = 1/kBT is the inverse temperature and kB is the Boltzman factor. A
modified Heisenberg picture is then introduced according to

ψ̂K(r, τ) = eKτ ψ̂(r)e−Kτ (26)

ψ̂†K(r, τ) = eKτ ψ̂†(r)e−Kτ (27)
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which for a purely imaginary τ = it is formally identical to the regular Heisenberg
picture. The variable τ is referred to as the imaginary time, and consequently
the modified operator ψ̂K(r, τ) is sometimes called the imaginary time operator.
This reformulation is convenient as the Green’s function formalism from the
previous section can then be used to treat systems not only at zero-temperature
but also at finite temperature.

The temperature Green’s function will then look like:

GT (r, r′, τ, τ ′) =
∑

n

〈ψn| ρ̂TT[ψ̂(r, τ)ψ̂†(r′, τ ′)] |ψn〉 = Tr{ρ̂TT[ψ̂(r, τ)ψ̂†(r′, τ ′)]}

(28)
where the time ordering is with respect to the imaginary times τ and τ ′.

In the imaginary time formulation, the Green’s function is periodic within
the interval −β < τ − τ ′ < β, which simplifies the evaluation of the Green’s
function. The Green’s function can be shown to be odd for fermions and even
for bosons within this interval. This allows the Green’s function to be expanded
in a Fourier series, with only even/odd frequencies for bosons/fermions [7].

The non-interacting Green’s function, corresponding to a non-interacting par-
ticle (no self-interactions either), can be written more explicitly in the frequency
domain as:

GT
0 (ωm) =

∑

j

φ0
j(r)φ

0
j(r
′)†

iωm − (ε0j − µ)
(29)

where φ0
j(r) are the eigenfunctions of the non-interacting grand canonical Hamil-

tonian K0 = H0 −
∑

i µn̂i with eigenvalues ε0j − µ. The Matsubara frequencies
ωm are given as:

ωn =

{
(2n+1)π

β
fermions

2nπ
β

bosons
(30)

The expression in equation (29) is obtained by evaluating equation (28) for either
fermions or bosons explicitly, and utilising the (anti) periodicity of the Green’s
function to evaluate the Fourier integral. In arriving at equation (29) only the
difference between the two imaginary time arguments ∆τ = τ − τ ′ has been
considered, which requires the Hamiltonian to be independent of τ and τ ′. We
note how equation (29) and (19) look very similar.

In the case of a translationally invariant system the basis states φ0
j → φk can

be written as plane waves of momentum k, which makes it easy to identify the
momentum dependent Green’s function GT

0 (k, ωm) as

GT
0 (k, ωm) =

1

iωm − (εk − µ)
(31)

13



(a) (b)

Figure 1: All first order Feynman diagrams for the propagation of a
free particle.

1.3.3 Diagramatic expansion and Dyson’s equation

The interacting Green’s function, also called the dressed propagator, is evaluated
through a perturbation expansion in terms of only the non-interacting Green’s
function and the inter-particle potential. To evaluate each term of the expansion
is time consuming and cumbersome, and to simplify the task Wick’s theorem
is used (see e.g. [7]). This theorem provides a scheme for how to evaluate the
terms in an easier way. The expansion can also be diagrammatically represented
via Feynman diagrams, and through the Feynman rules the contribution to the
interacting Green’s function from any possible diagram can be evaluated in a
straightforward way. The Feynman rules take their simplest form in momentum
space, and therefore calculations are in general done in momentum space when
possible.

In a Feynman diagram a propagating particle is usually represented by a solid
line, and an interaction by a wavy line, where the former corresponds to G0 and
the latter to the interparticle interaction. The order of the diagram is given by
the number of interaction lines. Figure 1 shows all first order diagrams for the
propagation of a free particle.

For the second order there are ten different diagrams, displayed in figure
2. To get the full interacting Green’s function G all Feynman diagrams of all
orders need to be considered. This motivates defining the concept of a self-energy
Σ(z, z′) and a proper self-energy Σ∗(z, z′) which are diagrammatically defined in
figure 3. The self-energy is the sum of all possible Feynman diagrams with one
ingoing and one outgoing particle line. The proper self-energy is defined in a
similar way, but the Feynman diagrams making up the sum are only those which
can not be reduced into lower-order diagrams by cutting a single particle line.
All diagrams in figure 1 and 2 add to the self-energy, but only the diagrams in
figure 1 and diagrams e-j in 2 add to the proper self-energy.

From the rhs in figure 3 we see that the interacting Green’s function can be
expressed recursively, if the non-interacting Green’s function G0 and the proper
self-energy Σ∗ are known:
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(a) (b) (c) (d) (e)

(f ) (g) (h) (i) (j )

Figure 2: All second order Feynman diagrams for a free particle.
Diagram a-d can be divided into the first order diagrams in figure
1 by cutting the propagator line. All diagrams add to the improper
self-energy, while only (e-j) add to the proper self-energy.

= +

z

z′

Self-energy Σ

= + + + ...

proper

self-energy Σ∗

= +

Figure 3: Diagrammatic definition of the self-energy Σ and proper
self-energy Σ∗. The rhs is Dyson’s equation expressed in a diagram-
matic form.
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G(k, ωm) = G0(k, ωm) +G0(k, ωm)Σ∗(k, ωm)G(k, ωm) (32)

This is referred to as Dyson’s equation. Solving for G in equation (32) and
inserting the expression for the non-interacting Green’s function from equation
(31) gives the expression for the interacting Green’s function:

G(k, ωm) =
1

iωm − (ε0k − µ)− Σ∗(k, ωm)
(33)

The local Green’s function is defined as the spatial representation of the
Green’s function with identical spatial arguments: G(r, r, ωm) = Gl(r, ωm). For
a truly homogeneous and infinite system, the local Green’s function Gl(r, ωm)
is thus independent of r. We also define the density of states (DOS) as the
quantity:

ρ(r, ε) =
∑

k

δ(ε− εk)φk(r)φ†k(r) (34)

and express the spatial representation of the local Green’s function as

Gl(r, ωm) =
∑

k

φ0
k(r)φ

0
k(r)

†

iωm − (ε0k − µ)− Σ∗(k, ωm)
=

∫
dε
ρ0(r, ε)

x− ε (35)

with x = iωm + µ− Σ∗(k, ωm).

1.3.4 The DMFT procedure

DMFT is a non-perturbative method commonly employed to investigate strongly
correlated systems. The method maps the problem of finding the many-body
lattice Green’s function into finding the many-body local Green’s function of an
impurity in contact with a bath. This impurity model is called the Anderson Im-
purity Model (AIM) and the mapping is in itself not an approximation. However,
to do the mapping from a full lattice problem to the AIM the proper self-energy
(referred to as only the self-energy in the following) needs to be momentum-
independent, or local. The assumption of a local self-energy is true for systems
of infinite dimensionality, but for any system of finite dimensionality it is an
approximation. DMFT is thus exact for systems of infinite dimensions, but al-
ways an approximation for any physical system, with better accuracy expected
for higher dimensionalities. As a matter of fact, DMFT performs well already in
three dimensions.

The aim of DMFT is to find the local lattice Green’s function, Gl(r, ω), by
finding the Green’s function of the Anderson impurity, g(ω). Under the as-
sumption that the self-energy is momentum-independent and that the system is
periodic, the local and impurity Green’s functions, Gl(r, ω) and g(ω), are the
same. The impurity Green’s function is found through an iterative process and
an eigenvalue problem solver. The solver can use different methods, such as ex-
act diagonalisation (ED) or continuous time quantum Monte Carlo (CTQMC).
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Guess initial value
for g0(ω)

Solve the AIM to get g(ω)
Extract σ(ω) from g(ω)

using equation (36a)
Use equation (36b)

and (36c) to find Gl(ω)

Use equation (36d)
and (36a) to get a new

guess for g0(ω)
Has g0(ω) converged?no

yes Self-consistency reached

Figure 4: Flow chart describing the DMFT iterative process to find the local Green’s
function thorough an impurity model.

The iterative process is described schematically in figure 4 and below are some
equations central to the procedure:

g(ω) = [g0(ω)−1 − σ(ω)]−1 (36a)

Σl(ω) = σ(ω) (36b)

Gl(ω) =
∑

k

[iω − εk + µ− Σl(ω)]−1 (36c)

g(ω) = Gl(ω) (36d)

Here σ(ω) is the self energy of the impurity, and g0(ω) is the non-interacting
impurity Green’s function given as

g0(ω) =
1

iω + µ−∆(ω)
(37)

∆(ω) is called the hybridization function and is another kind of self energy,
here describing the interaction between the impurity and the bath.

1.3.5 DMFT and the Bethe lattice

The Bethe lattice (or Cayley tree) is a lattice model commonly used to gain
qualitative understanding of a certain Hamiltonian, as it has some properties
which make it easier to do calculations on than e.g. on a cubic lattice. The
Bethe lattice looks like an infinite tree where each lattice site is connected to a
certain number of new sites given by the coordination number d. A schematic
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Figure 5: (left) Part of a Bethe lattice (Cayley tree) with coordination number d = 3.
(right) Density of states for the infinitely coordinated Bethe lattice.

figure of a section of a Bethe lattice with coordination number d = 3 is shown
to the left in figure 5. In contrast to a physical lattice it is impossible to visit
one site twice without going backwards on a Bethe lattice, i.e. is has no closed
loops. For the non-interacting, tight binding Bethe lattice in the limit d → ∞
the density of states (DOS) takes an elliptical shape according to:

ρ(ε) =
1

2πt2

√
ε2 − 4t2 (38)

which has a fixed bandwidth of 4t, where t is the hopping parameter. The
DOS is shown schematically to the right in figure 5. The analytical form of the
Bethe lattice DOS simplifies the DMFT-loop as some of the steps can be done
analytically. Low dimensional lattices usually have a finite bandwidth, just as
the infinitely coordinated Bethe lattice, but more complicated DOS, making the
DMFT-loop more involved. Therefore the infinitely coordinated Bethe lattice is
qualitatively useful as an approximation also for low dimensional lattices. An-
other benefit of the infinitely coordinated Bethe lattice is just that it is infinitely
coordinated, and in this limit the DMFT-approximation Σ(k, ω) ≈ Σ(ω) is not
an approximation but an exact relation.
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2 Theory

This section presents the analytical work that was done during this thesis project.
To establish the conceptual foundations for the applications of DFT to the

HH-model, we prove the HK-theorem for the HH-model. This proof extends
the derivation of reference [23], where a method for constructing the functional
theory of an arbitrary set of observables {A} is outlined, by first proving the
HK-theorem and then deriving the KS-equations. The local charge density ni
was used as the observable describing the electrons, and the local displacement
xj was used for the phonons. These two quantities were chosen as they couple
the two types of particles in the Hamiltonian from equation (1).

In order to extract the xc-energy Exc from the information attained from
the DFMT-code, the different contributions needed to be identified according to
equation (7). This procedure is presented in section 2.2.

A simple realization was then carried out analytically for an HH-site in con-
tact with a heat bath, where t was set to zero to simplify the problem. The
Hartree-xc-potentials, vHxc = vH + vxc and ηHxc = ηH + ηxc were found and
investigated analytically and numerically. It was found that the results closely
resemble those of a Hubbard site, as studied in [24, 26] and [22], but with rescaled
parameters Ũ and ṽ given by equation (5) and the introduction of an additional
term linear in n − 1. The phononic xc-potential ηxc was found to be zero, al-
though exchange-correlation effects are still present also for phonons through the
coupling to the electrons.

2.1 Applicability of DFT to the Hubbard-Holstein model

The Hamiltonian for any system including electrons and phonons in the presence
of local external fields can be written as:

H = H0 +
∑

i

vin̂i +
√

2
∑

j

ηj x̂j (39)

where vi is the electronic external potential at site i and ηj is the phononic
external potential at site j. H0 is the rest of the Hamiltonian and can be chosen
arbitrarily. The obvious choice for the purpose of this discussion is to choose the
HH-Hamiltonian HHH from equation (1) without the external terms as H0.

H = −t
∑

〈ij〉

a†iai +H.c+ ω0

∑

j

b†jbj

︸ ︷︷ ︸
Hni

+
∑

i

Uin̂↑in̂↓i + g
√

2
∑

i

x̂i(n̂i − 1) +
∑

i

vin̂i +
√

2
∑

j

ηj x̂j (40)

where Hni has been defined, for later use, as the non-interacting part of the full
Hubbard-Holstein Hamiltonian in equation (1).
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The expectation values for the electronic density at site i and the phononic
displacement at site j for a system described by the wavefunction |φ〉 are denoted
by

〈
φ|n̂i|φ

〉
= ni ,

〈
φ|x̂j|φ

〉
= xj (41)

and to simplify the notation we write {ni} = n and {xj} = x in the following.

2.1.1 The HK-theorem

To prove the HK-theorem for the Hubbard-Holstein model we start by arguing
that the total energy E can be written as a functional of the electronic charge
density and the phonon displacement, E[n, x], and then that this quantity must
be minimized for the ground state density n0 and displacement x0. For this
purpose we define a set M [n, x] as the set of wavefunctions |φ[n, x]〉 which results
in the specific sets of eigenvalues n and x. Then we can define F [n, x] as the
minimum value in the set {〈φ|H0 |φ〉} , |φ〉 ∈M , i.e.

F [n, x] = min
|φ〉∈M

〈φ|H0 |φ〉 (42)

For a chosen state |Φ〉 ∈ M for which H0 attains it’s minimal value F [n, x],
the total energy can be written as:

E[n, x] = 〈Φ|H |Φ〉 = 〈Φ|H0 |Φ〉+ 〈Φ|
∑

i

vin̂i +
√

2
∑

j

ηj x̂j |Φ〉

= F [n, x] +
∑

i

vini +
√

2
∑

j

ηjxj (43)

≥ E0

where E0 is the ground state energy of H. This is a direct consequence of the
variational principle, stating that the total energy of any state of the system
described by the wavefunction |Φ〉 is larger than or equal to the ground state
energy of that system.

We then pick another wavefunction |Ψ〉 which is a ground state of H with
the ground state energy E0. We denote the expectation values of the electronic
density and the phononic displacement for this system by:

〈Ψ| n̂i |Ψ〉 = n0
i , 〈Ψ| x̂j |Ψ〉 = x0

j (44)

The total energy of |Ψ〉 is then written as:

E0 = 〈Ψ|H |Ψ〉 = 〈Ψ|H0 |Ψ〉+ 〈Ψ|
∑

i

vin̂i +
√

2
∑

j

ηj x̂j |Ψ〉

≥ F [n0, x0] +
∑

i

vin
0
i +
√

2
∑

j

ηjx
0
j (45)

= E[n0, x0]
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This follows from the fact that although |Ψ〉 ∈ M [n0, x0], it may not be a state
for which F [n0, x0] is attained. Hence we have obtained two inequalities from
expression (43) and (45):

E[n, x] ≥ E0 (46)

E[n0, x0] ≤ E0 (47)

Expression (46) is true for every n and x, in particular for n0 and x0, and thus
it must hold that

E[n, x] ≥ E0 = E[n0, x0] (48)

With this we have shown that the total energy E[n, x] is a functional of n and
x which is minimized for the ground state density n0 and displacement x0. For
a non-degenerate ground state n0 and x0 has been shown to have a one-to-one
correspondence to the ground state energy E0[n0, x0], and they are completely
determined by minimizing the total energy E. It is in this sense that DFT is a
ground state theory.

2.1.2 The KS-system

We then need to verify the existence of the KS-equations, i.e. we need to find
the set of single-particle equations which describe the non-interacting system
with the same ground state density n and displacement x as the fully interacting
ground state. The index indicating ground state expectation values from the
previous section has been dropped, as the following discussion will only regard
the ground state.

Since the total energy satisfies the variational principle w.r.t. n and x, the
functional derivatives of E w.r.t n and x are zero in the ground state. This gives
the two sets of Euler equations:

δF

δni
+ vi = 0 ,

δF

δxj
+
√

2ηj = 0 (49)

with F [n, x] defined as in equation (42). To find the Kohn-Sham equations we
decompose the total ground state energy E[n, x] into different terms in such a
way that the energy contribution from interactions within the system is isolated
from the non-interacting contributions, similarly to equation (7).

E[n, x] = T eni[n]+T phni [x]+Ee
ext[n]+Eph

ext[x]+Eee
H [n]+Ee−ph

H [n, x]+Exc[n, x] (50)

The two first terms are the kinetic energy for the electrons and phonons respec-
tively for a non-interacting system of the same density n and displacement x as
the ground state. We realize that these two terms give the energy T eni+T

ph
ni = Eni

which corresponds to Hni in equation (40). The Ee
ext and Eph

ext are the energies
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originating from the external potential applied to the electrons and phonons re-
spectively, followed by the HF-energies Eee

H and Ee−ph
H for the electron-electron

and electron-phonon interaction respectively. The last term is the xc-energy,
containing everything left out by the other terms.

Taking the variation of the total energy yields:

0 = δE =
∑

i

δE[n, x]

δni
δni +

∑

j

δE[n, x]

δxj
δxj

=
∑

i

δni

(
δT eni[n]

δni
+
δEe

ext[n]

δni
+
δEee

H [n]

δni
+
δEe−ph

H [n, x]

δni
+
δExc[n, x]

δni

)

+
∑

j

δxj

(
δT phni [x]

δxj
+
δEph

ext[x]

δxj
+
δEe−ph

H [n, x]

δxj
+
δExc[n, x]

δxj

)

=
∑

i

δni

(
δT eni[n]

δni
+ vi[n] + veeH,i[x] + ve−phH,i [n] + vxci [n, x]

)

+
∑

j

δxj

(
δT phni [x]

δxj
+
√

2
(
ηj[x] + ηe−phH,j [n] + ηxcj [n, x]

))

(51)

where the notation veeH , v
e−ph
H and ηe−phH has been introduced as the HF-potential

for the electron-electron and the electron-phonon interactions, and vxc and ηxc
as the xc-potential for electrons and phonons respectively.

We then make the substitutions

vksi [n, x] = vi[n] + veeH,i[x] + ve−phH,i [n] + vxci [n, x] (52)

and
ηksj [n, x] = ηj[x] + ηe−phH,j [n] + ηxcj [n, x] (53)

and note how equation (51) must be true for each index i, j separately. Hence
we have two sets of coupled Euler equations:

δT eni[n]

δni
+ vksi [n, x] = 0 ,

δT phni [x]

δxj
+
√

2ηksj [n, x] = 0 (54)

By comparison of equation (49) and (54) we realize that the latter must
correspond to a system with the Hamiltonian

Hks = Hni +
∑

i

vksi n̂i +
√

2
∑

j

ηksj x̂j (55)

where we know Hni from equation (1) and (40) to have no term which mixes
the electrons and phonons. Thus Hni = He

ni + Hph
ni describes a non-interacting

system, and we can write down the Shrödinger-like KS-equations according to:
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−t

∑

〈ij〉

(
a†iaj + a†jai

)
+
∑

i

vksi n̂i


 |ψks

λ 〉 = εeλ |ψks
λ 〉 (56)

[
ωjb

†
jbj +

√
2ηksj x̂j

]
|χks
λ,j〉 = εphλ,j |χks

λ,j〉 (57)

These equations are coupled through the KS-potentials vks and ηks, and they
describe the auxiliary KS-system, which is made out of non-interacting particles.
Notice how the phononic part carries a site index j, meaning there is one equation
for each site with a non-zero phonon interaction. The KS-system has the same
electronic charge density n and phonon displacement x as the fully interacting
system. In arriving at this we have made the assumption that the KS-potentials
in equation (52) and (53) can be constructed. This is referred to as the v-
representability condition, which is briefly discussed in section 1.2.1.

With this we have proved that the ground state energy E0 is (for a non-
degenerate ground state) fully determined by the ground state density n and
displacement x, and vice versa, and that if this density and displacement can be
recreated by any external potentials, these potentials are vks and ηks.

2.2 Extracting the xc-energy

As has been mentioned earlier, a DMFT-code was used to construct the xc-
potential of the HH-model for a small set of parameters. However, this code
did not in fact provide neither the full potential nor the total energy, but some
other various expectation values from which all different contributions to the
total energy in equation (50) could be constructed. In this section we describe
how the different energy terms are obtained, and thus how the xc-energy can be
separated from the other contributions.

To find the xc-potentials we differentiate numerically the xc-energy w.r.t the
electronic density n to get vxc and w.r.t. the phononic displacement x to get ηxc.

The Hamiltonian used in the program is, as discussed in section 1.1.1, given
by equation (1) and (4). No on-site energy was included, but an external chemical
potential −µ acted on the system to adjust the density n. For fixed values of the
electron-electron coupling U , electron-phonon coupling g, electron hopping t and
phonon frequency ω0 the external potentials µ and η were the only adjustable
quantities, and thus they determine the density and the displacement. The
phononic potential η contributes in a rather simple way as seen in equation (4)
by rescaling the parameters and introducing a shift. The phononic potential η
is therefore not considered by the code but handled analytically. The rescaled
parameters are given by equation (5) as:
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Ũ = U − 2g2

ω0

µ̃ = µ− g2

ω0

+
2gη

ω0

(5)

t̃ij = tei
√

2g(p̂i−p̂j)/ω0

where the external potential v from section 1.1.1 has been set to be the chemical
potential −µ.

However, what we really want is the energy as a function not of µ and η but
of n and x. The different expectation values needed to get the total energy for
the system can be obtained with the DMFT-code, given a specific µ. By running
the program for several different values of µ the different terms are obtained as
functions of µ, as is the electronic density, n(µ). By inverting n(µ) → µ(n) the
energy can be found as a function of n instead of µ. Thus it is clear that the
value of µ is only important to get the corresponding density.

To also get rid of the phononic potential η we use the Heisenberg equation of
motion:

0 =
dp̂

dt
= i[Ĥ, p̂] = −ω0x̂−

√
2[g(n̂− 1) + η]→

x = −
√

2[g(n− 1) + η]/ω0 (58)

where the average has been taken when going to the second line. From this the
phononic potential η can be written in terms of x and n:

η(n, x) = −xω0√
2
− g(n− 1) (59)

The kinetic energy T̃ as given by the DFMT-program includes both interact-
ing and non-interacting contributions. To extract the xc-energy these contribu-
tions need to be separated, which is done by numerically evaluating the kinetic
energy T0 for the non-interacting system, using an analytical closed form. The
xc-kinetic-energy is then expressed as:

Txc =

〈
−
∑

〈ij〉

(t̃ijc
†
icj +H.c)

〉
− T0 = T̃ − T0 (60)

The non-interacting kinetic energy T0 is obtained as a function of the chemical
potential µ via the integral:

T0(µ) = 2

∫ ∞

−∞
ερ(ε)f(ε, µ, β)dε =

[
− 1

3πt2
(4t2 − ε2)3/2

]µ

−2t,β=∞

=− 1

3πt2
(4t2 − µ2)3/2 (61)
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where f(ε, µ, β) is the Fermi-distribution function which at zero temperature is
a Heavyside function around µ, and the non-interacting DOS ρ(ε) for the Bethe
lattice is given in equation (38). The DOS ρ(ε) is non-zero between −2t and 2t,
where t is the hopping parameter. The factor 2 in front of the integral is there
to account for both spin channels.

The density can be achieved in a similar way with the integral:

n(µ) =2

∫ ∞

−∞
ρ(ε)f(ε, µ, β)dε

=
1

πt2

[
ε

2

√
4t2 − ε2 + 2t2 tan−1

(
ε√

4t2 − ε2
)]µ

−2t,β=∞

=
1

πt2


µ

2

√
4t2 − µ2 + 2t2 tan−1

(
µ√

4t2 − µ2

)
+

1

2
(62)

where again the factor two is to include both spins.
There is no simple way to get an analytical expression for T0(n), as it would

require us to solve for µ in equation (62). However, T0 can still be obtained
numerically for any density by evaluating the two equations above for the same
µ.

We then note that the non-interacting phononic energy will explicitly look
like:

Eph
0 = ω0 〈b†b〉 = ω0 〈b̃†b̃〉 −

η2
0

ω0

−
√

2η0x (63)

where η0 is the external potential which results in the same displacement x for the
non-interacting system as η would give in the interacting system. The potential
η0 is obtained from equation (59) by setting g = 0. As the ground state |ψ̃ph〉
of the transformed phononic Hamiltonian is considered, 〈b̃†b̃〉 = 0. This state
must be considered to get the correct phononic displacement x, which can be
understood from equation (6) in the discussion of the Lang-Firsov transformation
in section 1.1.1. The same result is achieved from simple reasoning around the
rhs of equation (63): the two first terms can be seen as a transformed phononic
Hamiltonian with an external potential η0, from which the contribution of the
external potential is subtracted with the last term.

We can now write an expression Etot for the total energy of the system where
the contributions from the external potentials µ and η have been subtracted. We
can also express all contributions to Etot in terms of attainable expectation values,
save for the xc-energy. The total energy and all contributions are expressed
below. In rewriting the expressions onto a form independent of µ and η equation
(5) and (59) has been used.
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Etot = Ũ 〈n↑n↓〉+ T̃ + ω0 〈b̃†b̃〉

=
x2ω0

2
+ g2n
ω0

(n−1)+
√

2gx(n−1)

︷ ︸︸ ︷
−(µ̃− µ)n− (η − g)2/ω0 −

√
2ηx

Ee
0 = T0

Eph
0 = −η2

0/ω0 −
√

2η0x =
x2ω0

2
(64)

Ee−e
H = Un2/4

Ee−ph
H =

√
2gx(n− 1)

Now the result above can be inserted into the full expression for the xc-energy:

Exc = Etot − T0 − Eph
0 − Ee−e

H − Ee−ph
H

= Ũ 〈n↑n↓〉+ T̃ + ω0nph +
x2ω0

2
+
g2n

ω0

(n− 1) +
√

2gx(n− 1)

− T0 −
x2ω0

2

− U n
2

4
−
√

2gx(n− 1)

= Ũ 〈n↑n↓〉+ T̃ − T0 + ω0nph +
g2n

ω0

(n− 1)− U n
2

4
(65)

2.3 Application of DFT to a single HH-site

In this section we derive the exact xc-potentials for a simple system of one HH-
site in contact with a heat bath of inverse temperature β, with the hopping
parameter t set to zero. This derivation extends the results of [22, 24] and the
follow-up work of [26], where a similar calculation is performed for the pure
Hubbard model. The thermal averages of n and x are found via the grand
canonical partition function as functions of the potentials v and η. The results
are inverted to find the expressions for the potentials as functions of n and x. The
expressions (52) and (53) are then used to find an expression for the Hartree-
xc- and xc-potentials vH , vxc, ηH and ηxc. Some of the more involved steps of
this derivation are not presented explicitly in this section, but can be found in
appendix A.

We write the local grand canonical Hamiltonian Hs of the single site system
in second quantization as:

Ks = vsn̂− µn̂ + U n̂↑n̂↓ + ω0b†b +
√

2gx̂(n̂− 1) +
√

2ηx̂ (66)

which differs from the HH-Hamiltonian in equation (1) by the lack of the kinetic
term describing the hopping between sites. The removal of the kinetic term
simplifies the problem in such a way it can be solved analytically. We define
the electronic potential v to account for both the chemical potential µ which
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couples the site to the bath, and any other external or on-site potential vs so
that v = vs − µ.

The expectation values n and x can be found through differentiation of the
partition function:

n = − 1

β

∂ln(Z)

∂v
and x = − 1

β
√

2

∂ln(Z)

∂η
(67)

Therefore, we start by evaluating the partition function Z = Tr
(
e−βKs

)
. The

electronic part of this expression is easy to evaluate. There are four possible
electronic configurations at the site: |0〉, |↑〉, |↓〉 and |↑↓〉, which all have a definite
eigenvalue w.r.t the density operator: n = 0, 1, 1, 2. Using the phononic number
states as basis for the phononic part, any state of the full basis to the Hamiltonian
in equation (66) can be written as |im〉 where i denotes the electronic and m
the phononic part. However, the phononic number states |m〉 are not eigenstates
of the displacement operator x̂, and so we use the Lang-Firsov transformation
described in section 1.1.1 to make the phononic part diagonal in the phononic
occupation number basis. For simplicity we also make the substitution η−g → ζ.
The transformed Hamiltonian will look like:

K̃s = ṽn̂ + Ũ n̂↑n̂↓ + ω0b†b− ζ2

ω0

(68)

where we have from equation (5):

Ũ = U − 2g2

ω0

ṽ = v +
g2

ω0

− 2gη

ω0

= v − g2

ω0

− 2gζ

ω0

Thus we get an expression for the partition function as:

Z =
∑

i

∞∑

m=0

〈im| e−β(ṽn̂+Ũ n̂↑n̂↓+ω0b†b−ζ2/ω0) |im〉 (69a)

=
∞∑

m=0

e−β(ω0m−ζ2/ω0)
(

1 + 2e−βṽ + e−β(Ũ+2ṽ)
)

(69b)

=
eβζ

2/ω0

1− e−βω0

(
1 + 2e−βṽ + e−β(Ũ+2ṽ)

)
(69c)

where the first term in (69b) comes from the electronic state |0〉, for which n = 0.
Similarly the second term comes from the states |↑〉 / |↓〉 for which n = 1, and
the last term from |↑↓〉 where n = 2. We finally get from (69b) to (69c) by
recognising the geometrical sum

∑∞
m e−βω0m = (1− e−βω0)−1.
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Now the partition function has been evaluated, and we can differentiate it
w.r.t µ and η according to equations (67), in order to attain expressions for n
and x. The expression for the density n will read:

n(ṽ, Ũ) = 2
e−βṽ + e−β(Ũ+2ṽ)

1 + 2e−βṽ + e−β(Ũ+2ṽ)
(70)

Equation (70) can be compared to the expression given for the Hubbard site
examined in [26], and we see that they are the same with the substitutions
ṽ → v and Ũ → U .

In expressing the displacement x we identify n after differentiating w.r.t. ζ
and recognize that ∂ζ/∂η = 1.

x(ṽ, Ũ) = −
√

2

(
ζ + gn(ṽ, Ũ)

ω0

)
(71)

By inverting the expression in (70) and making the substitution n = 1 +
δn, −1 > δn > 1 we get the expression for ṽ(δn), from which we can solve for
v(δn, x):

v(δn, x) = ṽ(δn) +
g2

ω0

+
2gζ

ω0

= −U +
g2

ω0

(1− 2δn)−
√

2gx

− 1

β
ln



δn+

√
δn2 + e−βŨ(1− δn2)

1− δn


 (72)

When the electron-phonon coupling g goes to zero, this expression reduces to
that of the Hubbard model. To extract the xc-potential from equation (72) we
solve for vHxc = vxc + vH in equation (52). An expression for the KS-potential
vks is attained by evaluating equation (72) for U = g = 0. This gives for vHxc:

vHxc(δn, x) = vks(δn)− v(δn, x)

=

(
U − 2g2

ω0

)
+
√

2gx+
g2

ω0

(2δn+ 1)

+
1

β
ln



δn+

√
δn2 + e−βŨ(1− δn2)

1 + δn


 (73)

where the first parenthesis is Ũ . This term replaces U in the expression for vHxc
for a Hubbard site from [26] and can therefore be interpreted as a renormalized
electron-electron interaction. From this we can see that the phonon coupling
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Figure 6: Xc-potentials for four different temperatures corresponding to β = 0.01, 2, 5,
and 1000. For both plots the electronic interaction is U = 3.0, and the electron-
phonon interaction is g = 0.2 and g = 1.0 from left to right. The brown, dashed lines
corresponding to β = 1000 show a tilted step function for both values of g, which is the
expected behaviour in the limit β → ∞ given by equation (79). For smaller values of
β the function smoothens, shown by the green dotted-dashed and densely dotted lines.
The orange, solid lines shows the behaviour expected for β = 0 in equation (80).

will have an attractive effect on the electrons as the introduction of a (positive)
non-zero g will decrease the effective on-site interaction Ũ . The third term,√

2gx, is the HF-term for the electron-phonon interaction. By subtraction of the
HF-terms we get the xc-potential as:

vxc(δn, x) =
2g2

ω0

δn+
Ũ

2
+

1

β
ln



δn+

√
δn2 + e−βŨ(1− δn2)

1 + δn


− U

2
δn (74)

By following the same procedure for the phononic potential ηHxc = ζHxc − g
as we did to find vHxc, we obtain the expression:

ηHxc(n, x) = g(n− 1) (75)

which is only the phononic HF-term for the phonon-electron interaction. Thus,
the phononic xc-potential is zero.

2.3.1 Analytical and numerical study of the xc-potential

In the following we look more closely at the peculiarities of the xc-potential in
equation (74). The potential vxc(δn) is depicted for some different values of β
and one set of values for U, g and ω in figure 6.

For the discussion, we start by identifying f(δn) as:
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f(δn) =
Ũ

2
+

1

β
ln



δn+

√
δn2 + e−βŨ(1− δn2)

1 + δn


 (76)

This is an odd function w.r.t δn, which may be easily verified by proving f(−δn) =
−f(δn) and simplifying the expression. We limit our discussion to the case Ũ > 0
as this is true for the majority of our calculations. However, Ũ > 0 has not been
assumed during the derivation of vxc and the result is valid for all values of Ũ .
The following discussion does however assume Ũ > 0 and is not valid for negative
values of Ũ .

By identifying f(δn) in equation (74) the vxc can be simplified to:

vxc(δn) = −U
2
δn+

2g2δn

ω0

+ f(δn) (77)

where we can see that also the remaining terms of vxc are odd in δn, and we
note that vxc(δn = 0) = 0. Thus all of vxc is odd around half-filling. Expressing
the vxc in this way it is clear how any non-trivial behaviour comes from the
f(δn)-term, which is where we will concentrate our efforts for this section.

We will start by studying f(δn) in the zero-temperature limit, T → 0, or
equivalently β → ∞. In this limit f(δn) becomes a step-function, something
that can be seen numerically. The magnitude of the gap is found by evaluating
f(δn = ±1). We find f(δn = −1) by making a Taylor expansion in e−βŨ(1−δn2)
around zero, which is a small number in the limit β →∞.

lim
β→∞

f(δn = −1) = −Ũ/2 (78)

As we have already concluded, f(δn) is odd, meaning that f(δn = 1) = Ũ/2 and
thus the magnitude of the gap is Ũ .

In the limit β →∞ the potential vxc will then have the shape of a tilted step
function given by:

vxc =




− Ũ

2
+
(

2g2

ω0
− U

2

)
δn δn < 0

Ũ
2

+
(

2g2

ω0
− U

2

)
δn δn > 0

(79)

which is seen by inserting f(δn = −1)β→∞ = Ũ into equation (77). We see that
vxc 6= 0 at the end points at δn = ±1 except in the cases Ũ = 0 or g = 0. The
limit β →∞ is shown by the brown, dashed lines in figure 6, where β = 1000.

For β <∞ the function will smoothen, seen by the green dotted-dashed and
densely dotted lines in figure 6, and for β → 0 the potential will resemble a
straight line given by

vxc(δn)β→0 =

(
2g2

ω0

− U

2

)
δn+

Ũ

2
δn =

g2

ω0

δn (80)
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shown by the orange, solid lines in figure 6. The second contribution to the slope,
Ũ/2, comes from

lim
β→0

f(δn) =
Ũ

2
δn (81)

which is realized by making a Taylor expansion of f(δn) in βŨ around 0.
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3 Numerical Simulations

Within this thesis, the Hxc-potentials, vHxc and ηHxc, obtained in section 2.3,
equations (73) and (75), have been used to study two different systems. These
are shown in figure 7.

The system in figure 7a shows a dimer with one HH-site (blue) and one
non-interacting site (green). At the HH-site the electrons experience a repulsive
interaction of strength U and they also interact with the phonon mode repre-
sented by an harmonic oscillator. The non-interacting site is acting as the bath
of section 2.3. Figure 7b shows a linear chain with four HH-sites in an external
potential.

Both systems in figure 7 were studied in their ground state for a set of different
parameters U, g and t. System 7a was also studied during time evolution with
a perturbation due to a varying external potential vext. For both ground state
and time evolution calculations, the (TD)DFT scheme and the LDA and ALDA-
approximations described in section 1.2 were used. The systems have also been
solved using exact diagonalisation (ED) [2] and the HF-treatment, in order to
evaluate the performance of the Hxc-potentials.

The code performing the DFT- and HF-calculations for both systems and
the ED-calculation for the system shown in figure 7a was developed during the
course of the thesis. This section describes the computational methods used to
perform these simulations. The results are presented in section 4.1 and 4.2.

The xc-potential was also extracted for a small set of coupling parameters,
U = 3.0, 8.0, g = 0.2, 1.0, using a DMFT-code [1]. The code was used to find the
Green’s function of an AIM as described in section 1.3 and extract some different
expectation values contributing to the total energy according to section 2.2. The
xc-energy was then separated from the total energy using equation (65).

(a) (b)

Figure 7: (a) Schematic figure of the dimer system studied in section 4.1 with inter-
actions on one site (blue). (b) Schematic figure of the 4-site linear chain studied in
section 4.2 with interactions on all sites.
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3.1 Choosing a β

The potentials derived in section 2.3 and studied more closely in section 2.3.1
were used to study the behaviour of both systems in figure 7. In doing so,
we notice that these potentials are derived for a model with a zero hopping
parameter t = 0, and a finite temperature, while the models we study have
a non-zero hopping parameter, and are in the ground state, corresponding to
zero temperature. However, the merit in these potentials does not lie in their
usefulness for practical applications, but in their ability to illustrate qualitative
features of the xc-potential.

The quantum fluctuations not considered by setting t = 0 can arguably be
compensated for by thermal fluctuations present at finite temperatures. There-
fore the inverse temperature β was, for the purpose of these simulations, not
set to infinity corresponding to zero temperature. Instead β was set to a finite
value, imitating the effect of a non-zero hopping parameter t. As seen in figure
6, a finite β smoothens the potential and removes the discontinuity around half-
filling. This is convenient for computational purposes, as the discontinuity can
cause the DFT self consistency loop to oscillate around half-filling, preventing it
to converge.

When simulating the dimer in figure 7a, β was optimized to give the best
possible agreement between the exact and DFT-solutions for the initial state.
The optimization procedure was done for each set of parameters U , g and t. The
same value was used throughout the time evolution. The values attained in this
way did, in general, correspond to rather heavily smoothened potentials. They
were also dependent on the on-site potential, suggesting that adjusting β does
not fully account for the approximations that has been made in the derivation
of the xc-potentials, and the ALDA-approximations.

For the four-site chain in figure 7b, β was chosen based on the value found
for similar values of the parameters U, g and t for the dimer.

3.2 Ground state calculations

To find the ground state of our HH-systems the Hamiltonian H from equation
(1) or (55) is written in it’s matrix form, with the matrix elements 〈φa|H |φb〉.
The basis states {φi} form a complete set of states spanning the space of H,
although they are not in general eigenstates of H. This is straightforward for
the fermionic part of the system, due to the Pauli exclusion principle assuring
there is a finite number of states for a finite system. However, as the number of
interacting fermions increase, the number of states increases very rapidly, so that
large systems can in practice not be considered. This is the familiar problem of
many-body physics.

Phonons do not obey the Pauli exclusion principle and the number of phonon
states is therefore not limited to a finite number. This means that in principle
an infinite number of basis states is needed to account for the phononic part of
the system. However, in the ground state only the lowest energy states of the
phonons will be populated and only a sufficient number of basis states needs
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Figure 8: Self consistency procedure for obtaining the ground state of the KS-system.

34



to be considered. In order to realize whether a sufficient number of states has
been considered or not, the simulations need to be run several times with an
increasing number of states considered, until the results from successive runs are
within some accepted tolerance.

The fermionic basis states used for the simulations were the local number
states for each spin channel. The systems under considerations are closed systems
at half filling, so that for a system of N sites there are N/2 spin-up and spin-down
electrons respectively. To each site a phononic mode is also coupled, resulting
in N harmonic oscillators of frequency ω0, each to be described by a truncated
subspace of M phonon number states.

3.2.1 Exact Diagonalization

In the exact diagonalisation (ED) method the full matrix Hamiltonian is diag-
onalized to solve the system. For the system of N sites with N/2 electrons in
each spin channel and one phononic oscillator at each site described above, the
number of fermionic states amounts to

Nf =

(
N

N/2

)2

(82)

For each phonon mode added to the system, the number of fermionic states
is multiplied with M , so that the total number of states for the HH-system is:

Ntot = Nf ×MN (83)

which grows very fast with N , although by restricting the total energy of the
configurations considered, as only the lowermost states will be populated in the
ground state, the problem can be reduced to some extent.

In all ED-calculations done in this thesis, a LAPACK-routine was used to do
the diagonalisation.

3.2.2 HF- and DFT-approximation

The computational methods for the HF- and DFT-methods only differ from each
other in the characteristics of the potential used to construct the auxiliary KS-
system which approximates the interacting system. In the following we will refer
to this external potential as vks regardless of approximation method, as the only
difference is whether vks has a term vxc or not.

As the particles are non-interacting (not coupled) in the KS-system, the
many-particle problem is reformulated into many single-particle problems. As
the system is spin compensated, only one of the spin channels needs to be con-
sidered, and for each spin channel there is now N fermionic states. Similarly
the phonons are also considered separately, resulting in N separate problems
with M states in each. Thus for the KS-system multiple smaller single particle
Hamiltonians needs to be considered.
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As the KS-potentials vks and ηks depend on the density n and displacement
x, which in turn depends on the KS-potentials, the KS-ground state is found
through an iterative self consistency scheme, shown in figure 8. This iterative
process requires the Hamiltonian to be diagonalized multiple times before the
ground state is found, but as the size of the KS-Hamiltonian is so much smaller
than the fully interacting one, the computational effort is still much smaller than
that needed to solve the fully interacting system.

3.3 Time Evolution

The time dependence in this project was introduced via a time dependent exter-
nal potential acting on the electrons. For the purpose of the simulations, time
was discretised, so that the Hamiltonian was considered constant within each
time step. For the exact solution, the Hamiltonian is known at each point in
time, as there is only the explicit time dependence of the external potential to
consider. Thus the propagation of the exact solution from time t to time t+ ∆t
would look like:

|ψ(t+ ∆t)〉 = e−iH(t+∆t/2)∆t |ψ(t)〉
=
∑

λ

e−iEλ(t+∆t/2)∆t |λ(t+ ∆t/2)〉 〈λ(t+ ∆t/2)|ψ(t)〉 (84)

where ∆t is the length of each time step and |λ(t+ ∆t/2)〉 are the eigenstates of
the Hamiltonian H at time t+ ∆t/2.

For the DFT and HF-methods, however, there is in addition to the explicit
time dependence of the perturbation an implicit time dependence in the vks
through the xc-potential, which depends on the time-dependent quantities n(t)
and x(t). To account for this a predictor-corrector scheme was used to approxi-
mate the KS-Hamiltonian in each time step. A predictor-corrector step is done
as follows:

1. Evaluate the predictor Hamiltonian of time step t+∆t = tn+1: Hp(ψks(tn), tn) ≡
Hp(tn)

2. Time propagate the KS-wavefunction |ψks〉 from time tn to tn+1 using
Hp(tn): |ψpks(tn+1)〉 = e−iHp(tn)∆t |ψks(tn)〉

3. Find the corrector Hamiltonian Hc(ψ
p
ks(tn+1), tn+1) ≡ Hc(tn+1)

4. Use the average Hks(tn) = Hp(tn)+Hc(tn−1)

2
to propagate |ψks(tn)〉 to tn+1

using Hks(tn): |ψks(tn+1)〉 = e−iHks(tn)∆t |ψks(tn)〉

This procedure will require the Hamiltonian to be diagonalized twice in each
time step, instead of only once as for the ED-method, but the drastically smaller
size of Hks still makes this method much more computationally efficient.
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3.4 DMFT-calculations

The details of the code used to perform the DMFT-calculations are not part
of this project, but the general procedure of the DMFT-method is described in
sections 1.3.4 and 1.3.5 [1]. The code performed the steps 2) to 5) on page 17,
while the loop had to be closed and the convergence checked externally. The
AIM-solver in step 2) used a CTQMC algorithm to find the impurity Green’s
function.

The x-dependence of the xc-energy was determined analytically according to
section 2.2. The code took as input the interaction parameters U and g, the
inverse temperature β and the chemical potential µ. In order to sample the total
energy at different densities, the effective chemical potential µ had to be changed.
The density and other expectation values, as discussed in section 2.2, could then
be obtained through the program once the DMFT-loop had converged.

The DMFT-code evaluated the temperature Green’s function discussed in
section 1.3.2, although we wanted the zero temperature Green’s function, mean-
ing β should in principle be set to infinity. For the purpose of this project, β was
set to 200.
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4 Results and Discussion

In this section we present the results from the different simulations performed
during the course of this project. Firstly we study the performance of the analytic
vHxc and ηHxc developed in section 2.3 for the two different systems described
in section 3. The systems are shown schematically in figure 7. The results are
compared to those obtained through exact diagonalisation (ED) and with the
HF-potential.

Then, the xc-potential vxc was constructed from the xc-energy Exc of the
infinitely coordinated Hubbard-Holstein Bethe lattice for a small but represen-
tative set of interaction parameters: U = 3.0, 8.0, g = 0.2, 1.0. The xc-energy
was obtained through the procedure explained in section 2.2. Only ground states
were considered in these calculations.

4.1 Ground State and Dynamics of a Dimer

The vHxc and ηHxc from section 2.3 have here been used with the self-consistency
scheme in figure 8 to study a dimer consisting of one HH- and one non-interacting
site, as depicted in figure 7a. The results were compared to those of the ED-
and HF-methods in the ground state and during time propagation of the dimer.
Several different sets of the parameters U, g and t were used, while ω0 = 1 for
all simulations. In the following a small subset of these simulations is presented,
chosen as to reflect the general trends of the system. The external potentials
used to perturb the system were a trigonometric and a Gaussian potential. The
trigonometric potential was given as:

{
A
2
(1− cos( πt

Tr
)) t ≤ Tr

A t > Tr
(85)

where A is the strength and Tr the length of the perturbation, referred to as
the ramping time. The external potential acted on the non-interacting site by
increasing the on-site energy. The density n and the phononic displacement x
are shown for the exact and DFT-methods, while only the x-coordinate is shown
for the HF-solution.
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Figure 9: Electronic density and phonon displacement at the interacting site for two
weakly coupled systems with U = 0.1. The solid light coloured lines correspond to the
DFT solution and the darker to the exact. The black, dashed lines seen in the lower
sections are the HF-solutions for the phonon coordinate. The different methods have for
these systems given hardly distinguishable solutions. The orange lines corresponds to a
system with (g, t) = (0.2, 0.2) and the green to (g, t) = (0.5, 1.0). Panel a) corresponds
to a trigonometric perturbation increasing the on-site energy for the non-interacting
site from 0 to 3 during 7 time units. In panel b) the ramping time of the perturbation
is instead 14 time units. Note the different timescales of a) and b).

4.1.1 The weak coupling regime

First we study two weakly coupled systems in figure 9 with electronic coupling
U = 0.1, and phonon-electron coupling g and hopping parameter t indicated
as (g, t) in the figure legend. Two different trigonometric perturbations were
used, which acted as an external electronic potential on the non-interacting site,
going from 0 to 3 during 7 or 14 time units corresponding to panel a) and b)
respectively.

We can see how the agreement between all three solutions is very good for
these systems on both time scales. The agreement is best for the system rep-
resented by orange with parameters (g, t) = (0.2, 0.2), even though the pertur-
bations are not very adiabatic for this system, something that is indicated by
the large amplitude of the oscillation and the fact that the average values of the
observables is different between panel a) and b). This system has small values
for both g and t and is the more weakly coupled of the two systems. That
the agreement between all three solutions is so good, even though the pertur-
bations are not very adiabatic, implies that the exchange and correlation effects
are negligible for a system this weakly coupled.

Due to the larger values of the hopping parameter t, the response of the
system represented by green with parameters (g, t) = (0.5, 1.0) is more adiabatic
in character. The oscillations in x are for the faster perturbation larger than for
the orange system, which is due to the larger electron-phonon coupling g.
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Figure 10: Electronic density and phonon displacement at the interacting site for two
intermediately coupled systems with U = 4. The orange lines corresponds to a system
with (g, t) = (0.7, 1.0) and the green to (g, t) = (1.0, 0.2). In panel a) the perturbation
is the same as in figure 9a), and in panel b) the ramping time of the perturbation is
instead 28 time units. Note the different timescales of a) and b).

4.1.2 The intermediate coupling regime

We then proceed to the intermediate coupling regime shown in figure 10 where the
two systems have a much stronger electronic interaction of U = 4. The system
represented by orange has parameters (g, t) = (0.7, 1.0) and the one represented
by green (g, t) = (1.0, 0.2). The agreement for these systems is not as good as
for the more weakly coupled systems in figure 9, but the DFT-solution can be
seen to perform noticeably better than the HF-solution which is encouraging.

We can yet again see how the system with the smaller hopping parameter,
the one represented by green, has a less adiabatic response to the perturbation
than the one represented by orange, and also how the agreement between the
DFT- and exact solution increases as the perturbation is made slower from panel
a) to b).

It could be argued that the potentials from section 2.3 should perform better
in the small t-limit, as they were developed for a system with t = 0. However, in
the limit where t→ 0, that is when the overlap between the sites goes to zero, the
electrons can’t move between the two sites and the dynamics can therefore not be
adiabatic. The poor agreement between the solutions for the system represented
by green implies that for small values of t the ALDA introduced in section 1.2.2
is not a good approximation.

It can also be noted that the agreement is better for the system with smaller
g, as was the case in figure 9.
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Figure 11: Electronic density and phonon displacement at the interacting site for two
strongly coupled systems with U = 8. The orange lines corresponds to a system with
(g, t) = (0.5, 0.2) and the green to (g, t) = (0.7, 1.0). The perturbations are the same
as in figure 9 for both panels respectively. Note the different timescales of a) and b).

4.1.3 The strong coupling regime

Next to be studied is the strong coupling regime with figure 11 where U = 8.
The system represented by orange has parameters (g, t) = (0.5, 0.2) and the
one represented by green has (g, t) = (0.7, 1.0). Just as in the previous plots,
the system with the smaller hopping parameter, i.e. the system represented
by orange, is less adiabatic. It has also less good agreement between the ED-
and DFT-solutions than the system represented by green, even though it has a
smaller value for g. This further strengthens the conclusion that when t is small
the ALDA is not a good approximation for these perturbations.

The agreement does not improve as obviously as in figure 10 for the slower
perturbation. This could however be attributed to the fact that the time is
only doubled between panel a) and b) in figure 11 as opposed to quadrupled in
figure 10. The oscillations of the DFT-solution in this figure occur, as opposed
to the previous cases, around half filling, which is where the discontinuity of vxc
is when β → ∞. Even though vxc used here has a value of β making it far
from discontinuous, it still changes quickly around half filling, which could be
the origin of the oscillations in the density [17]. The exact solution does not
oscillate around half filling but slightly below, and looking at the HF-solution
for the density (not shown) it does not show this rapidly oscillating behaviour
at all.

For these systems we can also see how the HF-solution completely fails at
predicting the initial ground state. It is overall evident how the HF-method
overestimates the effective electron-electron repulsion at the interacting site for
the strongly coupled systems. This leads to an underestimated displacement of
the phononic coordinate, due to a too low electronic density at the interacting

41



0.5

1.0

1.5

2.0

D
en
si
ty

(g, t) = (0.2, 0.2), fast

0.5

1.0

1.5

2.0

D
en
si
ty

(g, t) = (0.2, 0.2), slow

a)

0 5 10 15 20

−0.8

−0.6

−0.4

−0.2

Time

D
is
p
la
ce
m
en
t

b)

0 10 20 30 40

−0.8

−0.6

−0.4

−0.2

Time

D
is
p
la
ce
m
en
t

U = 2: Ex DFT
U = 4: Ex DFT

Figure 12: Electronic density and phonon displacement at the interacting site for two
intermediately coupled systems with t = 0.2 and g = 0.2. The orange lines corresponds
to a system with U = 2 and the green to U = 4. The perturbations are as in figure 10
for both panels respectively. Note the different timescales of a) and b).

site. From both figure 10 and 11 it can be seen that the HF-solution performs
less poorly for smaller values of g in this regard.

4.1.4 The small-t-regime

Lastly for this perturbation we look at two systems in figure 12 with g = 0.2 and
t = 0.2, but with different U . In panel a) the perturbation goes from 0 to 3 in
7 time units, as for all of the other left hand panels. We see how the agreement
between the different solutions is very poor even though g is small. The HF-
solution underestimates the phononic coordinate just as before, and more so for
the larger U . Proceeding to panel b), where the perturbation lasts for 28 time
units, the agreement has increased considerably, and DFT performs much better
than the HF-solution here. From these sets of plots it is thus very clear that a
small t requires a slow perturbation for the ALDA-approximation to yield useful
results. We can also see that the agreement is best for the system represented
by orange, corresponding to the more weakly coupled system with U = 2, which
is unsurprising.

Just as for the strongly interacting systems in figure 11 the HF-solutions in
figure 12 overestimates the effective electron-electron repulsion. In panel b) the
HF-solution also lack most of the dynamic behaviour.

4.1.5 A Gaussian perturbation

In figure 13 another type of perturbation has been used, namely a Gaussian with
a full width half maximum (FWHM) of 7 time units and an amplitude of 3 in
panel a), and FWHM of 14 and an amplitude of 1.5 in panel b). It is centred
around t = 14 and t = 28 respectively.
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Figure 13: Electronic density and phonon displacement at the interacting site for the
weakly coupled system represented by orange in figure 9 with U = 0.1, g = 0.2 and
t = 0.2, and the intermediately coupled system represented by green in figure 10 with
U = 4, g = 1.0 and t = 0.2. The perturbation in these panels is a Gaussian. a) has a
Gaussian perturbation with amplitude 3 and full width half max (FWHM) of 7, and in
b) the perturbation has amplitude 1.5 and FWHM 14. Note the different timescales of
a) and b).

The system represented by orange in figure 13 has the parameters U = 0.1,
g = 0.2 and t = 0.2 and is the same system as in figure 9, where the DFT-solution
and HF-solutions were undistinguishable and in very good agreement with the
exact solution. For this perturbation it can be seen how the DFT-solution is
better than the HF-solution, and thus that even for weakly coupled systems the
potentials from sections 2.3 actually performs better than the HF-potentials.

The system represented by green in figure 13 has the parameters U = 4,
g = 1.0 and t = 0.2 and it is the same as in figure 10. Here we see that also for
the Gaussian perturbation the DFT-solution has problems reproducing the exact
solution for this systems, although it does perform better than the HF-method.
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4.2 Linear Chain

The ground state of the four-site linear chain shown in figure 7b was studied
for some of the different values of U and g used for the dimer presented in the
previous section, and with two different external potentials. The hopping was
set to t = 1.0 for all the simulation of this section.

Figure 14 shows the sum of the deviation in density and displacement of
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Figure 14: Total deviation squared of the DFT and HF-ground state solutions from
the exact. The left panel shows the deviation in density and the right in displacement.
Each subpanel indicate a different value of U and the different symbols different values
of g. The external potential is vext = [0, 5,−5, 2], the hopping parameter t = 1, and
β = 0.6.
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and β = 0.6.
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Figure 16: Here the absolute density at the different sites is shown for two of the
systems shown in figure 15 and 14. Panel a) presents an intermediately coupled system
with U = 2.0 and g = 0.5 for an onsite potential vext = [0, 2,−2, 1]. Panel b) presents
a strongly coupled system with U = 8.0 and g = 0.7 for an onsite potential vext =
[0, 5,−5, 2]

the DFT and HF-solutions from the exact solution for an external potential
changing the on-site energies to [v1, v2, v3, v4] = vext = [0, 5,−5, 2]. Each subpanel
corresponds to a different value of U , where U = 0.1, 2.0, 4.0 and 8.0. For each
value of U three different values of g were considered, g = 0.2, 0.5 and 0.7.

For these systems and this particular external potential we see how the HF-
potential performs better for the systems with a weak electron-electron coupling
while the Hxc-potential performs better for the more strongly coupled systems.

In the next set of plots, seen in figure 15, we see the same as in figure 14
but for an external potential set relative to the electron-electron interaction,
vext = U [0, 0.5,−0.5, 0.25]. The external potential is in other words proportional
to the electronic interaction of the system, and thus varies between the different
subpanels. Here it can be seen how the Hxc-potential performs consistently
better than the HF-potential.

For many of the more weakly coupled systems in figure 14 the HF-potentials
performs better than the Hxc-potential, something that was not observed in
the previous section where the Hxc-potential performed better in all coupling
regimes. Looking at the actual densities for the different systems, shown for two
systems in figure 16, it can be seen that for all of the systems where the Hxc-
potential performs worse than the HF-potential, the electrons are highly confined
to two of the sites. Studying the performance at each specific site, it is seen that
the HF-potential performs better than the Hxc-potential for densities far from
half filling. This is illustrated in figure 16b), where the HF-results are closer to
the exact results for the two middle sites, which are far from half-filling. The
end sites, on the other hand, are close to half-filling, and here the Hxc-potential
performs better. In panel a) it is clear that the HF-solution overestimates the
effect of the electron repulsion, which was also observed for the dimer simulation
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in the previous section.

4.3 Exc and vxc from the DMFT code

The DMFT code used in this project required a fair amount of computational
effort to converge each data point. Therefore a small but representative set of four
different combinations of parameters were chosen for study. As the exchange-
correlation energy is expected to be symmetric around half-filling, data was only
sampled below half-filling, save for a few points above half-filling to assure the
symmetry assumption was valid.

The infinitely coordinated Bethe lattice is for the Hubbard model known to
experience a Mott transition at a critical value of the electron-electron interaction
Uc,H = 5.88 [5]. The Mott transition is a transition from a metallic to an insu-
lating phase due to the appearance of a gap in the DOS, which is related to the
gap in the vxc [15]. The parameters chosen for study were therefore U = 3.0, 8.0
and g = 0.2, 1.0. With these values the rescaled electron-electron interactions Ũ
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Figure 17: Exchange-correlation energies for the Bethe lattice attained with the DMFT
code for U = 3.0, 8.0 and g = 0.2, 1.0. Data sampled only for densities below half-
filling, data above half filling is a mirror image. The xc-energy appears to be smooth
for U = 3.0 and discontinuous for U = 8.0.
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were below and above Uc,H , and the weak to intermediate and strong coupling
regimes are represented for both parameters U and g.

The xc-energy was extracted according to equation (65) with x = 0, and a
fit was done to the data for each of the parameter sets. The fitting was done
with a piecewise spline interpolation method which is discussed in appendix B.
The interpolation method used was provided by Matlab’s Curve Fitting Toolbox.
The results from the fittings are shown in figure 17. In this figure it is seen how
the xc-energy is smooth around half-filling for U = 3.0, and discontinuous for
U = 8.0. This was expected based on the values chosen for U and g in relation
to the value of Uc,H .

Comparing the two potentials for U = 3.0, we can see how for g = 0.2 the
xc-energy is concave near n = 0, 2 while for g = 1.0 it is convex. This leads to a
wider minima around n = 1 for the latter case, and will thus lead to a smoother
xc-potential. The same observation can not quite be made for the energies and
potentials corresponding to U = 8.0, as the energy is concave near n = 0, 2 and
not smooth around n = 1 for both values of g. However, it is more concave for
g = 0.2, which implies that for larger values of g the xc-energy could possibly
become smooth also for values of U where it would always be discontinuous for
the Hubbard model. This conclusion is in accordance with the rescaling of the
effective electronic potential Ũ = U−2g2/ω0 which is decreased for an increasing
electron-phonon interaction g.

Another interesting property of these xc-energies is the slope at n = 0, 2. For
g = 0.2 the curves are close to horizontal at the end points, corresponding to
vxc ≈ 0. According to e.g. [15] this is indeed the case for the Hubbard model.
For g = 1.0 however, the slope is far from 0, resulting in a non-zero vxc also
at n = 0, 2. This is in agreement with the results of section 2.3.1, where the
xc-potential was found to take the value ±g2/ω0 at (n− 1) = ±1.

The fit of the xc-energies were then differentiated w.r.t. n, again using Mat-
lab’s Curve Fitting Toolbox, to give vxc. The resulting potentials are shown in
figure 18. In this figure we see how the discontinuity in the xc-energy for U = 8.0
gives a gap in the xc-potential, but the potentials corresponding to U = 3.0 are
smooth. We also see how this gap for U = 8.0 is smaller for the larger value of
g, which is in agreement with the rescaling of the effective electronic interaction
Ũ that we saw for the analytic case.

By comparing these xc-potentials to the analytic expression from section
2.3 it is seen that the analytic expression and the DMFT-results are in good
agreement at the end points for all panels but the one for U = 3.0, g = 1.0. An
obvious shortcoming of the analytic potential is an underestimate of the xc-gap
for U = 8.0.

4.4 Discussion

In this section we provide some additional discussion and reflect upon the results.
We start with a comparison of the xc-potentials attained with the DMFT-code
and the analytical expression derived in section 2.3. In figure 18 the DMFT-
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Figure 18: Exchange-correlation potentials for the Bethe lattice attained with the
DMFT code for U = 3.0, 8.0 and g = 0.2, 1.0. The data points are the slope of linear
regressions between the xc-energy data points. The analytical solution from section 2.3
are shown for a β which provides a good agreement.

results are presented in dark green and compared to the analytical potential
shown in light green. The value of β for the analytical potentials is chosen to
make it resemble the DMFT-results as well as possible. We start by noting that
close to n = 0, 2 the slopes of the analytical and DFMT-potentials agree very
well, and especially so for the cases where U = 8.0 and β → ∞. Both the
analytical and DMFT-potentials also have very few structural features, besides
the gap at half filling. It is possible that these similarities could be attributed to
the fact that both models are very local.

With increasing temperature the analytical result will more and more resem-
ble a straight line, and thus deviate from the slope at the end points of the
DMFT-result. This indicates that far from half filling β →∞ is always the best
choice, regardless of whether the xc-potential is smooth or not at half-filling.
This in turn implies that a smaller optimal β would be found in the dimer sim-
ulations for initial densities close to half-filling. This does not completely agree
with the observations for the dimer, although it is true for many cases.

Then we pay some attention to the two lowermost panels of figure 18 where
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we can see the potentials for U = 8.0. The analytical potential is shown at zero
temperature, corresponding to β →∞, in order to reflect the discontinuity of the
DFMT-results. It is seen how the DMFT-potentials are not simply linear above
and below half-filling as the analytical potential, but they change quickly as they
approach half-filling, ending in a peak at either side and thus show a larger gap.
A similar behaviour in this area can be found for the xc-potential corresponding
to the exact Bethe ansatz solution for the 1D Hubbard model, while in 3D
the xc-potential does not show these peaks around half-filling [15, 12]. The 1D
lattice is in fact a Bethe lattice with coordination number 2, and we could thus
suspect that these peaks seen at each side of half-filling for U = 8.0 are possibly
characteristic for the Bethe lattice.

For the two uppermost panels of figure 18, where U = 3.0, the potentials
from the DMFT-simulations are smooth and much lower values of β are needed
to resemble these potentials. However, they are still larger than the optimal
values found for β during the dimer simulations.

In relation to this it can be noted that when the dimer simulations were done
for U = 8.0, the β used, which was the β giving the initial state that most
closely resembled the exact ground state, was not such that the xc-potential had
a discontinuity. One explanation to this could possibly be that the chosen β gave
not the global but a local minimum of the difference between the two solutions.
However, before the minimization procedure was implemented β was adjusted
manually, ranging from ∼ ∞ to 0, and similar values were found for the optimal
β, giving reason to believe that the found values for β do indeed give the global
minimum. The two models studied in the DMFT- and analytical calculations are
however two different models, which is more likely the cause of the appearance
of a gap in the DMFT-potential at U = 8.0 while there doesn’t seem to be a gap
for the dimer.

When regarding the final state of the dimer simulations, the optimal β has
in general changed from the one found at the start. β was not changed during
the simulations, and this is not an implication that it should be changed, but
an implication that using a non-infinite β does not completely account for the
physics missed out by using t = 0 in the derivation of the analytical potential.

Another note to make on the choice of β, but for the DMFT-calculations this
time, is that β = 200 might not be large enough to approximate infinity. When
plotting the analytical potential for different parameters it can be seen that the
smaller Ũ is the larger β needs to be to give a sharp step-like behaviour. If β is
not large enough this would, assuming the temperature behaviour of the DMFT-
results reflects the behaviour of the analytic results, mainly affect the U = 3.0-
cases, in particular the case where g = 1.0. Looking at the analytical potential
for these parameters and β = 200 it can be seen that although they are much
more step-like than the DMFT-results, the discontinuity is not sharp. However,
even though the DMFT- and analytic result are very similar in appearance, they
do correspond to rather different models and the only way to deduce whether
β = 200 is large enough is to run the DMFT-simulation again for other values
of β and check the convergence. As mentioned previously the values of U and
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g were chosen based on the Mott transition for the Hubbard model, so that
U = 3.0 was expected to give smooth energies and potentials, while for U = 8.0
the potentials were expected to show a gap. As the effect of g is to reduce the
effective electron-electron interaction Ũ , the systems with U = 3.0 are expected
to have a smooth xc-potential, and increasing β is thus not expected to cause
the potentials for these systems to show a discontinuity.
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5 Summary and Outlook

This section will give a brief summary on the different results attained during
the course of this thesis project, as well as present some suggestions on how to
proceed within the subject in the future.

In section 2.1 we have proved the HK-theorem and derived the KS-equations
for the HH-model, generalizing the results of previous work. We have also de-
rived an analytical expression for the xc-potentials of the HH-model for a single
site system in contact with a heat bath of inverse temperature β and a hopping
parameter t = 0, presented in section 2.3. The attained potential shares some
features with the corresponding potential for the pure Hubbard model, but with
a rescaled electron-electron interaction Ũ which can take negative values, and an
additional term linear in (n − 1). The attained expression was used in section
4.1 and 4.2 to simulate two simple systems: a dimer and a four-site linear chain,
where the inverse temperature β was used as an expedient to imitate the effect
of a non-zero hopping parameter. The performance of the xc-potential was com-
pared to that of the HF-potential and to exact results. Over all it performed
better than the HF-potential.

A DMFT-code was used to find the total energy of an infinitely coordinated
Bethe lattice. In section 2.2 an expression was derived for the xc-energy of
this system, and differentiated w.r.t n to get the xc-potential. The DMFT-
simulations were run for a small but representative set of variables U and g, and
the xc-energies and -potentials were extracted, presented in section 4.3.

The xc-potentials attained from the DMFT-code were compared to the an-
alytical potentials in section 4.4. The potentials had a very similar appearance
far from half filling, being linear in character. At half filling the analytical po-
tential always experiences a discontinuity at zero temperature, while the DMFT-
solutions only have a discontinuity for the systems with a strong electron-electron
interaction U . Thus is because the infinite HH-Bethe lattice experiences a Mott
transition in the regime between U = 3 and U = 8, while the single site system,
which the analytical potential corresponds to, does not experience this transition.

Using the inverse temperature β as an expedient to amend for the shortcom-
ings of our analytical potential, as has been done throughout this project, does
not have a strict physical meaning. Another way to address these shortcomings
can be found in e.g. [20] where the zero-temperature xc-potential of the Hubbard
model, found in e.g. [24], is convoluted with a Lorentzian line shape to imitate
spectral broadening. The result is an xc-potential which is smoothened also at
zero temperature. The performance of the convoluted potential is compared to
that of the potential at non-zero temperature. It is shown that the convoluted
potential corresponds to a rather high temperature of the non-convoluted po-
tential, and that it performs better. This way of smoothening the xc-potential
would have a physical meaning, and it could therefore be informative to investi-
gate the performance of an xc-potential smoothened by the convolution with a
Lorentzian.

Another thing that deserves more attention is the Ũ < 0-regime, as this is
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the regime where a material would be superconducting. In reference [20] there is
a discussion on the negative-U Hubbard model in a DFT-perspective. However,
the presence of a negative interaction U is only assumed. A similar discussion
on the HH-model would therefore be very interesting, as the rescaled electron-
electron interaction of this model, Ũ , actually can take negative values. The
HH-model can thus provide a negative effective interaction on physical grounds.
In this project only Ũ > 0 has been considered save for a few cases in the small-
U -regime for the dimer, where U = 0.1. No specific attention was paid to the
fact that Ũ < 0 in these cases however, and they did not behave in a startlingly
different way from the Ũ > 0-systems studied. By studying the conductance of
the HH-model for different values of U , g and Ũ , more insight could be gained
on the significance of these regimes, e.g. as a further extension of [24] where the
conductance of a single Hubbard-site coupled to leads is studied.

An approximate non-adiabatic xc-potential for a Hubbard Anderson impurity
site coupled to a lead is found in [6]. The xc-potential attained there has the
merit of including memory effects, and it is shown to yield better results than
the potential found in [24]. It could thus be informative and interesting to do a
similar investigation for a HH-site and compare to the analytical potential from
section 2.3.

The perhaps most obvious way to proceed on the subject would be to use
the xc-potentials that were attained from the DMFT-code. These could be
used to further investigate the dimer and linear chain systems in the (A)LDA-
approximation, and see if these potentials perform better than the analyti-
cal potential. Because the dimer and linear chain are one-dimensional, while
the DMFT-potentials correspond to an infinite dimensional lattice, the DMFT-
potentials are not expected to necessarily improve the results for these systems.
Instead small systems of higher dimensionality, such as 2D or 3D, could be stud-
ied. A 3D-system would obviously be of interest as many real-life applications
are concerned with three dimensional setups. However, accurate information on
2D-systems could also be of interest for practical applications, as a large group of
high temperature superconductors, namely the cuprate superconductors, consists
of superconducting copper-oxide layers between layers of other elements.

To study finite dimensional systems it would be ideal to use the xc-potential
corresponding to systems of the corresponding dimensionality, and not the infi-
nite Bethe lattice. These could be attained with the same approach as has been
used during this project, using a different density of state during the DMFT-
simulations. This has been done in [15] for the Hubbard model, and it would be
interesting to compare these results for the Hubbard model to similar calcula-
tions for the HH-model. It would also be interesting to study disordered systems,
that is systems with different parameter values at the different sites, as DFT is
particularly suitable for disordered systems.

These are just some suggestions on what could be done in the future, and as
much of the work done on the Hubbard or Holstein models separately could be
interesting to generalize to the HH-model, there is lots left to discover.
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A Complementary steps for the derivation of

the analytical vxc for the single HH-site in

section 2.3

Using the expressions in equation (67) to obtain the expectation values for x and
n via the partition function given in equation (69c) we get:

n = 2
e−β(vs−µ)eβ(g2+2gζ)/ω0 + e−β(2vs+U−2µ)eβ(4g2+4gζ)/ω0

1 + 2e−β(vs−µ)eβ(g2+2gζ)/ω0 + e−β(2vs+U−2µ)eβ(4g2+4gζ)/ω0
(86)

and

x = −
√

2

ω0

[
ζ − 2g(e−β(vs−µ)eβ(g2+2gζ)/ω0 + e−β(2vs+U−2µ)eβ(4g2+4gζ)/ω0)

1 + 2e−β(vs−µ)eβ(g2+2gζ)/ω0 + e−β(2vs+U−2µ)eβ(4g2+4gζ)/ω0

]
(87)

We rename vs−µ = v, v− g2

ω0
− 2gζ

ω0
= ṽ and U − 2g2

ω0
= Ũ so that the expressions

become somewhat simpler:

n(ṽ, Ũ) = 2
e−βṽ + e−β(2ṽ+Ũ)

1 + 2e−βṽ + e−β(2ṽ+Ũ)
(88)

and

x(ṽ, Ũ) = −2ζ

ω0

− 4g(e−βṽ + e−β(2ṽ+Ũ))

ω0(1 + 2e−βṽ + e−β(2ṽ+Ũ))
(89)

We recognize the expressions ṽ and Ũ from section 2.3 and 1.1, equation (5).
The quantity ζ = η − g is introduced in section 2.3, where η is the phononic
external potential that enters the Hamiltonian in (66).

Then we note that equation (86) looks like equation (10) and (11) of paper
[26] with the substitutions ṽ0 → ṽ and U → Ũ .

To get the inverse relation ṽ(n) in equation (72) we write equation (86) as:

n = 2
z + z2s−1

1 + 2z + z2s−1
(90)

where z = e−βṽ and s−1 = e−βŨ .
Next we multiply the above with 1 = s/s and move the denominator to the

lhs:

n(s+ 2zs+ z2) = 2sz + 2z2 → z2 + 2zs
δn

δn− 1
+
s(δn+ 1)

δn− 1
= 0 (91)

where δn = n− 1. Solving for z and choosing the negative root for the solution
gives:
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(
z + s

δn

δn− 1

)2

= s2 δn2

(δn− 1)2
− s(δn+ 1)(δn− 1)

(δn− 1)2
→

z = −s δn

δn− 1
− s
√
δn2 + s−1(1− δn2)

δn− 1
(92)

Inserting the expression for z and s−1 from above now result in the expression:

e−βṽ = eβŨ


 δn

1− δn +

√
δn2 + e−βŨ(1− δn2)

1− δn


→

ṽ = −Ũ − 1

β
ln



δn+

√
δn2 + e−βŨ(1− δn2)

1− δn


 (93)

The expression for x is obtained by simply recognising n in equation (89):

x = −
√

2

(
ζ + gn

ω0

)
→ ζ = −xω0√

2
− gn (94)

Finally expression (72) is obtained by inserting the expressions for ṽ, Ũ and
ζ into equation (93) and solving for v = vs − µ.

In the case of non-interacting particles, ṽ → v and Ũ = 0. Thus the KS-
potential in equation (73) will explicitly look like:

vks = − 1

β
ln

[
δn+ 1

1− δn

]
(95)
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B Piecewise Spline Interpolation

The interpolation of the data for Exc obtained from the DMFT-code was done
using a piecewise spline interpolation method from the Matlab Curve Fitting
Toolbox.

A spline is a smooth function which is defined piecewise by polynomials of
a given degree. Most common is the use of third degree polynomials resulting
in a cubic spline. For a spline type of degree n, the continuity of the function
is Cn−1, i.e. it can be differentiated n − 1 times. This is achieved by requiring
any adjacent polynomials to take the same value and have the same first n − 1
derivatives. The value of the (n− 1)th derivative in the end points must thus be
given as input.

For the standard cubic spline, the second derivative is usually assumed to be
zero in the end points. Upon differentiation this would result in a vxc with a zero
first derivative in the end points, which does not agree with neither the analytical
demonstration in section 2.3 nor the actual data in section 4.3. Therefore the
splines constructed for the xc-energies are of fourth order, resulting in a linear
behaviour of the xc-potentials in the end points.

For each set of energy data a spline interpolation was done consisting of eight
fourth order polynomials. For the energies corresponding to U = 8.0 a disconti-
nuity at n = 1 was required. The joining points, or knots, for the polynomials
were chosen to give good agreement with the data.
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