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Abstract 

Energy harvesting, from ambient vibrations, can be a very effective method 

for solving the problem with powering electronics were the need for constant 

power or regular battery replacements is a trouble or an inconvenience. But, 

since all energy harvesters, using mechanical vibrations, need to operate in 

resonance in order to generate maximal electrical output, and ambient 

vibrations usually do not have a constant vibration frequency, this results in 

the need for efficient self-tuning systems. This thesis presents an analytical 

study on the vibrational properties of passive self-tuning systems, based on the 

clamped-clamped beams and strings carrying a sliding mass. Numerical 

studies and modal analysis are presented and results are commented and 

explained. An attempt where made to reproduce the behavior of those systems 

in the commercial programs ADAMS and ABAQUS, the results and setbacks 

from those attempts are presented. 

 

 

Keywords: Energy harvesting, mechanical vibrations, passive self-tuning, 

beam resonators, string resonators, sliding proof-mass, MEMS, actuators.   
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1 Introduction 

 

1.1 Mechanical energy harvesting 

The interest in energy harvesting has increased significantly over the last 20 

years. The possibility to use the environment of a machine component in order 

to transform thermo-mechanical energy to electric energy has become a 

scientifically popular subject and numerous papers have been written about the 

subject, see for instance [1], [2]. 

There are various energy sources that could be harvested, such as light energy 

from ambient light, thermal energy from temperature gradients, volume flow 

of liquids or gases and mechanical energy from movements or vibrations. The 

use of mechanical energy harvesting could help powering wearables or small-

scale electronics since the source for mechanical energy can be human 

movements or vibrations in structures. 

The automatic spring device in a mechanical wrist watch is an example of a 

system harvesting energy from mechanical energy produced by human 

movements. In the mechanical wrist watch the wearers arm movement sets the 

weight in the watch in oscillation, enabling the automatic spring device to 

convert the transferred kinetic energy to potential energy in the main-spring, 

by way of the linked gear train [3]. 

In energy harvesting from mechanical vibrations the harvesting device needs 

to operate in resonance at the excitation frequency and this will limit the 

bandwidth at which they will work efficiently. Most vibration-based 

harvesters are designed as linear resonators with modified resonance 

frequencies to match the excitation frequencies for a specific application. In 

most applications, the ambient frequency is not constant and in return this will 

lead to a large loss of energy. There are ways to address this problem, either 

by using multiple systems or different tuning mechanisms. An ideal energy 

harvester is a system that can tune its resonance frequency with minimal or no 

energy consumption to match the ambient excitation frequency, [4], [5]. 

The resonance can be tuned using one of two methods; manual-tuning or self-

tuning. Manual tuning is usually the easiest way since it mostly implicates 

changing the physical properties of the system, for example the spring 

stiffness or the structures center of mass, but it is very difficult to implement 

during operation. Self-tuning is expected to cover a targeted range of 

frequencies and to self-detect frequency change consuming as little harvested 

energy as possible, [2]. Furthermore, the self-tuning methods can be 
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implemented in two ways, the continuous and the intermittent. Continuous 

tuning, also referred to as active tuning, is defined as a tuning mechanism that 

is continuously active even when the resonance frequency of the device 

matches the excitation frequency, requiring continuous power input for tuning. 

Intermittent tuning, also referred to as passive tuning, is only using power 

during the tuning process and is passive when resonance is achieved, until the 

excitation frequency changes. There are various methods to implement the 

resonance tuning techniques and the methods can be categorized into 

mechanical, magnetic and electrical tuning. 

In this thesis, the focus will be on energy harvesting from mechanical 

vibrations, more specifically on a passive self-tuning system. 

 

1.2 Applications 

Micro-electro-mechanical systems, commonly referred to as MEMS, [6], are 

micro-sized mechanical and electro-mechanical devices manufactured by 

using the techniques of micro-fabrication. Examples of components in MEMS 

are sensors, actuators, electronic and mechanical structures. The micro-sensors 

and micro-actuators are what make MEMS interesting. It is through these 

micro-components the MEMS get their functionality as devices that may 

convert energy from one form to another. The sensor typically converts a 

measured thermo-mechanical signal such as temperature, pressure, inertial 

forces, chemical species, magnetic fields and radiation to an electrical signal 

that can be sent to, or called for from, a monitoring device.  The micro-

actuators can be micro-valves for controlling liquid and gas flow, optical 

switches, micro-pumps or a variety of other actuators for different 

applications, [6]. While MEMS may solve a number of technical problems 

through their functionality and find a wide range of applications, a 

disadvantage is the power supply. MEMS are conventionally powered by 

chemical batteries. This leads to the problem with size limitations and the 

difficulties with replacing the batteries in sensors at hard to access places. 

Therefore energy harvesting, for MEMS and other sensors such as wireless 

sensor nodes (WSN), has become an important research topic during the last 

decade, [7]. 

Energy sources existing in the environment surrounding energy harvesting 

devices such as sunlight, wind, thermal gradients and mechanical vibrations 

are valuable assets for energy harvesting. Over the past few years a great 

amount of research has been made around energy harvesting of solar, thermo-

electric and vibrational energy. There is a variety of products already on the 
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market using these harvesters, such as the solar charger, the thermoelectric 

wristwatch and wireless pushbutton switches. For MEMS and WSN energy 

harvesting from mechanical vibrations could be the most effective. Solar 

energy, even though being the most mature technology, is not cost effective. 

The solar cells need a large area for their disposal and they need to be clean. 

Furthermore, they only work where they can be reached by light. The 

limitations for thermal electric generators is the need for large thermal 

gradients and in a MEMS-compatible device it is hard to obtain overall 

gradients higher than 10°C, [8] 

 

2 Background 

 

2.1 Energy harvesting mechanisms 

A vibration can come from a moving human body, air or water flow, a moving 

vehicle or any operating machine. The vibration can have various frequencies 

and amplitudes. Most devices for energy harvesting from mechanical 

vibrations are based on linear mass spring damper systems, also called linear 

energy harvesters. 

 

Figure 1 above shows a linear spring-mass-damping system placed in a 

housing and consisting of an inertial mass, m , coupled to a spring with 

stiffness, k . The electrical energy harvested by the transducer and the energy 

lost through parasitic mechanisms is modelled as a linear viscous damper with 

Figure 1. Schematic diagram of the linear, spring-mass-damping system. 
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the damping coefficient, Tc , since the conversion from mechanical energy to 

electrical energy damps the motion of the mass. The housing is excited by an 

external sinusoidal vibration of the form ( ) sin( )y t Y t . At resonance the 

housing will move out of phase with the inertial mass resulting in a net 

displacement, ( )z t , between the mass and the housing [9],[10]. The 

differential equation describing the motion of the mass relative to the housing 

is given by 

 ( ) ( ) ( ) - ( )Tmz t c z t kz t my t    (1) 

The transducer exploits either displacement or strain to extract electrical 

energy. There are three kinds of suitable transducers for energy harvesting of 

mechanical vibrations. These are the piezoelectric, the electromagnetic and the 

electrostatic transducers. Electrostatic and electromagnetic transducers use 

displacement while the piezoelectric transducers use strain to generate 

electrical energy. 

If it is assumed that the vibration source is unaffected by the movement of the 

system, then the admitted power by the transducer and parasitic damping 

mechanism is given by, [9].  
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where 
T  is the relative damping, Y  is the displacement amplitude of the 

housing and 
r  is the systems eigenfrequency. When the system operates in 

resonance the systems eigenfrequency matches the ambient vibration 

frequency and maximum power output will be achieved. 

 

 
2 3

4

r

T

mY
P




  (3) 

 

Eq. (2) is independent of which transducer is used. The greatest impact on the 

efficiency of the energy harvesting systems for mechanical vibrations is the 

ability of the system to match its eigenfrequency with the excitation frequency 

and reach resonance. 
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2.2 Self-tuning mechanisms 

As mentioned, self-tuning can be achieved from one of two methods, active 

and passive self-tuning. Active self-tuning is a power consuming method since 

it is tuning the device using an externally supplied force or electrical signal to 

change the resonances of the energy harvester, by means such as controlling 

the stiffness or mass of the system. The need for external power makes the 

active self-tuning impractical for energy harvesting from mechanical 

vibrations. This since the power requirements often exceeds the energy 

possible to harvest from the available input vibrations that can be achieved for 

the intended applications. Therefore, passive self-tuning is of greater interest 

as the self-tuning method in energy harvesting from mechanical vibrations. 

This since in passive self-tuning there is no need for suppling any power to the 

tuning mechanism and the tuning itself only starts when the device is out of 

resonance.  

There are specifically two passive self-tuning studies that caught our interest. 

In the first study Boudaoud et al., [11], conducted an experiment with a 

threaded bead on a clamped-clamped piano string shown in Figure 2. In [11] 

the vibration of the system was forced by an oscillating magnetic field 

generated by two U-shaped magnets and two iron plates. 

 

Boudaoud was able to demonstrate that when the string is forced to vibrate at a 

specific frequency, the bead would move to a position along the string so as to 

make the system resonant. Later on when the excitation frequency is changed 

the bead starts moving to a new position and once again sets the system in 

resonance. Boadaoud was thus able to show that a system with a clamped-

clamped string with a sliding-bead adapts itself to become resonant when 

excited with a frequency from the systems frequency range through a slow 

dynamic process, [11]. 

Figure 2. Schematic representation of the experimental apparatus presented in 

[11]. 
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In 2013 L.M. Miller published a paper, [12], on the experimental behavior of a 

self-tuning resonant system. The system is based on a beam resonator with a 

sliding proof-mass similar to the clamed-clamed string in Boadaoud’s 

experiment. 

 

Figure 3 shows a clamped-clamped beam with sliding proof-mass and with the 

excitation displacement, ( )0W t . A point along the beam is identified by the 

coordinate, X , and the vertical displacement of the beam is defined by the 

function, ( , )W W X t . The horizontal position of the proof-mass is given by 

( )Y Y t  and the vertical position of the proof-mass is given by, ( ( ), )W Y t t . 

The experiment was conducted with a steel beam with the length 6 cm. As for 

the sliding proof-mass, a thermoplastic clamp is equipped with a small screw 

giving the proof-mass the desired weight. In Figure 3 it is possible to see how 

the deflection angels at the fixed points of the beam are lower than for the 

fixed point of the string, see Figure 2. Due to the difference in bending 

stiffness between the beam and string.  

The experiments were conducted in two variants to verify two cases. In the 

first experiment, the proof-mass was placed at a chosen initial position and the 

system was subjected to a selected excitation frequency, in order to verify that 

the proof-mass would slide to the position on the beam that enables the system 

to achieve resonance.  

As can be seen in Figure 4 the authors [12] were able to achieve the wanted 

behavior of the system. The motion of the proof-mass, is represented by the 

gray points (right vertical axis). It slides to the position on the beam that 

Figure 3. Schematic representation of the beam-mass resonator system 

presented in [12]. 
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enables the system to achieve resonance resulting in higher beam displacement 

amplitude represented by the black lines (left vertical axis). Passive self- 

tuning was observed at excitation frequencies of 80Hz  and 140Hz  at 

accelerations 
0W  of .0 12g  and .0 084g , respectively. 

 

In the second experiment, the procedure from the first test was repeated but in 

this case, after the system reached resonance, the excitation frequency was 

changed in 1Hz  increments over a given range. The purpose of these tests was 

to determine whether the proof-mass would slide to a new position that 

retuned the beam-mass systems resonance frequency to match the driving 

frequency and if it could stay tuned if the frequency was adjusted. 

The experiment was successful and showed the wanted behavior. As can be 

seen in Figure 5 the proof-mass, represented as the gray points (right axis), 

continues to slide to new positions on the beam. During this process the 

system maintained the resonance resulting in the high displacement amplitude 

of the beam represented by the black lines (left axis). The resonance was 

successfully maintained as the frequency was adjusted up from 100Hz  up to 

140Hz  by 1Hz  increments and down from 100Hz  to 70Hz  by 1Hz  

decrements. 

Figure 4. The passive self-tuning results from the experiment on a 6 cm steel 

beam mass system presented in L.M. Miller, P. Pillatsch, E. Halvorsen, P.K. 

Wright, E.M. Yeatman, A.S. Holmes, Experimental passive self-tuning 

behavior of a beam resonator with sliding proof -mass, J. Sound Vib. 332 

(2013), [12]. Published with the consent of the author. 
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The result achieved by Miller et al., [12], shows that it is possible to use a 

beam resonator in passive self-tuning. It is also shown in the paper that the 

ability of the system to self-tune is not sensitive to the size or scale of the 

system. 

The results from the experiments made by Boudaoud, [11], and Miller, [12], 

has been the inspiration for this thesis and for the following analytical work 

and an attempt to further understand the behavior of those systems, by 

deriving an analytical model, will be carried out in this thesis. 

 

3 Self–tuning string and beam resonators 

This part of the thesis is divided into four sections where, in section 3.1, the 

problem of the self-tuning string and beam resonators with a sliding proof-

mass will be formulated. In section 3.2 the analytical work will be presented, 

starting with the formulation of the analytical model for the string resonators 

in 3.2.1. In 3.2.2 we proceed to present the analytical work for a beam 

resonator, presenting a solution for a beam with and without an axial preload. 

Figure 5. The results of maintaining passive self-tuning on a 6 cm beam mass 

system presented in L.M. Miller, P. Pillatsch, E. Halvorsen, P.K. Wright, E.M. 

Yeatman, A.S. Holmes, Experimental passive self-tuning behavior of a beam 

resonator with sliding proof-mass, J. Sound Vib. 332 (2013), [12]. Published 

with the consent of the author. 
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Finishing section 3.2 with an application of the analytical model to the sliding 

proof-mass experiments by Miller [13]. In section 3.3, a numerical solution to 

the equations of motion for beam resonators is generated and calculations of 

the mode shapes are presented. In section 3.4, the simulation work done by 

using the softwares ADAMS and Abaqus, are presented and discussed. 

 

3.1 Problem formulation 

In the work done on beam resonators with sliding proof-mass, Miller [12], the 

behavior of the systems was studied through experimental procedures. It was 

observed that for a specific range of excitation frequencies the sliding-mass 

would move to the corresponding position of the beam that sets the system in 

resonance. This motivated the work on deriving an analytical model of the 

system in order to further investigate how different configurations of the 

system affect the frequency range and what effect the starting point of the 

sliding proof-mass has on the resonance behavior of the system. The system, 

consisting of the beam with sliding proof-mass, showed a high degree of 

complexity, especially in the interaction of the sliding proof-mass with the 

beam. Studying the work of Boudaoud [11] on string resonators with a sliding 

bead we could see that there are a lot of similarities with the behavior of the 

beam resonator with sliding proof-mass. Therefore, a study of a beam with 

axial preload is made in order to achieve a more string-like behavior of the 

beam. 

The objective is to study and obtain more information of the behavior of the 

aforementioned resonator-systems and the behavior of their corresponding 

sliding-masses. Firstly, we present analytical models of the string and beam 

resonators. The equation of motion and the boundary conditions are 

formulated and the modal characteristic equation is derived in order to obtain 

the eigenfrequencies and the mode shapes. Later the computer aided 

simulation work of the systems will be presented. 

 

3.2 Analytical study of the string and beam model 

3.2.1 String model 

The string model consists of a pre-tensioned string with a sliding proof-mass. 

The aim is to obtain the eigenfrequencies and the mode shapes of the system. 

In this model, the gravity is neglected. Figure 6 presents a general shape of the 

string and not a mode shape. The mode shapes are studied in Section 3.3. 
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A vibrating string with plane transverse string motion, with the displacement 

( , )W W x t  and no external load will at time t  have the following equation of 

motion [14]. 

 ( , ) ( , ) ( , )s zx x t x t m xW x t   T T e  (4) 

when letting 0x   we will get 

 
s zm W

x






T
e   (5) 

where 

 
2

2
( , )

W
W x t

t





  (6) 

( , ) tx t T T T e  is the string traction vector with the tangential vector 

( , )t t x te e  and the string tension ( , )T T x t  and ( )sm A x  is the string 

mass per unit length with a constant density,  , and a cross-section area, 

( )A A x . 

The projection of Eq. (5) in the 
ze direction, leads to 

    z s z s z t sm W m W T m W
x x x

  
       
  

T
e e T e e   (7) 

Then, since 

 
2

1

x z

t

W

x

W

x





 

  
 

e e

e   (8) 

Figure 6. Schematic free body diagram of a string model. 
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Eq. (7) becomes 

 
2

1

s

W

x T m W
x W

x

 
 

            

  (9) 

It may be shown that 
( , )ˆ( , ) ( )

2
W x t

T x t T t 1
x

 
   

 
 and therefore Eq. (9) 

may be written 

 
2

2
ˆ

s

W
T m W

x





  (10) 

To solve the differential equation given in Eq.(10), the following harmonic 

solution is considered 

 ˆ( , ) ( )sin( )W x t W x t   (11) 

Assuming that the pretension T  as well as the mass per length ( )sm x  are 

constants ( 0 ,0
ˆ( ) ,  ( )s sT t T m x m  ), the string equation is now given by 

 
2

2

0 ,02

ˆ
ˆsin sins

d W
T t m W t

dx
     (12) 

and can be rewritten as 

 
2

2

2

ˆ
ˆ 0

d W
W

dx
    (13) 

where 

 

2

,02

0

sm

T


    (14) 

To define the boundary conditions, the string is divided in two parts which are: 

[  ] 0 x s   and [  ] s x L  . The parameter s  denotes the position of the 

sliding-mass on the string see Figure 7. Consequently, the general solutions 

are given by 
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ˆ ( ) sin( ) cos( ),    0

ˆ ( ) sin( ) cos( ),    s

W x a x b x x s

W x c x d x x L





      


     

  (15) 

where , , ,a b c d  are modal coefficients. 

 

To calculate the modal coefficients in Eq. (15), four boundary conditions are 

required. The first two boundary conditions are related to the fixed ends of the 

string as follows 

 ˆ ˆ(0) 0,  ( ) 0W W L    (16) 

The third boundary condition is obtained where the sliding-mass is attached to 

the string. The displacements at the point x s  for both parts of the sliding-

mass are equal which is expressed by 

 ˆ ˆ( ) ( )W s W s    (17) 

Figure 8 shows the free body diagram of the sliding mass at the point, x s . 

This gives us the following equation of motion 

 ( , ) ( , ) ( , )t t zs t T s t T mW s t    e e e  (18) 

where m  is the sliding-mass. By scalar multiplying Eq. (18) with ze leads to 

 

( , ) ( , )

( , )

( , ) ( , )
2 2

W s t W s t

x xT T mW s t

W s t W s t
1 1

x x

 

 

 

 

  

    
    

    

 (19) 

Figure 7. The two parts of the string model, (-) and (+). 
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and assuming that 
( , )W s t

1
x




, 

( , )W s t
1

x




 gives us the approximate 

equation 

 
( , ) ( , )

( , )
W s t W s t

T T mW s t
x x

 
  
 

 
 (20) 

which can be rewritten as 

 
ˆ ˆ( ) ( ) ˆ ( )2dW s dW s

T T mW s
dx dx


 

     (21) 

By scalar multiplying Eq. (18) with xe we get 

 

( , ) ( , )
2 2

1 1
T T 0

W s t W s t
1 1

x x

 

 

 

    
    

    

 (22) 

Assuming that 
( , )W s t

1
x




, 

( , )W s t
1

x




 gives us the approximate 

equation 

 0T T 0 T T T         (23) 

 

 

Inserting the relation given in Eq. (23) in Eq.(21), leads to the fourth boundary 

condition. 

 2

0

ˆ ˆ
ˆdW dW

T m W
dx dx


  
   

 
  (24) 

Figure 8. Free body diagram at point . 
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Equation (15), along with the four boundary conditions given in Eqs. (16), 

(17) and (24), is used to set up a system of linear equations. Note that Eq. (16) 

implies that b 0 . Therefore, the system of equations is given by 

 

 

2

0 0 0

0 sin( ) cos( ) 0

sin( ) sin( ) cos( ) 0

sin( ) cos( ) cos( ) sin( ) 0n

A

L L a

s s s c

m s T s T s T s d



     
    

         
              

(25) 

 

Finally, the eigenfrequency of the whole system, including the string and the 

sliding proof-mass, will be obtained by calculating the determinant of the 3x 3

-matrix given in Eq. (25) and solving the characteristic equation. 

 det 0A   (26) 

 

3.2.2 Beam model 

In this thesis, the static and dynamic behavior of the beam is based on the 

Euler-Bernoulli theory, with the following assumptions: 

• The material of the beam is isotropic. 

• The material behavior is linear elastic.  

• Rotary inertia is negligible. 

• Shear deformation is negligible. 

 

The following differential equation represents the motion of the beam with 

small deflections, see Appendix A.1, Eq. (A.20) and [15], [16] 

 

 

4 2 2

4 2 2
0b

W W W
EI T m

x x t

  
  

  
 (27) 

where ( , )W W x t  is the displacement of the beam in the ye -direction, see 

Figure 9; E  is modulus of elasticity in [ ]Pa ; I  is the second moment of area 

around the ze -axis of the beam cross section [ 4m ], the frame is based on a 

right handed orthonormal basis defined by ( , , , )x y zO e e e ; 
bm  is the mass per 

unit length of the beam [ kg m ]; x  is the coordinate in the xe -direction [ m ]; 

t  is the time [ s ] and T  is the axial preload in the [ N ], which is considered to 

be positive. 
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The analytical study of the beam is based on a beam with constant cross-

section area and density, leading to the conclusion that 
bm  is constant. Gravity 

is neglected. 

To solve the differential equation given in Eq. (27) the following harmonic 

solution is assumed 

 ˆ( , ) ( )sinW W x t W x t    (28) 

Then, by combining the harmonic solution in Eq. (28) with the differential 

equation (27) and introducing the beam non-dimensional coordinate ( )
x

x
L

  , 

the general solutions ˆ ˆ ( )W W x  is given by 

 

ˆ ( ) sin( ) cos( ) sinh( ) cosh( ),   0

ˆ ( ) sin( ) cos( ) sinh( ) cosh( ),   

W x a N b N c M d M x s

W x e N f N g M h M s x L

   

   





      


      (29) 

where the position of the sliding mass in the xe -direction is denoted by s , the 

modal coefficients are denoted by , , , , , , ,a b c d e f g h  and M , N  are defined 

by 

 

 

1/2
1/2

2 2 2 2 1/2

1/2
1/2

2 2 2 2 1/2

( / 2 ) ( / 2 ) ( / ) ( )

( / 2 ) ( / 2 ) ( / ) ( )

M L T EI T EI A EI U U

N L T EI T EI A EI U U

 

 

         

       

  (30) 

with the dimensionless parameters U  and   describing the relative axial 

force and the relative natural frequency respectively ([15],[16]), are defined by  

Figure 9. A clamped-clamped beam resonator carrying a sliding proof-mass. 
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2 2

,   
2

TL L
U

EI




    (31) 

where 

 
EI

A



   (32) 

To assign boundary conditions for the problem in Eq.(27) - (29), we use the 

same method as with the string, dividing the beam in two parts with one fixed 

point at each side and connecting the two sides to each other at the other point, 

[ ] 0 x s   ,and [ ] s x L  , where x s  is the position of the sliding-

mass on the beam and also specifying where the two hypothetical sides are 

connected, see Figure 9. 

There are eight boundary conditions obtained for the beam with sliding-mass 

system. The first four are related to the fixed ends of the beam. Due to the fact 

that it is a clamped-clamped beam, there is no linear displacement at the beam 

ends, leading to  

 ˆ ˆ(0) 0,   ( ) 0W W L     (33) 

and neither is there any angular displacements at the fixed ends 

 
ˆ ˆ

(0) 0,   ( ) 0
dW dW

L
dx dx

 

    (34) 

The last four boundary conditions are associated with the two parts of the 

beam were the sliding proof-mass is located at point x s . The first of those 

are for the vertical displacement at each side of the connecting point and they 

must be equal 

 ˆ ˆ( ) ( )W s W s    (35) 

the second one is for the angular displacement at the connecting point and also 

that must be the same for the two sides 

 
ˆ ˆ

( ) ( )
dW dW

s s
dx dx

 

   (36) 

the third boundary condition concerning the connection point is for the 

bending moment and the bending moment at each side of the point s is equal 
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2 2

2 2

ˆ ˆ
( ) ( )

d W d W
s s

dx dx

 

   (37) 

For the fourth and last boundary condition concerning the connection point, 

the following equilibrium relationship of the shear forces at the point x s  is 

set up. 

 

 ( ):    0shear shear proof massF F F 

      (38) 

where proof massF   satisfies the equation 

 
2

2

2
ˆ( , ) ( )sinproof mass

W
F m s t m W s t

t
 


  


  (39) 

and shearF  the shear force at each side of the beam described as  

 

3

03

3

03

ˆ ˆ

ˆ ˆ

shear

shear

M W d W dW
F T EI T

x x dx dx

M W d W dW
F T EI T

x x dx dx

   


   


  
    

  


 
    

  

  (40) 

Inserting Eq.(39) and Eq.(40) in the equilibrium equation (38) will give us the 

following expression for the eighth and last boundary condition of our 

problem 

Figure 10. Free body diagram at point  on the beam. 
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3 3
2

0 03 3

ˆ ˆ ˆ ˆ
ˆ( ) ( ) ( )

d W dW d W dW
EI s T EI s T m W s

dx dxdx dx


   

        (41) 

Eq. (29) together with the eight boundary conditions can be set up in a matrix 

format. But, due to the boundary conditions specified in Eq. (33) and Eq.(34), 

this leads to d b   and 
N

c a
M

  . It is now possible to represent the 

boundary conditions with a 6x6-matrix as follows. 

 

1 3 2 4

2 4 1 3

2 2 2

1 3 2 4

1 2 2 4 1 3 1 1 2 3 2 4

1 2 3 4

2 1 4 3

2 2 2 2

1 2 3 4

1 2

0 0

0 0

                                   

sin

cos

N
J J J J

M

NJ J NJ MJ

N J MNJ N J M J

N N
J J J J J J J J

M M

J J J J

NJ NJ MJ MJ

N J N J M J M J

J

N

N
N

L

 


 


  

    

  
          

 




   

  

 

 1 1 2 4 2 3

0

0

0

0
cos sinh cosh

0

0sin cosh sinh

A

a

b

e
J J J

f
N M M

g
N M M

hN M M
L L L




   
   
   
   

      
   
   
          
   

(42) 

in which 

 

1 2 3 4

3 3

1 2

sin ,  cos ,  sinh ,  cosh ,  

,  

s s s sJ N J N J M J M

N M
EI EI

L L

      

    
       

   

 (43) 

where ( ) /s s s L    in Eq. (43). 

Finally, the eigenfrequency of the whole system, including the beam and the 

sliding proof-mass, will be obtained by calculating the determinant of the 

matrix A given in Eq.   (42) and solving the characteristic equation. 

 det 0A    (44) 

When studying a beam without any axial load, we put 0T  in Eq.(27) and we 

will get the following differential equation 
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4 2

4 2
0b

W W
EI m

x t

 
 

 
  (45) 

Rewriting Eq.(45), with the harmonic solution in Eq.(28), gives us the 

following equation 

 

4
4

4

ˆ
ˆ 0

d W
W

dx
    (46) 

where 

 
2

4 bm

EI


    (47) 

this will lead to the following general solution 

 

 
ˆ ( ) sin( ) cos( ) sinh( ) cosh( ),  0

ˆ ( ) sin( ) cos( ) sinh( ) cosh( ),  

W x a x b x c x d x x s

W x e x f x g x h x s x L

   

   





      


     

 (48) 

 

When specifying the boundary value problem we use almost the same 

boundary conditions as earlier, that is, Eq.(33), (34), (35), (36) and (37), 

except for the eighth and final one, that now does not include any pre-stress. 

We put up a new equilibrium equation 
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 0proof mass shear shearF F F 

      (49) 

where proof massF   is still the same  

 
2

2

2
ˆ( , ) ( )sinproof mass

W
F m s t m W s t

t
 


  


  (50) 

but now the shear force shearF  is 

 

3

3

3

3

ˆ
( )

ˆ
(s)

shear

shear

M d W
F EI s

x dx

M d W
F EI

x dx

 


 


 
  

 



  

 

  (51) 

which will lead to this new and simpler eighth boundary condition 

 

3 3
2

3 3

ˆ ˆ
ˆ( ) ( ) ( )

d W d W
EI s EI s m W s

dx dx


 

    (52) 

Setting up a new system of linear equations for this new problem we get  

Figure 11. Free body diagram at point  on the beam without preload I 

the normal force. 



21 

       

1 3 2 4

2 4 1 3

1 3 2 4

2 4 1 3 1 3 2 4

1 2 3 4

2 1 4 3

1 2 3 4

2 1 4 3

0 0

0 0

                                   

sin cos sinh cosh

cos sin cosh sinh

b b

J J J J

J J J J

J J J J

m m
J J J J J J J J

m m

J J J J

J J J J

J J J J

J J J J

L L L L

L L L

 

   

   

 


  
    

       






   

  

 





0

0

0

0

0

0

A

a

b

e

f

g

L h



   
   
   
   

   
   
   
      
   

 (53) 

in which 

 

1 2 3 4

2

4

sin ,  cos ,  sinh ,  cosh

b

J s J s J s J s

m

EI

   




   






 (54) 

where the eigenfrequency of this system also be obtained by calculating the 

determinant of the matrix A given by Eq. (53) and solving the characteristic 

equation  

 det 0A    (55) 

 

3.2.3 Sliding-mass 

The analytical work for the sliding-mass has been done earlier in Miller [13] 

where the equation of motion for the sliding-mass in the 
xe -coordinate is 

described by the following equation 

 2

00 ( 2 )ms m W W W s W s W s W           (56) 

where m  is the sliding proof-mass; ( )x s t  is the position of the sliding 

proof-mass in the 
xe - direction; 0 ( )W t  is the excitation of the system; 

( ( ), )W s t t  is the position of the sliding proof-mass in the 
ze -direction. In Eq. 



22 

(56), the dots denotes derivative with respect to time and prime denotes 

derivative with respect to x . Eq. (52) may be written 

 2 2

0(1 ) ( 2 )m W s m W W W s W s W          (57) 

From Eq. (56), it can be observed that when the slope W   is zero, there is no 

driving force on the sliding-mass. In Appendix A.2 the conditions for the 

beam and the proof-mass at ( )x s t  are derived. The resulting equations are 

complicated and a solution involving the beam motion and the motion of the 

proof mass is not considered in this thesis. 

 

3.3 Modal analysis 

A numeric study, based on the analytical models developed in the previous 

chapters, is presented. The study is based on the characteristics of a reference 

steel beam given in Table 1 [12]. 

Table 1. Characteristics of the reference steel beam [12]. 

 

3.3.1 String 

In the study of the string-mass system the pretension required for the string is 

derived by setting the first eigenfrequency of the string the same as for the 

reference steel beam, which will give us a string-mass system comparable to 

the beam-mass system. We set the length and mass of the string the same as 

for the reference beam. The pretension required for the system can be 

conducted from the following equation.  

 0

2

0

n

b

T
n

m L
    (58) 

Parameter Value Unit 

Beam length L  = 0.060 m 

Beam width b  = 0.003 m 

Beam thickness h  = 0.0001 m  

Beam mass 
bm  = 0.14 g 

Proof mass m  = 0.8 g 

Elastic modulus      E  = 200 GPa 

Second moment of area I  = 2.5E -16 m4 
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Solving Eq (58) 

 

 0.7044 Nm

2

2n
0 0bT m L

n





 
  
 

  (59) 

where = 0.00014/0.06 [Kg/m]0bm  is the mass per unit length of the beam, 

= 0.06 [m]L  the length of the beam which should correspond with the length 

of the string and 
1 = 909.7 [rad/s]  the natural frequency of the reference 

beam for the first mode. For the following numerical study of the string the 

pretension, 0 0.7044 NmT   unless otherwise is mentioned.  

Inserting the modal coefficients obtained from equation (25) in equations (15) 

and boundary conditions in equation (16) will enable the plotting of the mode 

shapes for different eigenfrequencies at different mass positions and to 

evaluate the range of resonance frequency for the string-system. In the case for 

the sliding-mass placed at the mid-point of the string the first eigenfrequency 

was 235.4 rad/s. When the sliding-mass was placed at one of the ends of the 

string the first eigenfrequency was 909.7 rad/s which is the same frequency as 

for a string without any sliding-mass. In Figure 12 the first mode shapes for 

the two cases are presented, where it can be observed how the peak of the 

mode shape gets distinctly sharper in the case were the sliding-mass is placed 

at the mid-point of the string.  

 

The second eigenfrequency for the string system with the sliding-mass placed 

at the string midpoint occurs at the excitation frequency 2507.7 rad/s and it is 

the same frequency for the string system when the sliding-mass is placed at 

 

Figure 12. The first mode shape of the string when the sliding mass is placed 

at the midpoint of the string,  (left), and when the sliding mass is at 

the endpoint of the string,  or  (right). 
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one of the endpoints. As seen in Figure 13 the mode shapes for the two cases 

will be identical since the position of the sliding mass at the string midpoint is 

a stationary point for the second mode and will not have any effect on the 

second eigenfrequency of the model.  

 

The first mode shapes for the string-system when the sliding-mass is 

positioned other than the ends or the mid-point of the string can be observed in 

Figure 14 and Figure 15. It is also possible to observe that the peak points of 

the first mode shapes are in parallel with the position of the sliding-mass and 

continues to have the distinctive shape, with a sharp peak point.  

 

The string has a symmetric behavior within the resonance frequency range, 

in terms of sliding-mass position, it is the same for both sides of the string 

midpoint. The lowest eigenfrequency is achieved when the sliding-mass is 

positioned at the midpoint of the string and the largest is obtained when the 

Figure 13. The 2nd mode shape of the string when the sliding mass is placed 

at the midpoint of the string,  (left), and when the sliding mass is at 

the endpoint of the string,  or  (right). 

 

Figure 14. The first mode shape of the string when the sliding mass is placed 

at  (left), and when the sliding mass is placed at  (right). 

 



25 

sliding-mass is at either ends of the string. The range of the resonance 

frequency is given in Figure 16. 

 

The string has a symmetric behavior within the resonance frequency range, in 

terms of sliding-mass position, it is the same for both sides of the string 

midpoint. The lowest eigenfrequency is achieved when the sliding-mass is 

positioned at the midpoint of the string and the largest is obtained when the 

sliding-mass is at either ends of the string. The range of the resonance 

frequency is given in Figure 16. 

 

Figure 15. The first mode shape of the string when the sliding mass is placed 

at  (left), and when the sliding mass is placed at  

(right). 

 

Figure 16. The first eigenfrequency range in terms of the position of the 

sliding-mass for the string-system. 
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3.3.2 Beam 

Inserting the modal coefficients obtained from equation  (42) in equations (29) 

and with the boundary conditions in equations (33) and (34), enables the 

plotting of the mode shapes for different eigenfrequencies at different mass 

positions. In this numeric study, the range of resonance frequency and the 

effect of preload on resonance frequency are evaluated. 

The first mode shape, for the beam with the sliding-mass placed at the 

midpoint of the beam and for the beam with the sliding-mass placed at one end 

of the beam is presented in Figure 17.  

 

The second mode shapes, for the beam with the sliding-mass placed at the 

midpoint of the beam and for the beam with the sliding-mass placed at one end 

of the beam, are presented in Figure 18. As for the string model, the mode 

shape for the beams with the sliding mass placed at the midpoint and the ends 

will be identical since the position of the sliding mass at the beam midpoint is 

a stationary point for the second mode and will not have any effect on the 

second eigenfrequency of the model. 

Figure 17. The first mode shape of the beam when placing the sliding-mass at 

the midpoint of the beam,  (left), and when the sliding mass is 

placed at one end of the beam (right). 

 

Figure 18. The second mode shape of the beam when placing the sliding-mass 

at the midpoint of the beam,  (left), and when the sliding mass is 

placed at one end of the beam (right). 
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When positioning the sliding-mass other than the ends or the midpoint of the 

beam, a skewness can be observed. In Figure 19 this skewness can be 

observed for the first mode shape of the beam with the sliding mass placed at 

two different positions. 

 

When applying a pretension of 3N  to the beam system the first 

eigenfrequency of the system gets higher. In addition to the rise in the first 

eigenfrequency, as can be seen in Figure 20 the peaks of the mode shapes 

move towards the end of the beam and become sharper at the peak points. 

 

If precompression is applied to the beam-system a decrease in the first 

eigenfrequency will occure. The peaks of the mode shape move toward the 

center of the beam and become more flattened compared to the case with the 

beam with pretension. The beam mode shapes with precompression 

Figure 19. The first mode shape of the beam when placing the sliding-mass at 

 (left), and when the sliding mass is placed at  (right). 

 

Figure 20. The first mode shape of the beam when there is pretension 

with the sliding-mass at  (left), and when the sliding mass is placed 

at  (right). 
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0.2T N   at two different locations of the sliding-mass can be seen in Figure 

21. 

 

From the first mode shapes for the beam with pretension and precompression 

it is possible to draw the conclusion that preloading is an important desig 

factor. Preloading can influence the mode shapes as well as the first 

eigenfrequency. In Figure 22, the first eigenfrequency in terms of the preload 

is presented where the sliding-mass is positioned at 0.040s m  and

0.050s m . It is also shown that buckling occures where the first 

eigenfrequency approaches zero at 0.548T N   corresponding with the 

results that can be obtained from the theory of buckling. 

 

The first eigenfrequency range for the beam-system is given in Figure 23. Like 

for the string-model the symetric behavior is clearly shown with the minimum 

value for the first eigenfrequency is achived when the sliding-mass is at the 

midpoint of the beam. The maximum is achived when the sliding-mass is at 

Figure 21. The first mode shape of the beam when there is precompression 

 with the sliding-mass at  (left), and when the sliding 

mass is placed at  (right). 

 

Figure 22. Influence of preload on the first eigenfrequency: when the sliding-

mass at  (left), and when the sliding mass is placed at  

(right). 
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either ends of the beam. The ranges of the first eigenfrequency when there is a 

pretension ( 3T N ) and a precompression ( 0.2T N  ) are also shown in 

Figure 23. 

 

 

3.4 Simulation models 

3.4.1 Adams 

Adams is one of the world´s most widely used multibody dynamics software 

that helps to understand the dynamics of systems with moving parts [17]. A 

great work was made trying to simulate the behavior of the clamped-clamped 

beam with sliding-mass system in Adams. 

The Beam was modeled as a rigid body link fixed at both ends with a fixed 

joint. Rigid body link is a part that has mass and inertia and cannot deform. To 

make the modeled beam able to bend when forces are applied to it, the beam is 

transformed into a “Flexible Body” during the meshing procedure in Adams. 

The fixture with the fixed beam was fixed with a translational joint that 

applied the sinusoidal oscillating motion and prevented any other movement 

than vertical. The sliding-mass was modeled as a rigid body with an extrusion 

enabling the movement along the beam possible. With a translational joint on 

the sliding mass preventing any other movement than along the beam length. 

The Contact surface feature defined the contact properties between the 

surfaces on the extrusion of the sliding-mass and the beam surface. In the 

contact surface feature, it was possible to set the coefficient of friction and the 

Figure 23. First eigenfrequency range in terms of sliding-mass position for 

three different preloads. 
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relative damping between the two surfaces. A design of experiments 

procedure where conducted to test different values for the coefficient of 

friction and the relative damping.  

There were a lot of complexity and capacity setbacks that uncured during the 

simulations of the self-tuning beam resonator. The main obstacle was the 

hardware’s ability to process the simulation of the system. With the need of at 

least three elements across the thickness of the beam and a beam-model with 

0.1 mm in thickness gave an element size smaller than 0.034 mm. That made 

the total element amount for the beam a lot higher than what the available 

hardware could process. That prevented the possibility to get any finished 

simulations of a beam with tree elements along its thickness since the 

hardware limitation occurred already at the meshing procedure. The 

simulations made with a beam model with fewer elements than three across 

the thickness gave incorrect results and had to be disregarded. Attempts to 

rescale the model and to modify the geometry of the beam where made. But it 

was not possible to recreate the results from the experiments presented by 

Miller et al.[12]. 

MSC Software’s were contacted to help us in our simulation problem. They 

recommended us to use the new feature FE-part in the updated version of 

Adams. Since with the FE-part feature, we could design a beam with the 

ability to bend without transforming it to flexible part thru the meshing 

procedure.  In collaboration with the engineers at MSC Software’s a new 

model was designed with the feature FE-part in Adams, shown in Figure 24. 

A construction where made with an FE-part as a beam. A fixed joint is 

connecting each end of the beam to a fixture that has a translational joint 

connected to it, producing a sinusoidal oscillating motion for the entire model. 

For the sliding-mass, two plates with four half spheres where used with a 

contact surface between the spheres and the FE part, to minimize the contact 

surface. A translational joint was added to the sliding mass to prevent any 

Figure 24. The Beam as an FE-part connected to the fixture (left), and the 

sliding-mass (right). 
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other sliding motion then across the beam length. Numerous experiments were 

made with different inputs to the friction and contact stiffness and damping 

parameters. Unfortunately, no valid results could be extracted due to the 

unverified behavior of the system. There was insufficient knowledge of the 

nonlinear behavior of the FE-part. MSC Software was contacted once again to 

assist in understanding the FE-part, but no further success could be achieved 

from their part. A reproduction of the experimental behavior in Adams was 

not possible, mainly due to the systems complex behavior under nonlinearity.  

 

3.4.2 Nonlinear ABAQUS® simulation 

A new attempt was made simulating the behavior of the self-tuning beam 

resonators with sliding-mass, so a clamped-clamped beam with a sliding-mass 

is modeled in ABAQUS® together with Behrouz Afzali Far. For the shortest 

possible run-time of the program, the model is constructed two-dimensionally 

with an assigned beam profile. The simulation is done using dynamic explicit 

with automatic time increments and double analysis + packager precision. 

The element type is set to be a 2-node linear beam in plane (B21) which is a 

Timoshenko beam. Boundary conditions are specified including the harmonic 

excitation in y-direction applied on either end of the beam 

For the contact between the beam and the sliding-mass, two contact properties 

are defined. First, tangential behavior settings are based on the isotropic 

penalty formulation with the friction coefficient 0.01   shown in Figure 25 

and 0.02   shown in Figure 26. Second, normal behavior setting is 

pressure-overclosure and set to hard contact. The simulation is done based on 

a reference experimental system given in Table 1. Two cases are studied with 

different coefficients of friction. The starting position of the proof mass is 

0.050s m  and the excitation frequency is 502.65 rad/s. The simulation is 

done nonlinearly with large deformation effects (NLgeom = on). 

 

Figure 25. Displacement of the sliding-mass across the beam from the starting 

position (left) and the displacment of the center of the beam (right). When, 

 and . 
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4 Conclusions and future work 

Earlier work on the self-tuning beam and string resonators with sliding-mass 

showed via experiments the distinct tuning behavior of those systems, in this 

thesis, a computer-aided simulation reproduced the results from those 

experiments and could confirm the behavior. Also, analytical models of the 

self-tuning beam and string resonators with sliding-mass have been developed. 

A numerical study based on those models showed the natural frequency range 

the systems could cover and the possibility of using preload to modify and 

broaden the bandwidth and the mode shapes. Also, that pretension is useful to 

increase the speed of the system to reach resonance.  The results have shown 

that the self-tuning beam and string resonators, with sliding-mass, has great 

potential due to its capability to increase the natural frequency range of 

vibration energy harvesting generators.  This makes it possible to harvest 

energy from wearable devices, industrial machines or other applications with 

an operational frequency that is not homogenous. 

For future work, collect real experimental results on downscaled variants of 

the system, and the use of different material for the beam. 

 

  

Figure 26. Displacement of the sliding-mass across the beam from the starting 

position (left) and the displacment of the center of the beam (right). When, 

 and . 
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5 Appendix 

This Appendix is a joint work by the author and the supervisor. 

5.1 A.1 The beam in plane motion 

 

The beam centre-line is given by ( , ),   ,   0x t 0 x L 0 t T    r r , See Figure 

A.1. It is assumed that 

 

( , )
,   ,   0

x t
0 x L 0 t T

x
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
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The velocity and acceleration of the beam centre-line are defined by 
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v
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respectively.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure A.1 The beam centre line in its un-deformed and deformed 

configurations. 

 

     We simplify our notation by introducing the following definitions 
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2

2

( , )
( , ) :

x t
x t

t








, 

2 2( , ) ( , )
( , ) :

x t x t
x t

x t t x

 


 
  

   
 

 

where 0( , ),   0 ,   0x t x L t T       is a continuously differentiable 

scalar or vector valued function. Using this notation we may, for instance, 

write ( , ) ( , ) ( , )x t x t x t a v r . The arc length of the beam centre-line is 

defined by 

( , ) ( , )

x

0

s s x t q t dq   r  

 

Thus ( , )s 0 t 0 . We define ( ) : ( , )0L t s L t  the length of the beam at time t . 

The length ratio 

 

( , ) : ( , ) ( , )l l x t s x t x t 0    r  

 

For fixed  ,t 0 T  we may the invert the function ( , )s s x t  and obtain 

 

( , ),   ( ),   x x s t 0 s L t 0 t T      

 

Thus we may, instead of ,x t  use ,s t  and define ˆ( , ) : ( ( , ), )s t x s t tr r  and then 

the unit tangent vector to the centre-line is given by 

 

ˆ( , ) : ( , ) ( ( , ), ) ( , )t s t s t x s t t x s t   e r r  

 

Since ( , ) ( , ) ( , )1 1x s t s x t l x t     we may conclude that ( , )t s t 1e . We have 

 

ˆ
t n  r e e ,  ˆ  r  

 

where ( , )n n s te e  is the main unit normal and ( , )s t   the curvature of the 

centre line. The binormal ( , )b b s te e  is defined by 

( , ) : ( , ) ( , )b b t ns t s t s t  e e e e  and the Darboux trihedral      t n be e e e  

constitutes a RON-basis. See Figure A.2. We have the Frenet-Serret formula 

  e δ e  where t b  δ e e  and ( , )s t   is the torsion of the centre-line. 

The Frenet-Serret formula may be written 
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Figure A.2 The beam centre line in its deformed configurations  

and the Darboux trihedral 

 

 

     The global balance of momentum for the part of the beam defined by

1 20 x x x   , see Figure A.3 below. 

 

 ( , ) ( , ) ( , ) ( , ) ( )
2 2

1 1

x x

2 1

x x

x t dx x t x t x t m x dx   k T T a  (A.1) 

 

where ( , )x tk k  is the external force density (per unit length of the beam 

centre line in its reference configuration), 

( , )x tT T  is the sectional force (traction vector), 

( , )x ta a  is the acceleration of the beam centre line, 

( )m m x  is the mass density of the beam (per unit length of the beam centre 

line in its reference configuration), 

 

     The global balance of moment of momentum for the part of the beam 

defined by 1 20 x x x   , see Figure A.3 below. 
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where ( , )x th h  is the external moment density (per unit length of the beam 

centre line in its reference configuration), 

( , )x tM M  is the sectional moment,  
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( , )x tI I  is the moment of inertia tensor of the beam (per unit length of the 

beam centre line in its reference configuration) and 

( , )x tω ω  is the angular velocity of the beam section,    , ,  ,0x 0 L t 0 T  .  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure A.3 Part of the beam centre line and the definition of sectional and  

external forces and moments. 

 

 

     It is assumed that the beam cross-sections perform a rigid motion. The 

moment of inertia of the beam cross-section is given by 
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( , ) : ( , ) ( ( , )) ( )P P P P

P x t

x t x t x t da
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  I ω p ω p p
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where ( )P  p  is the cross-section area mass density of the beam and 

( , ) : ( , ),  ( , )P OPs t x t P x t  p r r D . See Figure A.4 below. We define 
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The cross-section area is given by 

 

( , )

( ) P

P x t

x da

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D

A  

 

Since we assume that the beam cross section is moving rigidly we may assume 

that A  does not depend on t . 

 

     The local equations of motion, corresponding to (A.1) and (A.2), read 

 

 

 

 

 

 

 

  

 

 

 

 



39 

 
( )

m 


    

k T a

h r T M Iω
 (A.3) 

 

Now taking 

 

( , )x t k k 0 ,    ( , ) ,  , ,  ,0x t x 0 L t 0 T   h h 0  

 

we have the local equations 
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 (A.4) 

 

where 

 

x x y y z zT T T  T e e e , x x y y z zM M M  M e e e  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure A.4 The beam centre line cross-section. 

 

 

     Consider plane motion (in the xe - ze -plane) of the beam centre-line, that is 

   ( , ) ,  , ,  ,y 0x t 0 x 0 L t 0 T   e r . Furthermore we assume that 

( , ) ( , )yx t x tω e  where ye  is a principal direction for I  then 

y y yI  Iω Ie e , where ( )y yI I x . This gives ( ) y y

d
I

dt
Iω e . If we 

introduce the displacement ( , ) ( , ) ( , )x zx t u x t w x t u e e  then we may write, 

see Figure A.5, 
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 ( , ) ( , )xx t x x t r e u  (A.5) 

 

and then 

 

( )x x z1 u w       r e u e e , x zu w   r e e  
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Figure A.5 The beam centre-line displacement. 

 

The equations of motion may now be written 
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 (A.6) 

 

We may take, as a solution, 

 

( , )y yT T x t 0  , ( , )x xM M x t 0  ,    ( , ) ,  , ,  ,z z 0M M x t 0 x 0 L t 0 T     

 

The remaining equations are 
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 (A.7) 

 

From the last equation it follows, after differentiating with respect to x , 
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We have the relations 
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and then 
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Thus 
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 (A.9) 

 

We have the constitutive equations, 

 

( , ) ( )( ( , ) ( , ))nT x t G x x t x t   A , ( , ) ( ) ( , )tT x t E x x t A , 

 (A.10) 

( , ) ( ) ( , )b yM x t EJ x x t    

 

where    , and ( , )x t   is the rotation angle of the beam cross-

section, see Figure A.6. Furthermore   is the shape factor of the cross-

section, G  is the shear modulus and E  the Young’s modulus. 
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( , )
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is the area moment of inertia of the beam cross-section and 
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The strain is given by 
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and the curvature by 
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We thus have six unknowns. , , , , ,x y yu w T T M  and six equations. Note that   

and   may both be expressed in terms of u  and w . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure A.6 Part of the beam centre line and the definition of sectional and  

external forces and moments 

 

 

5.2 A.2 Linearized equations of motion 

 

We assume that ,u w 1   and obtain the approximations 
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tan ( , ) ( , ) ( , ) ( , )x t w x t x t w x t     , ( ( ) ( )2 21 2u u w 1 u           

 (A.11) 

This gives 

 

( , ) ( )( ( , ) ( , ))nT x t G x x t w x t   A , ( , ) ( ) ( , )tT x t E x u x t A , 

 (A.12) 

( , ) ( ) ( , )b yM x t EJ x x t    

 

and then 
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We thus have, according to (A.7) and (A.13), 
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A

A  (A.14) 

and then 
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 

   

  
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  
           

A

A

A A

 (A.15) 

 

Now consider a beam with homogeneous and constant cross-section  

( )y 0I x I , ( )y 0J x J , ( ) 0x AA  and ( ) 0m x m . We also assume that the 

beam is subjected to an axial tension ( , )xT x t T 0   where T  is a constant. 

From (A.15) it follows that 

 

( ) ( ) ( ) ( )

0 0

0

0

0 0 0 0 0

EA u um

m
w w
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EA u w GA w 1 u GA w u EJ I
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


  

                 

 

  (A.16) 
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It follows from ( , )0T EA u x t  that 

 

( , ) ( , ) ( )
0 0

T T
u x t u x t x f t

EA EA
      

 

Using the boundary condition it follows that ( , ) ( )u 0 t 0 f t 0    and this 

then implies ,  u 0 u 0  . Note that in this case 

 

( )

(( ) ( ) )
3

2 2 2

w u 1 u w
w

1 u w


    

  

  

 

 

Compatibility with the linearization presumption requires that 0T EA  and 

we then have 
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0

0

0 0 0

m
w w
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Tw GA w EJ I



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
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
         

 (A.17) 

 

Using (A.17)1 we obtain 

 

0

0

m
w w

GA



    , 0

0

m
w w

GA



    

 

This inserted into (A.17)2 gives 

 

 ( ) ( )0 0
0 0 0

0 0

m m
Tw wm EJ w w I w w

GA GA 
          

 

and we then have the partial differential equation 

 

 ( ) ( )4 0 0 0 0 0

0 0 0 0

I m IT
w w w w w 0

G EJ EJ EJ EJ G

 

 
        (A.18) 

 

Using the relations 

 

0 0
0

0 0

m I

A J
    

 

in (A.18) one obtains 

 

 
( ) ( )

2
4 0 0

0

0 0

m1 1 T
w w w w w 0

G E EJ EJ GE




 
        (A.19) 



45 

In general the coefficients ( )0

1 1

G E



 , 

2

0

GE




 are very small and we may 

neglect the corresponding terms and obtain the differential equation 

 

 ( )4 0

0 0

m T
w w w 0

EJ EJ
    (A.20) 

 

After solving this for ( , )w w x t , with appropriate boundary and initial 

conditions, we may calculate the shear using the following equation 

 

 0w w w
G





      (A.21) 

 

5.3 A.2 The beam with a sliding proof mass 

 

Position vector of the proof mass ( ) ( ) ( ( ) ( ))P P x P z 0 Pt x t W t z t   r r e e  where 

( )Px x t , ( )P Pz z t  are the coordinate for the proof mass and 

( ) ( )z 0t W tW e  is the motion of the beam support. See Figure A.7. Equations 

of motion for the proof mass 

 

 
pm

M I

 




N f r
 (A.22) 

 

where ( )p x P z 0 Px W z  r e e , N  and f  are the normal force and the friction 

force on the proof mass from the beam, respectively, and M  is the moment 

from the beam. The moment of inertia of the proof mass is denoted I  and   

denotes the rotation angle of the proof mass, see Figure A.7 below! We have 

n NN e , t ff e  and 

 

 ,  P
P

P

x
f N x 0

x
   , ,  Pf N x 0    (A.23) 

 

We use the following notation 

 

( , ),  ( )
( , )

( , ),  ( )

P

P 0

w x t 0 x x t
w x t

w x t x t x L





  
 

 

 

 

where we assume that the functions w
 and w

 are continuously 

differentiable with finite left and right limits, respectively of all its derivatives  
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at point ( )Px x t . We have the constraint equations 

( ) ( ( ), ) ( ( ), )P P Pz t w x t t w x t t    

 

reflecting the continuity of the beam.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure A.7 Part of the beam centre line and the definition of sectional and  

external forces and moments 

 

 

The velocity of the proof mass is then given by 

 

( ) ( ) ( ( ) ( ( ), )) ( ) ( ( ), )))P x P z 0 P P Pt x t W t w x t t x t w x t t     r e e  

 

( ) ( ( ) ( ( ), )) ( ) ( ( ), )))x P z 0 P P Px t W t w x t t x t w x t t   e e  

 

 

 

 

 

 

 

 

 

Figure A.8 Part of the beam centre line and the definition of sectional and  

 

 

 
 

Beam support 
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external forces and moments 

 

and the acceleration by 

 

( ) ( ) ( ( ) ( ( ), ) ( ) ( ( ), ) ( )2
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 ( ( ), ) ( ) ( ( ), ))P P Pw x t t x t w x t t    (A.24) 

 

We have, see Figure A.8, 
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Thus, if ( , )t t x te e  is continuous at ( )Px x t  then we may conclude that 
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 (A.25) 

 

Equations of motion for the beam segment supporting the proof mass, 

neglecting the inertia of the beam segment, see Figure A.9, 
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 (A.26) 

 

We then have 
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 (A.27) 

where we have used (A.21). The equations of motion for the proof mass are  

given by (A.22) or 
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 (A.28) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure A.9 Part of the beam centre line and the definition of sectional and 

external forces and moments 

 

 

We have the relations 
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from which it follows that 
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( )
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 (A.29) 

 

Assuming ,u w 1   one obtains the approximations 
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from which it follows that 
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Inserting (A.31) into (A.28) gives 
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 (A.32) 

where w  here represents w
 or w

.  
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 (A.33) 

 ( ) ( ) ( , ) ( )P Pf t x t m w x t N t   

 

Elimination of N  gives 
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( , )( ( ) ( , ) ( ( , ) ( , ) ( , )2
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and by re-arranging one obtains 

 

( , )( ( , )) ( , )) ( , )) ( ( ( , )) ) ( )2 2

P 0 P P P P P Pw x t W w x t x 2w x t x w x t m 1 w x t f t         

 

 ( ( ( , )) ) ( )2

P P1 w x t x t m  

 

which, since w 1 , is approximately equal to 
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