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1 Abstract

How to select which measurements to make during a geoelectrical resistivity sur-
vey has been an active field of research for decades. Despite this techniques for
optimizing the measurement sequences so as to take full advantage of the mul-
tichannel capabilities of modern state of the art equipment are scarce. In this
thesis special attention is directed towards full usage of the measuring system’s
multichannel capabilities. The thesis also aims to be an introduction to the field
of geoelectrical tomography for the unfamiliar reader, in particular the concept
of the sensitivity of a measurement is fully derived. The methods presented in
this article are all relying on sampling the sensitivity function and from these
samples design a set of measurements. The methods discussed will largely rely
on selecting measurements that are as ’different’ from eachother as possible —
where the difference is measured in either the correlation of the sensitivities or
the distance of the sensitivities’ mass centers. These new methods are later
adapted for multichannel use, after a presentation of how the multichannel sys-
tem works.

The resulting sets of measurements are tested on a simple model consisting
of resistive prisms buried in otherwise homogeneous ground. The simulated
measurements and the inversion of these measurements are done with the third
party programs res2dmod and res2dinv respectively. From these simulation it is
concluded that the methods optimized for multichannel successfully schedules
close to the maximum number of measurements per current injection without
losing much performance compared to their single channel counterpart. Field
measurements with a multichannel-optimized protocol is also presented and
compared with a reference protocol.



2 Introduction to Electrical Resistivity Tomog-
raphy

As this text might have readers with varying backgrounds a brief introduction is
given to the general ideas behind Electrical Resistivity Tomography and some
terminology. Electrical Resistivity Tomography (ERT) is a method for esti-
mating the resistivity of the subsurface. The end goal is to approximate the
resisitivty in order to draw some geological conclusions about the materials in
the subsurface by measuring electrical quantities on the surface. To do this
some basic tools are required:

1. A current source, preferably one that can give constant current.
2. A voltmeter for measuring potential differences.

3. Electrodes — simple conductive rods that can be hammered into the
ground (typically 15-30 centimeters)

4. Wiring to connect two of the electrodes to the current source and two of
the electrodes to the voltmeter.

This is what is required for the most basic measurement. A more modern tool
called a terrameter combines current source and voltmeter into one while also
providing many ’quality-of-life’ improvements for the personnel responsible for
making the field surveys. The most important imporvements concerning this
thesis are:

1. The ability to connect many electrodes to the terrameter from which the
instrument then selects two electrodes for current injection and two elec-
trodes for potential readings according to a pre-defined protocol.

2. The ability to measure the potential difference between many pair of elec-
trodes for every current injection (this is what is called multichannel ca-
pabilities).

With only the most basic tool we would have to change which pair of electrodes
to use for current injection and which pair of electrodes to use for potential
reading manually, the terrameter automates this process entirely.

Geoelectrical resistivity measurements, what is it?

A geoelectrical measurement uses four electrodes — two for injecting current
and two for measuring the potential difference. By knowing the current, the
measured potential difference, the electrode positions and assuming that the
ground has a homogeneous resistivity distribution an estimation of the resistivity
in the ground can be made. The resisitivity value calculated in this way is called
apparent resistivity which represents the resisitivity the ground would have if
the hypothesis of homogeneous ground was correct [1, 6]. In most practical



cases the ground is not homogeneous which makes it necessary to make more
than one measurement in order to get a good image of the subsurface resistivity
distribution.

[ Isubsurface, 0

@ unused electrodes
current electrodes

@ potential electrodes

==pNormal of surface, n

Figure 1: This is a simplified view of the problem at hand. The light brown
subsurface has an unknown resistivity distribution. In order to estimate it we
have planted electrodes into the subsurface. We use a current source connected
to two electrodes (green) and measure the resulting potential difference with a
voltmeter between two electrodes (red). The rest of the electrodes are unused
for this measurement (black). The notation Q and n will be used later, for more
mathematical concepts.

In Figure 1 we see a simple setup — the twelve electrodes are connected to a
terrameter, two of these are used for current injections while two other are used
for potential readings (the rest of the electrodes are unused for this particular
measurement).

3 Problem description, non-theoretical
When doing state of the art electric resistivity surveys of the subsurface a high

number of electrodes are often in use. Each measurement uses four electrodes
— two for injecting current and two for measuring the potential difference. The




total number of possible measurements exhibits fourth order growth with the
number of electrodes. For an electrode layout of 64 electrodes this would be over
a million possible measurements. Due to time constraints and the cost of the
deploying personnel in the field, all the possible measurements are very seldomly
taken. Instead a much smaller subset of all these measurements, consisting of
at most a couple of thousand measurements, is usually what is measured in
the field. For a long time the set of measurements that were used was selected
from a set of standard measurements — measurements that for some reason
were easily deployed. The advancements in field equipment and computer tech-
nology has however opened up new possibilities. With computers it is easier
to evaluate all possible measurements before going out in the field. The field
equipment can take more than one measurement at a time leading either to
better survey qualities, due to more data points, or to faster data acquisition.
Specialized techniques are however needed to design sets of measurements that
uses the multichannel capabilities of the instruments to their full, or close to
their full, potential.

The goal of this thesis is hence twofold: how do you select amongst this vast set
of possible measurements and how should we select measurements so that the
multichannel capabilities of the measuring equipment is used to a large extent?

4 Background

4.1 The sensitivity function

If the subsurface is homogeneous any measurement, assuming it to be noise free,
would be able to correctly estimate the resistivity of the ground. In the real
world the subsurface is never homogeneous (nor are the measurements noise
free) and different measurements will be sensitive to changes in the subsurface
resistivity distribution in different ways. This should be at least a little bit
intuitive: a potential measurement should be more heavily impacted by a change
in the resistivity near the electrodes than one very far away. This section is
meant to give a little mathematical rigor to this intuition. If one is very familiar
with the concept of sensitivity for geoelectrical resisitivty measurements this
section can be skimmed or skipped. For the very interested reader similar
derivations as the one presented below exist for more general cases [5, 7].

The fundamental partial differential equation

We will begin this journey from a very general case, the ground or subsurface is
thought of as a domain 2 C R? with a boundary 92, the current is injected by
a function I acting along the boundary 02 and no other current sources exist
in . In the following equations p denotes the resistivity distribution over Q, J
denotes the current density, ¢ denotes the electrical potential and n denotes the
normal of the boundary. Armed with this notation the following fundamental



formulas of electrostatics holds [2]:

V-Jx)=0 for x € Q
J-n=1I(x) for x € 09

which is the continuity equation for electric charge and Ohm’s Law:

By inserting the last equation, relating the current density with the potential,
into the boundary conditions and divergence criteria for the current density we
get:
1
-V (V(b(x)) =0 for x € Q
1
———Vo¢(x) -n=1I(x) for x € 90
p(x)

This is the partial differential equation (PDE) that the electrical potential with
inhomogeneous Neumann boundary conditions have to follow. The PDE in
(1) will be refered to as the Fundamental PDE. Note that the solution to the
fundamental PDE is only determined up to a constant, in practice this does not
matter as only differences of the potential is examined. In practice the current
injection I should also integrate to zero if € is bounded i.e.

/ I(z)dS =0 2)
o

since the current injected in to 2 cannot be destroyed due to the assumptions
of no sources or sinks in €.

Let’s drop the general case for a brief moment, and instead study the special
case where

Q= {x=(z,y,2) € R*|z < 0}
o0 = {x e R*z =0}

p(x) = po
I(x) =0(x — %),

i.e. the when the resistivity is homogeneous and a point current source is in-
jecting 1 Ampere at x. € 0. The fundamental PDE becomes

~V2h(x) = 0 for x € Q
1 (3)
f%ng(X) ‘n=§(x—x.) for x € 00



which has a unique solution if we for example assume that |@| tend to zero as
we move infinitely far away from the current source. The solution is

p

= —\ 4

¢ 27|x — x| )

This I does not however fulfill the condition that it should integrate to zero

along the surface — in order to remedy this we can add a negative source as
well:

—V2p(x) =0 for x € Q
—in(b(x) ‘n=0(x—Xc1)—0(x —Xc2) for x € 9N (5)
0

but the solution is given by simply adding solutions as in (4) with opposite signs

ie. . ) P _p(| 1 1 ) (6)

C27)x — X B 2m|x — Xeo| 27 \ X — X1 B |x — Xco|

Potential measurements and perturbations of resistivity

So far we have only introduced concepts relating to how the current injection
into 2 is made, in this section a potential measurement will be introduced. The
potential measurement can be imagined as a linear functional over the boundary
of Q:

F(¢) = /d _9(x)o(x) 3
()
F(1) = /899()() dS=0

the extra assumption of F(1) = 0 makes sure that an added constant to the
potential ¢ does not influence the measurement. This is important as the po-
tential is only determined up to a constant! For now we stick with very general
notation in (7), but normally g(x) is a positive and negative Dirac delta function
located somewhere on 0f) such that the potential measurement is the difference
in potential between two points i.e.

F(¢) = /6Q (0(x = x1) = 0(x — x2)) (%) dS = ¢(x1) — P(x2). (8)

In order to introduce the sensitivity of a measurement we will make a per-
turbation of the resistivity and see what effect this will have on the potential
measurement. Let’s introduce a perturbation to the resistivity as follows:

Pt:P+t/5a

where p is a function defined on Q. We can think of p as a basis for the
perturbation, it is the shape with which we wish to make a small change in
the resistivity. We could add further demands on p, such as it integrating to
1 in order to get an interpretation of ¢ as a scaling factor. The support of g



should be on the interior of {2 as we do not want to handle variations close to
the boundary (in practise close to the electrodes on the boundary). We can of
course solve the fundamental PDE for this new resistivity distribution as well:

V. (ptzx)wt(x)) —0  forxeQ

Vi (x) - n=I(x) for x € 90N

1 ®)

pi(x)

where ¢; denotes the new electrical potential arising from the perturbation of the
resistivity. We want to study how this potential changes with ¢ — in particular

we want to know
0
_F (‘bt)
t=0 ot

which we will define as the response of the potential measurement to a small
change in resistivity. Obviously this will depend on the the form of p, the 'basis’
of perturbation, but for now the form of p is left unspecified. In order to find

OF (¢1)
ot

= F(¢9)

t=0

¢= %‘ _we take the derivative with respect to ¢ on (9):
0 1
— |-V —=Vé&x)|]=0 for x € Q
ot pt(x) (10)
0

En (=Véi(x)-n) = % (pt(x)I(x)) for x € 00

we change the order of differentiation so that we differentiate with respect to ¢
first and then take the spatial derivatives :

V. <pt(i)2 <pt(x)va¢5ix) - ,s(x)wt(x))) 0 forxeQ

(11)
—va‘%gx) 0= j(x)I(x) for x € 90
Insertion of ¢t = 0 yields:
-V (1 (p(X)qu(x) - ﬁ(x)VQS(X))) =0 for x € Q
p(x)? (12)
—Vo(x) -n = j(x)I(x) for x € 9Q
where, as before, ¢ = %‘ o the quantity ¢ could be interpreted as a the small
—

change in the potential resulting from a small perturbation in the resistivity.

The response function

The PDE presented in (12) governs how the potential changes due to the small
perturbation in resistivty. We could aim to solve this directly, but that looks like



a daunting task. Instead we will use a neat trick, related to the adjoint equation
of (12) to get a familiar PDE. We begin by multiplying the governing equation
with a test function w and integrating, this will give us the weak formulation:

0= [ <9+ (s (G060 - ﬁ<x>v¢<x>)) wav

X)

== | =55 (H0Vi) — 50 0(x)) - mas

)

; / ﬁ (P V0(x) ~ Hx)V6(x)) - TuwaV.

By insertion of the boundary conditions on ¢ and ¢~> the surface integral is zero,
and we are left with:

0= / s (P V() ~ ) V6(x)) - TwdV

p(1X)2 ~ 50 (13)
:/vaqs(x)-deV—/Qp(X)QW(X)-deV-

We can integrate the first term by parts:

1 ~ ~ Vw ~ Vw
—V -VwdV = —— -ndS — V-ol——]dVv
foggvoe vwav= [ bt mas - [ s (525)
and by inserting this into (13) we get:

560 Y% ndas— [ a60v- (YY) av - [ 2% sx) - Vwdv =
o005 e = [ 30w (555 ) av = [ AGrvote)-wway (04')
1

The idea is to move the differentiations away from <;~$ and onto w, later we will
find a special w that will give us the value we are looking for. Remember that
we want the value of some linear functional of ¢ defined as

F(d) = F(3(x)) = /8 9(x)3x)dS.

We add and subtract this value from (14) and get:

0= &(x)%-ndS—/ﬁ&(x)v- (;ﬁg) av

oN

p(x) - 5
_ /Q p(x)2V¢(X) -VwdV + /mg(x)d)(x) ds — /mg<x)¢(x) ds.

Rearranging a bit we get:

10



0= [ 3060 (S n g ) as
- [ v ij)) av

[ o
J, vt Ty

+ /asz g(x)p(x)dS.

Now a clever trick will be used — if we can find a w such that the first two
terms are zero for all ¢ we see that

b) = X b X = ﬁ(X) X) - w
Fé) = [ oo as = [ FX900)- Vwav (16)

i.e the value of F(¢) is given by the solution to the fundamental PDE ¢ and a
w such that the two first terms in (15) is zero. The question is now how to find
such a w, but this is easily seen to be a w fulfilling the following PDE:

—V-(vw)zo forx e Q

p(x)
Y (17)

—— - n=g(x for x € 992
oo I

but this is the PDE of a electrical potential on the same form as the fundamen-
tal PDE! So we have found the response of a measurement as an integral over
two solutions of the fundamental PDE with different boundary conditions!

Summary of the results

The derivation so far has been very general and the results can be summerized
as: we have shown that for a general domain ) with a current injection I(x) on
the boundary, a variable resistivity p(x) and potential measurement defined as
a functional:

F(¢) = / 4(x)6(x)dV. (18)

then the response of the functional F' to a small perturbation in the resistivity
is given by:

F(¢) = /Q pﬁ((;)L Vé(x) - VwdV (19)

11



where

-V <[)(1X)V¢(x)) =0 forx € Q
ngb(x) ‘n = I(x) for x € 0.
p(x) (20)
_v.<vw):0 for x € Q
p(x)
Vuw
m~nfg(x) for x € 90

These equations will be useful when designing both I and g given some initial
assumptions on rho and p, i.e. we will try to use these equations to design sets
of measurements containing a lot of information of the subsurface.

The response for a homogeneous half-space

Let’s study our very important special case where the domain of interest is a
half-space with a constant resistivity and the injection is made from a single
point-source on the edge and the potential reading is made in a single point i.e:
Q= {x=(z,y,2) € R*|z <0}
N = {xeR*z=0}

p(x) = po

I(x) =0(x —x.)

9(x) = 6(x —xp)

where x. and x, are assumed to be in the plane z = 0. For this case the PDEs
in (20) have easy solutions:

¢ == ﬁ
w=¢p = ﬁix,ﬁ
this give us:
6elx) = 5 (21)
B0 = g (22)
and (%) (x—x.)- (x—x,)
@)= | T S e (23)

which is the response of this measurement to the perturbation p. This kind
of measurement is called a pole-pole measurements since one pole is used for

12



current injection and one pole is used for a potential reading. This kind of
measurement is not possible to make, it violates both the constraints of g and
I, but it is very useful as a tool for building solutions to more complex problems.

For a real measurement we use two point sources for current injections and
measure the potential difference between two points on the surface. But this
case is easy to build with the special pole-pole case discussed above:

Ffull = Fcl,pl - Fcl,p2 - Fc2,p1 + F02,p2 (24)

where Fy; ,,; is the response of the pole-pole with ci as the current electrode and
pj as the potential electrode. The response is still dependent on the basis of
perturbation p and different choices of p will corresponds to different models of
the subsurface which we will discuss below.

4.1.1 The 3D sensitivity function of a homogeneous half-space

If we want to model the subsurface in 3D ,i.e. we believe the true resisitivity
of the ground can change with any of the spatial dimension, we can choose a p
that is zero outside a volume element V' and 1 inside the volume element.

. 1 forxeV
p(x)_{o forx gV (25)

the response of a pole-pole measurement will be:

Fé) = [ = e = Xe) D022 g (26)

47T2pg Ix — X0|3|X - Xp|3

The 3D-sensitivity of a measurement is the integrand of this response i.e.

1 (x—x¢) (x—xp)

J3D(X) =

= . (27)
4pdm? |x — xc|3|x — xp|3

The sensitivity can thus be interpreted as the function we need to integrate in
order to get the response to a small resisitivity change in the given volume V.
This means that we can, at least formally, view this sensitivity function as the
response to Dirac perturbation.

4.1.2 The 2D sensitivity function

In many cases the resistivity in the subsurface is assumed to only depend on
the z-coordinate and z-coordinate meaning that the resitivity does not change
as we travel along the y-axis. In order to mimic this in the perturbation of the
resisitivity a perturbation that does not depend on y should be chosen. We use
a perturbation on the from:

)1 for(z,2)eS
plx) = {0 for (z,z) € S (28)

13



The response of a pole-pole measurement for this perturbation is:

~ 1l (x—%0) (x—x%p)
F(¢) = / / P2 dy | dxdz. (29)
S \J—o0 47r2p% |X_XC|3|X_XP|3
The 2D-sensitivity is the integrand of the surface integral of the response i.e.

Jop(z,2) = /OO %) X ) dy,

—oo 4208 |x — x*|x — %, °

which we can formally interpret as the response of pole-pole measurement to a
small resitivity change in a line parallel to the y-axis located at (z, 2).

When x. = (¢, Y0, 0) and x,, = (2, Y0, 0), i.e the potential pole and the current
pole are on the same y-coordinate, this integral has a solution given by com-
plete elliptic integrals of the first, denoted K, and second, denoted F, kind. The
result, with a slight change of notation in order to be consistent with previous
results, is only presented here— the full derivation is found in [3]:

Top(2.2) = 1 o?E(k) — 2K (k) (o? + %) B(k) — 26K (k)
2D 2= 2m2pias? (a? — B?2) 7 (a2 — p2)?
(30)
where
L (a2 _(152)5 (51)
and
o = (z—x.)* + 22 (32)
B2 = (z—ap)* +2° (33)
v =(r =) (zp — ) (34)
(35)
for > 0.5(z. + z,,) and
o = (z— xp)2 + 22 (36)
B% = (x—x.) + 22 (37)
v = (2 —xe)(zp — ) (38)
(39)
for x < 0.5(z. + z,,) and
a? =0.25 (x, — z.)° + 22 (40)
a2
Jop(z,2) = % (2;3 - 1?;5045) (41)

14



for z = 0.5(z¢ + xp).

This is the sensitivity that will be primarily discussed in this report but the
methods discussed should be general enough that it should be easy to switch
the dimension of the sensitivity.

4.1.3 The 1D sensitivity function

If we instead believe that the subsurface is made out of layers using a per-
turbation that only depends on the depth makes sense, we can write such a
perturbation as:

1 forzel,

plx) = {0 for z ¢ I, (42)

The response of a pole-pole measurement for this perturbation is:

- oo poo 1 (X—XC).(X,X:D) . .
F(¢) /1 (/OO/OO 47202 % — xoPlx — %, d dy) dz. (43)

The 1D-sensitivity is the integrand of the z-integral of the response i.e.

1 (x—x%0) - (x—x
JlD(z):/_ /_ 47T2p%(| )~ ( p) dxdy,

3 3
X — X|”|x — x|

which we can formally interpret as the response of pole-pole measurement to a
small resitivity change in a plane orthogonal to the z-axis located at depth z.
This integral has a solution:

2
Jip(z) = 2 i

3
o 3
<|xC — xp|2 + 22) :

(44)

4.2 Geometrical factor

When taking a measurement on a half-space the apparent resisitivity value can
be calculated as:

_ .9
Pa = k'f (45)

k= 2n . (46)

R 1
TCy Py TCy1 Py TCoy Py TCoy Py

where I is the current, ¢ is the measured potential, and r¢,p; is the euclidean
distance from the current electrode C; and the potential electrode P; [1]. Note
that the geometrical factor, denoted k, is only dependent on the position of the
electrodes and not the measured potential or the injected current.

15



If the subsurface is indeed homogeneous then p, is the correct resistivity of
the subsurface. In this case we can see that measurements with high geometric
factor are inferior to the measurements with lower geometric factor — any noise
present in the potential measurements will be scaled with the geometric factor.
Assuming Gaussian white noise added to the potential measurement we would
get:

o= 2T (47)
e € N(0,0), (48)

but this is easily rewritten as:

pa=k2 kS =

€
a k/’f N as
[ TR TPt iTE (”

1

£,). ”

This shows that higher geometric factors will lead to measurements with higher
standard deviation compared to measurements with lower geometric factor.

We can also take another viewpoint — the measured potential, should the sub-
surface really be homogeneous, will be lower if the geometric factor is larger
compared to a measurement with smaller geometric factor. This would again
lead to worse signal-to-noise ratio if the noise is assumed to be independent
from the measured potential. The geometrical factor is thus important because
it gives a hint of the noise performance of the measurement, later we will use the
geometric factor for pre-processing — we will not consider measurements with
very high geometric factor. The removal of measurements with high geometric
factor is also done in previous research [9] [8].

4.3 The tomographic or inversion problem

Once a set of measurements along the boundary of some domain {2 have been
made, the resistivity distribution p (x) over  can be estimated. This is usually
called the "Inversion problem’ [1]. One method, and the one used in this paper,
is to parameterize a model of the resistivity:

p(x) = p(x, B)

and then look at the squared residuals:

ri = (pf — Fi(p(x, 8)))

where p¢ is the apparant resistivity of measurement 4 and Fj is a forward model
for measurement numbered ¢ i.e what would the measured apparent resistivity
be if the true resistivity is p(x,3). The idea is to minimize the sum of r; by
changing 8. Typical choices of [ is to split the ground in to blocks and assuming
that the resistivity is constant within the blocks. This section is only meant to
give the reader the general idea of how inversion is done, for a full description

16



refer to [1] [6].

4.4 Number of possible measurements and different kinds
of measurements

A single measurement is just a selection of 4 electrodes out of the N electrodes
available to the instrument. Each selection of 4 electrodes can be arranged in 3
non-equivalent, from an electrical perspective, ways. The equivalence of some 4
electrode arrangements is easily seen:

1. Switching P1 and P2 will only switch the sign of the resulting measure-
ment.

2. Switching C1 and C2 will only switch the sign of the resulting measure-
ment.

3. Switching P1 and C1 and at the same time switching C2 and P2 will result
in the same measurements. Switching in this way gives the ’reciprocal’
measurements which are useful for testing data-quality [1].

There are a total 24 ways to assign C1,C2,P1,P2 to 4 electrodes — but each
entry in the list above will remove half of the remaining permutations leading
to %4 = 3 non-equivalent ways of assigning the electrodes.

This means that for a electrode layout of N electrodes there are:

N! 5 NN -1(N -2)(N -3)
(N -4yl ° 8

Nmeas - (50)

non-equivalent arrays.

In practice it is common to fixate the role of an electrode as either a poten-
tial electrode or as a current electrode meaning that it can only assume one of
these roles in measurements. This is done for two reasons:

1. It completely removes the problem of polarization associated with using
an electrode as a potential electrode to soon after using it as a current
electrode. [1] [8]

2. It makes acquiring the reciprocal measurements easier as the roles of the
electrodes can be easily switched and the same measurements taken again.

Using this kind of setup will also naturally shrink the number of possible mea-
surements. With N, current electrodes and N, potential electrodes the total
number of measurements is:

N.! N,! No(N, — 1)N, (N, — 1)

Nmeas = =
(N, —2)121 (N, — 2)12! 1

(51)

17



The different types of measurements can be divided in to 3 classes, assum-
ing the electrodes are laid on a line, based on the arrangement of the electrodes.
The different classes are:

1. a-arrays: The electrodes are arranged C1-P1-P2-C2
2. p-arrays: The electrodes are arranged C1-C2-P1-P2
3. ~v-arrays: The electrodes are arranged C1-P1-C2-P2

arrangements that are equivalent according to the previous list is also considered
part of the corresponding class.

4.5 Previous research

Most previous research rely on building a block model of the subsurface and
calculating the sensitivity with regards to a change in resisitivty within each
block. These methods usually also calculate the resolution matrix and use this to
find a suitable set of measurements to take [9] [8] [4]. The methods discussed here
are only based on sampling the sensitivity function over some region. Methods
based on the resolution matrix requires a inversion of a large matrix — however
the use of parallell computation via GPUs and clever optimization of the running
time has made latest version of the ’Compare R’ algorithm is fairly fast [4].
Versions of the ’Compare R’ algorithm for multichannel measurements do exist
but will fail to fully use the multichannel capabilities of the terrameter, as will
be discussed later. Multichannel versions of ’Compare R’ rely on building a
sequence of measurements with the same current electrodes but changing one
of the potential electrodes, making a chain of potential electrodes to measure
between [8].

5 Theory

5.1 Notation

Before rushing of into solving different optimization problems it is important to
fixate notation and language use. The sensitivity of a measurement indexed i
will be denoted J;. The sensitivity can in general be thought of as arising from
a general domain (2, but in practise only the 2D-senstivity of a homogeneous
halfspace was tested, evaluated and used. For a set of measurements we will
denote their cumulative absolute sensitivity as:

1) = S 179 (52)

iel

In practice it is also necessary to discretizes the model. In this paper J will
also, depending on context, denote a matrix with elements J; ; = J;(x;) where
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x; is the j:th discretization point. This matrix is of interest mainly for the
implementation and will only be used when implementation is discussed. The
size of J is N x M where N is the number of all considered measurements and
M is the number of discretization points.

For all of the methods discussed it is reasonable to select a domain of inter-
est, denoted A, which is the subset of Q (as presented in section 4.1) we are
interested in modelling — we are after all not interested in , for instance, all
of the subsurface but rather only the part close to the placed electrodes and
down to some pre-determined depth. For practical purposes the top-strip of
the subsurface should be excluded from the domain of interest due to the nu-
merical properties of sensitivities close to the electrode positions. The set of all
considered measurements is called the comprehensive set in order to mimic the
language used in previous research.

5.2 Problem description, mathematical formulation

Now that we have the fundamental entities in place it is time to formulate the
problem of selecting the optimal set of measurements to make as a mathematical
problem. In general areas of high absolute sensitivity are fairly well resolved,
but they can only give a true indication of real-world performance in limited
cases [9] — i.e. the model resolution and the sensitivity are connected, but
they are not the same thing. Still the idea of summing the absolute sensitiv-
ity functions has intuitive appeal — we want to increase the response we get
from a resistivity change so it makes sense to maximise the sensitivity in some
sense. The main problem is that the sensitivity in general is a function over
as many as three dimensions, and in order to optimize we would need to boil
this down to a single number representing how good the sensitivity pattern of
a given set of measurements is. A further issue is that the sensitivity pattern
of a full set might not give a full indication of its performance when inverting
a real data set due to heavy overlap between measurements — meaning that
some measurement add very little information of the subsurface, given the other
measurements, even though they have high sensitivity — this can be exemplified
by having a set full of repeating (noise free) measurements, the sensitivity of
this set increases with the set’s size but the expected performance is the same
as all measurement contain the same information.

We will however try different methods of optimization in order to find ’opti-
mal’ sets of measurements, we begin with a general description in mathematical
terms.

5.3 Formulation as an optimization problem

Let J;(x) denote the sensitivity function of measurement numbered ¢ and let
F be a functional from the space of sets of continuous functions to the real
numbers. Note that the kind of sensitivity function J;(x) denotes depend on
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the dimension of x. The optimization problem becomes:

ma F ({7:(x)} )
such that
|I| = N.
ICly

(53)

where I,;; denotes the set of all indices of the considered measurements. In plain
text: find a set containing N entries from the set of all measurements such that
the functional applied to the sensitivities of the selected set attain a maximum
value.

As the number of measurements is bounded, it is easy to see that the prob-
lem in (53) has at least one solution and it can be found by simply studying all
the subsets of I,;; of size N, evaluating the functional and selecting the subset
with the highest value. This is in general not feasible however as the number of
subsets of size N will be very large.

6 Considered methods

The problem formulation in section 5.2 is only useful once an appropriate F
has been determined. How F' is chosen will have a dramatic impact on the
resulting sensitivity pattern, and while each one might maximize some metric
of the ’goodness’ of the sensitivity it might falter in many other regards. In this
section a couple of different I’ will be studied.

There are also methods which do not correspond directly to an intuitive goal-
function but rather aim to build a sensitivity pattern that has the features we
want it to with some heuristic. Both of these angles will be discussed in this
section. In 5.2 there was no special attention to the use of the multichannel
capabilities of the measurement system — this would have to be incorporated
into the goal-function. This is a daunting task however and the methods opti-
mized for multichannel use will fall in the second category of methods, without
a clear goal-function.

6.1 The integral or sum as a goalfunctions

An easy way of assigning a value for each measurement set is to study the
integral of the sum of absolute sensitivities of the measurements in that set over
the domain of interest. This would mean that

ﬂm:Ammmmw7 (54
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where A is the domain of interest, in the continuous case and

y = Z |73 (x))| (55)

and w(x) is a weight function. Intuitive choices of weight functions are either
1

w(x) =1 and w(x) = (Ziela” |Li(x)]) .

This version of F', while simple, might not perform in a satisfactory way. It
does not, for instance, in any way try to spread out the measurements so that
we get a nice coverage of all of the domain instead it only cares about the total
sensitivity. As such it is likely to select a set of measurements looking very
similar to one another in terms of sensitivity. The method does have the nice
property of the optimum being very easy to compute — all one needs to do
is to calculate the integral of each measurement by some numerical integration
method and pick the N measurements with the highest integral. The numerical
integration was done with the trapezoidal method, for evenly spaced sample
points the direct sum rescaled with the area between the sample points could
also be used in order to get a very fast method. This method is not expected
to perform particularly well, it is mostly include as a baseline to gauge the
performance of other methods.

6.2 Spread of center of mass

The previous goal-function aim at having a high average sensitivity or a high
average sensitivity when weighed with the full set. The method presented in
this section instead focus on spreading the total sensitivity evenly across the
subsurface. This method calculates the centre of mass for every measurement,
and use this as a ’location’ of the measurement. We then want to find a set of
measurement such that the measurements are far from each other. After the
center of mass has been calculated for each measurement the problem can be
formulated as a optimization problem:

max d(I)
such that
|I| = N.
I C Iall

where _
d(I) = min [x —y||
x,yel

such that (57)
X#Y

i.e. d is the minimum distance between two points in the set I. The optimization
problem is to find the subset of I,; of size N with the maximum smallest
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distance between two points in the subset. The full optimization problem, going
directly from the sensitivities is:

m?Xd <{W{ /Q|JZ e .de}iel>

such that (58)
[I|=N
I C Iall7

which again follows the format of 5.2, but with a more complicated goal-function
F.

Note that the center of mass is only one possible way to map a measurement to
a point in some multidimensional space — we could imagining assigning each
measurement to a much longer feature’ vector, and the same general idea could
be used. Using a longer feature vector with the same general idea would mean
that we emphasize selecting as different measurements as possible. Using the
mass centers as features vector does however simplify visual representation and
it should be relativly close to the location of the pseudosection data points used
for initial plotting of field data, giving it a nice interpretation.

In order to find a good candidate solution for (56) an initial set of measurements
is selected in some way, for instance the measurement closest to the center of
mass of all measurements. After this the following procedure is used:

1. Calculate the shortest distance from every measurements centre of mass to
the so far chosen set. The shortest distance is the distance to the nearest
point in the selected set.

2. Sort the distance and select a number of measurements with the maximum
shortest distance to the set. Add these to the set.

3. Iterate until enough measurements have been chosen.

This is a extremely simple, and not particularly computationally intensive method
of choosing sets, it will probably not however yield an optimal solution to (56).
The resulting set will usually have pretty low cumulative sensitivity, but the ra-
tio of the cumulative sensitivity with the sensitivity of the full set is very smooth
— indicating that the set has the same relative sensitivity to the different areas
of the subsurface as the full set.

6.3 Correlation

The method discussed in 6.2 tries to spread samples evenly across a metric
feature space, instead this method tries to find measurements that in some
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sense has a large ’angle’ between them. In order to introduce the concept of
angles between measurement we will need an inner product to work with. The
absolute sensitivity functions are all square integrable if the top strip of the
subsurface is excluded to avoid problems with the sensitivity extremely close to
the electrodes. Thus a reasonable inner product to choose is the Ly(A) inner-
product:

<ﬁm:Af®mwm

(59)
2
1917 = [ 702 ax
A
We want to have a measure of how large the angle between 2 measurements is
— to do this it is reasonable to study the value:

(f.9)
C(f.9) = ( :
A1 llgll
The normalization is there to make the estimate invariant with scaling, and if f
and g are thought of as vectors in R™ with the normal inner product the value
could be interpreted as cosinus of the smallest angle between the vectors.

The value C(f, g) is an estimate of how large the angle between f and g are, due
to the normalization with the norm it is invariant when scaled with a constant
but adding a constant to f or g will give different results. In order to get a
value invariant to the addition of a constant we can subtract the mean of f and
g respectively.

— - m —m.) = <f7mfvgfmg>
Ca(f,9) = C(f —my, g —my) (Hf—me : ||g—mg||) (60)

where my and m, are the average value of f and g. Now we have a measure of
similarity that is both invariant with scaling and with addition of a constant.

With these tools in place we are ready to formulate a optimization problem
similar to the one found in section 6.2 but the function d(-) has changed. We
could look at the problem of

Hl[lndg(l)
such that
|I| = N.
I Clyy

(61)

where

da(I) = max C(f, )

such that (62)
f#g
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The problem in (61) can be summarized as finding the set measurement of
size N where the largest similarity between two entries, measured with Cs, is
as small as possible. In order to use this problem directly for the problem of
selecting measurements we can take I;; as the set of all the measurements’ ab-
solute sensitivity functions.

The function C5 is defined by integrals, but it will need to be evaluated of-
ten for many different f and g. Instead of calculating the integrals with highly
accurate numerical integration methods, a rectangle integration scheme can be
used. We approximate:

A (f(x)—m X;)—m
Colf, g) ~ Z] J(f( J) _ f) (g( J) g) _
VI3 A5 (FGxg) = mp) - 5, A (9(x5) = mg)

(63)

where A; is the area of the j:th sample points associated rectangle and
f(x;) denote the sample points. Assuming that the samples are equally spaced
i.e A; = Ap for all j we can move the area scaling outside of the sum, at which
point it cancels, and the result is:

5, (F055) = my) (9(x;) = my)
Q(fag) ~ 2 2
VI (F05) = mp) 5, (g) — my)

which is identified as the Pearson correlation between two elements in I sam-
pled at the points x;. This means that we could view the sample points of the
sensitivity functions for the different measurements as samples of a stochastic
variable, comparing two measurements by their correlation. The problem in
(61) can then by summarized as finding the set measurement of size N such
that the largest correlation between two measurements’ sampled absolute sen-
sitivity functions is as small as possible.

(64)

In order to get a close to optimum solution to problem (61) the following local
optimization algorithm is used:

1. Select an initial set of measurements consisting of the dipole-measurements.
2. Calculate the maximum correlation for all non-selected measurements.

3. Sort the maximum correlations and select the n measurements with the
lowest maximum correlation. Add these to the set.

4. Tterate 2-3 until enough measurements have been chosen.

We have no guarantee that the proposed algorithm should find the correct opti-
mum however and it seems unlikely that it should. The idea is to get something
close enough, with the general property that the measurements have low corre-
lation to one another.
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7 Multichannel measurements

The main goal of this article is to optimize the measurement sets also for
mulitchannel use — the methods discussed above are mostly used for com-
parison and as building blocks for these methods. This section is dedicated to
discussing how the multichannel system works and how measurement sets can
be designed to use it full potential.

The properties of the considered terrameter and a simpli-
fied model

The "ABEM Terrameter LS 2’ has the capabilities of making more than one
potential reading at a time i.e. for a given pair of current electrodes we measure
the potential between more than one pair of potential electrodes. The instru-
ment has 12 channels in total, but all of these cannot be used at the same time
except in specific circumstances. A simple model of the switchboard is shown
in figure 3.
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Figure 2: A diagram of the switchboard of the ’"ABEM Terrameter LS 2’. The
horizontal lines have access to the electrodes used for the survey. Lets first
assume that all the switches are opened — this divides the lines into segments
with each segment having access to 16 electrodes. Each of these segments can
be assigned one of the electrodes it has access to. A channel is just a connection
between two segments representing a potential reading between the electrodes
assigned to the different segments. This means that channel 1 can make a po-
tential reading between two electrodes numbered 1 to 16 (assuming still that all
the switches are opened). When a switch is closed the segments are merged, e.g.
by closing the first switch on the first line channel 1 could make a measurement
with one electrode numbered between 1 and 32 and one between 1 and 16. By
also closing the two first switches on the second line the second electrode of the
first channel would necessarily be the same as the the first electrode on channel
5 since they are connected to the same merged segment. Note in particular
that channel 8 connects to the last segment of the first line, making it special
both because it connects to two different sets of electrodes (if the switches are
opened) and because it loops around to the first line.

The model can also be presented as a table as shown in 1.
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Line || Electrode 1 — 16 Electrode 17 — 32 Electrode 33 — 48 Electrode 49 — 64
1 CH; Py switch switch switch CHg Py, CHgy Py
2 CH; Py switch switch CH; Py switch CHg Py
3 CH, Py switch switch CH; P» switch CHy Py
4 CH, Py switch switch CHg Py switch CHyo P2
5 CHj3 Py switch switch CHg P switch CHyp Py
6 CHj3 Py switch switch CH; Py switch CHy; Py
7 CH, Py switch switch CH7; Py switch CH;, Py
8 CHy Py switch switch CHg Py switch CHjs Py

Table 1: There are a total of 12 channels labeled CH; — CH15. Each channel can
make one potential reading between two electrodes for a given pair of current
injecting electrodes. Each channel thus needs to be connected to two potential
electrodes P; and P, respectively. By default the channels only have access
to the electrodes they are directly connected to e.g. Channel 1 can make a
potential reading between two electrodes numbered 1 — 16 and channel 8 can
make a potential reading from an electrode numbered 33 — 48 and an electrode
numbered 49 — 64. By closing the switches more electrodes can be accessed by
the channels but channels connected by lowered switches would have to have the
same electrode. For instance by lowering all switches on line 3 and line 4 channel
2 and channel 10 would make the same measurement, channel 5 and channel 6
would by necessity share a potential electrode with these two measurements.

By default each channel only has access to the parts of the line it is directly
connected to. By lowering the switches a channel can be given access to more
electrodes. By lowering all the switches a total of 8 measurements can be pro-
duced as long as the measurements share electrodes in a chain. This is the
idea behind the modified ’Compare R’ algorithm in [8], this will however mean
that a maximum of 8 out of the 12 channels can be used at each current injection.

Instead of lowering all the switches we can retain the capabilities of making

12 measurements by not lowering a few selected switches. This simplification of
the switchboard is shown below.
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Figure 3: A diagram of the simplified switchboard. The open switches are
connected in the sense that one of them is always open while the other is closed.
This means that only a total of 12 electrodes can be chosen, while the original
board in theory can allocate 23 electrodes. Note in particular that the lines 1,
3, 5 and 7 are now fully connected and has access to all different electrodes from
1 —64, all the channels connected to these lines hence have to share at least one
electrode.

The reasoning behind this simplification is that we remove some asymmetries
in the original switchboard. Channel 8 was previously a special channel because
it was connected to the last segment of the first line but in this simplification
that does not matter because all switches on the first line is lowered. This
makes channel 8 directly comparable to channel 5, 6 and 7. Furthermore, the
closing of the middle switches makes the board symmetric when flipping the
board left-right. We can present the same simplification as a table:
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Line || Electrode 1 — 16 Electrode 17 — 32 Electrode 33 — 48 Electrode 49 — 64
1 CH; Py closed closed closed CHg P2, CHg Py
2 CH; Po switch closed CH; Py switch CHg Py
3 CHs Py closed closed CH; P closed CHyo Py
4 CH, Po switch closed CHg Py switch CHjyg Po
5 CHj3 Py closed closed CHg P closed CHy, Py
6 CHj; Po switch closed CH; Py switch CHy, Py
7 CHy Py closed closed CH; Py closed CHy Py
8 CHy Po switch closed CHg Py switch CHys Py

Table 2: The switches marked ’closed’” are now permanently closed reducing the
switchboards degrees of freedom drastically. The switches left are also connected
in the sense that one of them is always open while the other is closed. This
means that only a total of 12 electrodes can be chosen, while the original board
in theory can allocate 23 electrodes. Note in particular that the lines 1, 3, 5
and 7 are now fully connected and has access to all different electrodes from
1 — 64, all the channels connected to these lines hence have to share at least one
electrode.

In the simplfied switchboard we close a couple of the switches, sacrificing
degrees of freedom on the board in favour of a more easily modeled board. In
order to avoid taking duplicate measurements the switches that on the same
row can not be close nor open at the same time — each of these lines will have
one open and one closed switch. This simplified switchboard also has a couple
of interesting features—it is circularly symmetrical if it is rotate up-down by
two rows, this due to the closed switches on the first line making the fact that
the second potential electrode of channel 8 is in the last section unimportant.
Furthermore it is also right-left symmetric. This can be taken advantage of
when designing algorithms for selecting which measurements to take. Due to
the closed switches the electrodes used by each of the channels are connected
as in the table below:

Line | Electrode Electrode Electrode
1 CHl P1 = CHg P2 and CHg P1
2 CH5 P1 = CHl P2 or CHg P2
3 CH2 P1 = CH5 P2 and CH10 P1
4 CHG P1 = CH2 P2 or CHlO Pg
5 CH3 P1 = CHG P2 and CH11 P1
6 CH7 P1 = CH3 PQ or CHH Pg
7 CH4 P1 = CH7 P2 and CH12 P1
8 CHS P1 = CH4 Pg or CH12 Pg

Table 3: This is a table of which electrodes are equal to each other on the
simplified switchboard. Again we see that the lines 1, 3, 4 and 7 have the same
electrode all the way through while on the lines 2,4, 6, and 8 the middle channel
will share its electrode with either one of the other channels on these lines.

The electrodes allocated to line 1, 3, 5 and 7 will be referred to as line
electrodes. These are all assumed to be different for a given allocation to the
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board. The lines 2, 4, 6, 8 has two different switches on them. The switches
on a line can only be closed one at a time i.e. if the first switch is open then
the other one is closed and vice versa. This will ensure that we do not get two
identical measurements and will make the overall optimization much easier. The
state of all the switches on the simplified board can be thus represented as a
binary number of length 4, a 1 would mean that the first switch is open and the
other is closed and a 0 would mean that the second switch is open and the other
is closed. In total there are thus 16 different combinations of switch-positions
for the entire simplified switchboard. The electrodes allocated on lines 2, 4, 6
and 8 that are connected to both of their neighbouring line electrodes will be
called link electrodes. Lastly the electrodes connected to lines 2, 4, 6, 8 without
connecting to the next line electrode will be called leaf electrodes. In figure 4 the
different kinds of electrodes are shown in a graph where a connection represents
a measurement between the connected electrodes.
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Figure 4: This is a graph of how the different electrodes are connected on
the switchboard. The nodes are electrodes and an edge represent a potential
measurement between the two connected electrodes, remember that the current
electrodes are already given — these are just the different potential electrodes
to pair up with the selected current pair. The red nodes are the line electrodes,
i.e. the electrodes allocated to the full lines in the simplified switchboard. The
blue nodes are link electrodes, i.e. the electrodes that are used for measurements
with both of the neighbouring line electrodes. The green nodes represent the
leaf electrodes i.e. electrodes which are only used in one measurement with a
line electrode. If all switches would be closed the green electrodes would be
removed from the graph.

The original switchboard has more degrees of freedom as the switches on it
can all be operated independently. As each switch position could be represented
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by a binary number the state of entire original switchboard could be represented
as a binary number of length 24 meaning that there are approximately 10%3
different states of the original board. Which of course is not feasible to explore
by brute force. The total number of states is probably much lower than this
for the original switchboard however as some of the states should be equivalent
in some sense. The problem does however become much harder to model and
implement as the original switchboard is neither circular symmetric or right-left
symmetric.

Formulation as an optimization problem

Now that we have briefly discussed the capabilities of the multichannel instru-
ment the question is how to select a set of measurements that fit the instrument
and at the same time is ’good’ in some sense. How we rank the goodness of a
measurement is of course a bit tricky — but we have some ideas from the pre-
viously discussed methods of optimizing measurement sets. Assume that every
measurement is given a score denoted S(e;, e;), representing how good a mea-
surement with the given current pair and e; and e; as potential electrodes is.
Further assume that the score is additive— the score of a set of measurements
is just the sum of the score. Then to maximize the sum of scores gained from an
allocation on the switchboard would be the same as finding the allocation with
the highest performance. This can be formalized as a unwieldy optimization
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problem:
max Z S(es,eir1) + S(eiyeiya) + S(ei, ecii—2))
i€{1,4,7,10}
such that
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ke {3,6,9,12)

le{1,4}

e; €N

er € N

c¢(i)= mod (i—1,12)+1

where [ is an identiy function returning 1 if the statement is true and 0 if it is
false. This optimization problem is the same as looking for graphs as in figure
4 where we give each edge a weight according to the score of that measure-
ment. This optimization problem is for finding the graph with the highest sum
of the edges. The inequality conditions makes sure that the measurements are
allocatable on the board while the conditions of non-equality and the equality
constraints ensures that no repeated measurements are taken and that measure-
ments are between two different electrodes. This formulation is only useful for
up to 64 electrodes and for larger layouts special considerations, not discussed
here, must be taken, since the switchboard simplification is based partially on
the number of electrodes being less than or equal to 64.
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The optimization problem presented in equation (65) only deals with how to
select a set of potential measurements once a pair of electrodes for current in-
jection has been chosen. One approach is to select which current pair to use
by some heuristic and then solve the optimization problem in (65) with an
appropriate score for each measurement. This can be formulated as:

1. Select a current pair with some heuristic.

2. Score every measurement connected to this current injection that has not
been used previously.

3. Solve (65) for this score.
4. Add selected points to the set of measurements to make.

5. Repeat until enough current injections or potential readings has been se-
lected.

This outline can be combined with the ’spread mass centers’ method — the cur-
rent injection chosen as the current injection used in the measurement furthest
from the set of selected measurement so far. The score for each measurement is
the distance to the set of selected measurement so far as calculated in section
6.2. The method is initialized by selecting the current injection with the mea-
surement closest to the average mass center.

The outline can also be combined with the ’correlation’ method — the cur-
rent injection chosen as the current injection used in the measurement lowest
maximum correlation with the set of selected measurement so far. The score
for each measurement is 1 — C' where C' is the maximum correlation with all
measurement previously selected as calculated in 6.3.

Both of these methods have a common problem and that is that the score
for a measurement is not independent of the other measurements allocated to
the board at the same time. This was combated with pre-processing prior to
solving (65) which will be discussed more in detail in the next section.

8 Implementation

All of the optimization methods are implemented in matlab. The simulations
for a known model of the subsurface, other than that of homogeneous ground,
are made with Res2dmod and Res2dinv.

8.1 Electrode layout

The considered electrode layouts are equidistant lines with 64 electrodes and
30 electrodes. The 64 electrode line was spaced with 2.5 meters and the 30
electrode line was space with 5 meters. Every other electrode is used for current
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injection and the other half is used for potential measurements. This is useful
for several reasons — it makes sure no reciprocal measurements are used so
that these may be used for separately in a field measurement, it reduces the
total number of measurements making the algorithms less memory and time
consuming and it removes the problem of polarization that occurs when using a
electrode previously used for a current injection as a potential electrode to soon
afterwards.

The layouts were selected for different reasons: the 64 electrode layout is useful
for testing the feasibility of the optimization algorithms for larger problems as
well as showing the usefulness of the multichannel scheduling. As the multi-
channel algorithm discussed here is limited to a maximum of 64 electrodes this
is the 'worst case scenario’ considered in this report. The 30 electrode layout
is mostly useful for comparison with the methods discussed in [9], but it is also
useful to check the effectiveness of the multichannel optimization for smaller
arrays. Both of the arrays will be tested on similar synthetic models of the
subsurface..

In the calculations of the sensitivity the ground was assumed to be homogeneous
with resistivity pg = 1. The sensitivty used was the 2D-senstivity function. The
domain of interest was chosen between % electrode distance outside of the elec-
trode layout on either side in the z-direction and from % electrode distance to

% + % electrode distances in the z-direction.

8.1.1 Pre-processing

Measurements with high geometric factor are removed from the considered set,
due to their poor noise performance as discussed previously. The threshold for
geometric factor was set to 5500 m, which is the same as in [9], which is quite
a bit lower than the 39396 m threshold in [8] (this article does however use a
shorter spacing of 4.75 meters). Both [9] and [8] suggest removing measurements
of the v type due to stability issues in the inversion process so this was also done.

In order to avoid high memory usage pre-processing of the set of all possi-
ble measurements can be done. The ’spread mass centers’ method seems well
suited for pre-processing tasks as it is not that computationally complex and
the resulting set has a very similar sensitivity pattern compared to the full set
as we will see in later.

8.2 Calculation of sensitivity

The sensitivity, no matter the number of spatial dimensions considered, for
an array of 4 electrodes is calculated by simply adding contributions from the
4 different current pole-potential pole pairs. When calculating the sensitivity
function for all possible arrays it is therefore possible to calculate the sensitiv-
ity of each pair of electrodes first and then recombined these to get the full
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sensitivity for each measurement. This avoids calculating the sensitivity con-
tribution of a pole-pole pair of electrodes more than once. The sensitivity in
each discretization point is stored in a mxn where m is the number of consid-
ered measurements and n is the number of discretization points. The matrix
corresponds to a Jacobian of a function F' : R™ — R™ where F; is the change
in the i:th measurement’s potential value from a change of the resistivity in the
discretization points. This matrix will simply be called J in this paper.

8.3 Res2dinv and Res2dmod

Two softwares, besides Matlab, was used for forward and inverse modelling
namely Res2dmod and Res2dinv. In order to get simulated measurements given
a synthetic model of the ground Res2dmod was used, the resulting simulated
measurements is then read in to Res2dinv, the inversion software. The inver-
sion is done by stipulating a model for the ground, using forward modelling
to determine the measurements’ responses, compare the responses with the ob-
served response (i.e. the value simulated in res2dmod) and modifiy the model
in order to get closer to the observed data. The software uses a modified ver-
sion of the Marquardt-Levenberg variant of the Gauss-Newton method. The
modifications include spatial filters to introduce smooth variations in the model
parameters as well as options for using [; smoothness constrained optimization.
In this thesis /; smoothness constrained optimization was used unless specifi-
cally stated otherwise, this version of the optimization method will more easily
model subsurfaces with sharp edges between sections with different resisitivity.
For a better description of the softwares and methods used refer to [6].

8.4 Maximum integral, maximum ratio integral

The set of with the maximum sum over the discretization points can be found
by simple sorting:

1. Sum the columns of the J matrix, or use numerical integration.
2. Sort the resulting column vector in descending order.
3. Use the first N measurements as the optimal set.

This easy algorithm will select the individual measurements with the highest
integral or sum over the discretization points. The sum of these measurements
will have the highest sum possible with NV measurements. This works because
the sum or integral over the points and the sum over the measurements are
interchangeable.

A variant of the above method relies on weighting the discretization points
differently - giving some of the points a higher importance than others. One
possible weighting function is dividing by the full cumulative sensitivity. The
algorithm in this case is:
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1. Divide each entry in each row of the J matrix with the corresponding
entry in sum of the of the columns of the J matrix (i.e Jruy =), J;)

2. Sum the columns of the resulting matrix, or use numerical integration.
3. Sort the resulting column vector in descending order.
4. Use the first N measurements as the optimal set.

This will somewhat deal with the huge differences in sensitivity present in dif-
ferent points of the discretization. None of these two approaches will however
spread the measurements in a way that gives smooth sensitivity — in practice it
will probably be quite the opposites as a measurement that gives a high integral
of the sensitivity function is likely neighboured by a similar measurement that
will also get selected.

In the results section these two methods will be referred to as 'Maximum inte-
gral’ and "Maximum ratio integral’ respectively.

8.5 Correlation

The correlation set begins from a set of measurements where the distance be-
tween the current electrodes and between the potential electrodes respectively
are smallest possible. This set will be a set of dipoles if the minimum distance
between two neighbouring potential electrodes is the same as the minimum dis-
tance between two neighbouring current electrodes. Measurements are then
iteratively added to the set as described in 6.3. In order to get short execution
time the number of added measurements per iteration can be greater than 1.
Ideally the number of added measurements could be dynamically selected as a
part of the algorithm, in this paper the added measurements per iteration was
kept fixed at 16 added measurements per iteration.

This method actively tries to add a measurement that has high sensitivity were
the currently selected set does not, i.e. it tries to spread the sensitivity over the
subsurface. This method is referred to as the ’correlation’ method in the results
section.

8.6 Spread mass centers

The algorithm described in 6.2 was directly implemented in matlab. One ad-
dition is that for every measurement the symmetric measurement, found by
flipping the array around the midpoint of the electrode layout, was also added
in each step. This was done in order to get symmetric cumulative sensitivity,
but the resulting inversions on simulated data did not improve notably from
adding symmetric measurements. Furthermore the x and z locations of the
mass centers were normalized to numbers between 0 and 1, this was done in
order to give equal weight to spreading in the x and z location as the distances
in z is usually much larger than in z. The mass centers were calculated using
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the trapezoidal method.

The method is referred to as the 'Spread mass centers’ in the result section.

8.7 Multichannel measurements

The goal of the multichannel optimization algorithm is twofold:
1. Find which electrodes to use for current injections.
2. Find which potential measurements to do for the current injection.

We begin by discussing the second item on that list. As presented in the opti-
mization problem (65) there exist a formulation of an optimization problem for
selection of which potential measurements to make given that:

1. We know which electrodes are used for the current injection.

2. There exist a score measuring how good each measurement is. The score
should also be such that the sum of the scores represents how good a set
of measurements is.

Even with these two conditions fulfilled the optimization problem is fairly large
— there are a total of 16 variables, with intricate conditions and a non-linear
goal function. There is however symmetry in the problem, and that can be
abused to find a good solution, if not the best. Further conditions are imposed
on the problem in order to make it a bit easier — all electrodes are assumed to
be different with a few exceptions. A leaf electrode is allowed to be the same
as any other leaf electrode. Link electrode e; can be the same as eg and link
electrode e5 can be the same as eq1.

The used algorithm can be summarized as the following:
1. Select different line electrodes i.e e, e4 , e7 ,e1q.

2. Find the link electrodes with the highest combined score i.e find e; such
that S(ei—1,e;) + S(ecit2), €:) is the highest for i € {2,5,8,11}. As the
link electrodes are assumed to be different from the line electrodes and the
conditions in 65 makes it so that for each link electrode we can build a list
of candidates that is 6 electrodes long. These would be the 6 electrodes
that have the highest combined score as defined above.

3. Cycle through the candidates for each link electrode and find an allocation
of all the link electrodes with no contradiction. Stop at the first such
allocation. We have now built the 'main loop’ of the graph in 4. The
value of the link electrodes will determine the value of sy, s2, s3 and s4
i.e. the switches.

4. Find the highest scoring leaf electrode for each line electrode.
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5. Iterate 1 — 4 for each combination e, e4 , e7 ,e19 and pick the allocation
with the highest cumulative score.

6. Check if there are any measurements allocated that has a score of 0, signi-
fying that the measurement cannot be made either because it has already
been selected in a previous current injection, it has too high geometric
factor or is a y-array. These measurements are not to be taken and are
removed from the allocation (this is the same as removing and edge in the
graph 4). Note that it is no problem for the allocations total score that
these measurements are removed as their score was 0 during the optimiza-
tion process as well hence the removal wont affect the optimum.

A lot of small things can add up to make this algorithm much faster without
losing much in terms of performance. For starters not all electrodes need to
be considered in the allocation — only the ones that are involved in a poten-
tial measurement in combination with the selected current pair. Secondly not
all combinations of line electrodes need to be examined. Due to the circular
symmetry of the switchboard an allocation of
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will have the same optimal solution — everything is just rotated. This alone
cuts the number of combinations of line electrodes by a factor 4. But the same
thing can be said about reversals. The above allocations are also equivalent to:

e1 = é1p (76)
eq = é7 (77)
er = €4 (78)

e1p = €1 (79)

(80)

0]
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this cuts the number of combinations by an additional factor of 2. Still the
number of combinations of line electrodes will be fairly large which will lead
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to long execution times. In order to cut down the execution time even more a
pre-selection of which electrodes to consider for the line electrodes can be done
by finding the n neighbouring line electrode pairs with the highest score when
combine with a single link electrode and requiring that the line electrodes are in
at least one of these measurements. This is the same as finding the pairs (e;, e;)
such that:

max S(ei, er) + S(ex, €j)

attains one of the n highest values for all such pairs. A value of n = 8 was used.

Now that a way of selecting a set of potential measurements for a given current
pair has been found the next step is to find a way of selecting which current
injections to make. For this we will use the following outline:

1. Select an initial set of current injections and potential measurement allo-
cations and add these to the measurement set I.

2. Score every measurement not in I with S;.

3. Find the top scorer, denote this measurement m. The current injection
used in m will be used for this allocation.

4. Build a set of considered measurements by taking all measurements using
the same current injection as m.

5. Score every measurement in the considered set with .SA’l =5;.
6. Solve (65) for the score S;. Add these measurements to the set I.

7. Iterate 2-6 until enough measurements have been chosen.

The method as presented above has two problems:

1. The selected measurements for a given current injection might be similar
as the score is only dependent of I and of each individual measurement.
The score of a given allocation will not be the same as the sum of the
scores of every measurement in the allocation. The reason is that the
measurements in the allocation might, and probably will, have similar
sensitivity patterns and thus a lot of duplicate information. This means
that the assumption that the score of an allocation is the sum of the scores
of every measurement is false when solving (65).

2. The method might not make full use of the multichannel capabilities of
the switchboard as it can prioritize very small gains in the score of the
select allocation over adding one more slightly lower scoring measurement.

The problems were solved in the following way:
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. A pre-selection of which measurements to consider for a given current in-

jection was used. The pre-selection was made by using either the ’spread
mass centers’ method or the ’correlation” method for the set of measure-
ments connected to current injection. This should remove measurements
that are very similar.

. The score for a given measurement was changed to S;=S;+ g where S

denotes the average score of the considered measurements. This ensures
that every measurement has a minimum score — which means that just
making more measurements for a current injection is a bit better compared
to not using one of the channels on the switchboard.

And the full algorithm can be described as:

1.

= LN

7.
8.

Select an initial set of current injections and potential measurement allo-
cations and add these to the measurement set I.

Score every measurement not in I with S;.
find the top scorer, denote this measurement 7.
Use the current injection used in m.

Build a set of considered measurements by taking all measurements us-
ing the same current injection as /m and using either the ’spread mass
centers’ method or ’correlation’ method with m as the initial set. The
set considered measurements should have size Ny,. or lower, a pre-fixed
parameter.

Score every measurement in the considered set with S; = .S; + % where S;
is score of the i:th measurements.

Solve (65) for the score. Add these measurements to the set.

Iterate 3-7 until enough measurements have been chosen.

This outline can be combined with a scoring resembling that of the ’correlation’
method as well as one resembling the ’spread mass center’ method.

8.8

Correlation multichannel method

The previously discussed outline is combined with a scoring;:

Si =1 —max Co(|J;],]J;]) (81)
jel

where Cs is defined in equation (60). The value of Cj is approximated with the
Pearson correlation as found in equation (64). A higher score is better, meaning
that we want the maximum correlation with the so far selected set to be as low
as possible — this is the same idea as in the 'Correlation’ method. The added
1 is there to make sure that the score is non-negative.
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The considered set was built with the ’Correlation’ method, and Np,. was se-
lected as 128. The initial set is built by selecting the current injections where
the distance between the electrodes is as small as possible and solve problem
(65) with each measurement scored as:

el
si= [ > 1601 (82)

i.e the integral of the absolute sensitivity divided by the cumulative absolute
sensitivity of the full set.

8.9 Spread mass centers multichannel method

The method is meant to be a multichannel variant of the ’spread mass centers’
method. The scoring used is

S; = min/m; — m,| (83)
jel

where m; denotes the mass center of the 7:th measurement. This means that the
score prioritize measurements with a high minimum distance to the set which
is the same idea used in the ’spread mass centers’ method.

The considered set was built with the ’spread mass centers’ method, and Np,.
was selected as 128. The initial set is built by selecting the current injection
closest to the mass center of the cumulative absolute sensitivity and solving
problem (65) with the score being the distance to this mass center.

9 Results

9.1 Sensitivity patterns

We will now look at the absolute cumulative sensitivty patterns for the discussed
methods aswell as the ratio of these sensitivity patterns and the full set of
measurements sennsitivity pattern.
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Figure 5: The '"Maximum Integral’, '"Maximum ratio Integral’ and 'Spread Mass
centers’ methods’ optimal sets’ cumulative absolute sensitivity for a 64 electrode
layout. The number of measurements in the optimized set is approximately
1500.

In figure 5 we see the cumulative sensitivty for the 'Maximum integral’,
'Maximum ratio Integral’ and the ’spread mass centers’-methods. Note how
both of the integral methods seem to have higher sensitivity overall and in par-
ticular in the area nearest the surface. We can also see that the 'maximum ratio
integral’ method seem to prioritize high sensitivity to the side of the electrode
layout.
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Figure 6: The 'Correlation’, Corr-Multichannel and 'SMC-Multichannel” meth-
ods’ optimal sets’ cumulative absolute sensitivity for a 64 electrode layout. The
number of measurements in the optimized set is approximately 1500. Both of
the multichannel methods have low cumulative absolute sensitivity. Compared
to the other methods.

In figure 6 we see the cumulative sensitivty for the 'Correlation’, Corr-
Multichannel and ’'SMC-Multichannel”’ methods. The ’'SMC-multichannel’ method
have a clearly lower sensitivity everywhere. The ’Correlation’ and 'Mulitchan-
nel’ method seem to both prioritize measurements far to the side.
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Figure 7: The ratio between the 'Maximum Integral’, ’Maximum ratio Integral’
and ’Spread Mass centers’ methods’ optimal sets’ cumulative absolute sensitivity
and the comprehensive set’s cumulative absolute sensitivity for a 64 electrode
layout. The number of measurements in the optimized set is approximately
1500.
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Figure 8: The ratio between the 'Correlation’, Corr-Multichannel and 'SMC-
Multichannel’ methods’ optimal sets’ cumulative absolute sensitivity and the
comprehensive set’s cumulative absolute sensitivity for a 64 electrode layout.
The number of measurements in the optimized set is approximately 1500.

In the relative sensitivity figures we can clearly see that the integral methods
and to some extent the ’correlation” method seem to but a lot of weight to the
sides compared to the comprehensive set. We can also note that the methods
based on the spread mass center method seem to have lower general sensitivity
but it is more evenly spread.
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9.2 Simulations

Apparent resistivity values were simulated with 'Res2Dmod’ for the following
synthetic ground:

Synthetic model

0 20 40 60 80 100 120 140 160

Figure 9: The synthetic model used for simulations. The red prisms have a
resistivity of 100€2 - m while the background has 10f2 - m The green line shows
where the 30-electrode layout ends. The 64-electrode layout goes all the way to
X = 160.
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9.2.1 Results for a 64 electrode array

Maximum Integral, E=64, N=1500
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Figure 10: The modelblocks used for inverting simulated data and their inverted
resisitivity value and their inverted resisitivity value. The set of measurements
is generated by the 'Maximum integral’ method. The total number of electrodes
in the array is 64 spaced with 2.5 meters. The white stripe at the bottom is an
area where the inversion software deemed that there was too little information
in the measurements to model.
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Maximum ratio Integral, E=64, N=1500
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Figure 11: The modelblocks used for inverting simulated data and their inverted
resisitivity value and their inverted resisitivity value. The set of measurements is
generated by 'Maximum ratio integral’ method. The total number of electrodes
in the array is 64 spaced with 2.5 meters. The white stripe at the bottom is an
area where the inversion software deemed that there was too little information
in the measurements to model.

In both figure 10 and 11 we can see a clear failure of resolving the far right
and deepest prism. This is probably due to a heavy overlap within the select
measurements for these two methods — there are comparatively many mea-
surements that measure the same, or close to the same, area of the subsurface.
These methods also seem to prioritize methods with high sensitivity close to the
surface. This is probably due to measurements with high total sensitivity are
usually mostly sensitive to the top layer of the subsurface and that most of the
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sensitivity to changes in the deeper parts of the subsurface comes from small
contribution from a large number of measurements while closer to the surface
most of the sensitivity comes from a few measurements with large contributions.
All in all these methods are not recommend for use other than benchmarking if
they are not modified to take more spatial information into account.
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Figure 12: The modelblocks used for inverting simulated data and their inverted
resisitivity value and their inverted resisitivity value. The set of measurements
is generated with the 'Spread mass centers’ method. The total number of elec-
trodes in the array is 64 spaced with 2.5 meters.

In figure 12 we can see the quality of the inversion getting much better as
the number of measurements increases — in fact this is probably the method
which seems to improve the most by adding more measurements. We can see
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the imoprovement on the far right prism as well as the deepest prism: the far
right prism gets a stronger and stronger response with a greater contrast to
the background resisitivity distribution and the deepest block, while not clearly
resolved, also get a clearer response.
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Figure 13: The modelblocks used for inverting simulated data and their inverted
resisitivity value. The set of measurements is generated with the 'Correlation’
method. The total number of electrodes in the array is 64 spaced with 2.5
meters.

In figure 13 we can see the quality of the inversion in the rightmost block
getting better as the number of measurements increases, but not as good as the
improvements for the ’spread mass centers’ method. We can see improvement in
the resolution of the deepest prism aswell although it is still not clearly resolved.
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The method does however, somewhat weirdly, resolve the second block from the
left worse with the largest set.
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Figure 14: The modelblocks used for inverting simulated data and their in-
verted resisitivity value. The set of measurements is generated with the Corr-
Multichannel method. The total number of electrodes in the array is 64 spaced
with 2.5 meters.

In figure 14 clear improvement is seen when the size of the set increases.
While this method is partially based on the ’correlation’ method the added
constraint of using the switchboard’s capacity to a large extent seems to not
hinder it much for large measurement sets. The smallest set does however lag
behind its ’correlation’ method counterpart, particularly for the rightmost block.
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Figure 15: The modelblocks used for inverting simulated data and their inverted
resisitivity value. The set of measurements is generated with the *Spread Mass
Centers Multichannel’ method. The total number of electrodes in the array is
64 spaced with 2.5 meters.

In figure 15 a clear improvement can be seen when increasing the number
of measurements. The method, if working correctly, should try to spread the
mass centers of the measurements in a similar way as the 'Spread mass centers’
method. This should ensure measurements that are relatively independent.
The added constraints of using the switchboards capacity to a large extent does
not seem to hinder the method in any obvious way and the results show clear
improvement when the measuring set is made larger.
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Spread Mass Centers, E=64, N=4368
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Figure 16: Different methods side by side for approximately 4368 measurements.
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Spread Mass Centers, E=64, N=3000
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Figure 17: Different methods side by side for approximately 3000 measurements.

In figure 17 we see the different methods compared for approximatley 3000
measurements. The ’Corr-Multichannel’ method has a worse estimate of the
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restistivity in the second prism from the left than all the other methods. It is
clear that for this synthetic model and this many measurements the protocols
based on the spread mass centers approach outperforms the methods based on
correlation and the same conclusion can be drawn from figure 16.
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Figure 18: Different methods side by side for approximately 1500 measurements.

In figure 18 we see the different methods compared for approximatley 1500
measurements. The four methods in this plot that has been developed in this
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paper show similar results to one another — the two left prisms are relatively
well resolved in all cases, the far right prism has a bit lower resisitivity and
the deepest block is only present as a small indication if at all represented.
The ’Corr-Multichannel’ method has the worst approximation of the resistivity
of the rightmost block, but all the other perform very similarly. In this plot
there is also a multichannel standard script supplied with the instrument called
"GradientXL’. The gradient protocol stands out from the rest of the results by
having a more concentrated far right block — underestimating the size of the
block where most of the other methods overestimate it. The gradient protocol
also has the lowest resistivity in the first prism from the left.

9.2.2 Results for a 30 electrode array

Below the results for a 30 electrode layout is shown. The main point of this
section is twofold:

1. Show of the proficiency with which the multichannel optimized protocols
schedule measurements i.e. how many measurements is on average taken
for every current injection. The average measurements per current injec-
tion is expected to decrease compared to the 64 electrode case due to the
much smaller number of possible measurements.

2. The 30 electrode layout and the model of the sudsurface is chosen to
be similar to the situation in [9]. The results presented here should be
comparable to the results in this article, although the inversion parameters
and the subsurface model is not exactly the same — it is important to keep
this in mind when comparing. For a much more accurate comparison the
methods would have to be compared side by side for the same inversion
parameters and model.

With this in mind we will only compare the multichannel protocols, the ’cor-
relation’ and the ’spread mass centers’ method, for the rest of the methods the
results for 64-electrodes is deemed enough for drawing the relevant conclusions
about their performance. The following two images showcase the performance
of the ’correlation’ method and the ’spread mass centers’ method when using
all electrodes as for either current injection and potential readings. The result
are very similar — the only big difference is a more concentrated prism to the
far right for the 'correlation’ method and the highest number of measurements.
These figures should be somewhat comparable to the results in [9], as it is a
similar model of the ground with the same electrode layout. The exact syn-
thetic model was not published as a part of this article nor was the inversion
parameters used for solving the tomographic problem — this combination im-
plicates that one should be careful when drawing conclusions when comparing
the results.
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Spread Mass Centers, all measurements, E=30, N=1500

20 40 60 80 100 120 140
X

Spread Mass Centers, all measurements, E=30, N=3000

20 40 60 80 100 120 140
X

Spread Mass Centers, all measurements, E=30, N=4368

20 40 60 80 100 120 140

Figure 19: The modelblocks used for inverting simulated data and their inverted
resistivity value. The set of measurements is generated with the ’Spread mass
centers’ method. The total number of electrodes in the array is 30 spaced with
5 meters, in this case all of the electrodes could be used for either current
injection or potential readings leading to 51373 possible measurements after
removing measurements with too high geometric factor.
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Correlation, all measurements, E=30, N=1500
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X
Correlation, all measurements, E=30, N=3000
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X
Correlation, all measurements, E=30, N=4368
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Figure 20: The modelblocks used for inverting simulated data and their inverted
resistivity value. The set of measurements is generated with the 'Correlation’
method. The total number of electrodes in the array is 30 spaced with 5 me-
ters, in this case all of the electrodes could be used for either current injection
or potential readings leading to 51373 possible measurements after removing
measurements with too high geometric factor.

The following two figures are meant to showcase the performance of the
multichannel protocols when used for a smaller set of electrodes than 64. In
terms of consistency the ’spread mass center multichannel’ protocols inverted
resitivity does not change much as the number of measurements increases. This
is probably due to a very small comprehensive set — only 6585 possible mea-
surements remain for the multichannel methods to choose from after removal
of v arrays and measurements with too high geometric factor. This means that
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the algorithms will select a large percentage of the comprehensive set compared
to the case when a 64 electrode layout was used.

The ’corr-multichannel’ method has clearly worse results for N =~ 1500, as
seen in the second prism from the left. The prism to the far right is also more
concentrated for N = 3000.

One can also note that the ’spread mass center’ and ’spread mass center mul-
tichannel’ results are close to identical even tough the single channel method
has access to more possible measurements. This indicates both that the loss
in resolution from using every other electrode as a current injector and rest as
potential readers does not lower the resulting protocols resolution too much. We
can also conclude that the multichannel scheduling seems to work— we get the
same basically inverted resistivity with ’spread mass center’ and ’spread mass
centers multichannel’. The same can not be said about the methods based on
correlation — this can be seen in the figures presented in this subsection as well
as figure 16 - 18.
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Corr-Multichannel, E=30, N=1508

20 40 60 80 100 120 140
X
Corr-Multichannel, E=30, N=3007

20 40 60 80 100 120 140
X
Corr-Multichannel, E=30, N=4370

20 40 60 80 100 120 140

Figure 21: The modelblocks used for inverting simulated data and their in-
verted resisitivity value. The set of measurements is generated with the 'Corr-
Multichannel’ method. The total number of electrodes in the array is 30 spaced
with 5 meters. Only every other electrode could be used for current injection
and the rest could be used for potential readings leading to a total of 6585
possible measurements to choose from.
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SMC-Multichannel, E=30, N=1507
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SMC-Multichannel, E=30, N=3004
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SMC-Multichannel, E=30, N=4372
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Figure 22: The modelblocks used for inverting simulated data and their inverted
resisitivity value. The set of measurements is generated with the *Spread Mass
Center Multichannel’ method. The total number of electrodes in the array is
30 spaced with 5 meters. Only every other electrode could be used for current
injection and the rest could be used for potential readings leading to a total of
6585 possible measurements to choose from.

9.3 Effectiveness of Multichannel optimization

Below is a table of the different multichannel optimized methods average po-
tential readings per current injection for the different cases discussed above.
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N ~ 1500 | N =~ 3000 | N ~ 4368
GradientXL, E=64 7.3978 - -
MC, E=64 11.6154 11.2052 10.8193
SMCMC, E=64 11.2687 11.2351 11.2868
MC,E=30 10.0533 9.7000 9.3376
SMCMC, E=30 10.4653 10.1486 9.8914

Table 4: This table shows the average potential readings per current injection
for the different scenarios and methods discussed, F is the number of electrodes
in the layout and N is the number of measurements to take. Note that the
"GradientXL’ protocol only has 1376 measurements while the other protocols
have closer to 1500 measurements.

The multichannel system generally succeeds in allocating above 11 measure-
ments per current injection for 64 electrodes. For 30 electrodes the number
naturally shrinks due to fewer available measurements and the full switchboard
is not in use (only the first two sections with electrodes 1-30 can be used, so
there is only one a total of 4 switches.). The quality of the different kinds of
measurements has not been explored specifically— measurements using a leaf
electrode might be, in general, less informative than the measurements allocated
in the main loop.

9.4 Field measurements

As the results presented above seem to indicate that the ’Spread mass center
multichannel’-method is the best method of the ones discussed for taking mul-
tichannel optimized measurements it was tried in the field. The measurements
were taken over an old quarry turned into a landfill. We expect big variation in
the resistivity as the stone quarry is expected to have much higher resistivity
compared to the trash. The true subsurface resistivity distribution is of course
unknown so the results are compared with the ’GradientXL’ standard protocol,
also used to survey the same site. A total of 64 electrodes was used, space 5
meters apart. Some of the electrodes were excluded from the measurements
either due to too bad electrode connection to the ground or due to the electrode
position being covered in asphalt. The inverted data is shown below:
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Estimated Resistivity SMCMC, Dalby, RMS = 3.8%
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Figure 23: The inverted data from the Dalby measurement using the ’Spread
mass centers multichannel’-method, the number of measurement was 1145. Note
that this figure is heavily capped in order to compare to the ’Gradient XL’ -result.
A uncapped figure is shown in 25
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Estimated Resistivity GradientXL, Dalby, RMS = 1.8%
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Figure 24: The inverted data from the Dalby measurement using the standard
’GradientXL’-protocol, the number of measurement was 1256.
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Estimated Resistivity SMCMC, Dalby, RMS = 3.8%
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Figure 25: The inverted data from the Dalby measurement using the ’Spread
mass centers multichannel’-method, the number of measurement was 1145.

The result seem to agree on some areas having high resistivity — they do
not agree on the magnitude of the resistivity however. The ’Spread mass centers
multichannel’-method has generally much higher resitivity values in the recog-
nized prisms. I refrain from doing any geological interpretation of the result as
I am no geologist. One thing that should be noted is that the SMCMC-survey
was about 50% faster than the GradientXL-survey.
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10 Conclusion

It seems clear that the results presented here would indiciate that the ’spread
mass centers’ method is the best approach for selecting measurement sequences
of the methods discussed here. When comparing the results with the ones found
[9] we should note that the parameters for the inversion process as well as the
model of the ground might differ — it is more about a similar situation and
how the different algorithms handle them. Qualitatively the spread of mass
centers method, at least superficially with the consideration just discussed, per-
form about as well as the 'Compare R’ method which is more computationally
demanding.

Furthermore the multichannel scheduling successfully makes close to the max-
imum number of measurements per current injection leading to a survey time
greatly reduced compared to using the standard ’gradientXL’ protocol which is
already partly optimized for multichannel use. The quality of the survey seems
comparable, but further analysis by geological experts is needed.

We can also conclude that formulating simple optimization problems with easy
solutions, such as the integral of the weighted sensitivity, perform underwhelm-
ingly. This is most likely due to the fact that the methods does not incorporate
any penalty to choosing multiple measurements in the same area nor measure-
ments of the same type. This leads to the method choosing multiple high valued
measurements that give information about the same area of the subsurface. For
smaller problem were the selected number of measurements are close to the
number of total measurements in the full set this might not be a big problem,
but in these situations most methods of choosing a optimal measurement set
will probably perform well. The only thing these methods have going for them
is the speed with which they can be executed and they are of course useful to get
a baseline of performance of optimized sets — if a method selecting an optimal
measurements sequence does not outperform integral methods it is probably not
worthwhile to continue developing the method.

The multichannel optimization algorithm succesfully allocates close to 12 elec-
trode for every current injection for the 64 electrode layout. The usefulness of
the leaf electrodes have however not been specifically examined in this article
and it might be that an allocation of 8 electrodes per current injection might
perform close to as good.

11 Outlook and further research

Although the results for the ’spread mass center’ methods looks very promising
for linear electrode layout and two dimensional models of the subsurface, the
performance for more complex electrode layouts combined with 3D models of
the subsurface has not been tested. For this kind of situation there are problems
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with very different measurements having the same center of mass — this could
potentially be rectified by modifying the method by for instance adding more
dimensions in a clever way or by trying to find more than one 'mass center’.
For the most part a measurement has two separate blocks of sensitivity from
the different pole-pole pairs, so instead of using a single mass center it might
be better to try and find the mass center of two different 'bodies’. The ’Spread
mass centers’-method is also easily generalized to more general feature vectors
describing each measurement. This should resolve the problem of seeing sym-
metric arrays in three dimensional problems as the same measurement when
they are clearly not, but it might add computational complexity depending on
how it is implemented. The method shows great promise as a relatively easy
method for selecting well performing measurement sets.

The multichannel methods rely on solving the optimization problem presented
in (65) for suitable scores. In this article only electrode layouts of at most
64 electrodes have been studied and the problem in (65) and the simplified
switchboard has been specifically designed to handle this kind of layouts. For
larger layouts with more electrodes modification is necessary but the general
idea might still be worthwhile exploring.

In order to evaluate the result many different methods of selecting measure-
ment sets needs to be implemented and the result of simulations needs to be
compared. This is useful because it will also give an indication of the real world
performance. Alternative evaluations give a quantitative score for each mea-
surement set [8], but the resulting simulations are less useful for gauging real
world performance as the inversion models can perfectly match the synthetic
model (meaning that there are no artifacts from misalignment between param-
eters of the inversion model and synthetic model — they represent the exact
same thing). One interesting future research project might be to use quantita-
tive performance measurements and evaluate measurement sets both compared
to each other but more importantly with a random measurement set selecting
each measurement with equal probability. Basically a Monte-Carlo simulation
for the expected performance of a random measurement set could be studied to
determine if any of the measurement strategies presented here or in previously
conducted research can be clearly distinguished from a random measurement
set. If they can not be distinguished from a random measurement set the only
important thing is optimizing for multichannel usage without introducing bias.
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