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Abstract

Wavelet theory, which shares fundamental concepts with windowed Fourier anal-
ysis, introduces the notion of scale in an effort to aid in joint time-frequency
analysis. Having century-old roots, much of the essential research on the subject
of wavelets was conducted during the 1970s and 1980s. Despite being a rather
young toolset, wavelets have shown to be very useful when studying signals with
transient, non-stationary, characteristics.

This thesis focuses on the continuous wavelet transform (CWT) in the one-
dimensional case from a practical implementation standpoint. It also contains
sections on wavelet history, development, and the theoretical fundamentals.

The presented implementation contains a computer software with a graphical
user interface that was developed in the context of financial trading in the currency
markets. More specifically, the implementation contains a C++ based code library
developed to expose an application programming interface (API) that is called
from a retail desktop forex trading software where it can aid in market analysis
visualization.
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Popular Science Summary

A Look at Volatility in Financial Time Series Through Wavelet Analysis

Each year, billions of dollars are spent finding an edge in the financial markets. At
the forefront of this pursuit is Wall Street’s elite – the Quants – bringing physics,
signal processing and engineering to the world of finance and economics. With this
backdrop of high-stake applied research and evaluation of new tools and theories,
we develop a trading software indicator using wavelet analysis and bring it into
practice by exploring volatility phenomenon in the currency markets.

In the field of signal processing, it is well known that the legendary Fourier
transform help us move between the often empirically observed time domain and
the theoretically fascinating frequency domain. By studying the transformed sig-
nal, we can easily reveal the set of frequencies it is composed of. However, op-
erating globally on the signal content, the Fourier transform does not lend itself
to exploration of when certain frequency events occur in time. In other words,
traditional Fourier analysis falls short when used in a non-stationary, transient
settings and this is where wavelets come into play. By introducing the notion of
scale as a proxy to frequency, the wavelet framework approaches the problem of
telling when an exact frequency occurs in time; a dilemma with its roots in the
Heisenberg uncertainty principle.

One setting where these types of transient signals – or time series – are preva-
lent, is the world of finance and economics. In this thesis work, we implemented
the highly theoretical wavelet framework in a desktop trading application for the
currency markets and used it to explore market movements (or volatility in a broad
sense). Volatility analysis is an invaluable concept for many traders, institutional
and retail alike. Front-running in the sense of bringing wavelet based volatility
analysis straight into the retail currency trading world, the implementation re-
sulted in a C++ library, which was consumed and visualized in the form of a
market indicator. The indicator was based on the scalogram output of the con-
tinuous wavelet transform. Similar to a heatmap, it can easily identify parts of
the time series containing abrupt changes or clusters of high volatility. While im-
plementing the technical solution we stumbled upon several challenges in bridging
theory and practice. Despite this, both the general software library and practical
indicator is fully functional and ready to be shared with an enthusiastic trading
community for further exploration and battle testing.
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Chapter 1
Introduction

In the field of signal processing, it is well known that the legendary Fourier trans-
form help us move between the often empirically observed time domain and the
theoretically fascinating frequency domain. Simply put, by applying this math-
ematical operator to a signal and studying the transformed result, we can easily
reveal the set of frequencies which the signal is composed of. For example, a Fourier
analysis of a signal’s frequency content can be used to determine the most dom-
inating frequencies, enabling us to construct a filter to enhance or remove these.
The application of such filter to the signal, followed by an inverse transformation
back to the time domain again, would affect the whole signal – from beginning to
end – because in Fourier space there is no notion of time, only frequency. Thus, it
could be said that the Fourier transform can tell us which frequencies the signal
includes, but not when they actually occur. This is a fundamental drawback as it
could, for example, be of importance to spot when a sudden change in the signal’s
frequency content occurs, or at which point noise is added or changes its char-
acteristics. Using the foregoing analysis method however, these transient events
in the signal would present themselves throughout the whole transformed result,
tainting it regardless of their actual temporal location. In other words, traditional
Fourier analysis falls short when used in a non-stationary setting and this is where
wavelets come into play.

Wavelet theory constructs a framework where a set of mathematical functions,
called wavelets, can be used to examine a signal’s characteristics in a wider per-
spective by trying to preserve the time domain representation when performing the
analysis. Sharing fundamental concepts with windowed Fourier analysis, wavelet
theory introduces the notion of scale in an effort to approach – and work around –
the problem of telling when an exact frequency occurs in time; a dilemma with its
roots in the Heisenberg uncertainty principle. Though having century-old roots,
much of the essential research on the subject of wavelets was conducted during the
1970s and 1980s. It has since evolved and worked its way up from being a limited
academic research topic, to become widely accepted and implemented throughout
a number of different industries. Numerous papers are published each year intro-
ducing and adapting the theories to new application areas, some of which can be
found in digital image compression, seismology, and financial time series analysis.

The thesis work performed here contains two distinct components; a review
and discussion of wavelet theory, as well as a practical implementation based upon
the former. This text documents both parts.

1



2 Introduction

1.1 Problem and Motivation

As mentioned earlier, an important property of wavelet analysis is its ability to op-
erate on non-stationary signals and analyzing transient events. One context where
these types of signals – or time series – are prevalent is the world of finance and
economics. In financial trading in particular, price data of a financial instrument
over time often exhibits these characteristics. As the price of for example a stock
varies over time it constructs a time series (e.g. daily price observations). This
price movement is sometimes modeled as a geometric Brownian motion with drift,
and this seemingly random walk has been subject to much scrutiny, research, and
even prediction by different market participants. Often credited as the starting
point, Bachelier’s work in the early 1900s has been continued and there is more
research done on this general topic than we can even start to name here [1]. How-
ever one often common theme by the modern applied researchers, is to try to find
an edge in ones analysis. This edge (or advantage) could help the analyst or trader
to successfully execute a profitable investment or trade in the instrument. Billions
of dollars are spent by large institutions such as hedge funds to find a competitive
edge, but even in the so called retail segment composed of keen individual traders,
more or less scientific research is conducted to gain some kind of advantage over
others.

In the world of trading, new technologies, approaches and concepts are con-
stantly explored and the latest academic research is put into practice by enthusi-
astic and profit chasing communities. With the background from our introduction
to wavelet analysis, it would be very interesting to see what – if anything – this
relatively new area could contribute to this pursuit. In this thesis work, we are
exploring this question by implementing the theoretical framework in a retail desk-
top trading application for the currency markets. We use the created software to
explore market movements (or volatility in a broad sense).

Volatility as a concept can be looked at and defined in several different ways,
ranging from simple absolute values of the observed price returns, or as the statis-
tical standard deviation of the time series. In our context, we explore it from the
perspective of being present in the output of the continuous wavelet transform.
We will for example investigate how our software reacts when analyzing certain
price patterns such as clusters of high volatility and very abrupt changes in the
data. Volatility analysis in different shapes and forms is an invaluable tool for
many traders and investors, both institutional and individual. Some strategies
work only in times of high volatility, yet others require very calm market condi-
tions to be profitable. It can serve as input to risk models, or even be the basis
of its own traded derivatives. In some contexts, volatility metrics are used as the
"fear"-levels in the markets and some strictly equates it with statistical properties
of a data set used in complex models.

Though many different software packages exist that either provide different
volatility or wavelet analysis features, at the time of commencing this thesis work,
no publicly available software package was found that brought the two concepts
together in an effort to aid retail currency traders with a visualization of a wavelet-
based joint time-frequency analysis directly from within their trading application.
The main work of this thesis work became to explore and to a large extent solve
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the problem of how it could be accomplished in a practical and concrete way.
Formulated as "How can a system be implemented to use wavelet theory as an aid
in the practical analysis of a financial time series with focus on volatility related
phenomena?", this problem will occupy the reader for remainder of this text as it
has done the author for much too long.

1.2 Approach

There are significant efforts made in bringing methods from the field of digital
signal processing (DSP) into the world of finance. Some years ago, this contributed
to the creation of the quants; Wall Street professionals that come from a physics
and engineering background rather than finance and economics, developing models
and strategies for the markets. As an engineering student, viewing financial data
such as a price series as a signal or output from an information system is intriguing
and exploring it in the frequency domain lies close to heart. With this perspective,
volatility could loosely be seen as, for example, transient bursts of high frequency
content or other very short-lived or local changes in the time domain.

The tool of choice for anything frequency related is often Fourier analysis.
As briefly mentioned in the introduction, it has the drawback of poor temporal
localization of transient events as it operates globally on the signal content. Dif-
ferent windowing techniques approach this precise problem, and as an extension
to these, wavelet analysis suggests promising results in the trade-off between time
and frequency resolution. The decision to use wavelets in this thesis work can
thus be traced back to both a curiosity of the author in exploring beyond the tech-
niques and concepts he previously has been exposed to, fueled by an interest in the
edge seeking and competitive trading industry, as well as an implied theoretically
well-aligned approach.

As for the technical context, though numerous trading software platforms exist,
few were as available and open as the one chosen for this work, MetaTrader. This
software offers the ability to write complex plugins in an advanced programming
language using bespoke linked libraries. Combined with its simple user interface,
it was the strongest candidate. The wavelet library itself was implemented using
C++ as it has a good track-record in the DSP field and lends itself for advanced
and fast manipulation of low-level data, yet using high-level syntax. The author
has previous experience in currency trading and model development so to apply
the work in these markets was a natural choice. It could, however, certainly be
used in any other context such as stocks, bonds or commodities as well.

In the following paragraphs, we provide an overview of the subsequent chapters
along with some of the more specific questions that each covers.

1.3 Report Outline

This report has the following outline. To provide the reader with a background
and context, we start off by concerning ourselves with questions like; What drove
the development of wavelet theory?, Why do we need it?, and Why can’t we have
the best of two worlds – time and frequency – at the same time? In this first
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part of this thesis, the quest for "joint time and frequency localization" takes the
reader on a journey starting in the early years of the 1800s with the research of
Joseph Fourier, through times of great innovation and discoveries, touching down
on Gabor’s work of 1946, and finally arriving at the last decades of a century
dominated by the digital revolution.

Following the historical background and overview, the continuous wavelet
framework is presented and scrutinized in detail. This section serves as a pre-
sentation of the theory used in the implementation phase. We provide distinct
definitions, formalism and answers to questions such as; What defines a wavelet
function? and How are wavelet scale and frequency related?.

The final part concerns itself with our practical implementation and use of
wavelet theory in a "real-world" setting. We introduce a chapter that explores
questions like How do we bridge theory and practice?, How can wavelets aid in the
analysis of data?, and What challenges do we face in the implementations of the
algorithms? Here, we stumble upon an array of practical constraints and issues
we have to adhere to and work around. We also briefly introduce the reader to
the world of currency trading, which is the backdrop of our practical application.
More specifically, the developed and presented software is part of a C++ based
code library consumed from within a desktop trading platform where it could aid
in market analysis and possibly even trading decision making. The implemen-
tation utilizes the continuous wavelet transform framework presented in previous
chapters.

1.4 Scope and Limitations

In short, this thesis first and foremost aspires to serve as a background to, and
presentation of, the practical implementation. Secondly, it serves as an introduc-
tion to the continuous wavelet framework and as an illustration of some of its
inner workings in the one-dimensional case. The target audience considered in
this paper is anyone interested in the subject, but to fully grasp and enjoy the
content one should be familiar with basic college-level mathematics and have, at
least some, knowledge of signal processing and the main concepts of that field.

With that said, the presentation will be aimed at providing a conceptual intro-
duction and overview rather than being a mathematical thesis. Even though it lies
within the subject-matter’s nature to require some theoretical sections with rather
dense mathematical theorems and definitions, the text is written for the engineer
or practitioner seeking to get acquainted with topic, rather than one looking to
explore mathematical proofs. I have purposely kept the theorems and formulae
simple for better readability and apologize for any left-out definitions, limits, and
more. It should also be mentioned that in quotations and citations using – or
referencing – definitions or mathematical language, I have sometimes adapted the
original author’s notation (such as symbol representations or indexing schemes) to
adhere to the convention used herein instead, for the purpose of consistency.

For a meticulously complete mathematical coverage of the topic we suggest
[2–5], all of them being excellent sources written by admirable veterans of the
field.



Chapter 2
Historical Background of Wavelets

“Wavelet theory finds its origin in the recurrent need to develop a localized ver-
sion of Fourier analysis, inasmuch as is possible within the Heisenberg principle
constraint.”

Ingrid Daubechies

As mathematicians present the answer to a problem, they are often judged
not only by its correctness, but also conciseness. This chapter’s opening quote
is indeed both correct and concise enough, just as expected by one of the most
recognized mathematicians and researcher on the subject of wavelets. In fact, the
statement distinctly summarizes the next twenty or so pages. However, for the
sake of context and broader perspectives, this thesis will stray into the field of
modern wavelet theory first after seeking to account for where it all once began.
The seemingly brief passage quickly turns out to be a 150-year long expedition with
many stops on the way. It will also show, that there are as many ways to reach
the different destinations, as there are pathfinders and navigational instruments.
Let the journey begin...

2.1 Sinusoids Make the World Go Round

Making himself a name during the French Revolution and later serving side-by-side
with Napoleon in his expedition to Egypt, Jean Baptiste Joseph Fourier (1768 -
1830) is nowadays more known as the French mathematician and physicist born in
1768 whose pioneering work on the propagation of heat resulted in one of the most
employed mathematical analysis toolsets of modern times [6]. His work has later
been generalized and made more abstract over time, but also adapted and refined
to serve as a cornerstone in a vast set of disciplines, many of which Fourier himself
never could have imagined. Just as an example, in the field of signal processing,
when thinking of frequency analysis we instantly think of Fourier and the famous
transform carrying his name.

In short, Fourier argued that any arbitrary periodic function could be decom-
posed into a series of simpler trigonometric functions. He initially needed this
result to simplify the calculations in his efforts of solving the heat equation for
which the solution was known in these particular simple cases, but not otherwise.

5



6 Historical Background of Wavelets

By applying a divide and conquer strategy, he could now solve the complex equa-
tions by dividing up the calculations and in 1807 Fourier was confident that his
work was ready for the world. "An arbitrary function, continuous or with discon-
tinuities, defined in a finite interval by an arbitrarily capricious graph can always
be expressed as a sum of sinusoids" [7] he supposedly concluded while presenting
his work entitled "On the Propagation of Heat in Solid Bodies" [8] to the Academy
of Sciences in Paris. A review committee had been appointed that included the
renowned mathematicians Lagrange and Laplace, among others. However, the
paper immediately caused controversy and the criticism did not wait. The afore-
mentioned mathematicians were some of the most noticeable objectors [9, 10].

A few years later, the same academy announced the "Grand Prix de Mathé-
matiques de l’Institut" of 1812 and this year the prize would be awarded on the
subject-matter of mathematical theory of heat. Fourier took the opportunity, re-
vised and amended his work and submitted it. Apparently, only one other paper
was entered into the contest and Fourier was finally set up for recognition. As
customary, a committee was established to award the prize, but inconveniently for
Fourier, it also included the two unimpressed objectors to his earlier work. De-
spite this disadvantage, Fourier was indeed awarded the prize but the triumph was
short-lived. In the report, forefront mathematicians all over the world could read
that "the manner in which the author arrives at these equations is not exempt
of difficulties and that his analysis to integrate them still leaves something to be
desired on the score of generality and even rigour" [6]. His theories had yet again
been criticized, and being unable to impress the mathematical society in Paris,
there was no convincing interest in publishing his work. In a few pages, we will see
that Joseph Fourier is not the only scientist we will meet on this journey having
formulated and presented their – nowadays considered keystone – theories just to
be criticized by a judgmental establishment.

It is however – to both Fourier’s and the establishment’s defense – easy to
recognize that trying to describe any arbitrary periodic function using only a
subset of other select functions, Fourier had a very daunting and task at hand.
The elementary functions he had chosen were sine and cosine, two fundamental
trigonometric functions with their roots in ancient Indian astronomy which have
since been the subjects of study by every noteworthy mathematician and present-
day high school student alike. Using these functions, he formed a basis with which
he hoped to represent, or at least approximate, any other periodic function of his
interest. Most readers will recall the term basis from linear algebra, where it is
defined as a set of linearly independent vectors in a vector space, that can represent
every other vector in that same space [11]. A less strict, but perhaps more intuitive
approach, would be to think of this basis as a coordinate system, e.g. the common
Euclidian basis (x, y, z), which spans the space and with which we can describe
any point therein. In general mathematics however, we generalize our vectors into
arbitrary functions. The analogous case is then, that a set of basis functions are
said to make up the basis for a given function space, thus allowing every and any
continuous function in that space to be described as a linear combination of these
select functions.

Equipped with the sine/cosine basis, Fourier succeeded and like a prism breaks
up light into different colors, he managed to decompose the functions into a (some-
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times yet infinite) sum of the chosen basis constituents. In an IEEE journal article,
the author Amara Graps helps us illustrating the principle by comparing f(x) with
a musical tone, for example the note A in a particular octave. As we know, one
could construct A by means of adding combinations of sines and cosines with dif-
ferent amplitudes and frequencies together. In this case, the sines and cosines
would be the basis functions, the elements of Fourier synthesis [12]. In mathemat-
ical terms, [12] accounts for the aforesaid by describing that Fourier asserted that
any 2π-periodic function f(x) is the sum

a0 +

∞∑
k=1

(ak cos kx+ bk sin kx) (2.1)

of its Fourier series, where the coefficients a0, ak and bk are calculated through

a0 =
1

2π

∫ 2π

0

f(x) dx, ak =
1

π

∫ 2π

0

f(x)cos(kx) dx, bk =
1

π

∫ 2π

0

f(x)sin(kx) dx

(2.2)
This played an essential role in the development of the mathematical under-

standing and view of functions. It could even be said to have opened up the door
to a new functional universe [12].

If the Fourier series shows us how to decompose any periodic function into a
sum of sinusoids, the famous Fourier transform could be seen as the process and
extension of this idea to non-periodic functions. The Fourier transform, which
in fact is closely related to an integral transform used by Laplace (now carrying
his name), turns a function, f , originally in the time (or spatial) domain into a
frequency dependent function f̂ . In mathematical notation this could be expressed
as

f̂(ω) =

∫ +∞

−∞
f(t)e−iωt dt (2.3)

where ω represents the (angular) frequency and t represents time [3]. Though
widely used in many applications throughout all fields of science and different
areas of pure mathematics, in signal processing one often use the transformed
result to explore how the energy is distributed among the different frequencies of a
given signal. We therefor often refer to the transform of the signal as its spectrum
and in particular analyze |f̂ |, called the magnitude (or |f̂ |2 the power) spectrum.
These spectra are often plotted with the frequencies represented on the horizontal
axis and the magnitude (or power) varying vertically, making it easy to grasp the
signal’s characteristics in frequency space. As a side note, it should however not
be forgotten that the transformed function f̂ is a complex function and that the
signal’s phase spectrum also is of interest depending on the application.

From the above it is clear that the Fourier transform can tell us what fre-
quencies (and how much of them) the signal includes in a certain time interval
but not when they actually occur. This arises from the mathematical definition
of the transform since it is working with sinosodal wave functions, eiωt, which
are infinitely long. The end result f̂(ω) will therefore depend on all times, t, of
the full duration of the signal function f(t). Hence, [3] states that this global
blend of information makes it very hard to analyze any local property of f from f̂ .
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Figure 2.1: An illustration of Fourier’s principle of adding simple
sines (the top two) to compose a much more complex funtion
(bottom).

Over-simplified one can say that, in the process of transforming the signal data,
we have lost representation of the time-domain. In reality, we have not lost any
information, we are just hiding it. Both the original function and the transformed
one, contain all the information about the signal; it is just a matter of perspective.
By using the so called inverse Fourier transform we can make the now frequency
dependent function time dependent again and recreate the original signal through
[3]:

f(t) =
1

2π

∫ +∞

−∞
f̂(ω)eiωt dω (2.4)

It is easy to realize that the applications of Fourier analysis are next to limit-
less. The concept of moving from time to frequency representation – and back –
is used almost everywhere in our daily lives; from the basic construction of the
human ear, to signal transmission in cellular networks and in the processing and
manufacturing of more or less all things around us. It is in other words a very fun-
damental concept, which has been studied by thousands of researchers, engineers,
and scientists, along with millions of students, since we gave the phenomena its
current name. Despite all these studies, dissertations, and a couple of centuries
passing by, there is one fundamental property – or limitation – of time-frequency
analysis that mocked them all since the get-go; it seemed nearly impossible to
expose when an exact frequency occurred in time, and vice versa. As we will learn
in subsequent sections, the dilemma is a Gordian knot tied by the Heisenberg
uncertainty principle.

In many areas, just a rough idea of when certain frequency content exist would
suffice, hence the total absence of time awareness results in a number of drawbacks
of the Fourier transform’s application. As an example, it can make an analysis
especially error-prone when used with long-duration signals. As an illustration of
this, consider the injection of a short burst of high frequency content at the very
end of a long – otherwise "calm" – signal. This injection will now skew the whole
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result of the analysis as it – in this particular case – after being transformed with
the rest of the signal, would show up on the spectrum plots as if it dominated the
whole data sample from start to finish.

Over time, the transform’s application areas widened far beyond Fourier’s
heat equations and the mathematical undertakings of the nineteenth century. The
demand for more sophisticated analysis increased and it was now crucial to find a
way to cope with the enigma, and explore new methods based on Fourier’s work
that at least could reveal hints as to when a set of frequencies actually appear in
the signal.

2.2 An Inevitable Trade-off

One scientist working on the aforementioned perplexity was the Hungarian-born
British physicist Dennis Gabor who tried to tackle the dilemma of preserving
time-domain representation by introducing what was later called the short-time
Fourier transform (STFT), the windowed Fourier transform, or simply – the Gabor
transform (the latter actually being a special case of the former) [13, 14]. In
his paper entitled "Theory of Communication", which was published in 1946, he
initiated the reader by emphasizing that our everyday life and human auditory
sensations insist on a description in terms of both time and frequency [15]. By the
tone of his paper, Gabor was evidently determined to shed new light on the Fourier
transform and the established idealizations (as he called them) and provide means
of describing his introductory point of view in quantitative language [15].

This is where we can return to the Gordian knot and the Heisenberg uncer-
tainty principle – commonly known from Quantum mechanics – which basically
states that one cannot know both the precise position and momentum of an ele-
mentary particle [16]. The uncertainty principle applied to time-frequency anal-
ysis, however, states that we cannot know the precise time at which a certain
frequency occurs, and vice versa. As a matter of fact, speaking of knowing is mis-
leading (hinting that we just have not found a way to represent the both domains
simultaneously) when the truth is that a signal cannot simultaneously have a pre-
cise location in time and frequency [17]. This can be exemplified by the following
exercise. Imagine the playing of a prefect tone, represented by a single sine wave,
recorded over a period of time. Now, trim the ends of the recording over and over
again, until all you can hear is a short "click". Like a Sorites paradox1, at some
point of the trimming process the recording stopped representing the tone, taking
us from a well-defined single frequency during a time span, to a wide spectrum of
frequencies at an exact point in time – the click [19]. In other words, there seems
to be a trade-off between time and frequency whereas a more precise localization
in one of the domains, gives a poorer precision in the other. As food for thought,
the author of [17] rhetorically raises the question of how one can speak about

1Also known as "little-by-little" arguments. Sorites comes from the Greek word
"soros", meaning pile or heap, which is also the name of the puzzle it originally refers
to; "Would you describe a single grain of wheat as a heap? No. Would you describe two
grains of wheat as a heap? No... You must admit the presence of a heap sooner or later,
so where do you draw the line?" [18]
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frequencies at a precise instant, when frequencies need to have time to oscillate.
Gabor was purportedly a pioneer in this regard as he would insist that the

uncertainty principle was relevant to communication theory, which he gave ex-
pression to by formulating a framework describing the uncertainty relation which
acted in-between the two extremes of either time or spectral analysis [15, 17]. One
might say that by doing so, Gabor now used the uncertainty principle he had been
trying to battle, as a nifty tool in his new way of representing the two domains.
He claimed that signals are represented in two dimensions and by using time and
frequency as co-ordinates, such two-dimensional representations can be called in-
formation diagrams. Further, Gabor concluded that "the frequency of a signal
which is not of infinite duration can be defined only with a certain inaccuracy,
which is inversely proportional to the duration, and vice versa" [15].

Gabor’s work on the uncertainty principle and how it relates to time-frequency
analysis is today also known as the Gabor limit, which basically concludes that
what we can know, are simply the time intervals in which a band of frequencies
exist, all tied together with a trade-off approach in terms of precision. Seeming
vague, this is in fact a very important realization and turning point, transforming
the time-frequency enigma into a concrete resolution problem.

The approach Gabor chose when constructing his new representation and to
manage the trade-off was to extend the Fourier transform using a sliding win-
dow while performing the analysis. Using a carefully chosen window function of
fixed width, and by only analyzing the segment visible through the window before
shifting it along and doing it all over again, until the signal was fully covered, he
managed to create a representation that included information about both time
and frequency. Like tiles placed on a floor one-by-one, Gabor’s transform created
a rectangular partitioning of an idealized time-frequency plane where each tile
(better known as a Heisenberg box) had the same shape, governed by the win-
dow function used in the analysis. Even though the resolution can be changed
using different window functions, it is always fixed for a given analysis set. Gabor
could now retrieve an approximate time span in which a certain frequency event
occurred.

Mathematically, the short-time Fourier transform can be expressed as

S(u, ω) =

∫ +∞

−∞
f(t)g(t− u)e−iωt dt (2.5)

which indeed is a function of both time (u determines the location) and fre-
quency [2, 3]. The simplest window function, g, is a rectangular one, constant
during a certain (short) interval and zero outside. The window is multiplied with
the original signal, leaving it with zero amplitude except at the window’s position.
As a side-effect, in the case of a rectangular function, the truncation will leave
sharp "corners" at the beginning and end of the window, introducing unwanted
frequencies which distort the final analysis result. To cope with this issue – and to
adapt to the requirements of different applications – a wide range of window func-
tions have been developed over the years. Some of the more famous are the Hann
and Hamming functions. Gabor himself used a Gaussian window in his transform
to "smooth" out the edges, actually making the Gabor transform a special case of
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the more general STFT which – like we have seen – in itself does not direct what
particular window to use [20].

Given a certain shape of a window, its size must also be carefully chosen
since it will determine whether there will be a trade-off in time or frequency res-
olution. Now, recall the metaphor above about partitioning the time-frequency
plane (where time varies horizontally and frequency vertically) like laying tiles on
a floor. The size of each tile represents the precision, or resolution, and it cannot
be arbitrarily small. In fact, the so-called time-bandwidth product, which – still
metaphorically speaking – has the two sides of the tile as factors, dictates a theo-
retical lower bound of its area. The product can be proven to be distinctly defined
by the Heisenberg principle, and this topic will be revisited and reviewed in-depth
in the next chapter.

So, now given a set specification of how large of an area each tile must cover,
there is also in practice a rather stringent constraint on their dimensions. Taking
a narrow-and-tall approach leaves us with a fine partitioning and great precision
along the time axis but due to the extensive "height" of the tile it will span a
wide range of frequencies on the other axis. Conversely, choosing a wide-but-short
measurement ratio will result in that pinpoint accuracy in the frequency domain,
but then comes with the trade-off of widening the time interval instead. Once the
desired trade-off approach is determined, the tool we use to finally cut the tiles to
our preferred and chosen dimension is – as hinted above – the window size used
in the transform. One can easily realize that a small window size corresponds
to the "narrow-and-tall" decomposition approach with good temporal (however
vague frequency) resolution. On the other hand, an ever-widening window – ulti-
mately covering the full signal length – would result in an outcome with lost time
representation, as is the case with the non-windowed Fourier transform.
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Figure 2.2: The illustrative effect of partitioning the time-frequency
plane using the two different approaches narrow-and-tall (left)
and wide-but-short (right).

With the set size of the window being such an imperative (and restricting)
part of the analysis, it certainly raises questions on finding the right value. In
practice, this naturally depends heavily on the application and desired properties
of the product, but theoretically, what would happen if we let the size – or scale –
of the window become a variable part of the equation? Seeking an answer to that
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question will eventually take us to the final destination of our journey – multi-scale
or multi-resolution analysis – the core of modern wavelet analysis.

2.2.1 A Quick Side Note on The Fast Fourier Transform

As a side note while on the topic of major contributions to Fourier analysis, the
discovery of the fast Fourier transform (FFT) algorithm must be mentioned. It is
a fast and efficient implementation of the discrete Fourier transform (DFT) and
was published in the paper "An algorithm for the machine calculation of complex
Fourier Series" by the American mathematicians James Cooley and John Tukey
in 1965 [21]. It was however later discovered that the method actually was used
more than a century earlier, but the timing of the publishing in 1965 – just at
the beginning of the computer revolution – made the FFT practically useful and
very popular. Today, it is this version that heavily dominates the practical use
and implementations of the Fourier transform, many of which would not even have
been possible without it.

2.3 Adapting to Change

Despite new findings and the introduction of the windowed approach, there were
still problems the Fourier transforms could not solve. The fixed partitioning of the
time-frequency plane generated by the STFT just did not give the level of detail
needed to properly study all aspects of the signal. The trade-off between good
resolution in either time or frequency simply made this tool blunt. In order to
overcome this preset resolution problem, one had to dynamically change and adapt
the window function whilst performing the analysis and this was exactly what
became the next step. A variable-length sliding window was used and by keeping
the window narrow when analyzing high frequencies for a better time resolution,
and wider for lower frequencies (resulting in a better frequency resolution), the
time-frequency plane partitioning now looked seemingly adaptive in nature. This
is illustrated in Figure 2.3. Even though at each level (or row of tiles, to continue
the analogy from the last section), the uncertainty trade-off still exists and the
Heisenberg principle still holds true, this method provided the perfect answer to a
commonly observed real-word signal processing dilemma; providing good temporal
preciseness about high frequency content yet preserving the specifics of the lower
frequencies making up the overall signal. This seemingly apparent work-around
is, as we shall see later, actually the closest to a solution to the enigma we will
come on our journey.

2.4 Beneath the Forest and the Trees

Due to its adaptive nature, a common analogy in the literature is that; with
wavelets we can see both the forest and the trees. Interestingly enough, we find
yet another dendrological reference in the literature on wavelet history; it is Ingrid
Daubechies, one of the most prominent scientists in the field, who concludes in
her paper called "Where do wavelets come from? – A personal point of view"
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Figure 2.3: An illustration of the adaptive effect of partitioning the
time-frequency plane using a wavelet transform with windows
(wavelets) of variable length (scale) in contrast to the fixed
partitioning in Figure 2.2.
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[22] that the development of wavelet theory is connected and related to a vast
number of different disciplines such as mathematics, physics, computer science,
and engineering. She compares the history of wavelets with a tree whose roots
reach deeply and in many directions and where its trunk represents the accelerated
development of the wavelet tools in the second half of the 1980’s. The crown of
the tree has since branched out in many different directions, one fore each each
field where wavelets are being commonly applied today.

Her point being that, it is hard to trace back a single line of events leading
up to the state of the art today, and as we shall see later, that many findings
actually are re-discoveries of previous work from other disciplines. Consequently,
the story of the wavelet transform’s origin will certainly be different depending on
the storyteller. Nevertheless, we will make our next stop in the late 1970s and a
certain Mr. Jean Morlet, a destination on a route coherent with Daubechies’ own
chronicle.

Jean Morlet, a pioneering geophysicist working at the French oil company Elf
Acquitaine during a decade tainted by the "black gold" and one energy crisis af-
ter another, struggled to find new and better ways of detecting and analyzing oil
fields for his employer. Traditionally, oil prospecting involved sending acoustic
waves down through the ground and then analyzing the spectrum of the echoes,
or backscatter, using Fourier analysis [23]. The returning signals contain an over-
whelming amount of different frequencies and to separate and measure the ge-
ological layers and oil reservoirs, Morlet started using a windowed approach to
divide up the work. At the time, computer systems were breaking more and more
ground and – as computational power got more accessible – Morlet could afford
to place these windows closer and closer together, finally even overlapping each
other. In 1975, he was now in fact working with Gabor’s ideas from 30 years
back, however, instead of keeping the sliding window fixed in size and letting a
wave oscillate inside it, he did the opposite and kept the oscillations constant and
let the window width vary. He named his initiative "wavelets of constant shape"
and it should soon prove to be a successful one. The signals he was interested in
analyzing had the characteristics of containing very high frequency content during
short time spans, and low frequency components with long durations. Looking
back at the adaptive partitioning of the time-frequency plane proposed above, this
new transform seemed to perform just the way he needed it to.

Motivated by the extraordinary results, he shared his findings with the world
but was supposedly met with much skepticism and criticism about the lack of
mathematical rigor. According to Daubechies, Morlet himself once paraphrased
the attitude that met him and his results as "If it were true, then it would be
in the math books. Since it isn’t in there, it is probably worthless" [22]. Little
did he know that he was now one of the main characters in a story that shared
a remarkable resemblance to the one of Joseph Fourier himself – and his work –
some 150 years earlier where innovative progress in a field was met by discouraging
skepticism among the more established scientists. History does have a tendency
to repeat itself, and this is only the first of many examples of that on this journey.

Determined to face the criticism, Morlet turned to a friend and former class-
mate to help him review his paper. The friend ended up referring him to Alex
Grossmann, a Croatian-French theoretical physicist, active in the field of quantum
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mechanics. Grossmann saw similarities in Morlet’s transform to the methods he
had previously used successfully in his own field and the work began with formal-
izing the framework mathematically. The two spent a year or so exploring many
applications, frequently using their personal computers, at the time a rather new
phenomenon which Grossmann attributed much of their initial success to [17].
Their endeavors were challenging albeit successful, and by 1984, Grossmann had
not only managed to devise an inverse transform, they also had proven that one
could perform the reconstruction with a single integral (as opposed to a double
integral stemming from the two dimensional output of the transform) [17, 24].
This was a crucial step for practical reasons and real-world applications.

As mention earlier, history tends to repeat itself, and it would indeed later sur-
face that Morlet’s transform – perhaps the largest contribution to wavelet theory
– was actually a rediscovery of the works of Alberto Calderón in the 1960’s on the
topic of harmonic analysis. In 1997, Jean Morlet received the Reginald Fessenden
Award for his groundbreaking work.

2.5 The Next Steps

As previously revealed, Yves Meyer, a mathematician specializing in harmonic
analysis, heard about Morlet and Grossmann’s work (supposedly while waiting in
line to a copy machine) and after getting acquainted with it in 1984, realized the
similarity with theories in his own field [22]. He showed that the wavelets and their
transform were related to the powerful Calderón-Zygmund theory [14]. Meyer, now
intrigued by the new interpretation of this theory, contacted the two scientists and
this would be the start of an era with interaction and knowledge sharing between
many different disciplines, theoretical and applied researches alike. By connecting
the dots, Meyer had expanded the universe of wavelet theory and brought it into
a generalization framework of multiple dimensions [25].

After working closer with the results of Morlet and Grossmann, Meyer turned
his attention to the level of redundancy in the transform. In the continuous case,
the transform was – in theory – calculating an infinite number of wavelet coef-
ficients turning a one-dimensional signal into a two-dimensional image, storing
colossal amounts of information about the signal. Though this level of inefficiency
could be useful in certain applications, a perfectly sparse and concise representa-
tion would pave the way to a whole new wavelet paradigm; orthonormal wavelet
bases.

In the summer of 1985 Meyer created the first orthogonal wavelet basis the
world had seen – or at least that is what he thought at the time. "These discoveries
sprung out as a revolution", Meyer says and quickly adds, "But I soon found out
that orthonormal wavelet bases already existed" [25]. Ironically, being the one who
a few years earlier himself pointed out that the "invention" of Morlet et al. was a
mere rediscovery of previous theories, Meyer now had the same achievement on his
resume. A few years prior to Meyer, another harmonic analyst – this time a Swede
by the name Jan-Olov Strömberg – had started working on the same wavelets and
had indeed also presented an orthogonal basis with the same structure as Meyer’s
[25]. It should be noted however, that neither of the two actually were the first to
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discover wavelets with this precious property. Technically, that accomplishment
and honor dates back to the beginning of the century and the mathematician
Alfréd Haar.

Haar was born 1885 in Budapest, Hungary, where he also started what would
become a successful and lifelong academic career [26]. Even though his main
interest was chemistry, the fascination for pure mathematics finally brought him
to the University of Göttingen in Germany where he also received his doctorate
with a dissertation entitled "Zur Theorie der Orthogonalen Funktionensysteme"
(On the Theory of Orthogonal Function Systems) in 1909 [27]. It is in the very
last section of this paper that a function that we today would call a wavelet, is
mentioned in writing for the first time [12]. The function, now known as the Haar
basis function or the Haar wavelet, is the simplest possible wavelet and is depicted
in Figure 3.3 (bottom left).

The next major leap forward in the story of wavelet analysis also sprung out of
a twist of fate, when one of Yves Meyer’s graduate students was on vacation in the
south of France and met an old friend, Stéphane Mallat, also taking a well-deserved
break from his graduate work at the University of Pennsylvania. Upon returning
to the United States, Mallat contacted Meyer, and the two met up at the Univer-
sity of Chicago, actually sharing Antoni Zygmund’s office [17]. Together, Meyer
and Mallat started discussing a theoretical framework which later became mul-
tiresolution analysis (MRA). This framework not only aimed to explain wavelets
and their inner workings, but also to serve as a recipe allowing the construction
of new orthonormal wavelet bases in a very easy manner. Further, the multires-
olution analysis framework led to a simple and recursive filtering algorithm that
efficiently could compute the wavelet decomposition of a function or signal. This
was how wavelet analysis really made it big in the field of signal processing. In
1988, Mallat earned his Ph.D. from the University of Pennsylvania through his
hard work.

The next major contribution to wavelet theory came from a person hereto
working in parallel with the other researchers, and with a somewhat lower profile.
She was well connected to some of the most prominent names already mentioned
and her name is Ingrid Daubechies, a Belgian physicist and mathematician, who
had studied and earned her Ph.D. under Alex Grossmann in 1980 [28]. Daubechies
had heard about Meyer’s and Mallat’s work very early on, and had gotten access
to their unpublished findings. She took a special interest in the properties of the
different wavelets themselves as well as the actual methods used to design them.
Daubechies’ work resulted in a whole new family of wavelets – the Daubechies
wavelets – and among them one will find some of the most commonly used ones
today. The unique iterative process she used to design this family of functions,
along with her other research results were presented in her next to legendary paper
"Orthonormal Bases of Compactly Supported Wavelets" [29] in 1988. Her publi-
cation "Ten Lectures on Wavelets" [2], cited by tens of thousands of researchers
and read by far many more, is commonly referred to as one of the best selling
mathematics books of the 1990s.

The story of wavelets does not end here. In fact, many of the groundbreaking
scientists already mentioned throughout the paper have continued their research
and are frequently attributed to further research, development and findings in the
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field. One such example is Yves Meyer who together with Ronald Coifman, Victor
Wickerhauser and Steven Quake presented wavelet packets in 1989 [30]. These are
often called a natural extension to the multiresolution framework as they introduce
even more flexibility in the analysis process via additional parameters.

For further reading about both the preceding and other developments and ad-
ditions to wavelet theory I highly recommend "The World According to Wavelets"
[17] by Hubbard for an inspirational and intuitive approach, and "A Wavelet Tour
of Signal Processing" [3] by Mallat for the more stringent and mathematically
minded reader. Both these publications have been excellent sources for this text.
We now depart the historical chapter and leave it up to the reader to find the
bearing to his own final destination within the world of modern wavelet theory.
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Chapter 3
Wavelet Theory

In the previous chapter we saw how the roots of wavelet analysis originates from
a need to achieve a notion of time localization in the frequency domain and how
the Fourier transform falls short when analyzing non-stationary signals. In this
chapter we will introduce the Continuous Wavelet Transform (CWT) and describe
its inner workings.

3.1 The Continuous Wavelet Transform

Learning about the modern history of wavelets, one cannot miss the French con-
nection. Much of the groundwork was done in France or by Frenchmen abroad,
and the word they all used for wavelet was ondelette (meaning "small wave").
However, most wavelets we use today do not just have to be "small" to qualify,
but rather adhere to a whole set of criteria. In fact, they are even quite often
purposefully constructed to target specific features of the signal to be analyzed,
and in other ways designed with certain properties in mind.

Since a wavelet merely is a mathematical building block, it does not make
much sense to describe them further without putting them into a context. This
context is the transform in which they – or more specifically descendants of them –
are used to analyze, or decompose (or in the inverse case, synthesize or reconstruct)
a signal. In the continuous case, which Morlet and Grossmann worked with, we
have

W (u, s) =

∫ ∞
−∞

f(t)ψu,s(t) dt (3.1)

which is called the continuous wavelet transform (CWT)1 [2, 3]. As we recall,
their findings were a rediscovery, and related to the so called Calderón’s resolution
of identity, formulated in the sixties by the Argentine mathematician with the
same name [25]. In the transform (3.1), the two-dimensional function W (u, s) is
obtained by projecting a signal f(t) onto the wavelet

ψu,s(t) =
1√
s
ψ

(
t− u
s

)
(3.2)

1Following [2], we have here implicitly assumed that ψ is real. For complex ψ, we
would instead use ψ in (3.1) which is useful in some applications. The function ψ is the
complex conjugat of ψ.

19
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which is a translated by u, and dilated by s (s > 0) version – sometimes called
daughter wavelet – of the original function ψ, often referred to as the mother
wavelet. In more detail, translating the function ψ(t − u), simply shifts it u
units to the right, and the dilation ψ(t/s) stretches it depending on the value
of the scaling factor s (see Figure 3.1 for an illustration of this concept). The
factor 1/

√
s is simply to keep the energy of the (scaled) daughter wavelet equal to

that of the mother. Keeping the energy constant makes it easier to compare the
transformed signal across all the scales, but in some applications other functions
are more suitable instead to e.g. weigh the result towards certain scales containing
features of specific interest [31].

Time0 1 2-1-2

Time0 1 2-1-2

Time0 1 2-1-2

Time0 1 2-1-2

u = 0
s = 1

u = 1
s = 1

u = 0
s = 2

u = 1
s = 2

Dilated by +2

Mother wavelet

Dilated by +2, Translated by +1

Translated by +1

Figure 3.1: An illustration of a mother wavelet and three of its
daugther wavelets generated by dilation and/or translation.

3.2 Computation and Interpretations

The CWT itself is seemingly straightforward but depending on which mathemat-
ical perspective or field of interest one has, it can have many different inter-
pretations. For example, using the definition of an inner product we can write
the transform as W (u, s) =

∫
f(t)ψu,s(t) dt = 〈f, ψu,s〉 which is common among

mathematicians [3]. In this interpretation, it could be said to measure the cross-
correlation between the analyzed function and the wavelets, i.e. the similarity
between f(t) and ψu,s [20]. On the other hand, in the signal processing field, we
can explain the CWT as a convolution of the input data sequence with a series
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of functions derived from the mother wavelet, or as being the output of a certain
bandpass filter [20]. The most intuitive explanation of the computation of the
CWT is – however – perhaps the one in step-by-step (or algorithmic) form:

Assume that a mother wavelet is carefully chosen so that it meets the crite-
ria for use in the CWT, and that the level of analysis needed, i.e. the number
of scales, is determined. Following Figure 3.2, start with the most compressed
function – representing the first, and lowest, scale (e.g. s = 1) but the highest fre-
quencies – in the family of wavelets generated from the mother, and place it at the
very beginning (u = 0) of the signal to be analyzed. Now, compute the wavelet
coefficient value W by multiplying the current wavelet function (s = 1, u = 0)
with the signal and integrate over its full duration. The result is then multiplied
by the weighting function 1/

√
s. In terms of the time-scale plane, we have now

defined a value for the first point (s = 1, u = 0). Due to the inner product in the
transform, the absolute value of W (1, 0) can now be interpreted as how closely
correlated that particular wavelet is with the signal at that specific position (large
value means more similarity). To move on to the next point on the time-scale
plane, keep the scale fixed but slide the wavelet – (since we are in the continuous
realm) an infinitely small step ∆u – to the right and compute the new coefficient
W (1, 0 + ∆u). This is repeated until the full length of the signal has been covered
and we have produced all coefficients for the given scale, s = 1. Finally, increase
the scale parameter and repeat the above procedure as we move, scale-by-scale,
with gradually increasing the scale towards the most stretched wavelet, capturing
the lowest frequencies of the signal [32].

3.3 Requirements of the Wavelet Function

After having provided a context for the wavelets, it is now interesting to examine
what mathematical properties of these functions actually make them earn their
name. Although the Grossmann-Morlet definition of an ondelette was quite broad
[4], they did include what is called the admissibility condition which can be written
as

Cψ =

∫ ∞
0

|ψ̂(ω)|2

ω
dω <∞ (3.3)

where ψ̂(ω) is the (frequency dependent) Fourier transformation (2.3) of (time
dependent) ψ(t) [3, 24]. To ensure that the integral in (3.3) is finite we must have
ψ̂(0) = 0 [2, 3]. In fact, it can be shown that the spectrum |ψ̂(ω)|2 must vanish at
both extremes for the integral not to diverge. In other words, (3.3) implies that
ψ̂(ω) → 0 not only when ω → 0 but also as ω → ∞ and we can conclude that
the wavelet function must have what we in signal processing would refer to as a
bandpass like spectrum [33, 34].

This condition on the wavelet in the frequency domain obviously has conse-
quences for its temporal representation. The zero at the zero frequency requires
that the average value of the wavelet in the time domain must be zero, which is an-
other way to express that wavelets cannot have non-zero DC components [20, 34].
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Figure 3.2: The general methodology of the wavelet transform.
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This reasoning can be illustrated by the equality

ψ̂(0) =

∫ ∞
−∞

ψ(t) dt = 0 (3.4)

which holds for functions oscillating around zero, hence said to explain the "wave"
part in the word wavelet [2].

To fully ensure that a function is admissible as a wavelet, we must also show
that ψ̂(ω) is continuously differentiable, which according to Mallat in [3] can be
done by verifying that the wavelet has sufficient time decay∫ ∞

−∞
(1 + |t|)|ψ(t)| dt <∞ (3.5)

Another time domain related property imposed on the mother wavelet – since it
must belong to the L2(R) group of functions also called square-integrable functions
– is that

Eψ =

∫ ∞
−∞
|ψ(t)|2 dt = ‖ψ(t)‖2 <∞ (3.6)

representing that the energy of the function simply must be finite [35]. These last
two – albeit rather weak – decay properties can be used to support the fact that the
wavelet must be well localized in time, contrary to e.g. an indefinitely oscillating
sine wave used in the Fourier decompositions. This motivates the diminutive "let"
in the word wavelet, and we realize that the word Morlet used for his functions –
although in French – indeed suits them well.

In practice, there exist – in addition to the above basic (3.3) - (3.6) require-
ments – an array of supplementary conditions that one commonly imposes on the
wavelet function in order to inherit desirable mathematical properties and adapt
to specific applications. One such condition is that the wavelet must have unit
energy, i.e. Eψ = 1 in (3.6) [36].

3.4 The Inverse Continuous Wavelet Transform

Just like the other transforms we have visited so far – the (short-time) Fourier
transform – the CWT also has an inverse under certain circumstances. When
the admissibility condition (3.3) holds true, i.e. Cψ < ∞, the inverse continuos
wavelet transform is defined through Calderón’s resolution of identity formula as

f(t) =
1

Cψ

∫ ∞
−∞

∫ ∞
0

W (u, s)ψu,s(t)
1

s2
du ds (3.7)

where W (u, s) simply is the CWT as per (3.1) and ψu,s(t) the wavelet function
in (3.2) [2, 3]. Using this formula, a wavelet transformed signal can be synthe-
sized again without any loss of information. Without its invertibility, the use of
wavelets and the CWT would have been limited to the analysis (in a strict sense)
of signals, losing much of its practical use. As an example, in certain smoothing
techniques, one transforms the signal, removes all wavelet coefficients below a cer-
tain set threshold at some scale, before synthesizing it with the inverse transform
again. This way, possibly even performed on multiple different scales, one have
reconstructed a certain smooth version of the original signal.
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3.5 Scale, Frequency and Heisenberg Revisited

It should now be well defined that the wavelet transform generates a function
of two variables, shift and scale. However, we have so far mainly referred to
the dimensions time and frequency throughout this thesis, and sometimes even
incorrectly (for the sake of simplicity) almost implied that scale and frequency
are interchangeable. Since we in this presentation tend to operate on signals – or
functions – evolving over time, the shift corresponds to a location that is said to
be temporal (as opposed to spatial when working with data in space e.g. in image
analysis or data compression). Since we define the starting point of the analysis,
say at time zero, a mapping between the temporal location and the time domain
is rather evident. The relationship between scale and frequency is on the other
hand, not as trivial. This has – not surprisingly – its roots in the already familiar
Heisenberg uncertainty principle and the way our wavelets are constructed. Before
going into details, let us first revisit the wavelet scaling parameter, s, and see how
it affects the wavelet function’s properties in the frequency domain in a broad
sense.

When the scaling parameter increases;
⇒ the wavelet is stretched in time representing a low time resolution,
⇒ is slowly changing, analyzing coarse features,
⇒ overall shifted towards lower frequencies, and
⇒ obtaining better frequency precision.

Conversely, when decreasing the scale;
⇒ the wavelet is compressed in time representing a high time resolution,
⇒ rapidly changing, analyzing fine details,
⇒ overall shifted towards higher frequencies, and
⇒ obtaining worse frequency precision.

As we can see, scale seems to be – via the time domain – inversely proportional
to a frequency interval, at least roughly speaking. The author of [20] choses to
illustrate this relationship by comparing it to the short-time Fourier transform
where, at a fixed analyzing frequency of ω0, a change of widow width will will
increase or decrease the number of cycles of ω0 inside the window, whilst still
keeping the frequency ω0 fixed. On the other hand, in the wavelet case – where
one could speak of wavelets having a carrier frequency of ω0 – the same author
states that the window width changes instead would mean dilation or compression,
and that the carrier frequency now becomes ω0/s for a window width change from
T to sT . Note that here – in contrast to the STFT case – the number of cycles
inside the widow is still the same. In other words, the scaling parameter causes
shifts of the center frequency along the frequency axis, hence making the wavelet’s
spectrum cover different bands at different scales as illustrated in Figure 2.3. As
a matter of fact, the width of the frequency band it covers, better and formally
known as the bandwidth, B, also changes. It is worth reiterating that a good time
resolution, results in a poor frequency precision, that is, larger bandwidth.

The relationship between the central frequency and bandwidth is commonly
known as the fidelity factor, or quality factor (Q), and is expressed as Q =
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ωc/B [37]. Later in this section, we will see that the relative bandwidth, B as later
discussed in the context of frequency precision or spread, indeed like the wavelet’s
frequency also is inversely proportional to the scale. One now easily derives that
if both bandwidth and central frequency are related to scale in the same manner,
the yielded Q-factor becomes constant and independent of this scale. Hence, we
say that wavelets generate a constant-Q analysis. Simply put, the constant-Q
property is an expression of the fact that when the central frequency is increased
as a result of decreasing scale in the family of wavelets, their individual bandwidth
increases as well, yielding a poorer frequency resolution.

Though we above make references to a carrier or center frequency of the
wavelet, it is important to note that no universal and precise mapping exists
between scale and frequency in most cases. In fact, in the paper "Higher-Order
Properties of Analytic Wavelets" [38], the authors emphasize that "it is critical to
keep in mind that any assignment of frequency to scale is an interpretation, and
there is in fact more than one valid interpretation". This can be further illustrated
by the fact that some wavelets are highly irregular and some do not even have any
dominant periodic components making it hard to speak of carrier – or center –
frequencies at all in a general sense (see Figure 3.3 for four popular wavelets) [35].
For this reason, we will have to suffice with the comprehension that a wavelet’s
representative, or characteristic frequency is – if not in the eye of the beholder – at
least a matter of definition specific to chosen wavelet function and application [31].

Albeit, if we conclude that this characteristic frequency, we call it ωc, is deter-
mined, the relationship between frequency and scale can be expressed as ωs = ωc

s .
Now, having that said, one of the elementary methods to define ωc is to simply seek
the frequency at which the maximum of the wavelet’s Fourier transform magnitude,
|ψ̂(ω)|, occurs, arguing that this is – in some sense – the "strongest" frequency
in the wavelet. In [38], they call this interpretation the peak frequency. However,
they also derive two other meaningful frequencies associated with a wavelet, one
of which is called the energy frequency. This term is well-worth studying closer
as such endeavor will not only further clarify this section’s initial reasoning about
the time-scale relationship, but also let us elaborate further on the Heisenberg
dilemma and the uncertainty surrounding the time-frequency localization which
we have touched on in previous chapters.

Let us start by revisiting an excellent, concise yet intuitive, presentation in
the paper "The Continuous Wavelet Transform: A Primer" [35] already cited once
before2. The authors derive a pair of key quantities, the center and standard
deviation of time and frequency respectively for the mother wavelet, which they
use to define Heisenberg boxes in the same plane. The key here is to use the
common interpretation and notion of probability density functions for which the
center is the mean, and the spread the variance (or standard deviation). In the
case of time, the center of the wavelet is defined as

µt;ψ =
1

‖ψ‖2

∫ ∞
−∞

t|ψ(t)|2 dt (3.8)

2In the following presentation we have switched indexes and variable names to match
the conventions used in this thesis.
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Figure 3.3: Four wavelets and their approximated center frequency.
This illustrates the problem of a precise mapping. The wavelets
are: Morlet (top left), Mexican hat (top right), Haar (bottom
left), and Daubechies db2 (bottom right).

and the concentration around that center is described as the standard deviation

σt;ψ =
1

‖ψ‖

{∫ ∞
−∞

(t− µt;ψ)2 t|ψ(t)|2 dt
} 1

2

(3.9)

It then follows that the two quantities could be interpreted as the mean, µt, and
standard deviation, σt, of the probability density function defined by |ψ(t)|2/‖ψ‖2,
hence creating an interval [µt − σt, µt + σt] on the time axis where ψ(t) should
attain its most significant values. The corresponding quantities (and interval) for
the frequency domain, µω;ψ and σω;ψ are derived in an analogue way using the
Fourier transform, ψ̂, of the time dependent wavelet function ψ, instead. The two
intervals now form the sides of a rectangle in the time-frequency plane

Hψ : [µt − σt, µt + σt]× [µω − σω, µω + σω] (3.10)

which commonly is referred to as the Heisenberg box of the wavelet function ψ,
which – as we have already seen – gives the time-frequency plane its characteristic
rectangle-shaped partitioning. More specifically, we say that ψ is localized around
the point (µt, µω) in the (t, ω)-plane with uncertainty given by the product σtσω
which has a lower bound – the value 1

2 in particular – governed by the uncertainty
principle3. That is, the area of the box must remain constant, though the propor-

3The product is also commonly referred to in the litterature in terms of the variances
instead, which then yields σ2

t σ
2
ω ≥ 1

4
.
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tional relationship between its width and height may change. So far, the theory is
rather general and could, for example, be applied to the window functions in the
short-time Fourier transform instead of our mother wavelet (see [31]).

It is in the last part of the presentation in the above-mentioned paper, where
our objective of relating scale to frequency, is truly aligned with the authors. They
derive a scale and translation amended Heisenberg box

Hψu,s
= [u− sσt, u+ sσt]×

[µω
s
− σω

s
,
µω
s

+
σω
s

]
(3.11)

by realizing that µt;ψu,s
= u+sµt and σt;ψu,s

= sσt in the time-domain and further
that, µω;ψu,s

= µω

s and σω;ψu,s
= σω

s in the frequency domain. The now daughter
wavelet specific box Hψu,s also assumes that the mother wavelet is centered around
t = 0 (i.e. µt = 0). Via the Parseval relation4, they finally conclude that a
continuous wavelet transform W (u, s) gives temporal information on f(t) around
the instant t(u) = u, with the precision sσt. Correspondingly, it gives frequency
information about f̂(ω) around the frequency ω(s) = µω

s , with the precision σω

s .
This elegantly modest mathematical detour has thus provided us with a bet-

ter theoretical underpinning of the Heisenberg boxes and an expression of the
uncertainty that surrounds the localization in both domains. Another outcome –
although not as evident – is that we have derived the previously mentioned energy
frequency which in our presentation goes under the symbol µω and represents the
mean of |ψ̂(ω)|2.

As closing argument of this section, we discern that if a scale-frequency map-
ping is important to the application at hand, the choice of wavelet with respect to
its frequency characteristics, will greatly determine the magnitude of the success
in this regard. Further, the conclusions drawn from such analysis must emphasize
the choice of frequency interpretation for the wavelet used in the mapping, and
finally also account for the Heisenberg uncertainty imposed lack of precision.

4Loosely put, the domains time and frequency are equally complete representations of
the same underlying signal, so they must have the same energy. Another way of putting
it is that the sum (integral) of the square of a function is equal to that of its transform.
This is true for all members of the Fourier transform family and commonly known as
Parseval’s relation [39].
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Chapter 4
Implementation

After first having explored where wavelets come from and what theoretical reason-
ing lie behind them, the previous chapter provided a brief exploration of some of
the mathematical concepts involved as well as definitions and formalism. The first
part of this chapter will provide a context along with an introduction to the do-
main in which we will let our wavelets operate – the analysis of a financial market.
We will then present a software implementation based on the continuous wavelet
transform.

The implementation is part of a C++ based code library developed to expose
an application programming interface (API) to be called from a retail desktop
trading software where it could aid in market analysis and possibly even trading
decision making. In this part of the chapter, we will come across and discuss a set
of practical issues and important implementation decisions. Here, we are interested
in the difficulties and problems of transitioning from theory to application, rather
than studying the performance of the wavelet based approach compared to other
available methods in the industry. Finally, we will discuss some of the results and
show examples of how the CWT software can be used, along with its drawbacks
and benefits.

4.1 The Forex Market, Trading Software and Financial Time
Series

Commonly referred to as the forex (or foreign exchange) market, this global finan-
cial system consisting of numerous distributed networks, is the marketplace where
participants buy and sell – or exchange – currencies. These participants constitutes
a diverse group, ranging from banks and large corporations maintaining positions
for hedging purposes, to institutional actors and hedge funds speculating for profit,
to name a few. Not only is the currency market decentralized and truly global in
nature, it can be traded using a vast amount of vehicles such as cash, futures con-
tracts, options or ETPs (exchange traded products) among others. Despite being
the largest and most liquid financial market in the world, for most individuals,
interaction with the forex market is hidden behind everyday transactions such as
exchanging cash currency before making a trip abroad, a purchase from a foreign
online retailer or paying for a hotel room with a credit card while vacationing in
another country. What in these situations is referred to as the exchange rate –
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the value of one country’s currency expressed in terms of another currency – is
in the forex trading realm known as the spot price of that specific currency pair.
For example, one (1.00) Euro (EUR) could at one point in January 2014 be pur-
chased for 1.36 US Dollar (USD), defining the price of 1.3600 for the EUR/USD
instrument, commonly quoted in four decimals. When trading this pair in the spot
market, the smallest price movement this instrument can make is usually called a
pip (percentage in point) and is for most pairs 0.00011.

Though EUR/USD is by far the most traded pair – its trading volume alone
exceeding the volume of all global equity markets added together – one sometimes
speaks about the forex majors (EUR/USD, USD/JPY, GBP/USD, USD/CHF,
and in some literature also AUD/USD and USD/CAD) which are the most liquid
and together make up the lion’s share of the traded volume in the currency market
as a whole [40]. According to the Bank for International Settlements, the trading
in foreign exchange markets averaged $5.3 trillion per day in April 2013. This was
up from $4.0 trillion in April 2010 and $3.3 trillion in April 2007 [41]. Looking
back to 2001, the same figure is reported at $1.2 trillion and it is not far-fetched
to draw the conclusion that the globalization and an ever growing world economy
and trade, has fueled this tremendous growth, emphasizing the need for – and
importance of – the forex market and its well-being.

4.1.1 Retail Forex Trading

Part of this monumental financial system are the retail traders, individuals and
smaller trading firms using the currency markets to trade pure speculative strate-
gies, as investments in an alternative asset class pursuing diversification of their
more traditional portfolios, or perhaps by placing bets as a long-term play of their
macroeconomic predictions and views of the global economies. Together, these
parties form the so called retail forex market, a growing group of traders repre-
senting a daily trading volume of more than 300 billion dollars in 2015 [42]. In
the article "The Rise of Retail Foreign Exchange" [43], Betsy Waters – a director
at Deutsche Bank at the time – summarizes the past decade of explosive retail
trading growth by explaining that at first, the markets were simply not feasibly
accessible to individual investors. Minimum trade amounts of as much as a mil-
lion dollars, stacks of complex legal documents to be reviewed and signed along
with extensive credit checks, were often all required before a financial institution
would even consider trading with you [43]. Hence, retail trading was restricted
to only a select few with enough resources and trading capital, something that
would change with the next major milestone in the digital revolution – the advent
of the Internet. As with so many other industries, when the Internet gained in
popularity and became a household staple next to the phone line and cable TV,
it created a money pipeline leading directly from the general investor’s desktop.
The opportunity was not only seized by the more traditional discount stock bro-

1An exception is e.g. Yen-based currency pairs such as the USD/JPY, which is only
quoted in two decimals making a pip worth 0.01. Note however, that some brokers have
allowed trading using so called fractional pips (1/10th of a pip) meaning they introduced
an extra digit of precision for a select range of currency pairs, adding to the special cases
of quoting.
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kerage firms, but also a variety of specialized broker firms dealing only in the forex
market. These online forex trading brokers offers margin accounts with extreme
leverage and minimum account deposits of only a few hundred dollars, enabling
virtually anyone to trade the currency markets with the click of a button. Dubious
brokerage firms, defrauded investors and misleading marketing strategies eventu-
ally caught the eye of the authorities and in recent years the industry has been
heavily regulated followed by an even heavier consolidation. In the U.S. market,
this lead to a much more mature online retail forex trading industry controlled
by a few large brokerage houses offering more sensible leveraged accounts whilst
being scrutinized and closely watched by the National Futures Association (NFA)
by the order of the U.S. Commodity Futures Trading Commission (CFTC).

4.1.2 Trading Platforms

It is the aforementioned retail forex brokers – and their clients in particular –
that interests us in the following sections of this chapter as we seek to apply an
implementation of the wavelet transform as a tool among others, to aid in market
analysis and perhaps ultimately, trading decisions. It lies within the broker’s role
to provide its clients with market data and connectivity, visualization software and
analysis tools, as well as to facilitate the buy/sell orders and to overall act as a
full-service interface to the market as a whole for its customers. Though varying
between the brokers, one of the most commonly used software platforms managing
all of the above is the MetaTrader system from the Russian based software vendor
MetaQuotes Software Corporation [44]. Development began in 2000, but first after
much evolution of the initial software and several iterations of version numbers and
a name change, the MetaTrader 4 platform was released in 2005. Since then, it
has become perhaps the most popular forex trading software on the market and
an updated version, MetaTrader 5, was released in 2010.

On the broker’s side (or server-side), the platform manages the customers’
accounts, processes orders and serves as an interface and gateway to other trad-
ing systems, such as different electronic communication networks (ECNs) which
actually facilitate the trading of currencies since it is a decentralized system lack-
ing "regular" exchanges. On the end-user’s side (or client-side), MetaTrader is a
desktop (or mobile) application providing streaming quotes and charting of the
market data, a user interface for order entry, and a library of analysis tools and
features. The software also comes with a development environment which can be
used to write custom trading signals – so called indicators – and automated trading
strategies among other things. The platform specific programming language called
MQL5 (MetaQuotes Language 5), is based on the concept of the C++ language.
Hence, the MQL5 syntax is similar to any other modern object-oriented high-level
programming language and has a wide set of basic functions as well as more ap-
plication specific features such as order submission and management, graphical
output to the charting engine, and manipulation of the market data. The custom
development capabilities of the MetaTrader system has grown into a sophisticated
environment supporting advanced tasks such as interfacing with other software
systems (e.g. MATLAB, R, or other statistical packages) via linking of external
libraries and the development of automated trading strategies including backtest-
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ing and optimization of these using processor parallelism and a globally end-user
powered distributed computing cloud called the MQL5 Cloud Network.

In a sense, these technological advancements together with the low latency
24-hour market access available to anyone, the retail trader now has the same
tools at his disposal as only the most sophisticated Wall Street hedge funds had
less than a decade ago. To some extent, this truly levels the field, setting it on a
course destined for great independent research opportunities and more widespread
interest in this pivotal financial market.

4.1.3 Financial Time Series and Technical Analysis

The most common way of observing a financial market is to examine the series of
prices at which an instrument was traded or quoted during a time interval, at a
certain time scale. For example, as briefly touched on previously, this could be the
spot price of a given currency pair in the forex market. The near real-time stream
of quotes delivered to the end-user’s trading platform is often referred to as tick
data where the time between the ticks can be measured in milliseconds. For many
applications, this extremely high-frequency data puts unreasonable constraints on
both storage space and computational efforts required to study, analyze, and make
meaningful interpretations of the market. To overcome this, one usually samples
or aggregates the tick data over more intuitively perceivable time intervals such as
a minute, hour, day or week (though, it should be mentioned that a plethora of
trading strategies and an entire industry sector is built upon the high frequency
trading paradigm too).

The most popular aggregation technique takes four data points into account
for each time interval, namely the beginning (Open) and ending (Close) values as
well as the highest (High) and lowest (Low) observations during that same interval.
Together, these four observations per time interval can comprise a so called OHLC
time series. Strictly speaking, these are considered four different time series and
in practice one usually refers to the one comprised of only close values since they
imply how the time interval ended and is for example commonly used to compute
the gain – or return – over a given time horizon. It is also this particular series
of close values we will operate on in the following implementations, and conclude
that it forms a discretely sampled, ordered and evenly spaced, time series with N
real-valued variables (samples) which can be formally expressed as

{Xt} = X0, X1, . . . , XN−1 (4.1)

where t ∈ Z and denotes the time index [5].
The broad and interdisciplinary field of time series analysis is well researched

and in signal processing one is oftentimes particularly interested in exploratory
analysis of the series’ spectral properties. Though explanatory studies are under-
taken on a regular basis in the trading realm as well, many retail traders equipped
with trading software like the one described earlier, devote themselves to the time
series analysis branches of classification and forecasting using so called technical
analysis, or TA for short. Among "technical" traders in a broad sense, this term is
the cause of much polarization with the so called chartists on one side, searching
for repeatable patterns and predictive signals, and on the other side of the camp,
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the quants relying on theoretical models with strict mathematical rigor and pure
statistical testing to make their trading decisions. Though the two groups some-
times share some of the same tools from the toolbox of quantitative analysis, the
latter group often stays far away from the TA label. The two aforementioned view-
points are, however, likely the far extremes on a sliding scale of how quantitative
sciences can be successfully applied to the analysis of financial markets. Professor
David R. Aronson at Baruch College, New York makes an insightful reflection in
the opening words of his book "Evidence-Based Technical Analysis" [45]. In this
book, which both introduces and applies established statistical theory and rigor to
the field of TA, Aronson proclaims that "[technical analysis] is comprised of nu-
merous analysis methods, patterns, signals, indicators, and trading strategies, each
with its own cheerleaders claiming that their approach works. Much of popular or
traditional TA stands where medicine stood before it evolved from a faith-based
folk art into a practice based on science. Its claims are supported by colorful
narratives and carefully chosen (cherry picked) anecdotes rather than objective
statistical evidence" [45]. The key takeaway of this section is that quantitative
analysis, regardless of its level of sophistication, is a very popular undertaking –
both used and abused – in an effort to find an edge in trading the markets.

Whichever side of the fence one stands on, this chapter will introduce wavelet
theory as means to create a prototype of an additional tool in the technical analy-
sis toolbox. The tool, best lending itself to a broad and subjective interpretation,
aspires to add value in an overall classification of market "phases" by visualizing
the intersection of temporal and spectral analysis through the continuous wavelet
transform and its power spectra. After countless pages of historical review, the-
oretical discussion and most recently implementation context, the last and only
thing remaining between us and the practical use of this knowledge is a shallow gap
of theoretical adaptation to real world circumstances, which the following section
seeks to overcome.

4.2 Bridging Theory and Practice

Bridging theory and practice is the recurring dilemma of the applied researcher.
In the world of wavelets, there are a few fundamental constraints limiting the
practical application of the theoretical framework. Even when operating inside
these boundaries, rather innovative work-arounds have been developed over the
years to enable practical implementations and produce meaningful interpretations.
In this thesis, we bring wavelets into the realm of financial trading by implementing
a software library applying the theory on a stream of discrete time series data,
which raises the following high-level issues.

Firstly, in the preceding theoretical discussions, we have talked about how
wavelets operate on functions or signals, which have been used almost interchange-
able. Despite their unclear definitions it has not mattered much in the presentation
so far. However, we can at this point conclude that the actual subject of analysis
in the current context is – simply put – a discrete set of numbers. This plain
realization does (to some surprise) not lead to a simplification of our task, but
rather introduces a set of problems that we will now discuss.
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On an almost philosophical level, we can still talk about operating on a func-
tion, namely the market forces. This function is however widely different from e.g.
a sine or cosine as it is not well-defined and deterministic, but rather seemingly
stochastic and even much unknown to us. Buyers and sellers meet in what is
known as the price discovery process, governed by supply and demand. As an ex-
ample, some participants such as banks or large corporations are seeking to hedge
risk, which in turn is assumed by the pure speculators for a specific price, all in
an efficient and continuos market. In other words, it is the observed output of this
process, sampled at a specific rate over a given time interval, that forms the input
to our wavelet computations.

This leads us to the perhaps most important issue as we realize that we have
only a finite set of discrete data points. With a time series of fixed length we need
to adapt our wavelet theory to operate on a finite interval, rather than the full
function space L2(R) as in the previous chapter. The main problem when adapting
the wavelets to live on the interval are the so called boundary conditions which
concern the effects of applying the inner workings of the wavelet transform at the
very beginning and end of the time series. The convolution scheme used in the
transformation computation inherently uses data "outside" the data interval at
the ends. A very commonly applied strategy to make up for these missing values,
is to pad the data at the ends in order to extend the interval. Common choices of
padding values are zeroes, the last/first data value, some other arbitrarily chosen
constant, or a sequence generated by a more sophisticated method such as the fit
from a polynomial model, etc.

Though the plain zero padding technique likely is the most straight-forward to
implement (also our choice in the next coming section’s example implementations),
the classical approach is the one of circular, or periodic, handling. The approach
is thoroughly described in the literature [5, 46], and in essence makes the data
"wrap around" at the end-point, assuming that XN−1, XN−2, . . . are appropriate
substitutes to X−1, X−2, . . . creating an N -periodic sequence. Though useful in
theory and some special scenarios, this method impose a major drawback when
used with real-world data where the beginning and end values of the data series
are at a far distance from each other. As long as the data is not truly periodic,
the introduced artificial singularities where the data is "glued" together will cause
distortions among the coefficients representing these areas of the signal.

One way of handling the aforementioned problem is to reflect, or mirror, the
data sequence at the end-point, hence creating a new signal of length 2N . By
adopting this strategy, we avoid the artificial discontinuities whilst also benefitting
from keeping both the sample mean and variance of the original data [5]. This can
be interpreted as we now analyze the series

X0, X1, . . . , XN−2, XN−1, XN−1, XN−2, . . . , X1, X0 (4.2)

instead. As a result, X0, X1, . . . serves as the substitutes of X−1, X−2, . . . if we
now put this new 2N long series back into the circular scheme above, creating a
seamless joint between the two ends.

Though we have accounted for some of the more popular methods of handling
the issues of the interval boundaries, one must keep in mind that these are merely
ways of mitigating the problem and some edge effects will almost always taint
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the analysis in one way or another. A common choice is to clearly highlight the
(most heavily) affected wavelet coefficients in the presentation, or to remove them
permanently from the results and further analysis.

This section would not be complete however, without the brief account of a
completely different take on the conundrum. More specifically, apart from manip-
ulating the input data to address the issues and constraints of "the interval", one
can also try to modify the wavelets themselves to operate on a finite data series.
This requires a significant effort as previous chapter showed that is hard enough
to create new wavelets as it is, and applying an additional set of constraints on
the wavelet making process brings a whole new level of complexity. In academia,
the interval one often choses to discuss is the unit interval, [0, 1], and without
going into to details we will here simply mention two early and noteworthy ef-
forts of constructing wavelets for this interval. The first one is by wavelet legend
Meyer, who constructed boundary wavelets [47] based on Daubechies’ compactly
supported bases. The approach he used had a few significant disadvantages which
were addressed by Daubechies herself about a year later, together with Cohen and
Vial [48]. Since these two seminal efforts of constructing "wavelets on the inter-
val", research have been made to approach it from new angles and to generalize
the previous methods. Some of this research can be found in [49–51].

4.3 Implementing the Continuous Wavelet Transform

The primary goal of this section is to present and discuss a practical implemen-
tation of the continuous wavelet transform (CWT), and to demonstrate some of
its interpretation in an empirical environment. As we will focus on the practical
issues and the transform’s application to a specific domain, many of the theoretical
details will be presented without much rigor. Instead, this section will frequently
refer back to the previous chapter and to Christopher Torrence and Gilbert P.
Compo’s seminal and indeed practical paper "A Practical Guide to Wavelet Anal-
ysis" [52]. Our implementation closely follows the one written by the authors and
made available together with their text [53]. Though the methodology and ap-
proach is very similar, sometimes even identical to the aforementioned authors’,
it should be pointed out that it is not a pure line-by-line translation into a new
programming language alongside their libraries [53] already written in MATLAB,
Fortran and IDL. The main high-level differences are that our approach aspires to
serve as a practical and object oriented C++ based framework rather than func-
tional code snippets, utilize parallelism though threading at the transformation
of multiple scales to increase performance, and finally to provide an application
programming interface (API) to a third-party application where it is consumed,
ultimately presenting graphical output to the end-user aiding in the interpretation
of the wavelet coefficients. It should be further noted that, though the implemen-
tation is fully functional and achieves its goals well, it does have limitations and
flaws and should not be seen as a production-ready system.
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4.4 Implementation Approach

To implement the continuous version of the wavelet transform as defined in (3.1)
we start by concluding that we are operating on a discrete sequence of input data
as given by (4.1). As with all computer implementations, most operations will be
performed on discrete data structures such as arrays, hence prompting a discussion
as to what really is continuous about the CWT in this case. Technically, the CWT
used herein is discretized, however to call it a discrete wavelet transform (DWT)
would cause a conflict as this name is in the literature reserved for a very specific
discretization scheme. Ideally, the CWT would be discretized very finely in terms
of the scale parameter. In the DWT however, the scale parameter is discretized
to integer powers of 2 (2j , j = 1, 2, ...,) and the translation parameter is set to be
proportional to the scale so that at scale 2j , one would translate by 2jm (m is
positive integer). For an overview comparison and further treatment of the DWT,
see [2, 3, 54]. We will now continue – as in most literature and software libraries
– with the convention of using the name CWT as it operates under the finely
discretized approach.

A consequence of working in a discrete and digital realm is that the use of
integrals, such as the one found in definition (3.1), has to be replaced for practical
reasons. Following the discussion in [52], we realize that the transform can be
defined as a convolution operation of the input data and, translated and scaled,
versions of the mother wavelet, ψ. Further, the authors deduce that in order to
approximate the CWT, the convolution should be performed N times for each
scale, where N is the number of data points in the time series [52]. Now, recall the
convolution theorem stating that a convolution in the time-domain is the point-wise
multiplication in Fourier space under certain circumstances [39]. Utilizing this, we
speed up our computations by simply applying a discrete Fourier transform (DFT)
to the input, perform a point-wise multiplication of that array with the wavelet
function defined in frequency space, before applying the inverse Fourier transform
on the result, bringing us back to the time domain. By using this trick we not
only achieve more efficient code in terms of speed, we also gain an implementation
advantage since thoroughly tested DFT algorithms are readily available to us. The
Fourier library of choice used throughout this project is the "Kiss FFT" [55] library
written in C by Mark Borgerding which is a "reasonable efficient" implementation
of the fast Fourier transform (FFT) mentioned in the side-note under Section 2.2.1.

With the above overall approach in mind, we now turn our attention to the
wavelet function itself. The authors of [52] discuss three common wavelet basis
functions (Morlet, Paul, and Derivative of Gaussian [DOG]) and their properties.
Dissected in numerous academic papers, and compared in a wide array of applied
research areas, the choice of wavelet function is a broad topic to cover and is
mostly considered out of scope for this presentation. However, to mention a few
considerations, some wavelets have properties that highlight specific features of
the analyzed data (wavelet’s "shape"), others are more suitable for more precise
time localization (wavelet’s "width"), whilst all of them bringing trade-offs in other
areas instead [52].

In any case, the perhaps simplest wavelet – which we also use in the following
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examples – is the Morlet wavelet defined as

ψ(t) = π−1/4eiw0te−t
2/2 (4.3)

where w0 is the parameter known as the central frequency (see discussion in Sec-
tion 3.5). Arguably called the "original", the Morlet wavelet is in essence a sine
wave multiplied (localized) with a Gaussian window creating its characteristic
shape illustrated in Figure 3.1 [56]. Several versions of the Morlet wavelet ex-
ist in the literature and sometimes a correction term is added in (4.3) to satisfy
the admissibility condition (3.3) (see discussion and proofs in e.g. [57, 58]). For
large values of w0 however, the correction is negligible and the wavelet is admis-
sible for practical purposes [57]. The choice of w0 = 6 is used in [52] and in our
implementation as well.

Having defined the wavelet function in the time domain, we also recall that a
definition of how the function behaves in Fourier space is necessary. This will be
utilized in the nifty convolution theorem based implementation strategy described
earlier. We again turn to [52] who in their "Table 1" summarize the three wavelet
types and their properties in this regard. For the Morlet wavelet, the Fourier
transform is given as

ψ̂(sw) = π−1/4H(w)e−(sw−w0)
2/2 (4.4)

where H(w) is the heaviside step function defined as H(w) = 1 if w > 0 and
H(w) = 0 otherwise [52]. To explicitly impose ψ̂(0) = 0 is another way to ensure
admissibility as per Section 3.3 [57]. Without providing further details, we now
conclude that the Morlet wavelet as described above is indeed appropriate to use
in our continuous wavelet analysis framework.

4.5 The Software Library Architecture

The main portions of the software solution was implemented in C++ utilizing the
object orientated paradigm to as much extent as possible. The approach forms
a shared library resulting in a dynamic linked library (DLL) file with "C style"
exposed functions. When compiled as binary, this file can be linked from external
applications and systems, hence bringing the wavelet analysis implementation to
any third party platform supporting standard DLL imports. Thus, by confining
most of the logic in the common library file, very little platform specific code needs
to be written as opposed to implementing the wavelet algorithms for each software
package of interest. The following gives an overview of the architecture as well as
a few in-depth explorations at particularly interesting parts.

As we can see in Listing 4.1, the main entry point of the DLL is the function
fnCWTPowerSpectra(...) which has the input data, a flag for wavelet type, and
list of scales to perform the analysis on, as main arguments. Since we are in
the realm of C/C++ we rely heavily on the concept of input/output buffers with
pointers throughout the implementation. After some input and argument checks,
this function initializes the appropriate wavelet object and instantiates the CWT
engine with both the wavelet itself, and data to be analyzed, as input. The analysis
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is performed at each scale independently, lending itself as a good candidate to
parallelism. Thus, the transform at each scale is launched asynchronously using
threaded tasks which are finally joined to bring the execution together before
returning the full result to the end-user.

The inner workings of the CWT object are conceptually nearly identical to
the [53] implementations. A mandatory zero padding of the input data to bring
its number of samples up to the even next power of 2 is followed by a call to the
FFT algorithms bringing the data into the frequency domain. We have already
mentioned that the choice of wavelet is determined by a flag at the beginning of
the execution, but only the Morlet wavelet has been implemented here. However,
using a full-fledged object oriented approach with inheritance and polymorphism
the architecture is very modular and the creation of a new wavelet type is as simple
as deriving from the base class and finally providing only the implementation
details specific to that wavelet (e.g. its definition in Fourier space, ψ̂). For a
thorough treatment of the implementation specifics of all the wavelet types, see
[52, 53]. In their implementation – available in three different language flavors –
they have made a great effort of commenting on details and to reference the actual
definitions and theory sections in the paper directly alongside their source code
in [53].

Once we have obtained an array representation of the wavelet in the frequency
domain at a certain scale inside the function fnTransformScale(...) in the CWT ob-
ject, we multiply it element-by-element with the padded and Fourier transformed
input. To bring the final result back to the time domain, we simply perform an
inverse Fourier transform after which we truncate the array to remove the samples
added by the padding operation. The aforementioned illustrates how relatively
simple the actual transform implementation has become using this approach, and
an outline of this part of the source code is found in Listing 4.2. The overall
architectural approach is documented in Figure 4.1 which shows the high-level
schematics of the algorithm and library core.

4.6 Consuming the Library in MetaTrader

As previously described, MetaTrader is a popular trading platform with extensive
functionality to trade and visualize financial markets. The built-in integrated
development environment (IDE) enables the user to develop automated trading
strategies and extensions to the software using the MQL programming language.
The type of extension we will be utilizing is a so called indicator. These scripts can
contain custom code for proprietary analysis methods and support interaction with
the platform’s user interface by means of altering the charts, adding variables and
signals, as well as providing other visual output to aid the trader in his decision
process. An indicator can, apart from using solely native MQL code, import
the type of DLL files developed here, opening the platform for integration with
practically any other software application and bespoke system, given they expose
some means of external communication. By interacting with the developed DLL
file, we can call our implemented wavelet functions with the financial data provided
by MetaTrader as input, and later return the results to the trader in an visually
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// +------------------------------------------------------------------+
// | WaveletIndicators.cpp |
// | C++ DLL implementation of the Continuous Wavelet Transform |
// | using the Morlet wavelet on a given number of scales. |
// | Copyright 2014, Klas Eliasson |
// +------------------------------------------------------------------+

// Entry point for the CWT in the DLL.
// Input buffer must be of size: signal -length * scales_size
// The first "signal_length" samples in "input" is the data to be transformed.
// Returns the CWT via the full "input" buffer on "scales_size" nbr of scales.
WAVELETINDICATORS_API int fnCWTPowerSpectra(const int whichTransform ,

double *input , const int input_size , const int signal_length ,
const double *scales , const int scales_size)

{
// Ensure proper input and perform data checks.
// ...

// Fire up the engines ...
double dt = 1.0; // Sampling time
vector <double > signal; signal.assign(input , input + signal_length);
CMorlet *psi_morlet = new CMorlet (6.0); // Central frequency set to 6.0.
CWavelet *psi = (CWavelet *) psi_morlet; // Any CWavelet derivative OK here.
CCWT *cwt = new CCWT(signal , psi , dt);

// Parallelized execution of a CWT at each scale
vector <thread > threads;
for(int i=0; i<scales_size; i++)
{
threads.push_back(thread(threadtaskTransformScale , cwt ,

scales[i], i, input));
}

// Wait for threads to finish up.
// Delete pointers , clean up , and return.
// ...

}

// Thread task function definition and pseudo code for illustration.
void threadtaskTransformScale(CCWT* cwt , double scale_val , int scale_idx ,

double *output)
{

// Performing the CWT operation by calling cwt ->fnTransformScale(scale_val);
// Storing the result in the "output" buffer , clean up, and return.

}

Listing 4.1: C++ source code from the main entry point of the
developed DLL showing the starting point of the execution and
setup of the environment. Many implementation details are
omitted to illustrate only the main line of execution.
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Figure 4.1: The high-level schematics of the implemented CWT
algorithm and C++ software library. The one-dimensional input
array x is transformed in paralell at each n scales, resulting in
a two-dimensional output, y.
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// +------------------------------------------------------------------+
// | CWT.cpp |
// | Extract from the CWT class and the actual transform function. |
// | Copyright 2014, Klas Eliasson |
// +------------------------------------------------------------------+

vector <complex <float >> CCWT:: fnTransformScale(double scale)
{

// Initialize variables and obtain the frequency dependent daughter wavelet.
// "x_hat" is of length "n" and contains FFT of padded input data.
vector <complex <float >> daughter = psi ->fnPsiHat(scale);
// ...

// Compute the transform by element -wise multiplication and perform iFFT.
// Store the product back in daughter wavelet data structure to save memory.
// ...
kiss_fft_cfg cfg = kiss_fft_alloc(n, 1/* is_inverse_fft */, NULL , NULL);
for(int i=0; i<n; i++)
{

daughter[i] = daughter[i] * x_hat[i];
}
kiss_fft(cfg , (kiss_fft_cpx *) &daughter [0], (kiss_fft_cpx *) &coeffs [0]);

// Truncate to "n_0" (original) length to remove padded data and
// return the wavelet coefficients for this scale.
coeffs.erase(coeffs.begin() + n_0 , coeffs.end());
return coeffs;

}

Listing 4.2: C++ source code extract from the CWT class showing
the actual transform function. Some details are left out for
better readability.
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appealing way using MQL’s native libraries for plotting and drawing onto the
MetaTrader chart windows.

Figure 4.2: Screenshots of the MetaTrader main window (left) show-
ing the price series graph and indicator window below, and the
MQL development IDE (right).

Writing a custom indicator in MQL is is rather straight-forward, especially
when having some programming background knowledge. There are numerous tem-
plates, good documentation, and the product has a well-established community
surrounding it. Listing 4.3 provides a skeleton on the script file highlighting only
select code snippets illustrating some of the central concepts concerning the con-
sumption of the developed wavelet library. From a technical perspective, one must
first declare the interface and import the relevant DLL file, after which its func-
tions are exposed and can be called as any other MQL function. The main code
execution is performed in the indicator specific event function OnCalculate(...),
which is triggered by the MetaTrader platform as new data is streamed to the
client from the server and is readily available for analysis [59]. At this point we
invoke the fnCWTPowerSpectra(...) function from our DLL and send the input
data along. As execution of the CWT is completed, our input buffer now serves as
placeholder for the output as well, and we begin drawing the actual indicator onto
the chart window. The end-result can be seen in Figure 4.2 (left) and we dedicate
the next section to its exploration and interpretation.

4.7 The CWT Indicator Result Interpretation

In the field of signal processing, the study of spectograms are a common un-
dertaking. These two-dimensional images are usually the preferred method for
visual inspection of the result of a short-time Fourier transform (STFT) which
was introduced early on in Chapter 2. The spectrogram can be plotted as a
three-dimensional surface, or more commonly as a heatmap with frequency on the
vertical axis and time on the horizontal axis. The intensity of the color in this
representation can be said to reveal information about "how much" of a frequency
the signal contains at a particular time. However, recall that it does so under all
the constraints and drawbacks according to the discussion about fixed partitioning
of the time-frequency plane and the Heisenberg uncertainty principle. Formally,
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// +------------------------------------------------------------------+
// | CWT.mq5 |
// | MetaTrader Indicator performing a Continuous Wavelet Transform |
// | using the Morlet wavelet on a given number of scales. |
// | Copyright 2014, Klas Eliasson |
// +------------------------------------------------------------------+

#import "WaveletIndicators.dll"
int fnCWTPowerSpectra(int whichTransform , double &inpt[], int inpt_sz ,

int sig_len , double &scls[], int scls_sz);
#import

// Set indicator properties , allocate buffers , and implement OnInit ().
// ...

// Define the scales used in the transform.
double scales_array [] = {1.0, 2.0, 4.0, 8.0, 16.0};

// This fnc is called whenever necessary to (re)calculate the indicator values.
// Arguments are the price data series and meta information about it.
int OnCalculate(const int rates_total , const int prev_calculated ,

const int begin , const double &price [])
{

// Data checks and limiting the amount of data being analyzed.
// ...

// Copy financial data into the beginning of the input array "compute_array ".
ArrayCopy(compute_array , price , 0, start_pos , nbr_samples);

// Perform CWT for all scales. Buffer "compute_array" will contain result.
fnCWTPowerSpectra (1, compute_array , ArraySize(compute_array), nbr_samples ,

scales_array , ArraySize(scales_array));

// Process output , render graphics , and return.
// ...

}

Listing 4.3: MQL5 source code extract showing only a few
central parts of the CWT indicator implementation. Specific
MQL indicator infrastructure, buffer allocations, and graphics
rendering are among parts left out for the sake of simplicity.
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the spectrogram for a continuous function is defined as the squared modulus (mag-
nitude) of its STFT as defined in (2.5), i.e. |S(u, ω)|2 [46].

As discussed earlier in this thesis, the output of the wavelet transform is a
set of wavelet coefficients. Though there is room for more than one interpretation
of these, the perhaps most intuitive one – in this context – is that each of the
coefficients measure the similarity (or correlation) between a particularly scaled
wavelet instance and the signal, at a certain time position. The result of the
CWT can hence also be seen as two-dimensional image and it makes sense to find
something similar to the spectrogram in the wavelet realm. The answer to this
is the scalogram which is defined in an analogous fashion, namely the squared
magnitudes of the CWT coefficients (as defined in (3.1));

|W (u, s)|2 (4.5)

which – as the name implies – is dependent on scale rather than frequency2 [46].
The visualization techniques of the scalogram representation are the same as its
Fourier based equivalent.

In our application, the heatmap approach was a good fit, rendering a clear
visual distinction between – in relative terms – large and small values, consistent
with the end-user’s assumed intuition regarding the indicator’s interpretation. By
placing the indicator in a window below the actual price series graph, we allow the
user to easily identify events of interest as the graphs visually line up along the
time axis, see Figure 4.2.

In [52], the authors analyze time series generated in a meteorological context.
In one of the examples, they study the scalogram (or power spectrum as they refer
to it) generated by a Morlet wavelet based CWT of sea surface temperature data
collected over more than a century. Among the observations, they are able to
identify patterns of how the characteristics of their data set has changed over the
years. Though their analysis goes deeper than this – and includes development
of methods for significance testing and more – we are inspired to borrow some
terminology from their meteorological setting and apply it to our analysis of the
currency markets.

Rendering the power spectrum of the CWT of a currency pair’s price data over
a given time horizon could potentially reveal – or at least visually confirm – when
there are transient events occurring in the ever-changing market. Recall that this
is one of the major benefits of wavelet analysis; being able to – in the time domain
– localize events expressed in the frequency domain, in an overall non-stationary
setting. Analogous to a thermometer, the indicator could point the trader in the
direction of the market being seemingly "hot" or "cold" at a certain time and on
a particular scale (e.g. a span of minutes or number of hours). It would not be an
indication of a specific directional price movement, but rather a gauge of sudden
jump in either direction, creating discontinuities in the data series, or, temporary
burst of high variance (or volatility to use the language of finance). It is well

2In the following implementations we use the Morlet wavelet where the scale-frequency
mapping is particularily simple. The Morlet wavelet with ω0 = 6 gives λ = 1.03s, where
λ is the Fourier period (i.e. the wavelet scale is almost equal to the Fourier period in this
case) [52].
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established in academia that these exact phenomena are some of the more famous
stylized facts of financial time series which would speak for the indicator’s useful-
ness. For example, the mathematician Benoit Mandelbrot, who is more known for
his work on fractals and self-similarity (which curiously enough has strong ties to
wavelets and multiresolution analysis), documented that the distributions of stock
market return series often experience so called fat tails, or greater kurtosis. This
means that large price jumps occur more often in these leptokurtic distributions
than sometimes assumed using a model based on the gaussian normal distribution.
The other characteristic, related to the former, is volatility clustering, also docu-
mented by Mandelbrot in 1963, which means that large changes tend to be followed
by other large changes (of either sign) and, similarly, that small changes tend to
be followed by more small changes [1]. Both these phenomena are the study of
many researchers and industry professionals alike, and the CWT indicator could
be an interesting tool aiding in the visualization of them a trading environment.

One can assert that the continuous wavelet transform is a good fit for the
problem by the way it analyzes extreme changes in its input. "Intuitively, abrupt
changes in a signal invariably produce high frequency components. Thus at small
scales s, which correspond to high frequency regions, the scalogram will have high
magnitudes."[20] Mathematically this can be exemplified by performing a wavelet
transform on the Dirac delta function, δ(t), occurring at t = t0, by inserting it in
(3.1) with (3.2) as

W (u, s) =
1√
s

∫
ψ

(
t− u
s

)
δ(t− t0) dt =

1√
s
ψ

(
t0 − u
s

)
(4.6)

Here, as the wavelet is compressed when the scale becomes very small, or rather
s → 0, the modulus of the transform approaches a delta function, |W (u, s)| →
δ(t0 − u). Thus, at small scales, the magnitude of the wavelet coefficients will be
very large at u = t0 which is the location of the original impulse [20]. Equipped
with both intuition and theoretical underpinning, we now set out to study real
market data using our implemented wavelet scheme.

As a first and illustrative example, we applied the CWT indicator to a price
series based on the closing values of the AUD/NZD currency pair aggregated
and sampled every 15 minutes during the month of January 2015. The pair,
comprised of the Australian dollar and the New Zealand dollar, experienced a
couple of interesting events generating two major features in the price data during
the studied period. These were likely sparked by macroeconomic news releases
in the two countries respectively, and generated a good data sample to illustrate
both the price jump and to some extent, volatility clustering. The chart showing
the price series and indicator can be found in Figure 4.3.

Looking at the scalogram generated by the CWT indicator we notice two
groups of high activity, one to the far left and the other to the far right in Figure 4.3.
The first one, starting just after the timestamp 22:45 on January 14th, contains a
sharp upward movement followed a while later by an almost identical movement
in the opposite direction. The CWT indicator gives high readings indicated by
the darker color, and we can see that, though the first price jump gives a distinct
short-lived indicator reading, the second one (after the downward movement which
essentially reestablishes the price at the same level as prior to the event) rather
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Figure 4.3: Screenshot from MetaTrader of the implemented CWT
indicatior applied to 15-minute data of the AUD/NZD pair dur-
ing January, 2015. MetaTrader provided 60 sample windowed
standard deviation indicator at the bottom.
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consist of a somewhat prolonged period of large scalogram values in the higher
scales. This tells us that the analysis has identified events on a broader time
horizon (compared to the very sharp sample-to-sample jumps prior) during this
period. Albeit, from Section 3.5 we know that the time resolution gets worse as
the scales increase, so this is also an explanation as to why the pattern is seemingly
smudged out in time at these higher scales. A visual inspection of the price chart
confirms this, and we can indeed see an increased activity (wilder swings) in the
currency pair after the major event. It is a well known fact that news releases can
create these ferocious swings in the market, and it is easy to see how this can give
rise to elevated volatility levels and a clustering effect while the new information
is digested by the market participants. As a visual confirmation of volatility we
have in this case also added a second indicator below the CWT scalogram. This is
the standard deviation of the price returns using a sliding window of 60 samples.
We can clearly see the "bump" during the event just discussed, although slightly
shifted in time due to the lagging nature of the sliding window approach.

Continuing our example, after things calm down during January 16th, we see
a long stretch of both calm volatility readings as well as a rather eventless CWT
scalogram. However, things change drastically during the night between the 27th

and 28th. An almost identical feature as in the first event presents itself in the
data. A clear spike in the CWT indicator values can be seen on the sharp up-move,
but a somewhat slower decline soon after, does not generate the same signal. The
decline seems to be divided into two phases, spanning multiple data samples and
hence not picked up as an equally sharp movement as prior jumps. This is a good
example of how sensitive the analysis model is in regards to both data aggregation
method, as well as scales chosen to be analyzed. Regardless, in the evening of
the 28th however, we get another very distinct signal from the CWT analysis
that yet another major price jump has occurred. Being in an already elevated
volatility state, this swing also rhymes with the notion of volatility clustering and
Mandelbrot’s reasoning.

To summarize, despite being just a glimpse of a very limited example and a
reasoning more intuitive than statistical, it is uplifting to see the CWT indicator
in action, identifying price jumps and periods of increased volatility by signaling
a "hot" market.

4.8 Limitations Caused by the Cone of Influence

Encouraged by the previous example of analyzing a historical segment of data, we
now turn to some of the indicator’s limitations, and start with one that limits it
practical real-time use. Just as described in the discussion about bridging theory
and practice above, we encounter a major obstacle when trying to analyze the
most recent data points streamed to us (continuously plotted at the very end of
the chart). The edge effects (that actually affects the beginning of our data set
as well but is not usually of equal interest) introduce unfortunate artifacts at the
perhaps most interesting point of the power spectrum, limiting the indicator’s
utility for near real-time analysis. Technically, it is the zero padding strategy
chosen that produces a point of discontinuity at the very end, resulting in an
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indication of the market constantly being very "hot" at the moment. As fresh
data comes in, the prices at the previous points "cool off" more and more and,
when at a certain distance from the end, has reduced its dependence enough from
the zero-values beyond the edge, rending them "safe" to include and trust in the
analysis.

Though it can seem intuitive that the market always is "hotter" at the very
edge, bordering into the unknown future where the market forces and price action
try to settle for the next actual price level, there is actually a quantifiable mea-
surement of the extent of this artificial effect. The authors of the paper which we
commonly refer to herein, defined the e-folding time, a constant chosen for a par-
ticular wavelet so that the wavelet power for a discontinuity at the edge decreases
by a factor e−2 [52]. This is done to ensure that the edge effects are negligible
beyond that point in the analysis. For the particular wavelet we are using here,
the Morlet wavelet, the e-folding time τs can be computed at each scale, s, as

√
2s.

As a matter of fact, the above reasoning does not only apply to the very
edges. The scaling nature of the daughter wavelets creates a wider and wider set
of affected samples centered around any event in the time domain as the scale
parameter increases. Rising up through the scalogram as an expanding cone,
the phenomena is commonly know as the cone of influence (CoI). In [3], Mallat
discusses the CoI originating from an event at time v with a ψ that has a compact
support equal to [−C,C]. He concludes that, since the support of ψ((t − u)/s)
would be equal to [u−Cs, u+Cs], the cone of influence of v would be defined by
|u − v| ≤ Cs [3]. This relationship is illustrated in Figure 4.4, and is as we can
see, dependent on the choice of mother wavelet.

In other words, any major event – like a singularity midway into the time series
– will heavily influence the wavelet coefficients in the scales above it, increasing its
spread in time as it travels upward. The phenomena (which we have already gotten
a glimpse of in the previous AUD/NZD analysis example) is clearly illustrated in
Figure 4.5 where one can see the CoI and its characteristic shape3 caused by an
abrupt event in the time series.

The event depicted in Figure 4.5 is "Francogeddon" (or at least so it was
nicknamed by the trading community) and occurred on January 15th, 2015 after
a surprise announcement from the Swiss National Bank. The central bank had for
several years maintained a ceiling of the value of their Swiss Franc. The policy
was maintained by buying up vast amounts of foreign currency to keep the value
of the Franc below a rate of 1.20 Francs per Euro. The financial crisis and its
aftermath had led to an enormous interest in the – traditionally considered – safe
haven driving demand for, and valuation of, the Swiss Franc to levels where it
had started to cripple the country’s export industry. In a sudden move in early
2015, the central bank decided that the appreciation cap was no longer needed and
the immediate market impact that ensued was next to indescribable [60]. Almost
instantaneously gaining about 30 percent against the Euro, it created a market
data event in the EUR/CHF pair that get as close to a theoretical singularity one
can hope for in the context of our wavelet analysis illustrations. By studying this
feature we can clearly illustrate how the CWT indicator reacts on the sudden price

3In this example, we have chosen the scales as a power of two, hence doubling the
width of the affected samples (CoI) at each analyzed scale.
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Figure 4.4: Illustration of the cone of influence of event v in the
time-scale plane. Conceptually redrawn from [3].

jump at the lowest of scales, and how the cone of influence rises up through the
higher scales, spreading out in the time domain4.

In the next chapter we will discuss the aforementioned results further and
reflect back on the work performed in this thesis.

4As a side-note, we can also see traces of higher CWT readings scattered throughout
the scales in the period following the event, reflecting the higher volatility that followed
the "release" of the currency. Many forex traders went bust being on the wrong side of
this trade and both trading and brokerage firms, even those partially hedged against the
directional move as such, could not handle the increased volatility and negative client
accounts that followed. Many well know names struggled, some were bailed out by loans,
or even went bankrupt after not being able to meet and maintain the industry regulated
minimum capital requirements.
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Figure 4.5: Screenshot from MetaTrader of the CWT indicator
applied to EUR/CHF (sampled hourly) around the time of
"Francogeddon" on January 15th, 2015. This event clearly illus-
trates the characteristics of the CWT power spectrum around
a discontinuity in the data.



Chapter 5
Discussion and Reflections

In the following section we will discuss the problem and results of the previous
chapter and our implementation. We will also reflect back on the first chapters
and touch on the questions that we raised in the introduction for these. Lastly,
we will point to some interesting areas of further research.

5.1 Discussion

This thesis work set out to solve the problem of implementing a volatility exploring
indicator for a desktop trading software using wavelet analysis. By approaching
volatility from the frequency (scale) domain, we bring signal processing and a rigid
analysis framework to the area of financial trading. After reviewing some of the
vast theory behind wavelet analysis, we conclude that it is a theoretically viable
method to approach to the problem due to its advantages over traditional Fourier
analysis in the context of obtaining both a good temporal and spectral localization
for transient events in non-stationary data. As we have explained, this is a result
of the adaptive partitioning of the time-frequency plane.

While implementing the technical solution we stumbled upon several challenges
in bridging theory and practice. The high degree of freedom that comes with the
wavelet framework is also its own nemesis and the idiom "The Devil is in the
details" certainly applies. Many of these issues were left for exploration in further
research.

As we launched the application into the real world, we focused on illustrating
the software’s abilities with a couple of examples. We can conclude that the CWT
indicator reacts visually on a set of interesting features in the data. In particular,
we could see that large sudden price changes, creating jump discontinuities in the
time domain of the data series, gave rise to large wavelet coefficient magnitudes.
These were clearly visible in the scalogram in the shape of the cone of influence. It
should be pointed out that our results here in themselves are no unique findings,
and the use of wavelets in this regard is well-documented in the literature. For
the interested reader, we recommend [61] or [62], the latter also including a brief
overview of the considerable body of literature on discontinuity detectors that are
not wavelet based.

We also reviewed and discussed volatility clustering, and could in the examples
see that a large price movement indeed often was followed by a period of heightened
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volatility as signaled by prolonged CWT indicator readings after these events.
Though this effect is far more complex than what we have accounted for here, the
application of wavelet theory to volatility analysis is indeed an interesting topic.
A few further wavelet-based approaches to this exists in the literature, and [36] is
an excellent book written by long-time finance and wavelet researchers.

Lastly and again, the results produced by our particular wavelet scheme heavily
depends on a number of very specific implementation decisions. To generalize the
analysis and interpret the results more scientifically, we could follow the efforts
in [52] who show how to apply more rigorous statistical testing and derive e.g.
significance levels in relation to a discussion of peak values in the power spectrum.
Further quantitative analysis of the indicator readings of different price movement
scenarios could further answer the question as to the contribution of this method
to similar industry efforts.

Having successfully implemented a fully functional solution and used it in a
real trading software with historical data, we have showed that wavelet analysis
indeed is an interesting and viable area to explore in the context of trading and
volatility. Though one could access and process the raw CWT output for further
analysis, the visual market indicator lends itself better to a subjective, historical,
and explorative analysis rather than, for example, creating a quantifiable and
predictive trading signal in real-time.

As a remark, we further hope that the preceding implementation can serve as
inspiration and starting point for further research to practitioners and financial
software developers curious in the topic of applying wavelet analysis in a financial
trading environment.

5.2 Further Research

We have already pointed out some of the shortcomings of our implementation.
Many of these would have been interesting to investigate further, but due to time
constraints, left for future work. In particular, the following areas of the imple-
mentation would greatly benefit from more research.

The first is the boundary handling of the time series data. We mentioned sev-
eral methods available to us, and it would be interesting to explore this in more
detail. With a somewhat philosophical reasoning, instead of the zero padding, we
could for example implement a constant-value padding where we extend the data
with its last known price point, to reflect that the equilibrium between buyers
and sellers is assumed to continue as long as no new information enters the mar-
ket. This would, perhaps, be more coherent with our understanding of the price
discovery process or at least motivate a specific implementation. It is still to be
determined which final method of data extension would result in the best mitiga-
tion of the boundary effects and their implications to the specific application at
hand. To approach the problem from a different angle, a venture into "wavelets
on the interval" and the modifications to both the functions and the transform
to naturally adapt to the finite data set as briefly touched on, is certainly also
an interesting study for the future. The importance of research in this area is
particularly pressing in financial trading applications where the most recent data
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usually is the focal point of study, and near real-time analysis is in high demand.
Further, by implementing a larger set of mother wavelets in our software, we could
explore other wavelets’ properties, their strengths and weaknesses, along with the
tradeoffs and sometimes conflicting relationships that they impose. The choice of
wavelet function is always going to be an essential part of any implementation or
analysis where the results are subject to (scientific) scrutiny.

Secondly, as our implementation time was limited, this is naturally an area that
holds much room for further expansion. Without constraints, this implementation
and the analysis of the CWT indicator’s readings could be made with much more
rigor. For example, it could be interesting to clarify which values are affected – and
how much – by the cone of influence, or to provide a more extensive motivation
behind the scales and data sampling intervals used. To its defense, the CWT
indicator and its use within the MetaTrader platform, is intended to strengthen or
confirm a trader’s intuition about the market’s behavior in a daily trading session,
rather than quantitatively analyze the wavelet power spectrum. As long as it
does so correctly within reasonable levels and under such assumptions, it serves
its current purpose and an extension of the software to become more scientifically
able is a separate undertaking of future research and development.

5.3 Reflections

In the first part of this paper, we came to realize that the story of wavelets is
a story of extraordinary people working hard to advance the science and bring-
ing it to practical application. From the outset, we aimed to provide a historical
background that chronologically explores the development of wavelet theory by
including these scientists, highlighting some of their contributions to the field as a
tribute to their accomplishments. Initially driven by practical applications in the
oil industry, modern wavelet theory was rapidly propelled through new advance-
ments in computer science and vitalized by the dawn of the digital revolution
which brought an exponential growth of sheer computing power. But apart from
story-telling, the second chapter also tries to convey what fundamental problem
the wavelet approach tries to solve, and that it provides a new perspective on an
age-old dilemma. Simply put, we need wavelets to tackle the problem of joining
the two dimensions, time and frequency, in a better way than was accomplished
prior. By taking an adaptive approach under the constrains of the Heisenberg
uncertainty principle – which could be said to separate the two – we can partition
the joint-dimensional plane in a fashion that give us a good localization from both
perspectives. This understanding was vital for the rest of the presentation, and
great focus was put on it to lay a foundation for the next chapter.

In chapter three, we brought mathematical formalism rather than trivia and
scrutinized the wavelet functions themselves as well as the continuous wavelet
transform. In essence, the wavelet transform is similar to the windowed Fourier
transform, however introducing the notion of scale by dilation of the wavelet –
window – function during the analysis. This creates an adaptive – in contrast
to a fixed – partitioning of the time-frequency plane which is beneficial in many
applications. There is a general inverse proportional relationship between scale
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and frequency, but no universal precise mapping exists and it depends on the
mother wavelet function chosen for the transform. Though we touched on most of
the central components of the core of the continuous wavelet transform, it should
be pointed out that the branches of our wavelet tree only reach so far, and the
roots only so deep, hence many parts have been left out of scope or merely just
scratched on the surface.

In the final act we built a narrow but illustrative bridge between theory and
practice in the setting of financial trading. After providing an introduction to
the world’s currency markets and its retail segment in particular, the continuous
wavelet transform was implemented and the result turned into an indicator plu-
gin for a popular desktop trading application to show how it can be used in this
context. Hidden behind countless hours of C++ programming and debugging, the
software came to reveal some interesting features and demonstrated via examples
that it could serve its rudimentary purpose. By presenting our hands-on approach
we additionally hope that the reader got a good glimpse of – and gained appreci-
ation for – the process as such, of bringing a complex theoretical framework into
a practical user-centered application.

As a final and ending remark, under the given constrains of the physical limi-
tations of the time domain, I extend this thesis as a very small leaf, on a tiny twig,
somewhere far out on a branch of Daubechies’ wavelet tree, standing in the forest
of functional analysis...
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