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Abstract

Potato cultivation is vast for many agricultures in Sk̊ane. What many might
not be aware of, is how much pesticides which are used in the cultivation
process. In ”Late blight prediction and analysis”[1] predictions of late-blight
attacks was modelled on potato-corps using Elastic Net among other meth-
ods. This thesis is an algorithmic complement describing Alternate Direction
Method of Multipliers (ADMM) and its use for efficient optimization of Elas-
tic Net.

Initially a firm foundation is lied introducing the primal- respectively dual-
problem and how the relation can be used to define optimization methods.
The finale of those is ADMM. Its predecessors are also properly introduced
in this thesis.

Then using the same data as in ”Late blight prediction and analysis”[1],
an experiment looking into parameter effects in both ADMM and Elastic
Net is conducted. Some intuitions are confirmed, such as penalty effects and
similar. Notably is the robustness of ADMM, despite this it can be more or
less effective. Example wise it was found that some control parameters in
ADMM and Elastic Net has a firm relations and should be properly chosen.
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Chapter 1

Introduction

In order to preserve and optimize the harvest, farmers heavily use pesticides.
One of the corps which needs the most spraying in Sweden is potatoes. Of
those pests, late-blight is considered to be the worst. Late blight is a fungus
like oomocyte which causes foliage decay. Due to its adaptiveness it is hard
to find good persistent treatments. If farmers do not protect their harvest
against late blight the expected profit will likely be heavily reduced. In ad-
dition to this, there is a climate trend which is beneficial to the late blight
which is due to increasing humidity in Sweden [1].

The number of fungicidal sprays have been limited to reduce the environ-
mental stress. Experiments suggest that spraying more than ten days before
the first sign of late blight still obtain an optimal effect, but if the spraying
is more delayed relative losses are very probable. After the first application
the farmers continuously apply fungicides approximately once a week until
defoliation1. One of the large issues is to predict the appearance date which
is needed in order to spray in time. The paper ”Late blight prediction and
analysis” is an experiment trying to find more accurate models which can be
used to forecast the first sign of late blight [1].

1Before harvest the plant foliage is chemically removed which is known as defoliation.
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The data which was used in the thesis ”Late blight prediction and analy-
sis” included cultivation variables such as fertilization need on the fields,
kind of soil, irrigation, amount of fertilization, pH value, location of experi-
ment, year, treatments, late blight infection levels planting-, defoliation- and
harvest dates. These data was collected in three locations, Kristianstad-
Mosslunda, Borgeby and Lilla Eldsberga during 1983-2012.

due to adjusted law regulations, the adaptiveness of the oomycyte and several
other factors, the treatments used in the experiments are different through
the years and only denoted as ”best”, ”worst”, ”control group to best” and
”non-treated”. The weather data was modeled to corresponding station in
lack of real measurements. It contained hourly samples of wind speed, tem-
perature, rain fall, relative humidity and relative humidity above 90%. Sev-
eral data transformations were considered manipulating the covariates in
order to improve the result. Lastly missing data was restored using imputa-
tion [1].

All of above was considered to be possible parameters, which resulted up
in approximately 70 different variables. Some measurements were gathered
yearly, some daily and a few hourly. Due to change in late blight dynamics
only data between 1994-2012 was used resulting in 54 measures of late blight
infections. These measurements were gathered in a p×n matrix A where the
columns consists of kind o measurements and rows the value at given time,
location and treatment. To obtain a robust consistent model, parameter esti-
mation in the experiment was made using elastic net and manual parameter
selection. The models considered was linear regression and cox-regression
validated by cross-validation [1].

In ”Late Blight Prediction and Analysis” the methodology is discussed where
as many of the numerical aspects were left out [1]. This paper is intended as
a complement to the paper to further investigate one of the possible numer-
ical approaches, namely problem solving using Elastic Net by Alternating
Direction Method of Multipliers (ADMM) optimization. The main emphasis
in this thesis lies within experimentation of parameter choices in ADMM
respectively Elastic Net by investigating how these affect convergence, accu-
racy and the final model.
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To get a deeper understanding of ADMM optimization also its precursors,
the Dual Ascent method and Method of Multipliers, will be studied in this
thesis. The thesiMethods will be restricted to one of the issues which was
looked into in ”Late Blight Prediction and Analysis”, namely profit modeling.
All experiments will be carried out using Python.

1.1 Optimization methods

Alternating Direction Method of Multipliers, also known as ADMM, can be
traced back to the classic paper On the numerical solution of heat conduc-
tion problems in two and three space variables which was published 1956
[2]. Since then multiple papers have been published in the subject and still
up-to-date. During early stages several papers with similar methods were de-
veloped and eventually equivalence was noted between them. One such case
is the Douglas-Rachford algorithm known from numerical analysis which is
equivalent to ADMM [3].

The efficiency of ADMM depends heavily on the problem setting. Example
wise under strong convexity of one objective term it can be shown that it has
linear convergence [4, 5], whereas in the most general setting the convergence
rate is 1/ε2 [6]. ADMM is not always the best algorithmic choice as there
may be more efficient methods under some conditions. But ADMM preforms
rather well in spite of the problem setting and is very flexible. Currently the
methodology is used in many machine-learning and big data applications [3].
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1.1.1 The Primal and Dual problems

The primal problem

Definition 1. For an objective function f : Rn → R, with linear constraints
Ax = b, where A is an m× n matrix of rang m with m < n, and b a column
vector with m elements. Then we say the primal problem is:

minimize f(x) with respect to x

subject to Ax = b.
(1.1)

Note that the extreme-values of f are not necessarily equal to those under
the constraints.

Feasibility

Any vector x̂ which satisfies the given constraints is said to be a feasible point.
The set of all vectors satisfying the constraints is know as the feasibility
region. For any pair of feasible points x̂ 6= x̄ the following must be satisfied:

Ax̂ = Ax̄ = b

⇐⇒ A(x̂− x̄) = 0(m×1).

where 0(m×1) is a zero vector with dimension (m × 1). We call p = x̂ − x̄ a
feasible direction i.e.

A(x̂+ αp) = Ax̂+ αA(x̂− x̄) = Ax̂ = b

is feasible for all scalars α ∈ R [7].
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Optimality conditions of the primal problem

There always exists an n × m matrix Z satisfying AZ = 0(m×m). Then
each column in Z must be a feasible direction as AZ:,i = 0(m×1) for all
i = 1, 2, . . . ,m. Similarly for all columns that span the space of feasible di-
rections.

Consider an arbitrary linear combination of Z, p = Zpz. Further denote
the gradient of f as ∇f and its Hessian as H, moreover let ε ∈ R and
0 ≤ θ ≤ 1. Then by Taylor expanding f along p we obtain:

f(x∗ + εZpz) = f(x∗) + εpTz Z
T∇f(x∗) +

1

2
ε2pTz Z

TH(x∗ + εpθ)Zpz.

Note that if:
εpTZT∇f(x∗) < 0 (1.2)

then if |ε| is small enough

εpTz Z
T∇f(x∗) +

1

2
ε2pTz Z

TH(x∗ + εpθ)Zpz < 0

=⇒ f(x∗ + εp) < f(x∗).

I.e. in a neighbourhood of x∗ exists a point with lower function value, hence
if (1.2) is true x∗ can not be a minimum. This implies that if x∗ solves the
primal problem (1.1) then pzZ

T∇f(x∗) = 0. As the same holds for all linear
combinations p, we further obtain if x∗ is a solution then [7]:

ZT∇f(x∗) = 0(n×1). (1.3)

As A has full rank and m < n, Rn = ker(A) ⊕ im(AT ). Consequently
there exists λ, fz such that

Rn 3 ∇f(x∗) = ATy + Zfz. (1.4)

Multiplying Equation (1.4) with ZT from the left we obtain:

ZT∇f(x∗) = ZTATy + ZTZfz.
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Equation (1.3) implies that if x∗ is a solution to the primal problem then
ZT∇f(x∗) = 0(n×1). Further the properties of a basis implies that ZTZ is
non-singular. Hence fz in Equation (1.4) must be a zero vector. Then it
follows from Equation (1.4) that the gradient ∇f(x̂) is a linear combination
of the rows of A:

∇f(x̂) =
n∑
i=1

yAi,: = yTA

for some m × 1 vector y. The vector y is uniquely determined only if the
rows of A are linearly independent [7].

If we consider the Taylor expansion along the feasible direction p, assum-
ing x∗ solves the primal problem (1.1) we get:

f(x∗ + εp) = f(x∗) +
1

2
ε2pTz Z

TH(x∗ + εpθ)Zpz.

If the projected Hessian is negative definite ZTH(x∗ + εpθ)Z < 0, then
f(x∗ + εp) < f(x∗). This contradicts the fact that it is a solution to the pri-
mal problem. Hence in order for x∗ to be a solution, the projected Hessian
must be positive semi-definite [7].

This can be used as a tool to solve a large problem in a smaller setting.
In summary the optimality conditions for a feasible x̂ are[7, 3]:

c.1 Ax̂− b = 0

c.2 ∇f(x̂)− yTA = 0

c.3 projected Hessian must be positive semi-definite.
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The Lagrangian

For a given primal problem (1.1) the Lagrangian is defined as:

L(x, y) = f(x) + yT (Ax− b)

where y is the (1 × n) vector of Lagrangian multipliers and f the objective
function which are constrained by Ax = b. Then setting the partial derivative
with respect to y, to zero will ensure (c.1),

∂L(x, y)

∂y
= Ax− b = 0

and similar the derivative with respect to x:

∂L(x, y)

∂x
= ∇f(x) + yTA = 0

becomes the second optimality condition (c.2). We emphasize, that for all
feasible x̂ (c.1) implies:

L(x̂, y) = f(x̂) + yT (Ax̂− b) = f(x̂).

and similarly
minx̂∈p f(x̂) = minx̂∈p L(x̂, y).

The dual problem

Definition 2. Denote the Lagrangian as L(ω, y), ω ∈ Rn and y ∈ Rm. Then
the dual problem is defined as [8]:

maximize L(ω, y) with respect to y and ω

subject to
∂L(ω, y)

∂ω
= 0.

(1.5)

Further it can be shown that the dual objective function must have a negative
definite Hessian [9]. The dual constraints imply minimization with respect
to ω, hence dual problem can be equivalently expressed as maxyminωL(ω, y).
Then the dual objective function is identified as g(y) = minωL(ω, y).
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Example

Let the objective function f represent a cost of some goods and the con-
straints rules regarding the goods. Rule violations are penalized with an
additional cost y. The total cost would be given by the Lagrangian.

The primal problem would be to minimize the cost without violations. The
Dual problem is to maximize the cost by maximizing the violation penalty
along feasible directions.

Dual gap

Let x∗ be a solution to the primal problem and y∗ to the corresponding dual
problem. Then we call the difference f(x∗) − L(x∗, y∗) the dual gap. If the
dual gap equals zero, it is said strong duality holds. Assuming convexity of f
and strong duality, the solution to the primal problem, x∗, can be recovered
by [3]:

x∗ = minx L(x, y∗) (1.6)

This is the engine which will be used in the optimization algorithms consid-
ered in this thesis.
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1.1.2 The Dual Ascent & Dual
Decomposition methods

Given a primal problem (1.1) with the linear constraints Ax = c. Under the
assumptions of strict convexity i.e.

f(tx1 + (1− tx2)) < tf(x1) + f((1− t)x2) ∀x1 6= x2, ∀t ∈ (0, 1)

and differentiability of the objective function f , the Dual Ascent method
consists of the following iteration [10]:

xk+1 = argminx L(x, yk)

yk+1 = yk + ρ(Axk+1 − c)

for given step size ρ > 0. By maximizing its dual function2 g(y) it converges
to the solution of the primal problem [3]. The iterates should proceed until
primal- and dual feasibility are obtained for some set tolerances.

If the objective function f is separable, i.e. it satisfies:

f(x) =

p∑
i=0

fi(xi)

then it is possible to solve partial sub-problems in parallel, this is know as
the Dual Decomposition [3, 11].

2Ascending the dual of which the name Dual Ascent.
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1.1.3 The Method of Multipliers and augmented La-
grangian

The proximal operator

A function h : Rn → R is called a closed if

{x ∈ domf |f(x) ≤ µ} ∀µ ∈ R
is a closed set. If h(x) is convex, h(x) > −∞ ∀x and h is not identically
equal ∞, the function is proper convex.

Assume h : Rn → R is a proper closed convex function then the proximal is
defined as:

proxh(v) = argminx

(
h(x) +

1

2ρ
||x− v||22

)
, ρ > 0

This can be interpreted as a trade off between minimizing h and being close
to v for some weight ρ. It can be shown that [12]:

x∗ = argmin h(x) ⇐⇒ proxh(x
∗) = x∗,

Hence it is possible to find the optimum of a function h using the proximity
operator. One of the most primitive methods to do so is the proximal point
algorithm which is defined as:

xk+1 = proxh(x
k). (1.7)

The augmented Lagrangian

Applying the proximal point algorithm (1.7) to the dual function we obtain:

proxg(y
k) = maxyargminx

(
L(x, y)− 1

2ρ
||y − yk||22

)
.

Maximizing with respect to the dual variable, y, we find:

Ax− b− 1

ρ
(y − yk) = 0

⇐⇒ yk = y − ρ(Ax− b).
Then substituting into the original problem:

maxyargminx

(
L(x, y)− 1

2ρ
||y − yk||22

)
= maxyminx

(
f(x) + yT (Ax− b) +

ρ

2
||Ax− b||22

)
.

The minimized function is known as the augmented Lagrangian, Lρ(x, y),
i.e.:

Lρ(x, y) = L(x, y)− ρ

2
||Ax− b||22
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The Method of Multipliers

In order to increase the robustness and avoid the strict convexity assumption
of f , the Method of Multipliers was developed [3]. It extends the Dual Ascent
method by considering the augmented Lagrangian:

Lρ(x, y) = f(x) + yT (Ax− c) + ρ/2||Ax− c||22

where ρ > 0 can be viewed as a penalty parameter. Note that if ρ = 0 the
augmented Lagrangian would coincide with the Lagrangian. The Method of
Multipliers considers the reformulated primal problem:

Minimize f(x) + ρ/2||Ax− c||22 with respect to x

Subject to Ax = c

where x ∈ Rn, A ∈ Rp×n and f : Rn → R. Note that for feasible x̂,
f(x̂) + ρ/2||Ax̂ − c||22 = f(x̂). Following the same structure as in Dual
Ascent, assuming the duality gap being zero, the optimal solution x∗ may be
obtained as:

x∗ = argminxLρ(x, y
∗)

where y∗ is the optimal dual solution. Then the Dual Ascent for augmented
Lagrangian, also known as the Method of multipliers, can be formulated as:

xk+1 = argminxLρ(x, y
k)

yk+1 = yk + ρ(Axk − c)

where the scalar ρ can be interpreted as step size. By using the penalty pa-
rameter as step size, convergence to a feasible region is ensured. It’s possible
to use non-constant ρ to improve the convergence, however in this thesis it is
assumed to be constant. The Method of Multipliers has better convergence
properties and need less assumptions compared to the Dual Ascent. In par-
ticular it can be applied in cases where f is not strictly convex. A huge con
is as the augmented Lagrangian is not generally separable, the method can
not be decomposed [3].
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1.1.4 Alternating Direction
Method of Multipliers

ADMM is known to be a mixture between Dual Ascent and Method of Mul-
tipliers, taking the best from both algorithms. Decomposability from Dual
Ascent and the convergence properties of Method of Multipliers. Assuming
f and g are convex with the constraint Ax + Bz = c, the following primal
problem is considered:

Minimize f(x) + g(z)

Subjective to Ax+Bz = c

where x ∈ Rn, z ∈ Rm, A ∈ Rp×n, B ∈ Rp×m and c ∈ Rp. Note that introduc-
ing the secondary variable z the method becomes more flexible. Similar to
the method of multipliers, it uses the augmented Lagrangian which extends
to:

Lρ(x, y, z) = f(x) + g(z) + yT (Ax+Bz + c) +
ρ

2
||Ax+Bz − c||22

in the ADMM case [3].

By alternating updates between x and z followed by a dual update the
ADMM algorithm is [3]:

xk+1 = minx Lρ(x, y
k, zk)

zk+1 = minz Lρ(x
k, yk, z)

yk+1 = yk + ρ(Axk+1 +Bzk+1 − c).

12



Stopping criteria

Based on the primal and dual feasibility regions, stopping criterion can be
derived. In an ADMM setting those are:

primal feasibility:

Ax∗ +Bz∗ − c = 0

dual feasibility:

∂f(x∗)

∂x∗
+ ATy∗ ∈ 0, and

∂g(x∗)

∂x∗
+BTy∗ ∈ 0.

Based on these the dual (εdual) and primal (εprimal) residuals can be derived,
see [3, Appendix A] for a complete derivation:

rprimal = Axk +Bzk − c.

rdual = ρATB(zk − zk−1)

If these are small enough convergence has been obtained. One way to decide
whether they are good enough is to use the absolute- and relative tolerances,
εAbsolute respectively εRelative:

εprimal = εAbsolute
√
p+ εRelativemax

(
||Axk||22, ||Bzk||22, ||c||22

)
εdual = εAbsolute

√
n+ εRelative||ATyk||22.

Then the stopping criterion is:

Stop if :

{
||rkprimal|| ≤ εprimal

||rkdual|| ≤ εdual
. (1.8)

See Distributed Optimization and Statistical Learning via the Alternating Di-
rection Method of Multipliers [3, Appendix A] for details.
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Convergence

Assuming f : Rn → R ∪ {∞} respectively g : Rm → R ∪ {∞} are closed
proper and convex. Further assuming the unaugmented Lagrangian has a
saddle point, it can be shown that:

• The residual, r = Ax+ Bz − c,
converge to zero. I.e. the prob-
lem tends to feasible solutions.

• The objective function converge
to the optimal value of the pri-
mal problem.

• The dual variable converges to
its optimal value.

rk −−−→
k→∞

0

f(xk) + g(zk) −−−→
k→∞

p∗

yk −−−→
k→∞

y∗

Neither x or z necessarily converge to their optimal values under the given
assumptions, however they do get arbitrarily close [3].

In practice ADMM preform rather well under modest accuracy conditions,
but tends to be slow if higher precision is wanted. Its possible to combine
ADMM with other algorithms3 in order to improve convergence ratios etc. In
general ADMM is suitable for large-scale problems where modest accuracy
is enough [3].

3This will not be investigated in this thesis.
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1.1.5 Overview

To summarize the methods we consider the ADMM algorithm as a basis. Let
the penalty parameter from Method of Multipliers and ADMM be ρ1 and call
the step size parameter ρ0. Then consider the following set up:

Lρ(x, y, z) = f(x) + g(z) + yT (Ax+Bz − c) +
ρ1
2
||Ax+Bz − c||22

xk+1 = minx Lρ(x, z
k, yk)

zk+1 = minz Lρ(x
k, z, yk)

yk+1 = yk + ρ0(Ax
k+1 +Bzk+1 − c)

Then we obtain by respective choice:

• ADMM

• Method of
Multipliers

• Dual Ascent

• Dual Decomposition

if ρ0 = ρ1

if ρ0 = ρ1, g(z) = 0 and Bz = 0, i.e. joint mini-
mization of all variables.

if ρ1 = 0, g(z) = 0 and Bz = 0

if ρ1 = 0, g(z) = 0, Bz = 0 and the objective
function is decomposed.

Note that above is only from an algorithmic point of view. Example wise is
the Dual Ascent more restricted by assumptions such as strict convexity.
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1.2 Modelling Data

When creating models several issues appear, which kind of model is the
most suitable, which parameters should be used, is it necessary to consider
transformations etc. Given observations, a = [a1, a2, . . . , an], we want a
model of the following form:

f(a) =
n∑
i=1

xiai + εi

where f(a) is the response as a function of given observations a with param-
eters x = [x1, x2, . . . , xn] and εi noise. Assume we are given n observations
of a, denote these as the rows in the matrix A, and respective response
c = [c1, c2, . . . , cm]. A common approach to such problem would be to find
the x which minimize the mean residual x(LS) = argminx||Ax− c||22 and then
use the estimate of x, x(LS) to estimate the response:

ˆf(a) =

p∑
i=1

x
(LS)
i ai.

The parameter estimation is know as the least squares (LS) estimate. Such
approach does not account for some measurements may actually not be re-
lated to the response. This is known as over-fitting, i.e. some parameters
would try to estimate noise after all actual information is depleted. If such
occur the model would likely preform worse with data which was not used to
estimated the model. Consequently there might exist better models which
exclude some of the available covariates. In order to cope with such issues
several methods can be used. Commonly used are the Akaike’s and Bayesian
information criteria which evaluate the maximum likelihood relative the in-
formation gained by each parameter. These methods does not preform very
well if the parameter space is large relative the measurements [13].
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1.2.1 Lasso and Elastic Net

The Least Absolute Selection and Shrinkage Operator, Lasso in short, have
a different way to approach over-fitting issues. It aims to find the x which
minimizes:

x(Lasso) = argminx
1

2
||Ax− b||22 + λ||x||1 (1.9)

where ||x||1 =
∑p

i=1 |xi|, x = [x1, x2, . . . , xp], is the l1-norm and λ is a given
penalty. Adding the l1-norm ensures the problem becomes convex and that
the estimate can include zero-valued parameters (those can be interpreted as
removed covariates). The amount of excluded parameters is adjusted using
the penalty λ [13].

If the data is heavily correlated the lasso rarely perform as well as the gen-
eralization Elastic Net :

x(Enet) = argminx
1

2
||Ax− b||22 + λ

(
α||x||1 + (1− α)

1

2
||x||22

)
(1.10)

which allows an arbitrary mix α ∈ [0, 1], of the l1 and l2 penalties. If α ≤ 1
and λ > 0 the problem is strictly convex [13]. When α = 0, i.e. only penal-
ization using the l2-norm, it is known as Ridge regression [14]. Note that no
parameter will be removed when excluding the l1-penalty .

For simplicity let λ1 = αλ and λ2 = (1 − α)λ. The Elastic Net problem
can equivalently be formulated as [3]:Minimize

1

2
||Ax− b||22 + λ1||z||1 +

1

2
λ2||x||22

subject to x=z
(1.11)

As this formulation of Elastic Net fits the ADMM framework (1.1.4) very
well, it will be used through out the thesis. Identifying parts from the ADMM
framework we find

A = −B = I, c = 0

f(x) =
1

2
||Ax− b||22

g(z) = λ1||z||1 +
1

2
λ2||z||22.

Note that A denotes the constraints in ADMM and does not equal A.
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1.3 Sub-differentiability

As some functions which are considered in this thesis are not differentiable, we
shortly introduce the concept of sub-differentials. For a function g : Rn → R
we say c is a sub-gradient if it satisfies:

g(z) ≥ g(z0) + c(z − z0), ∀z. (1.12)

The sub-differential in z0, ∂g(z0), is the set of all sub-gradients c. If g is
differentiable at z0, the sub-differential ∂g(z0) equal the gradient ∇g(z0).
Some useful algebraic properties the sub-differential satisfies are:

∂g(αz) = α∂g(z) (1.13)

∂(g1 + g2) = ∂g1 + ∂g2. (1.14)

Additionally if g is convex then it satisfies [15]

z∗ = argminz g(z) ⇐⇒ 0 ∈ ∂g(z∗).

As an example consider g(z) = |z|, then the sub-differential of around z0 is
found as:

if z0 = 0: |z| − |0| ≥ c(z − 0) ∀z
⇐⇒ 1 ≥ cz

|z|
∀z

=⇒ c ∈ [−1, 1]

else if z0 < 0: |z| − |z0| ≥ c(z − z0) ∀z
⇐⇒ |z| ≥ cz + z0(c+ 1) ∀z
=⇒ c = −1

else if z0 > 0: |z| − |z0| ≥ c(z − z0) ∀z
⇐⇒ |z| ≥ cz + z0(c− 1) ∀z
=⇒ c = 1

obtaining the sub-differential of f :

∂|z| =


{−1} if z < 0

[−1, 1] if z = 0

{1} if z > 0.

(1.15)
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Chapter 2

Analysis of parameter effect

2.1 Derivation of Elastic Net optimized by

ADMM and its precursors

To use any of the dual algorithms either the Lagrangian or augmented La-
grangian is minimized with respect to x respectively z. Initially we consider
Method of Multipliers where joint minimization is needed. Then we deduce
it to Dual Ascent. For minimization in two variables both partial derivatives
must jointly equal zero. First we consider the derivative with respect to x.
Using the notation λ1 = λα and λ2 = λ(1− α), the x-update is found as1:

argminx Lρ(x, y, z) =

= argminx
1

2
||Ax− c||22 + λ1||z||1 +

λ2
2
||z||22 + yT (x− z) +

ρ

2
||x− z||22

1Note that update indices are disregarded for clearer derivations. ”You might not see
the forest because all of the trees”.
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= argminx
1

2
(xTATAx−2xTAT c+cT c)+

λ2
2
zT z+yTx−yT z+

ρ

2
(xTx−2xT z+zT z)

= argminx
1

2
(xTATAx− 2xTAT c) + yTx+

ρ

2
(xTx− 2xT z)

⇐⇒ ATAx− AT c+ y + ρ(x− z) = 0

⇐⇒ x = (ATA+ ρI)−1(AT c+ ρz − y)

Next minimizing with respect to z:

argminz Lρ(x, y, z) =

argminz
1

2
||Ax− c||22 + λ1||z||1 +

λ2
2
||z||22 + yT (x− z) +

ρ

2
||x− z||22

= argminz λ1||z||1 +
λ2
2
zT z − yT z +

ρ

2
(zT z − 2zTx)

Note that ||z||1 is not differentiable, therefore we consider the sub-differential.
Recall the additive and scaling properties (1.14, 1.13) of the sub-differential.
Consequently of these we get the decomposition ∂λ||z||1 = ∂λ

∑p
i=1 |zi| =

λ
∑p

i=1 ∂|zi|. Moreover if the sub-differential is differentiable it equals the
gradient i.e.

∂Lρ(x, y, z)

∂z
=
∂λ1||z||
∂z

+∇z

(
λ2
2
zT z − yT z +

ρ

2
(zT z − 2zTx)

)

=
∂λ1||z||
∂z

+ λ2z − y + ρ(z − x)
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Recall Equation (1.15) in Section (1.3) and consider each zi individually:

∂Lρ(xi, yi, zi)

∂zi
=


− λ1 + λ2zi − yi − ρxi + ρzi if zi < 0

[−λ1 − (yi + ρxi), λ1 − (yi + ρxi)] if zi = 0

λ1 + λ2zi − yi − ρxi + ρzi if zi > 0

The minimum of f(zi) = |zi| is obtained if 0 ∂f , i.e.:

zi = 0,
[−λ1 − yi − ρxi, λ1 − yi − ρxi] ∈ 0

=⇒ zi = 0 if yi + ρxi ∈ [−λ1, λ1]

zi < 0,
−λ1 + λ2zi − yi − ρxi + ρzi = 0

=⇒ z∗i =
λ1 + yi + ρxi

λ2 + ρ
, yi + ρxi < −λ1

zi > 0,
λ1 + λ2zi − yi + ρxi − ρzi = 0

=⇒ z∗i =
−λ1 + yi + ρxi

λ2 + ρ
, yi + ρxi > λ1

A more compact form of the solution (z∗i ) is:

z∗i =

(
yi + ρxi − λ1

λ2 + ρ

)
+

−
(
−yi − ρxi − λ1

λ2 + ρ

)
+

(2.1)

where h(a)+ = max(0, a) i.e. the positive part operator [3]. Due to the
dependence in the joint x and z minimization, i.e. one is needed to obtain
the other, the problem becomes difficult. It is possible to solve using com-
binatorial methods, but it would add further calculations in each iteration
rapidly adding up. A few different approaches to avoid this issue has been
tested all ending in failure.
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2.1.1 The Dual Decomposition method

Consider the Dual Ascent (ρ = 0) method, then the x and z updates will be
independent:

argminx = (ATA)−1(AT c− y)

⇐⇒ ∂(λ||z||1) + λ2z − y ∈ 0

which is possible to solve. As the l1-norm is separable and the x, z updates are
independent we use the Dual decomposition. Then we obtain the zi update:

⇐⇒ ∂(λ1|zi|1) + λ2zi + yi ∈ 0 ∀i = 1, . . . , p.

As this is a special case of Equation (2.1), we obtain the solution:

⇐⇒ zi =

(
yi − λ1
λ2

)
+

−
(
−yi − λ1

λ2

)
+

∀i = 1, . . . , p.

2.1.2 The Alternating Method of Multipliers

If we allow alternating updates, i.e. use the ADMM algorithm, it is possible
to proceed where the Method of Multipliers got stuck. Obtaining the zi-
update:

zi =

(
ρxi + yi − λ1

λ2 + ρ

)
+

−
(
−ρxi − yi − λ1

λ2 + ρ

)
+

∀i = 1, . . . , p.

and, derived as in Method of Multipliers, the x-update:

xk+1 = (ATA+ ρI)−1(AT c+ ρz − y).

ADMM is often given in the scaled form where u = y/ρ, resulting in the
algorithm:

xk+1 = (ATA+ ρI)−1(AT c+ ρ(zk − uk))

zk+1
i =

(
ρ(xk+1

i + uki )− λ1
λ2 + ρ

)
+

+

(
−(ρxk+1

i + uki )− λ1
λ2 + ρ

)
+

uk+1 = uk + (xk − zk)
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ADMM optimized Elastic Net stopping criterion

Recall the general form of the stopping criterion (1.8). Using the Elastic Net
as objective function we obtain as before [3]:

A = −B = I

c = 0.

Assume we want to define a stopping criterion based on the relative residual
εRelative and the constant error εAbsolute. As suggested in section (1.1.4) the
primal respectively dual residuals can be obtained as:

rprimal = εAbsolute
√
p+ εRelative max(||x||22, || − z||22)

rdual = εAbsolute
√
n+ εRelative|| − ρy)||22.

and their feasibility criteria:

εprimal = ||xk − zk||22

εdual = || − ρ(zk − zk−1)||22
Using above we obtain the stopping criterion as follows:

Stop if
(rprimal ≤ εprimal ∩ rdual ≤ εdual) == True

Else proceed iterations.
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2.1.3 Elastic Net Algorithm using ADMM optimiza-
tion

Input and output

The combined ADMM and Dual Decomposition algorithm will have the in-
puts:

Method : Dual Decomposition or ADMM

A : p× n matrix of covariate observations

b : response vector with length n

λ : penalty (λ ≥ 0)

α : penalty weight (α ∈ [0, 1])

ρ : step size and augmentation penalty (ρ ≥ 0)

εAbs : absolute tolerance

εRel : relative tolerance

MaxIter : maximum number of iterations allowed

The algorithm estimates the Elastic Net objective function,

f(x) = ||Ax− c||22 + αλ||x||2 +
(1− α)λ

2
||x||22

subject the constraints Ax = c, penalty λ and penalty weight α. Also ADMM
parameters must be chosen, i.e. step size ρ, tolerances and maximum of
iterations allowed. The algorithm also returns the diagnostic variables εprimal,
εdual, rprimal and rdual.
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Algorithm 1 ADMM optimized Elastic Net

function Elastic net (Method, A, b, λ, ρ0, α, εAbs, εRel, MaxIter)

Choose method, ADMM (ρ0 = ρ1) or Dual Decomposition (ρ1 = 0)

Initialization for:
k, x(0), z(0), y(0) and STOP

Precomutaitons:
ATA, AT b, (ATA+ Iρ1)

−1, p and n

while Stop == False and k ≤ MaxIter do

x(k+1) = (ATA+ Iρ1)
−1(AT b+ ρ1z

k − yk))

z
(k+1)
i =

(
ρ1xi + yi − λ1

λ2 + ρ1

)
+

−
(
−ρ1xi − yi − λ1

λ2 + ρ1

)
+

y(k+1) = y(k) + ρ0(x
(k+1) − z(k+1))

rPrimal = εAbs
√
p+ εRel max

(
||x(k+1)||22, ||z(k+1)||22

)
rDual = εAbs

√
n+ εRel ||y(k+1)||22

εprimal = ||x(k+1) − z(k+1)||22
εdual = ||ρ0(z(k+1) − z(k))||22

if rPrimal ≤ εPrimal and rDual ≤ εDual
Stop == True

end if

k=k+1
end while

return z, rPrimal, rDual, εprimal, εDual

end function
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2.2 Parameter experimentation of ADMM op-

timized Elastic Net in Python using cul-

tivation data

In this section an experiment of Lasso and Elastic net will be conducted
using ADMM optimization. Let A denote the gathered measurements from
the field trials used in ”Late Blight Prediction and Analysis” [1] and b profit
per hectare. By considering different combinations of the inputs:

Penalty parameter λ

Mixing parameter α

Step size parameter ρ

Absolute stopping criterion εAbsolute

Relative stopping criterion εRelative

the experiment will regard the effects in amount of estimated parameters,
number of iterations primal primal- respectively dual residuals.

The Dual Ascent method has an assumption regarding strict-convexity. Vi-
olating this using the algorithm, x converges to −∞. In spite allowing large
errors by setting high tolerances did not fix this issue, neither did different
choices of ρ and λ.
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2.2.1 The effect of the Elastic Net parameters α and λ

The initial scenario

To get a feeling of how λ affect the results a comparison using both Lasso
and Elastic Net for varying λ will be made. Initially evaluating Elastic Net
with λ = 20, α = 0.5, ρ = 1, εAbsolute = 10−4 and εRelative = 10−2 respectively
the Lasso (where α = 1).

Figure 2.1: Parameters estimated using Elastic net (α = 0.5) and Lasso with
λ = 20, α = 1, ρ = 1, εAbsolute = 10−4 and εRelative = 10−2 as inputs. Further
information of the example is given in Section (2.1).

Naturally the estimates lies fairly close to each other as can be seen in Figure
(2.1). Assume we have both a Lasso and an Elastic Net estimate:

x(Lasso) = [x1, 0, x3, 0, x5]
T , x(Enet) = [x1, x2, x3, x3, 0]T .

Then the maximal number of common active parameters is 3. The actual
common active parameters are x1 and x2 i.e. 2. Similarly it was found that
in this case, Elastic net allows more active parameters i.e. 30 against Lasso
which has 24. Generally they agree which parameters that is set to zero, for
given inputs they disagree in 4 of 24 possible cases.
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(a) Termination criteria with respect to number of iterations. Dual fea-
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respect to number of iterations.
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Figure 2.2: Diagnostics of given example using λ = 20, α = 0.5, ρ = 1,
εAbsolute = 10−4 and εRelative = 10−2. All images to the right uses α = 0.5 and
figures to the left α = 1.
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The first ADMM iterations has the most impact on residuals and stopping
criteria see Figure (2.2). After approximately 250 iterations the primal resid-
ual εprimal barely changes. The dual residual improvement ratio is also slight
but proceeds slowly after 250 iterations.

Comparing the number of iterations for Lasso (α = 1) respectively Elastic
net (α = 0.5), it can be seen in Figure (2.2) that Elastic net is faster. Looking
at the dual feasibility criterion they do have a similar shape. With respect
to the primal feasibility Lasso have more jumping tendencies compared to
Elastic net which is more smooth, see Figure (2.2, a, b).

The second scenario

Increasing the penalty parameter to λ = 250, keeping the other parameters
(α = 0.5, ρ = 1, εAbsolute = 10−4 and εRelative = 10−2) the amount of parame-
ters decreases to 16 in Elastic Net and 10 using Lasso. The methods do not
disagree in number of non-zero parameters.
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Figure 2.3: εprimal and εdual with respect to iteration number using ADMM
optimized Elastic net with λ = 250, α = 0.5, ρ = 1, εAbsolute = 10−4 and
εRelative = 10−2 respectively Lasso where α = 1 (Lasso).

Comparing Figure (2.3) to (2.2, a) its notable that εprimal is similar in shape,
whereas εdual tends to be even less ”smooth” using Lasso.
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Effect of varying λ and α

Consider fixed ρ = 50, εAbsolute = 10−4 and εRelative = 10−3, evaluating Elastic
Net for α = 0.02k with k = 0, . . . , 50 and λ = 0, 4, 8, . . . , 400. Plotting the
number of estimated parameters the following image is obtained:
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Figure 2.4: Number of estimated Elastic Net parameters using ρ = 50,
εAbsolute = 10−4 and εRelative = 10−3, for α = 0.02k with k = 0, . . . , 50
and λ = 0, 4, 8, . . . , 400.

Figure (2.4) confirms that generally increasing the penalty λ results in fewer
parameters. Similarly higher weight of the l1-norm, α, results in more pa-
rameters are set to zero. When either λ or α is close enough to zero all
parameters are included in the estimation. Note that in Ridge regression
(α = 0) the solution always includes all parameters. Similarly if λ = 0 it is
regular least squares estimation.
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The number of iterations until convergence with respect to α and λ can be
illustrated as:

Figure 2.5: Number of Elastic Net ADMM iterations with respect to λ and
α where α = 0.02k, k = 0, . . . , 50 and λ = 0, 4, 8, . . . , 400 with fixed ρ = 50,
εAbsolute = 10−4 and εRelative = 10−3.

Figure (2.5) reminds an inversion of Figure (2.4). If either λ or α is large
whilst the other is not, the algorithm takes relatively few iterations. If both
λ and α are relatively large (α > 0.8, λ > 250) the amount of iterations
increases significantly. Some combinations of λ and α also tends to be faster
to solve. Example wise compare α = 0.4, λ = 350 and α = 0.45, λ = 350
in Figure (2.5), then it can be seen that the number of iterations locally
decrease. This can be interpreted as using more parameters to estimate the
objective is faster. If only a few parameters are wanted, then there are more
combinations of active parameters to consider.
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2.2.2 The effect of ρ and its relation to λ

When deriving the x and z updates one may note that it is possible to write
the objective function in several ways. Particularly its possible to introduce
the l2-penalty either in terms of z, x or a combination. Using the latter it is
one obtain the updates2:

xk = (ATA+ (ρ+ λ2/2)I)−1(AT c+ ρ(zk − uk))

zk =
(ρ(x+ u)− λ1)+

ρ+ λ2/2
+

(−ρ(x+ u)− λ1)+
ρ+ λ2/2

Using this formulation it is clear that λ2 = λ(1−α) = λ1
1− α
α

is related to ρ.

Evaluating for ρ = [1, 3, . . . , 201], λ = [1, 1.5, . . . , 50], with fixed εAbsolute =
10εRelative = 0.0001 and α = 0.5. Initially plotting the amount of parameters
we obtain:
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Figure 2.6: Number of Elastic Net ADMM parameters with respect to for
ρ = [1, 3, . . . , 201], λ = [1, 1.5, . . . , 51], fixed εAbsolute = 10εRelative = 0.0001
and α = 0.5.

It can be seen in Figure (2.6) that as ρ decrease the number of active param-
eters increase. As λ increase generally less parameters are included in the
estimated model. If ρ is much larger than λ it tends to affect the number of
parameters heavily.

2To get an equivalent expression λ2 is compensated by 1/2.
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Proceeding with the same example plotting the number of iterations and
residuals:
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Figure 2.7: Number of Elastic Net ADMM iterations with respect to for
(a) ρ = [9, 11, . . . , 201], λ = [2, 2.5, . . . , 51], and (b) ρ = [101, 103, . . . , 201],
λ = [25, 25.5, . . . , 50], fixed εAbsolute = 10εRelative = 0.0001 and α = 0.5.

Generally choosing either ρ or λ small relative the other, ADMM tend to
be relatively slow, see Figure (2.7.a). If ρ is well chosen, λ does not affect
the number of iterations as much. Overall the number of iterations increase
together with both ρ and λ, see Figure (2.7, b).

Locally the amount of iterations does not necessarily follow this pattern,
see Figure (2.7.b). As Elastic Net converges to different solutions depending
on the penalty, it is reasonable that also convergence ratio differ. Also it is
important to choose an efficient step size in order to improve the convergence.
This can be related to the number of parameters included in the estimate,
compare to Figure (2.6). If ρ is small, i.e. consider ρ < λ/10 the dual residual
is very small, see Figure (2.7, d). Similarly if λ > ρ/2 the primal residual is
very small compared to the dual residual, see Figure (2.7,c, d).
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Looking at Figure (2.7) a suspicion arise regarding whether one should choose
ρ depending on the choice of λ3. Naively trying a few combinations of λ and
ρ for ρ = 1, 2, . . . , 200 and different α. Then summarizing the total number
of iterations for each combination we get the following scheme:

α λ = ρ λ = ρ/2 λ = ρ/4 λ = ρ/8 λ = ρ/16 λ = ρ/32
1.00 + + 0 + + +
0.90 + + 0 + + +
0.50 + + 0 0 0 +
0.25 + + 0 + + +
0.10 + + 0 + + +
0.00 0 + + + + +

Table 2.1: A scheme for different linear combinations of ρ and λ with varying
α. If the total number of iterations for ρ = 1, 2, . . . , 200 is larger than one
of its left or right neighbors it is denoted by +, if it is less than both its
neighbors it is denoted as 0.

From Table (2.1) it can be seen that if α = 0 then λ = ρ is the best considered
choice in terms of iterations. Investigating for α < 0.05 resulted in λ = ρ also
was the best choice. Recall that for very small α all parameters are included
in the estimate, in these cases it seems to be preferable with ρ ≤ λ. Else
ρ = 4λ proved to be the most efficient choice. Similarly it was investigated
using λ2 = λ(1−α)/2 as reference variable (instead of λ) to ρ. This resulted
in larger amount of ADMM iterations for all tested combinations compared
to using λ as reference.

3Note that we assume that the choice of λ is fixed in real life modelling and ρ is adjusted
in the algorithm.

34



2.2.3 Absolute and Relative tolerances

Fixating the following parameters: λ = 100, ρ = 400, α = 0.5 andMaxIterations =
1000000 (to assure convergence), we investigate how the absolute- (ABSTOL)
and relative tolerance (RELTOL) affect the results. We consider ABSTOL
and RELTOL distributed between 10−1 and 10−6 with 100 elements. The
diagnostics are plotted on the next page.

Studying Figure (2.8) several observations can be made. In Figure (2.8,
a) we note that the number of iterations increase using lower tolerances and
is slightly more affected by the absolute tolerance. Looking at Figure (2.8, b)
it can be seen that for lower tolerances the number of parameters is affected
similarly by both tolerances. If ABSTOL is large the number of parameters
is mainly affected by the absolute tolerance and seem to have local minima
around 10−1.6. Worth noting is the shapes of amount of iterations and pa-
rameters which are very similar.

Both residuals are mostly affected by the absolute tolerance, however there is
also a slight effect of the relative tolerance as well. Comparing the residuals
to their acceptance criterion, Figure (2.8, e ,d), it is notable that εprimal is
heavily dependant on the relative tolerance where as εdual is mostly affected
by the absolute tolerance. Also notable is where the dual residual is close to
convergence with respect to absolute tolerance the number of parameters has
past the local minima. Also where the number of iterations start to increase
notably the primal residual is close to convergence.

The objective function value decrease as more accuracy is wanted. The ab-
solute tolerance affect it slightly more than the relative. These diagnostics
can be used to conclude that the algorithm works as expected, i.e. higher
accuracy gives lower objective function value.
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Figure 2.8: Diagnostics using fixed λ = 100, ρ = 400, α = 0.5 and
MaxIterations = 1000000 while testing for 100 equidistant points from 10−6

and 0.1 for both ABSTOL and RELTOL. (a) shows the number of iteration
until convergence, (b) number of estimated parameters, (c) εprimal, (d) εdual,
(e) rprimal and (f) rdual at convergence.
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A similar analysis was made on a few different combinations of ρ and λ.
Initially using λ = 100 and ρ = 4, it was found that the number of parame-
ters increased with respect to both tolerances, see Figure (2.9). The amount
of iterations, objective function value, rprimal, rdual and εprimal was mainly
affected by the absolute tolerance. εdual was more affected by the relative
tolerance. Notable was that the dual residual has non-smooth tendencies.
As in previous example the amount of iterations and number of parameters
has related patterns, see Figure (2.9, a, b). The dual residual non-smooth
tendencies also seem to be related to change in the number of parameters.

Also λ = 100 and ρ = 4000 was considered, see Figure (2.10). In this
example the number of parameters quickly stabilize at 27 and only the ab-
solute tolerance seem to affect. The number of iterations as a similar shape
as in previous example (Figure 2.9) but is mostly affected by the relative
tolerance instead of the absolute tolerance. Notable is the combined shape
of amount of parameters in this and previous example would relate to the
first, see Figure (2.8, 2.9, 2.10). The dual residual is mainly affected by the
absolute tolerance in comparison to the other examples where the relative
tolerance had more influence. Studying the accepted primal residual one can
see that it has jump tendencies with respect to the absolute tolerance in
particular when it has a low tolerance.
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Figure 2.9: Diagnostics using fixed λ = 100, ρ = 4, α = 0.5 and
MaxIterations = 1000000 while testing for 100 equidistant points from 10−6

and 0.1 for both ABSTOL and RELTOL. (a) shows the number of iteration
until convergence, (b) number of estimated parameters, (c) εprimal, (d) εdual,
(e) rprimal and (f) rdual at convergence.
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Figure 2.10: Diagnostics using fixed λ = 100, ρ = 4000, α = 0.5 and
MaxIterations = 1000000 while testing for 100 equidistant points from 10−6

and 0.1 for both ABSTOL and RELTOL. (a) shows the number of iteration
until convergence, (b) number of estimated parameters, (c) εprimal, (d) εdual,
(e) rprimal and (f) rdual at convergence.
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Chapter 3

Conclusion

The Alternating Direction Method of Multipliers is fairly old but still up-to-
date. It is very adaptable but the convergence ratio may lack compared to
other algorithms. ADMM takes the best from its precursors, the decompos-
ability from Dual Ascent and Method of Multipliers convergence properties.
This paper is an experiment using data from a cultivation trial, investigating
parameter effects of ADMM optimization and Elastic Net.

Dual Decomposition is the most basic of the considered optimization meth-
ods. It is based optimize the primal problem by solving the dual problem
iteratively. Unfortunately it works only under rather strict assumptions and
is heavily dependant on the step size choice [3]. Method of Multipliers has
better convergence properties. But due to the augmentation its rarely de-
composable. Example wise the following issue appears in an Elastic Net
setting:

(ATA)−1∂(λ||x||1)
1 + ρ

+ x = (ATA)−1
(
Ac− yTA+ λ(1− α)

1 + ρ

)
.

Due to no efficient solution was found, this method was not further investi-
gated.

Between iterations it was found that Lasso had very non-smooth updates,
which follows from the l1-penalty. When a mixture of l1- and l2-penalty was
considered (Elastic Net) the updates became smoother. As expected Elastic
Net included more parameters and proved to take less iterations compared
to Lasso.
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Investigating the effect of arbitrary parameters in ADMM and Elastic Net
it was found that increasing the penalty λ decreased the number of parame-
ters. If λ is large enough only one parameter will remain. Similarly adjusting
the weight between the one- and two- norm, α, it was confirmed that as α
decreased the amount of parameters increased (i.e. include relatively more
l2-penalty).

For increasing ρ ADMM tend to include more parameters in the result, how-
ever the effect depends on the relation between ρ and λ. As λ grow Elastic
Net put a heavier penalty on the parameters reducing the amount of pa-
rameters in the estimated model. Notably is that in Ridge regression, i.e.
only including the l2-penalty, the amount of parameters remain unaffected.
Important is to emphasise that if ρ is much larger than λ it affect the result
which is not preferable. However if ρ is to small the amount of iterations
may heavily increase.

Studying the number of ADMM iterations it was found that there was a
relation in efficiency with respect to ρ and λ. Choosing either large λ and
small ρ, or vice versa, ADMM tends to need more iterations. Else it preforms
relatively well with local variations. For the given scenario λ = ρ/4 was the
most efficient choice of ρ overall.

Lastly relative- and absolute tolerance effect was investigated. Higher accu-
racy allowed more parameters and demanded more ADMM iterations. The
objective function had lower value hence was improved using lower tolerances.
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