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Abstract

Anyone trying to maintain a set of text documents in an information

retrieval system will run into problems keeping it relevant and up to date

as the amount of data increases. This thesis investigates how a collection

of documents can be clustered in a way that resembles how a human would

organize it. It also assesses how di�cult it is to implement this into an

existing information retrieval system with current programming libraries,

and in what practical ways this can be useful.

The text data in this project is represented by a TF-IDF model. A K-

Means clustering algorithm generates one clustering, and a Support Vector

Machine is trained with minimal user data to provide another clustering.

These two are then evaluated and compared using a set of metrics. This

project takes a practical approach to the problem, focusing on what can be

implemented using existing programming libraries and what will actually

work in a production environment. Software for visualizing the corpus

and calculating similar documents, are implemented as well.

The supervised method SVM greatly surpasses the unsupervised method

K-Means in being able to replicate the given ground truth, but both mod-

els are in themselves useful. With a relatively simple understanding of

machine learning, any company could set up a similar system. It does,

however, take some deeper mathematical knowledge and �ne tuning to

get the most out of it and tailor it to the dataset.
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1 Introduction

This section aims to describe the underlying problem this thesis is based on
and the target of the thesis. It also de�nes a context by discussing what has
been done before � both in this project and in other papers related to the same
problem. Finally, it provides a description of the structure of this report.

1.1 Background

Large organizations often produce and store a large amount of internal doc-
uments for their employees. The reason for this may vary but the common
denominator is that the company itself wants the employees to get the informa-
tion in these documents. In small organizations this is not as big of a problem
since the amount of content is limited. But in larger organizations, the amount
of content grows and it becomes a problem to �nd the documents you need. How
can a system be created where the end users �nd the needle in the haystack?

Most systems used in larger companies for their internal communication are
based on tools from a time when the amount of information was small enough
to overlook. They require manual work from a human being in order to keep
the data in check and up to date. Few systems have been able to transcend this,
and therefore their qualities have decreased as their sizes have increased.

To overcome these issues a search tool was built. The aim was to make it
simple to access and �nd the information needed in a fashion that the users were
familiar with. To further improve the usability of the system the decision to
learn from the user's behavior and to cluster documents based on their content
was made. In this way, the possibility to present close relationships between
documents but also tailor the experience for each user would be enabled.

1.2 Aim of the thesis

The aim of this thesis is to help our customer's employees �nd more relevant
content. This will be done by investigating and implementing Machine Learning
clustering methods into an existing information retrieval system. The emphasis
in this report is on implementing and evaluating di�erent approaches rather
than performing a theoretical analysis or development of the used methods.
This is done in order to create as much value for the customer as possible.
The main questions the authors asked was �Can we replicate the human idea
of structure to documents using software?� and �How does an unsupervised
K-Means clustering perform compared to supervised Support Vector Machine
in answering that question?�.

Problem formulation

• Can we replicate the human idea of structure to documents using software?

• How well does unsupervised K-Means replicate human clustering?

• How well does a Support Vector Machine replicate human classi�cation?
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1.3 Previous work

Talkative Labs1 were approached with the problems mentioned above. The
client had loads of useful content and a large number of employees who needed
access to it but was unable to connect the two. Several full-time employees were
required simply to organize the documents but people were still struggling to
�nd what they were looking for. The system relied heavily on navigating folder
structures and browsing topics to �nd what you were looking for. There had to
be a better way to provide the users with the content they need.

To solve their problem an API that could serve di�erent front-end applica-
tions with data was built. On top of the API, a graphical user interface (GUI)
was created, that the end users would interact with. In the �rst iteration the
GUI consisted of only a search �eld.

The foundation on which this project stands on is a REST API. The API
serves as the backend for the service that was initially built. The API handles
all operations such as uploading/downloading assets, processing assets through
creating previews and extracting text from them. All text data and metadata
about the assets uploaded to the API is stored in a Mongo database with an
elastic search index on top. This turned out to be a powerful solution for full-
text search and content delivery. This was the information retrieval system that
was already in place when this project started.

1.4 Related work

The paper �Clustering articles based on semantic similarity� written by Wang
and Koopman [15] describes a similar situation to the one in this project. The
authors have a large dataset that they want to cluster, but they do not have
proper training data. They decided to use the unsupervised methods K-Means
and Louvain community detection, and found K-Means to be very suitable for
their needs. The paper describes K-means as �one of the simplest unsupervised
learning algorithms that solves the well de�ned clustering problem It scales well
to large number of samples and has been used across a large range of application
areas� [15, p. 6]. This encouraged the use of the same method in this project.

Page seven in the same paper contains an interesting discussion about K-
Means and mentions the importance of trying di�erent values of K to �nd what
amount of clusters a dataset naturally falls into. This approach was also used
in this project in order to get to know the corpus better. In their paper they do
not have any base truth at all for evaluation, so they construct one using the
average silhouette method. They then use this to determine the optimal number
of clusters in their K-Means clustering. Since the label data in this project is
not as good as we thought it would be this approach was very interesting to
read. What they lacked was a comparison to a supervised metric, so that was
one of the goals of this project.

In the paper �A Comparative Study on Di�erent Types of Approaches to
Bengali document Categorization� [5] the authors investigate di�erent super-
vised classi�cation algorithms on Bengali documents. They �nd that an SVM
with TF-IDF feature vectors performs better than any other approach used in
the study. They note that this result is consistent with other studies that have
been conducted.

1the company that initiated this thesis

2



In the paper [6] the authors compare four supervised algorithms (Support
Vector Machine, Decision Tree, K Nearest Neighbours and Naive Bayes). They
arrive at the conclusion that for large document sets the SVM classi�er is su-
perior to the others. SVM also surpassed its competitors in computational
e�ciency. They used the metrics precision, recall and F-measure to evaluate
the results. It is also interesting that they ran some tests with fairly small
training sets (under 250 samples per category). They �nd that SVM is not as
good as the others for a small number of training samples but quickly passes the
others as the number of samples grow. This is something that could have been
interesting to evaluate for us when looking at the playlist model in our case.

Another interesting paper is �Using unsupervised clustering approach to
train the Support Vector Machine for text classi�cation� [8]. The title is self-
explanatory and was immediately deemed interesting for this project. It would
have been interesting to see how the K-Means data works as training input into
the Support Vector Machine, and how that compares to the labels as training
material. An even more interesting approach may have been to combine the
knowledge of labels with the output of K-Means. Rather than creating training
data out of no data, K-Means could be used to improve training data of low
quality and then be fed to a Support Vector Machine. That was however outside
the scope and timeframe of this project.
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2 Theory

This section aims to describe the theoretical concepts that this thesis is based
on. It starts with something as unusual as a description of an entrepreneurial
term, but one that had great impact on to execution of this project. It then
describes the theoretical foundations for the di�erent methods and concepts
used within the project.

2.1 LEAN

Lean is a �system� for how to develop a successful small business that resembles
the scholarly method [11]. It starts out with some ideas about how to design a
product and create value for the customers. The essence of the system is to test
these ideas as early as possible, to promote learning and informed decisions.
The �rst step is to de�ne metrics for success and designing tests. The tests
should be designed to be cheap to perform and fast to implement. The project
then moves on to creating an �MVP� � a Minimum Viable Product. An MVP is
the smallest, simplest, fastest and cheapest way to bring value to the customers.
Then the project moves on to test the idea. The tests give feedback both on
whether the idea corresponds to the customer's needs and on whether the project
is progressing. If that is the case, persevere and �ne tune. If that is not the
case, pivot into another, more productive, direction.

The LEAN system, like many business systems, sounds obvious by itself
but really shines when compared to how things usually are done. It is not
uncommon to start with some research and then work for a long time to perfect
the product. The fear of releasing an un�shed product takes the overhand but
at the cost of missed feedback from the customers. The problem is that it is
very easy to stray o� course, or fail to notice that the demand has changed.
This could result in unpleasant surprises in the late stages of the project. With
a lean approach, these surprises can be detected early on and the project can
adapt to it.

The LEAN system versus more traditional development methods also resem-
bles the relationship between working in an agile way versus the waterfall model
in software engineering. In this thesis, the LEAN model has been adopted to
best ful�ll the customer's needs.

2.2 Text operations in text analysis

The parameters used in the vectorizer was maximum and minimum document
frequency, a maximum number of features, a list of stopwords and the n-gram
range.

2.2.1 Stopwords

Some words do not really contribute anything to the meaning of the document
or are so common that they do not help di�erentiating documents. These words
are not included as terms in the machine learning data model. They are called
stopwords. The NLTK [2] contains a list of such stopwords for di�erent lan-
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guages. Examples are me, your, up, further and very2. The decision to add
some words that are common in this speci�c corpus was also made.

2.2.2 Tokenization

Tokenization is the process of moving from a list of characters to a list of words,
or �tokens�, also referred to as terms [7, p. 22]. The list of characters is split
wherever a space or a non-word character is encountered. There are of course
some special cases, such as �aren't� and �co-education� that has to be handled
in a special manner [7, p. 24].

2.2.3 n-grams

Some words belong together. This goes for both hyphenated words, that might
be split by the tokenization process mentioned above, and words that are actu-
ally separated by a space. The most classic example is probably �San Francisco�,
but other common patterns are names (John Doe) and some terms of art (ma-
chine learning). Words that frequently appear together lose some meaning if
they are split up. Therefore, words that occur together frequently are stored as
a single term in the data model. A term with two words is a bi-gram, and a
term with n words is an n-gram.

2.2.4 Stemming

Stemming (or lemmatization) is the process of removing or replacing parts of
words, usually a�xes, so that two words with the same meaning end up in the
same term. Stemming is performed by removing a�xes so that car, cars, car's
and cars' all end up within the same term car. Lemmatization uses a lexicon
and understanding of grammar, so that terms like be, am, are and is all end up
within the term be [7, p. 32].

2.2.5 Ignoring common/uncommon words

The �nal text operation used in this project is automatic removal of words that
are extraordinarily common or uncommon in a document. This is done to clean
up the TF-IDF matrix and to speed up the learning process. The TF-IDF
vectorizer automatically discards any words above or below a given threshold
when it creates the TF-IDF matrix. Since they would not a�ect the outcome
much anyway they might as well be removed in order to speed up the process.

2.3 TF-IDF

The data model used for this machine learning project was the TF-IDF model,
where each row represents a document and each column represents a term (or
feature) of the corpus. The term can be either a word or an n-gram. Each
value in this matrix represents how common a speci�c term is within a speci�c
document. The TF-IDF matrix is calculated in three steps: the term frequency
step, the inverse document frequency step, and the combination step.

2The complete list of 127 stopwords in NLTK can be found here: https://gist.github.

com/sebleier/554280
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The �rst step is quite simple. In order to assign a weight for a term in a
document we simply count the number of occurrences of that term in the speci�c
document. This is de�ned as the term frequency tft,d [7, p. 117].

The second step is more interesting. The issue with term frequency is that
it handles all words in the same manner. A word with high occurrence in a
document will weigh more than a word with a low occurrence, even if that word
is very common in the entire corpus. A more desirable outcome would be that
words that are uncommon in the corpus but common in a document are assigned
a greater weight.

That is exactly what inverse document frequency does. The inverse docu-
ment frequency for a term idft is de�ned as

idft = log
N

dft
, (1)

where N is the total number of documents in the collection and dft is the doc-
ument frequency, the number of documents containing the term t.

In the end we store the TF-IDF value, de�ned as

tf-idft,d = tft,d × idft. (2)

The TF-IDF vectorizer performs this operation for a corpus of documents. In
order to clean up the TF-IDF matrix it also takes some parameters de�ned in
section 3.5.2. In this project a list of stopwords was used, as well as a maximum
and minimum document frequency, a maximum number of features, and an
n-gram limit.

2.4 K-Means

K-Means is a clustering method based on minimizing the distance between the
documents of a cluster and its �center point�, its centroid [7, p. 360]. The most
important property of a cluster in K-Means is the centroid. The centroid µ of
a cluster ω is calculated as

µ(ω) =
1

|ω|
∑
x∈ω

x. (3)

The goal of the K-Means clustering is to minimize the Euclidian distance be-
tween the centroid and all items belonging to a cluster. This distance is mini-
mized via the objective function �Residual Sum of Squares�:

RSSk =
∑
x∈ωk

|x− µ(ωk)|2, (4)

RSS =

K∑
k=1

RSSk. (5)

First, each item is randomly assigned to a cluster, and the centroids are calcu-
lated. The algorithm then reassigns documents to belong to the cluster repre-
sented by their closest centroid, and the centroids are recalculated. These two
steps are repeated until the clustering is done.

The clustering is done when one of four things happen. One, the RSS value
becomes smaller than a prede�ned value (the clustering is good enough). Two,
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the RSS value decreases more slowly than a prede�ned value (what we're doing
is not enough). Three, the clustering stops changing between iterations (there
is nothing left to do). Four, the number of iterations becomes larger than a
prede�ned value (we do not have time to wait anymore).

There is no guarantee that the algorithm �nds the global optimum, so it is
usually executed several times with di�erent initial conditions to improve the
overall results.

2.5 Support Vector Machine

The idea behind using a Support Vector Machine (SVM) in this project is to
train a system to recognize documents that would end up in the same folder
if they were to be sorted by a human. The main principle of an SVM is to
determine one or more separators in the feature room which best separates the
classes (or folders, to use an analogy) [1, p. 194].

The simplest example of an SVM is a binary classi�er which separates two
di�erent classes with a hyperplane. If the training data is easy to separate this
can easily be done with a linear approach. The optimization problem can be
described as �nding the plane with the largest margin to the support vectors,
as seen in �gure 1.

Figure 1: The main principle of an SVM illustrated.
The target of the optimization problem is

maximizing the margin between the support vectors.

If one wants to separate more than two classes the problem becomes more
complex. The most common technique according to [7, p. 330] is to build a
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one-versus-rest (ovr) classi�er that classi�es one class at a time against all the
others.

All of the above applies to input data that is linearly separable, but in the
general case for text classi�cation the that is not the case [7, p. 327]. One way
to solve this is the �kernel trick�. It's performed by mapping the input data to
a higher dimensional space and then using the linear classi�er in that space.

Figure 2: The �rst example is easy to linearly
separate. The second one is more problematic.
Using the kernel trick to map it into a higher

dimensional space (case number 3) makes it possible
to separate them with a linear approach [7, p. 333].

2.5.1 Kernel functions

scikit-learn supports four di�erent kernel functions [13] out of the box. It also
has a �fth option to provide a custom kernel function. This makes it possible
to test di�erent kernel functions to �nd the one that best separates the classes.
The radial basis function is the default kernel function, and the linear kernel
function the simplest one. The polynomial and the sigmoid kernel functions
were also included in the model. The kernel functions are described in table 1.
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Table 1: Mathematical de�nitions for the SVM
kernel functions.

RBF κ(x,x′) = e−γ‖x−x
′‖2

Linear κ(x,x′) = 〈x,x′〉
Polynomial κ(x,x′) = (γ〈x,x′〉+ r)d

Sigmoid κ(x,x′) = (tanh(γ〈x,x′〉+ r))

2.6 Norms

2.6.1 Euclidian norm

The Euclidian norm is used in the K-Means clustering to determine the distance
between documents and the centroid. It calculates the distance between the tips
of two vectors. The Euclidian distance between two vectors is de�ned as

‖x− y‖ =

√√√√ M∑
i=1

(xi − yi)2, (6)

where x and y are vectors [7, p. 131]. The euclidian norm also goes by the
name �L2-norm�.

2.6.2 Cosine norm

The cosine norm is used for visualizing data and for calculating document neigh-
bors via document similarity. It calculates the angle between two vectors. In
this project it was applied to feature vectors in the TF-IDF model to determine
their similarity. The cosine similarity of two vectors is de�ned as

cosine similarity =
x · y
‖x‖‖y‖

, (7)

where x and y are vectors [7, p. 121]. The metric returns the angle between
the two arrays independent from the length of the array. 1 for zero degree
di�erence, 0 for 90 degree di�erence and −1 for 180 degree di�erence. In the
TF-IDF model, all feature vector components are positive, so the result of the
cosine norm is bounded by 0 and 1. Two documents in the model are similar if
the similarity is close to 1, and dissimilar if the similarity is close to 0.

2.7 Multidimensional Scaling

Moving from a set of coordinates to a table of distances is an easy mathemat-
ical problem - just select a norm, calculate the pairwise distances and store it
somewhere. The inverse problem, using distances to create a set of coordinates,
is more complicated.

Multidimensional scaling (MDS) is a method for visualizing distance matri-
ces. �The goal of an MDS analysis is to �nd a spatial con�guration of objects
when all that is known is some measure of their general (dis)similarity.� [16, p.9].
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There are two branches of MDS: metric and non-metric. The metric, simpler,
version assumes all distances are actual euclidian distances. The nonmetric,
more general, version makes no such assumption and is therefore more complex.
The most common approach to nonmetric MDS is to de�ne some measurment of
�stress�, that measures how much a given set of coordinates di�er from the given
distance matrix. The target for the MDS method is to minimize this stress.

In this project, the manifold package in scikit-learn was used to achieve
a visualization of the clusterings. It uses the SMACOF algorithm, short for
�Scaling by Majorizing a Complicated Function� [3, ch. 8]. SMACOF starts out
with a random coordinate assignment. It then calculates a speci�c stress matrix
for the assignment. In order to minimize the stress, the Guttman transform is
performed on the coordinates X [3, p. 190]. For the reader interested in the
speci�cs of the stress matrix, and the Guttman transform, reading chapter eight
of the title �Modern Multidimensional Scaling� [3] is recommended. After the
transform the stress is calculated again. If it satis�es a predetermined condition,
or if it has reached the maximum number of iterations, then it terminates. If
not, the transform is repeated. The process is described in �gure 3.

Figure 3: An overview of the SMACOF algorithm.
Source: page 192 of [3].

The purpose of MDS in this project was to provide a way to visualize the
dataset and the clusterings. While TF-IDF is a great format for computers, the
MDS is the peeking hole for us humans to understand what is going on.

2.8 Metrics

In order to evaluate the results of this project, a selection of information retrieval
metrics was selected. Each of them require both the outcome of a clustering and
a set of labels (a ground truth) to compare them to. These will be explained in
this section of the report.
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2.8.1 Purity

Purity is the �rst evaluation metric for clusterings. When calculating purity
each cluster is assigned the label that is most frequent in that cluster. The ac-
curacy of the clustering is then calculated by counting the number of �correctly�
assigned documents divided by the number of documents. Mathematically pu-
rity is de�ned as

purity(Ω,C) =
1

N

∑
k

max
j
|ωk ∩ cj | , (8)

where Ω = {ω1, ω2, ..., ωK} is the set of clusters and C = {c1, c2, ..., cK} is the
set of labels used for evaluation [7, p. 356]. A number close to one represents
an accurate clustering and a number close to zero represents a bad clustering.
It is also important to note that a high purity is more easy to achieve when the
number of clusters is high.

Purity is a metric that is very intuitive and easy to grasp. It also has the
advantage that it can be calculated per cluster, not just per clustering. This
provides accuracy for the analysis of the clusterings.

2.8.2 Entropy

The second metric used to evaluate clusterings is entropy. Entropy is a way to
measure the amount of order or disorder in a system. A low entropy means that
the clusters are well ordered and predictable, while a higher entropy means that
the clustering is more chaotic. The entropy H of a cluster ω is de�ned as

H(ω) = −
∑
c∈C

P (ωc) log2 P (ωc) = −
∑
c∈C

|ωc|
nω

log2

|ωc|
nω

(9)

in [7, p. 99-100], with added maximum likelihood estimates of the probabilities.
|ωc| is the number of documents classi�ed as c in cluster ω, and nω is the number
of documents in cluster ω. The total entropy of a clustering was then de�ned
as the weighted average of each cluster, calculated as

H(Ω) =
∑
ω∈Ω

H(ω)
Nω
N
, (10)

where Ω is the set of clusters {ω1, ω2, · · · , ωk}, N is the total number of doc-
uments and Nω is the number of documents in cluster ω. Unlike all other
metrics, zero is a perfect score for this metric, and a higher value means that
the clustering is less successful.

The entropy metric has the same two advantages as purity: it is intuitive 3

and it can be calculated per cluster, not just per clustering.

2.8.3 True or false, positive or negative

In order to understand our next few metrics, a few terms need to be introduced.
When comparing a computed clustering to a set of labels (or �keys�), four dif-
ferent cases arise. When a document occurs in a cluster, and it should, it is a

3at least for us physicists. . .
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true positive. If a document occurs in a cluster, and it should not, it is a false
positive. Similarly if a document does not occur in a cluster and it should nott,
it is a true negative. If a document does not occur in a cluster, but it should, it
is a false negative. Table 2 summarizes this paragraph.

Table 2: True and false positives and negatives

Relevant Non-relevant
Retrieved true positives (tp) false positives (fp)
Not retrieved false negatives (fn) true negatives (tn)

2.8.4 Precision and recall

The next two metrics are precision and recall. Precision is de�ned as the per-
centage of the retrieved documents that are relevant, or true. Recall, on the
other hand, is the percentage of the relevant, or true, documents that are re-
trieved. Mathematically they are de�ned as

P =
TP

TP + FP
, (11)

R =
TP

TP + FN
. (12)

Intuitively precision ensures that the received results have a high relevancy, while
recall makes sure the user is not missing out on anything important. Precision
and recall are calculated for the SVM model in its cross validation phase, but
is not calculated for the K-Means clustering.

2.8.5 F-score

The next metric is F-score. F-score combines the concepts of precision and recall
using the weighted harmonic mean. This is de�ned as

Fβ =
1

α 1
P + (1− α) 1

R

, (13)

but with β2 = 1−α
α this can be written more compactly as

Fβ =
(β2 + 1)PR
β2P + R

(14)

β ∈ [0,∞]. In F-score the parameter β can be chosen arbitrarily. A higher value
penalizes false negatives harder, a lower value penalizes false positives harder.
β = 1 emphasizes precision and recall equally. Fβ = 1 is a perfect score for this
metric, and a lower value means that the clustering is less successful.

F-score is calculated for the SVM model in its cross validation phase, but is
not calculated for the K-Means clustering.
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2.8.6 Homogeneity completeness and V�measure

The next set of metrics are homogeneity score (hs), completeness score (cs) and
V�measure score (vms). These three belong together, just like precision, recall
and F-score do. They were selected primarily because of their intuitive meaning,
they really tell something about the properties of the clusterings. Homogeneity
means that �each cluster contains only members of a single class� [12, p. 411].
Completeness means that �all members of a given class are assigned to the same
cluster� [12, p. 411]. When creating a clustering it is quite easy to maximize
one or the other of these two metrics, and one might prioritize one over the
other in some cases. But a great clustering should seek to maximize both, so V�
measure score is de�ned as the harmonic mean of the homogeneity score and the
completeness score. A high V�measure score is achieved by making a clustering
which is high in both homogeneity and completeness, so the V�measure score
may be considered a more �broad� or �general� metric for a clustering. All of
the three metrics take values between one and zero, where one is the maximum
score (an entirely homogeneous and/or fully complete clustering) and zero is
the minimum score.

One drawback to this group of metrics is that they are not chance normalized,
so one has to be careful when the number of clusters is large or the number
of items is small. The V�measure score is equivalent to �Normalized Mutual
Information�, which is another very common metric of a clustering.

Mathematically, these metrics are de�ned as

h = 1− H(C|K)

H(C)
, (15)

c = 1− H(K|C)

H(K)
, (16)

v = 2 · h · c
h+ c

, (17)

with the conditional entropy of classes C given cluster assignment K H(C|K)
and the entropy of classes C H(C) de�ned as:

H(C|K) = −
|C|∑
c=1

|K|∑
k=1

nc,k
n
· log

(
nc,k
nk

)
, (18)

H(C) = −
|C|∑
c=1

nc
n
· log

(nc
n

)
. (19)

2.8.7 Rand index

This metric is useful for understanding another metric in this project, even
though it is not used in itself. Based on the terminology in section 2.8.3, the
Rand index is de�ned as

RI =
TP + TN

TP + FP + FN + TN
. (20)

Intuitively the Rand index is a measurement on how many percent of the doc-
uments that were clustered correctly. A Rand index of one is a perfect score,
and lower values indicate a bad clustering.
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2.8.8 Adjusted Rand score

The adjusted Rand score (ars) is based on the same principles as the Rand index,
but with two major di�erences. The �rst being that it ignores permutations.
The actual names of the clusters do not matter, and it does not need a mapping
between which of the generated clusters that should correspond to which of
the ground truth clusters. The second being that it uses chance normalization.
This means that the method �projects� a random clustering to the value zero
by subtracting the expected value E[RI], and then scales the values so that 1
is a perfect score and minus one is the worst achievable score.

The Rand index RI can also be written as

RI =
a+ b

C
nsamples

2

, (21)

where a is the number of pairs that are in the same set in both clusterings, b is
the number of pairs that are in di�erent sets in both clusterings and Cnsamples

2

is the number of possible pairs in the dataset. a corresponds to the concept of
�true positives� and the b corresponds to �true negatives� in section 2.8.3, but
does not actually use the �label names� of the clusters. Equation 21 is analogous
to equation 20. The adjusted Rand index ARI of a clustering is then de�ned as

ARI =
RI − E[RI]

max(RI)− E[RI]
, (22)

in order to perform the chance normalization. Since it considers both precision
and recall it is considered a �broad� metric.

2.8.9 Fowlkes Mallows Score

Fowlkes Mallows score (fms) is another �broad� metric that tries to consider
all aspects of a clustering. It is based on pairwise precision and recall. Mathe-
matically it can be de�ned as

FMI =
TP√

(TP + FP)(TP + FN)
(23)

in [14, p. 6], borrowing notation from the previous section 2.8.3. A value close
to one is an indication of a good clustering and a value close to zero of a bad
one. The metric is chance normalized so that random label assignments have
a Fowlkes Mallows score close to 0. It is also important to note that fms will
always assume high values for very low numbers of clusters.
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3 Method

This section aims to describe the execution of the project. It begins by describing
the approach and explaining some obstacles that a�ected the choice of methods.
It then goes on to describe the �rst naive steps of the project and some remarks
about the kinds of data that was available. The most important part is code
implementation, which describes how the machine learning system is built and
structured. Finally, it describes the architecture the project was executed on.

3.1 Approach

3.1.1 LEAN

A very important part of the approach has been the LEAN model. The primary
target, or �metric for success�, was not a theoretical question. It was: how far
can two engineering students go in creating a useful machine learning system?
Since that was not clear at �rst the decision to work in iterations was made,
based on the customer's feedback. Build, measure, learn, repeat. Not read,
think, do, done. For us this meant two things.

First, customer preference over our preference. The work was divided into
small iterations that were presented to the customer. In between each iteration
there was feedback and new requests that a�ected the direction and momentum
of the project. This did turn out to be quite di�erent from the method we were
used to from the university, where most things are planned and have a structure.
Lectures and readings cover material that is later required to solve the problem.
Introduction, theory, method, results, discussion. In the corporate world result
is king, discussions come before method, and theory is kept to a minimum.

Balancing customer demands and keeping track of the problem formulation
has been challenging but also rewarding. With a more classic approach we would
have ended up with a very di�erent solution, but with a lot less knowledge.

Second, implementation over theory. This project is all about what could
be done and maintained within the timeline and/or budget, and what results
could be achieved. The customer always wants results.

These circumstances may be worth keeping in mind whilst reading this report
and understanding the decisions made along the way. These were the internal
factors but there were also some external factors that a�ected our decisions.
They will be presented in the following section.

3.2 Challenges

The previous section outlined the bene�ts of the chosen approach. This section
will move on to some obstacles. Given below are four challenges that resulted
in some road changes.

3.2.1 Developing in a live environment

The challenges of doing a project at a company, for a customer, has been very
rewarding for us and the �nal outcome of the project. Nevertheless, it also
made the journey more di�cult. Things have taken more time than we had
envisioned. Likewise, regarding the programming; writing a script that runs on
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your computer when you need it to is one thing, but integrating your code into
a codebase that does not allow any downtime is a di�erent thing. This has been
challenging and fun, but has also slowed us down quite a bit. A lot of time was
spent writing API:s and integrations that would not have been required if the
project's only purpose was this report.

3.2.2 Corporate politics

Our greatest obstacle to overcome has been corporate politics. During the �rst
months of this project everything was running �ne and we counted on an in�ow
of users according to a prognosis. We therefore decided to focus on supervised
machine learning systems: systems that collect and make sense of user data.
Suddenly this changed, due to corporate politics, as it was decided that we
would wait an additional month before adding users. We kept working on the
supervised systems. The month quickly turned into two months and we were
getting worried. Eventually, we realized that we could not rely on user data
and had to change the direction of this project altogether and look for alternate
data sources. The data source we ended up with is explained in section 3.4.

3.2.3 Search optimization

In the early stages of the project, a lot of time was spent on researching how
to use machine learning to improve the search results of the service. This made
sense as searching is the number one way for users to interact with the informa-
tion platform. Unfortunately this turned out to be a dead end.

3.2.4 word2vec

As a �rst step word2vec was used on the text of the entire dataset [1]. Raw text
data was downloaded from the database and fed into the python implementation
of Google's word2vec and training and clustering of the terms occurred. This
provided insights on how the terms in the documents were related but did not
directly help to understand the relationships between documents. The method
was dropped in favor of other methods, more focused on documents.

3.3 Naive �rst steps

With all these things in mind, how does one go about investigating machine
learning methods that replicate the human idea of structure? Since the problem
formulation did not imply a speci�c method the �rst couple of weeks mainly
consisted of experiments to �gure out the road ahead and to get acquainted
with the di�erent available methods for machine learning.

3.3.1 TF-IDF demo

The �rst step was constructing a TF-IDF matrix and a clustering with K-Means.
This quickly became the primary method of clustering in this project. It also
seved as an introduction to a lot of machine learning concepts and to scikit-
learn [9]. The Python library scikit-learn is a popular collection of tools for
machine learning.
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A list of �le hashes and all the text content of the �les were loaded into
the system. A number of operations were performed on the text. All non-
text characters were replaced with spaces. Stopwords were removed using a
corpus from Natural Language Toolkit [2]. Finally the text was tokenized and
stemmed. This data was then loaded into T�dfVectorizer, a feature extraction
function from scikit-learn, that generated the TF-IDF matrix from the contents
of all documents. The vectorizer also automatically ignored the most and least
common words.

With the TF-IDF matrix in place, all pairwise distances were computed using
the cosine norm. This data was used for visualizing the data. The clustering
instead relied on scikit-learns K-Means tool that uses the TF-IDF matrix and
number of clusters as inputs.

3.3.2 Cluster visualizer

Finally, the need for a way to visualize the documents and their feature vectors
emerged. In order to get a visualization the scikit-learn tool MDS was used,
short for �Multi-dimensional Scaling�, and the classic python tool Matplotlib [4].
MDS uses the cosine norm distance matrix and generated a 2D representation
of all documents. These were plotted in matplotlib as a scatter plot with colors
based on cluster.

These were the �rst steps to probe the problem and get used to some machine
learning methods and libraries. In order to make something truly useful, a better
structure and method for evaluation was required.

3.4 The Data

As is always the case with machine learning solutions, the data is the most
essential part. We will therefore elaborate what kind of data we had access to
and how it was processed.

3.4.1 The corpus

The corpus consists of approximately 18400 pdf documents. They are internal
guidelines, product speci�cations, safety labels, slide-decks and reports written
for the employees of the company. The scope of this project is only raw text
extracted from the pdfs, not images or layouts.

3.4.2 The user data

The user data comes in two di�erent forms. One, in the form of playlists and
the other in the form of user anlytics, which will be explaind further on. Users,
and admins, can create playlists containing one or several documents from the
corpus. A playlist provides two pieces of information. Firstly, each document in
the playlist is somehow related to the words in the title of the playlist. Secondly,
each document in that playlist is somehow related to all of the other documents
in the playlist.

The other form of user data comes from Segments4, a web user analytics
tool. It was con�gured to track events such as �The user performs a search� and

4https://segment.com
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�The user navigates through the preview�. This connected documents to each
other, and documents to search queries. Since the information retrieval system
had very few users none of this data could be used in this thesis.

3.4.3 URL data

The old system had a unique URL for each document. This URL was retrieved
and stored in the data model and became the training data for this thesis.

The full URL:s were unique, so they would not work as training data. The
solution to this was to only look at a certain �level� of the URL. Level = 0
only looked at the �rst part of the URL, for example /Performance. Level = 1
looked at the �rst two parts of the URL, for example /Performance/Lists. In
this way, di�erent sizes of �clusters� or �classes� could be generated by varying
the level parameter. This was then used as training data for the supervised
method, and as evaluation data for the metrics.

3.5 Code implementation

This section will explain the machine learning process based on the structure of
the code. A short overview is presented below in list and diagram form (�gure
4), each one is then described by a subsection. Each part of the implementation
was named after a famous character from Sir Arthur Conan Doyle's legendary
story Sherlock Holmes.

• The API handles input and output and starts calculations.

• Hudson handles data extraction and preparation.

• Mary creates the TF-IDF model.

• Sherlock performs a K-Means clustering.

• Mycroft performs an SVM classi�cation.

• Moriarty calculates the metrics.

• Grid Visualizer visualizes the clusters.

• Godfrey performs the MDS on the TF-IDF distances.

• Magni�er.js visualizes the result from Godfrey.

3.5.1 Data preparation - Hudson

The �rst step of the machine learning process is Mrs. Hudson. Hudson handles
the initial data streams described above. It establishes a connection to the live
Robomongo database to collect data. Its �rst step is to get all document ids and
text data. The text data is stripped of line breaks and non-ASCII characters
and then stored in an array. The ids are inserted as keys in a table that will
later be used to store labels and playlists.

The next step is to get paths for all documents with a path stored on them.
The path (or URL), as covered above, is an indication on which folder a content
creator has once put the document in. The user gets to select what level folder
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Figure 4: An overview of the code structure.

that should be extracted. For example, the path /Resources/Presentations/

Productivity/Turkey could result in the label �Resources� with level = 0, or
�Turkey� with level = 3. All document ids associated with a path are updated
in the table.

After that, another request to the API is performed, asking for all playlist
ids and the document ids the playlists contain. The same table is updated with
this information.

Except for this massive table, two di�erent lookup tables are created. One
stores the document playlist assignment sorted by document id, the other stores
the document URL path tags sorted by document id. Finally, all text data and
the data tables are JSON-encoded and uploaded to an Amazon S3 bucket.

3.5.2 TF-IDF � Mary

The second step of the machine learning process is Mary. Mary performs some
text operations to make the text material more suitable for training and then
creates the TF-IDF matrix and the distance matrix.

Just like in all steps, the �rst thing that happens is that data is loaded from
S3. Mary uses text.json, containing all text data, and data.json, containing all
document ids, URLs and playlist ids.

The next step is tokenizing and stemming. The text from each document is
sent into two di�erent stemmers in the nltk python package [2]. One tokenizes
by word and one tokenizes by sentence. The tokens are then �ltered so that
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tokens containing no letters are removed. These �ltered tokens are then sent
into the nltk Snowball Stemmer, set for English language. The stems and the
�ltered tokens are then stored.

Once the tokenizing and stemming is complete it is time to create the TF-
IDF matrix. This is performed using the scikit-Learn T�dfVectorizer class. The
parameters that were sent into the vectorizer were maximum and minimum
document frequency, maximum number of features, the list of stopwords and
the n-gram range. All of these parameters are described in section 2.3.

The vectorizer performs its �t_transform method on the document contents.
This results in a TF-IDF matrix and a list of feature names.

With the TF-IDF matrix in place, it has become time to calculate the dis-
tance matrix. The distance matrix contains the pairwise distance between all
documents, calculated using the cosine norm from scikit-learn metrics. The
distance matrix stores 1− the value returned from cosine_similarity, so that
1 represents the maximum distance and 0 represents the minimum distance.
This matrix is then converted into a sparse csr matrix (Compressed Sparse Row
Matrix) using a scipy function.

The TF-IDF matrix, the distance matrix and an array with the document
id order of the TF-IDF matrix are uploaded to S3.

3.5.3 K-Means - Sherlock

The third step of the machine learning process is Sherlock. Sherlock performs
a K-Means clustering of all the documents based on the TF-IDF matrix.

Just like in all steps, the �rst thing that happens is that data is loaded from
S3. Sherlock uses the TF-IDF matrix, the associated list that explains which
row that corresponds to which document, and some additional metadata about
the documents.

Before the clustering happens, the number of clusters to divide the corpus
into is decided. It could be passed in as a parameter, but it is usually calculated
based on the labels the calculation is going to be benchmarked against. A
computation that will be compared to a facit of 10 keys will be clustered into
10 clusters.

The k-Means clustering is performed by calling the scikit-learn K-Means
function. The only input parameters are the number of clusters to generate and
the TF-IDF-matrix. The cluster assignment for each document is returned in
list form.

When all calculations are done the clustering results are uploaded to S3.

3.5.4 SVM - Mycroft

The fourth step of the machine learning process is Mycroft. Mycroft performs
a classi�cation based on two di�erent training methods. The �rst method was
used to evaluate how well it performed. The second method was used to train the
model to be used in the platform. The performance of the two di�erent methods
are much alike, therefore only the method for evaluation will be described, as
the other follows the same pattern.

The input to the SVM model is based on the earlier scripts in the pipeline.
The feature vectors are taken from the TF-IDF matrix computed in Mary.
The labels are given as the path to the folder that each �le used to reside
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in, as described in section 3.4.3. The associated folder structure depth can be
set before computation to test di�erent numbers of distinct labels but also to
�nd underlying correlations based on how a content creator has classi�ed the
documents before. This list of labels is computed by the Hudson script. The
feature vectors (TF-IDF-matrix) and labels are downloaded from S3.

To be able to evaluate the model the training set was split into two. The
largest set was used to train the model and the smaller set was later used to
cross-validate the classi�cation. The results of the evaluation can be found in
the result section below (4.3). The default split ratio is that 3/4 of the data
is used for training and 1/4 of the data is used for the evaluation. In order to
evaluate which kernel function that performs best the algorithm was executed
with di�erent kernel functions and input parameters.

The last thing that happens in Mycroft is the evaluation of the model. For
each computation, three di�erent metrics are calculated with scikit-learn's built-
in metrics calculator and stored in the database. The metrics are precision,
recall and f-score (de�ned in sections 2.8.4 and 2.8.5). Another set of metrics
are calculated for both K-Means and SVM. This calculation is performed in
Moriarty (section 3.5.8). The output data from Mycroft is the trained model
and a list of validation vectors and labels. This is serialized and uploaded to
S3.

3.5.5 Finding similar documents - Deduction

After the distance matrix has been calculated (as described in section 3.5.2)
the 100 closest neighbors to each asset was stored in the mongo database. The
idea behind this was to quickly be able to display related documents in the GUI
without having to do any calculation �on demand�. At one stage in the project
some progress was made towards creating a discover page where the users could
explore the dataset based on the distance between the documents. This was
however depreciated in favor of other functionality. The customer was satis�ed
with being able to see the closest neighbors of a document.

3.5.6 Visualizing clusterings - Godfrey and Magni�er

The purpose of the visualization tool is twofold. First, it has proven to be very
helpful for us in evaluating the machine learning models. A visual representa-
tion of the data is more intuitive than a metric based. Even though metrics
actually give a more fair measurement of the quality of a clustering the visual
representations has been quite helpful.

Secondly, the visualizing tool is useful for understanding the corpus even
outside of the development of the machine learning tools. The content creators
at the company can use the visualization tool to �nd duplicate documents or
di�erent versions of the same document. It can be used to �nd �lacking� docu-
ments (there should be �ve versions of this document, there is only four versions)
or �nd where new documents are needed (this document exists for Europe and
Asia, but not for America). In the long run it could even become a convenient
way to navigate through the document database.

The data for the visualization tool was created in a separate python script
called godfrey.py. This was vaguely based on the �naive� visualization tool used
in the early stages of the project. The distance matrix for the documents was
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loaded and then processed with the Multi-Dimensional Scaling tool built into
scikit-learn [9]. The scikit-learn method MDS.�t_transform is based on the
SMACOF algorithm, described in section 2.7. This creates a representation of
the documents, with proper (or close to proper) distances, in a two-dimensional
plane or a three-dimensional room. These coordinates were then processed with
Pandas, a Python data analysis library, in order to associate each point with a
document id and a cluster. The result was exported as a CSV �le. A �lter that
selects n random documents from the corpus to plot in order to create simpler,
more interpretable �gure was used as well.

The resulting CSV �le was then parsed into D35, a javascript library for
data visualization using the SVG data format. The �rst test was a D3 example
written by Jonas Petersson [10].This was later tweaked to look good with the
data from this project. With the use of information panels it was possible to
see information about clicked documents and scroll through the pages. Finally
the tool was integrated into the plaform for content creators.

3.5.7 Visualizing clusterings - Grid-visualizer

The primary method of evaluating the clusterings will be the mathematical
metrics, but some intuition based methods were also used. Both for ourselves
and for the customer. Overwhelmed with the level of abstraction and sheer
amount of data presented in Magni�er, the development of yet another method
for visually evaluating the clusterings started. Grid-visualizer randomly selects
some items from each cluster, and creates a �mosaic� with their preview images
(the �rst page of the PDF) as a webpage. This gives a quick intuitive overview
of how successful the clustering has been.

3.5.8 Evaluation - Moriarty

The next step of the machine learning process is Moriarty. Moriarty is a toolbox
of metrics evaluating the quality of clusterings. Initially data from the clustering
of Sherlock, the labeling of Mycroft and the base truth from Hudson were loaded
from S3. This data was also permutated to create some additional helpful
variables used in the metrics.

Moriarty contains the metrics purity, entropy, homogeneity, completeness,
V-measure, Adjusted Rand score and Fowlkes Mallows score. Each metric func-
tions independently and returns its score to the main function. Purity and
Entropy were written from scratch, based on the theory described in section
2.8.1 and 2.8.2. They are extra interesting because they provide a per-cluster
metric, while the other ones return one value for the entire clustering. The
remaining metrics were calculated using scikit-learn methods.

Two additional things were calculated, besides the actual metrics, to assist
in analyzing the result of the clusterings. First, the parameter �counts� was
�lled with information about the number of documents assigned to each cluster.
Second, the parameter �toplist� shows how many of each of the base truth
labels are assigned to each cluster. These both would prove to be useful tools
in understanding the other metrics.

When all calculations were done the metrics data objects are stored in the
Mongo database.

5https://d3js.org
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3.6 Architecture

3.6.1 Storage of the data

All the data in this project was either stored in a Mongo database6, in a Redis7

database or on Amazon S38. The Mongo databases was used for the entire
web service before the machine learning parts were added. All the document
text data, all path data, and all playlist data was therefore collected from the
Mongo database. The queue system for the machine learning computations was
stored on Redis. The S3 bucket was used for all other data, mainly ouput �les
from the di�erent steps of the machine learning process but also the documents
themselves and preview images.

3.6.2 Docker

All code is executed in Docker9 containers for simpli�ed distribution and de-
ployment. Docker is a lightweight system to run applications in a contained
environment. It allows the user to build containers based on known operating
systems (such as Ubuntu) and then install the tools needed for that speci�c ap-
plication. The containers can then be executed on the same node (server) and
share the available resources. In this way application with completely di�erent
needs can be executed on the same infrastructure. It is also relatively easy to
scale up the capability of the application as the workload increases.

3.6.3 Amazon Web Servies - AWS

The Docker containers were deployed with di�erent services from Amazon Web
Services (AWS)10. The servers used can be found in table 3. The Docker contain-
ers were controlled via the Docker Cloud11 service for container management.

Table 3: The di�erent servers used to run the
di�erent components of the system.

Instance type vCPU Memory (GiB)

M4.large 2 8
C4.Xlarge 4 7.5
R3.8Xlarge 32 244

3.6.4 The API

The API handles requests for invoking new cluster calculations and retrieving
the neighbors of a certain document (amongst many things). The API comprises
of containers for handling requests and worker containers for performing heavier
tasks. In order to manage job priorities and queueing, a Redis backed job queue

6https://www.mongodb.com
7https://redislabs.com
8https://aws.amazon.com/s3
9https://www.docker.com

10https://aws.amazon.com
11https://cloud.docker.com
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was used to distribute the workload between the worker containers. This ensured
low response times for the API while still allowing for larger operations. The
API was built on NodeJS12, with a Mongo database and Elastic Search13 on
top for creating a search index.

12https://nodejs.org
13https://www.elastic.co/products/elasticsearch
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4 Results

This section presents the results of the project. It begins by presenting some
information about the ground truth labels that were used. It then goes on to
present results in sections related to their di�erent methods. K-Means, SVM and
the comparison section contains mostly data and plots while Similar Documents
and Visualizing Clusters contains more re�ections and images.

4.1 Ground truth labels

The ground truth labels for level 0 and 1 can be found in table 4 and 5.

Table 4: Number of documents belonging to each
label according to the ground truth. Level = 0.

Label Count Percent

CompanyConcept 9885 61.6 %
Performance 4576 28.5 %
RealLifeExamples 1578 9.8 %

Table 5: Number of documents belonging to each
label according to the ground truth. Level = 1.
Note how almost 98 % of all documents belong to

the four most popular labels.

Label Count Percent

CompanyConcept/SiteCollectionDocuments 9792 61.1 %
Performance/Lists 3302 20.6 %
RealLifeExamples/SiteCollectionDocuments 1461 9.1 %
Performance/SiteCollectionDocuments 1274 7.9 %
RealLifeExamples/MLDocuments 105 0.7 %
CompanyConcept/Lists 50 0.3 %
CompanyConcept/Articles 26 0.2 %
CompanyConcept/SiteCollectionImages 16 0.1 %
RealLifeExamples/SiteCollectionImages 11 0.1 %
CompanyConcept/Documents 1 0.0 %
RealLifeExamples/MarketingComm 1 0.0 %
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4.2 K-Means (Sherlock)

The data used to create all plots in this section can be found in tables 9 and 10.
Figures 5 and 6 were created from Sherlock runs that were told to create di�erent
numbers of clusters, seen on the x axis. The metrics purity and entropy can be
calculated per clustering in our system, that is why they are presented separately
from the others. The metrics were calculated with the �level� (explained in
3.4.2) set to zero, producing three di�erent labels, and to one, producing eleven
di�erent labels. 14
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Purity and entropy for K-Means clustering, level = 0.

Purity Entropy

Figure 5: Purity and entropy for K-Means
clustering. We expect a local maximum for purity
and minimum for entropy at nc = 3, since that is
how many labels we have at level zero. Note that a

low entropy means a better clustering.

14Level two creates 93 di�erent clusters and was therefore excluded.
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Figure 6: Purity and entropy for K-Means
clustering. We expect a local maximum for purity
and minimum for entropy at nc = 11, since that is
how many labels we have at level one. Note that a

low entropy means a better clustering.
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Figure 7: Homogeneity, completeness and V-measure
scores for K-Means clustering with di�erent number

of clusters. Metrics calculated with level = 0,
meaning there are three labels.

The next two �gures (7 and 8) show the three correlated metrics homogene-
ity, completeness and V-measure score (hs, cs and vms). Just as before the
metrics were calculated with the �level� set to zero and to one.

The �nal two �gures for K-Means 9 and 10 show all the �broad� metrics for
cluster performance. Just as before the metrics were calculated with the �level�
set to zero and to one.
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Figure 8: Homogeneity, completeness and V-measure
scores for K-Means clustering with di�erent number

of clusters. Metrics calculated with level = 1,
meaning there are eleven labels. We therefore expect

a local maximum at nc = 11.

Table 6: Purity, entropy and size for individual
K-Means clusters with number of clusters set to
three 3 and level set to 0. Cluster 2 is perfet and

cluster 1 is almost perfect.

cluster purity entropy size

0 0.723 0.782 11664
1 0.999 0.008 2929
2 1.000 0.000 1446

For some limits and values for number of clusters (nc) the individual cluster
purity, entropy and size are interesting to discuss. This data is displayed in
tables 6, 7 and 8.
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Figure 9: V-measure score, Adjusted Rand score and
Fowlkes Mallows score for K-Means clustering.

Local maximums are exected at nc = 3, since that is
how many labels there are at level zero. Note that

fms is unreliable for low values of nc.

Table 7: Purity, entropy and size for K-Means
clusters with number of clusters set to 8 and level

set to 0.

cluster purity entropy size

0 0.719 0.763 3085
1 1.000 0.000 1527
2 1.000 0.000 1362
3 0.809 0.593 1475
4 0.839 0.531 6158
5 0.999 0.009 866
6 0.864 0.408 1070
7 1.000 0.000 496
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Figure 10: V-measure score, Adjusted Rand score
and Fowlkes Mallows score for K-Means clustering.
Local maximums are expected at nc = 11, since that
is how many labels there are at level one. Note that

fms is unreliable for low values of nc.

Table 8: Purity, entropy and size for K-Means
clusters with number of clusters set to 11 and level

set to 1.

cluster purity entropy size

0 0.996 0.026 496
1 1.000 0.000 411
2 0.863 0.421 1057
3 0.961 0.186 516
4 0.959 0.201 615
5 0.990 0.061 866
6 0.999 0.007 1116
7 1.000 0.000 1317
8 0.527 1.115 1394
9 0.790 0.716 5367
10 0.715 0.872 2884
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Table 9: All metrics for K-Means clustering with
number of clusters set to di�erent values. Metrics

were calculated with level set to 0.

nc purity entropy hs cs vms ars fms

2 0.799 0.596 0.326 0.605 0.424 0.404 0.754
3 0.799 0.570 0.356 0.414 0.383 0.277 0.653
4 0.798 0.560 0.366 0.329 0.347 0.223 0.593
5 0.777 0.617 0.302 0.233 0.263 0.156 0.542
6 0.797 0.554 0.373 0.220 0.277 0.140 0.461
7 0.817 0.527 0.404 0.280 0.331 0.214 0.568
8 0.857 0.433 0.510 0.253 0.338 0.223 0.488
9 0.812 0.528 0.403 0.201 0.268 0.131 0.429
10 0.798 0.533 0.398 0.189 0.256 0.086 0.389
11 0.842 0.467 0.472 0.216 0.297 0.137 0.424
12 0.878 0.393 0.556 0.240 0.335 0.211 0.468
13 0.886 0.370 0.582 0.233 0.333 0.166 0.418
14 0.874 0.387 0.562 0.207 0.303 0.123 0.357
15 0.874 0.395 0.553 0.213 0.307 0.158 0.409

Table 10: All metrics for K-Means clustering with
number of clusters set to di�erent values. Metrics

were calculated with level set to 1.

n purity entropy hs cs vms ars fms

5 0.759 0.777 0.306 0.332 0.319 0.145 0.544
6 0.791 0.671 0.401 0.308 0.348 0.180 0.475
7 0.784 0.683 0.390 0.272 0.320 0.128 0.426
8 0.817 0.560 0.500 0.307 0.380 0.217 0.464
9 0.801 0.612 0.454 0.292 0.355 0.204 0.466
10 0.801 0.631 0.437 0.269 0.333 0.151 0.429
11 0.825 0.539 0.519 0.283 0.366 0.173 0.418
12 0.797 0.643 0.426 0.248 0.313 0.136 0.413
13 0.823 0.574 0.488 0.268 0.346 0.137 0.402
14 0.821 0.579 0.483 0.256 0.335 0.130 0.392
15 0.846 0.487 0.565 0.273 0.368 0.158 0.391
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4.3 SVM (Mycroft)

In this section all metrics for the SVM classi�cation are presented. The data has
been calculated using the test data (25 % of the data) from the cross-validate
split, and not the training data.

Table 11 shows the number of clusters created for di�erent SVM methods.

Table 11: Number of distinct labels categorized by
the SVM by level and kernel function. For level 0
the documents had 3 distinct labels during training
and validation. As we can see in this table the linear
kernel function managed to separate and predict all
the 3 di�erent classes. For level 1 the number of

distinct labels was 11.

Level Linear RBF SIGMOID Poly

Level 0 3 2 1 1
Level 1 6 2 1 1
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Figure 11: The entropy calculated for the di�erent
kernel functions at two di�erent levels. Level 0

corresponds to 3 distinct labels during training, level
1 corresponds to 11 distinct labels during training.
Interesting to note here is that the entropy for the
linear kernel function is much lower than the others.
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Figure 12: The purity calculated for the di�erent
kernel functions at two di�erent levels. Level 0

corresponds to 3 distinct labels during training, level
1 corresponds to 11 distinct labels during training.
Interesting to note here is that the entropy for the
linear kernel function is much lower than the others.
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Figure 13: The other metrics for level 0. This is
table 12 in plot format. Note that for metrics but

entropy a high value is a good score.

Figures 11 and 12 show the purities and entropies of the SVM classi�cation.
Summaries of all metrics, for level 0 and level 1, can be found in �gures 13 and
14. The underlying data can bee seen in tables 12 and 13.

Table 12: All metrics for SVM clustering with
di�erent kernels. Level is set to 0.

Measure Linear RBF SIGMOID Poly

purity 0.942 0.803 0.608 0.615
entropy 0.235 0.587 0.896 0.882
hs 0.734 0.331 0.000 0.000
cs 0.801 0.612 1.000 1.000
vms 0.766 0.429 0.000 0.000
ars 0.834 0.411 0.000 0.000
fms 0.917 0.759 0.681 0.686
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Figure 14: The other metrics for level 1. This is
table 13 in plot format. Note that for metrics but

entropy a high value is a good score.

Table 13: All metrics for SVM clustering with
di�erent kernels. Level is set to 1.

Measure Linear RBF SIGMOID Poly

purity 0.942 0.784 0.606 0.611
entropy 0.254 0.755 1.115 1.122
hs 0.775 0.333 0.000 0.000
cs 0.859 0.809 1.000 1.000
vms 0.815 0.471 0.000 0.000
ars 0.854 0.427 0.000 0.000
fms 0.920 0.756 0.653 0.655

4.4 Comparing K-Means and SVM

In order to compare the two methods some plots were created. They display
best selection of K-Means computations compared with SVM computations, in
terms of all of the previously discussed metrics. Figures 15 and 16 show the
more general metrics in order to asses which clustering is better, and 17 and 18
the more aspect speci�c metrics in order to analyze how they di�er.
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Figure 15: V-measure, Adjusted Rand index and
Fowlkes Mallows score for K-Means and SVM,

calculated with level = 0 (3 labels).
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Figure 16: V-measure, Adjusted Rand index and
Fowlkes Mallows score for K-Means and SVM,

calculated with level = 1 (11 labels).
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Figure 17: Purity, Entropy, Homogeneity and
Completeness scores for K-Means and SVM,

calculated with level = 0 (3 labels).
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Figure 18: Purity, Entropy, Homogeneity and
Completeness scores for K-Means and SVM,

calculated with level = 1 (11 labels).
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4.5 Similar documents (Deduction)

There are no quanti�able results on the �similar documents� part of the project
since other parts were prioritised. However, the screenshot in �gure 19 shows
how the results are displayed on the platform.

Figure 19: Screenshot from the platform, showing
the related documents feature in application.

4.6 Visualizing Clusters

4.6.1 Magni�er

Since Magni�er is �just� a tool for navigating and examining the corpus and clus-
tering, there is no mathematical presentation of it to present. A few screenshots
were created to visualize the tool, in order to be able to discuss its usefulness.

4.6.2 Grid cluster preview

The grid cluster preview is an alternate way to view and assess the clustering.
It randomly selects a number of documents from each cluster and then displays
their �rst page as a thumbnail image. Note that some documents do not have
previews available. The visualizations can be found in the appendix, �gures 23
to 39. The previews have been pixelated in this report.
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Figure 20: Screenshot from Magni�er, the MDS
visualisation tool. Z-axis is indicated by dot size,
cluster assignment is indicated by dot color. For
large amounts of documents the picture becomes

very hard to interpret.

Figure 21: Screenshot from Magni�er, the MDS
visualisation tool. Z-axis is indicated by dot size,
cluster assignment is indicated by dot color. A
zoomed in view is more useful for comparing

documents. Clicking a dot once shows more info,
clicking a dot twice opens the document preview.
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5 Discussion

This section contains the discussion part of the project. It begins by discussing
the data presented in the result section for the two clustering methods and
the comparison. It moves on to discuss the similar documents feature, the
visualizations, and the architecture. Finally, it contains some discussion related
to the method itself, and some hindsight re�ections about the project.

5.1 K-Means

One thing worth mentioning before looking at the actual data is that K-Means
is initiated with a random assignment. This is di�erent for each run of the
clustering algorithm and may therefor result in di�erent outcomes even though
the input data is consistent. The series of clusterings were selected for being
�good�; not extraordinarily so, but ones with good overall metrics. Additional
clusterings were calculated and most of the trends noted above occur in all of
them. They will not, however, be presented here.

5.1.1 Purity and entropy

Purity and entropy for level = 0 (�gure 5) In the purity and entropy
plots we were expecting, or hoping, to see a local minimum of entropy and
a local maximum of purity where number of clusters equals 3 (from now on
abbreviated �nc�) and 11 respectively, since that is the number of distinct labels
corresponding to level 0 and 1. We also expected purity to increase and entropy
to decrease with nc.

Figure 5 does not match our expectations. We see an increase of purity and
a decrease of entropy for larger values of nc, but we see no signi�cant change
around nc = 3. When looking closer at the clusters it is clear that it does not
succeed very well at its task. The three clusters it creates (named 0, 1 and 2)
can be described as follows (data can be found in table 6).

Cluster 0 has a quite high entropy (0.782) and a quite low purity (0.723). It
contains all documents from the label RealLifeExamples, but also documents
from the other labels. Containing 11664 documents it is the largest in size, and
appears to contain most documents that simply did not �t elsewhere.

Cluster 1 has a very very low entropy (0.008) and a very very high purity
(0.999). It contains 2926 documents with the label Performance (which is
about 60 % of the documents with that label) and 3 documents with the label
CompanyConcept.

Cluster 2 is perfect in terms of entropy and purity, since it only contains
documents from a single label (CompanyConcept). That is, however, the label
containing the largest amount of documents and far from all of them are found
in this cluster.

In summary, the clustering with nc = 3 has managed to create two quite
good clusters (in terms of purity and entropy, that is) and then placed the
remaining ones in one cluster. Let us have a look at what is happening when
we increase nc.

The local max and min we expected at nc = 3 instead appears at nc = 8
(data can be found in table 7).
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This clustering contains three perfect clusters. Clusters 1 and 7 only contain
the label Performance, and cluster 2 only contains the label CompanyConcept.
Cluster 5 is almost perfect, and also contains Performance documents.

The remaining clusters have entropies in the range 0.408 - 0.763 and purities
in the range 0.719 - 0.864. They all contain documents from all three labels,
two of them contain mostly documents from CompanyConcept and one mostly
from Performance.

Purity and entropy for level = 1 (�gure 6) The next plot, �gure 6, looked
more like expected. It �nds the same local minima of entropy and maxima of
purity for nc = 8 as discussed in the previous paragraph, but it also �nds the
expected max/min at nc = 11 that we expect from level 1 (which results in 11
distinct labels). The analysis of nc = 8 might be more interesting now that we
have a more speci�ed set of labels (the data used to create these plots can be
found in table 8.

Clusters 1 (411 items, label is /Performance/Lists) and 7 (1317 items, label
is /CompanyConcept/SiteCollectionDocuments) are perfect. Clusters 10, 9, 8
and 2 are the worst with the current metrics and level. However, that might
have an explanation.

In all of them, the majority of documents are labeled with the labels
/Performance/SiteCollectionDocuments, /RealLifeExamples/
SiteCollectionDocuments and /CompanyConcept/SiteCollectionDocuments.
These labels are di�erent since we are using the entire path, but they all belong
to folders with the name SiteCollectionDocuments. If we had a more complex
system for the labels and/or the metric we could account for this and see that
the clustering may be even better than we thought. On the other hand, the
three aforementioned labels together make up almost 80 % of the corpus, so the
more probable explanation may be that it is just randomly distributed. There
is not enough data to be sure.

The remaining clusters have entropies in the range 0.007 - 0.201 and purities
in the range 0.959 - 0.999, which mean that they are pretty good clusterings.

5.1.2 Completeness, homogeneity and V-measure

Completeness, homogeneity and V-measure for level = 0 (�gure 7)
The next group of metrics belongs together since the metrics measure di�erent
aspects of a clustering. It is easy to maximize one on the cost of the other,
and vice versa. That is why we want to compare them to each other, and also
consider their harmonic mean V-measure.

The fact that there is nothing signi�cant happening around nc = 3 does not
surprise us this time since we already discovered this �aw of the clustering when
investigating purity and entropy. Note that the clustering is exactly the same
as in �gure 5, it is just the metrics that have been replaced.

The min/max value of entropy and purity for nc = 8 appears in this graph as
well. It is very distinct in the homogeneity metric, but less so in completeness
and V-measure. For completeness, the peak is actually at nc = 7, but that
aspect of the clustering was not revealed by looking at purity and entropy. It
means that while the clusters are less fragmented at nc = 8, the labels are less
fragmented at nc = 7. Depending on the purpose of the clustering one might
be more desirable than the other.
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There also appears to be some kind of peak for both homogeneity and com-
pleteness around nc = 12 or 13, but it is di�cult to say what that means since
it is so small. In investigating the individual cluster labels it was di�cult to
make any strong conclusions. Since there is a maximum around eleven for the
metrics at level = 1 as well, it may actually be a property of the corpus.

Completeness, homogeneity and V-measure for level = 1 (�gure 8)
Looking at limit = 1 we encounter few surprises, just as when considering purity
and entropy. We notice two very clear peaks for homogeneity, the previously
discussed one at nc = 8 and an expected one at nc = 11. This time completeness
peaks at 8, which did not happen for limit = 0, but also at 11 as expected.

We also notice a very high homogeneity for nc = 15, but since this is the
endpoint of our data it is di�cult to say what that means. The homogeneity
metric appears quite volatile for level = 1.

5.1.3 Other metrics

Other metrics for level = 0 (�gure 9) We will now look at the more �gen-
eral� metrics. While purity, entropy, completeness and homogeneity measure
speci�c aspects of the clustering, V-measure, Adjusted Rand index and Fowlkes
Mallows score (vms, ars and fms) attempt to give a well-rounded assessment of
a clustering. This makes them more di�cult to use to understand the nature of
the clustering, but more suitable to compare the overall result.

From the earlier analysis, we already expect to see maximas for all metrics
around nc = 7 and 8, and this is true for this group of metrics as well. Fms has
a very distinct peak at 7 and vms and ars a slight peak at 8.

We also notice a quite distinct peak of fms and ars for nc = 12. It is the
same one that has been observed before, so this makes it more probable that
the corpus splits �extra neatly� into 11-12 categories, no matter the labels, but
the data is far from conclusive.

Fms is not very useful when the number of clusters is low (as mentioned in
section 2.8.9) so we will have to disregard its promising start. For all values of
nc fms is greater than vms, that in its turn is greater than ars. This is true
both in level 0 and level 1.

Other metrics for level = 1 (�gure 10) For level 1 we notice a quite
distinct minima for all three metrics at nc = 7. Aside from that, there is not
really much to discuss. The maximum at nc = 11 is visible in vms and ars, but
not in fms. The aforementioned maximum at nc = 15 is also present.

Overall the �other metrics� are di�cult to discuss and compare. The purpose
of them is rather to see which nc:s are �good� and which are not; which trends
we noticed in the other metrics that were just minor, and which ones really
makes a mark all the way out to the more general metrics.

5.1.4 Concluding remarks

Since we have not actually modi�ed any other parameters of the K-Means model
than the number of clusters, this is all basically an investigation of the corpus
rather than the model itself. By sweeping and looking at the metrics and clus-
terings we have learned more about the corpus itself, and how it responds when
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we try to categorize it. This is one of the reasons we have set aside so much
space for this section. With that in mind, let us �nd out how this applies and
compares to SVM.

5.2 SVM

Based on the theory presented in this report we expected to �nd that the more
complex kernel functions would perform better than the simple linear one. The
results from the computations show that this is not the case. We will start by
discussing the results for each kernel function and then give a conclusion to our
�ndings by comparing them.

5.2.1 Linear

In table 12 and 13 we notice that the entropy of the linear function is relatively
low. As the authors of [7, p. 327] write, text data is high dimensional and rarely
linearly separable. This is why we did not expect the metrics for the linear ker-
nel function to be so good. What we expected to see here is that the linear
classi�er would have trouble to separate the di�erent groups of documents. If
we look at the purity and completeness score (cs) we can see that the classes
are fairly clean. Looking further into what the classes look like we can see
that for level 0 we have two major classes /CompanyConcept and /Performance

which stand for 66% and 27% of the documents. The last class only contains
9% of the documents. Looking at level 1 we have one very dominant class
/CompanyConcept/SiteCollectionDocuments that contains 64% of the docu-
ments. After that we have /Performance/Lists with 21% of the documents.
The other classes are fairly small compared to these two.

5.2.2 RBF

This is the default kernel function. Compared to the performance of the other
ones it has the second best results, beaten by the linear kernel function. Looking
on the purity score for level 0 and 1 from table 12 and 13 we can see that it is not
far from the high scores that the linear kernel function produced. Level 0 is just
a notch better than level 1. What is more interesting to see is what happens with
the entropy and homogeneity score (hs). For level 0 the jump from the linear
version is not that big but for level 1 (with 11 labels) we have quite bad scores.
If we take a look at table 11 we see that for level 0 it manages to predict two out
of three classes but for level 1 only two out of eleven classes. Since the training
labels are the full path (like /RealLifeExamples/SiteCollectionDocuments,
CompanyConcept/SiteCollectionDocuments and /Performance/

SiteCollectionDocuments) for the level 1 classi�cation, there seems to be an
underlying structure that we do not capture. For level one, one of the two
classes contains all the */SiteCollectionDocuments documents. But since the
label is the full path the prediction receives a very low homogeneity score.

5.2.3 SIGMOID and Polynomial

We did not get any useful results with these kernel functions. Because of this,
we did not dig any deeper into these kernel functions.
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5.2.4 Comparing linear and rbf

The two di�erent kernel functions worth comparing are the linear and the rbf.
They both performed relatively well but they also gave results that we did not
expect. One reason to why the linear classi�er performs so well could be that the
documents are given as groups of documents, or if you want, they are already
in classes. If we look at the documents many of them are written based on a
template, making them very similar. The next group of documents is based on
another template making it easy to distinguish the di�erences between the two
groups. In a situation where the documents are not based on templates it is
tempting to think that the linear classi�er would not have performed as well.
This is, however, another investigation and not part of this thesis.

Given the hypothesis that documents are written based on templates it is eas-
ier to see that the linear kernel function performs well for level 0, but it performs
really well even for level 1. As said before we have sub-levels in the labels for
level 1 which seem to have a lot in common (the */SiteCollectionDocuments
labels). The linear kernel function manages to separate these very well but the
rbf kernel function does not. The rbf kernel function puts all of the
*/SiteCollectionDocuments documents in the same class. Whether this is bad
or not is up for discussion. One could argue that the best thing is to classify all
*/SiteCollectionDocuments into the same class, but then we are losing the in-
formation about their top domain (CompanyConcept etc.). It is up to the client
to decide which way is best and what the logical approach is for the users to �nd
and consume this information. Regardless of this, we note that the linear kernel
function in this case manages to distinguish between the di�erent classes a lot
better than any other kernel function. To further improve the performance of
the classi�er it is tempting to try out di�erent kernel functions and parameters
but

It is frequently the case that greater performance gains can be achieved
from exploiting domain-speci�c text features than from changing
from one machine learning method to another.

as Manning, Raghavan and Schütze write in [7, p. 335]. It is probably a better
idea to explore what our speci�c domain looks like and use the di�erent sub-
levels of the labels.

Something to notice is that according to the ground truth a very large pro-
portion of the documents belong to a small set of labels (as seen in tables 4
and 5). Another thing to note is as the authors of [5] �nd the SVM does not
perform as well when the number of training samples is low. This is the case
for the lower part of the labels in tables 4 and 4. To improve the results in this
case we are back at learning more about our domain.

5.3 Comparison of methods

This comparison is bound to be quite unfair, since we are comparing a supervised
method with an unsupervised method. Also, the label data we are benchmarking
against is the kind we used to train the SVM model. We used cross-validate in
order to not dope the system, but the comparison is still in favor of the SVM.
The K-Means method may make a clustering that makes more sense in the TF-
IDF, but if it is not the one the humans setting the labels thought about it is
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not going to show up in any other metrics than purity and entropy. Our goal
was simply to get an idea of how much of a di�erence supervision makes.

5.3.1 General metrics

For level 0 we see that SVM performs between two and three times better than
K-Means for the metrics vms and ars. For fms SVM is only about 1.5 times
better. It is di�cult to discuss much about this. We expected SVM to be much
more accurate than K-Means, and it is.

For level 1 SVM performs very similarly to level 0, just a little bit better
(5 % on average). K-Means, on the other hand, performs considerably worse
when faced with a larger number of clusters (25 % worse on average). This
makes sense since the di�erences between documents in di�erent clusters become
more subtle. SVM counteracts that with receiving more complex training data,
something K-Means can not.

5.3.2 Speci�c metrics

Now let us consider the more speci�c metrics. These are not suitable for decid-
ing which method is better overall, but helps us to understand the di�erences
between the clusterings.

For SVM hs and cs behave similarly to the more general metrics, they in-
crease slightly from level 0 to level 1. Purity is unchanged, which is odd but
certainly not impossible. Entropy interestingly enough increases, but not by
much (remember that lower entropy means better clustering).

For K-Means both purity and hs increases, even though all general met-
rics decrease. So even though the clustering quality decreases overall when
K-Means is forced to separate the corpus into more clusters, the homogeneity
and purity increases. This is typical for these two metrics; the greater the num-
ber of clusters, the greater the accuracy. The entropy increases slightly, which
is unexpected. Entropy usually decreases with the number of clusters. But the
change is very small so it is di�cult to draw any conclusions from it. Finally,
cs decreases drastically (by approximately 30 %) which is expected when the
number of clusters increases.

5.3.3 Summary

In summary, SVM beats K-Means in every metric and every clustering. It should
come as no surprise that a supervised method greatly surpasses an unsupervised
when it comes to being able to replicate the human idea of order. Now we have
it quanti�ed.

5.4 Similar documents (Deduction)

The similar documents feature was one of the �rst ones that the customer re-
quested. It was also one of the easiest to implement. It does not even technically
involve machine learning, all it is is a calculation of distances between rows in
the TF-IDF matrix.

We looked for ways to evaluate it and improve it, but soon realised that we
did not quite see the need for it. It did what it was required to do and it did
it well. Also, since we did not have users yet, there was no source for training
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data or data to benchmark against. The result was that the plans to improve
the similar documents feature was postponed and everybody was still happy.

5.5 Visualizing clusters

5.5.1 Magni�er

Magni�er was the �rst way to interact with the result of the clusterings and
classi�cations, before metrics or �nd similar documents was implemented. As
such it was of great help. The ability to click document coordinates to show
previews and scroll through the documents proved to be a very useful feature,
especially when evaluating if the distance between two document was accurate.
Navigating through the corpus in Magni�er taught us a lot about the dataset.

One version of Magni�er was actually implemented as an exploration view
of the corpus for content creators. They could use it to navigate from one
document to its neighbors, to �nd documents that were probably connected,
and ones that were probably duplicates.

The number of documents quickly became a limitation for the graph. Keep-
ing track of the relationships between a hundred document was no problem, but
when plotting the entire corpus it quickly became di�cult to survey. While the
MDS did its job it is not easy to make sense of dozens of dimensions projected
in 2D (or 3D, when using dot size) so the shapes and locations of the dots did
not tell us much in the end.

Towards the end of the project, we used Magni�er less and less, in favor
of the metrics that told us more about the speci�cs of the computations. But
magni�er has helped us a lot, especially early in the project while evaluating
the TF-IDF model and the similar documents features. It would probably be
possible to develop it into an even more powerful tool for data analysis, especially
if we could �nd a way to limit the number of documents to show in each view.

5.5.2 Grid cluster preview

The grid cluster preview was just a simple tool we created to be able to present
our progress to the customer and our supervisors. It did, however, end up
encouraging us and proved to be an interesting tool to quickly assess and analyse
a clustering. It is not as scienti�c as looking at metrics and plots of coordinates,
and it is very di�cult to use to assess small di�erences in quality. But we
found out that the end customer was a lot more impressed with this method
of visualization than trying to explain the mathematical formulation of Fowlkes
Mallows Score and show plots.

Interestingly enough our impression from looking at the results from the
grid cluster previews is that the K-Means clustering looks better than the SVM
clustering. Clusters 0, 1, 2, 5, 6, 7 look very very clean (you can easily visually
tell that the documents belong together). For svm several clusters look �ok�,
but not as nice as K-Means. It is quite di�cult to draw conclusions from this.
Since SVM is supervised its performance depends very strongly on the accuracy
of the labels. For this particular clustering, we knew that SVM had an purity
of 0.94. Just to double check we generated a grid cluster preview of the actual
labels rather than a clustering, and could establish that they indeed look very
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similar. One example is attached to this section, see �gure 22. SVM is doing
its job, but the labels are not doing it justice.

Figure 22: Visual representation of the label data.
Level = 1. Path: /Performance/Lists.

Something worth noting is that not all documents have previews generated,
and the script is written to ignore those rather than displaying them. This is
desirable for our application, but it should be noted that it might make the
clustering appear better than it really is. If a speci�c type of document lacks
previews it will not show up in the visualization, and that may cause a cluster
to look purer than it really is. This will, however, be true for all clusterings,
and should not impact comparisons.

Another interesting quality of this visualization method is that it shows an
aspect that has been ignored in the ml system: the aesthetics and images of
the documents. At �rst, some of the clusterings seemed �too easy�, as they all
looked the same. But the computer does not know that, it only looks at the
word frequencies but is still able to cluster documents in an impressive way.

5.6 Metrics

We were quite satis�ed with the metrics we decided to use in this project.
Entropy and purity proved very helpful in that they could conveniently be cal-
culated per individual cluster, and not only per clustering. They were also very
intuitive and easy for us to understand and get a feeling for early on.

Making distinctions between di�erent clusterings using homogeneity and
completeness turned out to be more di�cult than we hoped to. They still
aided us in assessing the speci�c qualities of the clusterings we were looking
at. Their de�nitions may not be as clear as for purity and entropy, but after
getting used to them they started to make sense and helped us understand our
clusterings.

The remaining metrics v-measure, adjusted rand score and Fowlkes Mallows
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score turned out to be very similar, and quite hard to draw conclusions based
on. We still decided to include all of them because three metrics do reveal more
than one, and make the conclusions more robust. We could, however, probably
have excluded one or two of them and ended up with similar conclusions.

5.7 Architecture

One of the big challenges of this thesis has been that we have been fully respon-
sible for setting up and running the entire stack. From spinning up instances
on Amazon, creating docker containers, setting up databases and last but not
least deploying the di�erent components. All of this while people were using the
service. We have learned a lot from this process, some things that are di�cult
to learn anywhere else. It has, however, taken time away from other things that
could otherwise have been explored more thoroughly.

5.8 The LEAN Method

We really appreciated striving for a LEAN method in this project. It has allowed
us to always move in the direction that will maximise the results for the customer
and users. In order to really follow the LEAN system we probably should have
been more data-driven. We should have had more clear ways to evaluate how
satis�ed the customer and the users were with the system, and let this guide
us. This was, however, di�cult when the project was delayed so that we did
not get the users we expected. We still did our best to be data-centric on the
feedback from our customer, but it de�nitely made the process less LEAN.

It is a quite di�erent approach to a project than what we are used to from
LTH, where we usually are served the theoretical foundations required and a
plan for the project ahead. This is a great method for learning material but
it does not replicate the conditions we faced in the working life. At least from
our experience so far. We think it was worth the occasional mishap, delays,
and pivots to strive for a LEAN method. It certainly did not make writing this
report and �nishing the project easier, but we �rmly believe it made the end
product better and helped us to learn a lot more on the way.

Overall we are happy that we went with this approach rather than a more
traditional academical one.

5.9 Challenges

In this section we will discuss some of the things we spent time on that did not
make it to the �nal implementation.

5.9.1 word2vec

Starting out with word2vec was probably a good decision, even though it did
not actually end up being a part of the thesis. It gave us the basic concepts of
machine learning and it was thrilling to see results (although not useful ones) so
early on. The issue was that we saw no clear way of transferring the term-term
relationships into document-document relationships. We also investigated using
doc2vec, a method that works on entire documents instead of terms but decided
to focus on the TF-IDF based methods instead.

50



5.9.2 User data

This data does not relate as clearly as the playlist data to our corpus. It is
therefore a lot more di�cult to use as learning material. However, we knew there
would be a lot more data of this type available than there would be playlists
so we decided to see what we could extract from it. We analyzed user behavior
and de�ned a scoring table for di�erent behaviors. If a user downloads an item,
the relationship between the search query and that item received �ve points. If
a user clicks �show more result�, the relationships between the search query and
all visible documents is decreased by one point. From these relationships labels
could be created. Since we did not receive enough users during the project we
did not dig deeper into this.

5.9.3 Search optimization

In hindsight the search optimization part of the project was a mistake. It could
be attributed to our eagerness to get started, being so encouraged by our �rst
naive steps. There was no programmatically simple way to add machine learning
data to the search algorithms of Elastic, and writing a new search engine would
not lead to an improvement. The machine learning aspects of Elastic were more
focused on �nding anomalies in a corpus, especially over time. This is something
we realized pretty early on, but it was not until we went to the Elastic{ON}
conference we got the bigger picture of how ElasticSearch relates to the Elastic
machine learning system. At least we were wise enough to realize our mistake
pretty early and pivot towards more productive methods. As a bonus, a lot of
the work we spend on researching and implementing search result metrics was
useful for the cluster comparison performed later on.
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6 Conclusions

This thesis asks the question �Can we replicate the human idea of structure to
documents using software?�. Answering an open question like this is never easy,
but we have made some progress.

The unsupervised method K-Means de�nitely provides some promising re-
sults in itself; the results of some metrics are not bad, and the result from the
grid-visualizer is quite impressive. When sweeping the number-of-clusters pa-
rameter in K-Means it �nds some optimal values for the corpus. It is quite
clear that in some ways K-Means is �smarter� than the training labels; it �nds
di�erent, maybe better, ways to organize the data.

The supervised method SVM greatly surpasses K-Means on all our metrics.
Given the results in this report, the SVM better replicates �the human idea of
structure� and it is therefore the better method in this case. Since the SVM
is supervised it also has a greater potential for improvement than K-Means.
Choosing a level, or multiple levels combined, from the current training data
could make a great di�erence. The supervised nature of the SVM also makes
it a more interesting candidate for future expansions with playlists and user-
generated data.

The main problem we had in this project was the lack of good training and
evaluation data. Even though the metrics show some promising results the
usability for the end users is hard to evaluate without the actual users. If we
were to do this again we would spend more time on understanding the input
data at an earlier stage than we did. Then again, we did not get the input data
that we expected which is also something to learn from.

We think that we have succeeded in replicating some human idea of structure
with our software solution. With a relatively simple understanding of machine
learning and a surprisingly short amount of time, we believe that any company
could set up a similar system to this one. However, it does take some deeper
mathematical knowledge in order to get the most out of it. An understanding
of the machine learning algorithm is important, but a deeper understanding of
the dataset and labels may be even more important.

6.1 Future work

If somebody were to take over this project tomorrow, we would encourage them
to spend more time examining the corpus. One way to do this could be to
improve (and spend time in) the visualizing tools. A smaller, simpler version
of Magni�er would be interesting to navigate around neighbors and learn the
patterns of the clustering.

We also believe that there is a lot more to learn from the URL:s used as
ground truth labels in the project. By combining di�erent levels of these (maybe
based on the K-Means clusterings) they could be greatly improved. Interviews
with the people who uploaded the documents would help as well. Using URL:s
(or folder structure in general) as labels for supervised machine learning could
de�nitely be a thesis in itself since there are so many aspects to it.

Another approach would be to use the result from K-Means as training data
for SVM, as discussed in the paper �Using unsupervised clustering approach to
train the Support Vector Machine for text classi�cation� [8]. Combining both
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the K-Means data and some version of the labels we had access to would be
very interesting.

Getting new labels by recording and processing real user data is perhaps the
most exciting next step. When feedback is built into the system it will grow
better as more people start using the product.

Finally, we have barely scratched the surface of the practical applications of
the machine learning system. There are so many useful features for the admins
and users of the information retrieval system that we can think of, and many
more if the development is performed in collaboration with said people.
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Appendix

Graphical cluster overview

Figure 23: Visual representation of kmeans
clustering. Level = 1. Cluster 0.

Figure 24: Visual representation of kmeans
clustering. Level = 1. Cluster 1.
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Figure 25: Visual representation of kmeans
clustering. Level = 1. Cluster 2.

Figure 26: Visual representation of kmeans
clustering. Level = 1. Cluster 3. This cluster was
very good, but contained images that had to be

hidden.
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Figure 27: Visual representation of kmeans
clustering. Level = 1. Cluster 4.

Figure 28: Visual representation of kmeans
clustering. Level = 1. Cluster 5.
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Figure 29: Visual representation of kmeans
clustering. Level = 1. Cluster 6.

Figure 30: Visual representation of kmeans
clustering. Level = 1. Cluster 7.
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Figure 31: Visual representation of kmeans
clustering. Level = 1. Cluster 8.

Figure 32: Visual representation of kmeans
clustering. Level = 1. Cluster 9.
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Figure 33: Visual representation of kmeans
clustering. Level = 1. Cluster 10.

Figure 34: Visual representation of svm clustering.
Level = 1. Cluster: /Performance/Lists.
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Figure 35: Visual representation of svm clustering.
Level = 1. Cluster:

/RealLifeExamples/MLDocuments. Previews were
not available for the other 20 documents.

Figure 36: Visual representation of svm clustering.
Level = 1. Cluster:

/Performance/SiteCollectionDocuments.
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Figure 37: Visual representation of svm clustering.
Level = 1. Cluster: /CompanyConcept/Articles.

Figure 38: Visual representation of svm clustering.
Level = 1. Cluster:

/RealLifeExamples/SiteCollectionDocuments.
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Figure 39: Visual representation of svm clustering.
Level = 1. Cluster:

/CompanyConcept/SiteCollectionDocuments.
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