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Abstract

This thesis considers bias when studying behaviours in a Cox propor-
tional hazards model. In Cox proportional hazards regressions and cohort
studies in general, measurements are often made during a limited period
of time. Behaviours may, however, change rather dramatically over time,
and if these changes are unknown, they will distort the results in the re-
gression models. We study this problem in the context of the effects of
smoking and physical activity on cardiovascular disease by simulating Cox
proportional hazards models. Changes in behaviour are simulated with
Markov chains in four scenarios. In each scenario we perform ten sets of
simulations where each set has a different transition probability.

The first scenario considers a dichotomous variable indicating physical
inactivity. We find that an increasing probability of changing behaviour
will eventually completely dilute the baseline estimates. In the second,
third, and fourth scenario we instead look at a smoking status variable
containing the categories smoker, ex-smoker, and non-smoker. The three-
category variable was in the regressions decomposed into the two dichoto-
mous variables Smoker and Ex-smoker. In the second scenario we only
allow transitions from smoker to ex-smoker. That leads to the hazard ra-
tio estimates of Smoker going towards the hazard ratio of Ex-smoker. In
the third scenario transitions are also allowed from ex-smoker to smoker.
This results in the hazard ratios of the two variables moving towards each
other, as the transition probabilities become larger. Lastly, the fourth
scenario have Markov chains where non-smokers are additionally allowed
to transition to smokers. There we find that the hazard ratios of Smoker
and Ex-smoker go towards 1.0 when the transition probability of going
from non-smoker to smoker is large.



1 Introduction

Cohort studies are frequently used to gain insights on the impact of behavioural
factors on mortality or the occurrence of certain diseases such as cancer and
cardiovascular diseases. Behaviours, in addition to an assortment of other mea-
surements, are often measured at a certain point in time. The measurements
then form a baseline that is used in a regression such as Cox proportional haz-
ards regression. Behaviours may, however, change over time from one behaviour
to another. Such changes will naturally have an impact on regression estimates
if only the behaviours at baseline are known, and may lead to incorrect conclu-
sions regarding the effect of different behaviours on the risk of diseases.

The notion of bias in epidemiological research has been touched upon by
many authors. Armstrong [1] for example, provides an overview of the effect
of different types of bias on classical regression and relative risk estimates. An
account for measurement bias for normal covariates in multiple regression and
logistic regression is given by Reeves, Cox, Darby, and Whitley [18] using math-
ematical arguments and simulations. Regarding Cox proportional hazards re-
gressions, literature focuses on so-called ”immortal-time bias”. This bias may
occur when one studies a treatment for a disease that occurs at a point in time.
If the treatment occurs prior to baseline measurements but is treated as if it
was made during or before the baseline, a treated patient will per definition sur-
vive between the baseline and the time of treatment. The patient will, thus, be
immortal for a period of time, resulting in an over-estimation of the treatment
effect. Austin, Mamdani, Walraven, and Tu [3] use Monte Carlo simulations of
108 different scenarios, and show that the time that the treatment occurs affects
the size of the bias. More recently, Jones and Fowler [11], show that the bias
is larger when the hazard is increasing over time than if it is decreasing. Bey-
ersmann, Wolkewitz, and Schumacher [4], prove that the incorrect handling of
treatments occurring over time will lead to an overestimation of treatment effect
in the case when the coefficients of the Cox proportional hazards regression are
estimated with the generalised rank estimate. They also show that the amount
of censoring can have an effect on the bias. All of these studies deal with the
situation where the time-dependent variable is dichotomous and only changes
once throughout the study period. Therefore, the results of the studies tell us
little of the bias that can be caused by unobserved changes in behaviour.

This thesis attempts to contribute to the knowledge of bias created by time-
dependent covariates on baseline studies. More specifically the aim is to study
how different rates of change in habits impact baseline hazard ratio estimates
of the Cox’s proportional hazards regression. This bias is evaluated in the
context of smoking habits and exercising habits and their effect on cardiovascular
diseases. The topic of this thesis was provided by Clinical Studies Sweden -
Forum Syd.

To fulfil the aim of studying the effect of behavioural change, simulations
are used. The simulations use discrete time Markov chains to simulate changes
in behaviour. The times-to-event are simulated using truncated piece-wise ex-
ponential distributions through the algorithm developed by Hendry [10]. For
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each simulation repetition, one proportional hazards regression is estimated us-
ing the baseline, and one proportional hazards regression is estimated using full
information of the changes in behaviour. The estimates of the two regressions
are then illustrated in order to evaluate the bias created by the unobserved
changes.

This Master’s thesis is structured as follows: first, in chapter 2, an outline
is given on the Cox proportional hazards regression and discrete time Markov
chains, along with an overview of the simulation of time-to-event with time-
dependent covariates. Thereafter in chapter 3, the method of the simulations
is described, starting with the simulation of the baseline and ending with the
simulation of time-to-event. In chapter 4 the results of the simulations are
presented, with explanations as to why these particular results were found.
Lastly, in chapter 5 a discussion on the method and the results is provided.

2 Theory

This chapter gives a short overview of different concepts relevant for the anal-
ysis. The chapter mainly deals with concepts of survival analysis and Cox
proportional hazards regression. In addition, the theory behind the method of
simulating the time-to-event is presented, whereafter some concepts and termi-
nology regarding Markov chains is provided.

2.1 Cox proportional hazards regression

The widely used semiparametric proportional hazards regression was first pre-
sented in 1972 by Cox [8], and has since then been widely applied in many
fields. Its popularity stems primarily from its simplicity and the fact that no
assumptions regarding the distribution of the time-to-event have to be made.
Due to its popularity, the Cox proportional hazards regression can be found in
most introductory text books in survival analysis. In the following paragraphs
an overview of the proportional hazards regression will be provided. For more
thorough descriptions of the Cox regression and survival analysis in general, see
for example Klein and Moeschberger [12] and Collet [6].

Before providing an overview of the Cox proportional hazards regression
regression, an account of some general definitions from survival analysis will be
given. One of the most important concepts of survival analysis is the survival
function. It is defined as:

S(t) = P (T > t) = 1− F (t). (1)

The survival function, thus describes the probability of an event not having
occurred at time t. Another fundamental concept of survival analysis is the
hazard function. The hazard function is defined as:

h(t) = lim
k→0

P (t ≤ T < t+ k|T ≥ t)
k

, (2)
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meaning that h(t)k approximately measures the probability of an event occur-
ring in the next instant, given that the event has not yet occurred. The hazard
function is related to the survival function through:

h(t) =
f(t)

S(t)
. (3)

In survival analysis the survival time or time-to-event is often assumed to be
distributed according to the Weibull distribution with density function:

f(t) = λγtγ−1 exp (−λtγ). (4)

This gives the following hazard function:

h(t) = λγtγ−1, (5)

which allows for either an increasing (γ > 1) or decreasing (γ < 1) hazard over
time. This property is useful when analysing the survival time of humans, as
it often has an increasing hazard. Should γ = 1 the hazard becomes constant
over time, and the time-to-event will be distributed according to the exponential
distribution.

In the setting of the Cox proportional hazards regression we define for our
observations i = 1, ..., n, Yi = min(Ti, Ci), where T is the time to event and C
is the time when an individual exits the study for any reason other than the
event, i.e. becomes censored. We further define the variables δi,Xi, where δi is
an indicator variable, indicating whether an observation is censored, and Xi a
set of covariates for the ith individual. In the original regression model these
covariates are constant, and are, thus, not allowed to change over time. This
restriction is later dropped, but will for now be kept.

We let the hazard function at time t be:

h(t|X) = h0(t) c(βtX), (6)

where h0(t) is an arbitrary baseline hazard that is the same for all individuals
at any particular point in time. β is a vector of parameters, and c(·) a pre-
specified function. The arbitrary baseline hazard is in the Cox proportional
hazards regression treated as a non-parametric component, while the vector β
is treated as a parametric component. For that reason the model is referred
to as semiparametric. The function c(βtX) has to be positive, and is often
conveniently defined as:

c(βtX) = exp(βtX). (7)

The name proportional hazards regression stems from an important result.
If we look at two individuals with different covariate values X and X∗, the
ratio of their hazard rates (the hazard ratio) is given by:

h(t|X)

h(t|X∗)
=
h0(t) exp

(∑p
k=1 βkXk

)
h0(t) exp

(∑p
k=1 βkX

∗
k

) = exp

( p∑
k=1

βk(Xk −X∗k)

)
, (8)
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i.e. a constant. The hazard rates are, thus, always proportional, which has
given the regression model the name proportional hazards regression.

The parameters of the Cox regression model are estimated using maximum
likelihood. We assume non-informative censoring , i.e. it occurs independent of
X, independent event times, and that there are no ties between the event times.
We further, denote t1 < t2 < ... < tn as the ordered event times (censored and
uncensored), and R(ti) as the set of individuals at risk prior to time ti. The
probability of a certain individual having an event at time ti with covariate
values Xi is given by:

P (individual has event at ti|one event at ti)

=
P (individual has event at ti|survival to ti)

P (one event at ti|survival to ti)

=
h(ti|Xi)∑

j∈R(ti)
h(ti|Xj)

=
h0(ti)exp(βtXi)∑

j∈R(ti)
h0(ti)exp(βtXj)

=
exp(βtXi)∑

j∈R(ti)
exp(βtXj)

As was shown above the baseline disappears as it is the same for all individuals at
time ti. Multiplying the probabilities over all events and only letting uncensored
event times contribute, we get the following likelihood.

L(β) =

n∏
i=1

(
exp(βtXi)∑
j∈R exp(βtXj)

)δi
(9)

This is called a partial likelihood as it does not contain the baseline hazard. The
partial likelihood is, however, treated as a normal likelihood, and it has been
shown to have similar properties [7] [21]. Also note, that the indicator variable
δi will be zero at a censoring event. To estimate the parameters, the logarithm
is taken on the partial likelihood, whereafter its maximum is found iteratively
using for example the Newton-Raphson method.

The likelihood above assumed that are no ties between event times. In
reality this is often not true, as times are usually recorded as intervals. There
are several methods to accomodate for ties with the most widely known being
Breslow’s method [5] and Efron’s method [9]. Efron’s and Breslow’s method are
very similar when the number of ties are small. Efron’s method is, however,
closer to the correct partial likelihood based on a discrete proportional hazards
model, and generally performs better when the number of ties is high [12].

Let di be the number of events at time ti and τi be the set of individuals
having the event at time ti. Furthermore, let Si be the sum of all covariate
vectors over the individuals having the event at time ti, i.e. Si =

∑
k∈τi Xk.
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Breslow’s likelihood is then given by:

L(β) =

n∏
i=1

(
exp(βtSi)

[
∑
j∈R(ti)

exp(βtXj)]di

)δi
. (10)

Efron’s likelihood is in turn given by:

L(β) =

n∏
i=1

(
exp(βtSi)∏di

k=1[
∑
j∈R(ti)

exp(βtXj)− k−1
di

∑
j∈τi exp(βtXj)]

)δi
. (11)

As stated earlier, the Cox proportional hazards regression model can be
extended to accomodate for time-dependent covariates. In the version with
time-dependent covariates, we replace X with X(t) in the hazard function, so
that we get:

λ(t|X(t)) = λ0(t) exp(βtX(t)). (12)

This results in the following partial likelihood:

L(β) =

n∏
i=1

(
exp(βtXi(ti))∑

j∈R(ti)
exp(βtXj(ti))

)δi
, (13)

where we once more assume non-informative censoring, independent event times,
and no ties. Note that it is, also, assumed that the value of Xj(t) is known for
each time an individual is at risk. In reality, however, we only need to know the
value of Xj(t) for event times that are uncensored due to the way that the partial
likelihood is formulated. In the presence of ties, methods such as Breslow’s and
Efron’s likelihoods can be used as in the case with constant covariates.

2.2 Simulating a proportional hazards regression

Although not in abundance, there are methods for generating proportional haz-
ards regression with time-dependent variables. Building upon the works of
Leemis [13] and Leemis et al. [14], Austin [2] formulated closed form expres-
sions for simulating time-to-event for three types of time-dependent variables
when the time-to-event follows an exponential, Weibull, or Gompertz distri-
bution. Austin’s method, however, only allows for dichotomous or continuous
time-dependent variables. Sylvestre and Abrahamowics [20] propose a permu-
tational algorithm, where generated survival times are randomly matched with
covariate values according to a predefined probability distribution. The strength
of this algorithm lies in that it allows for any number of time-dependent covari-
ates and that it does not require that the time-to-event follows a parametric
distribution.

A rather elegant and more intuitive algorithm using a piece-wise exponential
distribution was developed by Hendry [10]. The algorithm is itself an extension
of the work of Zhou [22]. In Zhou’s procedure we have a constant variable x1
and a time-dependent variable x2(t) that switches from 0 to 1 at time t1. We,
furthermore, define a function g(·) that is a monotone increasing function where
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g(0) = 0 and g(t)−1 is differentiable. If W is a variable following a two-piece
exponential distribution with rate:

ψ =

{
exp(β1x1) if t ≤ g−1(t1)

exp(β1x1 + β2) otherwise
(14)

then g(W ) will follow a Cox proportional hazards model with baseline hazard
h0(t) = d

dt

[
g−1(t)

]
. Hendry [10] extends this concept to include an arbitrary

number of time intervals and time-dependent (and constant) covariates using a
truncated piece-wise exponential distribution. In Hendry’s framework we first
partition a time scale into J intervals (0, s1], (s1, s2], ..., (sJ−1, sJ ]. We then let
a variable Z follow a piece-wise exponential distribution with density function:

kZ(t) =

j−1∏
h=1

exp(−ψh(g−1(sh)− g−1(sh−1)))ψj

exp(−ψj(t− g−1(sj−1)))I{g−1(sj−1) < t ≤ g−1(sj)},

(15)

for j = 1, 2, ...J . We further denote the corresponding distribution function as
KZ(t). A variable W that is a truncated version of Z will then have the density
function:

fW (t) =
kZ(t)I{g−1(a) ≤ t ≤ g−1(b)}
KZ(g−1(b))−KZ(g−1(a))

, (16)

where [g−1(a), g−1(b)] is the support of W . As with Zhou’s two-piece exponen-
tial distribution, g(W ) will now also follow a Cox proportional hazards model
with baseline hazard h0(t) = d

dt

[
g−1(t)

]
, if g(·) is a monotone increasing func-

tion where g(0) = 0 and g(t)−1 is differentiable. Time-dependent covariates are
entered into the model through the rates of the piece-wise exponential distribu-
tion so that ψj = exp(βtXj). To simulate data using Hendry’s framework the
following steps are followed:

1. Define the function g(·).

2. Define a time scale and partition the time scale.

3. Define the bounds of truncation.

4. Define the number of observations.

5. Define the vector of coefficients β.

6. For each observation:

(a) generate a set of time-dependent covariates X.

(b) let ψj = exp(βtXj) for each time interval j = 1, ..., J .

(c) generate W from a truncated piece-wise exponential distribution with
ψj as the rate for the jth time period.

(d) calculate the time-to-event Y = g(W ).
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2.3 Discrete-time Markov chains

Since discrete-time Markov chains are used in this thesis to simulate changes in
behaviours, some basic concepts and terminology are presented in the following
paragraphs. A more detailed introduction to Markov chains can be found in
Stirzaker [19].

We consider a sequence of random variables (X0, X1, ...) that can take on
values from a finite set S. The set S is called the state space, and Xt = i is
often referred to as X being in state i. For X = (X0, X1, ...) to be a Markov
chain the Markov property has to hold, meaning that:

P (Xt = i|X0 = k, ...,Xt−1 = j) = P (Xt = i|Xt−1 = j), (17)

for all t ≥ 1 and all i, j, k ∈ S. To put differently, the probability of the variable
X taking a certain value in the future only depends on the value that it had
during the time period right before. If the probabilities do not change over time,
i.e. if the chain is homogeneous, we can rewrite equation 17 to:

P (Xt = i|Xt−1 = j) = pij , (18)

where pij signifies the probability of transitioning from state j to state i.
The probabilities can be displayed in a matrix called a transition matrix. As-

suming a simple three state Markov chain, with states i, j, and k the transition
matrix would be as follows:

pii pji 1− pii − pji
pij pjj 1− pij − pjj
pik pjk 1− pik − pjk


Should pii = 1 the state i is called absorbing. Furthermore, we say that i is
accessible from j if the chain in some way can reach state i if starting from state
j. If j also is accessible from i the states are said to be mutually accessible.
Another important concept in Markov chains is that of recurrence. If we define
the first return to i if starting at i as:

Ti = min{n ≥ 1 : Xt = i|X0 = i}, (19)

then i is recurrent if P (Ti < ∞) = 1. If instead P (Ti < ∞) < 1 state i is
called transient. Note that if defined as in equation 19, the first return does not
require X to have had other states than i, however this is generally considered
to be the case.

3 Method

This chapter will outline how the simulation study was performed. Throughout
the simulations, estimates from a Cox regression when changes in the variables
are known are compared to estimates based only on the baseline measurements.
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Each regression contains the following five variables: Sex, Age, Passive (indicat-
ing physical inactivity), Smoker, and Ex-smoker. The corresponding coefficients
can be found in table 1. The coefficients were decided upon through discussions
with Clinical Studies Sweden - Forum Syd, except for the coefficient belonging
to Ex-smoker. Efron’s method is used, as it is better at handling larger amounts
of ties. Time is in the simulations discrete with year-long time-periods. All sets
of simulations, furthermore, use a sample size of 1000, and each simulation is
repeated 1000 times. The following subsections will describe how the baseline
is simulated, how the time-dependent variables are made, and how the time-to-
event is generated. Lastly, four scenarios of simulations are presented.

Table 1: Variables used in the simulations with corresponding coefficients

Variable Coefficient
Sex log(1.0)
Age log(1.5)/10

Passive log(1.5)
Smoker log(2.0)

Ex-smoker log(1.2)

3.1 Simulating the baseline

For the purpose of realism, the baseline is simulated loosely based on the Malmö
Diet and Cancer Study cohort [15]. The variables generated in the baseline are:
Sex, Age, Passive, and Smoking status. The Smoking status variable is in the
regressions transformed into two binary variables: Smoker and Ex-smoker. Sex
is simulated using a binomial distribution with probability of 0.4 of being male.
Age is drawn from a normal distribution with mean 60 and standard deviation
10. Passive is generated through a binomial distribution with probability of
being inactive of 0.6 if male and 0.4 if female. Lastly, Smoking status is drawn
from two multinomial distributions with probabilities for males being 0.28, 0.41,
and 0.31 and for females being 0.26, 0.27, and 0.47 for being a smoker, ex-smoker,
and non-smoker respectively. Note that only, Passive and Smoking status are
treated as time-dependent rendering the other variables uninteresting for the
analysis to follow. They are, nonetheless, kept for the simulations to closer
emulate a study of cardiovascular diseases.

3.2 Simulating the time-dependence

The time-dependent variables are simulated using discrete time Markov chains,
for each individual with initial states as given by the baseline. The transition
matrices are furthermore set as constant and are the same for all individu-
als. While other ways of simulating changes between categories can be utilised
Markov chains are simple and allows one to easily change probabilities of move-
ments between states by changing the transition matrix. The Markov property
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is, furthermore, most likely relatively reasonable when it comes to behavioural
patterns.

Regarding the variable indicating physical inactivity, Passive, we have the
states passive and active. The number of individuals being physically active
could reasonable be assumed to be constant over time. We, therefore, set the
probability of becoming active equal to the probability of becoming passive. If
we let ξ be the transition probability of transitioning from passive to active or
vice versa we get the transition matrix as follows:

(
1− ξ ξ
ξ 1− ξ

)
The Markov chain for smoking status has the states smoker, ex-smoker,

and non-smoker. Naturally individuals are in the Markov chain not allowed
to become non-smokers. In other words, the state non-smoker is inaccessible
from both smoker and ex-smoker. Furthermore, an individual is not allowed to
transition from non-smoker directly to ex-smoker. Letting γ be the probability
of transitioning from the state smoker to ex-smoker during the time period, ζ
the transition probability from ex-smoker to smoker and ψ the probability of
becoming a smoker as a non-smoker we get the following transition matrix:

1− γ γ 0
ζ 1− ζ 0
ψ 0 1− ψ


Throughout the simulations, we set γ > ζ, ψ to portray a higher chance of
stopping smoking than starting smoking, which one can argue to be reasonable
given the mean age of 60 in the simulations.

3.3 Generating time-to-event

When generating the time-to-event, the algorithm presented by Hendry [10]
is used. The reasons for choosing this method are the fact that it is rather
intuitive, due to the connection between a piece-wise exponential distribution
and a proportional hazards model, and its ease of use because of some already
existing R code. We assume a Weibull distribution for the time-to-event. This
is in order to have an increasing hazard over time, making the simulations
somewhat more realistic in comparison to a constant or decreasing hazard. The
function g(·) used in the simulations will thus be:

g(t) = λtν (20)

ν is set to 2, so that the hazard is indeed increasing. Furthermore, λ is set
to 0.0002. The value for λ was decided upon as it gives somewhat reasonable
survival times for the used models. The bounds of truncation for the truncated
piece-wise exponential distribution are set to 0 and 60. A person will thus have
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an event between 0 and 60 years from the baseline. The bound of 60 years
can be seen as rather long, considering the mean age of 60. Hendry’s method
has, however, been shown to suffer from bias when the truncation bounds span
short ranges [17]. Individuals are censored at the end of each simulation. The
probability of an individual being censored is set to 0.4, and the indicator of
censoring is added so that a person being censored happens at the time where
the individual would have its event. The censoring is, thus, completely unrelated
to the covariate values of each individual.

3.4 Four scenarios of simulation

The simulations are made in four scenarios, each studying different aspects of
the model and consisting of ten sets of simulations. In the first scenario we
look at the dichotomous variable Passive, and how changes in the variable after
baseline affects the hazard ratio estimates. Different values of ξ in the transition
matrix are used for each of the ten sets of simulations. The values are presented
in Table 2, and are chosen to illustrate a step-by-step increase in transition
probabilities, from relatively low to relatively high.

Table 2: Transition probabilities for scenario 1

Transition probabilities
ξ 0.02 0.04 0.06 0.08 0.10 0.12 0.14 0.16 0.18 0.20

The following three scenarios all study the smoking status variables. In
the second scenario, we set the states ex-smoker and non-smoker as absorbing,
meaning that individuals are only allowed to stop smoking. This leads to ζ
and ψ being set to 0 for all simulations. γ on the other hand follows the same
patterns as ξ, as can be seen in Table 3.

Table 3: Transition probabilities for scenario 2

Transition probabilities
γ 0.02 0.04 0.06 0.08 0.10 0.12 0.14 0.16 0.18 0.20
ζ 0 0 0 0 0 0 0 0 0 0
ψ 0 0 0 0 0 0 0 0 0 0

In the third scenario we let the state smoker be recurrent so that ex-smokers
can start smoking. Since it is probable that more individuals stop smoking than
fall back into smoking, we keep γ > ζ, leading to the values found in Table 4.
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Table 4: Transition probabilities for scenario 3

Transition probabilities
γ 0.02 0.04 0.06 0.08 0.10 0.12 0.14 0.16 0.18 0.20
ζ 0.01 0.02 0.04 0.06 0.08 0.10 0.12 0.14 0.16 0.18
ψ 0 0 0 0 0 0 0 0 0 0

In the fourth scenario we attempt to evaluate the effect when changes are
allowed from all states. Here ψ is set to equal to ζ as can be seen in Table 5
to allow for a rather high amount of noise coming from non-smokers starting to
smoke.

Table 5: Transition probabilities for scenario 4

Transition probabilities
γ 0.02 0.04 0.06 0.08 0.10 0.12 0.14 0.16 0.18 0.20
ζ 0.01 0.02 0.04 0.06 0.08 0.10 0.12 0.14 0.16 0.18
ψ 0.01 0.02 0.04 0.06 0.08 0.10 0.12 0.14 0.16 0.18

For computational purposes, the variable Passive is regarded as being con-
stant for scenarios two to four, and Smoking status is regarded as constant
for the first scenario. As changes occur independently in the different Markov
chains, this should not have an effect on the result.

4 Results

In this chapter the results of the simulations are presented, along with explana-
tions as to why these particular results were found. The results are structured
according to the four scenarios starting with the first scenario.
The results of scenario one indicate as might have been expected that the effect
of increasing rates of change over time in a binary variable dilutes the base-
line estimate. This can clearly be seen in Figure 1 since the hazard ratio of
the baseline estimate can be seen approaching 1.0 with increasing transition
probability. We can also observe that the bias has almost completely negated
the true hazard ratio when the transition probability is 0.16. This is a very
high probability, nonetheless, it is clear that a significant bias is created already
when the transition probability for changing state per year is 0.02. The dilution
of the baseline estimate is caused by the baseline value of the variable Passive
becoming less and less informative as the rate of change increases. In other
words, an individual having Passive = 1 in the baseline will in the later simu-
lations switch between Passive = 1 and Passive = 0, leading to the baseline
value containing very little information about the time-to-event. The estimate
using full knowledge remains unbiased, and seem to perform well throughout
the simulations.

11



Figure 1: Scenario 1. The transition probability ξ is displayed at the bottom
for each set of simulations. The y-axis indicates hazard ratio estimates with the
dotted line indicating a hazard ratio of 1.0.

In the second scenario we instead look at the variables Smoker and Ex-
smoker. We now, thus, have three categories instead of two. In this initial
scenario individuals are only allowed to transition from Smoker to Ex-smoker.
As the transition probability increases, more individuals who at baseline were
smokers will now have stopped being smokers and become former smokers. They
are in the baseline estimate, nonetheless, still incorrectly classified as smokers.
For the baseline estimate, this means that more and more baseline smokers,
will have times-to-event akin to that of baseline non-smokers as more baseline
smokers stop smoking. The observed effect on time-to-event of baseline smokers
will, therefore, appear to be closer to the effect of being a former smoker, as
the difference between the two categories at baseline disappears. This gives us
the results that can be found in Figure 2a, where the baseline estimate of the
hazard ratio of Smoker approaches the hazard ratio of Ex-smoker. Although,
the effect of smoking never disappears, it becomes indistinguishable from that
of having stopped smoking at a probability of changing state of around 0.2. The
estimates using time-dependent variables, are again unbiased, but show increas-
ing variation with increased probability of change. Since none of the baseline
former smokers change state, the estimates for Ex-smoker remain unchanged as
seen in Figure 2b.
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(a) Hazard ratios for Smoker. (b) Hazard ratios for Ex-smoker.

Figure 2: Scenario 2. The transition probability γ for each set of simulations is
displayed at the bottom. The y-axis indicates the hazard ratio estimates. As
neither ζ nor ψ are changed in this scenario, they are not displayed. The dotted
line in Figure 2a indicates the hazard ratio 1.2, which is the same as the hazard
ratio of Ex-smoker.

When letting the states ex-smoker and smoker be mutually accessible in
scenario three, we get a different result. Individuals who at baseline are smokers
may as before become former smokers. They can, however, now also return to
smoking. In the same manner, former smokers at baseline may start smoking,
and they may thereafter stop. This results in the difference between the two
categories Smoker and Ex-smoker at baseline disappearing if many individuals
transition frequently between the states. As in scenario two, this means that
the perceived effect of Smoker will be more similar to the effect of Ex-smoker.
However, in this scenario, the perceived effect of Ex-smoker will at the same
time become more similar to that of Smoker. This leads to the results found in
Figures 3a and 3b, i.e. that the two hazard ratios move towards each other with
more changes in states. In essence what happens is that the difference in time-
to-event between the categories Smoker and Ex-smoker at baseline disappears,
and the only thing relevant at baseline is if an individual belongs to any of those
two categories. Using the probabilities used for simulating the baseline values
of Sex and Smoking status and the hazard ratios of the two categories, we can
through simple probability calculations get that the expected weighted average
hazard ratio of a combined class would be approximately 1.56. This is also the
value that the hazard ratios seem to move towards. In the two graphs we can,
furthermore, see that the hazard ratio of Smoker reaches 1.56 much quicker than
Ex-smoker. To some extent, this caused by the probability of changing state
always being higher for Smoker. Additionally, the probability of being a smoker
at baseline is lower than that of being a former smoker. The baseline category
Smoker will, thus, require fewer changes to become uninformative. As opposed
to the previous scenario the variation in the estimates of the time-dependent
variables is not dramatically affected.
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(a) Hazard ratios for Smoker. (b) Hazard ratios for Ex-smoker.

Figure 3: Scenario 3: γ is displayed at the bottom of each figure, while ζ
is displayed at the top. The y-axis indicates hazard ratio estimates with the
dotted line in the two figures indicating the hazard ratio 1.56.

(a) Hazard ratios for Smoker. (b) Hazard ratios for Ex-smoker.

Figure 4: Scenario 4. The transition probability γ is displayed at the bottom.
ζ is displayed at the top of the figures. ψ is throughout the scenario equal to ζ.
The y-axis indicates the hazard ratio estimates.

In the fourth scenario the individuals who are non-smokers are also allowed
to start smoking. This means that both Smoker and Ex-smoker will, after
baseline, have an influx of baseline non-smokers. In the previous scenario where
both smokers and former smokers could change state, the difference between the
two categories at baseline disappeared. Due to non-smokers now also changing
states, the difference between all categories at baseline becomes smaller when
more individuals transition between the states. Therefore, as can be seen in
Figures 4a and 4b, the effect of Smoker and Ex-smoker become incorporated into
the baseline hazard. To put it differently, both hazard ratios go towards 1.0, and
they seem to have done so at a probability of changing state of approximately
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0.16 for Smoker and 0.18 for Ex-smoker. We can also note, that the variation
in hazard ratio estimates increases rather dramatically for larger probabilities.

5 Discussion

The aim of this thesis was to study the effect of changes in behaviour after
baseline measurements on the estimates of the Cox proportional hazards regres-
sion. The changes in behaviour were studied through simulations using Markov
chains. The simulations have portrayed four scenarios, where in each we let
the transition probabilities in the Markov chains have increasing values. In the
first scenario, we looked at dichotomous variable indicating physical inactivity.
There we found that a high transition probability leads to the baseline hazard
ratio estimate going towards 1.0. This is caused by the baseline information
containing less and less information relevant to the time-to-event. In the three
following scenarios the three category smoking state variable were studied. In
the first of these scenarios, states ex-smoker and non-smoker were absorbing
states, meaning that individuals were only allowed to go from smoker to ex-
smoker. This resulted in the baseline hazard ratio estimate of Smoker going
towards the hazard ratio of Ex-smoker. The reason for this, is that the individ-
uals being smokers at baseline, get times-to-event more alike that of individuals
who at baseline are former smokers. At the same time, baseline values of Ex-
smoker contain correct information as they do not change over time, which
resulted in the hazard ratio estimates being correct. In the following scenario,
former smokers were allowed to become smokers. From a baseline perspective,
this meant that the effect on time-to-event for baseline smokers became the
same as that for baseline former smokers. For that reason, the baseline hazard
ratio estimates both went towards an expected weighted average hazard ratio.
Finally, in the last scenario, non-smokers were also allowed to start smoking
with the same probability as that of a former smoker. The effect of the baseline
categories on the time-to-event, diminished because of the influx of non-smokers.
This in turn led to both hazard ratio estimates going towards 1.0. We have,
thus, through the simulations shown that unobserved changes in behaviour oc-
curring after baseline measurements do have an impact on Cox proportional
hazards measurements, and that the effect can become rather large if changes
occur frequently.

One might argue that the fourth simulation is rather unrealistic as both non-
smokers and former smokers have the same probability of starting smoking. The
scenario illustrates, however, the effect of too much influx from a third category
that in the regression is part of the baseline hazard. Should the transition
probability of changing state from non-smoker to smoker be lower than it was in
scenario four, one might expect a result that would lie in between the fourth and
third scenario. We would, then most likely see that the hazard ratio estimates
of Smoker and Ex-smoker approaching each other, while there at the same time
would be a diluting contribution of non-smokers that would push the hazard
ratio estimates down. We would, thus, probably have hazard ratio estimates
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lower than those of scenario three. The hazard ratios would, nonetheless, not
approach 1.0.

During the simulations it was noted that the variance of the estimates with
time-dependent variables sometimes increased when the probability of changing
state increased. This effect was most prominent in the last scenario, but could
also be seen in scenario two. In scenario four, the population of non-smokers
were allowed to start smoking, leading to a decrease in the number of individuals
in this category since non-smoker was not accessible from any other state than
itself. For simulations with a high probability of changing state from non-smoker
to smoker, many observations will end up belonging to the states ex-smoker or
smoker, which in the regressions are coded as two dichotomous variables. This
means that the two variables will be highly correlated, leading to inflated co-
efficients and general instability in the estimates. This could be alleviated by
simply changing the coding so that either non-smoker is coded as a variable in
place of either smoker or ex-smoker. Regarding the second simulation, smokers
are allowed to become former smokers, but not vice versa. If the transition
probability is high, the category variable Smoker will eventually be filled with
zeros, in turn resulting in few observed deaths with individuals belonging to
smoker. This is likely the reason why we can see an increase in variance of the
hazard ratio estimate for Smoker in scenario two, but not in scenario three. Nat-
urally, problems with multicolinearity and coding of variables may arise when
making any kind of cohort study. Extra caution should, nonetheless, probably
be taken when performing cohort studies with time-dependent variables that
change frequently.

One aspect that has not been dealt with in this thesis is censoring and
the effect it may have on the bias of the baseline estimates. As censoring is
modelled here, a censoring indicator is added at time-to-event, meaning that
a censored individual is regarded as censored at the time were they normally
would have their event. The individuals are, therefore, in the study for the same
duration as if they would not be censored, and thereby is the number of changes
in their smoking or exercising habits unaffected. It is, therefore, unlikely that
the censoring affected the results in the simulation in any other way than by
reducing the number of individuals with certain variable combinations having
an event. A lower probability of censoring may, thus, have resulted in more
stable estimates for scenarios two and four, but would otherwise have had no
effect. Another type of censoring is censoring caused by a limited study time.
To put differently, a study could run for a predefined or random number of
years before the study is terminated and no more measurements are taken. The
censoring time of an individual could also be generated from a distribution. In
either case the time-to-event would be given by Yi = min{Ti, Ci}, where Ti
is real the time-to-event and Ci the time to censoring. Should we have any
of these two kinds of censoring, the length of the study may affect baseline
estimates, since the amount of time that an individual is allowed to transition
between states may be limited. A study with short times to censoring could,
thus, potentially reduce the bias created by unknown changes in behaviour after
baseline, especially when the transition probabilities are low.
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The simulation of the effect of the different behaviours on time-to-event was
in this thesis modelled in a simple way. The modelling of these effects, there-
fore, warrants some discussion. Throughout the simulations, we modelled the
effect of behaviours as constant and instantaneous. When behaviours changed,
the effect of past behaviours, furthermore, disappeared immediately. These
assumptions are in many cases not realistic, in particular when it comes to
smoking, since the positive effect of smoking cessation gradually appears. For
example, a meta-study showed that former smokers in an elderly population
have comparable risk of cardiovascular disease as that of non-smokers 20 years
after smoking cessation [16]. This gradual effect could have been simulated as
a set of dichotomous variables indicating different ranges of how long time that
has passed since smoking cessation. The time-since smoking cessation could be
simulated at baseline, and changed as both time passes and behaviours change.
The baseline estimates of the category variables indicating time since cessation,
would however be wrong by definition. Assume that one category would indi-
cate time since cessation between 0 and 5 years. An individual belonging to
this category at baseline, would as time passes, only belong to the category for
maximum 5 years. Thereafter, the individual would belong to the next category,
and so forth. Say that the individual has the event 10 years after baseline. The
individual will now have contributed to the likelihood through events happen-
ing more than 5 years after baseline, while for those events, and possibly more,
being incorrectly categorised as having stopped smoking 0 to 5 years ago. The
only way that the categorisation will not be incorrect at some point is, therefore,
if the individual has the event or is censored before the time since cessation has
passed 5 years. This would, thus, always create a bias if the time-to-event is
simulated using baseline measurements, even if no changes in smoking occur.
Instead one would have to incorporate the inherent changes in categorisation
caused by the passage of time. This could be achieved by also using a Cox
proportional hazards regression with time-dependent covariates for the baseline
estimates. Only the variables indicating time since smoking cessation would
then change over time. One might, however, question if such a model is used to
any greater extent in epidemiological research.

17



References

[1] Armstrong, B. G. “Effect of measurement error on epidemiological stud-
ies of environmetal and occupational exposures”. In: Occupational and
environmental medicine 55 (1998), pp. 651–656.

[2] Austin, P. C. “Generating survival times to simulate Cox proportional
hazards models with time-varying covariates”. In: Statistics in Medicine
31 (2012), pp. 3946–3598.

[3] Austin, P. C., Mamdani, M. M., Walraven, C. van, and Tu, J. V. “Quan-
tifying the impact of survivor treatment bias in observational studies”. In:
Journal of Evaluation in Clinical Practice 12 (2006), pp. 601–612.

[4] Beyersmann, J., Wolkewitz, M., and Schumacher, M. “The impact of
time-dependent bias in proportional hazards modelling”. In: Statistics in
Medicine 27 (2008), pp. 6439–6454.

[5] Breslow, N. E. “Analysis of Survival Data under the Proportional Hazards
model”. In: International Statistics Review 43 (1975), pp. 45–58.

[6] Collet, D. Modelling Survival Data in Medical Research. Boca Raton, US:
Taylor & Francis Group, 2015.

[7] Cox, D.R. “Partial Likelihood”. In: Biometrika 62 (1975), pp. 269–276.

[8] Cox, D.R. “Regression Models and Life-Tables”. In: Journal of the Royal
Statistical Society. Series B (Methodological) 34.2 (1972), pp. 187–220.

[9] Efron, B. “The Efficiency of Cox’s Likelihood Function for Censored Data”.
In: Journal of the American Statistical Association 72 (1977), pp. 557–565.

[10] Hendry, D. J. “Data generation for the Cox proportional hazards model
with time-dependent covariates: a method for medical researchers”. In:
Statistics in Medicine 33 (2014), pp. 436–454.

[11] Jones, M. and Fowler, R. “Immortal time bias in observational studies of
time-to-event outcomes”. In: Journal of Critical Care 36 (2016), pp. 195–
199.

[12] Klein, J. P. and Moeschberg, M. L. Survival Analysis: Techniques for
Cencored and Truncated Data. 2nd ed. New York, USA: Springer Sci-
ence+Business Media, Inc., 2003.

[13] Leemis, L. M. “Technical Note – Variate Generation for Accelerated Life
and Proportional Hazards Models”. In: Operations Research 35 (1987),
pp. 892–894.

[14] Leemis, L. M., Shish, L., and Reynertson, K. “Variate Generation for
Accelerated Life and Proportional Hazards Models with Time Dependent
Covariates”. In: Statistics & Probability Letters 10 (1990), pp. 335–339.

18



[15] Manjer, J., Carlsson, S., Elmst̊ahl, S., Gullberg, B., Janzon, L., Lind-
ström, M., Mattison, I., and Berglund, G. “The Malmo diet and cancer
study: representativity, cancer incidence and mortality in participants and
non-participants”. In: European Journal of Cancer Prevention 10 (2001),
pp. 489–499.
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