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Abstract

Quantum thermal machines, a sub-field of quantum thermodynam-
ics, are actively studied with the aim to understand the connection be-
tween quantum mechanics and thermodynamics. In this work, qubits
are used as the active medium in an absorption driven heat pump.
The dynamics of this thermal machine are computationally simulated
by treating the qubits as an open quantum system interacting with
three bosonic heat baths. Some thermodynamic bounds for the system
parameters are derived and used in order to define a refrigerating
regime for the system.
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1 Introduction

The study of quantum thermodynamics, and more specifically quantum ther-
mal machines, is an active field of research. The aim is to extend the field of
thermodynamics, to include descriptions of non-equilibrium effects and small
ensemble sizes. Experimentalists have gained access to, and control over,
quantum systems and implementation of nano-scale components and devices
have become a reality. This presents a possibility and a potential need to
work with thermodynamic applications at the same scale. To develop an
understanding of the system studied in this thesis elements from different
branches of physics have to be considered. Quantum information theory is
closely linked to thermodynamics, and emphasized through the use of qubits.
The theory of open quantum systems is needed in order to arrive at an
equation of motion specific for the heat pump considered. The performance of
the thermal machine is understood and evaluated through a thermodynamic
point of view.

2 Theory

2.1 Quantum Information

The field of quantum information is a relatively new branch of science,
developed in order to explore information theory and information processing
supported by quantum mechanical systems. In [8] it is described how classical
information theory in a way has parted from physics in the sense that the
concept of information can be treated independent of physical support. It
turns out that different entropy measures are sufficient to quantify outcomes
in information theory. Information entropy may characterize the probability
distributions of outcomes, not bothering with the physical content of the
events. For example, a fair coin toss may result in either heads or tails, i.e.
two discrete and equally probable events. The entropy of the coin toss is
defined to be log2 2 = 1 bit. This entropy would be the same for any system
producing an equally weighed binary outcome, regardless of the physical
support.

”But as it turned out, not all information was created equal.”
Goold, J. p.2 [8]

When experimentalists gained access to individual quantum systems, pre-
dicted quantum phenomena could be tested. At the heart of these discoveries
lie non-local correlations between quantum systems, according to [5] and [13].
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Classical physics relies on the assumption of locality, that is the premise
that a measurement at one point in space would not affect the results of a
measurement at another point in space. Suddenly there was a need to revert
to physics in order to explain such anomalies.

These non-local correlations, generally called entanglement, appear solely
in quantum mechanics. As it turns out, several purely quantum mechan-
ical phenomena appear related to information theory, e.g. the no-cloning
theorem, quantum teleportation, quantum key distribution and quantum
algorithms that would outdo their classical counterparts when implemented.

2.1.1 Qubits

In classical information science the bit constitutes the elementary building
block. A bit can be realized by any two-state device and can at any given
time hold only one of two values. In processors, for example, transistors are
used to represent bits where they, depending on the applied gate voltage, can
be either on or off. These two values are most commonly denoted as 0 and
1. In the transition to quantum information science the concept of bits had
to be revisited due to quantum superposition. The quantum counterpart of
the bit is called a qubit, a portmanteau of ”quantum bit”.

”Associated to any isolated physical system is a complex vector space with
inner product (that is, a Hilbert space) known as the state space of the

system. The system is completely described by its state vector, which is a
unit vector in the system’s state space”

Nielsen, M.A. and Chuang, I.L. p.80 [13]

The following is mainly based on the information found in [13]. A qubit
can be represented by a simple quantum system having a two-dimensional
state space. By convention, here in Dirac notation, |0〉 and |1〉 are chosen
as an orthonormal base for this space. Quantum superposition allows the
system to be in a state that is a linear combination of the two pure states,
|0〉 and |1〉, as

|ψ〉= a |0〉+ b |1〉 , (1)

where {a,b} ∈ C. Additionally, for |ψ〉 to be a unit vector the normalization
criterion 〈ψ|ψ〉 = 1 has to be fulfilled.

Equation 1 indicates that the state, |ψ〉, is a continuous variable - that
qubits can represent an infinite amount of states. This seems to contradict
the statement that the qubit is the fundamental unit of quantum information.
However, the resolution of measurements on qubits is limited to only yield one
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bit of information. The measurement itself causes the superposition of the
state to collapse into either |0〉 or |1〉. A large number of measurements on an
equally large ensemble of identically prepared qubits would be able to resolve
the state prior to measurement as the probabilities of the outcomes are |a2|
and |b2|, for |0〉 and |1〉 respectively. As usual for probabilities |a|2 + |b|2 = 1
always applies, being equivalent to the normalization criterion. pp.13-16 [13]

A mathematical description of a qubit is of course important, but to
actually implement quantum circuits a suitable physical representation has
to be found. In ch.7 of [13], several different plausible physical supports are
presented, e.g. polarization of a photon, an atom in an electromagnetic cavity,
trapped ions, nuclear spins resolved by nuclear magnetic resonance (NMR),
etc. However, there are also several criteria that a physical representation
has to meet for it to be promising for implementations. The system has to
maintain its quantum character, be able to robustly hold information, the
evolution of the state (through unitary transformations) must be controllable,
one has to be able to prepare the system in a desired initial reference state
and, of course, the system has to be accessible to measurements. These crite-
ria, or constraints, imply different strengths and weaknesses to the examples
of physical representations mentioned above.

2.1.2 Bloch Sphere Representation

The mathematical definition of qubits is a bit cumbersome to get an intuitive
grasp on, but fortunately there is a way to geometrically illustrate the state-
space of a qubit (C2). This representation also makes it feasible to picture
the evolution of a qubit’s state vector through different linear operations. To
approach this representation the state can be expressed as

|ψ〉= eiγ
(

cos

(
θ

2

)
|0〉+ eiφ sin

(
θ

2

)
|1〉
)
, (2)

with {θ, φ, γ} ∈ R,
0 ≤ θ ≤ π and 0 ≤ φ ≤ 2π,

again fulfilling the normalization condition 〈ψ|ψ〉 = 1.
To further simplify the expression above it is noted that the global phase

of a state, eiγ, does not affect the outcome of a measurement. This can be ver-
ified by showing that the measurement outcomem using a measurement oper-
ator M̂m on the state |ψ〉, is not affected by the phase: 〈ψ|e−iγM̂ †

mM̂me
iγ|ψ〉 =

〈ψ|M̂ †
mM̂m|ψ〉. Because of this the global phase can be factored out, letting
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Figure 1: The Bloch Sphere with |0〉 and |1〉 as an orthonormal basis. |ψ〉 is an
arbitrary state of the system.

us only consider the relative phase between the coefficients. Choosing the
phase of |0〉 to be real and positive the state can be written as

|ψ〉= cos

(
θ

2

)
|0〉+ eiφ sin

(
θ

2

)
|1〉 . (3)

This state can now be represented using spherical coordinates (r, θ, φ),
with r as the radial distance, θ as the polar angle and φ as the azimuthal
angle. This is illustrated in Fig. 1. Pure states will always move along the
surface of the Bloch sphere, through unitary transformations, as the length
of the vector equals one (r = 1). Both [13] and [1] provide a good overview
of the Bloch Sphere representation of a qubit.

2.2 Quantum Mechanics

In order to describe the evolution of general quantum systems some concepts
have to be clarified. How can the time evolution of a system be properly
described? What are the mathematical building blocks of the Hilbert space,
and what operators govern transformations on this space?
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2.2.1 Constructing the Hilbert Space

Transformations within a Hilbert space of dimension Cn constitute a Lie
group SU(n), which means that the group of transformations is continuous.
Again referring to the Bloch sphere it can be seen as the fact that the
coefficients a and b in Eq. 1 can take any values as long as |a|2 + |b|2 =
1. A more general section about operators is found in Appendix A. The
Hamiltonians acting on a two dimensional state space belong to the special
unitary group of degree 2, SU(2). This group is defined as

SU(2) =

{[
α β
−β̄ ᾱ

] ∣∣∣∣ α, β ∈ C , |α|2 + |β|2 = 1

}
. (4)

As the name of the group indicates all matrices in the expression above are
unitary, which is readily confirmed by

U(α,β)†U(α,β) =

[
ᾱ −β
β̄ α

] [
α β
−β̄ ᾱ

]
= 12. (5)

Topologically, SU(2) is the unit sphere inside C2, cf. the Bloch sphere. A
brief overview of e.g. SU(2) is given in sec.3.3 in [15], while a more detailed
insight is provided by ch.16 in [9].

As it turns out the Pauli matrices:

σ1 = σx =

[
0 1
1 0

]
,

σ2 = σy =

[
0 −i
i 0

]
,

σ3 = σz =

[
1 0
0 −1

]
(6)

are suitable for spanning the corresponding Lie algebra su(2). This means
that any Hamiltonian operator acting on a C2 Hilbert space can be repre-
sented as a linear combination of the Pauli matrices.

For the case of two qubits, the state space has to be expanded to C4.
It is shown in [7] how this can readily be done by using the extended Pauli
matrices, i.e. σ1,2,3 together with the 2x2 identity matrix

σ0 = 12 =

[
1 0
0 1

]
. (7)
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The tensor products

Dij = σi ⊗ σj for i,j ∈ {0, 1, 2, 3} (8)

generate 16 4x4 hermitian matrices.

i
j

0 1 2 3

0 12 ⊗ 12 = 14


0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0




0 −i 0 0
i 0 0 0
0 0 0 −i
0 0 i 0




1 0 0 0
0 −1 0 0
0 0 1 0
0 0 0 −1



1


0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0




0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0




0 0 0 −i
0 0 i 0
0 −i 0 0
i 0 0 0




0 0 1 0
0 0 0 −1
1 0 0 0
0 −1 0 0



2


0 0 −i 0
0 0 0 −i
i 0 0 0
0 i 0 0




0 0 0 −i
0 0 −i 0
0 i 0 0
i 0 0 0




0 0 0 −1
0 0 1 0
0 1 0 0
−1 0 0 0




0 0 −i 0
0 0 0 i
i 0 0 0
0 −i 0 0



3


1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 −1




0 1 0 0
1 0 0 0
0 0 0 −1
0 0 −1 0




0 −i 0 0
i 0 0 0
0 0 0 i
0 0 −i 0




1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 1


Table 1: The 16 4x4 matrices given from Eq. 8, with i and j corresponding to the
indexes of Dij in the same equation. Except from D00, they are generators of the
su(4) Lie algebra, why linear combinations of them can construct any Hamiltonian
for a two qubit Hilbert space.

The tensor product as a mathematical tool will be described further on,
in section 2.3.4. Short of the identity matrix 14, D00, they constitute a
generator set for the Lie algebra su(4). Just as the Pauli matrices in the C2

case, it means that any Hamiltonian acting on a two qubit system can be
represented as a linear combination of the matrices in table 1.
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2.2.2 Ladder Operators

The ladder operators for a qubit can be constructed through linear combina-
tions of the Pauli matrices in Eq. 6. The raising and lowering operators, σ+

and σ− respectively, moves the state from one eigenstate to the other. They
are constructed according to

σ+ =
σx + iσy

2
=

[
0 1
0 0

]
(9)

and

σ− =
σx − iσy

2
=

[
0 0
1 0

]
(10)

For a two qubit system, in C4, the raising and lowering operators for each
qubit can be constructed with the help of σ0, as

σ+
1 = σ+ ⊗ σ0 =


0 0 1 0
0 0 0 1
0 0 0 0
0 0 0 0

 σ−1 = σ− ⊗ σ0 =


0 0 0 0
0 0 0 0
1 0 0 0
0 1 0 0



σ+
2 = σ0 ⊗ σ+ =


0 1 0 0
0 0 0 0
0 0 0 1
0 0 0 0

 σ−2 = σ0 ⊗ σ− =


0 0 0 0
1 0 0 0
0 0 0 0
0 0 1 0


(11)

where the indices 1 and 2 indicate which qubit the operator is acting on.
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2.3 Open Quantum Systems

”In contrast to the case of a closed systems [sic], the quantum dynamics of
an open system cannot, in general, be represented in terms of a unitary

time evolution. In many cases it turns out to be useful to formulate,
instead, the dynamics of an open system by means of an appropriate

equation of motion for its density matrix, a quantum master equation.”
Breuer H.P. and Petruccione F. p.109 [3]

In real physical systems there is no such thing as a perfectly closed quan-
tum system. The system in question will inevitably interact with adjacent
systems, or an environment. In the end, the only system thought to be
closed is the universe itself. However, to treat systems that big would be
near impossible. If the interest lies only in the dynamics of a subsystem, just
a fraction of the whole, this vast description might be superfluous. Because
of this it is appropriate to instead talk about open quantum systems, i.e.
subsystems with the ability to leak energy into its surroundings. Due to this
exchange with other subsystems the formerly strict normalization constraint
no longer has to be fulfilled for the subsystem (while it does remain for
the global system). A distinction between pure and mixed states has to be
introduced.

Luckily there are methods to treat open systems. The state of the system
has to be described with a more general density operator instead of a state
vector. The S.E. has to be modified with respect to this density operator and
to account for dissipation from the subsystem under consideration. Addition-
ally, the environment has to be modelled by reasonable approximations.

2.3.1 Density Operators

Unit state vectors, as used until now, are useful when describing single
quantum states or pure ensembles of states. However, ensembles of states
need not be pure. An ensemble may just as well be comprised by a mixture
of different states of the system, |ψi〉, each with different weights, wi. The
pure ensemble is thus the special case where only one state is present, having
the weight one. For a more general, and convenient, description of statistical
ensembles the density operator (or density matrix), ρ, is used. It is defined
as a linear combination of states, as

ρ ≡
∑
i

wi |ψi〉〈ψi| , (12)

where the weights, wi, fulfil the criteria 0 ≤ wi ≤ 1 and
∑

iwi = 1. Eq. 12
implies that the density operator is a statistical mixture of pure states, where
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the weights are classically statistical. Analogous to how state vectors evolve
through unitary operations, see Eq. 86, unitary time evolution of density
operators is described by

ρ′ = ÛρÛ †. (13)

2.3.2 Properties of the Density Operator

This overview of density operators is mainly based on sec.2.4 in [13] and
sec.3.4 in [15]. Density matrices are positive operators with unity trace, due
to

tr(ρ) =
∑
i

wi tr(|ψi〉〈ψi|) =
∑
i

wi = 1 (14)

and

〈ζ|ρ|ζ〉 =
∑
i

wi 〈ζ|ψi〉 〈ψi|ζ〉 =
∑
i

wi|〈ζ|ψi〉|2 ≥ 0, (15)

where ζ is an arbitrary vector in the Hilbert space.
While the trace of a density operator always equals one, it can readily be

shown that the trace of the squared density operator does not. This measure
is called purity, and takes its maximum value for pure ensembles and reduces
the more mixed an ensemble is. The lower bound for the purity is the inverse
of the dimensionality, d, of the system’s Hilbert space. These boundaries can
be summarized as

1

d
≤ tr(ρ2) ≤ tr(ρ) = 1. (16)

A pure ensemble always has the purity 1 as

ρp = |1〉〈1| =

[
1 0
0 0

]
⇒ tr(ρ2

p) = tr(ρp) = 1, (17)

while a maximally mixed ensemble, e.g ρm = 1
2
|1〉〈1| + 1

2
|0〉〈0|, yields the

purity 1
d

according to

ρm =

[
0.5 0
0 0.5

]
⇒ tr(ρ2

m) =
1

2
=

1

d
. (18)

The Bloch sphere again appears instrumental, as it gives a geometrical
interpretation of purity as well. Only pure state vectors will have its terminal
point on the surface, while the whole volume makes up the space for mixed
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states. A fully mixed state of a qubit, as described by ρm, is represented by
the zero vector, ~0, in the Bloch Sphere.

The diagonal elements of the density operator represent the populations
of each eigenstate of the system. This can already be seen in Eqs. 17 and
18, and is validated by the examples:

〈1|ρp|1〉 = ρp11 = 1, (19)

〈0|ρp|0〉 = ρp22 = 0 (20)

and

〈1|ρm|1〉 = ρm11 =
1

2
= ρm22 = 〈0|ρm|0〉 . (21)

The expectation value of an operator Â, in a state |ψ〉, which is defined

as 〈Â〉ψ ≡ 〈ψ|Â|ψ〉, is only valid for pure, normalized state vectors. In the
language of density operators the expectation value of an operator is instead
defined as

〈ψ〉ρ ≡ tr(ρÂ). (22)

A more detailed mathematical review of the density operator is found in
sec.19.3 of [9].

2.3.3 Liouville-von Neumann Equation

The density operator can also be used to describe time evolution of a sys-
tem. As the density operator is a representation of a system which is time
dependent, the operator itself is time dependent in accordance with

ρ(t) =
∑
i

wi |ψi(t)〉〈ψi(t)| . (23)

|ψn(t)〉 can be any arbitrary state, i.e. it does not have to be an eigenstate of
the system. The states |ψn(t)〉 evolve according to the Schrödinger Equation,
Eq. 95, as long as the system is closed. The time evolution of ensembles and
the corresponding equation of motion is treated in [15] and [3]. In order to
get the time derivative of ρ(t) the chain rule is applied to Eq. 23, as:
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∂

∂t
ρ(t) =

∑
n

pn

(
− i
~

)
Ĥ |ψn(t)〉〈ψn(t)| +

∑
n

pn

(
i

~

)
|ψn(t)〉〈ψn(t)| Ĥ =

= − i
~

(Ĥρ(t)− ρ(t)Ĥ).

(24)

In the last part of the preceding equation the commutator between Ĥ and
ρ(t) appears, why it is practice to express the equation as

∂

∂t
ρ(t) = − i

~
[Ĥ,ρ(t)]. (25)

Equation 25 is called the Liouville-von Neumann equation and is the quantum
analogue to the Liouville equation used in classical statistical mechanics.

The Liouville-von Neumann equation itself is not able to describe energy
exchange with an environment, it is merely a statistical analogy to the
state vector S.E. This description of the density operator is however an
important step towards a more general description of a dissipative open
quantum system.

2.3.4 Subsystems and the Reduced Density Operator

In order to treat composite quantum systems, i.e. systems with separate
state spaces, the tensor product (or Kronecker product) is used. This section
about tensor products and how to describe composite quantum systems is
based on the sections 2.1.7, 2.2.8 and 2.4.3 in [13]. The tensor product, which
is denoted by ⊗, creates a larger common vector space for the systems by
extending the dimensionality of the space. The tensor product between two
arbitrary state spaces A and B with dimensions m and n respectively create
a vector space of dimension m · n, i.e.

Cm ⊗ Cn = Cm·n. (26)

Now let the state spaces A and B represent two qubits, each qubit having a
state space in C2. The resulting tensor product is a four dimensional state
space. A state ket for a two qubit system thus has to be described by a
four dimensional vector, as there are four different energy eigenstates of the
system. For simplicity, the notation |a〉⊗|b〉= |ab〉 is often used. The general
action of the tensor product is explained as
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A⊗B ≡

A11B . . . A1nB
...

. . .
...

Am1B . . . AmnB

 , (27)

where A is a matrix of dimensions m × n and B is a matrix of dimensions
p× q.

For example, two qubits in their ground states, |0〉, would give rise to the
state vector

|00〉=

[
0
1

]
⊗
[
0
1

]
=


0
0
0
1

 (28)

acquired from the tensor product between the states. Consequently the
density operator of a two qubit system is a 4× 4 matrix. Keeping the same
example as above, the resulting density matrix would be

ρ = |00〉〈00| =


0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 1

 . (29)

From this result it can again be noted that the diagonal elements can be
interpreted as population of the energy eigenstates even when the density
operator is describing a larger system. The probability of the system being
in its ground state is of course unity, just as the matrix element ρ44 indicates.

Given a density operator describing a composite quantum system it is
possible to restore information about single subsystems. This system is
then represented by the so called reduced density operator which is obtained
through a partial trace operation. Consider the same example state spaces as
above, A and B, containing vectors |ψn〉 and |φn〉 respectively. The density
operator describing this joint system can be denoted ρAB. The partial trace
operation may then extract the density operator of only subspace A, denoted
ρA, as

ρA = trB(ρAB). (30)

The partial trace over systemX, trX(·), acts as it is only tracing over elements
belonging to this system. The partial trace operation is defined as
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trB(|ψ1〉〈ψ2| ⊗ |φ1〉〈φ2|) ≡ |ψ1〉〈ψ2| tr(|φ1〉〈φ2|). (31)

For a product state, ρA⊗ ρB, the relation in Eq. 30 becomes rather intuitive
as the trace of each density matrix is unity:

trB(ρAB) = trB(ρA ⊗ ρB) = ρA tr(ρB) = ρA. (32)

2.3.5 Environment Description

The system that is treated in this report will be divided into an open quantum
subsystem associated some kind of macroscopic environment. A description
of this environment makes it possible to proceed towards a general equation,
describing the dynamics of this open quantum system. Complementary
discussions regarding environments can be found in sec.8.2.2 of [13] and
sec.3.1.3 of [3]. The environment will be modelled as a bosonic bath of e.g.
the vibrational modes of phonons or an electromagnetic field. Initially the
system, S and the environment E are taken to be in a product state,

ρSE(0) = ρS(0)⊗ ρE(0). (33)

This is generally not true for all times. However, this assumption can be
motivated since when a system is prepared in a specific state all correlations
with the environment are eliminated. Hence, the total system can initially
be described by a product state between the ancilla states of the principal
system and an environment.

It is assumed that the total system S + E is closed, while the system S
is open for interactions with the environment. The dynamics of the reduced
system will depend on internal dynamics as well as interactions with the
environment. As stated in [2] and [3], the Hilbert space of the total system
can be expressed as the tensor product between the Hilbert spaces of the
included subsystems,

Htot = HS ⊗HE, (34)

where HS and HE are the Hilbert spaces of the principal system and the
environment respectively. The total Hamiltonian of a composite system can
further be constructed as

Ĥtot(t) = ĤS(t)⊗ 1E + 1S ⊗ ĤE(t) + ĤI(t). (35)

Here 1S,E are the identity matrices in each Hilbert space, HS and HE.

ĤS,E are the Hamiltonians of the principal system and the environment
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respectively. In this work the internal Hamiltonians, ĤS,E, will be time inde-
pendent as no external drive is applied to the system. Except for the internal
dynamics of each subsystem the interactions between the systems have to be
represented as well, why ĤI is the term representing these mutual effects. As
a consequence of these system-environment interactions the reduced system
dynamics can not be treated as unitary dynamics.

The environment will more specifically be referred to as a heat bath or a
heat reservoir implying that it is large and considered a thermal equilibrium
state. Large in this context means that it has an infinite number of degrees
of freedom. This further means that the heat baths can be considered being
in thermal equilibrium (or Gibbs states).

2.3.6 Master equation on Lindblad form

The Liouville-von Neumann equation is only valid for a closed system, for
which it describes the unitary evolution of its internal dynamics. As men-
tioned above, the goal when working with a composite system is to in a valid
way reduce the full description by discarding the environment from the cal-
culations. Thus only bothering with the, generally non-unitary, evolution of
the principal system. This can be viewed as tracing out the environment, and
thus solely describing the internal dynamics of the subsystem together with
a system-environment interaction. The density operator for the principal
subsystem is obtained by the relations

ρSE(t) = Û(t)ρSE(0)Û †(t) (36)

and

ρS(t) = trE (ρSE(t)) . (37)

Eqs. 37 and 33 lead back to the so called Stinespring dilation, discussed in
[17], which assures that every completely positive and trace preserving map,
Φ: ρS → ρ′S, can be constructed through only a tensor product between the
principal state, ρS and the environment state, ρE, a global unitary operator,
Û and the partial trace over the environment, trE as

ρ′S = Φ(ρS) = trE

(
ÛρS ⊗ ρEÛ †

)
. (38)

To treat this reduced density operator a so called quantum master equa-
tion is utilized. A quantum master equation is an equation which describes
the continuous-time evolution of a quantum system through its density ma-
trix. The equation describes the transitions among a probabilistic set of states
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through some transition rate. The master equation may also include system-
environment interactions, giving access to the non-unitary time evolution
of an open quantum system. Unlike a classical master equation, the quan-
tum master equation also considers the off-diagonal elements of the density
matrix, which represent quantum coherence.

When discussing master equations it is practical to define a superoperator,
S. The term superoperator emphasizes that it is an operator acting on
another operator in order to produce a new operator. As an example,
the superoperator corresponding to the case of the Liouville-von Neumann
equation is defined, through acting on the density operator, as

Sρ(t) = − i
~

[Ĥ,ρ(t)]. (39)

In order to fit the reduced density operator of Eq. 37 into an adequate
equation of motion it is first noted that the internal dynamics of the principal
system still are unitary, and obey the Liouville-von Neumann equation. In
addition, some system specific dissipation terms, D(ρ)i, have to be appended
to account for the dynamics arising from the system-environment interac-
tions. These terms give rise to the non-unitary evolution of the principal
system. The superoperator, S, can now instead be written as

SρS(t) = − i
~

[ĤS,ρS(t)] +
∑
i

Di(ρS(t)), (40)

where it should be noted that the dissipators, Di, act as superoperators
themselves. More theory regarding quantum master equations is found in
sec.8.4.1. of [13] and ch.3 in [3].

It is explained in e.g. [3], [13], [6] and [14] that some assumptions have to
be made about the system in order to arrive at a solvable master equation.
The Born approximation and the Markov approximation are often grouped
and called the Born-Markov approximation. In addition it is necessary to
make the so called rotating wave approximation in order to guarantee that
the resulting master equation describes a generator for a quantum dynamical
semi-group.

• The Born approximation assumes a weak coupling between the prin-
cipal system and the heat bath. This ensures that the impact of the
interaction, ĤSE, on the heat bath density matrix, ρE, is negligible.
NB, excitations from the thermal state of the heat bath are allowed
as long as they can be considered small. This further leads to the
approximation that the total system at time t can be constructed by
the tensor product ρSE(t) = ρS(t)⊗ ρE.
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• The Markov approximation imply that the decay time for excitations
in the heat bath, τE must be shorter compared to the relaxation time of
the reduced system, τS. As the name suggests the Markov approxima-
tion stems from the Markov property of probability theory - a stochastic
process which is memoryless. τE � τS ensures that deviations in the
environment state are too short to be resolved. This approximation
is valid for a very large environment which contains a continuum of
modes.

• The rotating wave approximation is performed by averaging over and
neglecting rapid oscillations in the master equation. The condition
for the rotating wave approximation to be valid is that the relaxation
time of the system is large compared to the inverse of the frequency
differences involved.

It was first demonstrated in [12] that the most general form of a Markovian
quantum master equation is that on the Lindblad form, also called the
Lindblad equation,

d

dt
ρS(t) = LρS(t), (41)

with its corresponding Lindblad superoperator, L,

LρS = − i
~

[ĤS,ρS] +
∑
k

(
L̂kρSL̂

†
k −

1

2
{L̂†kL̂k,ρS}

)
. (42)

In the equation above {·,·} denotes the anti-commutator: {x,y} = xy + yx.
The operators, L̂k, are termed Lindblad operators.

The Lindblad operators are system specific operators containing a de-
scription of some process paths, Âi,j, arising from the interaction between
the principal system and the environment. With this picture in mind, the
Lindblad operators can instead be labelled accordingly as L̂i,j. Additionally,
each process is associated with a corresponding rate, Γi,j. There is a wide
range of Lindblad operators, but those relevant for this thesis are related to
transitions between energy eigenstates of the system. They take the general
form

L̂i,j =
√

Γi,jÂi,j. (43)

The operators Âi,j are ladder operators describing energy transitions within

the qubits: Âi,j = |i〉〈j|. Further reading about the Lindblad form and the
Lindblad operators is readily found in e.g. sec.4.1 in [17], sec.8.4 in [4] and
[2].

19



2.4 Quantum Thermodynamics

Thermodynamics has been a major branch of physics for several centuries.
The fundamental objectives of thermodynamics are how heat and temper-
ature is related to energy and work. The urge to make engines and other
thermodynamic machines more effective has made the field utterly important
to modern history. Classical thermodynamics rely on statistical and empirical
results, with the four laws of thermodynamics acting as a rigid framework.

”With ultrafast experimental control of quantum systems and engineering of
small environments pushing the limits of conventional thermodynamics, the

central goal of quantum thermodynamics is the extension of standard
thermodynamics to include quantum effects and small ensemble sizes.”

Vinjanampathy, S., Anders, J. p.2 [17]

With the recent possibilities to engineer and control mesoscopical and
microscopical physical systems a need to revisit the well accepted framework
of thermodynamics emerged. This is due to the facts that the small ensemble
sizes challenge the statistical approach and that quantum phenomena appear
beyond the limits of classical physics. It is stated in [17] that the main goal
of quantum thermodynamics is to stretch conventional thermodynamics to
encompass microscopical systems as well. Besides this, they express a wish
to better understand thermodynamic properties of quantum systems in order
to develop applications into even smaller scales. One example is the desire to
investigate the performance of quantum thermal machines, as in this thesis
where a quantum heat pump will be evaluated.

2.4.1 Bose–Einstein statistics and Detailed Balance

The rates introduced in Eq. 43, Γi,j, are determined by a coupling strength,
γ, and a distribution function, n. The rates can be expressed as

Γi,j = γ · n(∆Ei,j), (44)

where ∆Ei,j is the energy difference between the states |i〉 and |j〉. For
the system of this thesis, with bosonic heat reservoirs, the transitions obey
the Bose–Einstein statistics. The expected occupancy level, n, of an energy
eigenstate, Ei, is given as

n(Ei) =
1

eEiβ − 1
. (45)

β equals (kBT )−1, where kB is Boltzmann’s constant and T is the absolute
temperature.
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Since the system-environment interactions go both ways there is also a
need to define a direction for the processes by assigning a sign to the Lindblad
operators:

L̂−i,j =
√

Γ−i,jÂi,j

L̂+
i,j =

√
Γ+
i,jÂ

†
i,j.

(46)

The rates, Γ±i,j are related to each other through the principle of detailed
balance. According to [15], detailed balance is a symmetry relation between
absorption and emission. In more general terms, the principle states that
in any kinetic system every elementary process has to be counteracted by
its reverse process in order to maintain thermodynamic equilibrium. This
symmetry effectively reads as

Γ−i,j
Γ+
i,j

= e∆Ei,jβ. (47)

With the use of Eq. 44 and Eq. 47, the expressions in Eq. 46 can be recast
into

L̂−i,j =
√
γ · (n(∆Ei,j) + 1)Âi,j (48a)

and

L̂+
i,j =

√
γ · n(∆Ei,j)Â

†
i,j. (48b)

A more thorough explanation of detailed balance, and how the Bose–Einstein
function (as well as the Fermi–Dirac function) can be derived from that
principle, can be found in [11].

2.4.2 Work and heat

Energy, and how it changes over time, is clearly of vital interest when study-
ing thermodynamics. In accordance with Eq. 22, the average internal energy
of a system, U , is identified as

U = 〈E〉ρ = tr(ρĤ). (49)

How the average energy changes over time, ∆U , is a consequence of the
time evolution of the system’s state, ρ(t), and the Hamiltonian, Ĥ(t). For
t ∈ [t1,t2] the energy change can be written as
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∆U = tr
(
ρ(t2)Ĥ(t2)

)
− tr

(
ρ(t1)Ĥ(t1)

)
. (50)

According to the first law of thermodynamics,

∆U = Q+W, (51)

changes in a system’s internal energy are always comprised of heat, Q, and
work, W . Thus, proper quantum representations of these quantities have to
be found. It is fruitful to differentiate Eq. 49, as showed in [10], like

d

dt
U =

d

dt

(
tr(ρĤ)

)
= tr

(
dρ

dt
Ĥ

)
+ tr

(
ρ
dĤ

dt

)
, (52)

in order to get two distinguishable parts.
Work can be performed on the system only by altering the Hamiltonian

acting on the system, dĤ
dt

. Hence, the second term above is identified as
the temporal change in energy stemming from work. The change of the
state of the system, dρ

dt
, due to e.g. interactions with an environment or

thermalisation, is associated with the contribution from heat. In the quantum
regime, the definitions for work is

〈W 〉 =

∫ t2

t1

tr

(
ρ
dĤ

dt

)
dt (53)

and the definition of heat is consequently

〈Q〉 =

∫ t2

t1

tr

(
dρ

dt
Ĥ

)
dt. (54)

Work and heat in this context are ensemble averages, 〈·〉, due to the trace
operation performed in Eq. 49. With the definitions above work is added to
a system if 〈W 〉 > 0 and heat is flowing into a system if 〈Q〉 > 0.

The previous Eqs. 50, 51, 53 and 54 can be merged into a common
expression, as also demonstrated in [17], in order to clarify the connection
among them in accordance with

〈Q〉+ 〈W 〉 =

∫ t2

t1

tr

(
dρ

dt
Ĥ

)
dt+

∫ t2

t1

tr

(
ρ
dĤ

dt

)
dt =

=

∫ t2

t1

d

dt
tr(ρĤ)dt = tr

(
ρ(t2)Ĥ(t2)

)
− tr

(
ρ(t1)Ĥ(t1)

)
= ∆U.

(55)
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2.4.3 Quantum Thermal Machines

The concept of quantum thermal machines was first demonstrated in 1959
when H.E.D. Scovil and E.O. Schulz-DuBois showed how the three-level
maser can be thought of as a quantum heat engine (and reversibly as a
refrigerator). In the same article [16] they also showed that the efficiency
of this setup was limited by the Carnot efficiency, the upper bound for any
classical thermal machine.

”The principal conceptual difference between these and conventional heat
engines is that in the 3-level maser one is concerned with the discrete

energy levels of a particle’s internal energy whereas in a conventional heat
engine one is concerned with the continuous spectrum of energies associated

with external motion of the working substance.”
Scovil H.E.D. and Schulz-DuBois E.O. p.1 [16]

A significant part of applied thermodynamics regards the field of thermal
machines. The quest has long been to optimize heat engines, and heat
pumps. A heat engine is a system which utilizes thermal baths of different
temperatures in order to extract work. It takes heat from the hot reservoir,
extracts work in the process and delivers a smaller amount of heat to the
cold reservoir, see Fig. 2a. The reverse process, a heat pump or refrigerator,
requires some input to transfer heat in the reverse direction, see Fig. 2b.

Figure 2: a) schematically illustrates a thermal heat engine. Heat, Qh flows from
the hot reservoir, Th, into the engine. The engine is capable of extracting work,
W , and residual energy is deposited to the cold reservoir, Tc, in the form of heat,
Qc. ∆U = Qh −Qc −W = 0, why W = Qh −Qc. b) shows instead the basic

operation of a refrigerator. The same concepts apply, but the directions of heat
and work flow are reversed.
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In this thesis, the main objective is to simulate a continuous absorption-
driven quantum heat pump.

• The device is continuous in the sense that the process is not divided into
different distinct steps, cf. Carnot or Otto cycles. The heat transfer
through the device is only governed by the energy transitions embedded
in the rate equations, Eq. 44, and consequently the Lindblad operators,
Eq. 48.

• The term absorption-driven is due to the fact that no external work
source will be used. Instead of a work supply, as Fig. 2b suggests, the
heat pump is driven by an additional supply of heat. This heat source
will be modelled as a third heat reservoir, and since it acts as drive for
the system it will be labelled work reservoir, Tw.

• This thermal machine becomes quantum since the system consists of
two qubits, which certainly have discrete energy levels. This eventually
means that the dynamics of the system has to be evaluated through a
quantum master equation, namely the Lindblad equation 41.

Figure 3: A two-qubit absorption driven heat pump. Both qubits are coupled to
the work reservoir while each qubit couples to either the hot or the cold reservoir.

The coupling factors, γ, are assumed to be constant for all connections.
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The configuration of this heat pump is visually explained in Fig. 3. In
order to ensure the Markov property it is assumed that γ � Tc,∆E1. The
energies involved can also be described by assigning the ground states of
each qubit a common energy, i.e. zero. In this case the energies of the
excited states will be denoted Ec and Eh respectively. Additionally the energy
provided by the work reservoir is Eh − Ec = Ew. An overview of quantum
thermal machines can be found in sec.6 of [17].

2.4.4 Figures of Merit

In order to evaluate and benchmark these thermal machines it is essential to
define some figures of merit. According to [8], the coefficient of performance
(COP), η, and the cooling power are two important parameters in the case
of refrigerators. The COP for a general heat pump in chiller mode is defined
as

η =
Q̇c

Ẇ
, (56)

while the cooling power is defined as the heat flow out from the cold reservoir,
Q̇c, neglecting the efficiency of the overall process. In the case of absorption
refrigerators the work input is substituted for a heat current mediated by the
work reservoir, Q̇w. In this case η is instead defined as

η =
Q̇c

Q̇w

=
Q̇c

Q̇h − Q̇c

. (57)

The COP can be thought of as a measure of efficiency. However, since η > 1
for a heat pump in heater mode, the term efficiency is not preferred.

A quantum heat pump is governed by the four thermodynamic laws
once it reaches steady-state, as stated in [6]. This statement further leads
to the conclusion that their performance, like their classical analogues, are
restricted by the Carnot limit, ηC . To reach this conclusion the first law of
thermodynamics, Eq. 51, is recast into the sum of all heat currents present
in the system, namely

∆U = Q̇c + Q̇h + Q̇w = 0. (58)

The second law of thermodynamics can be formulated in the form of a
Clausius inequality as

Q̇c

Tc
+
Q̇h

Th
+
Q̇w

Tw
≤ 0, (59)

25



which is equivalent to saying that the entropy production in the heat baths
cannot be negative. See [6] for more details on this matter. The three
terms in Eq. 59 only describe the entropy changes in the reservoirs and
does not take the active medium into consideration. This is perfectly fine
when the law describes the system in steady state operation, when the the
energy of the qubits is invariant. To study the transient behaviour of the
system by means of the second law the entropy change of the reduced system
also has to be included. The quantum analogue of the Gibbs entropy from
thermodynamics (and the Shannon entropy from information theory) is the
so called von Neumann entropy. This quantity is defined as

S = − tr(ρ ln ρ), (60)

which makes the second law take the form

∑
i

∆Si =
dSS
dt
− Q̇c

Tc
− Q̇h

Th
− Q̇w

Tw
≥ 0, (61)

where SS is the entropy of the reduced system.

By combining Eqs. 58 and 59 one can reach an expression for Q̇c

Q̇w
, which

defines an upper bound for the COP. This limit takes the form of

η =
Q̇c

Q̇w

≤ Tc(Tw − Th)
Tw(Th − Tc)

. (62)

Thus the Carnot limit for a refrigerator operating between three heat reser-
voirs, ηC , can further be defined as

ηC =
(Tw − Th)Tc
(Th − Tc)Tw

=
βh − βw
βc − βh

. (63)

Since the Carnot limit sets a fundamental limit of performance it is often
more explicit to express the COP as a fraction of the Carnot COP,

η

ηC
≤ 1, (64)

where it is easier to see how close to the theoretical limit the performance
reaches.

2.4.5 Conditions for Cooling

In [6] some criteria are presented that have to be met in order for the heat
pump configuration in Fig. 3 to achieve a cooling effect. The relations
Eh > Ec and Tw > Th > Tc apply in order for the machine to operate as
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a refrigerator. These conclusions are deduced from the probability for each
transition to occur, i.e. the rate equations 44. These rates, Γc,w,h, imply that
the distribution functions, nc,w,h of Eq. 45, have to be ordered in the same
way (since the coupling, γ, is constant and assumed to be the same for all
connections).

In fact a stronger condition for the relation between the energy splittings
in each qubit, Ec,h, can be formulated. It can be deduced that the ratios
between all heat currents are proportional to the corresponding ratio between
the energy transitions involved, see Fig. 4. This is motivated by breaking
down the heat currents into the discrete transitions giving rise to the cooling
process. Each excitation over Ec results in one excitation over Eh with the
assist of the input Ew, or vice versa. No other transitions are allowed within
the system, leading to ∣∣∣∣ Q̇i

Q̇j

∣∣∣∣ =
Ei
Ej
, (65)

for i,j ∈ {c,h,w}.

Figure 4: The figure schematically illustrates the cooling process in terms of
discrete energy transitions. 1. The cold reservoir provides energy in order to

excite the first qubit. This creates the heat current, Q̇c > 0. When this excited
state relaxes to its ground state this energy is provided to the other qubit. The
additional energy required, due to the difference Ew, is provided by the work

reservoir and gives rise to Q̇w > 0. 3. The energy released when the second qubit
relaxes down to its ground state is deposited into the hot reservoir. This energy

leaves the active medium and therefore gives rise to Q̇h < 0.
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By combining Eqs. 59 and 65 a relation between Ec and Eh can be
formulated,

Ec ≤ Emax
c ≡ Tc(Tw − Th)

Th(Tw − Tc)
Eh, (66)

defining a cooling window for the system. This equation also strengthens the
statement that Tw > Th > Tc, since we need a positive Emax

c .
The thermodynamic theory provided so far assumes that the system has

reached a steady-state operation. However, the qubits, which have been
referred to as the reduced or principal system, are initially prepared in an
(arbitrary) ancilla state. The state of the qubits will gradually thermalise
and reach this steady-state with the heat reservoirs, in which the machine
can be described by the thermodynamic laws.

3 Methods

The method for this project has been to numerically simulate a quantum
heat pump, as described in Fig. 3, in MATLAB. The code has been written
specifically for this project by defining an initial state of the system and
studying the dynamics over time. A Hamiltonian for the principal system
was defined, as well as the Lindblad operators governing the environment
interactions. From this, a quantum master equation on Lindblad form could
be defined, with which the time evolution of the reduced system density
matrix could be studied. The heat currents were identified along the time
evolution, and at some point, approaching steady-state, they were considered
stationary. These stationary heat currents were utilized to evaluate the per-
formance of the heat pump in terms of COP and cooling power. These steps
will be explained in more detail in the following sections. All calculations,
data handling and graphic output has been performed in MATLAB.

The initial aim of this project was to describe a heat pump consisting
of two coherent qubits operating between only two heat reservoirs, driven
with an external work input. However, no protocol was found for that set
up to work properly, why the project aim was altered. The inspiration
for a quantum thermal machine is mainly taken from the 3-level maser
action studied by H. E. D. Scovil and E. O. Schulz-DuBois in ”Three-level
Masers as Heat Engines”, [16]. The more specific idea of an absorption
driven refrigerator is based on the article ”Quantum-enhanced absorption
refrigerators” by L.A. Correa et al., [6].
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3.1 Initial State of the System

The system in question consists of two qubits, each with a Hilbert space C2,
weakly coupled to three heat reservoirs with different temperatures, each in
a Gibbs state. To study the open system dynamics of the qubits the degrees
of freedom of the heat baths are traced out, resulting in a reduced density
matrix, ρs, with a Hilbert space C4. Full experimental control over the ancilla
state is assumed, which also leads to an initial separability property between
the principal system and the environment. This makes it possible to directly
define the state of the qubits as

|ψ1ψ2〉=

[
a
b

]
⊗
[
c
d

]
, (67)

and the corresponding density matrix

ρS = |ψ1ψ2〉〈ψ1ψ2| . (68)

The normalization condition, a2 + b2 = c2 + d2 = 1, applies, which further
leads to the density matrix having unity trace, tr(ρS) = 1

3.2 Hamiltonian

The internal dynamics of the principal system are governed by a Hamiltonian,
ĤS. Since the work reservoir was added to the system, no coherent coupling
between the qubits is present. All interaction between the qubits is mediated
by the work reservoir through incoherent dissipation, why the only thing
the Hamiltonian need to define is the energy levels present in the principal
system. This can be expressed by defining the energy differences in each
qubit, E1 and E2 and using the generators, shown in table 1. Since no work
is performed on the system the Hamiltonian is time-independent and takes
the form

ĤS =
E1

2
·D30 +

E2

2
·D03. (69)

This is analogous to using the σz matrix for the Hamiltonian of a single qubit.
This is done since the σz matrix has the eigenvectors

ψz+ = |1〉=

[
1
0

]
and ψz− = |0〉=

[
0
1

]
(70)

By simply taking the tensor product of the σz matrix and identity matrix,
12, Eq. 70 is extended to the 4 dimensional Hilbert space of two qubits. The
matrices D30 and D03 are acquired through the relations:
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σz ⊗ 12 =

[
1 0
0 −1

]
⊗
[

1 0
0 1

]
=


1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 −1

 = D30 (71a)

and

12 ⊗ σz =

[
1 0
0 1

]
⊗
[

1 0
0 −1

]
=


1 0 0 0
0 −1 0 0
0 0 1 0
0 0 0 −1

 = D03. (71b)

3.3 Dissipators

The dissipators acting on the reduced system, together with the Liouville-von
Neumann term, take the Lindblad form shown in Eq. 42. More specifically
each dissipator, Di, can be described as

DcρS = Γ+
c

(
σ+
c ρSσ

−
c − 1

2
{σ−c σ+

c ,ρS}
)

+ Γ−c
(
σ−c ρSσ

+
c − 1

2
{σ+

c σ
−
c ,ρS}

)
, (72a)

DhρS = Γ+
h

(
σ+
h ρSσ

−
h − 1

2
{σ−h σ

+
h ,ρS}

)
+ Γ−h

(
σ−h ρSσ

+
h − 1

2
{σ+

h σ
−
h ,ρS}

)
(72b)

and

DwρS = Γ+
w

(
ÂwρSÂ

†
w − 1

2
{Â†wÂw,ρS}

)
+ Γ−w

(
Â†wρSÂw − 1

2
{ÂwÂ†w,ρS}

)
, (72c)

where the indices c,h,w indicate if the dissipation refers to the cold, hot or
work reservoir. For the dissipation regarding the hot and cold reservoirs the
operators Âi,j and Â†i,j, from Eq. 46, are defined as the lowering (σ−c,h) and

raising (σ+
c,h) operators respectively. The dissipation mediated by the work

reservoir acts a bit differently. The operators governing that process are
defined as

Âw = σ+
h σ
−
c (73a)

and
Â†w = σ+

c σ
−
h , (73b)

since one qubit is always being excited when the other is being de-excited.
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3.4 Solving the Lindblad Equation

When the internal Hamiltonian, ĤS, as well as the dissipators, Di, are
defined, the complete Lindblad equation is specified as

d

dt
ρS(t) = − i

~
[ĤS,ρS(t)] +

∑
i

DiρS(t). (74)

Even though the master equation is continuous in time, the numerical so-
lution approximates time evolution of the density matrix with discrete time
steps. The density matrix, ρS(t), is vectorized as

ρS =

ρ11 . . . ρ14
...

. . .
...

ρ41 . . . ρ44

→ ρ̃S =


ρ11

ρ12
...
ρ43

ρ44

 (75)

in order to rewrite the Lindblad equation according to

dρS
dt

= LρS →
dρ̃S
dt

=Mρ̃S. (76)

The matrix M is now a 16 × 16 single left acting operator acting on the
vectorized density operator, ρ̃S. The formal solution of the new expression
is, in line with Eq. 96,

ρ̃S(t+ dt) = eMdt · ρ̃S(t). (77)

To simplify the calculations, and get rid of the matrix exponential, Eq. 77
can be expanded around t and be represented as

ρ̃S(t+ dt) ≈ ρ̃S(t) +Mρ̃S(t)dt. (78)

This Taylor expansion, up to the first order of dt, introduces restrictions in
the resolution of the time evolution. All contributions of higher orders of dt
are neglected in each time step, which means that this error is potentially
stacked over time. By comparing the results of different sized time steps it
is however possible to choose an adequate, sufficiently small, dt.

The validity of the calculations can be checked in several ways. For
example, the simulation is not allowed to progress if the density matrix has
any negative eigenvalues, thus checking its positivity.
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3.5 Heat currents

In steady state operation the internal energy change in the principal system
equals zero, in line with Eq. 58. By noting that the Hamiltonian of the
system is constant in time we know that no work contributes to ∆U , since
dĤS

dt
= 0. By also noting that dρS

dt
= L(ρS), the resulting change in internal

energy can be expressed as

∆U =

∫ t2

t1

tr
(
LρS(t)ĤS

)
dt. (79)

This expression can be divided into heat contributions from the different heat
reservoirs. The heat contributions per time unit, Q̇i, linked to a specific heat
bath, i ∈ {c,h,w}, are

Q̇i = tr

(
ĤS

(
− i
~

[ĤS,ρS] +DiρS(t)

))
. (80)

The laws of thermodynamics, as well as their quantum analogues, apply in
steady state systems. During the process of thermalisation ∆U 6= 0, why the
first law can be used to determine when the system approaches steady state.
This concept is used to terminate the simulation at a point in time where the
sum of heat currents is tolerably small and the currents can be considered
invariant. The limit is chosen to be∑

i

|Q̇i| ≤ 0.01 · Ec · γ, (81)

thus depending on the energy scale of the specific system. In this way the
figures of merit for each simulation become comparable.

Each heat flux, Q̇i, is a sum of two contributing fluxes, q1 and q2, as

|Q̇i| = Ei(q1 + q2), (82)

where the indicies i ∈ {c,h,w} imply which reservoir the heat is associated
with. q1,2 > 0, Q̇c,w > 0 and Q̇h < 0. This was shown in [6], where an
expression for q1 + q2 in steady state also was derived. It was found by
studying the subspaces of the transitions that each heat bath drive, and
finally appears as

q1 + q2 = 〈1h0c|LwρS(∞)|1h0c〉 , (83)

where

LwρS = − i
~

[ĤS,ρS] +DwρS. (84)
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The Eqs. 82 and 83 were used in order to calculate the stationary heat cur-
rents in the system, approximating ρS(∞) with the density matrix acquired
at the breaking point of each simulation.

4 Results and Analysis

The results from simulations, including various validity checks for the pro-
gram, are presented and analysed in this section.

4.1 Populations and coherences

The system generally do not start in equilibrium with the environment. An
excited ancilla state of the system, e.g. |1c1h〉, will gradually relax towards
a stable state. Qubits prepare in the ground state, |0c0h〉, will conversely
be excited due to the energy provided from the surrounding heat reservoirs.
These examples are illustrated in Figs. 5a and 5b respectively.

(a) Initial state |1c1h〉 (b) Initial state |0c0h〉

Figure 5: The figures show the time evolution of the state of the principal
system from two different ancilla states. The remaining parameters used for both
simulations were: γ = 0.01, βc = 1

2 , βh = 1
12 , βw = 1

20 , Ec = 0.95 · Emaxc

and Eh = 1
βh

. Ew is always obtained according to the resonance condition,
Ew = Eh − Ec.

The transient behaviours displayed in the figures above agree with ex-
pectations. For example, the population ρ44 correspond to the joint ground
state |0c0h〉, which naturally should be the most probable. It should also be
noted that the final state of these examples are identical, even though the
initial states differ. This is also expected since all other system parameters
are chosen the same and thus generate the same steady state behaviour.
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If the initial state is chosen to be a mixed state, some off-diagonal elements
of the density matrix will be non-zero. Since no coherent coupling is present
in the system these coherences will decay over time, which is demonstrated
in Fig. 6. By for example starting in a Bell state,

|β00〉=
|00〉+ |11〉√

2
, (85)

some non-zero elements are found. As expected, this choice of ancilla
state does not influence the resulting populations. It is the use of a quantum
master equation (i.e. the Lindblad equation) that enables tracking of all
elements of the density matrix.

(a) Initial state |β00〉 (b) Initial state |β00〉

Figure 6: By choosing the system to start in a mixed state, in this case |β00〉,
some off-diagonal elements will be non-zero. Figure 6a shows these coherences are
damped over time, with ρ14 and ρ41 overlapped. Figure 6b is included to verify that
the populations approach steady-state with this choice of initial state as well.

4.2 Trace Preservation and Purity

The mapping performed through the Lindblad equation has to be completely
positive and trace preserving. The positivity condition is readily checked by
demanding exclusively positive eigenvalues of the density matrix throughout
the time evolution, as mentioned in the Methods sections. The trace of ρS is
also checked, as it is required to be unity in every time step.

Another quantity that can be interesting to study is the purity of the
system, bound between 1 and the inverse dimension, 1

4
. The purity of ρS,

alongside its trace, is plotted in Fig. 7. The results show that the system
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gets more mixed during the time evolution, always stabilizing close to the
lower bound.

(a) Initial state |1c1h〉 (b) Initial state |0c0h〉

Figure 7: The figures show the time evolution of the trace and purity of the state
of the principal system from two different ancilla states. The remaining

parameters used for both simulations are the same as for Fig. 5.

The fact that the purity of the reduced density operator is changing is a
confirmation of the openness of the principal system. The purity of a closed
quantum system can never change, why Fig. 7 verifies that the qubits are
connected to an environment in some way.

4.3 1st and 2nd Laws of Thermodynamics

By plotting Eq. 58, as well as the individual heat currents Q̇i, with respect
to time it is possible to get a grasp on the thermodynamic behaviour of the
transient regime. Predictions of this behaviour can be made by analysing
Fig. 5. When the ground state population decreases all heat currents should
reasonably be flowing into the system in order to excite it, thus giving rise
to positive Q̇i. Conversely, initial preparation of the system in |1c1h〉 should
result in negative heat currents since energy is released in order to relax the
system. These expectations are verified in Fig. 8.

It is clearly seen in Fig. 8 that the system approaches steady state since
the sum of the heat currents approaches zero. This behaviour is required by
the first law of thermodynamics, which is also used for determining the run
time for each simulation. Figure 9 is presented in order to graphically resolve
the heat currents close to the steady state regime. The signs of each heat
flux appear as expected: heat entering the system from the cold reservoir,
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(a) Initial state |1c1h〉 (b) Initial state |0c0h〉

Figure 8: The figures show the transient heat fluxes, Qi, from two different
ancilla states, as the system approaches steady state. The remaining parameters

used for both simulations are the same as for Fig. 5.

Q̇c > 0, and heat leaving the system to the hot reservoir, Q̇h < 0, assisted
with additional heat from the work reservoir, Q̇w > 0.

(a) Initial state |1c1h〉 (b) Initial state |0c0h〉

Figure 9: The figures are zoomed in versions of the data presented in Fig. 8.
Here it is possible to resolve the individual heat currents and see that the signs

correspond to predictions.

It is now concluded that the initial state of the system will not affect the
steady state behaviour of the heat pump. The resulting populations and heat
currents will only be a result of the temperatures of the reservoirs, βi, and
the energy splittings of the qubit, Ei. For further results and analysis |1c1h〉
will be used.

It is also interesting to verify that the system obeys the second law in
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terms of entropy production. To study the system’s temporal entropy change
in the transient regime Eq. 61 is utilized. The entropy change fundamentally
has to be a positive quantity in closed systems, in accordance with Fig. 10.
Equation 59 is valid in the steady state regime, and it is shown that the
entropy change contribution from the reduced system, ∆SS, declines rapidly.
Only the entropy change in the heat reservoirs contribute to the total entropy
change in steady state operation.

(a) ∆S = dSS
dt −

Q̇c

Tc
− Q̇h

Th
− Q̇w

Tw
(b) dSS

dt

Figure 10: The figures shows the temporal entropy production in the whole
system, ∆S, and the principal system, ∆SS, respectively. Figure 10a shows that
the system behaves according to the second law of thermodynamics. The entropy
change of the principal system, ∆SS is plotted as well in order to show how this

quantity quickly approaches 0.

4.4 COP and Cooling Power

The previous results show that the simulation describes a system which over
time approaches steady state behaviour. It was also demonstrated that it be-
haves physically in terms of population distributions, internal energy change
and entropy production. The mathematics also seem valid since propagation
through the Lindblad equation preserves positivity and unity trace for the
density matrix. The change in purity also shows that the principal system is
open, i.e. that system-environment interactions are present. At this point the
efficiency of the heat pump can be evaluated. This will be done in terms of
coefficient of performance and cooling power. The COP for each simulation
will be presented as a fraction of the Carnot limit for the specific set up.
This is done partly to make the results comparable to each other, partly to
see how close the performance is to the theoretical limit. Figure 11 shows a
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histogram of the COP, with respect to ηC , achieved from simulations with
randomly simulated bath temperatures and qubit energies.

Figure 11: The histogram shows the resulting COP from 1000 simulations with
different system parameters. It demonstrates that it is indeed possible to approach
the Carnot limit. The highest value achieved was η = 0.992ηC , and 14.9% of the

configurations show η > 0.9ηC .

parameter min max

γ 0.01 0.01

kBTc 200 · γ 200 · γ
kBTw kBTc 10 · kBTc
kBTh kBTc kBTw

Eh
kBTc

2
kBTh · 2

Ec
Emax

c

2
Emax
c

Ew Eh − Ec Eh − Ec

Table 2: The parameters for each simulation were chosen randomly within certain
ranges presented in this table. The main constraint is to keep the coupling factor, γ,
well below the energies involved in order to respect the weak coupling approximation.

The parameters used for the simulations presented in Fig. 11 are ran-
domly chosen within a large range. Only the ancilla state, |1c1h〉, the coupling
factor, γ, and the temperature of the cold bath, Tc, are kept constant. Some
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constraints apply to the parameter choices, e.g. the energy scales involved
need to be much larger than the coupling factor for the weak coupling
approximation to be respected. The parameters are chosen randomly within
the ranges presented in table 2.

By comparing the COP and the cooling power in a scatter plot it can
be shown that the COP of the heat pump approaches the Carnot limit at
the expense of cooling power, and vice versa. Figure 12 shows the COP and
Qc for the same simulations plotted in Fig. 11. A linear fit of the data is
included to accentuate the relation between COP and Q̇c.

Figure 12: The COP, η/ηC , and the cooling power, Q̇c, of 1000 simulations are
plotted in this figure. The figure shows that the Carnot limit, i.e. η/ηC = 1, can

be approached only at the expense of cooling power. A linear fit of the data is
included to highlight this dependence.

A general dependence of the work reservoir temperature and the energy
difference Ew could be found. By reverting to the detailed balance condition,

this result is to be expected. This is because the rate ratio Γ+
w

Γ−
w

increases for

higher Tw, according to Eq. 47. From the same equation it may also be seen
that a small Ew has a complementary effect. Thus, by choosing Tw � Tc and
Ec . Emax

c , Fig. 13 is obtained.
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(a) (b)

Figure 13: The figures show the results from 100 simulations where
9Tc ≤ Tw ≤ 10Tc and 0.9Emaxc ≤ Ec ≤ Emaxc . The COP is in general closer to

the Carnot limit, with 87% of the runs showing η > 0.9ηC . Figure 13b also
indicates a general improvement in performance.

The expression for Emax
c was analytically derived, but it can be shoved

that the limit holds in the simulations as well. If the relation Emax
c < Ec <

Eh is respected when assigning the parameter values, all heat flows change
direction. The cold reservoir is now consequently heated, why the expression
for the cooling window holds. An example simulation is presented in Fig. 14.

(a) Initial state |1c1h〉 (b) Initial state |1c1h〉

Figure 14: The figure shows the results from one simulation where
Emaxc < Ec < Eh. Figure 14a shows the transient behaviour of the heat currents,
and Fig. 14b is a zoomed in version of the same plot. From the right plot it can

be established that all heat flows are reversed, i.e Q̇h > 0, Q̇c,w < 0.
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5 Summary

Performing a study on quantum thermal machines requires robust under-
standing of several different fields of physics, e.g. quantum thermodynamics,
quantum information theory and dynamics of open quantum systems. Be-
cause of this, extensive literature studies had to be undertaken to complete
this work. However, this is what makes the field truly exciting. This rela-
tively new branch of physics has been co-developed by scientists from various
backgrounds, all carrying different perspectives.

In this thesis it is demonstrated that an absorption driven quantum heat
pump could be realized. Particularly, an active medium of only two qubits is
studied, with only one additional heat reservoir assisting the process. With
a Hilbert space of only 4 dimensions this configuration is one of the smallest
thermal machines possible. It is shown that the system acts physically
in terms of the models used and that the simulations may approach the
fundamental Carnot limit of performance. It is also demonstrated that the
performance of the heat pump may be enhanced by choosing the parameters
appropriately, in this case Tw and Ew. The analytically derived cooling
window, Ec ≤ Emax

c , is finally shown to be valid for simulations as well.
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6 Extensions

While this project demonstrates that this configuration of an absorption
driven quantum heat pump is theoretically functional, the output could be
optimized. It should for example be possible to derive or numerically find
the efficiency at maximum cooling power, cf. the Curzon-Ahlborn efficiency
of endoreversible thermodynamics.

In [6] the use of non-equilibrium heat reservoirs is investigated. By
appropriate tailoring of the heat baths they claim that the Carnot efficiency
can be surpassed, thus reaching beyond fundamental classical thermodynamic
limits regarding both efficiency and power generation. However, it appears
as they have not accounted for the cost of squeezing the reservoirs. This cost
should be studied in order to amend this analysis. By considering this cost
as a part of the total system, it could possibly be determined if these results
still fit into the thermodynamic laws.

There was an initial ambition to study the system from a quantum infor-
mation perspective as well. Since the time was limited, some of these ideas
had to be discarded along the way. The entanglement and decoherence of the
system should be studied. By adding a coherent coupling between the qubits
this could become more interesting. An idea, for example presented in [8], is
to use quantum thermal machines as generators of entanglement. The idea
to divert the focus from traditional thermodynamic resources is intriguing
and it would present an even more direct connection to the field of quantum
information.

Another possibly interesting extension to this project is to get rid of the
work reservoir and study a heat pump driven by an external work input.
This would perhaps present a more experimentally realizable configuration.
Some driving protocol, of e.g. electromagnetic radiation, should exist which
makes the set up operate as a heat pump.
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7 Appendix

7.1 Operators

As mentioned above, a qubit can be transformed from one state to another.
These transformations are governed by a set of, norm preserving, linear oper-
ators. In the Bloch sphere representation that means moving the state vector
to another point on the surface. This is a good example since it in a simple
manner implies the fundamental feature that the norm of a state vector, after
any transformation in a closed system, must be preserved (normalization
criterion). Thus all allowed operations on a quantum system, called unitary
transformations, are any infinitesimal, norm preserving, rotations on the
Hilbert space of the specific system.

The books [3] and [15] thoroughly treat the concept of operators, and
are used as a foundation for this section. Changes in, or transformations
of, physical systems need to be described by the parameter time, t. To
unravel how a state evolves with time two general states are assumed: |ψ〉
at t = t0 and |ψ〉′ at some t = t1 > t0. What happens with the state

during the conversion from |ψ〉 to |ψ′〉? A time evolution operator, Û(t1,t0),
is introduced as

|ψ〉 −−−−−−−→time evolution |ψ′〉

|ψ′〉= Û(t1,t0) |ψ〉 .
(86)

This operator simply acts on the initial ket to make it |ψ′〉 after some time
interval t1 − t0. The time evolution operator has to be a unitary operator,
i.e. Û †Û = Û Û † = 1, in order to satisfy the normalization criterion for the
states. The state itself is generally presumed to change with time, which in
other words means that the coefficients, pa(t), of some eigenstates, |a〉, will
change. This can be described mathematically by

|ψ(t)〉=
∑
a

pa(t) |a〉 (87)

However, the sum of the probabilities still has to equal one, in line with∑
a

|pa(t0)|2 =
∑
a

|pa(t1)|2 = 1. (88)

Given that time is continuous, the time step t1−t0 can be chosen arbitrar-
ily small. This leads to the infinitesimal time evolution operator Û(t0+dt,t0).
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When this time step dt approaches zero the operator itself must consequently
approach identity as

lim
dt→0

Û(t0 + dt,t0) = 1, (89)

meaning nothing would happen to the state. All necessary requirements for
the infinitesimal time-translation operator are met by expressing it as

Û(t0 + dt,t0) = 1− iĜdt, (90)

with Ĝ being a Hermitian operator, Ĝ = Ĝ†. The operator Ĝ is actually
the Hamilton operator divided by the reduced Planck constant. Ĥ is system
specific and acts as the generator of time translation for this system. The
infinitesimal time evolution operator finally takes the form

Û(t0 + dt,t0) = 1− iĤdt

~
. (91)

A differential equation for the time evolution operator can be formulated
with the ansatz to go from t0 to t+ dt in two steps:

Û(t+ dt,t0) = Û(t+ dt,t)Û(t,t0) =

=

(
1− iĤdt

~

)
Û(t,t0) = Û(t,t0)− iĤdt

~
Û(t,t0)

(92)

and

Û(t+ dt,t0)− Û(t,t0) = −iĤdt
~

Û(t,t0)⇔

⇔ ∂

∂t
Û(t,t0) = − i

~
ĤÛ(t,t0).

(93)

In the equation above, a state ket, |ψ(t0)〉, can be inserted at both sides to
obtain

∂

∂t
Û(t,t0) |ψ(t0)〉= − i

~
ĤÛ(t,t0) |ψ(t0)〉 , (94)

and a state at a given time is not time dependent why this is equivalent to

∂

∂t
|ψ(t)〉= − i

~
Ĥ |ψ(t)〉 . (95)
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This equation is the well known Schrödinger equation (S.E.) for a state vector.
It is central to quantum mechanics as it describes the time evolution of a state
in any closed quantum system.

The Hamiltonian of a closed and isolated quantum system is time inde-
pendent. In that case the final expression in Eq. 93 can be integrated to get
the time evolution operator on the form of

Û(t,t0) = Û(∆t) = e−
i
~ Ĥ∆t. (96)

45



References

[1] Bacon D., CSE 599d - Quantum Computing One Qubit, Two Qubit,
https://courses.cs.washington.edu/courses/cse599d/06wi/

lecturenotes3.pdf, last accessed 28 September 2017.

[2] Brasil C.A., Fanchini F.F., and Napolitano R.d.J., A simple derivation of
the Lindblad equation https://arxiv.org/pdf/1110.2122.pdf, 2012,
last accessed 28 August 2017.

[3] Breuer H.P. and Petruccione F, The Theory of Open Quantum Systems,
Oxford: Oxford Univ. Press, 2007.

[4] Cappellaro P., 22.51 Quantum Theory of Radiation Interactions
https://ocw.mit.edu/courses/nuclear-engineering/

22-51-quantum-theory-of-radiation-interactions-fall-2012/

lecture-notes/MIT22_51F12_Notes.pdf, 2012, last accessed 17
January 2018.

[5] Chandra N. and Ghosh R., Quantum Entanglement in Electron Optics,
Springer, 2013.

[6] Correa, L.A., Palao, J.P., Alonso, D. and Adesso, G., Quantum-
enhanced absorption refrigerators, https://arxiv.org/pdf/1308.4174.
pdf, 2014, last accessed 14 December 2017.

[7] Gamel, O., Entangled Bloch spheres: Bloch matrix and two-qubit
state space, https://journals.aps.org/pra/pdf/10.1103/PhysRevA.
93.062320, 1016, last accessed 14 November 2017.

[8] Goold, J., Huber, M., Riera, A., del Rio, L., and Skrzypczyk, P., The role
of quantum information in thermodynamics — a topical review, https://
arxiv.org/pdf/1505.07835.pdf, 2016, last accessed 2 November 2017.

[9] Hall, B.C., Quantum Theory for Mathematicians, New York: Springer,
2013.

[10] Henrich M.J., Mahler G. and Michel M., Driven spin systems as quantum
thermodynamic machines: Fundamental limits, https://journals.aps.
org/pre/pdf/10.1103/PhysRevE.75.051118, 2007, last accessed 13
October 2017.

[11] Lawrence, W.E., Detailed balance, quantum distribution functions,
and equilibrium of mixtures, American Journal of Physics, Volume

46

https://courses.cs.washington.edu/courses/cse599d/06wi/lecturenotes3.pdf
https://courses.cs.washington.edu/courses/cse599d/06wi/lecturenotes3.pdf
https://arxiv.org/pdf/1110.2122.pdf
https://ocw.mit.edu/courses/nuclear-engineering/22-51-quantum-theory-of-radiation-interactions-fall-2012/lecture-notes/MIT22_51F12_Notes.pdf
https://ocw.mit.edu/courses/nuclear-engineering/22-51-quantum-theory-of-radiation-interactions-fall-2012/lecture-notes/MIT22_51F12_Notes.pdf
https://ocw.mit.edu/courses/nuclear-engineering/22-51-quantum-theory-of-radiation-interactions-fall-2012/lecture-notes/MIT22_51F12_Notes.pdf
https://arxiv.org/pdf/1308.4174.pdf
https://arxiv.org/pdf/1308.4174.pdf
https://journals.aps.org/pra/pdf/10.1103/PhysRevA.93.062320
https://journals.aps.org/pra/pdf/10.1103/PhysRevA.93.062320
https://arxiv.org/pdf/1505.07835.pdf
https://arxiv.org/pdf/1505.07835.pdf
https://journals.aps.org/pre/pdf/10.1103/PhysRevE.75.051118
https://journals.aps.org/pre/pdf/10.1103/PhysRevE.75.051118


67, Issue 12, http://aapt.scitation.org/doi/pdf/10.1119/1.19097,
1999, last accessed 23 January 2018.

[12] Lindblad, G., On the Generators of Quantum Dynamical Semigroups,
Commun. math. Phys. 48, 119—130, Springer, Springer, 1976, arxiv.

org/abs/quant-ph/0606228, 2006, last accessed 16 January 2018.

[13] Nielsen, M.A. and Chuang, I.L. Quantum Computation and Quantum
Information, Cambridge: Cambridge University Press, 2003.

[14] Palao, J.p. and Koslof, R., Quantum thermodynamic cooling cycle,
https://arxiv.org/pdf/quant-ph/0106048.pdf, 2001, last accessed 6
February 2018.

[15] Sakurai, J.J. and Napolitano, J. Modern Quantum Mechanics, 2nd edn.,
San Fransisco: Pearson Education Inc., 2011. y

[16] Scovil H.E.D. and Schulz-DuBois E.O., Three-level masers as heat
engines, https://journals.aps.org/prl/pdf/10.1103/PhysRevLett.
2.262, 1959, last accessed 26 January 2018.

[17] Vinjanampathy, S., Anders, J., Quantum Thermodynamics, https://
arxiv.org/pdf/1508.06099.pdf, 2016, last accessed 18 December 2017.

47

http://aapt.scitation.org/doi/pdf/10.1119/1.19097
arxiv.org/abs/quant-ph/0606228
arxiv.org/abs/quant-ph/0606228
https://arxiv.org/pdf/quant-ph/0106048.pdf
https://journals.aps.org/prl/pdf/10.1103/PhysRevLett.2.262
https://journals.aps.org/prl/pdf/10.1103/PhysRevLett.2.262
https://arxiv.org/pdf/1508.06099.pdf
https://arxiv.org/pdf/1508.06099.pdf

	Introduction
	Theory
	Quantum Information
	Qubits
	Bloch Sphere Representation

	Quantum Mechanics
	Constructing the Hilbert Space
	Ladder Operators

	Open Quantum Systems
	Density Operators
	Properties of the Density Operator
	Liouville-von Neumann Equation
	Subsystems and the Reduced Density Operator
	Environment Description
	Master equation on Lindblad form

	Quantum Thermodynamics
	Bose–Einstein statistics and Detailed Balance
	Work and heat
	Quantum Thermal Machines
	Figures of Merit
	Conditions for Cooling


	Methods
	Initial State of the System
	Hamiltonian
	Dissipators
	Solving the Lindblad Equation
	Heat currents

	Results and Analysis
	Populations and coherences
	Trace Preservation and Purity
	1st and 2nd Laws of Thermodynamics
	COP and Cooling Power

	Summary
	Extensions
	Appendix
	Operators


