

Department of Automatic Control

Robot Tool Calibration of an Active Pen
with Python using an Enabled Surface

from Anoto Technology

Johnny Sjöberg

MSc Thesis
TFRT-6051
ISSN 0280-5316

Department of Automatic Control
Lund University
Box 118
SE-221 00 LUND
Sweden

© 2018 by Johnny Sjöberg. All rights reserved.
Printed in Sweden by Tryckeriet i E-huset
Lund 2018

Abstract

This master thesis has shown multiple uses of the Anoto dot pattern and Anoto
pen for different applications. One application is the calibration of the robot tool
and work object. Another is the use of an Anoto pen and paper as replacement of
the ABB Flexpendant to create a lightweight and intuitive control device to con-
trol an industrial robot, experimentally demonstrated for the IRB140 robot arm.
The Python programming language and interpreter were used together with ABB’s
RAPID programming language to create a framework to handle the communication
between the user and the robot.

The inverse and forward kinematics were derived for the robot and used for sim-
ulations and for determining if a trajectory could be traversed. This helped in the
theoretical verification in the development of the calibration algorithm. The cali-
bration details from the results section show that a naive approach to calibrating the
tool tip, i.e., using all of the measurement values results in a deviation of 1mm or
more with slow convergence compared to the manual calibration of 0.5mm devia-
tion. By using a greedy optimization strategy of successively adding measurements
that improve the calibration, and removing measurements that worsen it, we get a
calibration comparable to a manual calibration with fast convergence.

The work object calibration, i.e., the orientation estimation of the Anoto pattern
surface shows promising results with few measurements and faster convergence,
but can also be improved with the same optimization strategy. By performing man-
ual measurements, and using measurements of the error in the robot flange position,
a realistic lower bound on the precision of the calibration algorithm was decided to
be no lower than 0.3 - 0.4mm, and depended on the performance of the pen. The
flexpendant control board replacement was developed through a user study with
volunteers from Anoto.

3

Acknowledgements

I would like to thank both my supervisors Anders Robertsson and Per Lidström for
being the most supportive supervisors. They have both in different ways inspired
me and supported me through my work and have both furthered my interest in a
PhD degree from stimulating discussions. Their patience, support and encouraging
words have been invaluable in finishing this master thesis.

I would also like to thank Claus Führer for introducing me to the concept of
the hand-eye calibration problem.

Anoto has been generous in giving me access to their robotics lab in Lund and
letting me work with their technology and I want to thank them for the opportunity
to do my master thesis for them.

A special thank you to Terez Lundman and William Sjöberg for their support,
patience and for filling my life with laughter.

5

Contents

1. Introduction 9
1.1 Problem Description . 9

2. Background 11
2.1 Anoto . 11
2.2 Anoto Dots Technology . 12
2.3 Anoto Digital Pen Technology 13
2.4 Robot ABB IRB140-6/0.8 . 13

3. Literature Research 16
4. Method 18

4.1 Traversing a Path . 18
4.2 Python/RAPID Framework . 20
4.3 Flexpendant Control Board Design 26
4.4 Measurements . 27

5. Theory 29
5.1 Forward Kinematics . 29
5.2 Inverse Kinematics . 32
5.3 Calibration with Anoto Pen . 37
5.4 Calibration of Pen Orientation 42
5.5 Replacing the Flexpendant . 43

6. Results 47
6.1 Calibration Algorithm Measurements 47
6.2 Calibration Algorithm Optimization 50
6.3 Calibration Algorithm Precision Lower Bound 54
6.4 Calibration Algorithm Simulation 56
6.5 Calibration Algorithm Orientation Estimation 58
6.6 Inverse Kinematics Over a Curve 60
6.7 HID Parsing . 66

7. Discussion 68
8. Conclusion 70

7

Contents

9. Future Work 72
A. Appendix 74

A.1 Technical Specification Robot ABB IRB140-6/0.8 75
A.2 Kinematic Chain . 76
A.3 Pen Orientation Definitions . 77
A.4 Anoto Pen HID Descriptor . 78
A.5 Denavit-Hartenberg Parameters 81
A.6 Denavit-Hartenberg Convention 82
A.7 Python Framework Implementation 83
A.8 Control Board Design and Target Surface 93
A.9 Measurements Lab Setup . 94

Bibliography 99

8

1
Introduction

1.1 Problem Description

This master thesis has aimed to solve three specific problems that the Anoto com-
pany has been having when developing their digital pens.

During development of new surfaces or new pens the company needs to mea-
sure the pixel-, image- and light quality of different combinations of pen models,
surface types and pattern printing methods. These quantities depend on the relative
orientation between the pen and the pattern surface being measured, geometry of
the pen model, quality of print and type of surface. For this reason a 6 degree-
of-freedom (DOF) industrial robot arm from ABB is used for measuring these
quantities with their digital pens.

Problem I. Before measurements are done with the robot, the robot needs to
be calibrated for the tool center point (TCP)1. This process can take, in worst case,
up to 2 hours to get a good calibration, and 15-30 minutes on average for someone
experienced. This is without counting the time it takes to calibrate the position and
orientation of the surface the samples are placed on, refered to as the work object.

Since the company usually measures multiple pens and multiple surface sam-
ples during development, this quickly becomes a very tedious process that puts a
lot of strain (and stress) on the person doing the calibration, and a big time sink for
the company in the long run.

Problem II. After tool calibration, the robot measures by collecting data from
the pen while moving the pen tip in a straight line2 on a surface sample multiple
times with different constant relative orientations3. During this motion the robot can

1 The pen used for the measurement is fastened in a cradle and mounted on the robot flange.
2 This is refered to as a "stroke".
3 This is done with a constant velocity.

9

Chapter 1. Introduction

reach one or more motor joint limits, causing the robot to stop in its measurements.
While performing a stroke, two joints can also line up and become parallel, forcing
the robot to dramatically increase its joint velocities to keep a constant pen tip
velocity. When two joints are completely parallel, then the robot can not continue
with the desired motion due to not being able to calculate the next interpolation
step for its joint velocities and joint values—the robot has reached a singularity
configuration that again causes the robot to stop in its measurements.

This causes unexpected, unplanned delays in the development process for the
company since if the robot stops in its measurements, it may not be detected until
several hours later.

This also means that one person must be assigned to oversee the robot during
measurements. This adds to the stress in the working environment and wastes valu-
able time from other duties at the company.

Problem III. When working with the robot it is very useful to be able to con-
trol it manually, either to move it out of the way, or to program a path, or mark
points of interests4. This is usually done with the ABB Flexpendant, a large, heavy
control device equipped with a dead man’s switch and a joystick with 3 degrees of
freedom. This device requires training to use correctly and is connected to the robot
controller by a long heavy cable that very easily gets caught in corners and other
equipment.

It takes a long time to get good at controlling the robot with the flexpendant,
and since it is a heavy device with a heavy cable in the way it is an energy consum-
ing task for the operator to control the robot.

Solutions. In this thesis the first and second problems are solved by deriving
and making use of the theory of the forward and inverse kinematics of the robot.

A calibration algorithm is derived with the forward kinematics to solve the first
problem.

The second problem is solved by deriving the inverse kinematics and implementing
it in Python. This is used together with a path-finding algorithm to find a smooth
motion, without sudden stops, over a curve.

The third problem is solved by creating a framework in Python to parse and in-
terpret the Bluetooth data sent from the pen to control the robot arm.

4 These are usually positions of the mounted tool tip paired with the orientation of the tool, i.e., "poses".

10

2
Background

2.1 Anoto

Anoto Group AB1 has over 150 employees with offices in Lund and Norrköping
in Sweden as well as in the UK, US and Japan. The company sprung from C-
Technologies (known by their text-digitizer product: the C-pen) and is one of the
leading experts in active digital pens and digital writing and drawing solutions, see
Figure 2.1.

Its technology platform and branded products enable high-precision pen or sty-
lus input on nearly any surface, from capturing and digitizing handwritten notes
and business forms on paper to designing, creating and collaborating directly on
large interactive displays, whiteboards, and walls up to 24 feet.

Figure 2.1 The Anoto logo and motto [Anoto AB, 2017b].

Source: Anoto AB.

As of this writing the Anoto family consists of 53 solution providers, among them
Destiny Wireless, We-inspire, Hitachi, Vodafone and Penvision, together with Live-
scribe which is a wholly-owned subsidiary of Anoto that designs and manufactures
the Livescribe brand of smartpens [Anoto AB, 2017a], [Livescribe, Inc, 2017].
Current and past partners in the United Kingdom healthcare system are The Perina-
tal Institute, that helps to collect perinatal information across the UK using Anoto
digitizing forms, the Aneurin Bevan Health Board as well as the Welsh Ambu-
lance Service that utilize the Anoto digitizing writing solution [Anoto Group AB,

1 In interviews and in the sequel of this report the company is just referred to as "Anoto".

11

Chapter 2. Background

2016b]. Other partners that benefit from the Anoto digital forms are companies in
the production and maintenance industry related to fields such as electric and diesel
locomotives, railcars, process cooling, lifts, escalators and cradle maintenance [An-
oto Group AB, 2016c]. The company has also extended its services to retail and
logistics, financial sector as well as the public sector [Anoto Group AB, 2016a].

2.2 Anoto Dots Technology

The strength behind Anoto’s digital writing and drawing solutions is its unique non-
repeating dot-pattern which encodes absolute position by applying distorted dots
relative to an invisible raster grid. The dots’ positions relative to a raster intersection
encodes the position. The raster grid and encoding dots make up a grid of 2× 2-
millimetre squares, with 36 dots in such a square. This creates a unique pattern in
each square and a total of 4,722,366,482,869,645,213,696 unique squares can be
generated2 [Silberman, 2001]. This allows for sub-millimetre precision in decoding
and interpolating the coordinate being decoded [Pettersson and Elsö, 1999], see
Figure 2.2.

Figure 2.2 Absolute pen tip position is decoded from distorted dots relative a fic-
tional raster grid from a 2×2-millimetre square on the Anoto surface. The filled area
shows four intersections with distorted dots [Destiny Wireless, 2017].

Source: Destiny Wireless Ltd.

2 This pattern makes up an area that is 4.7 million square kilometres – half the area of the US [Silber-
man, 2001].

12

2.3 Anoto Digital Pen Technology

2.3 Anoto Digital Pen Technology

Combining the dot-pattern technology with a small camera system in the form of
a digital pen, with a Bluetooth-chip, pressure sensor enabled tip and infrared light
emitting diode, that uses computer vision and image analysis, it is possible to decode
the absolute position of the pen tip on the pattern-printed surface, as well as the
orientation of the pen relative to the surface, see Figure 2.3.

Figure 2.3 To the left: The Anoto Live pen with active display [Xms Penvision,
2017]. To the right: A generalized drawing of the components in the pen [NECS,
inc, 2017]. The infrared emitting diode and force sensor are not annotated in the
figure.

Sources: Xms Penvision AB (Left), Necs, inc. (Right).

This allows for capturing pen strokes as pen tip trajectories, enabling for on-the-fly,
wireless digitization of handwritten text in real-time. Some uses for this technology
involve signature verification, fraud detection, digitization of handwritten forms and
digital whiteboards.

2.4 Robot ABB IRB140-6/0.8

This multi-purpose industrial robot model with a handling capacity of 6kg, seen in
Figure 2.4, was designed for packing products, handling different materials, clean-
ing, spraying and for assembly production among other uses [ABB Ltd, 2016c]. Its
relatively small size, with dimensions of 950×800×620mm3 and a weight of 98kg,
and the fact it can be deployed in any angle on floors, walls and ceilings allows for
deployment in a multitude of environments where space limitation is a factor.

13

Chapter 2. Background

A high-performance version of this manipulator exists under the name of the
IRB140T which is 25% faster on the first two joints. There also exists a high-speed
upgrade kit for the IRB140 that transforms it into the 140T—showing the flexible
design of this robot manipulator [ABB Ltd, 2016d]. With the upgrade it is possible
to obtain up to 15-20% decrease in operation cycle time if only the first two joints
are utilized.

Figure 2.4 The 6 DOF IRB140 robot manipulator from ABB [ABB Ltd, 2016c].

Source: ABB.

Both a Foundry-version and a Wash-version3 exist that make this robot suitable for
use even in harsh environments.

The robot consists of six so-called revolute joints that allow for pure rotational
movement along one given axis per joint. How this axis is related to the joint de-
pends on that specific design as there are different variations of the revolution joints.
This allows for 6 degrees of freedom (DOF) in the movement and orientation in
the room for an attached tool, see Figure 2.5. Three degrees of freedom are needed
to yield the position4 and three more are required to yield the orientation of the
end-effector. This means the robot by design resembles the freedom and flexibility
you would obtain from an ordinary human arm, despite the robot arm having one
less degree of freedom compared to the human arm’s 7 DOF.

3 High pressure steam washable version.
4 The wrist center point.

14

2.4 Robot ABB IRB140-6/0.8

[mm]

Figure 2.5 The full range of the robot workspace [ABB Ltd, 2016c].

Source: ABB.

ABB’s advancements in the field in motion control of robotic systems, together with
complete dynamic models of the robots in the robot controllers, is what allows for
the high standard of quality, accuracy and repeatability of following motion paths
[ABB Ltd, 2016a]. The position repeatability5 of the IRB140 model is 0.03mm
[ABB Ltd, 2016c]. With the robots’ high accuracy and control it is possible to coor-
dinate up to 4 different robots (36 different axis) at the same time [ABB Ltd, 2016a].

This has been demonstrated by ABB with the "Fanta Challenge" on their homepage
[ABB Ltd, 2016a] with an embedded YouTube video [ABB Ltd, 2016b].

A summary of the technical specifications, e.g., the joint-limits of the IRB140
can be found in Appendix A.1.

5 This precision is not obtained during motion or in absolute accuracy.

15

3
Literature Research

The need to relate measurements made by a camera to a different known coordinate
system arises in many engineering applications. Historically, it appeared for the
first time in connection with cameras mounted on robotic systems. This problem is
commonly known as hand-eye calibration [Heller et al., 2014].

In many robotic applications it is necessary to determine the position and ori-
entation of the tool and its tip for use in, e.g., robot assisted welding, machine
loading, drilling, packaging and medical applications to name a few. Today in med-
ical applications a camera (referred to as the "eye" in the robotics community) is
placed on the robot hand to assist in precisely positioning the tool [Ernst et al.,
2012], [Horaud and Dornaika, 1995] while in tracking-and-grasping applications
it is used to grasp moving objects, e.g., products on a converyor belt [Allen et al.,
1993].

The Anoto digital pen uses a camera to determine where its tip is located on
the surface that makes use of the Anoto pattern, but in order to perform measure-
ments with the IRB140, the robot needs to know where the surface and the pen tip
is located relative to the robot base frame.

The ground work for solving these problems were laid out independently by Shiu
and Ahmad [Shiu and Ahmad, 1989] and Tsai and Lenz1, [Tsai and Lenz, 1989].
Both solutions make use of matrix algebra and the special properties of homoge-
neous matrices, separately determining the orientation of the tool being used and
the position of its tip [Ernst et al., 2012]. The position of the tip and the orientation
of the tool were solved as two decoupled problems, where the orientation was
solved using either rotation matrices for rotations around an axis by an angle [Tsai
and Lenz, 1989], [Shiu and Ahmad, 1989] or quaternions [Chou and Kamel, 1991].

1 The problem is formulated as solving a set of equations on the form AX = XB, where A is the
relative transformation of the camera, B the relative transformation of the robot flange and X the
relative transformation from the robot flange to the attached camera frame [Heller et al., 2014].

16

Chapter 3. Literature Research

Horaud and Dornaika were the first to treat the orientation and position as cou-
pled problems and solved for them simultaneously using a non-linear minimization
approach [Horaud and Dornaika, 1995]. Chen introduced a new approach using
screw-motion theory and performed a geometric analysis of the original problem
and proved that the position and orientation problems become ill-conditioned when
decoupled and should be solved for simultaneously [Chen, 1991]. Daniilidis intro-
duced dual quaternions as an equivalent algebraic representation of screw-motion
theory [Daniilidis, 1999]. A related problem is that of simultaneously solving for
both the position and orientation of the tool and its tip as well as the position and
orientation of the work object2. Zhuang derived a method of solving this problem
using quaternions3 [Zhuang et al., 1994].

These methods were derived on the assumption that orthogonal homogeneous
transformations can be found that optimally solve for the tool and the work object4.
Ernst [Ernst et al., 2012] proposed a method of calibration by extending earlier
methods to allow non-orthogonal transformations to correct for system inaccura-
cies.

More recent and modern approaches include the attempt of Heller to solve hand-
eye calibration as well as simultaneous robot-world calibration by restating them
as multivariate polynomial optimization problems and use convex linear matrix
inequality relaxations to obtain globally optimal solutions [Heller et al., 2014].

Strobl [Strobl and Hirzinger, 2006] presented a physically-based metric together
with an experimentally validated error model for optimally estimating the solutions
for the problems mentioned using the Maximum Likelihood method.

Ruland [Ruland et al., 2012] presented a globally optimal hand-eye self-calibration
method and contributed new feasibility tests to integrate the hand-eye calibration
problem into a branch-and-bound parameter space search. A guaranteed globally
optimal estimator for simultaneous optimization of both tool tip position and orien-
tation, with respect to a cost function based on reprojection errors, was presented
and a benchmark dataset was published online to create a common point of refer-
ence for evaluation of hand-eye self-calibration algorithms.

2 This related problem has the form AX = YB, where Y is the relative transformation from the robot
base-frame to the global world-frame.

3 In most of these papers the work object is a calibration pattern used for calibrating the camera.
4 This is not necessarily the case due to system inaccuracies, e.g., the robot is not perfectly constructed.

17

4
Method

4.1 Traversing a Path

When determining if the robot can move a given tool tip along a specific geo-
metric path1 under time-constraint2,3 there are a number of obstacles that need to
be considered. First, we need to know the robot can traverse the curve with the
tool without having to change configuration from, e.g., forward-facing elbow-up
configuration to backward-facing elbow-up in order to continue on the given path
(joint limit problem) or being forced to change a joint 90 or 180 degrees between
two neighbouring points on the curve (continuity problem). Second, we need to
determine if the robot can traverse the path without exceeding joint-velocities (joint
velocity-limit problem) and without any of the joints lock-up (singularity configu-
ration problem). Last we need to determine if each point on the path is reachable.
See summary below.

Problems when traversing a path:

1. One or multiple joints reach their joint limits.

2. One or multiple joints have to take very large motor angle steps between
neighbouring curve points.

3. One or multiple joints reach their joint-velocity limits.

4. Two joints become parallel—the robot has reached a singularity configura-
tion.

5. A part of the curve is unreachable.

1 A geometric curve where each point point on the curve has an assigned tool-pose.
2 If a time-constraint is exists then the path will also have velocity- and angular velocity vectors applied

to each point on the curve.
3 A geometric curve with time constraint is a trajectory.

18

4.1 Traversing a Path

In solving these problems we first solve the inverse kinematics problem for each
pose pi on the curve and assign the solutions Qi = {qik}k={1, 2, ..., mi} to the corre-
sponding point on the curve, see Figure 4.1.

pi
qi,1

...
qi,k

...
qi,mi



pi+1
qi+1,1

...
qi+1,k

...
qi+1,mi+1



Figure 4.1 A curve with assigned poses and inverse kinematics solutions to spe-
cific points on the curve.

The Jacobians Ji,k are calculated from the joint values qi,k using forward kinemat-
ics and are used to solve for the joint velocities q̇i,k from the corresponding velocity
vectors vi and angular velocity vectors ω i, see Figure 4.2.


J i,1

...
J i,k

...
J i,mi



ω i
vi


J i+1,1

...
J i+1,k

...
J i+1,mi+1



ω i+1 vi+1

Figure 4.2 A curve with assigned velocity vectors and angular velocity vectors and
Jacobian solutions to specific points on the curve.

A forward-directed graph is constructed from the solutions where each solution
node from pi is connected to every solution node for pi+1. A recursive path-finding
algorithm is used to find the path of least L2-norm angle-deviation from q1,k ∈ Q1
for p1 to qn,l ∈Qn for pn with a tolerance constraint on the maximum allowed angle-
deviation, see Figure 4.3. For each point the solutions are filtered for those where
the joint values are all within their limits. Depending on the application the solu-
tions can then be filtered a second time for problem specific constraints, e.g., only
robot configurations of "backward-facing elbow-down" could be allowed or certain

19

Chapter 4. Method

joints are only allowed to move within small angle ranges. Unreachable points will
in Python result in invalid solutions as vectors of NaN4 values and are automatically
discarded during the filtering process.

Qi

Qi+1

Figure 4.3 A path of least angle-deviation (blue) is found between each pose on
the curve.

We should now have a collection of inverse kinematics solution paths that form
one or more continuous paths in joint space. Each solution path is traversed and
the corresponding Jacobians and joint velocities are calculated. If any of the joint
velocities are outside their limits or any of the determinants of the Jacobians are
close to zero then the whole solution path is discarded. The solution paths that are
left will form continuous paths in joint space, see Figure 4.4. The trajectory and the
resulting paths in joint space as well as the joint velocities can be further improved
with spline interpolation.

4.2 Python/RAPID Framework

The robot is connected to a high-level controller, which interprets and executes
instructions in the RAPID programming language and does not natively support
real-time control nor does it support out-of-the box external control by Python
scripts. It does, however, have good support for string-operations reminiscent of
C# and Java and also supports late binding5. From here it is possible to construct a
RAPID-Python interface using string communication through a serial port connec-

4 Not a number—introduced in the IEEE 754 floating-point standard from 1985.
5 Dynamic code execution from strings.

20

4.2 Python/RAPID Framework

Figure 4.4 A trajectory in Cartesian space and its corresponding continuous path
in joint space [Luca, 2015].

Source: A. De Luca, Sapienta University of Rome.

tion between an external computer6 and the robot.

Such an interface would consist of a RAPID-program on the robot that listens
to commands from the computer via the serial port, a RAPID module with pro-
cedures7 that implement custom commands for the robot and updates the internal
state of the robot, a Python class proxy implementation of the robot that keeps itself
updated to the current state of the robot, and a Python serial interface implementa-
tion that is used behind the scenes of this virtual robot that glues the communication
together between Python and RAPID, see Appendix A.7.

Similar to the robot-interface we need to implement a proxy pen-interface that
connects to the pen via Bluetooth and keeps itself updated to the state-fields of
the Anoto pen. The pen interface will differ from the robot interface in that it will
implement a thread that keeps the state variables updated which is then fed to the
robot interface in the main thread, which in turn will feed RAPID move commands
to the robot depending on what the pen-interface is reporting, see Figure 4.5.

During this master thesis the pen interface (without a thread), robot serial inter-
face and RAPID scripts were already implemented by Anoto. The RAPID scripts
were improved on and extended in functionality and the robot proxy interface was
added as an extension to this framework, the pen interface was extended by keeping
track of the expected state of the pen and a thread was added to improve respon-

6 This can be replaced by any device that can execute Python code and supports serial communication.
7 Functions that have no return value.

21

Chapter 4. Method

Figure 4.5 Overview of the components that make up the RAPID/Python binding
which allows for communication between a robot and a digital pen.

siveness of the pen/robot communication by the author.

The serial port listener code pattern is located in arap.prg on the robot-controller
and handles incoming data from the connected computer in the form of binary
strings, see Listing 4.1.

59 WHILE continue DO

60 cmd_string := ReadStrBin2(comport \Time :=300000);

61 TPWrite "Recv = " + cmd_string;

62 ArapDoCommand(cmd_string);

63 ! TODO: ArapHandler calls report func

64 ! OR return string?

65 WriteStrBin comport ,"OK 200"+"\0a";

66 ENDWHILE

Listing 4.1 RAPID (arap.prg): serial port listening.

The binary strings are parsed and converted to RAPID strings and sent to be exe-
cuted as source code via late-binding in ArapExecStr, see Listing 4.2.

26 WHILE readmore DO

27 IF Present(Time) THEN

28 character := ReadBin(dev \Time:=Time);

29 ELSE

30 character := ReadBin(dev);

31 ENDIF

32

33 TEST character

34 CASE 10:

35 readmore := FALSE;

36 CASE 13:

37 readmore := FALSE;

38 DEFAULT:

39 result := result + ByteToStr(character\Char);

Listing 4.2 RAPID (arap.prg): implementation of a string-builder from binary
serial data.

22

4.2 Python/RAPID Framework

In ArapDoCommand the RAPID strings are parsed for what RAPID procedures to
call and what parameters to pass to them through the late-binding syntax, see Listing
4.3.

159 CASE "ExecStr ":

160 get_next_arg callname , cmd;

161 get_next_arg arg , cmd;

162 ArapExecStr callname , arg;

Listing 4.3 RAPID (arap.prg): ArapDoCommand extracts function name and call
parameters from input and passes them to ArapExecStr.

The late-binding procedures must have been loaded into memory when the strings
are executed as code with the expression: % call % arg, see Listing 4.4.

246 ! Executes the given procedure with string as parameter

247 LOCAL PROC ArapExecStr(string call , string arg)

248 % call % arg;

249 ERROR

250 % a_rep_func % ERRNO , "ExecStr Failed ";

251 ENDPROC

Listing 4.4 RAPID (arap.prg): input string is executed dynamically via late
binding.

From here we implement the late-binding procedures, one such is initHAPTOR that
initializes the the internal state variables, and is the first command sent from the
Python robot interface during initializaton of the Python robot object, see Listing
4.5.

40 PROC initHAPTOR ()

41 currSpeed := c_speed_parrot;

42 setConfig(c_confdata);

43 currConf := c_confdata;

44

45 selToolAndWObj;

46 currTool := sel_tool;

47 currWobj := sel_wobj;

48 c_oldPos := CRobT(\Tool:= currTool \Wobj:=wobj0);

49 ConfL \Off;

50 Open "HOME:" \File :=" HAPTOR.LOG", logfile \Write;

51 Close logfile;

52 ENDPROC

Listing 4.5 RAPID (hptr_control.mod): binding procedure that initializes the state
variables for the robot.

With the following binding-procedure it is possible to request for the current joint-
values of the robot from the Python computer. The result is sent back as binary
string data to the robot computer for processing, see Listing 4.6.

140 PROC getJ()

141 VAR jointtarget jtarget;

142 VAR robjoint jvals;

143 VAR iodev comport;

23

Chapter 4. Method

144

145 jtarget := CJointT ();

146 jvals := jtarget.robax;

147

148 Open "com2:", comport \Bin;

149 WriteStrBin comport , ValToStr(jvals) + "\0a";

150 Close comport;

151 ENDPROC

Listing 4.6 RAPID (hptr_control.mod): binding procedure that send RAPID
strings over serial port. Used to obtain current joint values.

Finally another procedure for controlling the robot with relative movement of the
tool-center point in the global coordinate system, which allows for real-time control
of the robot from Python, see Listing 4.7.

474 PROC RelBasePos(string xyz)

475 VAR pos rel_pos;

476 VAR robtarget c_target;

477 VAR bool ok;

478

479 ok := StrToVal(xyz , rel_pos);

480 TPWrite ("OK: "+ ValToStr(ok));

481 TPWrite (" new_pos: "+ ValToStr(rel_pos));

482

483 c_target := CRobT(\Tool:= currTool \Wobj:=wobj0);

484 c_target := Offs(c_target , rel_pos.x, rel_pos.y, rel_pos.

z);

485 MoveL c_target , currSpeed , fine , currTool \WObj:=wobj0;

486 ENDPROC

Listing 4.7 RAPID (hptr_control.mod): binding procedure that controls the robot.
Used to move TCP in base-frame (global) coordinate system.

The information returned from the robot-controller to Python is converted from
string to a Python expression with ast.literal_eval, in the case of retrieving
the joint values from the robot the result is a Python list with six floating-point
values, see Listing 4.8.

253 def get_joints(self):

254 while True:

255 try:

256 res = self.arap.command('getJ')

257 i0 = res.find('[')

258 i1 = res.find(']')+1

259 res = res[i0 : i1]

260 res = ast.literal_eval(res)

261 if not(len(res) == 6):

262 raise Exception('Not valid joints format (

length: {}'.format(len(res)))

263 return mat(res)

264 except Exception as e:

265 print 'Failed to obtain joint -values!'

24

4.2 Python/RAPID Framework

266 print str(e)

Listing 4.8 String is converted to Python list type expression.

The computer connected to the robot controller via the first serial port uses a
RobotSerial Python interface that implements send and receive methods for
converting binary strings from the controller to Python strings and vice-versa, see
Listing 4.9.

55 def command(self , arapCommand='', argument=None , sync=True):

56 """ Send command to Arap running on robot controller.

57 if sync is True , call receive , otherwise continue (

asynchronous call)

58 TODO exception handling

59 """

60 if type(argument) in [tuple , numpy.ndarray]:

61 argument = list(argument)

62 _str = str(argument).replace(' ','');

63

64 string_value = arapCommand + ' ' + _str

65

66 if type(argument) == type(None):

67 arapString = 'Exec ' + arapCommand

68 elif type(argument)==int or type(argument)==float:

69 arapString = 'ExecNum ' + string_value

70 else:

71 arapString = 'ExecStr ' + string_value

72

73 log.info('arapString: {0}'.format(arapString))

74 result = self.send(arapString)

75

76 if (result == 0) & sync:

77 result = self.receive ()

78 log.info('arapResult(sync): {0}'.format(result))

79 else:

80 result = 'SYNC OFF'

81 log.info('arapResult: {0}'.format(result))

82

83 if not result:

84 if not self._debug:

85 raise ArapException('can not execute command: %s'

% str(arapCommand))

86 return result

Listing 4.9 The command method makes use of send and receive to give formatted
commands to the robot, and waits for a response to return until issuing the next
command if sync is True, otherwise it will send and receive asynchronously. An
exception is raised if the robot could not execute the command.

Robot is a wrapper class in Python that implements methods that the user will
be using to send commands to the robot via RobotSerial. This makes it easier
for the user to control the robot by encapsulating multiple corresponding RAPID
commands into single Python methods like move_to_door, move_to_ready,

25

Chapter 4. Method

get_flange and get_joints.

It also makes use of ast.literal.eval mentioned earlier to convert the Python
strings from RobotSerial to Python expressions so that the user can receive a
list of floats instead of a string representation of the result that the user will have
to parse. This class also maintains an internal thread connection to a Python pen
interface of an Anoto pen and keeps a copy of the alive state of the pen and will
cease the control of the robot if this state should become false, e.g., the pen looses
connection with the computer or stops responding, see Listing 4.10.

1 class Robot

2

3 def __init__(self ,lock = None , angle=45, pen_interface=None ,

num_data =16):

4 self._upload_files ()

5 self._init_serial ()

6

7 self.lock = lock

8 self.all_data = []

9

10 self.start_time = time.strftime('%H%M')

11

12 self.alive = False

13 self._finished = False

14 self.num_data_points = num_data

15 if pen_interface:

16 self.pen = pen_interface

17 self.pen_hit_thread = Thread(target=pen.check_hit)

18 self.pen_hit_thread.start()

19 time.sleep (1)

20 with self.lock:

21 self.alive = self.pen.alive

22 if pen.alive:

23 self.move_to_ready(angle)

24 self.save_tool_pos ()

Listing 4.10 A pen object is passed to the constructor of Robot where a thread runs
its check_hit method.

4.3 Flexpendant Control Board Design

A simple design of a control board can be seen in Figure A.6 in Appendix A.8,
where the Anoto dot-pattern has been omitted. The purpose of the design was to
give an intuitive feeling while using it together with a digital pen. A dead-zone was
chosen to allow the user to rest their hand on the board while holding the pen. This
can be changed to become a re-orientation zone if the user wished. The arrows in
the dead-zone indicate the positive x- and y-direction of the robot. A scrollbar type
control was added on the side to allow the user to change to vertical movement by

26

4.4 Measurements

placing the pen in the red zone. The distance to the center of the scrollbar dictates the
vertical speed and the distance to the resting-zone center depicts the speed parallel
to the ground. This set-up does not allow for both vertical and planar movement at
the same time and was chosen by design due to safety concerns from the author.

4.4 Measurements

All figures in this section can be found in Appendix A.9 and A.8.

Two pens were used for collecting data for the results in this master thesis: the
Anoto Live pen and a prototype pen. The Anoto Live pen is an official product
that has quality assurance associated with its design making it a sturdy and reliable
digital pen, it also has a magnetic cradle used for charging the pen, see Figure A.8.
The prototype pen is not as sturdy and will bend depending on how force is applied
during use, see Figure A.9.

As reference a calibration tip was created with machine workshop tools by manual
labour from a threaded steel rod and is firmly mounted on the robot using a wingnut,
see Figures A.11 and A.12. It is much easier to get a precise tool calibration with a
rigid steel tip and allows for a good calibration of the work object surface.

The work object surface is a piece of sturdy cardboard cut from a moving box
approximately 841×594mm2 in size with thirteen adhesive tape pieces 20×20mm2

in size placed homogeneously over the underside of the surface of the card board,
see Figure A.13. These are needed to keep the cardboard flat to the measuring
surface, taping the sides and keeping it stretched will not be enough to prevent
it from bending from the surface it is placed on. Anoto paper with dimensions
594×210mm2 in size is stretched and taped onto the work object and is called the
"target" which we will be measuring, see Figure A.14.

There are 5 very thin cross markers on the target placed at known Anoto coor-
dinates with a precision of approximately 0.1mm, where the precision is limited by
the printer quality. The relative distances of the markers to each other in millimetres
are well known. By calibrating the work object with the calibration tip using these
markers we get a good estimate on where the target, and the work object, are located
relative the robot base coordinate system, see Figure A.7.

The robot has a metal plate and cover with screws attached to its flange where
the pens are mounted by fastening them under the cover called a "pen holder",
see Figure A.10. Because the pens did not fit, the device had to be modified by
removing the cover and adding adhesive tape that the pens could be attached to, see
Figures A.15 and A.16. Duct tape was stretched and used to fasten the pens very

27

Chapter 4. Method

firmly to the pen holder for extra stability, see Figures A.17, A.18, A.19 and A.20.

Using the RAPID/Python framework and bindings a grid pattern of coordinates
was generated by interpolation between the cross markers in millimetres and in
Anoto distance8 which could then be transformed to the robot base coordinate sys-
tem from the work object calibration. The starting position for each measurement
was calculated by translating from corresponding grid point using the work object
normal and a starting distance of 3mm.

The pen tip tool-center point is roughly estimated relative the robot flange and
is used to move the pen and pen holder to the starting positions and re-orient them
relative this point. The relative estimated pen-tip direction is used as translation
direction. When the pen registered that its tip was pressed down all information
that was streamed from the pen was saved, as well as joint information and flange
information from the robot, and returned the pen and holder to the starting position
and orientation before continuing with the next measurement.

The robot was made to move 0.02mm/s which means that one measurement would
take around 2.5 minutes to complete and measuring 240 points would take 10 hours,
see Figures A.21 and A.22. As reference a manual calibration was performed for
each pen and was compared against a marker location, see Figures A.23 and A.24.
The measurements were then used with the tool tip calibration algorithm to generate
the results in this master thesis.

8 1ad ≈ 0.3mm.

28

5
Theory

5.1 Forward Kinematics

Since the aim of this report is to solve a problem with a given design, without the
option to alter it in any way—including control parameters, we will focus primarily
on the kinematics of the robot geometry and how this relates to the kinematics of a
particle following a curve, i.e., the tip of the pen.

No consideration is taken to the dynamics of the robot other than we trust the
robot manipulator to do the best it can to conform to our wishes, i.e., following a
trajectory with a pen tip. We also trust the robot to not perform over its abilities like
over-heating the motors.

In general the forward kinematics problem is defined as, given a robot joint ge-
ometry configuration, find the mapping F : qi→ pi, where a subset of known joints
qi∈N = {q1,i, q2,i, . . . , qn,i} returns the corresponding pose of the end-effector
pi = {Rp, tp}i∈N. The reason we say subset here is because multiple joint configu-
rations will result in the same pose of the end-effector which in turn will yield the
same corresponding pose for the tool.

By attaching frames to the joints of the robot that make up the orientation and
position of each individual joint it is possible to define such a mapping with one (or
more) so-called "kinematic chains" [Craig, 1986], see Appendix A.2. A kinematic
chain is a series of relative homogenous transformations of translations and rota-
tions, starting from a base-frame1 to a desired destination frame (in robotics this is
typically the end-effector), i.e.,

Tn
0 = T1

0 T2
1 . . . Tn

n−1 = A1 A2 . . . An (5.1)

where each relative-transformation Ti
i−1 can, in theory, be defined by any conven-

tion the reader sees fit, but is ill-advised since arbitrary definitions spawned from
1 The base frame does not have to be an inertial frame, but this report only deals with a robot that is

firmly mounted.

29

Chapter 5. Theory

personal preference has a tendency to quickly confuse fellow colleagues and it helps
to have an agreed upon language that robotics researchers can use to quickly un-
derstand each other or papers in the same field—from here we use the Denavit-
Hartenberg Convention2 [Spong and Vidyasagar, 1989], [Hartenberg and Scheune-
mann, 1955] introduced in 1955.

Denavit-Hartenberg (DH) Convention
Apart from allowing researchers and engineers to communicate more easily, this
conventions allows for one more benefit that must not be overlooked: by assigning
frames and transforming between them in a clever way it is possible to describe
a relative joint-transformation with only 4 degrees of freedom (two rotations, two
translations) instead of the typical 6 degrees of freedom (three rotations, three trans-
lations) when dealing with rigid motion in Euclidean space in three dimensions.
This is due to the frame-origins are allowed to be placed outside the physical joints
and can exist in empty space, the proof of this is outside the scope of this report,
but the interested reader is recommended to read pages 65 - 72 in [Spong and
Vidyasagar, 1989].

The relative joint-transformation is defined as seen in Eq. (5.2) as a homoge-
neous matrix mapping from frame {i−1} to frame {i} where the end-result will be
in frame {i−1}3,

Ai =

(cθi −sθi 0 0
sθi cθi 0 0
0 0 1 0
0 0 0 1

)
︸ ︷︷ ︸

rotzi−1 (θi)

(1 0 0 0
0 1 0 0
0 0 1 di
0 0 0 1

)
︸ ︷︷ ︸
transzi−1 (di)

(1 0 0 ai
0 1 0 0
0 0 1 0
0 0 0 1

)
︸ ︷︷ ︸

transxi (ai)

(1 0 0 0
0 cαi −sαi 0
0 sαi cαi 0
0 0 0 1

)
︸ ︷︷ ︸

rotxi (αi)

= . . .

. . . =

(cθi −sθi cαi sθi sαi aicθi
sθi cθi cαi −cθi sαi aisθi
0 sαi cαi di
0 0 0 1

)
(5.2)

this mapping relation between joint-frames by homogeneous matrices is valid iff
the following two conditions are upheld:

The axis xi is perpendicular to axis zi−1, i.e., xi ⊥ zi−1 (DH1)
The axis xi intersects axis zi−1, i.e., xi ∩ zi−1 (DH2)

both conditions are met by applying the DH-convention, see Appendix A.6, thereby
correctly defining the forward kinematics mapping as Eq. (5.1).

2 This convention, alhough principally the same, varies between literatures—we are using the conven-
tion listed by the references.

3 This means that if the we start from a frame in the base-coordinate system of the robot, then the
result will be in the robot-base coordinates. If we start from joint 3, then the result will be in the
frame of joint 3, and if that frame happens to be a pose in the base-frame—then the result will also
be in the base frame. This is a very important detail that must be understood when reading the inverse
kinematics section.

30

5.1 Forward Kinematics

Table of DH Parameters
Using the DH-convention we end up with the following summarized table of the
DH parameters for the IRB140, see Appendix A.5:

Link ai [mm] αi [rad] di [mm] θi [rad]

1 −70
π

2
352 q1 +π

2 360 0 0 q2 +
π

2

3 0
π

2
0 q3 +π

4 0
π

2
380 q4 +π

5 0
π

2
0 q5 +π

6 0 0 65 q6

Jacobian
As we have seen it is possible to find the position and orientation of an attached tool
via forward kinematics by supplying a set of joint-angles to the Denavit-Hartenberg
algorithm. it is also possible to find both the positional- and angular-velocity vec-
tors for the tool end-effector in the robot base frame by derivation of the kinematic
chain [Bruyninckx, 2010], [Freidovich, 2013], [Spong and Vidyasagar, 1989] which
rigidly connects a point in the base frame p0 and a point in the last frame in the
chain pn with respect to time:

p0 =
(Rn

0 tn
0

01×3 1

)
︸ ︷︷ ︸

T

pn (5.3)
d
dt

(
p0
)
=

([
ω

]
v

01×3 0

)
︸ ︷︷ ︸
d
dt

(
T
)

T−1

p0 (5.4)

[
ω
]
= ω× I, where I is the identity matrix, is a skew-symmetric matrix representa-

tion of the vector cross-product operation with the angular velocity vector ω4. From
the derivation we obtain the following non-linear kinematic-relations between the

4 ω× I =
(0 −ωz ωy

ωz 0 −ωx
−ωy ωx 0

)
.

31

Chapter 5. Theory

end-effector velocities and the robot-joints:
ω =J

ω

(
q(t)
) d

dt

(
q(t)
)

v =Jv(q(t))
d

dt

(
q(t)
) ⇔

(
ω

v
)
=
(J

ω

Jv

)
︸ ︷︷ ︸

J6×n

q̇ (5.5)

these non-linear relations are represented by linear mappings J
ω

and Jv that make
up the manipulator Jacobian [Spong and Vidyasagar, 1989], [Craig, 1986], which
after simplification [Freidovich, 2013] takes on the following form:

J =
(Jv

J
ω

)
=

(
z0

0×(o
n
0−o0

0) z1
0×(o

n
0−o1

0) ... zn−1
0 ×(on

0−on−1
0)

z0
0 z1

0 ... zn−1
0

)
(5.6)

this is a general manipulator Jacobian for a robot consisting of n revolute joints,
where zi

0 and oi
0 are the rotational axis and corresponding origin obtained from the

forward kinematic chain Ti
0 of the i : th frame represented in the base-frame of the

robot5.

5.2 Inverse Kinematics

For a robot-configuration with joint-dimension n ∈ N the inverse kinematics prob-
lem is defined as finding the mapping M : pi→Qi between a pose with position and
orientation pi = {Rp, tp}i∈N, and the set Qi = {qik}k={1, 2, ..., mi} of corresponding
joint-values of size mi ∈ N needed for the end-effector to attain this position and
orientation, where qik = {q1,i,k, q2,i,k, . . . , qn,i,k}.

The number of solutions and the nature of the solutions of this type of prob-
lem vary depending on the geometry of the manipulator as well as the num-
ber of joints and type of joints the robot consists of. In the case with the
six-jointed IRB140 of pure revolution-joints from ABB, the robot has two
parallel joints that makes up an elbow, because of this the set of solutions
can be separated into elbow-up and elbow-down, see Figure 5.1. The robot
also has the ability to obtain a position and orientation by first turning itself
around and then flipping over, i.e., rotating the first joint q1 ±180° and then
rotating second or third (q2 or q3) joints until its wrist has passed the base-
normal, separating the solutions into a second sub-set of combinations called
backward-facing and forward-facing resulting in the set of four analytical so-
lutions consisting of forward-facing elbow-up, forward-facing elbow-down,
backward-facing elbow-up and backward-facing elbow-down. By its design

5 This means, for instance, that z0
0 =

(0
0
1

)
and z1

0 is defined by the first iteration in the kinematic-chain,
see Section 5.1.

32

5.2 Inverse Kinematics

Figure 5.1 The IRB140 (links only) positioning itself so that the tool (green) tip
is located at (0.6,0,0.3). Shown here are the forward-facing (solid) and backward-
facing (dashed) elbow-up (blue) and elbow-down (red) solutions.

the first three joint-angles q1,q2,q3 describe the position of the so-called wrist
center point Xwcp of the robot, while the last three joint-angles q4,q5,q6 make up
the spherical wrist, a design which will rotate the tool-center point Xtcp around the
wrist center without displacement of the wrist—accurately describing the relative
orientation and position of the tool-frame to the wrist-frame with the following
relations:

Xwcp = Xtcp−d6R6
0

(
0
0
1

)
(5.7)

Rwrist = R6
4, Rtcp = R6

0 (5.8)

in other words—the problem is divided by design into first solving for position (the
first three joint-angles) of Xwcp and then orientation (last three joint-angles) for
Xtcp respectively. Most of the difficulties arise when solving the first sub-problem
of position, this is largely due to a large freedom in design decisions and angle defi-
nitions, while the second sub-problem of orientation becomes trivial in comparison
when the first sub-problem is solved.

Because of the reasons stated the results for the forward-facing elbow-up solution
configuration of IRB140 will be presented in full, with figures and code imple-

33

Chapter 5. Theory

mentation and explanation of special cases. The other cases will have their results
presented for q2,q3 together with the differing code from the elbow-up case only.
The orientation sub-problem is presented last.

Wrist Center Position
For this type of problem we are given the pose of the end-effector from which we
can calculate Xwcp with the known DH parameters by slightly modifying Eq. (5.7),

Xwcp = tp−d6Rp

(
0
0
1

)
(5.9)

from here the rest follows for all four cases of analytical solutions where the first
joint-value is found from projecting Xwcp down to the XY-plane and calculating the
angle to the global x-axis,

q1 = arctan2(Xwcpx ,Xwcpy)︸ ︷︷ ︸
θ1

, forward-facing (5.10)

q1 =
{ 180 + θ1, θ1 <0

− 180 + θ1, θ1 ≥0
, backward-facing (5.11)

the solutions for q2 and q3 are connected where the solutions for q3 determines the
solutions for q2 since these two angles make up the elbow-configuration for the
robot. For all analytical cases the following relations are derived,

θ3 = arccos
(

d2
3 − x2

1 − d2
2

2 · x1 · d2

)
(5.12)

qup
3 =

{ −90 + θ3, forward-facing
−90− θ3, backward-facing

(5.13)

qdown
3 =

{ −90− θ3, forward-facing
−90 + θ3, backward-facing

(5.14)

q3 = q?3, where ? = {up, down} (5.15)

θ
′
1 = arctan2(s, x0) (5.16)

θ
′
2 = arctan2

(
d3 sin(θ3), d2 + d3 cos(θ3)

)
(5.17)

qup
2 = 90−

(
θ
′
1 +θ

′
2

)
(5.18)

qdown
2 = 90−

(
θ
′
1−θ

′
2

)
(5.19)

34

5.2 Inverse Kinematics

q2 =

{
q?2, f orward− f acing

− q?2, backward− f acing
, where ? = {up, down} (5.20)

with these expressions we have to add exceptions to the forward-facing cases of Eq.
(5.20) as follows,

qup
2 =−90 +

(
θ ′1−θ ′2

)
qdown

2 =−90 +

(
θ ′1+θ ′2

)
 ||Xwcpx,y ||− ||p0x,y ||< 0 (5.21)

compare these with Eq. (5.18) and (5.19). The new parameter, p0, is the position of
the axis that the second link in the kinematic chain rotates around, and is defined as

p0 = rotz0(θ1) ·
(

70
0

352

)
[mm]. (5.22)

The geometrical definitions can be seen in Figure 5.2 for a forward-facing elbow-up
configuration.

d1

d2

d3

NB

N2

N2⊥

q1

q2

q3

θ
′
1

θ
′
2

θ3

h1

h1

s

x0

x0

x1

d 3
co

sθ
3

d
3 sin

θ
3

Xwcp

�
�	p0

B
B
B
BN

Figure 5.2 Forward-facing elbow-up configuration for IRB140, where only the
first three links can be seen marked d1, d2 and d3.

35

Chapter 5. Theory

Wrist Center Orientation
Since we have defined a Denavit-Hartenberg representation for the IRB140, and we
have solved the first part-problem of finding the joint-angles q1, q2, q3 for the wrist
center position, we can find the tool-flange Xtcp position and orientation in the local
tool-center coordinate frame with the help of forward kinematics

T = T1
0(q1) T2

1(q2) . . . T6
5(q6) (5.23)

T3
0 = T1

0(q1) T2
1(q2) T3

2(q3) (5.24)

T f lange? = (T3
0)
−1T = T4

3(q4) T5
4(q5) T6

5(q6), (5.25)

where T f lange? =
(

R6
3 t6

3
0 1

)
(5.26)

and from the DH parameters we can see that the orientation information, defined by
each frames’ rotation about the joint rotation-axis Zi, from joint-frame 3 to frame 6
is by Euler-angle definitions a R3 = R6

3 = ZYZ orientation, defined in base-frame
for joint 3:

R6
3(q4, q5, q6) =



c4c5c6− s4s6

c5c6s4 + c4s6

−c6s5︸ ︷︷ ︸
X

−c6s4− c4c5s6

c4c6− c5s4s6

s5s6︸ ︷︷ ︸
Y

c4s5

s4s5

c5︸︷︷︸
Z


(5.27)

where ci = cos(qi) and si = sin(qi) (5.28)

for which the solutions for the angle-values that make up this type of matrix are
well known and can be derived from Eq. (5.27) to be:

q′4 = arctan2(Z2, Z1) (5.29)

q′5 = arctan2(
√

Z2
1 +Z2

2 , Z3) (5.30)

q′6 = arctan2(Y3, −X3) (5.31)

q′′4 = q′4±180° (5.32)

q′′5 =−q′5 (5.33)

q′′6 = q′6±180° (5.34)

where all of the analytical solutions for the last three joint-values of the inverse
kinematics problem span the range [−180, 180], but we need to add solutions with
multiples of ± 360 ° for two or more joint-values for two reasons:

The first is that for a general 6 DOF robot it is still possible we will miss solutions if

36

5.3 Calibration with Anoto Pen

we skip this step, but that depends also on the joint-restrictions. For instance, when
solving for q2 and q3 for IRB140 we will not need to add any multiplicity due to
the joint-restrictions of the joint-configurations for that manipulator design. If we
on the other hand modify this manipulator-design so that the base is removed and
joint 2 is wall-mounted and we loosen the restriction on joint 2 from [−90, 110]
to [−180, 180] then we will not be able to find the equivalent valid solutions of
q?2− 360° for different q3 with the current mapping. This will hold true for other
designs that for a given mapping of the inverse kinematics we need to add solutions
of multiplicity ±360° for some, if not all joints, to be sure to find all solutions.

The second reason is that q4 ∈ [−200, 200] and q6 ∈ [−400, 400] have values
that are larger than ± 180 ° and since the analytical solutions have a span of 360°
and these joint-values have spans of 400° and 800° we need to add solutions with
multiplicity n = 1 for q4 and n = {1, 2} for q6.

The 5 solutions for the last three joint-values are as follows:

q4 =


q′4 ± 360n °

q′′4 ± 360n °

, n = {0, 1} (5.35)

q5 =


q′5

q′′5

(5.36)

q6 =


q′6 ± 360n °

q′′6 ± 360n °

, n = {0, 1, 2} (5.37)

giving us a total number of solution configurations to: 5 wrist-configurations × 4
elbow-configurations = 20 total configurations + 2 × 3 solution multiplicities × 4
elbow-configurations yielding a total of 44 valid solutions for the IRB140 for one
single pose.

5.3 Calibration with Anoto Pen

When working with an automated tool manipulator such as a robotic arm assembly
it is important to make the calibration process as user-friendly as possible. Currently
the IRB140 arm has a built-in calibration mode which involves manually operating
the arm holding a pen and moving it so that the pen tip touches the Anoto SurfaceTM

37

Chapter 5. Theory

at a predefined point from different orientations of the pen relative this calibration
point. By then doing a least-square solution the tool-center point, Xtcp is obtained.

Besides the fact that this can be a time consuming task it is also a very sensi-
tive method of calibration since the user performing the calibration will induce
errors and each calibration operation can yield very different results which, in turn,
might force the user to perform the calibration task multiple times until a consistent
calibration is obtained. If also multiple pens are to be grip-calibrated before tests
can be performed it becomes obvious that this part is crucial to automate.

First off it is important that the user is removed from the grip-calibration pro-
cedure as much as possible and allow the robot to do most of the work: from
figuring out the location and orientation of the surface it is going to operate on with
the pen to also figuring out how the robot is gripping the pen.

Due to the theory behind the Anoto Surface and the Anoto Pen it is possible to
minimize the error of the surface-placement to sub-millimetre precision by remov-
ing the constraint of calibrating against a single well-defined point. The user is
asked to move the arm so that the end-effector holding the pen is placed close to the
Anoto Surface. The user then initiates a script which will continue to operate the
arm and start moving it in the tool-frame Z-direction until we get a force-response
from the pen. The arm will then raise the pen, move in an arbitrary tool-frame basis
direction first in X-direction then in Y-direction and again move the pen closer to
the Anoto Surface until we get a force response. Once three points are obtained it
is possible to solve for the orientation and the placement of the Anoto Surface.

First a robot-coordinate system is defined with the origin Oω located in the sym-
metric center of the base-piece of the robot and three orthonormal Euclidean-space
basis vectors x̂ω , ŷω , ẑω are introduced with arbitrary orientation thus spanning an
ordinary Euclidean space in R3, see Figure 5.3.

The pen coordinate system is the typical Euclidean-space in R2 where a coordinate
is denoted as:

x = x̂ x+ ŷ y =

x̂x ŷx

x̂y ŷy


︸ ︷︷ ︸

e

x

y

 (5.38)

and is related to the pen tip x′ in the local Anoto Surface coordinate system by
a submatrix transformation [R1 R2]: R2→ R3 rotation from the rotation tensor R6

0

38

5.3 Calibration with Anoto Pen

ẑωẑωẑωẑωẑωẑωẑωẑωẑωẑωẑωẑωẑωẑωẑωẑωẑω

ŷωŷωŷωŷωŷωŷωŷωŷωŷωŷωŷωŷωŷωŷωŷωŷωŷω

x̂ωx̂ωx̂ωx̂ωx̂ωx̂ωx̂ωx̂ωx̂ωx̂ωx̂ωx̂ωx̂ωx̂ωx̂ωx̂ωx̂ωOωOωOωOωOωOωOωOωOωOωOωOωOωOωOωOωOω

Figure 5.3 The robot-coordinate system.

Source: ABB.

and a translation rOω Oan in the global robot coordinate system in R3:

x′ = Oan−Oω︸ ︷︷ ︸
rOω Oan

+[R1 R2]e︸ ︷︷ ︸
e an

x

y

 = rOω Oan + x x̂an + y ŷan (5.39)

where {e an , Oan} together defines the transformed local coordinate system of a
plane in the global robot coordinate system, see Figure 5.4, with the transformed
local orthnormal basis defined as:

e an =


x̂anx ŷanx

x̂any ŷany

x̂anz ŷanz

= [x̂an ŷan] (5.40)

it is possible to relate the pen tip x′ to the robot tool-center point Xtcp in the global
coordinate system by introducing a rotated deviation vector from local to global
space δ

′ from the tool-center point to the pen tip:

x′ = Xo
tcp +R6

0δ
o, T =

R6
0 Xo

tcp

0 1

⇔ x′ = Tδ
′ (5.41)

39

Chapter 5. Theory

OωOωOωOωOωOωOωOωOωOωOωOωOωOωOωOωOω

ẑωẑωẑωẑωẑωẑωẑωẑωẑωẑωẑωẑωẑωẑωẑωẑωẑω

ŷωŷωŷωŷωŷωŷωŷωŷωŷωŷωŷωŷωŷωŷωŷωŷωŷω

x̂ωx̂ωx̂ωx̂ωx̂ωx̂ωx̂ωx̂ωx̂ωx̂ωx̂ωx̂ωx̂ωx̂ωx̂ωx̂ωx̂ω

OanOanOanOanOanOanOanOanOanOanOanOanOanOanOanOanOan

ŷanŷanŷanŷanŷanŷanŷanŷanŷanŷanŷanŷanŷanŷanŷanŷanŷan

x̂anx̂anx̂anx̂anx̂anx̂anx̂anx̂anx̂anx̂anx̂anx̂anx̂anx̂anx̂anx̂anx̂an
x′

Figure 5.4 Global robot coordinate system and local rotated Anoto Surface plane
coordinate system. The robot is seen here holding a black pen.

Source: ABB.

since we control the orientation of the robot then Xtcp is known, but both the pen
tip x′ and the deviation vector δ

′ are not since we do not yet know the orientation
of the Anoto Surface plane-coordinate system, but we do know where on the Anoto
surface the pen tip is intersecting in local plane coordinates.

By substituting in (5.41) with the definition for the pen tip in the global coor-
dinate system from (5.39) we obtain the final relation for the tool-center point
position in the global space and the pen tip:

Xo
tcp +R6

0δ
o = rOω Oan + x x̂an + y ŷan (5.42)

this system of equations consists of 3 equations and 12 unknowns, the unknowns
being x̂, ŷ, rOω Oan and δ

o - 4 variables of 3 dimension.

This relation holds for one configuration of the flange end-effector manipulat-
ing a pen on the Anoto Surface. By lifting the pen, reorienting the end-effector and
moving it to another location above the Anoto paper and again lowering the pen to
contact with the surface we will by taking the difference on all changing vectors
find an equivalent relation for moving from one configuration to another resulting
in another system of equations with 9 unknowns:

∆Xo
tcp +∆Rδ

o = ∆x x̂an +∆y ŷan (5.43)

in order to solve either under-determined systems we will need at minimum 4 points,
but generally more points are needed to obtain a good tool calibration result—

40

5.3 Calibration with Anoto Pen

resulting in the following overdetermined system of equations, which are solved
in the least-square sense, on the form:

A x = b , (5.44)

where the system of equations is:

A = [A1 A2 A3] (5.45)

A1 =



∆x01 ∆y01 −∆r1101
0 0 −∆r2101
0 0 −∆r3101
...

...
...

∆xN(N−1) ∆yN(N−1) −∆r11N(N−1)
0 0 −∆r21N(N−1)
0 0 −∆r31N(N−1)


(5.46)

A2 =



0 0 −∆r1201
∆x01 ∆y01 −∆r2201

0 0 −∆r3201
...

...
...

0 0 −∆r12N(N−1)
∆xN(N−1) ∆yN(N−1) −∆r22N(N−1)

0 0 −∆r32N(N−1)


(5.47)

A3 =



0 0 −∆r1301
0 0 −∆r2301

∆x01 ∆y01 −∆r3301
...

...
...

0 0 −∆r13N(N−1)
0 0 −∆r23N(N−1)

∆xN(N−1) ∆yN(N−1) −∆r33N(N−1)


(5.48)

and the unknowns we’re solving for are:

x =



x̂anx
ŷanx
δ o

x
x̂any
ŷany
δ o

y
x̂anz
ŷanz
δ o

z


(5.49)

41

Chapter 5. Theory

while the right-hand side consists of:

b =



∆Xtcpx01
∆Xtcpy01
∆Xtcpz01

...
∆XtcpxN(N−1)
∆XtcpyN(N−1)
∆XtcpzN(N−1)


. (5.50)

5.4 Calibration of Pen Orientation

From rigid body kinematics we know that since the tool is attached rigidly to the
flange of the robot arm there exists a constant relative rotation transformation from
the flange orientation to the orientation of the tool. From the calibration algorithm
we obtain the relative translation from the flange to the tool tip, and the global orien-
tation and position of the Anoto Surface work object, in the robot base frame—but
we do not obtain the tool-orientation.

The Anoto Pen is capable of calculating the relative ZXZ-Euler angles to the
Anoto Surface in the Anoto Surface frame, and the flange orientation is obtained
by forward kinematics and is described in the robot base frame. By using the in-
formation of the orientation of the work object from the previous calibration we
obtain the pose orientation of the tool. This means that each time the robot touches
the Anoto Surface with an Anoto Pen we obtain rotation pairs {RP,i, RF,i} that are
rigidly connected by a constant rotation transformation RT:

RP,iRT = RF,i where i ∈ N. (5.51)

By performing N measurements we end up with the vast 3N×3 system of equations:

RP,1RT = RF,1

...

RP,NRT = RF,N

(5.52)

This system of equations can be written as:

AC = B (5.53)

42

5.5 Replacing the Flexpendant

and is solved for C in the least-square sense by the normal equations:

C = (AT A)−1AT B where RT = C. (5.54)

If the measurements are affected by noise (which they are) then the solution RT
is not a valid rotation matrix, as its basis vectors will not be orthonormal. This is
handled by orthogonalizing the solution by finding the closest rotation matrix R̃ by
Singular Value Decomposition (SVD) [Myronenko and Song, 2009], [Umeyama,
1991]:

RT = UΣVT R̃ = UVT (5.55)

if the determinant of R̃ is not equal to 1, but instead -1, then the solution is not
a rotation transformation but a reflection transformation and the orthogonalization
has to be modified:

R̃ = U
(

1 0 0
0 1 0
0 0 sign det(UVT)

)
VT (5.56)

5.5 Replacing the Flexpendant

Bluetooth
Bluetooth is a standard for short range, low power, low cost wireless communication
that uses radio technology. Although originally envisioned as a cable-replacement
technology by Ericsson (Sweden) in 1994 [McDermott-Wells, December 2004 /
January 2005] the technology was conceived as a wireless alternative to data cables
by exchanging data using radio transmissions and was created as an open standard
to allow connectivity and collaboration between disparate products and industries
[Bluetooth Special Interest Group, 2016b]. The name is inspired by Harald Blue-
tooth, a viking king who united the warring factions of Sweden, Denmark and Nor-
way6.

Human Interface Device (HID)
A Bluetooth HID device is a device providing the service of human or other data
input and output to and from a Bluetooth HID Host. Examples of Bluetooth HID
devices are keyboards, mice, joysticks, gamepads, remote controls, and also volt-
meters and temperature sensors. A Bluetooth HID Host is a device using or request-
ing the services of a Bluetooth HID device. Examples would be a personal com-
puter, handheld computer, gaming console, industrial machine, or data-recording
device7 [Bluetooth Special Interest Group, 2016a].

6 In the same manner the Bluetooth technology lets different devices unite and communicate together.
7 This specification incorporates significant portions of the USB (Universal Serial Bus) Device Class

Definition for Human Interface Devices [Compaq et al., 2016].

43

Chapter 5. Theory

Bluetooth HID Descriptor
The HID descriptor describes how the data in the HID reports being sent from a
Bluetooth-device is structured, and follows the same convention as that from the
USB HID descriptors. Besides telling the application how the data is structured
it is also informing the receiving device, e.g., a computer or smart device on its
properties. For instance, one type of digitizer pen could only report position coor-
dinates, while another reports both position coordinates and pressure values. The
application on its end chooses what to do with this information. A simple draw-
ing program would ignore the fact that the digitizer pen can report angles or pres-
sure while Adobe Photoshop and Gimp do have support for these features. When
it comes to smart devices both Microsoft [Microsoft, 2015] and the Android Open-
Source Project led by Google [Google Inc., 2016] have specifications on standard
descriptors that specific devices must adhere to8. The HID descriptor for Android
6.0 devices can be seen in Listings 5.1 and 5.2.

1 unsigned char HID_DESC [] = {

2 0x05 , 0x0D , // UsagePage(Digitizer)

3 0x09 , 0x02 , // Usage(Pen)

4 0xA1 , 0x01 , // Collection(Application)

5 0x09 , 0x20 , // Usage(Stylus)

6 0xA1 , 0x02 , // Collection(Logical)

7 0x09 , 0x30 , // Usage(Tip Pressure)

8 0x15 , 0x00 , // Logical Minimum (0)

9 0x26 , 0xFF , 0x03 , // Logical Maximum (1023)

10 0x95 , 0x01 , // Report Count (1)

11 0x75 , 0x0A , // Report Size (10)

12 0x81 , 0x02 , // Input(Data , Variable , Absolute , No Null)

13 0x09 , 0x44 , // Usage(Barrel Switch)

14 0x09 , 0x5A , // Usage(Secondary Barrel Switch)

15 0x09 , 0x42 , // Usage(Tip Switch)

16 0x09 , 0x3C , // Usage(Invert)

17 0x25 , 0x01 , // Logical Maximum (1)

18 0x95 , 0x04 , // Report Count (4)

19 0x75 , 0x01 , // Report Size (1)

20 0x81 , 0x02 , // Input(Data , Variable , Absolute , No Null)

21 0x09 , 0x5B , // Usage(Transducer Serial Number)

22 0x95 , 0x01 , // Report Count (1)

23 0x75 , 0x80 , // Report Size (128)

24 0xB1 , 0x03 , // Feature(Constant , Variable)

25 0xC0 , // End Collection

26 0xC0 , // End Collection

27 }

Listing 5.1 Raw Android 6.0 digitizer pen descriptor. Here implemented in C.
[Microsoft et al., 2016]

8 Relevant for this report are their HID descriptor specifications for digital pens.

44

5.5 Replacing the Flexpendant

1 UsagePage(Digitizer)

2 Usage(Pen)

3 Collection(Application)

4 Usage(Stylus)

5 Collection(Logical)

6 Usage(Tip Pressure)

7 Logical Minimum (0)

8 Logical Maximum (1023)

9 Report Count (1)

10 Report Size (10)

11 Input(Data , Variable , Absolute , No Null)

12 Usage(Barrel Switch)

13 Usage(Secondary Barrel Switch)

14 Usage(Tip Switch)

15 Usage(Invert)

16 Logical Maximum (1)

17 Report Count (4)

18 Report Size (1)

19 Input(Data , Variable , Absolute , No Null)

20 Usage(Transducer Serial Number)

21 Report Count (1)

22 Report Size (128)

23 Feature(Constant , Variable)

24 EndCollection

25 EndCollection

Listing 5.2 Parsed Android 6.0 digitizer pen descriptor. [Microsoft et al., 2016]

The Anoto digital pens follow the specifications from Microsoft for digital pens
and are very similar to the Android 6.0 specification, the exception being added
HID usage fields for tilt-x, tilt-y and twist. The HID descriptor for the Anoto pen
used in this report can be seen in Appendix A.4.

Bluetooth HID Reports
The data from the Anoto pens’ HID reports is best represented as a collection
of 20 pairs of hexadecimal digits. These will be resolved to their correspond-
ing values of pen-tip coordinates, pressure, etc. in a parsing process as we re-
ceive the reports from the Anoto pens. From the Anoto HID descriptor9 we
see that the data is structured according to Figure 5.5, with 8 fields of varying
sizes in bytes for each property of the Anoto pen digitizer. The byte-order of
the data in each field is in big-endian format. In a word of bytes where the or-
der of bytes follow

{
most significant byte, higher order byte, lower

order byte, least-significant byte
}

it is referred to as "big-endian" for-
mat. If the bytes are sorted in reverse order by significance then it is referred to
as "little-endian" format. Depending on which processor Python is running on we
might need to sort the hexadecimal byte pairs in reverse order10 before we can

9 see Appendix A.4.
10 An alternative solution is to use struct.unpack with the correct endian-decoder.

45

Chapter 5. Theory

id

09

buttons

13

position x

d5 17 00 00

position y

e9 0d 00 00

pressure

1c 02

tilt x

b6 12

tilt y

19 0f

twist

6c 78 00 00

︸ ︷︷ ︸
report size 20 bytes

Figure 5.5 Bluetooth pen digitizer report from an Anoto pen.

convert the field values into their integer-representation counterpart11.

In the Ubuntu distribution of Linux you can obtain both the parsed HID reports
and the HID descriptor of a Bluetooth device by using the terminal command "cat"
on two files named "events" and "rdesc" in /sys/kernal/debug/hid/... . Using this
method as reference it is easier to figure out whether your system, and in turn
Python, is using the same endianess as the Bluetooth device and if you need to
reverse the data byte-wise or not.

The corresponding parsed values of Figure 5.5 can be seen in Listing 5.3.

1 Digitizers.TipSwitch = 1

2 Digitizers.BarrelSwitch = 1

3 Digitizers.Eraser = 0

4 Digitizers.Invert = 0

5 Digitizers.InRange = 1

6 GenericDesktop.X = 6101

7 GenericDesktop.Y = 3561

8 Digitizers.TipPressure = 540

9 Digitizers .003d = 4790 # tilt_x

10 Digitizers .003e = 3865 # tilt_y

11 Digitizers .0041 = 30828 # twist

Listing 5.3 Parsed Anoto raw HID report. (Linux/Ubuntu)

11 For an Intel i3-2367M Python integers follow little-endian format by default.

46

6
Results

Here we present the final results of this master thesis with the results of the cal-
ibration algorithm presented first, with the inverse kinematics presented after and
finally the remote control application by parsing Bluetooth HID data presented last.

6.1 Calibration Algorithm Measurements

The following figures show the calibration algorithm performance using 240 mea-
surements collected for 10 hours.

Each plot represents the pen tip error against both tilt and skew angles in de-
grees of the pen1.

The pen tip errors were calculated by using forward kinematics to calculate the
expected pen tips, and then compared these with the pen tip positions reported from
the Anoto pen on a reference Anoto Surface with known position and orientation.

Figure 6.1 shows the errors from a manual calibration as reference.

Figure 6.2 shows the errors for a naive calibration where all the measurement
points were used.

Figure 6.3 shows the worst errors over the angles and Figure 6.4 shows the mean
errors.

1 see Appendix A.3 for definitions.

47

Chapter 6. Results

Figure 6.1 L2-norm of the error of the pen-tip with respect to tilt and skew for a
manually calibrated tool. These measurements were collected for 11 hours automat-
ically by the IRB140 robot using Python.

Figure 6.2 L2-norm of the error of the pen-tip with respect to tilt and skew for the
corresponding calibrated tool using the calibration algorithm.

48

6.1 Calibration Algorithm Measurements

Figure 6.3 Maximum error of 100 different calibration runs where the calibrations
were done with 10 different unique poses per run from the collected measurements.

Figure 6.4 Mean error of 100 different calibration runs where the calibrations were
done with 10 different unique poses per run from the collected measurements.

49

Chapter 6. Results

6.2 Calibration Algorithm Optimization

The following figures show the calibration algorithm performance on a smaller sub-
set of 25 measurements where a greedy2 optimization strategy is used to improve
the result.

The optimization strategy we used involved performing the calibration algorithm,
starting with 3 randomly selected measurement points, and then repeating the cal-
ibration after selecting another measurement point from the measurements, if this
improves the calibration we keep it, otherwise we throw it away. This is iterated a
number of times over the measurements, throwing away measurements until this
strategy stops improving the calibration result.

Figure 6.5 shows the measured pen tip positions relative the first measured po-
sition in the reference work object coordinate system.

Figure 6.6 shows the result after optimization. As can be seen, the resulting pen tip
positions form clusters that are far apart.

Figure 6.7 shows the maximum L2-norm deviation error of the calibrated pen
tip positions and how this changes with increasing number of measurements used
in the calibration algorithm.

Figure 6.8 is the result after the greedy optimization where only 7 measurements
are kept from the original 25. The figure shows how the calibration result improves
for each measurement due to the optimization strategy being used. The results here
can also be seen in Table 6.1 on page 55.

Figure 6.9 shows the calibrated work object relative orientation error to the ref-
erence work object in degrees of each basis vector.

As the calibration algorithm calibrates the tool, i.e., the pen tip position we also
obtain a calibration of the work object surface orientation, in the robot base coordi-
nate system, as an added result.

Figure 6.10 shows the result after optimization.

2 A greedy optimization strategy follows the problem solving mind-set of making the locally optimal
choice at each optimization iteration with the hope of finding a global optimum. A greedy strategy
does not in general produce an optimal solution, but may find locally optimal solutions that approxi-
mate a global one in a reasonable time

50

6.2 Calibration Algorithm Optimization

Figure 6.5 Pen coordinates in the work object coodinate system.

Figure 6.6 Pen coordinates after greedy optimization.

51

Chapter 6. Results

Figure 6.7 Tool tip max error to pen coordinates after calibration.

Figure 6.8 Tool tip max error to pen coordinates after greedy optimization.

52

6.2 Calibration Algorithm Optimization

Figure 6.9 Error of basis vectors in degrees.

Figure 6.10 Error of basis vectors in degrees after greedy optimization.

53

Chapter 6. Results

6.3 Calibration Algorithm Precision Lower Bound

The Anoto digital pen does not report the pen tip position precisely, as can be seen
in Figure 6.11.

Here we measure the error in the pen tip position by placing the pen on a piece
of paper with printed Anoto pattern and rotating the paper and keeping the tip
fixed in the same position, while increasing and decreasing the tilt angle of the pen
relative to the paper.

The tilt angle was changed in the range of 0 and 50 degrees while not rotating
the pen about its own symmetrical axis, it is skew angle was in other words 0.
see Appendix A.3 for the rot, tilt and skew angle definitions of the pen orientation
relative to the pattern surface.

The mean of the reported pen tip positions is the origin of rotation and is the exact
physical pen tip position that the reported positions deviate from. We can see that
the reported pen tip positions deviate from the real physical position by 0.3 - 0.4mm.

Neither is the IRB140 robot precise when it is placing the pen in different po-
sitions. The robot will introduce a small error relative to the expected pen tip
placement which will affect the calibration results.

The calibration results from Figure 6.8 on page 52 can be seen in Table 6.1.

Observing the flange position deviation errors, here calculated with the L2-norm,
we can conclude that the flange position error is some hundredths of a millimetre in
magnitude.

Repeated measurements of the flange error will reveal this to be consistent and
comparing this with the robot datasheet, located in Appendix A.1, we an see that
the position repeatability is tested to be on average 0.03mm.

Using this information we can expect a realistic lower bound on the precision
of the calibration algorithm to be decided by the precision of the pen tip positions
being reported.

The calibration algorithm results are therefore dependant on the pen being used,
and in this case the pen tip calibration error can be no lower than 0.3 - 0.4mm.

54

6.3 Calibration Algorithm Precision Lower Bound

Figure 6.11 The measured pen tip position errors relative to the physical pen tip
origin for pen tilt angles in the range of 0 to 50 degrees.

tip error [mm] x̂ error
an [mm] ŷ error

an [mm] ẑ error
an [mm] f lange error [mm]

2 245.912655 53.960271 56.786330 19.991105 0.032864

3 794.959780 4.103650 5.102067 4.109336 0.002231

4 414.242329 4.169606 4.153502 0.716227 0.019773

5 1.313704 0.117373 0.271912 0.278748 0.010225

6 1.022351 0.063100 0.066487 0.066143 0.015158

7 0.434636 0.076218 0.064563 0.080832 0.034265

Table 6.1 Calibration errors and flange errors related to Figure 6.8 on page 52.

55

Chapter 6. Results

6.4 Calibration Algorithm Simulation

Here we try to evaluate the performance of the calibration algorithm using simu-
lated data.

The expected tool positions and orientations were generated on a plane, and with
the help of the forward and inverse kinematics implementations we could create
the geometry information needed to generate simulated calibration results with the
calibration algorithm.

A noise model of two components was used to simulate the pen tip position re-
porting errors.

The first component was an even circular noise distribution with a radius of up
to 0.3mm, and the second component was a linear noise deviation, where the devi-
ation direction depended on the orientation of the pen and the magnitude on the tilt
of the pen.

The idea was to have a robust model that would mimic the real world pen be-
haviour, but also stress-test the algorithm.

We’re essentially measuring the results of a "worst-case" behaviour of a pen that
needs to be calibrated.

Here we also assume that the robot flange position errors are included in this
noise model, since their errors have a magnitude of 0.03mm they should not affect
the outcome significantly.

In the figures we have chosen an ideal tip error of 0.1mm as tolerance reference.

Figure 6.12 is an overview and Figure 6.13 is a close-up of the result.

We can see that after 325 measurements the maximum error is calibrated below
0.1mm, while the mean error quickly drops below the tolerance and stabilizes be-
tween a tip error of 0.1 and 0.01mm.

In the close-up in the range of 0 to 100 measurements and we can clearly see
that after 35 measurements there’s a good chance to obtain a good calibration.

The work object orientation calibration in Figure 6.14 shows a very pessimistic
result where the tolerance chosen represents an angle max error of 0.1 degrees.

56

6.4 Calibration Algorithm Simulation

Figure 6.12 Pen-tip verification model using rectangular noise perturbation of pen-
tip coordinates with a radius of 0.3mm, and an extra added noise component with
0.01mm radius and linear dependence on tilt. Point Spread: 200mm; Rot: [-180,180],
Tilt: [0, 40], Skew: [-90, 270].

Figure 6.13 Pen-tip verification model using rectangular noise perturbation of pen-
tip coordinates with a radius of 0.3mm, and an extra added noise component with
0.01mm radius and linear dependence on tilt. Point Spread: 200mm; Rot: [-180,180],
Tilt: [0, 40], Skew: [-90, 270].

57

Chapter 6. Results

Figure 6.14 Work object verification model using rectangular noise perturbation
of pen-tip coordinates with a radius of 0.3mm, and an extra added noise component
with 0.01mm radius and linear dependence on tilt. Point Spread: 200mm; Rot: [-
180,180], Tilt: [0, 40], Skew: [-90, 270].

6.5 Calibration Algorithm Orientation Estimation

We present here a verification of the tool orientation calibration algorithm. We
only verified this by simulations, since it was too difficult and time consuming to
perform the same verification with measurements in the Anoto robotics lab with the
resources available.

Similar like before we set up a virtual geometry, we generate a set of pairs of
tool positions and orientations with their corresponding flange positions and orien-
tations. We also know the relative rotation transformation that transforms from the
flange orientation to the tool orientation and use this as reference.

A simulated measurement noise with a uniform distribution and magnitude of
±2 ·10−3 [mm] was added to each element of the 3×3 reference matrix, since this
was the error at the time with which the prototype pen was estimating its current
orientation.

Figures 6.15, 6.16 and 6.17 illustrate the maximum, mean and minimum errors
in degrees for each basis vector of the estimated orientation of the tool, which are
plotted against the number of measurements used in the calibration of the orienta-
tion of the tool, i.e., the Anoto pen.

58

6.5 Calibration Algorithm Orientation Estimation

It is the author’s impression that the mean-value results at 25 measurements re-
flects the behaviour of the Anoto pens, from experience of working with the pens.

Figure 6.15 Tool orientation verification model. A calibration is performed from
measurements of 4 to 300 tip positions of different orientations with a maximum tilt
of 40 degrees for a tool tip of length 233mm. This is simulated 100 times to calculate
maximum and minimum span of the orientation error.

Figure 6.16 Tool orientation verification model. A calibration is performed from
measurements of 4 to 300 tip positions of different orientations with a maximum tilt
of 40 degrees for a tool tip of length 233mm. This is simulated 100 times to calculate
maximum and minimum span of the orientation error.

59

Chapter 6. Results

Figure 6.17 Tool orientation verification model. A calibration is performed from
measurements of 4 to 300 tip positions of different orientations with a maximum tilt
of 40 degrees for a tool tip of length 233mm. This is simulated 100 times to calculate
maximum and minimum span of the orientation error.

6.6 Inverse Kinematics Over a Curve

Here we present an application of the forward and inverse kinematics of the robot
to find a smooth robot motion over a curve.

Figure 6.18 shows the robot geometry presented as colourful links with the dif-
ferent frames attached on each joint as a set of red, green and blue basis vectors3.
The tool is presented as a thick black line and the curve being traversed is a gray
circle.

A close up of the curve and the tool can be seen in Figure 6.19 where the ori-
entation of the tool is located as an extra large coordinate frame on the tip of the
tool.

A set of smaller frames with the same orientations are placed at even locations
on the curve. In this set-up, the robot is moving the tip of the tool, e.g., a pen tip
over each location of the curve and keeping the pen orientation constant.

Figures 6.20 to 6.25 show the motion of each joint angle over time (blue) and
the corresponding joint angle velocities (red) over the entire curve, which is tra-
versed in 12.56 seconds. We will describe the motion of the robot that these figures
represent for the first half of the curve, the reader can then work out the rest of the
motion for the other half of the curve.

3 Red for the x-axis, green for the y-axis and blue for the z-axis of the frame.

60

6.6 Inverse Kinematics Over a Curve

The total motion for the first half of the curve is a robot arm that is at first tilted
backwards and keeps its elbow squeezed together to reach the point of the curve
closest to its base, see Figures 6.21 and 6.22. The robot then follows the curve with
the tool clockwise, see Figure 6.20, while extending its elbow-joints.

The last two joints of the robot is working to keep the tool orientation constant
by counter-acting the change in orientation caused by the earlier joints, see Figures
6.24 and 6.25.

In Figure 6.18 the robot has reached the first quarter of the curve, right after
the 2.512 seconds mark, while keeping the tool straight and not changing its orien-
tation during the entire motion up to that point.

The determinant of the Jacobian of the robot can be seen in Figure 6.26 where
we can see, by the magnitude of the values over time, that the robot is moving away
from a critical joint configuration, since the determinant value is moving away from
zero.

x [m] y [m]

z [m]

Figure 6.18 Robot joint links and joining frames, tool and trajectory. The robot is
moving the tool in clock-wise direction and has traversed 1/4th of the curve, starting
from the point closest to the robot base.

61

Chapter 6. Results

x [m]

y [m]

z [m]

Figure 6.19 Close-up of tool (black) and trajectory with tool frames. The colors
represents the frame coordinate axes x (red), y (green) and z (blue).

Figure 6.20 Change of joint angle over time (blue) and change of joint angular
velocity over time (red) of the first link.

62

6.6 Inverse Kinematics Over a Curve

Figure 6.21 Change of joint angle over time (blue) and change of joint angular
velocity over time (red) of the second link.

Figure 6.22 Change of joint angle over time (blue) and change of joint angular
velocity over time (red) of the third link.

63

Chapter 6. Results

Figure 6.23 Change of joint angle over time (blue) and change of joint angular
velocity over time (red) of the fourth link.

Figure 6.24 Change of joint angle over time (blue) and change of joint angular
velocity over time (red) of the fifth link.

64

6.6 Inverse Kinematics Over a Curve

Figure 6.25 Change of joint angle over time (blue) and change of joint angular
velocity over time (red) of the sixth link.

Figure 6.26 Change of the determinant of the Jacobian over time.

65

Chapter 6. Results

6.7 HID Parsing

During this master thesis the author developed a framework for controlling the
robot using the streaming Bluetooth data from an Anoto pen. In this section we
interpret and visualize the streamed data.

In Figure 6.27 the author has written his name, where the origin is the starting
point of the cursive writing. In the pattern coordinate system the y-axis would nor-
mally range from negative values (upper left) to positive values (bottom left). This
felt confusing since when we’re plotting general curves it is usually done the the
other way around, so this has been adjusted for readability.

Figure 6.28 shows the raw unfiltered data, that we are receiving from the pen,
in the Anoto pattern coordiante system in Anoto distances.

The horizontal and vertical red lines are spikes that are being misinterpreted. This
was revealed after some debugging to be caused by the Python module [Rusnak,
2015] used for handling the Bluetooth communication.

Figure 6.29 shows the same data in the pattern coordinate system in centime-
ters and with the final filtered result shown in blue from Figure 6.27.

The final result was obtained by a simple threshold limit filter on the input data.

Figure 6.27 Parsed and filtered Bluetooth data from an Anoto pen of the author’s
name.

66

6.7 HID Parsing

Figure 6.28 The filtered errors from the Bluetooth data.

Figure 6.29 Parsed Bluetooth data from Anoto pen including errors and filtered
signature.

67

7
Discussion

Work done in the field of hand-eye calibration and robot-world calibration show
that separating the orientations from the translations will worsen the quality of the
calibrations.

Different methods using quaternions, screws, dual quaternions and non-linear
minimization show comparable results with difference in operation times and im-
plementation difficulties. This problem has shown to be less intuitive than expected
and has also shown the importance of not jumping to conclusion: when writing
down the equations it is a quick jump to treat the orientations and translations prob-
lems as non-connected, but previous research in this field has proven that important
informations is lost.

The Anoto pens used in this master thesis measures relative orientations with
large noise components in tilt and skew and was for this reason discarded in the
problem formulation and why only a theoretical verification using a simulation
model is done. The results suggest that this might have been a hasty decision and
that the noisy orientation measurements could be usable after all since the SVD
method of fitting the orientation has shown to be robust and handle noise very well.

The work object world origin was left unsolved in this master thesis due to time
constraint: many different solution strategies could be used and no time was left to
explore different strategies.

Initial formulation of the calibration algorithm, that included the origin, gave bad
results due to the origin became very large compared to the relative distance of the
measurement points. This resulted in ill-conditioned systems of equations and the
algorithm was reformulated to exclude the origin for these reasons.

The robot was set to a very slow speed during measurements to guarantee that
no response delay would end up accidentally crushing the pens used in this master
thesis. For this reason one measurement would take 2-3 minutes to perform and

68

Chapter 7. Discussion

that’s counting the time it takes for the robot to change position and orientation.
One measurement run of 240 measurements took 10 hours.

From the results this is not a problem and repeated tests have shown that 10-16
measurements are enough if care is taken to how the measurements are performed.

The results in this master thesis are from measurements in an ordered grid with
symmetrical angles1 which shows that this is not enough to obtain a good calibra-
tion fast.

The research papers mention that the joint rotational axes must be far from parallel
to each other to get good calibration results and that a small span will noticeably
worsen the calibration results. Care was taken for this situation by taking large joint
angle spans, but this does not guarantee non-parallel joint axes and can definitely
contribute to why the calibration results were not better.

1 As close to symmerical angles as can be expected from a pen taped on to a pen-holder which was not
constructed for the pens used in this master thesis.

69

8
Conclusion

This master thesis has shown multiple uses of the Anoto dot pattern and Anoto pen
for different applications.

One application is the calibration of the robot tool and work object, when an
Anoto pen has been mounted on the robot and the work object consists of a surface
with the Anoto dot pattern printed onto it.

Another is the use of an Anoto pen and paper as replacement of the flexpendant to
create a light-weight and intuitive control device to control the IRB140 robot arm.
The Python programming language and interpreter were used together with ABB’s
RAPID programming language to create a framework to handle the communication
between the user and the robot. In that application it was demonstrated how this
could be done via the use of serial communication.

The inverse and forward kinematics were derived for the robot and used for sim-
ulations and for determining if a trajectory could be traversed. This helped in the
theoretical verification in the development of the calibration algorithm, and was
also used for determining if a set of measurements could be performed at the Anoto
robot lab for a given curve, work object and pen set-up.

The calibration details from the results section show that a naive approach to
calibrating the tool tip, i.e., using all of the measurement values results in a devia-
tion of 1mm or more with slow convergence compared to the manual calibration of
0.5mm deviation.

By using a greedy optimization strategy of successively adding measurements
that improve the calibration, and removing measurements that worsen it, we get a
calibration comparable to a manual calibration with fast convergence.

The work object calibration, i.e., the orientation estimation of the Anoto pattern
surface shows promising results with few measurements and faster convergence,

70

Chapter 8. Conclusion

but can also be improved with the same optimization strategy.

The simulated results for the pen tip calibration show slow convergence and that
a good calibration can be obtained after 35 measurements. The work object cali-
brations results were pessimistic but this is very likely due to the simulation was
designed to mimic a worst case scenario of calibrating a poor pen, so in such a
case the work object results should should be expected to be bad and that the work
object calibration is more sensitive to the quality of the pen measurements.

The tool orientation estimation shows more promising theoretical results when
taken into account the very pessimistic noise model in the reported pen orientation,
with matrix element errors of ±2 ·10−3mm.

By performing manual measurements, and using measurements of the error in
the robot flange position, a realistic lower bound on the precision of the calibration
algorithm was decided to be no lower than 0.3 - 0.4mm, and depended on the per-
formance of the pen.

The illustrated control board was developed through a user study with volun-
teers from Anoto. The resulting design felt intuitive to use and the user feedback
was positive.

The robot had a delay of ≈ 0.25s1 which gave a sluggish impression when control-
ling the robot. The movement length was controlled by the distance to the control
board origin and helped in minimizing the "sluggish" feeling.

Replacing the flexpendant with Anoto technology or a similar set-up is viable.

1 This is the author’s estimation from working with the robot—this value is a subjective estimation and
not obtained from measurements.

71

9
Future Work

This paper mainly focuses on the calibration algorithm and on the calibration of the
tool tip. It does not take into account the environment and any possible obstacles
within it.

An initial guess of the position and orientation of the tool tip is required to steer the
tip of the pen to touch the surface with the Anoto pattern without breaking the pen.

This means that the pen must be mounted by the user in some rigid fashion.

The calibration process has a manual set-up stage, and the calibration area must be
free of obstacles which makes the calibration process not entirely autonomous.

The techniques used by robotics researchers to detect obstacles [Harada et al.,
2014] in the environment and to estimate the position and orientation of the tool to
pick up are possible candidates for improvement of the current calibration process
developed in this paper.

The calibration process can be improved by solving for both the positions and
orientations together, instead of treating them as separate problems1.

Screw theory and dual quaternions are the more straightforward methods that
produce good results compared to the non-linear methods found so far.

This does not guarantee a better calibration due to the noisy orientation data from
the pens, but it is worth investigating.

The robot speed should be sped up to shorten the calibration time. The most
consuming part of this process is the time it takes for the robot to perform a single
measurement.

1 This means to also use the noisy orientation data from the Anoto pens.

72

Chapter 9. Future Work

I suggest that the time is shorten to at least 15-30s per measurement.

Instead of a greedy optimization algorithm a RANSAC2 approach could be used to
speed up the optimization step of the calibration.

The forward and inverse kinematics are known and presented in this master thesis
and could be use to guarantee that the joint axes are far from parallel to each other
for each measurement.

2 Abbreviation of Random Sample Consensus.

73

A
Appendix

74

A.1 Technical Specification Robot ABB IRB140-6/0.8

A.1 Technical Specification Robot ABB IRB140-6/0.8

[-180, 180]

[-90, 110]

[-230, 50]

[-200, 200]

[-115, 115]

[-400, 400]

A.1 Technical specifications of the IRB140 model from ABB.

Source: ABB.

75

Appendix A. Appendix

A.2 Kinematic Chain

A.2 Assigned frames to the joints of the IRB140 in base-frame coordinates. Frame
3 has been omitted for clarity.

Source: Source: ABB.

A.3 The manipulator links that form the skeleton of the forward kinematics chain.
These are displayed when plotting the robot configurations.

Source: Source: ABB.

76

A.3 Pen Orientation Definitions

A.3 Pen Orientation Definitions

A.4 Definition of the angles rot, tilt and skew, relative to the pattern coordinate
system, used to describe the orientation of the pen relative to the dot-pattern. Image
supplied by Anoto.

Source: Anoto AB.

77

Appendix A. Appendix

A.4 Anoto Pen HID Descriptor

1 INPUT (9)[INPUT]

2 Field (0)

3 Physical(Digitizers.Stylus)

4 Application(Digitizers.Pen)

5 Usage (5)

6 Digitizers.TipSwitch

7 Digitizers.BarrelSwitch

8 Digitizers.Eraser

9 Digitizers.Invert

10 Digitizers.InRange

11 Logical Minimum (0)

12 Logical Maximum (1)

13 Report Size (1)

14 Report Count (5)

15 Report Offset (0)

16 Flags(Variable Absolute)

17 Field (1)

18 Physical(Digitizers.Stylus)

19 Application(Digitizers.Pen)

20 Usage (1)

21 GenericDesktop.X

22 Logical Minimum (0)

23 Logical Maximum (8816)

24 Physical Minimum (0)

25 Physical Maximum (165)

26 Unit Exponent (-1)

27 Unit(SI Linear : Centimeter)

28 Report Size (32)

29 Report Count (1)

30 Report Offset (8)

31 Flags(Variable Absolute)

32 Field (2)

33 Physical(Digitizers.Stylus)

34 Application(Digitizers.Pen)

35 Usage (1)

36 GenericDesktop.Y

37 Logical Minimum (0)

38 Logical Maximum (7126)

39 Physical Minimum (0)

40 Physical Maximum (133)

41 Unit Exponent (-1)

42 Unit(SI Linear : Centimeter)

43 Report Size (32)

44 Report Count (1)

45 Report Offset (40)

46 Flags(Variable Absolute)

47 Field (3)

48 Physical(Digitizers.Stylus)

49 Application(Digitizers.Pen)

50 Usage (1)

51 Digitizers.TipPressure

78

A.4 Anoto Pen HID Descriptor

52 Logical Minimum (0)

53 Logical Maximum (2047)

54 Physical Minimum (0)

55 Physical Maximum (2047)

56 Unit Exponent (-1)

57 Unit(SI Linear : Centimeter)

58 Report Size (16)

59 Report Count (1)

60 Report Offset (72)

61 Flags(Variable Absolute)

62 Field (4)

63 Physical(Digitizers.Stylus)

64 Application(Digitizers.Pen)

65 Usage (1)

66 Digitizers .003d

67 Logical Minimum (-9000)

68 Logical Maximum (9000)

69 Physical Minimum (-9000)

70 Physical Maximum (9000)

71 Unit Exponent (-2)

72 Unit(English Rotation : Degrees)

73 Report Size (16)

74 Report Count (1)

75 Report Offset (88)

76 Flags(Variable Absolute)

77 Field (5)

78 Physical(Digitizers.Stylus)

79 Application(Digitizers.Pen)

80 Usage (1)

81 Digitizers .003e

82 Logical Minimum (-9000)

83 Logical Maximum (9000)

84 Physical Minimum (-9000)

85 Physical Maximum (9000)

86 Unit Exponent (-2)

87 Unit(English Rotation : Degrees)

88 Report Size (16)

89 Report Count (1)

90 Report Offset (104)

91 Flags(Variable Absolute)

92 Field (6)

93 Physical(Digitizers.Stylus)

94 Application(Digitizers.Pen)

95 Usage (1)

96 Digitizers .0041

97 Logical Minimum (0)

98 Logical Maximum (36000)

99 Physical Minimum (0)

100 Physical Maximum (36000)

101 Unit Exponent (-2)

102 Unit(English Rotation : Degrees)

103 Report Size (32)

104 Report Count (1)

105 Report Offset (120)

79

Appendix A. Appendix

106 Flags(Variable Absolute)

107

108 Digitizers.TipSwitch ---> Key.Touch

109 Digitizers.BarrelSwitch ---> Key.Stylus

110 Digitizers.Eraser ---> Key.Btn0

111 Digitizers.Invert ---> Key.ToolRubber

112 Digitizers.InRange ---> Key.ToolPen

113 GenericDesktop.X ---> Absolute.X

114 GenericDesktop.Y ---> Absolute.Y

115 Digitizers.TipPressure ---> Absolute.Pressure

116 Digitizers .003d ---> Absolute.XTilt

117 Digitizers .003e ---> Absolute.YTilt

118 Digitizers .0041 ---> Absolute.Misc

Listing A.1 Anoto pen HID descriptor for Bluetooth. (Parsed with Linux/Ubuntu)

80

A.5 Denavit-Hartenberg Parameters

A.5 Denavit-Hartenberg Parameters

The following is summarized1 from [Spong and Vidyasagar, 1989] and [Craig,
1986].

It is possible to give physical interpretations on the parameters length ai, twist αi,
offset di and angle θi for the homogeneous mapping Ai of link {i} and joint {i−1}.

The length2 is the distance between the axes zi−1 and zi and is measured along
the axis xi. The twist3 is the angle between the axes zi−1 and zi, measured in a plane
normal to xi. The positive direction for the twist is determined by the right-hand
rule from zi−1 to zi. The offset4 is the distance between the origin oi−1 and the
intersection of the xi and zi−1 axes measured along the zi−1 axis. The angle5 is the
angle between the axes xi−1 and xi measured in a plane normal to the zi−1 axis, see
Figure A.5.

A.5 Illustration [Spong and Vidyasagar, 1989] of DH parameters for Eq. (5.2).

Source: Mark W. Spong and M. Vidyasagar, Robot Dynamics and Control.

1 Note that Craig uses the modified DH-convention and Spong the standard DH-convention.
2 transxi (ai): translation ai on axis xi.
3 rotxi (αi): rotation αi on axis xi
4 transzi−1 (di): translation di on axis zi−1
5 rotzi−1 (θi): rotation θi on axis zi−1

81

Appendix A. Appendix

A.6 Denavit-Hartenberg Convention

The following is summarized from6 [Spong and Vidyasagar, 1989] and [Craig,
1986].

Revolute joint: the axis zi for a rotational joint points in the axis of rotation.

Prismatic joint: the axis zi for a translational-joint points in the axis of trans-
lation.

1. Locate and label the joint axes x0 ... zn−1.

2. Establish the base frame and set the origin anywhere on the z0-axis.
Choose x0, y0 so that we obtain a right-handed frame.

For i = 1, . . . , n−1, perform steps (a) to (c).

a) Locate the origin oi where the common normal to zi and zi−1 intersects
zi.

• If zi intersects zi−1 locate oi at this intersection.
• If zi and zi−1 are parallel, locate oi in any convenient position along

zi.

b) Establish xi along the common normal between zi−1 and zi, or in the
direction normal to the zi−1zi plane if zi−1 and zi intersect.

c) Establist yi to complete a right-hand frame.

3. Establish the end-effector frame onxnynzn.

a) Assume the nth joint is a revolute joint, we set zn along the direction
zn−1

b) Establish the origin on along zn preferably at the tip of a tool. (or the
center of a gripper)
If the tool is a gripper:

• Set yn in the direction of the gripper closure and set xn = yn× zn

Otherwise:

• Set xn and yn conveniently to form a right-hand frame.

6 Note that Craig uses the modified DH-convention and Spong the standard DH-convention.

82

A.7 Python Framework Implementation

A.7 Python Framework Implementation

46 PROC server ()

47 VAR iodev comport;

48 VAR byte buffer{80};

49 VAR string text;

50 VAR num len;

51 VAR string cmd_string;

52

53 TPWrite "InitArap ";

54 ArapInit;

55

56 ! Test the com port in read write mode

57 Open "com2:", comport \Bin;

58

59 WHILE continue DO

60 cmd_string := ReadStrBin2(comport \Time :=300000);

61 TPWrite "Recv = " + cmd_string;

62 ArapDoCommand(cmd_string);

63 ! TODO: ArapHandler calls report func

64 ! OR return string?

65 WriteStrBin comport ,"OK 200"+"\0a";

66 ENDWHILE

67

68 ! Handle errors

69 ERROR

70 IF ERRNO=ERR_FILEOPEN THEN

71 TPWrite "Could not open comport ";

72 ELSEIF ERRNO=ERR_FILEACC THEN

73 TPWrite "Could not write to comport ";

74 Close comport;

75 ELSEIF ERRNO=ERR_DEV_MAXTIME THEN

76 TPWrite "Com port read timeout ";

77 Close comport;

78 ENDIF

79

80 RAISE;

81 ENDPROC

Listing A.2 arap.prg:com

19 FUNC string ReadStrBin2 (VAR iodev dev , \num Time)

20 ! Converts serial binary data to string

21

22 VAR num character;

23 VAR bool readmore := TRUE;

24 VAR string result :="";

25

26 WHILE readmore DO

27 IF Present(Time) THEN

28 character := ReadBin(dev \Time:=Time);

29 ELSE

30 character := ReadBin(dev);

83

Appendix A. Appendix

31 ENDIF

32

33 TEST character

34 CASE 10:

35 readmore := FALSE;

36 CASE 13:

37 readmore := FALSE;

38 DEFAULT:

39 result := result + ByteToStr(character\Char);

40 ENDTEST

41 ENDWHILE

42

43 RETURN result;

44 ENDFUNC

Listing A.3 arap.prg:com

159 CASE "ExecStr ":

160 get_next_arg callname , cmd;

161 get_next_arg arg , cmd;

162 ArapExecStr callname , arg;

Listing A.4 arap.prg:arap

246 ! Executes the given procedure with string as parameter

247 LOCAL PROC ArapExecStr(string call , string arg)

248 % call % arg;

249 ERROR

250 % a_rep_func % ERRNO , "ExecStr Failed ";

251 ENDPROC

Listing A.5 arap.prg:arap

40 PROC initHAPTOR ()

41 currSpeed := c_speed_parrot;

42 setConfig(c_confdata);

43 currConf := c_confdata;

44

45 selToolAndWObj;

46 currTool := sel_tool;

47 currWobj := sel_wobj;

48 c_oldPos := CRobT(\Tool:= currTool \Wobj:=wobj0);

49 ConfL \Off;

50 Open "HOME:" \File :=" HAPTOR.LOG", logfile \Write;

51 Close logfile;

52 ENDPROC

Listing A.6 hptr_control.mod

119 PROC getFlange ()

120 VAR iodev comport;

121 Open "com2:", comport \Bin;

122 WriteStrBin comport , ValToStr(CPos(\Tool:=tool0 \WObj:=

wobj0)) + "\0a";

84

A.7 Python Framework Implementation

123 Close comport;

124 ENDPROC

125

126 PROC getTCP ()

127 VAR iodev comport;

128 Open "com2:", comport \Bin;

129 WriteStrBin comport , ValToStr(CPos(\Tool:= currTool \WObj

:=wobj0)) + "\0a";

130 Close comport;

131 ENDPROC

Listing A.7 hptr_control.mod

140 PROC getJ()

141 VAR jointtarget jtarget;

142 VAR robjoint jvals;

143 VAR iodev comport;

144

145 jtarget := CJointT ();

146 jvals := jtarget.robax;

147

148 Open "com2:", comport \Bin;

149 WriteStrBin comport , ValToStr(jvals) + "\0a";

150 Close comport;

151 ENDPROC

Listing A.8 hptr_control.mod

474 PROC RelBasePos(string xyz)

475 VAR pos rel_pos;

476 VAR robtarget c_target;

477 VAR bool ok;

478

479 ok := StrToVal(xyz , rel_pos);

480 TPWrite ("OK: "+ ValToStr(ok));

481 TPWrite (" new_pos: "+ ValToStr(rel_pos));

482

483 c_target := CRobT(\Tool:= currTool \Wobj:=wobj0);

484 c_target := Offs(c_target , rel_pos.x, rel_pos.y, rel_pos.

z);

485 MoveL c_target , currSpeed , fine , currTool \WObj:=wobj0;

486 ENDPROC

Listing A.9 hptr_control.mod

16 class robotSerial:

17 def __init__(self , debug_state = True):

18 self._debug = debug_state

19 if self._debug:

20 self.port = 0

21 else:

22 self.port = self.connect ()

23 self.port.flushInput ()

24 self.port.flushOutput ()

85

Appendix A. Appendix

25 return

26

27

28 def connect(self):

29 """

30 Assumes that the robot is connected to first serial port.

31 Must be run as root/superuser in Linux (sudo).

32 TODO exception handling

33 TODO kill all existing connections

34 """

35

36 settings_dict = {

37 'port' : 0,

38 'baudrate ' : 9600,

39 'bytesize ' : serial.EIGHTBITS ,

40 'parity ' : serial.PARITY_NONE ,

41 'stopbits ' : serial.STOPBITS_ONE ,

42 'timeout ' : 10,

43 'xonxoff ' : 0,

44 'rtscts ' : 1,

45 'writeTimeout ': None ,

46 'dsrdtr ' : 0

47 }

48

49 comportHandle = serial.Serial(** settings_dict)

50 log.info('connect: ' + str(comportHandle))

51

52 return comportHandle

Listing A.10 arap.py

55 def command(self , arapCommand='', argument=None , sync=True):

56 """ Send command to Arap running on robot controller.

57 if sync is True , call receive , otherwise continue (

asynchronous call)

58 TODO exception handling

59 """

60 if type(argument) in [tuple , numpy.ndarray]:

61 argument = list(argument)

62 _str = str(argument).replace(' ','');

63

64 string_value = arapCommand + ' ' + _str

65

66 if type(argument) == type(None):

67 arapString = 'Exec ' + arapCommand

68 elif type(argument)==int or type(argument)==float:

69 arapString = 'ExecNum ' + string_value

70 else:

71 arapString = 'ExecStr ' + string_value

72

73 log.info('arapString: {0}'.format(arapString))

74 result = self.send(arapString)

75

76 if (result == 0) & sync:

86

A.7 Python Framework Implementation

77 result = self.receive ()

78 log.info('arapResult(sync): {0}'.format(result))

79 else:

80 result = 'SYNC OFF'

81 log.info('arapResult: {0}'.format(result))

82

83 if not result:

84 if not self._debug:

85 raise ArapException('can not execute command: %s'

% str(arapCommand))

86 return result

Listing A.11 arap.py

89 def send(self , arapString):

90 # TODO: Exception handling?

91 # Add raise ArapException(...)

92 if type(arapString) != str:

93 log.error('arap.send argument %s is not a string!' %

str(arapString))

94 errorCode = -1

95 elif len(arapString) > 80:

96 log.error('arap.send argument %s is %d characters (

max. allowed: 80)' % arapString , len(arapString))

97 errorCode = -2

98 else:

99 if self._debug:

100 log.debug('arap.send(debug):: send %s' %

arapString)

101 else:

102 log.debug('arap.send:: send %s' % arapString)

103 self.port.write(arapString + ' \n')

104 ##self.port.flush () #wait for write to finish

105 errorCode = 0

106 return errorCode

Listing A.12 arap.py

143 def receive(self):

144 """ Receive available lines on the serial port.

145 """

146 # TODO: Exception handling?

147 # Add raise ArapException(...)

148 if self._debug:

149 log.debug('arap.receive(debug)')

150 receivedString = 'debug'

151 else:

152 time_out = 60; # Set a time -out of 60 sec (changed

from 3 to 5 to allow for changeOrient etc)

153 start_time = time.time()

154 cont = True

155 while cont:

156 bytes_avail = self.port.inWaiting ()

157 elapsed_time = time.time()-start_time

87

Appendix A. Appendix

158 if ((bytes_avail > 0) or (elapsed_time >time_out)

):

159 cont= False

160 # print elapsed_time

161 if elapsed_time >time_out:

162 log.error('Nothing to read from serial port')

163 receivedString = ''

164 while self.port.inWaiting () > 1:

165 receivedString = receivedString + self.port.

readline ()

166 log.debug('receive: ' + receivedString.rstrip ())

167 return receivedString

Listing A.13 arap.py

7 class HIDReport:

8

9 def _fmt_hid_piece(self , piece):

10 result = list(piece)

11 #result.reverse ()

12 #return int(reduce(lambda x,y: str(x)+str(y), result),

16)

13 if len(piece) == 1:

14 import pdb; pdb.set_trace ()

15 return int(reduce(lambda x,y: str(y)+str(x), result), 16)

16

17 def __init__(self , report =[], hex_report=None):

18 result = OrderedDict ()

19

20 if hex_report is None:

21 hex_rep = map(lambda val: format(val , 'x'), report)

22 else:

23 hex_rep = hex_report

24

25 result['id'] = int(hex_rep [0], 16)

26 result['buttons '] = int(hex_rep [1], 16)

27 result['x'] = self._fmt_hid_piece(hex_rep [2:2+4]

)

28 result['y'] = self._fmt_hid_piece(hex_rep [6:6+4]

)

29 result['pressure '] = self._fmt_hid_piece(hex_rep

[-10: -10+2])

30 result['tiltx'] = self._fmt_hid_piece(hex_rep

[-8: -8+2])

31 if result['tiltx'] & 32768 == 32768:

32 result['tiltx'] -= 65535

33 result['tilty'] = self._fmt_hid_piece(hex_rep

[-6: -6+2])

34 if result['tilty'] & 32768 == 32768:

35 result['tilty'] -= 65535

36 result['twist'] = self._fmt_hid_piece(hex_rep [-4:])

37 result['raw'] = list(hex_rep)

38 self.report = OrderedDict(result)

39

88

A.7 Python Framework Implementation

40 def __str__(self):

41 return json.dumps(self.report , indent =4)

42

43 @property

44 def data(self):

45 return dict(self.report)

46

47 @property

48 def pos(self):

49 return self.report['x'], self.report['y']

50

51 @property

52 def angles(self):

53 return [self.report[key]/100.0 for key in ['tiltx ','tilty

','twist']]

54

55 @property

56 def buttons(self):

57 return self.report['buttons ']

58

59 @property

60 def pressure(self):

61 return self.report['pressure '] / 2047.0

Listing A.14 hidparser.py

72 class BTPen:

73 def _enum(self):

74 devices = hid.enumerate ()

75 if not devices:

76 raise Exception('No bluetooth device found!')

77

78 for dev in devices:

79 if 'pen' in dev['product_string '].lower ():

80 return dev

81

82 def vid(self):

83 return self._enum()['vendor_id ']

84

85 def pid(self):

86 return self._enum()['product_id ']

87

88 def __init__(self):

89 self.dev = hid.device ()

90 try:

91 self.dev.open(self.vid(), self.pid())

92 except IOError:

93 raise IOError('Could not connect to bluetooth pen!')

94 print json.dumps(self._enum(), indent =4)

95 self._init = True

96

97 def read(self):

98 hid_report = self.dev.read (20)

99 print hid_report

89

Appendix A. Appendix

100 return HIDReport(hid_report)

101

102 def record(self , num_reports =100, num_warmup =50):

103 res = []

104 while len(res) < (num_reports + num_warmup):

105 read_hid = self.read()

106 data = read_hid.data

107 res.append(data)

108 print 'Coord #{}'.format(len(res))

109 return res[num_warmup :]

110

111 def __del__(self):

112 if self._init:

113 self.dev.close()

114

115 del self.dev

116 self.dev = None

117

118 del self._init

119 self._init = None

Listing A.15 hidparser.py

1 class PenED:

2 def __init__

3 def __del__

4 def disconnect

5 def reset

6 def trigger_hover

7 def coords_on

8 def coords_off

9 def __reset_states

10 def stop

11 def check_hit

12 @property

13 def position

14 @property

15 def orientation

16 @property

17 def hit

18 @property

19 def alive

20 @property

21 def fsr

22 @property

23 def fsr_adc

24 @property

25 def pen_down

26 @property

27 def pen_up

Listing A.16 Proxy interface implementation of the physical Anoto pen.

1 class Robot

90

A.7 Python Framework Implementation

2 def _upload_files(self):

3 ftp = robotFileTransfer(debug_state = debug)

4 ftp.connect ()

5 ftp.upload('ARAPMOD.prg', robot_com.paths['serial '])

6 ftp.upload('hptr_control.mod', robot_com.paths['server '])

7 ftp.upload('common.mod', robot_com.paths['server '])

8 ftp.upload('calibrationdata.mod', robot_com.paths['server

'])

9 ftp.disconnect ()

10 self._ftp = ftp

11

12 def _init_serial(self):

13 pass

14 arap = robotSerial(debug_state = debug)

15 self._arap = arap

16 arap.load('hptr_control.mod')

17 arap.load('hptr_control.mod') # perform 2 times if pen is

inited before robot

18 arap.load('common.mod')

19 arap.load('calibrationdata.mod')

20 arap.command('initHaptor ')

21 self.move_to_door ()

22

23 def __init__(self ,lock = None , angle=45, pen_interface=None ,

num_data =16):

24 self._upload_files ()

25 self._init_serial ()

26

27 self.lock = lock

28 self.all_data = []

29

30 self.start_time = time.strftime('%H%M')

31

32 self.alive = False

33 self._finished = False

34 self.num_data_points = num_data

35 if pen_interface:

36 self.pen = pen_interface

37 self.pen_hit_thread = Thread(target=pen.check_hit)

38 self.pen_hit_thread.start()

39 time.sleep (1)

40 with self.lock:

41 self.alive = self.pen.alive

42 if pen.alive:

43 self.move_to_ready(angle)

44 self.save_tool_pos ()

45 def __del__

46 @property

47 def arap

48 def arap

49 def __abort

50 def move_to_door

51 def set_vel_molusk

52 def set_vel_parrot

91

Appendix A. Appendix

53 def set_vel

54 def set_ang_vel

55 def set_rel_tcp_z

56 def save_tool_pos

57 def move_to_saved_pos

58 def move_to_saved_pos_ori

59 def move_to_saved_ori

60 def move_tcp

61 def move_wobj_tcp

62 def move_flange

63 def rel_tool_ori

64 def rel_tool_dir

65 def rel_tool_z

66 def abs_tool_dir

67 def move_to_ready

68 def get_flange

69 def get_tcp

70 def get_joints

71 def __grab_data

72 def __find_start_pos

73 def __search_tool_z

74 def __rel_toolz_ori

75 def paper_verify

76 def paper_search

77 def parrot

Listing A.17 Proxy interface implementation of the IRB140 robot.

92

A.8 Control Board Design and Target Surface

A.8 Control Board Design and Target Surface

A.6 Control board design without the Anoto dot-pattern.

A.7 Exaggerated depiction of target surface with its cross markers at known Anoto
coordinates, excluding the Anoto dot pattern.

93

Appendix A. Appendix

A.9 Measurements Lab Setup

A.8 An Anoto Live pen in its cradle with
its digital display turned off.

A.9 A prototype pen with its green status
LED active.

A.10 The pen holder seen from its left side with the cover and screws removed.

94

A.9 Measurements Lab Setup

A.11 The calibration tip in its wingnut. A.12 The calibration tip mounted on the
IRB140.

A.13 Underside of the work object with
the 13 white adhesive tape squares placed
evenly across its surface. The adhesive tapes
are marked with red squares to make them
more visible.

A.14 The target placed on the work object
surface.

95

Appendix A. Appendix

A.15 Pen holder with adhesive tape at-
tached on its surface.

A.16 An Anoto Live pen with its cradle
attached on the adhesive tape on the pen
holder.

A.17 An Anoto Live pen and cradle fas-
tened firmly with duct tape seen from its top
side.

A.18 An Anoto Live pen and cradle fas-
tened firmly with duct tape seen from its left
side

96

A.9 Measurements Lab Setup

A.19 A prototype pen fastened firmly with
duct tape seen from its top side. Its green sta-
tus LED can be seen through the duct tape.

A.20 A prototype pen fastened firmly with
duct tape seen from its left side.

A.21 The robot performing a measure-
ment on the target with the prototype pen.

A.22 Close up of the prototype pen with
target surface.

97

Appendix A. Appendix

A.23 Anoto Live pen tip placed on a target marker after manual tool calibration.

A.24 Prototype pen tip placed on a target marker after manual tool calibration.

98

Bibliography

ABB Ltd (2016a). Fanta can challenge. Data Sheet. URL: http://new.abb.com/
products/robotics/industrial-robots/irb-140 (visited on 2016-04-
10).

ABB Ltd (2016b). Fanta can challenge level II - Superior motion control ABB
robotics. Embedded YouTube video. URL: http : / / www . youtube . com /
embed/SOESSCXGhFo (visited on 2016-04-10).

ABB Ltd (2016c). IRB140 industrial robot. Data Sheet. URL: http://new.abb.
com/products/robotics/industrial-robots/irb-140/irb-140-data

(visited on 2016-04-10).
ABB Ltd (2016d). IRB140T high speed upgrade industrial robot upgrade program.

URL: http://new.abb.com/products/robotics/industrial-robots/
irb-140 (visited on 2016-04-10).

Allen, P. K., A. Timcenko, B. Yoshimi, and P. Michelman (1993). “Automated track-
ing and grasping of a moving object with a robotic hand-eye system”. IEEE
Transactions on Robotics and Automation 9:2, pp. 152–165.

Anoto AB (2017a). The Anoto partner program. URL: http://www.anoto.com/
anoto-partner-network (visited on 2017-01-26).

Anoto AB (2017b). The power to capture it all. URL: http://www.anoto.com/
legal-notice (visited on 2017-01-21).

Anoto Group AB (2016a). Case Studies. URL: http : / / www . anoto . com /

enterprise/case-studies (visited on 2016-04-13).
Anoto Group AB (2016b). Maternity support services welcomes new data cap-

ture solutions. Case Studies: Healthcare. URL: http://www.anoto.com/
enterprise/case-studies/healthcare (visited on 2016-04-13).

Anoto Group AB (2016c). Nationwide service and 24/7 emergency calldesk realised
with digital writing. Case Studies: Facilities Management. URL: http://www.
anoto.com/enterprise/case-studies/facilities-management (vis-
ited on 2016-04-13).

99

Bibliography

Bluetooth Special Interest Group (2016a). Bluetooth specification human interface
device profile 1.1. Specification. URL: https://developer.bluetooth.
org/TechnologyOverview/Pages/HID.aspx (visited on 2016-04-20).

Bluetooth Special Interest Group (2016b). Bluetooth website. URL: https://www.
bluetooth.com (visited on 2016-04-20).

Bruyninckx, H. (2010). Robot Kinematics and Dynamics. Katholieke Universiteit
Leuven, Leuven, Belgium.

Chen, H. H. (1991). “A screw motion approach to uniqueness analysis of head-eye
geometry”. In: Computer Vision and Pattern Recognition, 1991. Proceedings
CVPR’91., IEEE Computer Society Conference on. IEEE, pp. 145–151.

Chou, J. C. and M Kamel (1991). “Finding the position and orientation of a sen-
sor on a robot manipulator using quaternions”. The International Journal of
Robotics Research 10:3, pp. 240–254.

Compaq, DEC, IBM, Intel, Microsoft, NEC, and Nortel (2016). Device class defini-
tion for human interface devices (HID). Firmware Specification—6/27/01 Ver-
sion 1.11. URL: http://www.usb.org/developers/hidpage/HID1_11.
pdf (visited on 2016-04-20).

Craig, J. J. (1986). Introduction to Robotics: Mechanics & Control. Addison-
Wesley, Reading, Massachusetts. ISBN: 0-201-10326-5.

Daniilidis, K. (1999). “Hand-eye calibration using dual quaternions”. The Interna-
tional Journal of Robotics Research 18:3, pp. 286–298.

Destiny Wireless (2017). A note on Anoto AB. Blog Post. URL: http : / /

digitalpennews.typepad.com/blog/anoto (visited on 2017-01-21).
Ernst, F., L. Richter, L. Matthäus, V. Martens, R. Bruder, A. Schlaefer, and A.

Schweikard (2012). “Non-orthogonal tool/flange and robot/world calibration”.
The International Journal of Medical Robotics and Computer Assisted Surgery
8:4, pp. 407–420.

Freidovich, L. B. (2013). Control Methods for Robotic Applications. Lecture Notes.
St. Petersburg, Russia.

Google Inc. (2016). Guidelines for stylus accessory creators. URL: https : / /
source.android.com/devices/accessories/stylus.html#guide-

creators (visited on 2016-04-21).
Harada, K., T. Tsuji, K. Nagata, N. Yamanobe, and H. Onda (2014). “Validating

an object placement planner for robotic pick-and-place tasks”. Robotics and
Autonomous Systems 62:10, pp. 1463–1477.

Hartenberg, D. J. and R. Scheunemann (1955). “A kinematic notation for lower-pair
mechanisms based on matrices”. Trans ASME J. Appl. Mech. 23, pp. 215–221.

Heller, J., D. Henrion, and T. Pajdla (2014). “Hand-eye and robot-world calibration
by global polynomial optimization”. In: Robotics and Automation (ICRA), 2014
IEEE International Conference on. IEEE, pp. 3157–3164.

100

Bibliography

Horaud, R. and F. Dornaika (1995). “Hand-eye calibration”. The International Jour-
nal of Robotics Research 14:3, pp. 195–210.

Livescribe, Inc (2017). About Livescribe. URL: https://www.livescribe.com/
en-us/company (visited on 2017-01-26).

Luca, A. D. (2015). Robotics 1 trajectory planning. Lecture Notes. URL:
http : / / www . diag . uniroma1 . it / ~deluca / rob1 _ en / 13 _

TrajectoryPlanningJoints.pdf (visited on 2017-01-14).
McDermott-Wells, P. (December 2004 / January 2005). “What is bluetooth?” IEEE

Potentials Magazine.
Microsoft (2015). Supporting usages in digitizer report descriptors. Specification.

URL: https : / / msdn . microsoft . com / en - us / library / windows /
hardware/jj151564%28v=vs.85%29.aspx (visited on 2015-03-15).

Microsoft, Intel, and Logitech (2016). Hid usage tables 10/28/2004 version 1.12.
Manual. URL: http://www.usb.org/developers/hidpage/Hut1_12v2.
pdf (visited on 2016-04-21).

Myronenko, A. and X. B. Song (2009). “On the closed-form solution of the rota-
tion matrix arising in computer vision problems”. CoRR abs/0904.1613. arXiv:
0904.1613. URL: http://arxiv.org/abs/0904.1613.

NECS, inc (2017). Anoto digital pen promotion. Blog Post. URL: https://necs.
com/blog-article.php?id=39 (visited on 2017-01-21).

Pettersson, M.-P. and T. Elsö (1999). “Positionsbestämning pra en yta försedd
med ett positionskodningsmönster”. Pat. SE 9903541-2. (Patent- och Reg-
istreringsverket). Publication number: SE 517445, Published as: SE517445 C2,
SE9903541 L.

Ruland, T., T. Pajdla, and L. Krüger (2012). “Globally optimal hand-eye calibra-
tion”. In: Computer Vision and Pattern Recognition (CVPR), 2012 IEEE Con-
ference on. IEEE, pp. 1035–1042.

Rusnak, P. (2015). hidapi 0.7.99.post14. Python Module. URL: https://pypi.
python.org/pypi/hidapi/0.7.99.post14 (visited on 2015-11-06).

Shiu, Y. C. and S. Ahmad (1989). “Calibration of wrist-mounted robotic sensors by
solving homogeneous transform equations of the form ax= xb”. IEEE Transac-
tions on Robotics and Automation 5:1, pp. 16–29.

Silberman, S. (2001). The hot new medium: paper. Interview. URL: http://www.
wired.com/2001/04/anoto (visited on 2016-04-13).

Spong, M. W. and M. Vidyasagar (1989). Robot Dynamics and Control. 1st. John
Wiley & Sons, New York, NY, USA. ISBN: 0-471-61243-X.

Strobl, K. H. and G. Hirzinger (2006). “Optimal hand-eye calibration”. In: Intelli-
gent Robots and Systems, 2006 IEEE/RSJ International Conference on. IEEE,
pp. 4647–4653.

101

Bibliography

Tsai, R. Y. and R. K. Lenz (1989). “A new technique for fully autonomous and
efficient 3d robotics hand/eye calibration”. IEEE Transactions on Robotics and
Automation 5:3, pp. 345–358.

Umeyama, S. (1991). “Least-squares estimation of transformation parameters be-
tween two point patterns”. IEEE Transactions on Pattern Analysis and Machine
Intelligence 13.4, pp. 376–380.

Xms Penvision (2017). The ingenious way to create & complete forms. Newsletter.
URL: http://penvision.com/newsletter/r35release.html (visited on
2017-01-21).

Zhuang, H., Z. S. Roth, and R. Sudhakar (1994). “Simultaneous robot/world and
tool/flange calibration by solving homogeneous transformation equations of the
form ax= yb”. IEEE Transactions on Robotics and Automation 10:4, pp. 549–
554.

102

Document name

Date of issue

Document Number

Author(s) Supervisor

Title and subtitle

Abstract

Keywords

Classification system and/or index terms (if any)

Supplementary bibliographical information

ISSN and key title ISBN

Language Number of pages Recipient’s notes

Security classification

