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Abstract

In a competitive market like electricity retailing it is crucial for energy

providers to estimate risk and cost for �xed price contracts in order to set

competitive but not unpro�table prices. This report calculate three price

components that covers the wholesale and retail costs. Pro�le price com-

ponent is the expected electricity load to the expected spot prices in every

hour in the delivery period. Correlation price component is added due to

the fact that we do not know the realized outcome of load and spot price,

but from historical data we see that they are highly correlated. The de-

pendence structure between load and spot causes a higher expected cost.

The third component is a risk premium that quanti�es the risk that the

retailer relieves from the customer.

One retailers portfolio load and electricity spot price in south Sweden,

SE4, is modeled with autoregressive based models and simulated. De-

pending on a customer's risk exposure to the portfolio, this report also

calculate the three price components for individual customers. The time

series model approach was successful in capturing dependence in data.

The results also shows that it is possible to set the three price compo-

nents based on an individual customer's consumption behavior in an e�-

cient way.

Keywords: Fixed price contract, Electricity load, Electricity spot price,

vector autoregressive model, RAROC, Pro�le price, Correlation price, Vol-

ume risk
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1 Introduction

The purpose of this report is to calculate the underlying components in a �xed
price electricity contract. Unlike most other commodities, electricity is not
storable to a signi�cant extent. This leads to complications that is re�ected
in electricity spot prices. Due to the extreme behavior of electricity spot price
it is crucial for the retailer to understand the risks and costs of a �xed price
contract. In a progressively more competitive business like electricity retail-
ing, participants must have good estimates of future costs in order to o�er fair
prices to customers. When a customer wants to buy electricity at a �xed price,
energy providers estimates the costs of having this customer in its portfolio.
This cost depends on behavior of customer's load and the spot price. Energy
providers will sell electricity to the customer at a �xed price agreed up on to-
day. The electricity load consumed by the customer, which is unknown today,
will be bought by retailer for an unknown price from the spot market at future
time points. The �xed price will therefore depend on customers expected load
pro�les and the deviation from these as well as the expected spot prices and
the deviation from these. A more detailed explanation is given in the method
section. The report will also give suggestions of how to price contracts with
volume limits, which is the case in real life, were the customer only pays �xed
price if the consumed volume lies inside a certain interval from the prognosis.
The project includes modeling of electricity spot price and the retailer's port-
folio load at an hourly granularity in order to simulate scenarios and calculate
price components. The modeling approach is based on additive models, which
includes a deterministic part and a stochastic part. A similar approach was used
in Modeling electricity spot prices: combining reversion, spikes, and stochastic

volatility [Mayer, Schmid, Weber, 2015]. The modeling of stochastic spot price
and stochastic portfolio load is done with three independent time series models,
one autoregressive and two vector autoregressive processes. The dependence
structure of data analyzed in this report is the key ingredient, which motivated
the use of a time series approach which e�ectively uses lagged information be-
tween seasonal patterns and intra-day dependencies [Clements, Hurn, Li, 2015].
Based on the results of the portfolio's price components, this report will also
provide a suggestion on how the cost can be allocated to individual customers.
Contracts for three randomly selected customers and two �ctional extreme cus-
tomers will be priced and evaluated. The results indicates that a �xed price
contract should not be priced only based on expected load and expected spot
price. A risk premium and a correlation price component that arises from the
stochastic movements are needed in order to set a fair price. For individual
customers, these suggested price components can di�er signi�cantly.
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1.1 Research questions

The two fundamental issues to solve is summarized in the sentences below.

• Is it possible to construct joint a model for electricity spot price and
consumption load and use this model for pricing �xed price contracts and
their underlying risk premium?

• Is there an e�cient way of setting customer-speci�c risk premiums?

In order to answer the two main questions, the following questions must be
clari�ed �rst.

• What characterizes spot prices for electricity?

• What characterizes consumption load for electricity?

• What is the relationship between consumption load and spot price ?

• How does the consumption load pattern impact the risk premium for �xed
priced contracts?

1.2 Contribution statement

A large amount of research can be found on how to model electricity spot price
and electricity load. However, research on how these models can be used in
order to price �xed price contracts is sparse. In this thesis we use ideas from a
wide range of di�erent research reports and construct, to our knowledge, a new
approach of pricing electricity �xed price contracts in the Swedish electricity
market. We are not only modeling spot price and load, but also the dependence
structure.

1.3 Disposition

This report follows the following disposition.

Section 2: This segment provides an introduction to the Nordic electricity
market, both physical and �nancial. It discusses ways to hedge �xed price con-
tracts. Also characteristics of spot price and load are examined.

Section 3: The approach of how to quantify the price components of a
�xed price contract is explained in this section. It is derived from a pro�t and
loss function, where the remaining risk after hedge is mathematically explained.
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This chapter also explains how to allocate the portfolio price component into
individual customer contracts.

Section 4: This section explains the models used in this report, how they
are separated into di�erent sub-models and what they aim to capture.

Section 5: In order to make this thesis easier to reconstruct, section 5 pro-
vides a more detailed explanation of how models were selected and parameters
estimated.

Section 6: The purpose and approach of simulating outcomes for �xed price
contracts are explained here. It also describes how to adjust the outcomes from
P-measure to Q-measure.

Section 7: This section provides the results from simulating �xed price con-
tracts. It shows the results from both portfolio load and individual customer
load.

Section 8: Results are discussed in this section. Conclusions and recom-
mendations are given. Also ways of improvements are suggested and discussed.
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2 Nordic electricity market

In the year of 1996 the Swedish energy market was deregulated, which means
that electricity prices went from being set by regulation to be set by market
competition [Möller, Kahvedzic, 2008]. The following years, the Nordic market
included Sweden and Norway. The Energy markets of Finland was deregulated
in 1998 followed by Denmark in 1999/2000 [Kristiansen, 2004]. Nowadays the
Nordic market is split into several di�erent pricing areas for electricity. Sweden
was divided into four di�erent bidding areas in November 2011. The di�erences
in price for the bidding areas is due to transmission capacity that may congest
the electricity �ow between areas [Nordpool, 2017]. Electricity is transmitted
from areas with lower demand-to-supply ratio to areas with higher demand-to-
supply ratio to make the spot prices less volatile. The �nancial energy market
Nord Pool organizes two di�erent markets for physical delivery of electricity.
Elspot is a day-ahead auction where power is traded for delivery for each hour
the next day. There is also an intraday market provided by Nord Pool called
Elbas which makes it possible to balance the supply and demand up to one hour
before delivery [Kristiansen, 2004]. The purely �nancial instruments are traded
at NasdaqOMX. This report will further on focus on the day-ahead spot prices
from Elspot in the bidding area of south Sweden, SE4. An electricity retailer's
role in the market is to buy electricity from producers and sell to consumers.
This can be done with �oating price contracts or �xed price contracts.

Figure 1: Nord Pool bidding areas [Nordpool, 2017]
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2.1 Production and consumption

Just like any other commodity in a non-regulated market, the price of electricity
is determined by the equilibrium between supply and demand. In the electricity
market this varies every given hour, which gives electricity spot price special
characteristics. The demand curve is known to be inelastic compared to the
supply curve, also known as the merit order curve. A small change in demand
can result in a small change or an extreme change in spot price. This depends
on the amount of available electricity at a particular time point. Because of its
non-storability, the supply is very much impacted by factors such as water levels
in the water reservoir and wind speed for wind power production [Lindström,
Norén, Madsen, 2015]. The demand can vary from expected due to factors like
unexpected temperature, which makes the energy production planning di�cult
for the producers. Both in Denmark and in Germany the spot price markets
have experienced negative prices at several occasions the last few years. With
increasing amount of renewable energy, one can expect it to be more di�cult to
plan energy production for upcoming years, which can result in extreme prices
more frequently [Lindström, Norén, Madsen, 2015].

Figure 2: Merit order curve

An indication on dependence between spot price and load can be seen in
Figure 3.
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Figure 3: The plots show spot price (left) and portfolio load (right), for four dif-
ferent days. These days was chosen because they show maximum and minimum
values for spot price and portfolio load.

2.1.1 Spot price characteristics

As mentioned before, Spot price for electricity has several special characteristics.
From historical data one can see seasonal behavior in spot price, where the price
in general is higher during winter than in the summer. One can also in general
see higher prices when the demand is high, i.e in the middle of the day and
lower prices when demand is low, i.e on weekends or during night time. One
can also see that the spot price can be extremely volatile with time-varying
volatility, were spikes and drops are known to be a di�cult task to model.
Another characteristic is the mean reverting behavior. Shortly after an extreme
price jump, it tends to return back to a mean level. The mean reversion is
generally much faster after a jump than after a small deviation [Mayer, Schmid,
Weber, 2015]. Changes in spot price can be explained by a various number of
factors. Important factors for the Nordic market is temperature, grid load and
deviations from normal water levels in the water reservoir. Half of all electricity
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in Sweden are generated from hydro power, which stabilize the spot prices in
this region[Bureger, Graeber, Schindlmayr, 2014]. In this report we consider
the spot price in SE4 from 1 January 2013 to 31 December 2016.

Figure 4: Four years of hourly spot price in EUR/MWh

During 2015, the spot price level was signi�cantly lower than usual. If we
look at the water reservoir level in Sweden for the same period one can see a
clear elevated level in data for 2015, see Figure 5 and 6. This impacts not only
spot price, but also as we will see later in this report, it impacts correlation
between spot price and load.
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Figure 5: Water level in Swedish reservoirs in blue and a seasonal mean value
in orange

Figure 6: Water level deviation from expected in Swedish reservoirs in blue and
a logarithmic spot price in orange

2.1.2 Load characteristics

Grid load often show strong seasonal behavior and repetitive patterns. In the
Nordic market, the consumption is higher in the winter. Also consumption
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volume depends on the day of the week and hour of the day. Special pattern is
often seen on holidays and bridge days. Load is also known to have structural
changes and old load data could often be irrelevant. It is therefore important
to identify structural changes in historical load in order to get a good model
and forecast. When forecasting short time horizons it is also relevant to consider
weather forecasts as an in�uencing factor[Bureger, Graeber, Schindlmayr, 2007].
The energy provider that is being analyzed in this report is a big market player in
the Swedish electricity retail market. The portfolio load of �xed price customers
shows similar characteristics as the grid load. In this report we consider the
portfolio load in SE4 from 1 January 2013 to 1 December 2016.

Figure 7: Hourly portfolio load from 1 Januari 2013 to 1 December 2016

2.2 Physical electricity retailing

The physical electricity trading in the Nordic region is done at Nord Pool.
Market players that are interested in retailing electricity must send a purchase
o�er to Nord Pool before noon in order to deliver electricity for the hours the
next day. The same deadline goes for producers who want to sell electricity for
the following day. This creates a double auction, where the day-ahead prices
are settled. It is called a double auction because not only buyers but also sellers
have submitted orders [Houmoller, 2010]. As a secondary market, Nord Pool
o�ers intra-day trading on Elbas. This market allows players to balance between
supply and demand within the same day. One can expect the intra-day trading
on Elbas to increase in the future with more variable renewable energy sources
such as wind power [Schar�, Amelin, 2016]. In Sweden the customers of an
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energy provider can choose to buy electricity for a �oating price or a �xed price.
With �oating price, the retailer will invoice the customer according to what the
electricity price has been in the spot market every hour in the delivery period.
With a �xed price contract, the customer knows what the electricity costs per
MWh before consuming.

2.3 Financial electricity trading

Several factors distinguish electricity trading from other commodity trading.
First of all, electricity is hard to store. One exception is hydro pumped stor-
age power plants, whose capacity though is small in comparison to the total
consumption. Also the trading of electricity is constrained by transmissions
networks, which impede a global market. Because of the volatile behavior of
spot prices, many producers, retailers and consumers want to secure their pro�t
with futures or forward contracts. The delivery period for these kind of contracts
could be a speci�c day, week, month or a year [Bureger, Graeber, Schindlmayr,
2014]. NasdaqOMX o�ers purely �nancial contracts on the Nordic system price.
Futures and DS futures are �at baseload contracts that can be traded as options
or futures. These contracts cover every hour in a delivery period and pay the
di�erence between system spot price and forward price for every hour [Ernstsen,
Broomsma, Tegnér, Skajaa, 2017]. The �nancial contracts that can be bought
on NasdaqOMX are shown in Table 1.

Granularity
Futures

Nordic electricity Day, Week, Month, Quarter, Year
EPAD* Week, Month, Quarter, Year

DS Futures
Nordic Electricity Month, Quarter, Year

EPAD* Month, Quarter, Year
Options
Futures Month, Quarter, Year

DS Futures Quarter, Year
Minimum contract size 1 MW

*EPAD Di�erence between Area price and Nordic System Price

Table 1: Financial contracts o�ered on NasdaqOMX

These �nancial instruments help participants in the physical market to man-
age their risks. Because of the fact that Futures and DS Futures takes the Nordic
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system spot price as the underlying asset, there are remaining risks concerning
the area prices. The local pricing in the four areas can di�er from system
price, especially when consumption is high and the risk of congestion in the
grid is high. In order to manage area risk, one can buy or sell Electricity Price
Area Di�erentials (EPAD) [Energimarknadsinspektionen, 2016]. The buyer of
an EPAD obligation will be payed the di�erence between system price and area
price for a speci�c bidding area. If this di�erence is negative, the holder will
be obligated to instead pay this di�erence. EPADs are also traded as options
where the holder will not be obligated to pay if the di�erence is negative.

After hedging with these contracts there are still risks remaining. We can
not hedge a customer's expected load pro�le within a day and we can not hedge
against stochastic deviation from expected load. When a retailer makes a �xed
price contract deal with a customer, they also buy a futures contract for the
same delivery period as a hedge. As time passes by, the retailer buys contracts
with �ner granularity. At the time point when a �xed price is calculated, we
know the cost of a futures contract for the same period. For this reason, in this
report a �at futures contract will be set for the given period.
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3 Method

As described in the previous section some risk remains after hedging. First of
all a retailer must estimate the cost of a customer's load pro�le, which gives the
pro�le price component. If the customer is expected to consume more electricity
when the expected spot price is high, the pro�le price is higher. Apart from this,
the unexpected movements of spot price and customer load must be considered.
If load has a positive correlation with spot price, which is a common scenario,
we expect a higher cost. A drop in load causes the retailer to sell the pre-bought
electricity on the spot market for a lower price and an unexpected peak in load
causes the retailer to buy extra electricity on the spot market for a higher price.
The extra cost that arises from correlation between spot price and load will be
covered by a correlation price component. The remaining uncertainties will be
quanti�ed and priced as a risk premium.

This report will take three pricing components, pro�le price, correlation price
and risk premium in consideration. When the invoice reaches the customer,
more components have been added to the price such as taxes and network
grid fee, which will not be examined in this report. Here we will focus on the
wholesale cost for the retailer and how this a�ects the price components just
mentioned. In order to calculate these components we will set up autoregressive
based models and simulate possible scenarios.

3.1 Price components derived from the P&L function

The following equation explains the pro�t and loss function for a �xed priced
contract.

profit = P

n∑
t=1

L(t)−
n∑
t=1

F (0, t)λ−
n∑
t=1

(L(t)− λ)S(t) (1)

For every hour in the contract, the retailer will sell a volume L(t) at a �xed
price P EUR/MWh. As a hedge, the retailer will buy a volume λ as close to

ˆL(t) as possible when the contract is signed. ˆL(t) is the expected customer load
and λ is bought at a forward price F (0, t). There are several restrictions for
λ in the market today. Eon can only hedge with base load contracts and at
a quantity unit of 1 MWh. λ will therefore be a constant integer during the
settlement period. The load that deviates from the hedged volumes must be
bought from the spot market at a price of S(t). L(t) and S(t) are unknown
when the �xed price P is set.

In order to set a �xed price P, the approach is to �rst set a fair price, where
the expected pro�t and loss is zero. The second step is to price the risk of loss
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with a risk premium. The pro�le price component describes the expected costs

due to the fact that ˆL(t) deviates from λ. The correlation price component

describes the expected costs due to the fact that L(t) deviates from ˆL(t). This
deviation is generally correlated with deviations in the spot price and the �xed
price must take this in consideration. The price components are explained in
the equations below, which are derived from the pro�t and loss function.

profit = P

n∑
t=1

L(t)−
n∑
t=1

F (0, t)λ−
n∑
t=1

(L(t)− λ+ ˆL(t)− ˆL(t))S(t)

P

n∑
t=1

L(t) =

n∑
t=1

F (0, t)λ−
n∑
t=1

S(t)λ+

n∑
t=1

S(t) ˆL(t)+

n∑
t=1

(L(t)− ˆL(t))S(t)+profit

P =

∑n
t=1 F (0, t)λ+

∑n
t=1 S(t)( ˆL(t)− λ)∑n

t=1 L(t)
+

∑n
t=1(L(t)− ˆL(t))S(t)∑n

t=1 L(t)
+ profit

(2)

From equation 2 one can �nd the pro�le price component and the correlation
price component.

Pprofile + risk =

∑n
t=1 F (0, t)λ+

∑n
t=1 S(t)( ˆL(t)− λ)∑n

t=1 L(t)
(3)

Pcorrelation + risk =

∑n
t=1(L(t)− ˆL(t))S(t)∑n

t=1 L(t)
(4)

As mentioned earlier the �rst step is to set a fair price by expect a zero
return on the contract. The expected pro�t and loss function is then set to be
equal to zero.

(Pprofile+Pcorrelation)

n∑
t=1

ˆL(t) = E
[ n∑
t=1

F (0, t)λ+

n∑
t=1

S(t)( ˆL(t)−λ)
]
+E
[ n∑
t=1

(L(t)− ˆL(t))S(t)
]
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Because of the assumption that F (0, t) = ˆS(t), the two price components
can be written as the following.

Pprofile =

∑n
t=1

ˆS(t) ˆL(t)∑n
t=1

ˆL(t)
(5)

Pcorrelation =

∑n
t=1( ˆL(t) ˆS(t) + cov[S(t), L(t)]− ˆL(t) ˆS(t))∑n

t=1
ˆL(t)

=

∑n
t=1 cov[S(t), L(t)]∑n

t=1
ˆL(t)
(6)

If the �xed price is set to P = Pprofile+Pcorrelation we expect to have a zero
return on the contract. However, the �xed price agreement puts the risks on the
retailer and for this they want to be compensated with a risk premium, rp. The
risk premium is calculated with a Risk adjusted Return on Capital (RAROC)
based approach, with potential exposure as risk measure [Prokopczuk, Schindl-
mayr, Rachev, Trück, 2007].

RAROC =
Expected return

Economic capital
(7)

In the case of an electricity retailer, RAROC can be seen as a hurdle rate
µ. The rate that is the minimum yield at which an investment is considered
pro�table enough to make. Economic capital is often measured in Value at risk,
which measures a worst case scenario at a certain con�dence level. In our case
economic capital is calculated as the 99% quantile of the pro�t and loss distri-
bution. The hurdle rate will in this report be 10%.

rp =

(
q0.99

[∑n
t=1 F (0, t)λ+

∑n
t=1(L(t)− λ)S(t)∑n

t=1 L(t)

]
−(Pprofile+Pcorrelation)

)
µ

(8)

Final expression of the �xed price is given by equation 9.
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P = Pprofile + Pcorrelation + rp (9)

3.2 Portfolio and individual customer perspective

An electricity retailer with a large portfolio will not be able to model every indi-
vidual customer's load. Therefore this report aims to simulate the portfolio load
and from this set individual prices to each customer depending on their con-
tribution to the portfolio risk. One way of doing this, showed by [Prokopczuk,
Schindlmayr, Rachev, Trück, 2007], is to approximate the customer load as

li(t) = ˆli(t) + βi(L(t) − ˆL(t)), where ˆli(t) is the expected load of customer i.
li(t) can be seen as customer i's load prognosis plus deviation that impacts the

portfolio. L(t) − ˆL(t) is the deviation from expected portfolio load. Beta is
calculated from historical data and is an estimate for how risky a customer is
to the portfolio.

βi =
covariance(li − l̂i, Lp − L̂p)

variance(Lp − L̂p)
(10)

However this requires several years of historical data from a customer to
get this approximation of β staunch. The risk of doing this with only one year
of data would be that we overestimate the deterministic load. Instead, in this
report a similar method will be used inspired by component value at risk, where
the sum of individual assets value at risk will be equal to the portfolio value at
risk which can be written as the following [Hull, 2015].

βi =
covariance(li, Lp)

variance(Lp)
(11)

This β will then be used in order to estimate customer load paths.

3.3 Volume limits for �xed price contracts

In a �xed price contract one upper limit and one lower limit of total delivery
period load is determined together with the customer. This report will focus
on one year contracts and thus the accumulated load for one year. The retailer
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hedges the expected accumulated volume and the exposure to volume risk in-
creases with the load deviation from these hedged volumes, because of larger
exposure to the spot price market. The risk premium must therefore re�ect how
the limits are set. If the customer consume more or less than the limits they
will pay the extra costs that arose, if it turned out to be an additional cost.
From historical data it is hard to estimate a probability for unsystematic load
deviation. For example if a high electricity consuming machine breaks down or
is installed during the contract period.

The �rst suggested method was based on the historical volatility of customer
load deviation. That is the deseasonalized daily load returns of the customer.
Deseasonalized with the same type of season function as for portfolio load model
which will be explained in the model description section. The aim is to calculate
a probability of being inside the limits and multiply this with the risk premium
calculated from the scenario without limits. Goodness of �t tests were done
for the daily stochastic load returns for four customers in order to �nd a good
distribution for the calculations. These returns are approximately independent
identically distributed. Many distributions could be rejected just by looking at
histogram of data. In order to get a distribution of yearly deviation from daily
distribution, it is preferable for the distribution to be in�nitely divisible. Data
also shows heavy tails and skewness. Normal inverse Gaussian (NIG) distribu-
tion is a distribution that has these properties and was therefore chosen as the
best �t to data. The property of in�nitely divisibility means that the sum of
NIG-variables is also NIG-distributed. If X ∼ NIG(α, β, µ, δ), then the sum of
independent X is also NIG distributed, Xsum ∼ NIG(α, β, cµ, cδ) [Schlösser,
2014].
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Figure 8: Normalized histogram of daily stochastic load returns from four dif-
ferent customers and �tted NIG distribution represented by the blue lines. In
some cases the distribution shows clear skewness and heavy tails, which can be
seen in these �gures

The results from this method was however not su�cient to give a good esti-
mation of the real world probability distribution for a customer's accumulated
load. The results showed zero probability for total customer load to be outside
10% from expected for a whole year. The same results was found with a boot-
strap method were 365 historical stochastic load returns was randomly chosen
with replacement and summed up. One conclusion is that its not su�cient to
look at historical load deviations in order to estimate the risk of large changes
in total yearly load. As mentioned before this can be explained by unsystematic
risks.

The third suggestion is to look at actual contract outcomes and see how much
customers have under- or over consumed during several delivery periods. This
will give an indication on how the accumulated load can di�er from expected.
It is hard to look at historical data and estimate historical prognosis, due to
the fact that we do not know what information the retailer had at the time.
If a customer double its consumption from one year to another, it is hard to
tell today if this was included in the prognosis or not. With this approach we
will not have to estimate historical prognosis. The data from actual contract
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outcomes will provide the information needed. Accumulated load deviation from
expected for 3226 contracts was examined and �tted into a NIG distribution.
With this method, a customer will only pay for the risk inside these volume
limits, which is the risk the retailer takes.
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4 Model description

The purpose of modeling spot price and load is to simulate spot price paths
and load paths pairwise in order to capture their correlation. Because of this,
the model must include a dependency between spot price and load. The model
tested in this report is divided in three di�erent parts. Deterministic parts of
spot price and load are estimated separately. Daily stochastic movements are
modeled by a vector autoregressive model, that include daily spot price devi-
ation, load deviation and temperature deviation from expected. Temperature
is included because it is a key driver for spot price and load. Generally cus-
tomers consume more electricity than expected when the temperature is lower
than expected and this results in a negative correlation between system load
and temperature. The temperature deviation data used in the model comes
originally from historical temperatures in the region of SE4, which are weighted
according to the energy provider's portfolio. From this weighted temperature
the seasonal trend is removed and remaining data is scaled by a factor. This
remaining stochastic temperature data is the temperature deviations used for
estimating the vector autoregressive model. For both spot and load, an addi-
tional hour is added in spring due to day-light saving, equal to the mean of the
two hour surrounding it. The double hour in fall is replaced by one hour with
the right mean value.

For the inner daily, hourly stochastic we tried to model the deviation in load
with an ARMAmodel, which can also be referred to as a SARIMA(1, 0, 1)x(1, 0, 1)24
model [Bureger, Graeber, Schindlmayr, 2007]. However, this model was not
su�cient to capture the negative autocorrelations around lag 12. Instead, the
hourly load deviations were modeled by an AR(p) process. A more thorough
explanation is given in the next section. The corresponding spot price deviation
will be modeled by a vector autoregressive process that includes 24 hour pro-
cesses, that is updated once a day. This is also how the real hourly prices are
set in the market. At around 12:42 CET prices for all 24 hours for the next day
are determined [Nordpool, 2007]. The innovations for spot and load at hourly
granularity will be correlated according to historical data.

The spot price model is built in three steps. As mentioned before one part of
the function captures the deterministic prices, seasonal behaviors and is referred
to as fspot(t). The second part captures stochastic prices at a daily granular-
ity, Y (d) and the third part captures stochastic prices at hourly granularity,
Xspot(t). here t denotes the time in hour and d denotes the time in days.

S(t, d) = fspot(t)e
Y (d)eXspot(t) (12)
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Portfolio load is modeled similar to the spot model and can also be described
in three sub-models. One deterministic function fload(t, d), one stochastic pro-
cess for daily deviation load(d) and a process for the hourly deviation Xload(t).

L(t, d) = fload(t, d) + load(d) +Xload(t) (13)

4.1 Breaking down spot model in di�erent processes

For a better understanding of what data the di�erent processes aim to capture,
we will have to break it down in detail. S(t) denotes the spot price in hour t
and ¯S(t) is the price in daily granularity, i.e the mean of the 24 hourly prices
for one day. Deterministic spot will be captured by α exp(m+b+h), were m, b,
and h are dummy variables for months, days and hours respectively. The spot
price can be separated in the following way, derived from equation 12.

S(t) = α exp(m+ b+ h)
¯S(t)

α
exp(−m− b)S(t)

¯S(t)
exp(−h)

ln(S(t)) = ln(α) +m+ b+h+ ln( ¯S(t))− ln(α)−m− b+ ln(S(t))− ln( ¯S(t))−h

ln(fspot(t)) = ln(α) +m+ b+ h (14)

Y (d) = ln( ¯S(t))− ln(α)−m− b (15)

Xspot(t) = ln(S(t))− ln( ¯S(t))− h (16)

No correlation or dependency between Xspot(t) and Y (d) was found in the
data, which enabled the split to be made in this way. This is shown in Figure
9 and 10.
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Figure 9: Orange graph shows daily spot price plus the hourly pro�les. How the
hourly pro�les are determined is explained in the next section. Blue shows the
hourly spot price and the green graph shows the hourly spot price deviations,
Xspot(t). The data includes four years of hourly spot price from area SE4, from
1 January 2013 to 31 December 2016
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Figure 10: Scatter plot between hourly stochastic spot price and the remaining
spot price. The plot shows no clear dependency.

4.2 Deterministic spot and load models

Deterministic functions are estimated for both spot prices and load in order
to �nd the expected values for every hour. Around this, stochastic processes
will later be applied. When simulating future outcomes, the spot forward curve
will be used instead of the seasonal spot function. It will be multiplied with a
stochastic factor with expectancy 1, for every simulated hour.

fspot(t) = (α0 + α1t) exp
( 12∑
i=1

1 (month)i(t)m(i) +

7∑
k=1

(1 (day)k(t)bspot(k)) +

12∑
i=1

7∑
k=1

24∑
j=1

(1 (hour)i,k,j(t)hspot(i, k, j))
)

(17)

First of all the spikes and drops are removed from data and replaced by the
24 hour moving average. This is done by removing the prices which lies below
the �rst quartile minus three times the inter-quartile range or above the third
quartile plus three times the inter-quartile range [Mayer, Schmid, Weber, 2015].
The spikes and drops are replaced by the 24 hour moving average value. Besides
from the linear trend estimations, the estimations are made for the logarithm
of the spot price ln(S(t)). α0 and α1 are estimated as a linear regression of four
years of spot prices and captures a linear trend. Every month has a dummy
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variable denoted m(i). bspot(k) are dummy variables for every weekday. Besides
bspot(k), every weekday in every month has dummies for every hour hspot(i, k, j),
which will capture the inner daily expected pro�le. For the deterministic load,
real data are �tted into the model in equation 18.

Figure 11: Four years of hourly ln(S(t)) and the deterministic seasonal function

fload(t, d) = λ1 + λ2 cos
( 2π

365
(d− λ3)

)
+λ4 cos

( 4π

365
(d− λ5)

)
+ (18)

7∑
k=1

(1 (day)k(t)bload(k)) +

12∑
i=1

7∑
k=1

24∑
j=1

(1 (hour)i,k,j(t)hload(i, k, j))
)

Every weekday is given a dummy variable bload(i) and every hour in every
weekday in every month is given a dummy variable hload(i, k, j).
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Figure 12: Four years of hourly L(t) and the deterministic seasonal function

For both deterministic load and spot price 25 December and 1 January
are estimated as Sundays. 24 December and 31 December are estimated as
Saturdays. The deterministic models results in 2016 unique hourly dummy
values of 8760 hours in a normal year.

Figure 13: Daily portfolio load pro�les for di�erent months and weekdays
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Figure 14: Daily spot price pro�les for di�erent months and weekdays

4.3 Daily stochastic models

When estimating daily stochastic Y (d) and load(d), daily fspot(t) and fload(t, d)
are subtracted from real daily data. The daily data consist of one value per
day. This value is the mean of all 24 hours within that day. This means that
hspot(i, k, j) and hload(i, k, j) dummies are unused for this task. The remaining
process will be covered by following vector autoregressive model.

Y (d) = η1Y (d− 1) + η2temp(d− 1) + η3Y (d− 2) + ε1 (19)

load(d) = η4load(d− 1) + η5temp(d− 1) + ε2,k (20)

temp(d) = η6temp(d− 1) + η7temp(d− 2) + ε3,k (21)

Temperature residuals, ε3,k are estimated as normal distributions with dif-
ferent standard deviation for every month, k = 1, 2, ..., 12. Load residuals,
ε3,k, k = 1, 2, ..., 12 are estimated as non central Student's t distributions with
di�erent parameter values for every month. The reason for using non central
Student's is the heavy tails and skewness shown in data. Figure 15 shows prob-
ability plots for two di�erent month, comparing load residuals �tted as normal
distribution with load residuals �tted with non central Student's t.
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Figure 15: The plots on the left shows load residuals �tted with non central t.
The plots on the right shows residuals �tted as normal distributions.

Spot price residuals, ε1 are heavy tailed and shows no seasonal pattern.
They are estimated as Laplace distributions. In order to capture the dependence
structure from residuals, they will be generated from a multivariate normal dis-
tribution with di�erent correlation for every month. Load residuals and spot
price residuals are then quantile transformed to non central t and Laplace dis-
tribution respectively. The choice of lags of each vector process was determined
with Likelihood ratio tests.

26



Figure 16: qq-plot of daily spot residuals against the �tted Laplace distribution

Another approach to �t a distribution to residuals from daily spot price pro-
cess is to transform them to standard normal distribution with the following.

x̃ =
x

(1 + |x|α)γ

The parameters α and γ are optimized with OLS, so that the transformed
residuals x̃ �ts a standard normal distribution. x are the residuals before trans-
formation scaled by the standard deviation.

x =
ε1
σ
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Figure 17: probability plots of daily spot residuals against Normal distribution
to the left and the �tted Laplace distribution to the right. The plot in the
middle shows transformed residuals against standard normal distribution

Laplace distribution was chosen as the best �t and will be used when simu-
lating.
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Figure 18: Real data and simulations from the daily vector autoregressive pro-
cess

4.4 Hourly stochastic models

To model the remaining load and spot price movement, the hourly deviations,
daily mean load from portfolio and spot prices from Nord Pool and the hourly
deterministic dummies are subtracted from the hourly load from portfolio and
spot prices from Nord Pool. The remaining data for load shows high dependency
for time lags. For this reason, an AR(p) process will be estimated to the data.
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Xload(t) = γ1,kXload(t−1)+γ2,kXload(t−2)+...+γp,kXload(t−p)+σkξload (22)

For all parameters in the load process, two di�erent values will be given
(k = 1, 2) depending on whether it is summer or winter. During the period
from 1 May to 31 October the parameters has the notation k = 1 and for the
other half of the year the notation is k = 2. This is because the stochastic hourly
data behaves di�erently over a year. Also the standard deviation of innovations
will be di�erent for the two periods. The approach of parameter estimation
and lag selection are explained in the next section of this report. As mentioned
before, hourly spot deviation is modeled by a Vector-Auto Regressive model
updated once a day according to equation 23.

Xd+1 = AXd + Ed+1 (23)

A =


a1,1 a1,2 . . . a1,24
a2,1 a2,2 . . . a2,24
...

...
. . .

...
a24,1 a24,2 . . . a24,24



Xd =


xt−24
xt−23
...

xt−1



Ed+1 =


et
et+1

...
et+23



Load process innovations, ξload are normally distributed. Spot innovations
espot are Laplace distributed and will be correlated not only with other spot
innovations in the same day, but also with the corresponding innovation in the
load process. espot will be generated by a 24-multivariate normal distribution
and quantile transformed into Laplace distribution. In order to get the right
correlation between ξload and espot, we use the already generated espot and ex-
tract uniform distributed variables by putting the standard normal distributed
espot in cumulative normal distribution functions. We denote the uniformly
distributed variables from the spot process by V1. In order to get correlation
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between spot and load innovations one can follow the method from Generating

Bivariate Uniform Data with a Full Range of Correlations and Connections to

Bivariate Binary Data, [Demitras, 2013].

1. Calculate a from a = − 5
2 + 1

2

√
ρ+49
ρ+1 , where ρ is Spearman's correlation.

2. Generate u from a uniform distribution U(0, 1)
3. Generate W from a Beta distribution, Beta(a, 1)
4. If u < 0.5, set V2 = |W − V1|, otherwise set V2 = 1− |1−W − V1|

V2 is then put into a inverse cumulative normal distribution with the wanted
standard deviation and we have generated load innovations with correlation with
the spot innovations. Parameters in the hourly spot price process are estimated
in R with the vars package. The unrestricted model, containing 576 parameters
was tested against restricted models where insigni�cant parameters were set
to zero, with likelihood ratio tests. These test resulted in a model with 370
parameters.

Figure 19: Real data and simulations from the two hourly processes

Values of estimated parameters from the stochastic models can be seen in
Appendix.
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5 Model estimation and selection process

This section aims to describe how the model parameters was estimated. It will
also explain the selection of lags for each model.

5.1 Deterministic functions

All dummy variables in the deterministic spot price function and the deter-
ministic portfolio load functions was determined through ordinary least squares
regression. For both load and spot price, the �rst estimation was the yearly
trends. When the yearly trend was removed from spot price data, dummies for
months was estimated. In the corresponding load process, the seasonal cosinus
trend was estimated. These trends was then removed from data and daily dum-
mies was estimated for both spot price and load. The last step was to estimate
the hourly dummies. Daily mean values for spot and load was removed from
the data, in order to estimate the daily pro�les with OLS.

5.2 Daily Vector autoregressive model

The �rst step of estimating the daily vector autoregressive model, was to �nd
good start values. This was done with the Python package statsmodels, where
three di�erent maximum time lags was tested, one, two and three days. The
model with two days of time lag was chosen as the best joint model according
to BIC and AIC.

Y (d) = η1Y (d−1)+η2temp(d−1)+η3load(d−1)+η4Y (d−2)+η5temp(d−2)+η6load(d−2)+ε1
(24)

load(d) = η7Y (d−1)+η8temp(d−1)+η9load(d−1)+η10Y (d−2)+η11temp(d−2)+η12load(d−2)+ε2,k
(25)

temp(d) = η13Y (d−1)+η14temp(d−1)+η15load(d−1)+η16Y (d−2)+η17temp(d−2)+η18load(d−2)+ε3,k
(26)

In order to get a more �exible model with certain parameters set to zero, the
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wanted parameters were optimized with maximum likelihood. The parameters
that maximized a multivariate normal distribution with an initial estimation
of the covariance matrix Σ was chosen. The initial value of Σ was set to the
covariance matrix of the dataset containing spot price, load and temperature.

First of all, parameters in the temperature process, equation 26 concerning
old values of load and spot price was set to zero. This was an intuitive as-
sumption that load and spot price does not e�ect the temperature. At least not
within a time frame of a couple of days.

The selection process after that was an iterative process where one parameter
at a time was added or set to zero. The new model was tested against the old
model with likelihood ratio test, selecting the new model if it could not be
rejected at a 5% signi�cance level.

Likelihood ratio = 2(L(θ∗)− L(θ)) ∼ χ2(1) (27)

Given the chosen parameters, we could study the behavior of the residu-
als. Marginal distributions were �tted for load, temperature and spot price
residuals. In order to capture dependence structure, correlation matrices for
all twelve months were estimated in order to �nd a dependence structure for
the joint distribution. Then marginal distribution for the three residual types
was estimated. Load and temperature residuals was given di�erent distribution
parameters every month.

5.3 Gaussian copula approach for residuals

The theory behind the estimation of daily VAR-process can be explained by
copula theory. When estimating the daily VAR-process, the optimal parame-
ters maximized the log likelihood value of a multivariate normal distribution for
the residuals. A gaussian copula model can be written as equation 28 [Kwak,
2016].

C(xLoad, xTemp, xSpot) = Φjoint(Φ
−1
1 (F1(εLoad)),Φ

−1
2 (F2(εtemp)),Φ

−1
3 (F3(εSpot)))

(28)

Φjoint is the joint distribution function, which in this case is a multivariate
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normal distribution with a 3x3 correlation matrix speci�ed by the correlation be-
tween the inverse univariate normal distributions Φ−11 (u), Φ−12 (v) and Φ−13 (w).
The variables u, v and w are uniform distributed and Fk=1,2,3 are the marginal
distributions of the copula. The following properties can be shown.

If εload ∼ Non central t , F1, then u = F1(εLoad) where u ∼ uniform(0, 1)

If εTemp ∼ Normal, F2, then v = F2(εTemp) where v ∼ uniform(0, 1)

If εSpot ∼ Laplace, F3, then w = F3(εSpot) where w ∼ uniform(0, 1)

5.4 Hourly spot price vector autoregressive model

The model for hourly spot price was estimated using vars package in R. Insignif-
icant parameters were set to zero, with t statistics. The threshold value for the t
statistics was chosen by likelihood ratio test of the joint model. The best model
according to the likelihood ratio test, was found with threshold equal to 0.92.
With this threshold value, 370 signi�cant parameters were left. In the Figure
20, one can see the autocorrelation function for both real data and simulated
data from the estimated model.
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Figure 20: Autocorrelation functions for real data and simulated data

5.5 Hourly load AR(p) process

In the hourly load model, the parameters was estimated using statsmodels.api.tsa
package in python. As explained earlier, the estimation includes two models.
One AR(p) model for summer months and one AR(p) model for winter months.
Which months to include in each process was determined by maximizing the
sum of log likelihood for the two model estimations. The optimal was found by
explaining the data from 1 May to 31 October as the summer process and the
rest as the winter process. The number of lags in each model was automatically
chosen with BIC-selection, as a built in method in the python package. This
resulted in 27 parameters for the summer process and 26 parameters for the
winter process, see Appendix. The Autocorrelation functions for both real data
and simulated data can be seen in Figure 21.
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Figure 21: Autocorrelation functions for real data and simulated data
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6 Simulation approach

The purpose of simulating spot prices and portfolio electricity load is to get a
distribution of �xed price outcomes, i.e �xed prices that would level out the
pro�t and loss function to zero. For every simulation we calculate a fair price
P. In this report, 10 000 simulations are made for spot price deviations with
corresponding portfolio load deviations. The simulated period will be the whole
year of 2018 with hourly granularity. These deviations are the stochastic parts
of 2018, and will be combined with prognosis in the following way.

S(t) = forwardspot(t)e
X(t)−µspot(t) (29)

L(t) = prognosisload(t) + Y (t)− µload(t) (30)

X(t) and Y (t) are simulations. µspot and µload are adjustments to force the
mean of every simulated hour to be equal to the forward curve and load prognosis
respectively. They can be seen as empirical Girsanov kernals that transform the
simulated values from P-dynamics to Q-dynamics. Both retailers and producers
want to secure future incomes by eliminate the risk of high spot price and low
spot price respectively. It results in a symbiosis between producers and retailers
in a complete market. In fact both negative and positive risk premiums for
forward contracts have been found empirically[Benth, Ortiz-Latorre, 2013]. Ge-
man and Vasicek argued that the general case in power markets, the consumers
hedge using forward contracts which are close to delivery, while producers hedge
their power generation in the long end. This results in a tendency for positive
risk premiums in the short term and negative in the long term [Geman, 2005].
When transforming P-dynamics to Q-dynamics in electricity pricing one does
not demand Q to be a martingale measure and we can keep the mean reverting
dynamics in the stochastic processes. The reason is the non-storability, which
unable traders to invest by purchasing electricity in the spot market and sell at
a future time. Electricity must be consumed instantly after bought on the spot
market. This enable us to use µspot and µload as Esscher transforms for spot
price and load dynamics from P to Q [Benth, Schmeck, 2014].

Every simulation gives a one year scenario of S(t) and L(t) which results in a
fair price P. After 10 000 simulations we receive a distribution of 10 000 possible
fair price outcomes and we can calculate the price components explained in the
method section.
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Figure 22: Four di�erent years of real spot price in the plot to the left. The
right plot shows �ve di�erent simulations of 2018
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7 Results

The performance of the model is crucial to the resulting price components.
Because of this, the results are split in two sections. One section will show the
model dynamics and performance, as well as the best estimation of parameters.
The second result section will give the resulting price components for di�erent
customers in di�erent scenarios.

7.1 Model results

The estimated parameters in the model is shown in Appendix. This section
will provide some measures of the model's performance. Table 2 shows the
relevant moments of the stochastic processes, without deterministic functions,
compared to the real data. Skewness and Kurtosis are measured as Pearson's
standardized moments. The results from simulated data are calculated from all
10 000 simulations.

Variance Skewness Kurtosis
Real load 4641.6470 0.699115 5.650725

Simulated load 4235.3476 -0.0994 4.3535
5% and 95% simulated percentiles (3027, 5756) (−0.8236, 0.6413) (3.1391, 6.1729)

Real spot 0.1065759 0.98716 15.53115
Simulated spot 0.1126 1.0006 5.0703

5% and 95% simulated percentiles (0.0684, 0.1806) (0.4901, 1.7721) (3.2295, 8.7792)

Table 2: Moments from real data and simulated data

Table 3 shows di�erent correlation measures between stochastic spot price
and stochastic load, both real data and simulated. The results from simulated
data are calculated from all 10 000 simulations.

Pearson′s ρ Kendall′s τ Spearman′s ρ
Real data 2013 0.4077 0.2368 0.34818
Real data 2014 0.2827 0.1849 0.2773
Real data 2015 0.0652 -0.0063 -0.0115
Real data 2016 0.3991 0.2755 0.3882
Simulated data 0.2505 0.1618 0.2395

5% and 95% simulated percentiles (0.0647, 0.4279) (0.0391, 0.2807) (0.0581, 0.4124)

Table 3: Dependence measures from real data and simulated data
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Low dependence between spot price and load is found in data from 2015.
This can partly be explained by high levels in the Swedish water reservoirs this
year, which impacted spot price. This was explained in the subsection Spot

price characteristics.

Figure 23: Scatterplot of four years of real stochastic load and spot price to
the left. The right scatterplot shows stochastic load and spot price from four
simulations of 2018

7.2 Price components results

7.2.1 Volume limits

This subsection will demonstrate what impact the volume limits have to the risk
premium. During a delivery period, a customer is allowed to consume an accu-
mulated load within the upper and lower limit. The most common limit is 10%
deviation from expected accumulated load for yearly contracts. But in some
cases this number can vary from 5% to 30% depending on what the customer
wants. In the graphs below one can see how the risk increases with accumulated
load deviating from expected. From the plots one can see that the total load
volume does not impact the pro�le price nor the correlation price component.
These price components only take into account when the extra electricity is
consumed. However, if a customer consumes a total volume that is far o� from
the hedged volume, it will increase risk exposure. The plot below shows 5%
and 95% quantiles, the pro�le price and fair price of a contract when risk is
neglected. The x-axis represent the accumulated load in percentage of the ex-
pected accumulated load, i.e the load that is hedged when the contract is signed.
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Figure 24: Price distribution on the y-axis and total deviation from expected
total load on the x-axis. Horizontal green and red lines are the 95% and 5%
quantile of the price distribution. The horizontal blue line is the pro�le price
component and the orange line has correlation price component added. The
vertical green line is the hedged volume and the other two red lines are 10%
deviation from this.

It is clear that the price distribution changes when accumulated load devi-
ates from hedged volume. A small di�erence between the 95% and 5% quantile
means low risk. From the Figure above the minimum risk is found when ac-
cumulated load is lower than the hedged volume. A slight over-hedge of the
portfolio load seems to be optimal in order to minimize risks.
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Figure 25: Probabilities of accumulated load in percentage. The data is out-
comes from 3226 di�erent contracts. The red vertical lines are the lower and
upper limits of 10% from expected accumulated load

The histogram in Figure 25 shows the probability for customers accumulated
load deviation from expected, i.e the probabilities on the x-axis from the plot
in Figure 24. A �tted NIG distribution can be seen as the blue line from the
plot in Figure 25. The risk premium for a customer calculated without limits
will be multiplied with the probability of ending up inside these limits in order
to get a risk premium for a certain volume limit interval. In the case of lower
and upper limits of 10% from expected, risk premium included in the �xed price
will be calculated according to equation 31. NIGcdf refers to the �tted Normal
inverse gaussian cumulative distribution function. Notice that the probability
calculated is conditional to values larger than -1, due to the fact that accumu-
lated load can not be less than -100% from expected.

rpwith limits = rp
NIGcdf(0.1)−NIGcdf(−0.1)

1−NIGcdf(−1)
(31)

In the United Kingdom, the market experienced a 12.6% decline in electricity
demand for industrial consumers from the year of 2008 to 2009 [UK Govern-
ment, 2017]. This could be explained by the �nancial crisis at the time. As
we saw from spot price characteristics, a decline in demand can result in lower
spot prices. Electricity retailers would in this case be forced to sell super�uous
electricity for a low price on the spot market. The seemingly large dependence
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in grid consumption during extreme events is a risk factor that is not included
in this paper. This could be analyzed in order to fully understand the risk of
accumulated load deviation from expected.

7.2.2 Portfolio

For all prices calculated in the following subsections are calculated with a hurdle
rate of 10%. Also the volume limits are set to -10% and +10%. The �xed prices
are calculated with two di�erent β values. Summer β, is used from 1 May to 30
September. For the other dates, winter β is used. Results from portfolio simu-
lations is shown in this subsection. A common way of pricing contracts, as men-
tioned earlier in the report is to price customer pro�le components individually
and add portfolio risk premium and portfolio correlation price. When viewing
the whole SE4 portfolio as one customer, the price components in EUR/MWh
can be seen in Table 4. These results are calculated for a yearly contract of 2018.

Summer β 1
Winter β 1

Pro�le price 31.3822
Correlation price 0.2496
Risk premium 0.0726
Total �xed price 31.7044

Table 4: Price components in EUR/MWh for portfolio.

The price distribution can be seen in Figure 26. The left red line is pro�le
price component, the right red line is pro�le price plus correlation price com-
ponent which is the mean of the price distribution. The right green line is the
99% quantile and the left green line is the mean price plus the risk premium.
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Figure 26: Price distribution for portfolio, with the three pricing components
and the 99% quantile.

Contracts with shorter delivery periods was also calculated. Results from
�rst and second quarter of 2018 is shown in Table 5.

2nd Quarter 4th Quarter
Pro�le price 28.3194 32.1451

Correlation price 0.1619 0.4153
Risk premium 0.0767 0.0981
Total �xed price 28.5580 32.6585

Table 5: Price components in EUR/MWh for portfolio for quarterly contracts.

A signi�cant di�erence can bee seen in the pro�le price and the correlation
price component for the two di�erent contract periods. Historical data shows
that the dependence between spot price and load is higher in the 4th quar-
ter than in the 2nd quarter, which explains the di�erence in correlation price
component.

7.2.3 Customer A

From looking at customer A's historical load data and the prognosis for 2018,
one can expect a lower �xed price. Costumer A consumes more electricity in
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summer time than in winter time.

Figure 27: 2018 load prognosis for customer A

Figure 28: Price distribution for customer A, with the three pricing components
and the 99% quantile.
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Summer β 1.5723 10−5

Winter β 8.4100 10−5

Pro�le price 29.8439
Correlation price 0.0808
Risk premium 0.0400
Total �xed price 29.9647

Table 6: Price components in EUR/MWh for customer A.

The winter β is larger than the summer β. One can expect a large di�erence
in �xed price depending on the delivery period. Table 7 shows �xed price
components for quarter 2 and quarter 4.

2nd Quarter 4th Quarter
Pro�le price 27.5870 31.8732

Correlation price 0.0316 0.1899
Risk premium 0.0777 0.0440
Total �xed price 27.6963 32.1071

Table 7: Price components in EUR/MWh for quarterly contracts for customer
A

7.2.4 Customer B

By looking at Customer B's prognosis one can see that this customer consumes
more electricity in the winter than in the summer.

Figure 29: 2018 load prognosis for customer B
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Figure 30: Price distribution for customer B, with the three pricing components
and the 99% quantile.

Price components in EUR/MWh for a yearly contract and two quarterly
contracts for customer B can be seen in the Table 8.

Yearly contract 2nd quarter 4th quarter
Summer β 2.9196 10−5

Winter β 2.0892 10−5

Pro�le price 30.5558 27.5762 31.8136
Correlation price 0.0934 0.0655 0.1483
Risk premium 0.0382 0.0160 0.0510
Total �xed price 30.6896 27.6577 32.0129

Table 8: Price components in EUR/MWh customer B. Both for yearly and
quarterly contracts.

7.2.5 Customer C

The third and last real customer examined in this report has the strongest cor-
relation to the portfolio consumption behavior. This implies higher correlation
price and risk premium.
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Figure 31: 2018 load prognosis for customer C

Figure 32: Price distribution for customer C, with the three pricing components
and the 99% quantile.
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Yearly contract 2nd quarter 4th quarter
Summer β 5.9396 10−5

Winter β 4.3349 10−5

Pro�le price 31.0446 28.2195 32.1005
Correlation price 0.1863 0.1160 0.3378
Risk premium 0.0582 0.0588 0.0890
Total �xed price 31.2891 28.3943 32.5273

Table 9: Price components in EUR/MWh customer C. Both for yearly and
quarterly contracts.

7.2.6 Fictional extreme customers

Two �ctional customers has been examined. The �rst example of an extreme
customer has historical load = 2 − portfolio/1000, which will have an oppo-
site consumption pattern from the portfolio. The prognosis for 2018 for this
customer can be seen in Figure 33.

Figure 33: 2018 load prognosis for a low cost �ctional customer

The price distribution from a yearly contract is shown in Figure 34. Notice
that the right red line shows the pro�le price component and the left red line is
pro�le plus correlation price component.
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Figure 34: Price distribution for a low risk customer, with the three pricing
components and the 99% quantile.

You can see from the result that this customer diversify the risk of the
portfolio. For this reason the correlation price component will be negative. One
can also notice that the �nal �xed price is lower than the pro�le price.

Summer β -1.000 10−3

Winter β -1.000 10−3

Pro�le price 28.9433
Correlation price -0.1449
Risk premium 0.0334
Total �xed price 28.8318

Table 10: Price components in EUR/MWh for an example customer with neg-
ative β values

The second example of an extreme customer has historical load = (portfolio/1000)2.
This customer will have relatively high β values. The following Figure shows
the prognosis for 2018.
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Figure 35: 2018 load prognosis for a high cost �ctional customer

Figure 36: Price distribution for the high risk �ctional customer, with the three
pricing components and the 99% quantile.

Table 11 shows �xed price components in EUR/MWh for 2018.
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Summer β 1.1269 10−3

Winter β 1.7342 10−3

Pro�le price 32.8601
Correlation price 0.5291
Risk premium 0.1483
Total �xed price 33.5375

Table 11: Price components in EUR/MWh for an example customer with high
β values
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8 Conclusions and discussion

In this paper we propose simulation based autoregressive models to estimate
costs and risks of �xed price contracts for a retailer in the Nordic electricity
market. The autoregressive model approach turned out successful in re�ecting
the real world dependence structure between load and spot price. The model
was tested for several real world market situations and in all cases we found
reasonable outputs. Results indicates that the model adequately captures the
given risk factors. Results also shows that the costs of having a customer in a
�xed price contract portfolio di�ers signi�cantly depending on customers con-
sumption behavior and delivery period. The common strategy of pricing a
contract is to price the expected load of a customer individually, the pro�le
price component and then add a portfolio based correlation price component
and a risk premium. It would be unwise to set an equal correlation price com-
ponent and risk premium for all customers and independent of delivery season.
This could cause a scenario where the price is only considered pro�table for
the costly customers, while less costly customers chooses other retailers. With
deeper knowledge of how costly a customer is, a retailer could potentially o�er
lower prices to low risk customers while avoiding unpro�table contracts with
costly customers. The method used in this paper turned out to be an e�cient
way of pricing the contracts individually. One of the most time consuming ac-
tivity is estimating model parameters, which in practice can be updated once
a year. Also the simulation part was time consuming. It is not however neces-
sary to simulate every time a contract needs to be priced. The 10 000 portfolio
simulations are saved and used when calculating a new contract, together with
the Forward curve for spot, customer load prognosis and the β values, which
are easily estimated.

The correlation price component is signi�cantly di�erent for di�erent con-
tract periods. Deviation in load and spot price are more correlated in the
fourth quarter of the year than in the second. Generally this results in higher
correlation price component in the fourth quarter of the year. This shows the
importance of pricing di�erent correlation price components depending on the
contract period.

A further development of the models could include multivariate non gaus-
sian copula models to generate the residuals. One could possibly �nd a good
�tted copula and capture the dependence structure of Spot price and load more
accurately. Also the tail dependence could be examined more and captured by
a non gaussian multivariate copula. It is common to use a spike process or a
jump di�usion process in order to model electricity spot price. For this to be
relevant in the case of this project we would need to know the dependency be-
tween load and spot price in extreme events. Another improvement for further
development would be to estimate customer load prognosis more thoroughly.
For a better approximation of customer prognosis one could adjust the progno-
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sis after �normal year conditions� and for example estimate how the load would
behave with normal temperature. Often a prognosis can be adjusted with input
from the customer itself. The pro�le price component will lack in accuracy with
badly estimated prognosis. However, the important thing in the end is to �nd
the fair price of the contract. Overestimated pro�les will end up with underes-
timated correlation price components. If implemented in a pricing system for
an electricity retailer and the retailer wants to use a better customer prognosis,
one can see from the section Simulation approach that this is easily done.

Concerning the volume limits in a �xed price contract, a further research
could include a deeper analysis of other risk aspects. One could estimate the
probability for large deviations in yearly grid load and what impact this has on
a yearly spot price. From historical data from the UK market, we found extreme
events that caused the whole grid load to deviate from expected, which would
cause problems for a retailer. The retailer is likely to sell the hedged volumes
back to the spot market for a lower price.
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9 Appendix

9.1 Daily model parameters

Parameters in the daily stochastic VAR-process can be seen below.

Y (d) = η1Y (d− 1) + η2temp(d− 1) + η3Y (d− 2) + ε1

load(d) = η4load(d− 1) + η5temp(d− 1) + ε2,k

temp(d) = η6temp(d− 1) + η7temp(d− 2) + ε3,k
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η1 η2 η3 η4 η5 η6 η7
0.7650 -0.0192 0.12340 0.7491 -0.0277 0.9201 -0.1009

Table 12: Parameters in daily VAR-model

Correlation matrices for every month of the year, for the multivariate normal
distribution which generates residual dependence.
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Table 13: Explanation

Load
Temp

Spot

Table 14: January

1 -0.53 0.26
-0.53 1 -0.36
0.26 -0.36 1

Table 15: February

1 -0.61 0.20
-0.61 1 -0.23
0.20 -0.23 1

Table 16: March

1 -0.60 0.09
-0.60 1 -0.19
0.09 -0.19 1

Table 17: April

1 -0.36 0.29
-0.36 1 -0.40
0.29 -0.40 1

Table 18: May

1 -0.36 0.13
-0.36 1 0.09
0.13 0.09 1

Table 19: June

1 -0.08 0.05
-0.08 1 -0.03
0.05 -0.03 1

Table 20: July

1 -0.01 0.12
-0.01 1 0.14
0.12 0.14 1

Table 21: August

1 -0.21 0.02
-0.21 1 -0.15
0.02 -0.15 1

Table 22: September

1 -0.58 0.07
-0.58 1 -0.09
0.07 -0.09 1

Table 23: October

1 -0.58 0.21
-0.58 1 -0.22
0.21 -0.22 1

Table 24: November

1 -0.70 0.50
-0.70 1 -0.52
0.50 -0.52 1

Table 25: December

1 -0.65 0.48
-0.65 1 -0.49
0.48 -0.49 1
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Load ε3 Temp ε2 Spot ε1
Non central t Normal Laplace
v σ nc σ s

11.57 0.04 0.33 0.05 0.10
23.67 0.02 -9.58 0.03 0.10
8.02 0.03 0.50 0.04 0.10
5.33 0.02 -0.64 0.03 0.10
3.24 0.02 -0.83 0.03 0.10
2.39 0.01 -0.74 0.03 0.10
3.24 0.02 -0.83 0.02 0.10
2.39 0.01 -0.74 0.02 0.10
9.83 0.01 -1.81 0.02 0.10
14.22 0.01 -5.33 0.03 0.10
6.84 0.01 0.31 0.04 0.10
8.86 0.02 -0.24 0.06 0.10

Table 26: Residual distribution parameters. The location parameters for all the
distributions are set, so that the expected value is zero. The rows represent
twelve di�erent months starting from January

The probability density function of non central t can be written as the fol-
lowing.

f(x; v, nc, µ, σ) =
vv/2Γ(v + 1)

σ2vexp(nc2/2)(v + (x−µσ )2)v/2Γ(v/2)

(
√

2nc(
x− µ
σ

)
F1( v2 + 1; 3

2 ;
nc2( x−µσ )2

2(v+( x−µσ )2)
)

(v + (x−µσ )2)Γ( v+1
2 )

+
F1( v+1

2 ; 1
2 ;

nc2( x−µσ )2

2(v+( x−µσ )2)
)√

v + (x−µσ )2Γ( v2 + 1)

)

F1 is Kummer's con�uent hypergeometric function. The probability density
function of Laplace distribution is written as the following.

f(x;µ, s) =
1

2s
exp(−|x− µ|

s
)

9.2 Hourly spot price process parameters

Optimal parameters for the hourly spot process is shown on the next page.
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

0.25 −0.09 0 0.14 0 0 −0.07 0.18 0 −0.06 0 0 0.35 −0.30 0.26 0 −0.12 0.08 −0.09 0 0.08 −0.29 −0.22 0.61
0.22 −0.12 0.07 0.16 0 0 0 0.14 0 −0.08 0.06 0 0.27 −0.28 0.27 0 −0.08 0.07 −0.10 0.08 0 −0.26 −0.40 0.70
0.14 −0.22 0.12 0.19 0 0.06 −0.05 0.15 0 −0.10 0 0 0.29 −0.19 0 0.15 −0.13 0.06 −0.09 0 0 −0.41 0 0.47
0.10 −0.20 0.08 0.17 0.09 0.09 −0.11 0.17 0 −0.14 0 0 0.39 −0.40 0.21 0 −0.18 0.10 −0.10 0 0 −0.31 0 0.33
0.22 −0.23 0.11 0 0.10 0.10 0 0.18 0 −0.11 0 0 0.55 −0.67 0.51 0 −0.16 0.08 −0.15 0.09 −0.11 −0.15 0 0.27
0 −0.12 0.18 0 0 0.15 0 0.26 0.05 −0.10 0.09 −0.10 0.42 −0.27 0.18 0 0 0.12 −0.15 0.08 0 0.13 0.17 0

−0.08 0 0 0.06 0 0 −0.06 0.09 0.14 0 0 0 −0.20 0.20 −0.10 0.20 −0.06 0.05 0 0.19 0 0.28 −0.25 0.07
−0.11 0 0 0.09 −0.06 0.06 0 0 0.13 0.10 0 0.10 −0.22 0 −0.18 0.25 0 −0.06 0.10 0.16 0 0.14 −0.16 0
−0.09 0 0 0 −0.03 0 0 −0.06 0.11 0.09 0 0.18 −0.21 0.30 −0.57 0.41 −0.18 0.04 0.05 0 0.18 0 0 −0.08
−0.09 0 0 0 0 0 −0.06 −0.05 0 0.13 0 0.13 −0.08 0 −0.07 0.08 0 −0.05 0.09 0 0.10 0 0 −0.07
−0.06 0 0 0 0 0 −0.05 −0.04 −0.04 0.12 −0.07 0.23 −0.08 0 0 0.04 0 −0.04 0.08 0 0.04 0 0.12 −0.15
0.04 −0.04 0 0 0 −0.04 0 −0.03 −0.05 0.12 −0.12 0.19 0 0.05 −0.08 0.11 0 −0.06 0.10 −0.08 0.09 0 0.11 −0.16
0.06 0 −0.02 0 0 −0.03 0 −0.02 −0.04 0.06 −0.07 0.13 0 0.11 0 0 0.04 0 0.03 −0.04 0 0.08 0 −0.09
0.08 0 0.03 −0.04 0.02 0.04 0 0 −0.03 0.06 0 0.04 0 0.19 −0.06 0.11 0 0.03 0.02 0 0 0.11 0 −0.10
0.04 0 0.06 −0.07 0.03 0.04 0 −0.03 0 0.04 0 0 0 0.20 −0.09 0.10 0.06 0.06 0 −0.04 0 0.13 0 −0.10
0 0.09 0 −0.07 0.03 0 0 −0.05 0 0.06 0 −0.06 0 0.09 0 −0.14 0.42 0.03 0 0.05 −0.08 0.13 −0.07 −0.05

−0.10 0.16 0 0 0 0.05 0 0.05 0 0.10 0.14 −0.16 0 0.16 0 −0.16 0.23 0.14 0.09 0 0.13 0 0 0
−0.10 0.17 −0.09 0.08 −0.06 0.07 −0.04 0 0 0.17 0 −0.19 0 0.15 0 −0.24 0.32 0 0.15 0.09 0.07 −0.13 0.15 −0.07

0 0.08 0 0 0 0 0.09 0 0.06 0 0.06 −0.08 0.09 0 0.17 −0.16 0.11 0 0.11 0 0.08 0.15 0 −0.06
0 0.19 −0.08 0 0 0.03 0.10 0.08 0 0 0.11 −0.11 0.15 0 0.18 −0.10 0 0.05 −0.09 0.05 −0.11 0.28 0.17 −0.11

0.10 0.12 −0.06 0 0 0 0.10 0.09 0.04 0 0 −0.11 0.31 −0.17 0.19 0 −0.07 0.10 −0.14 0 0 0 0.33 −0.08
0.22 0 0 0 0.06 0 0.09 0.15 0 0 0 0 0.17 −0.22 0.30 0 −0.04 0.07 −0.15 0.07 0 0 0 0.20


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The inovations are modeled as Laplace distributions with location 0 and the
following scale parameters.

Hour 1 2 3 4 5 6 7 8 9 10 11 12
s 0.08 0.08 0.09 0.10 0.09 0.08 0.07 0.07 0.08 0.07 0.06 0.06

Hour 13 14 15 16 17 18 19 20 21 22 23 24
s 0.05 0.05 0.05 0.05 0.06 0.07 0.08 0.07 0.06 0.06 0.07 0.08

Table 27: Parameters in hourly VAR(1)-model. s parameters are rounded to 2
decimals

9.3 Hourly load process parameters

The hourly load AR(p) process can be seen below.

Xload(t) = γ1,kXload(t− 1) + γ2,kXload(t− 2) + ...+ γp,kXload(t− p) + σkξload

γ1,k γ2,k γ3,k γ4,k γ5,k γ6,k γ7,k γ8,k γ9,k γ10,k γ11,k γ12,k γ13,k γ14,k
k=1 1.03 -0.22 -0.01 -0.02 -0.04 -0.08 0.02 -0.02 0.01 -0.09 0.06 -0.08 0.03 -0.07
k=2 1.09 -0.22 -0.03 -0.03 -0.02 -0.05 0.01 -0.03 0.00 -0.02 -0.01 -0.01 -0.04 0.00

γ15,k γ16,k γ17,k γ18,k γ19,k γ20,k γ21,k γ22,k γ23,k γ24,k γ25,k γ26,k γ27,k σk
k=1 -0.02 -0.01 0.03 0.00 -0.05 -0.02 0.00 -0.05 0.08 0.34 -0.41 0.02 0.04 0.0072
k=2 -0.05 -0.01 0.02 0.01 -0.04 0.00 -0.01 -0.01 0.02 0.25 -0.32 0.05 0.0109

Table 28: Parameters in hourly AR(p)-model. γ parameters are rounded to 2
decimals
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