

Student thesis series INES nr 446

Sayed Hassan Alavi

Constructing and developing an integrated smart

spatial database for Malmö Municipality, Case study:

Västra innerstaden in Malmö

2016

Department of

Physical Geography and Ecosystem Science

Lund University

Sölvegatan 12

S-223 62 Lund

Sweden

I

Sayed Hassan Alavi (2018).

Constructing and developing an integrated smart spatial database for Malmö

Municipality, Case study: Västra innerstaden in Malmö

Master degree thesis, 30 credits in Geomatics

Department of Physical Geography and Ecosystem Science, Lund University

Level: Master of Science (MSc)

Course duration: February 2017 until June 2017

Disclaimer

This document describes work undertaken as part of a program of study at the

University of Lund. All views and opinions expressed herein remain the sole

responsibility of the author, and do not necessarily represent those of the institute.

II

Constructing and developing an integrated smart

spatial database for Malmö Municipality, Case

study: Västra innerstaden in Malmö

Sayed Hassan Alavi
Master thesis, 30 credits, in Geomatics

Supervisor: Ali Mansourian

Exam committee:

Lars Harrie

Andreas Persson

Department of Physical Geography and Ecosystem Science

Lund University, Sweden

III

IV

Summary

GIS Section of Street and Park department of Malmö Municipality continuously

receives new spatial data from different contractors that need to be saved to the GIS

section traffic database. Meanwhile, according to interviews with GIS Section staff, due

to spatial relationships and daily updates, it is evident that the traffic database requires

more consistency and integration along with less redundancy. Since there is a spatial

and conceptual relationship between the data, making a change in the traffic database

and failing to make appropriate changes to other related features will eliminate the

integrity of the data and the logical relationship of the information in the traffic

database.

 The traffic database of GIS Section must be able to automatically provide

consistency, integrity, assigning attributes to various objects. This thesis aims at

providing a solution for making the traffic database smart, so that by changing a

feature, other features are automatically updated and the traffic database integrity is

maintained.

 In the first step, interviews were performed with street and park department staff,

in particular geographical database engineers of GIS Section, in order to define the

needs of the traffic database. During these interviews, some of the important needs of

the GIS Section traffic database were discussed. These requirements were approved as

a set of essential rules in the GIS Section traffic database. Then a conceptual model of

the traffic database was designed. In this step, all object classes were specified and the

attributes of each class were determined. The relationship between the objects and the

degree of these relationships were also identified. Then the logical model and physical

implementation of the traffic database was completed.

 Triggers, which are written using the SQL programming language for the traffic

database, are used to apply the essential rules to the traffic database to make the traffic

database smart. Using triggers, one can run a set of SQL commands with every change

in the traffic database, which increase the consistency, integrity and attribution of the

quantities automatically in the traffic database. However, using triggers has some

disadvantages. The most important disadvantage of trigger’s use includes the loop of

SQL commands due to the infinite activation of triggers. If all the defined triggers are

created into the traffic database to enforce the essential rules, any change in one of the

tables will activate the trigger of that table, which in turn will cause another table to be

updated and its trigger will be activated; this will eventually lead to the re-update of the

first table and re-activate its trigger. If this process starts, there is no end to it and the

triggers will continuously activate each other.

 To get rid of the problem of unlimited activation of triggers in the traffic

database, the iTRIMAN user interface is designed and implemented in a desktop and a

web version. iTRIMAN allows triggers to be created on the traffic database when

needed and to be dropped when they are not needed. By using this method, there will

only be triggers in the traffic database whose associated tables are being edited.

 The tests show that using the proposed approach the traffic database will be a

consistent, integrated and automated traffic database that will keep consistency and

integrity of data in a better way, which will eventually save time and money for the GIS

section when updating the traffic database.

V

Acknowledgment

I would like to express my gratitude to my supervisor Dr. Ali Mansourian

for his excellent guidance and sympathetic support through this research.

I would like to express my gratitude to Joel Noren, Mozafar

Veysipanah and Raymond Timlin in Malmö Municipality for all of support

and advices through this research.

I would like to express my gratitude and thanks to all of my

colleagues in SWECO Position, especially to Karin Neland for all

of understandings, support and kindness during this research.

I would like to express my deepest sense of gratitude and love to my

family, for all encouragement, support and love during this study.

VI

Table of Contents

SUMMARY ... IV

ACKNOWLEDGMENT ... V

TABLE OF CONTENTS .. VI

1 INTRODUCTION ... 1

1.1 STATEMENT OF THE PROBLEM ... 2

1.2 OBJECTIVES ... 2

1.3 STRUCTURE ... 2

2 LITERATURE REVIEW .. 3

2.1 DATABASES ... 3

2.2 SPATIAL DATABASES .. 4

2.3 SMART DATABASE THEORETICAL BACKGROUND ... 5

2.3.1 Ontology and Semantics in Databases .. 5

2.3.2 Active Databases .. 6

2.3.3 Deductive Database .. 9

2.4 DATABASE DESIGN ... 9

2.4.1 Requirement Analysis .. 9

2.4.2 Conceptual Model using UML ... 10

2.4.3 Logical Model and Physical Implementation .. 11

3 METHODOLOGY ... 12

3.1 CASE STUDY ... 12

3.2 REQUIREMENT ANALYSIS .. 12

3.3 SELECTING DATABASE TECHNIQUES ... 16

3.4 CONCEPTUAL MODEL USING UML ... 18

3.4.1 Object Classes .. 18

3.4.2 Relationships ... 18

3.4.3 Cardinality .. 18

3.4.4 Rules .. 19

3.5 LOGICAL MODEL AND PHYSICAL IMPLEMENTATION .. 22

3.5.1 Logical Model .. 22

3.6 SYSTEM ARCHITECTURE OF USER INTERFACE ... 25

3.6.1 Desktop iTRIMAN ... 26

VII

3.6.2 Web iTRIMAN .. 27

4 RESULTS ... 29

4.1 BUS STATION ... 29

4.2 CYCLE PUMP .. 32

4.3 ADDRESS .. 34

5 EVALUATION ... 37

6 DISCUSSION .. 38

6.1 CHALLENGES .. 38

6.1.1 The Execution time of Triggers .. 39

6.1.2 The Infinite Firing of Triggers .. 39

6.1.3 New Users Definition and Their Concurrent Access to the Database 39

6.2 SUGGESTIONS AND FUTURE WORKS .. 39

7 CONCLUSIONS ... 40

REFERENCES .. 40

1

1 Introduction

The GIS Section of the Streets and Parks Department (Gatukontoret) of Malmö

Municipality is responsible for providing, storing, and maintaining of geographical database

of streets and parks department of Malmö Municipality. GIS section is also responsible for

providing thematic maps, spatial analyses, and traffic plans so as to maintain an urban

planning strategy. Currently, all of such tasks are performed in the PostgreSQL and Oracle

databases and are displayed by the internal Web GIS. It has been decided to gradually move

all the data from the Oracle database to the PostgreSQL database; therefore, the foundation

should be laid for an efficient database in PostgreSQL.

 Since GIS Section receives spatial data from different contractors continuously, it is

necessary to enter the data into the system constantly, something which always requires the

database to be changed. Data can be entered into the database directly by a user. They can

also be derived from other data of the database. Sometimes, a datum might be redundant by

being stored in several locations. Furthermore, the conditions may not allow the reduction of

redundancy, and the database will need to be changed in certain points after new data are

received. Therefore, a user must manually change and store all of the available data in

certain points. It is very time-consuming to edit, compute, and enter the new data into

certain locations manually. Such tasks are also error prone. Therefore, an automated method

is required for computing and updating values and attributes after a change is made to the

database.

 The following example can be used to better understand the problem: A bus station

with XA attribute is located inside a polygon named A. The attribute or feature XA is

extracted from A to be allocated to the bus station. In other words, the bus station possesses

XA only if it is located inside A. This attribute is obtained from the geometric computation

of the two aforesaid objects. Currently, if the municipality moves the bus station from A to

another polygon named B, the attribute still remains XA; however, it needs to be change to

XB in the new position. Lack of such update results in a kind of disintegration and

inconsistency in the database. If it is not corrected, the database stores inaccurate data and

consequently the results of queries and analyses are not reliable. The manual correction is

time-consuming and may lead to miscomputation. Therefore, it is essential to devise an

automatic updating mechanism, by which the bus station attribute gets updated

automatically from XA to XB whenever the bus station moves from A to B. If so, the

database is automatically provided with consistency, integrity, and cohesion.

 The database produced by this study is characterized by higher levels of consistency

and integrity in addition to a lower level of redundancy. It also contains cohesive and

relevant data which are sometimes derived from other data and may often need computation.

Most importantly, everything is computed and updated automatically. In other words, the

database is able to update itself automatically after every change.

2

1.1 Statement of the Problem

 It is necessary to accurately implement all the components of a database in accordance to

comprehensive requirement specifications in order to design a good, efficient, and smart

database. For instance, the database redundancy should be minimized. In case of persistent

redundancy, the database should be consistent. In other words, the values of data should be

the same in different locations. All of the values should be updated simultaneously after a

change is made to the database. The data are usually related in a database, something which

means a data can be computed or derived from another datum. Such a computation should

be performed accurately after every change in the database. Above all, the database should

maintain integrity.

 The traffic database of GIS Section is changing constantly: data are added to it, data

are deleted from it, or data are edited. Therefore, it is very hard and time-consuming to meet

the aforesaid requirements manually. There might be computational and typographical

errors, too. Thus, it is necessary to devise a mechanism, which update table/tables

automatically.

 There are different techniques to create a smart database. First, GIS section wants to

know these techniques. Then, they want to know which technique is best according to

existing knowledge in GIS section, resources, and possibilities. Since most of the GIS

personals of street and park department are GIS users (except DB engineers), it is needed to

introduce, present and explain advantages and challenges of selected technique.

1.2 Objectives

The main aim of this thesis is to design and develop a prototype of a smart traffic database

for GIS Section of the Streets and Parks Department of Malmö Municipality in order to:

 Define GIS section requirements for the traffic database.

 Understand different techniques for implementing a smart database and selecting one

for implementation based on possibilities and capabilities of GIS section.

 Developing a smart traffic database based on the selected technique.

 Evaluating the implementation of selected technique against requirement analysis.

1.3 Structure

This thesis is organized in six chapters, the first of which is the Introduction including

sections named Statement of Problem, Objectives, and Structure. The second chapter deals

with a review of literature in which related types of databases were analyzed in addition to

smart databases. The third chapter describes the methodology for designing a smart traffic

database. First, study area is described. Then geographical traffic database is designed in

four phases: requirement analysis, conceptual model design, logical model, and physical

implementation. Then the rules of requirement analysis are discussed. After requirement

analysis selected approach is described. Finally, the iTRIMAN user interface is described.

In the fourth chapter, the research results are analyzed. The fifth chapter deals with the

challenges of this thesis. Then, some useful suggestions are made for the current or future

use of this traffic database. Conclusions are in the sixth chapter.

3

2 Literature Review

In this chapter, first different related kinds of databases and spatial databases are described

then smart database background are studied and finally database design steps are explained.

2.1 Databases

A database is an organized collection of data that can be easily accessed, managed and

updated. Each database is connected to a database management system, which is a collection

of programs that can manage, select, add, update, remove and change database content.

 There are different types of databases, which are related to this study, including

relational databases, object-oriented databases and object relational databases.

2.1.1. The Relational Database (RDB): The relational database was introduced in 1970. In

this model, data are saved in the form of related tables. Each table is made up of columns

and rows, and row represents the data value of an object, while each column represents the

attributes of an object. Then these tables connected together by primary key and foreign

keys (Ranjana, et al. 2015). In the relational database, are integrity and normalization

concepts. Integrity means to be sure about accuracy and consistency of data, which is an

important aspect to the design and implementation as attested by many publications

(Decker, et al. 2008; Bernstein et al, 1982; Bernstein et al, 1980; Eswaran et al, 1975).

Another word, data integrity, guarantees that data will saved exactly as intended. Integrity

can be divided into physical integrity and logical integrity. One important part of integrity is

consistency in database. Consistency means any updates and changes in the database must

follow defined rules. It means data only can change to the permitted ways. By using

normalization, a consistent and healthy database with minimum redundancy can be

achieved. One important current product related to relational database is Informix (Praveen,

et al. 2017).

2.1.2. Object-Oriented Database (OODB): Object-oriented databases emerged in the

1980s to overcome the problems and limitations of relational databases in managing large

and complex data.

 The first reason for creating object-oriented database is supporting complex structure

for stored objects. An important feature of this kind of database is giving power to the

designer to decide about complex objects structure and applied operations (behavior) to

these objects. In this model, data is represented by object and object class. “Object” in

database is real entity in the world. “Object Class” is a collection of similar objects with the

same type of values and methods. Values are attributes of an object. Methods are object

functions, which describe the object behavior. A unique method signature identifies each

method usually by a method name, method type, method number and other parameters.

 Second reason for creating of object-oriented database is supporting the concept of

“object-oriented” for programming, ideas like referencing, encapsulation, inheritance and

polymorphism. These four components called standard object oriented (Hardy, 2001):

 Referencing: implies that objects contain data from related items (e.g. a

spring is a wellspring of a waterway).

4

 Encapsulation: implies that information and conduct are typified together

inside articles, which react to messages sent to them.

 Inheritance: means that protest classes can inherit traits from different

superclasses (e.g. a congregation is both an open building and a man-made

structure).

 Polymorphism: implies that diverse protest classes answer to a similar

message using legitimate conduct (e.g. by tapping on a waterway and a

building can obtain a distinctive sort of feature and portrayal).

2.1.3. Object Relational Database (ORDB): Object relational databases came about in

1985 to fill a large gap between object-oriented databases and relational databases. An

object relational database has the advantages of both these types of database. It combines

advantage of object-oriented concept of programming and relational database. It means

object relational database benefit from both methods and datatype in same time. This model

benefits from simultaneous referencing, encapsulation, inheritance, and polymorphism as in

relational databases. An object relational database is good for organizing complex data.

Examples of this type database are IBM DB2, PostgreSQL, Oracle and Illustra (Praveen, et

al. 2017).

2.2 Spatial Databases

A spatial database is a database that stores and queries data that represent spatial objects.

Spatial databases represent geometric objects like point, line, and polygon. Even some

complex structures, like topological coverages, linear network, 3D objects, and TIN, are

supported by some spatial databases. Spatial databases use spatial indices to speed up spatial

operations. Examples of spatial operations are spatial measurement, spatial function, and

spatial predicates, and examples of spatial indices are Quadtree, R-tree, and KD tree.

 The relational spatial database has limitations for handling geometric data. This

database only store singular value, which is not good for saving geometries (in this database

geometries must be saved in several columns). The other limitation is related to SQL, which

is a declarative language. However, by adding a middleware software for handling the

geometry functionality in relational database can overcome the limitations of the relational

database.

 The object-oriented spatial database store real world as objects, which can represent

them as point, line and polygon. Storing attributes and geometry of objects in one layer can

provide better representation results. “in-house query language” is the interface for object

oriented database. SmallWorld is an example of this type. Object oriented database schema

contain definitions of all of object types which can define relationships between objects and

object behavior.

 In the object relational spatial database, geometry functionality is added directly into

the database. This type of database is based on abstract data type (ADT) or user defined type

(UDT). These two (ADT and UDT) extends the SQL type system and are related to a data

type. Object relational database integrate attributes and geometries within the database,

which are supported by spatial data queries. Oracle spatial and PostgreSQL with PostGIS

extention are example of this type of database.

5

2.3 Smart Database Theoretical Background

A smart database as is defined in this thesis is a type of database that can keep the

consistency and integrity of the database in an acceptable level. In this section, three

different techniques used for creating smart databases such as ontology and semantic in

database, active database and deductive database. An example database has also been

introduced for each technique.

2.3.1 Ontology and Semantics in

Databases

Ontology, meaning “conception of a thing,” can

define a specific vocabulary in a related domain.

Using ontology, one can define objects, properties,

and relationships between parts. Ontology is used

extensively in Artificial Intelligence in the

computing domain. By using ontology, one tries to

define the structure of reality, which is close to the

concept (Guarino, 1998).

 Geographic ontology is the

conceptualization of a geographic object that exists

in the real world. It is used to find all the properties and characteristics belonging to a

geographic phenomenon in order to conceptualize the geographic object well. In addition to

other properties and characteristics, geographic properties like directions, coordinates,

topologies, and temporal qualities are also included in geographic ontology (Viegas, et al.

2007).

 The semantic layer is an intermediate layer that links or translates a user’s query to

the geographical database by using ontologies and returns data to the user.

 The structure for a system that contains both a semantic layer and ontologies is as

follows: the system gets a query from user and passes it to the semantic layer, which

contains both user ontology and geodatabase ontology, and can translate user ontology to

geodatabase ontology. The semantic layer then sends a request based on the geodatabase

ontology to the geodatabase, and finally returns the results back to the user. Figure 1 shows

the structure of the semantic layer in relation to ontologies. One example of ontology and a

semantic related database, which works smartly, is the Sesame semantic database.

 For more about geographic ontology and semantics, refer to Elmasri (2011), Ramez

(2011), Guarino, (1998), Fonseca (2001), Egenhofer et al. (2000), and Viegas et al. (2007).

Sesame:

Sesame is a framework for analyzing and querying RDF (Resource Description framework)

data. Sesame created by a Dutch software company and was part of semantic web project

between 1999 and 2002. Sesame packages contain an API based on Java parsers and writers

distributed along with Sesame.

 Geographical resource-based and text-based search functions are added using an

extension library called “USeekM” to semantic databases, which are compatible with

Figure 1. Structure of a system which

 and semantic layer iesontolog sniconta

.)2007 .al Viegas, et(

6

Sesame’s API. Using the USeekM module, text data is indexed using the inverted index

method and spatial data is indexed using the R-Tree or Quadtree based methods. This

module uses PostgreSQL or ElasticSearch to create indexes and supports geometries (e.g.

point, line, and polygon) and functions such as overlaps, within, and intersects according to

the OGC GeoSPARQL standard. USeekM module is an open-source library.

2.3.2 Active Databases

Active databases can react naturally to an event that occurs either inside or outside of the

database. Each time an event is recognized by the database, it checks the condition and then

fires the trigger and runs the specified function.

 Active databases depend on ECA (Event, Condition and Action):

 Event: events are operations like alter, insert, delete, or add within the

database. These events fire a trigger. The occurrence of one of these activities

fires a trigger that runs relevant functions.

 Condition: when a trigger is fired in the condition proviso, one can check the

type of activity in the condition.

 Action: this activity results from some portion of a trigger. Ordinarily, a

trigger in the activity part places significant demands on the capacity of the

database

 An active database requires a tool to monitor and control all triggers in the database

and make sure they work correctly. Otherwise, it may result in two or more rules triggering

each other, leading to non-termination or an indefinite circular triggering (Elmasri, 2011).

 One example of an active database that works smartly is the Gothic database, a

product from Laser-Scan company, nowadays called 1Spatial. For more about active

databases, refer to Elmasri 2011.

2.3.2.1 Gothic Database (Object-Oriented Example):

Laser-Scan was the leading company in designing active databases. Founded in 1969 in

Cambridge, it produced world-leading software for digital mapping, computer graphics, and

geographic information handling. The Gothic object-oriented spatial database and its toolkit

were among Laser-Scan’s first products. The Gothic active OO database comprised two

parts (Active and OO) with the following meanings and characteristics.

 An object-oriented paradigm is a programming paradigm supporting the conception of

“objects,” which can contain knowledge within each type of field, usually referred to as

attributes, and code, within each type of procedure, usually referred to as ways. It is

characterized by four key idea referencing, encapsulation, inheritance and polymorphism

(Hardy, 2001).

 The active spatial database mapping system in a Gothic database has the following

characteristics and properties (Hardy, 2001):

1. It is allowed real-world modeling and a relationship through schema that

makes the action performed by the active database seem more realistic

(Object data model).

7

2. Spatial objects are retrieved and efficient storage (an object database) is

provided.

3. A map of the area of interest is provided with the requested scale (seamless

mapping).

4. Connectivity and adjacency are known for both active databases and spatial

data bases (topological structure).

5. Proper cartography is provided by active representation.

6. A proper map feature for the current scale is derived by active object

generalization methods, which also tend to make the final representation

realistic and perfectly proportional to the input.

7. Data integrity is ensured by validation methods.

Another key concept of the object-oriented database is methods, which are defined for

objects. By writing methods on object classes for the Gothic object-oriented database, there

are possibilities for creating smart/active database. These methods are related to behaviors.

By sending a message to the object, methods will be invoked and then behavior will be

executed. Defining behavior as part of the database instead of the application is a

fundamental principle of the object-oriented database.

 Methods are central to the object-oriented database. In the Gothic database, object

classes can have both methods and behaviors. It can also inherit methods from its parent

class. There are several type of methods in Gothic database, such as:

1. Value methods: the results of these methods are attributes like area, description, and

length.

2. Agent methods: the result of these methods is intelligent generalization, which

allows objects to think for themselves. One example of agent-based generalization in

combination with other generalization techniques is providing a production flow line

for generalization.

3. Validation reflex methods: these methods allow users to apply their own rules/logics

to each object class, after which the database then ensures the method’s integrity by

enforcing this logic when objects are entered (e.g. when digitizing counter lines, if

they cross each other, it informs user by sending an error message).

4. Process methods: these methods do data checking, data cleaning, and polygon

formation on a defined set of objects. These methods will occur at the request of the

operator.

5. Reflex methods: these methods occur automatically in the creation, deletion or

modification of an object.

6. Display methods: these methods are used to provide active representation. They can

produce the best cartographic visualization for maps. For example when labeling

highways on a map, it can set the color of the highways’ labels. For existing bridges,

it can change the direction of a bridge to match the direction of the highway (Hardy,

2000).

8

In conclusion, active databases improve the accessibility of the database and can react to

different transactions carried out by users. The software can relate well with to the rest of

the applications in real time.

 The Laser-Scan company produced IGIS, LAMPS2, and VTrack (not existed

nowadays) based on smart databases. These are automatic software programs using smart

databases designed especially for LAMPS2.

In 2007, after 38 years, the Laser-Scan Company changed its name to 1Spatial. For more

about Gothic databases, refer to Hardy 2000 and Hardy 2001.

2.3.2.2 Triggers in Relational Database:

Triggers can create an automatic database. Each trigger can be activated by an event in

associated table and update another table/tables based on its function.

 Trigger (similar to reflexes in Gothic) is an automatically fired function associated

with a table, triggered by the occurrence of any event, such as insert, update, or delete in the

table, the trigger will fire and run the attached function on the relevant table. See Figure 2.

 Function, also known as stored procedure, carries out the operations, which can

include several queries within one function. A function can be created in a language like

SQL, Python, PL/pgSQL, C, etc. See Figure 3.

 SQL (Structured Query Language) is a query language, used for manipulating and

accessing databases.

 For more studies regarding trigger and function, refer to the PostgreSQL

documentation at www.postgresql.com.

Figure 2. CREATE TRIGGER: create a trigger, run a specified function before or after

certain events. Events are operations like insert, edit, delete, or update within a database.

The trigger can execute a function once for each row or for any given operation.

Figure 3. CREATE FUNCTION: Create or replace a new function, which is written in a

specified language like SQL, C or Python. All of the commands take place within the

function body.

9

Figure 4. Structure of MYDDAS interface.

2.3.3 Deductive Database

When artificial intelligence and databases come together, they create a deductive database.

The two main components of deductive databases are facts and rules. In a deductive

database, rules are specified through declarative language. A deduction mechanism can

deduct new facts by interpreting current facts and rules. A deductive database is related to

the PROLOG language and logic programming. Rules use declarative language like

PROLOG or DATALOG (a variation of PROLOG).

 Facts are specified in such a way that relations are specified. Rules are virtual

relations. There are two main steps for creating each deductive database. The first step is

storing facts and rules in the database and the second step is the interpretation step, which

interprets new facts based on

current rules and facts.

One example of a deductive

database that works smartly is

spatial Yap.

For more information, refer to

Elmasri 2011, Kumar et al.

2015, and Lausen et al. 1997.

Spatial Yap:

Spatial Yap is a spatial

deductive database system that

is the result of several components. The Yap PROLOG system and MySQL RDBMS are the

two main components of Spatial Yap. The other component which couples with these two

parts is MYDDAS (Mysql/Yap Deductive Database System).

 MYDDAS translates logic queries to an SQL statement and converts MySQL

attributes to Yap terms. It is supported by MySQL Geometry types in the MYDDAS

interface to build the spatial deductive database system. Two fundamental components for

Spatial Yap are visualization component and spatial operators library. Visualization

component graphically represent spatial data (Figure 4). Spatial operators library is used to

extend the MYDDAS interface to support spatial terms (Vaz, et al. 2007).

2.4 Database Design

Database design includes requirement analysis, conceptual model, logical model and

physical implementation.

2.4.1 Requirement Analysis

A geographical database should be able to model information from the real world.

Geographical or spatial databases have different users, providers, and applications. The most

critical step in database creation is requirement analysis; all other steps when depend

directly on it. When the quality of this step is good, a good outcome for the database can be

10

expected. In other words, a good view of the real world can result in a good model made

from it (Tveite, 1997).

 Requirement analysis as a first step is conducted based on interviews with those who

work with the database. During the interviews, one must know the query, search, and

analysis they need to do on the database, as well as the kind of data processing they are

doing, which functionality they are using, and what operation they are performing on the

database (Mansourian, Harrie, 2012). Generally, one must know about relationships,

linkages, and rules in the database.

2.4.2 Conceptual Model using UML

The second step in database design is forming the conceptual model, which is based on the

required specification from the requirement analysis step. In the conceptual modeling phase,

one must define the object class, relationships, cardinality, etc. The most important reason

for modeling is to better understanding the system being developed. The conceptual model

is a small model of the real world and it illustrates a model for the database. In other words,

the model is a simplification of reality (Grady, et al. 2005).

 UML (Unified Modeling Language) is used to construct, specify, visualize, and

document systems. UML is used for object-oriented modeling and it is a very expressive

language that is easy both to understand and to use. To form a conceptual model, one must

have the elements of the UML model.

2.3.2.1 Object and Object Class

The first part of the conceptual model comprises objects in the UML model. Objects are

entities in the model. Objects are independent in the real world, and object in the model

represent the feature/entities in real world.

 Each object in the model has the following properties: ID, state, and behavior. ID is a

unique number for each object that enables the identification of an object in the database.

State is information about the object, like attributes and property values, in the database.

The behavior of an object is controlled by methods. Each object may have different

behaviors based on its attributes. Each object belongs to only one object class. The object

class contains a set of objects with the same attributes and methods (Elmasri, 2011).

2.3.2.2 Relationships

In the UML, object classes connect

and form relationships, which are

physically or logically available in

the UML model. The most

important relationships in object-

oriented modeling are associations,

dependencies, and generalization.

 Association: this is a simple

relationship between two object

classes. It is described by a verb. A

line with an arrow at its end shows

Figure 5. Shows association (A), dependency (B) and

generalization (C).

11

this relationship in the association relationship in the UML model (Figure 5. A).

 Dependency: this relationship exists between two objects, one of which uses

information from another object. A dashed line with an arrow at its end shows this

relationship while pointing from a dependent element (the client) to the independent element

(Figure 5. B).

 Generalization: this relationship relates several specific objects to one general object.

Generalization can be described by an “is-a-kind-of” relationship. For example, commercial

building is a kind of building. A line with a triangle at its end shows this relationship (Figure

5. C).

2.3.2.3 Cardinality (multiplicity)

Cardinality ratios are integer numbers with minimum and maximum ranges that show the

range of related objects in the association relationships. The important thing in multiplicity

is the number of objects related to each other. This number shows the cardinality between

two objects.

2.4.3 Logical Model and Physical Implementation

In the logical model (internal model), a database schema is created. Logical model is used

for relational database or object relational database. To create a database schema, conceptual

models are translated to the database schema in 7 steps:

 The first step is to create tables for each object in the database.

 The second step is to find related attributes for each object.

 The third step is to have a unique identifier (ID) for each object of table as the

primary key.

 The fourth step is to add a table for each many-to-many relationship in the database.

 The fifth step is to add both of the primary keys as attributes in the many-to-many

table.

 The sixth step is to find the association for each one-to-many and one-to-one

relationship and add the foreign key to each table in the association.

 The seventh step is to define relationship roles and constraints (This step is optional).

The other important aspect of the logical model is normalization, which keeps the database

healthy and decreases redundancy and inconsistency within it. There are about six

normalization forms, but in most cases, when creating a good conceptual model, applying

only three of them is sufficient to create a good database. The first normalization form says:

only one value per each cell. The second normalization form says: each table should

represent one type of feature in the database. The third normalization form says: all table

attributes are directly dependent on an ID.

 In the physical implementation phase, the real database is created according to the

database schema from a logical model.

12

3 Methodology

This section describes the procedure for designing and implementing a smart spatial traffic

database for a better management of spatial traffic based data in GIS Section. For this

purpose, a requirement analysis was conducted first. Then, the conceptual model of the

traffic based database was designed. After that, the traffic database structure was completed

by defining a logical model and implementing it physically. Finally, the necessary triggers

were defined and implemented in traffic database to make it smart. An iTRIMAN user

interface was designed, developed and integrated into current Web GIS system, which is

used in GIS Section, to present the functionality of the prototype smart traffic database.

3.1 Case Study

The City of Malmö is located in the southernmost part

of Sweden (Figure 6). Malmö is the third metropolis

of Sweden, with nearly 300,000 people. The study

area is located between (55.58 °N, 12.94 °E) and

(55.61 °N, 12.99 °E) in the northwest of Malmö,

named Västra Innerstaden with an approximate area

of 46,530 square meters. It appears to be an ideal

region for this study because it contains compressive

information on traffic data like cycle ways, cycle

pumps, cycle stations, bus stations, etc. This region is characterized by an appropriate rate of

information dispersion representing the entire City of Malmö. In addition, the area of this

region is small enough to meet all the analytical and computational requirements and save

computer memory and analysis time for computation. Finally, when the programming is

done, the resulting application can be used to analyze other parts of Malmö.

 In this study, ten geographical layers were used in the shapefile format with

SWEREF99 13 30 coordinate system (EPSG 3008).

3.2 Requirement Analysis

The first step in designing the traffic database involved performing a requirement

assessment to determine how GIS section could benefit from this traffic database. For this

purpose, a series of interviews was conducted with the GIS section geographical database,

Mr. Mozafar Veysipanah and Mr. Raymond Timlin. According to the interviews, data

relationships were among the most important aspects which needed to be developed within

the traffic database. Internal data relationships indicate that an attribute of an object is

assigned to another object, or an attribute of an object is derived from another object. They

also show that an attribute of an object is computed and analyzed according to its

geographical position. Generally, data are related spatially or conceptually in the traffic

database. Therefore, it is necessary to increase consistency and integrity in order to reduce

redundancy as much as possible. Since data are related in different ways in the traffic

Figure 6. Shows study area.

13

database, a change in one data item will result in a change in another data item. If such

changes are not made, the traffic database will not be consisted anymore. Moreover, it is

time-consuming and error-driven to make such changes manually. Therefore, it is essential

to design a mechanism for automatically updating the traffic database after every change in

traffic database.

 This traffic database consists of ten geographical information layers for which ten

rules were defined. The geographical layers are as follows: Bus station, speed bump, cycle

pump, car barriers, traffic signs, address, cycle ways, cycle station, middle of streets, and

allowed areas. The rules stated below in sections denoted A to J:

A. Assigning Allowed Area Attributes to Point Objects

It is necessary to know attributes of allowed area in which a point object such as cycle pump

or bust station is located. Then, the attributes of that piece of allowed area should be

extracted and assigned to the point object. The allowed area attributes are computed,

extracted, and assigned to point objects automatically. After a change is made to point

objects or allowed area, the attributes are computed and assigned to them automatically. If a

point object is not located inside an allowed area, the allowed area attribute should be null

(or empty of a value) in the point object. The traffic database contains the following point

object classes: bus station, speed bump, cycle pump, car barriers, and traffic signs.

 In addition to computing, analyzing, and assigning piece of allowed area attributes to

point objects automatically, it is mandatory to maintain traffic database consistency. For this

purpose, if a change is made to a point object, only that point object needs to be updated

automatically. However, if a change is made to a allowed area, several point objects might

be affected and changed. Thus, the automated updating mechanism should be designed to

update several different objects simultaneously.

 To reduce redundancy, only key allowed area attributes (such as ID and type) were

assigned to point objects. The entire allowed area attributes were not allocated to point

objects.

B. Assigning Allowed Area Attributes to Linear Objects

According to the requirement specifications, it is necessary to determine the attributes of

allowed area of linear objects. In other words, it is essential to know in which allowed area

linear objects are located. For this purpose, every segment of a linear object is computed

separately to specify in which allowed area is located. Then the attributes of that piece of

allowed area is extracted and assigned to the linear object. A linear object may exist in two

different piece allowed area at the same time. In this case, the linear object should be cut off

on the boundary between the two piece of allowed area. Then the relevant attributes of piece

of allowed area are assigned to each half. The cycle ways layer is the only linear object in

the traffic database. After computing and extracting allowed area attributes and assigning

them to cycle ways, a mechanism is required for performing computations automatically.

This mechanism should be able to update allowed area attributes and cycle ways after every

change. Since these two objects have a many-to-many relationship, every change of allowed

area attributes or cycle ways can affect several objects at the same time. Therefore, it is

14

necessary to update all of them automatically and simultaneously. Otherwise, the traffic

database will be disintegrated.

 To reduce redundancy, only the important allowed area attributes were assigned to

cycle ways. The entire allowed area attributes were not assigned to cycle ways.

C. Assigning Cycle way Attributes to Addresses

Cycle ways are linear objects, whereas addresses are point objects. Thus, it is necessary to

determine which points these ways connect. For this purpose, certain cycle way attributes

are extracted on a specific distance from addresses (20 meters for example). Then, they are

assigned to addresses. Since this is a many-to-many relationship, every change of cycle

ways or addresses may cause several changes in other objects. Therefore, the automated

updating mechanism should be designed to update several objects simultaneously (after

every change) so that the traffic database integrity can be maintained.

D. Assigning Street Names to Cycle ways

In GIS Section traffic database, every street has a specific name. However, cycle ways do

not have specific names. A system is required for naming cycle ways to give every piece of

cycle ways an appropriate name. For this purpose, GIS section does not intend to use a new

naming system. Therefore, it is necessary to devise a system which can make the most of

available information to do the naming. Accordingly, the best method is to use the names of

streets for cycle ways. This method of naming is acceptable if a cycle way is located within

a reasonable distance from the intended street. To extract street names and attribute them to

cycle ways, it is necessary to determine two parameters: distance between lines and the

length of every segment. The distance between lines indicates that a street and a cycle way

should be close enough so that the street name can be attributed to the cycle way. The

second parameter is the length of every segment meaning that the two nearby segments

should be long enough so that the street name can be attributed to the cycle way. Therefore,

if the two segments are close when they are shorter than the expected length, the street name

cannot be attributed to the cycle way. According to these two conditions, it is not expected

that all cycle ways can have names. However, since most of them will have names, the

method is desirable for GIS section.

 Since this is a many-to-many relationship, a change in every street or cycle way can

affect several other objects in the created many-to-many table. Thus, it is essential to update

the many-to-many table simultaneously and automatically in order to maintain the traffic

database integrity.

E. Assigning the Attributes of the Closest Cycle Station to a Bus Station

GIS section needs to have information on the closest cycle station to a bus station. The

information should be updated constantly after a change is made to every object. There is a

cycle station for every bus station at the closest distance. According to the current

requirements, certain attributes of the closest cycle station to every bus station should be

extracted. Then they should be assigned to the bus station including the distance between

the two objects. According to the one-to-many relationship between the two objects, a

change to a bus station or a cycle station needs to update one or many objects so that the

15

traffic database integrity is maintained. The updating process should be automated and

simultaneous in order to maintain integrity and facilitate maintenance and further updates.

With the presence of bus station objects displaying attributes and the distance to the closest

cycle station dynamically, it is not necessary to do the calculations manually anymore. The

traffic database is updated at once after every change, and GIS section can use it in the

management and decision-making process.

F. Assigning the Attributes of the Closest Address to Point Objects

In this traffic database, giving an address to every point object is one of the most important

requirements. Since an address is a point object itself, all of the analyses and computations

are done between two of the point objects. For every point object, the closest address should

be computed. Then certain attributes of the closest address are assigned to that point object.

If the distance between the closest address object and another point object exceeds a certain

length (100 meters), the address attributes should not be assigned to the point object. In this

case, the attributes of the closest address should be null in point objects, something which

indicates the lack of an address. There is a one-to-many relationship between the two

objects. After every change, the traffic database needs to be updated automatically and

simultaneously in one or several locations in order to maintain integrity and facilitate further

updates. For redundancy reduction, it is possible to assign the important attributes of the

address object to point objects and avoid assigning unimportant attributes.

 The traffic database contains the following point object classes needing addresses: bus

station, speed bump, cycle pump, car barriers, and traffic signs.

G. Assigning the Attributes of the Closest Street to Traffic Signs

A street is a linear object, whereas traffic signs are point objects. In this traffic database, it is

necessary to determine on which street traffic signs are located. Then certain attributes of a

street are assigned to the nearby traffic signs. Attributes must be computed and assigned

automatically. Since there is a one-to-many relationship between a street and traffic signs,

one or many objects are affected after a change is made to the traffic database. Therefore,

the traffic database should be updated automatically. According to the rules defined in the

traffic database, if traffic signs are farther than a certain distance from a street, no attributes

of the street are assigned to traffic signs. Thus, traffic signs hold null.

H. Presenting the Integrity of Point Objects with an Allowed Area on a Separate

Column

Allowed areas are polygon objects covering small areas of the study area. An allowed area

cover only certain areas such as streets and cycle ways. In many areas such as residential

areas, this object is not defined. In this traffic database, all of the point objects must be

located inside a piece of allowed area, something which should be shown appropriately to a

user who can then make a better decision for that object. Therefore, certain computations are

done first to determine the positions of point objects with respect to the allowed area. If a

point object is located inside a piece of allowed area, the attribute ‘t’ (indicating that the

object is inside a piece of allowed area) is assigned to it. If a point object is outside all of

allowed area pieces, the attribute ‘f’ (indicating that the point object is located outside the

16

entire allowed area pieces) is assigned to it. Therefore, the user becomes well-aware of the

position of every point object. In the next step, the allocation of attributes ‘t’ and ‘f’ must be

computed automatically. Then, the traffic database should be updated automatically after a

change is made to the position of a point object or the geometry of a piece of allowed area in

order to compute the new values. Since there is a one-to-many relationship between the two

objects, every change of a point object or a allowed area will respectively result in the

update of one or many objects. Updates should be applied automatically and simultaneously

in order to maintain traffic database integrity. A bus station is the most important point

object which is usually located inside a piece of allowed area. Hence, the user can

continuously control this attribute in the bus station objects class. If an ‘f’ value is observed

in front of objects, necessary actions can be taken to correct it.

I. Presenting and Displaying the Consistency of Linear Objects with an Allowed

Area on a Separate Column

This structure is very similar in structure to H (above). Here, the positions of linear objects

are computed first to determine whether a linear object is located inside or outside a piece of

allowed area. If a linear object is inside a piece of allowed area, a ‘t’ value is attributed to

the linear object. Otherwise, an ‘f’ value is attributed to it. Furthermore, it is sometimes

possible that a part of a linear object is located inside a piece of allowed area when another

part of it is located outside of same piece of allowed area. In this case, the linear object is

divided into two parts, each of which will receive an appropriate value. Attributes should be

computed and allocated automatically. The objects should be updated automatically, as well,

after a change is made to the traffic database.

J. Creating Integrity in the Cycle Pump (Accepting Changes Predefined in the

Domain and Discarding Changes Not Predefined in the Domain)

A cycle pump is a point object which can usually be very useful along cycle ways. GIS

Section needs to define certain rules in the traffic database so that cycle pumps can be found

near and only near cycle ways (in 20 meters). According to this requirement, the user can

build a new cycle pump near cycle ways or relocate it. After building or relocating the

intended object, all of its attributes (such as the closest address and allowed area attributes)

will be updated automatically. However, the user cannot create a new object any farther than

a certain distance (20 meters) from cycle ways. It is not possible to move objects from a

closer distance to a farther distance (farther than 20 meters). In addition to preventing the

user from creating a new object or moving it to a farther distance than the determined

domain, the system needs to warn the user that the new position is outside the defined

domain in the traffic database. Nevertheless, the system does not store the new position in

the traffic database and object will automatically be moved to the previous position.

3.3 Selecting Database Techniques

GIS section is interested in creating a smart database using the active database method.

Since the database engineers of the GIS section are familiar with triggers and they already

use the triggers to update the database, this could be a high priority option. There are no use

17

of ontologies and deductive techniques in this department, and engineers of this section do

not have the necessary background with these methods. So using these techniques are not of

interest for the moment. With these in mind, there is no proper technical background for

creating a smart database based on ontology and deductive techniques. In addition, there are

currently no financial resources available for creating a smart database based on deductive,

ontology and semantic techniques.

 Considering above, based on the interest of the database engineers of the GIS section

with the triggers, and their daily use of triggers, on one side, and the lack of proper technical

background and financial resources for promoting deductive databases, ontology and

semantic techniques, on the other hand, the active database has been selected for further

study to improve the traffic database of the GIS section.

Table 1. Shows name, attribute, geometry and behavior of each table. Points (Pt), Polygon

(Pg), Polyline (Pl).

No Table name Geo

m

ID and State(attributes) behavior

1 Address Pt Idad, gem, objnr, beladress, postnr Add point, remove point,

edit point location

2 Allowed Area Pg Idaa, geom, typ, objnr Add polygon, remove

polygon, edit polygon

3 Middle of

Streets

Pl Idms, geom, objnr(name) Add line, remove line,

edit line

4 Bus Station Pt Idbs, geom, hallplats, idad, idad_postnr, idad_beladress,

idad_objnr, idad_distance, idcs, idcs_distance, Idaa,

Idaa_objnr, Idaa_typ, check_if_bs_in_aa

Add point, remove point,

edit point location

5 Speed bump Pt Idsb, geom, typ, idad, idad_postnr, idad_beladress,

idad_objnr, idad_distance, Idaa, Idaa_objnr, Idaa_typ

Add point, remove point,

edit point location

6 Cycle pump Pt Idcp, geom, typ, objnr, idad, idad_postnr, idad_beladress,

idad_objnr, Idaa, Idaa_typ, Idaa_objnr,

check_if_cp_in_cw

Add point, remove point,

edit point location

7 Car barriers Pt Idcb, geom, idad, idad_postnr, idad_beladress, idad_objnr,

idad_distance, Idaa, Idaa_objnr, Idaa_typ

Add point, remove point,

edit point location

8 Way Signs Pt Idws, geom, objnr, skylt_1, idad, idad_postnr,

idad_beladress, idad_objnr, idad_distance, Idaa,

Idaa_objnr, Idaa_typ, idms, idms_objnr

Add point, remove point,

edit point location

9 Cycle Station Pg Idcs, geom, idad, idad_postnr, idad_beladress, idad_objnr Add polygon, remove

pg, edit pg

10 Cycle Ways Pl Idcw, geom, typ Add line, remove line,

edit line

11 Cycle Ways_AA Pl Idcw, geom, idcw_typ, Idaa, Idaa_objnr, Idaa_typ,

check_if_cw_in_aa

-

12 Cycle

Ways_address

Pt Idcw, typ, geom, idad, beladress, postnr, -

13 Cycle

Ways_name

Pl Idcw, geom, idms, idms_typ, idms_objnr -

18

3.4 Conceptual Model Using UML

A model is created based on the requirement specification for traffic database to determine

all object classes, relationships, type of relationship, degree of relationship (cardinality), and

rules. All of the object classes are determined in this conceptual model. The attributes of

every object class are defined along with relevant methods. The internal relationships

between object classes are determined in accordance with the requirement analysis. The

cardinality ratio of every relationship is determined, too.

3.4.1 Object Classes

This traffic database contains 10 object class and three many-to-many tables (Table 1). Two

of the object classes are polygons including an allowed area and a cycle station. There are

two linear object classes including cycle ways and middle of streets in addition to two many

to many relationship tables (row number 11 and 13 in table 1). Finally, there are seven

object classes including point object classes such as bus stations, speed bumps, cycle pumps,

car barriers, traffic signs and addresses as well as the many-to-many table (row number 12

in table 1) (Figure 7).

 The conceptual model includes all of the attributes, and methods of an object class.

The data type is mentioned in front of every object class attribute. In addition to having

attributes, all of the object classes support certain methods. However, three table (tables

with many to many relationships, row number 11, 12 and 13 in table 1) do not support

methods due to having many-to-many relationships in this traffic database. These object

classes have a pair of external keys. Since they do not support methods, it is not possible to

change them directly, add an object to them, or delete an object from them (Table 1).

3.4.2 Relationships

In this traffic database, there are binary relationships, and the notations are either “has” or

“inside”. All of the point object classes have addresses (“has” notation). They are located

inside the allowed area (“inside” notation). The cycle pump objects are inside the range of

cycle ways (“inside” notation). The traffic signs objects are characterized by middle of

streets (“has” notation). The cycleway name objects get a name attribute from the middle of

street with the geometry of cycle ways. The cycle way_aa (name of M:M table) objects are

located inside the allowed area with a geometry received from cycle ways. Furthermore, the

cycleway address objects have an address with a geometry received from cycle ways (Figure

7).

3.4.3 Cardinality

In this traffic database, all of the relationships are characterized by one-to-many and many-

to-many cardinality. There are three many-to-many relationships for which separate tables

were created (row number 11, 12 and 13 in table 1). Other relationships are one-to-many

(Figure 7).

19

3.4.4 Rules

In the requirement analysis, 10 different rules were defined for the traffic database. These

rules were used for 18 relationships in the traffic database. In other words, some of these

rules were used more than one time. Now, the predefined rules of every object class are

described. According to the rules, attributes and values are assigned from one object to

another after computation. All of the following rules were completely described in the

requirement analysis. Here, it is sufficient to mention the names of rules used in every

object class. In this traffic database, all of the objects are related to each other. They assign

their values and attributes to each other. Only three object classes, i.e. allowed area, address,

and middle of streets, assign their attributes and values to other objects. However, they do

not receive any attributes from other objects at all. Thus, if a change is made to one of these

three object classes, many objects will be updated in the traffic database. However,

changing one of the other objects will not update these three object classes.

Cycle Station: According to the only rule defined for this object class, the closest address is

computed and assigned to every cycle station. Moreover, every cycle station object can only

receive certain attributes of an address object (the closets address object). The computation

and attribution processes are completely automatic. After a change is made to a cycle station

or an address, the cycle station is automatically updated.

Bus Station: There are four rules defined for this object class. The first rule is to compute

and assign the closest address to a bus station. The second rule is to compute and allocate

the certain attributes of a cycle station to a bus station. According to this rule, the distance to

the closest cycle station is calculated and assigned to the bus station. The third rule is to

compute and allocate the attributes of a piece of allowed area to a bus station. The fourth

rule is to determine the position of a bus station in relation to a piece of allowed area shown

as true or false (‘t’ or ‘f’) on a separate column. Finally, the automated updating mechanism

is used to compute all of the abovementioned attributes and assign them to the bus station.

The updating mechanism was designed to calculate the values and attributes automatically

and allocate them to the bus station after every change is made to the bus station, address,

allowed area, middle of streets, or cycle station classes.

Speed Bump: Two separate rules were defined for this object class. According to these

rules, it is necessary to compute the attributes of the closest address and the attributes of the

piece of allowed area in which a speed bump is located. These attributes are then assigned to

speed bump objects. Therefore, the attributes are computed and assigned to speed bump

objects automatically after a change is made to the speed bump, address, and allowed area

object classes.

Cycle Pump: There are three rules for the cycle pump. The first rule is related to cycle

ways. Accordingly, a cycle pump can be located at a certain distance from cycle ways. A

mechanism was also designed for changes made to the position of the cycle pump. The

20

spatial changes of cycle pumps should be in a certain domain so that they can be recorded.

Otherwise, the user is faced with an error, and it will be impossible to save recent spatial

changes defined outside the domain. The second and third rules are related to the

computation and allocation of address and piece of allowed area attributes to the cycle

pump. All of the aforesaid rules must be computed and attributed to the cycle pump

automatically after every change.

Car Barriers: Two rules were defined for this object class to compute and assign the

address and allowed area attributes to car barriers. They are computed and updated

automatically.

Traffic Signs: This object class has three rules, the first of which is related to the

computation and attribution of name from the closest street to traffic signs. The second and

third rules pertain to the computation and attribution of the closest address and allowed area

attributes to traffic signs. They are computed and updated automatically.

Cycle ways: In this object class, there are three separate rules for the address, allowed area,

and middle of street object classes. Since there is a many-to-many relationship between

cycle ways and each of the above object classes, a new table is created for each of them.

These tables cannot be changed directly. However, the resulting tables of many-to-many

relationships will be updated automatically after a change is made to cycle ways, allowed

areas, address, and middle of streets.

Allowed Area, Address, and Middle of Streets: These three object classes assign

attributes to nearly all of the other object classes after computation. However, no attributes

of other object classes are assigned to these three. Thus, they do not need an automated

updating mechanism. Since every change of these three object classes results in changes in

many other object classes, it is necessary to devise a mechanism which can update other

relevant object classes after a change is made to these three.

Cycleway Name: This table was created as a result of many-to-many relationships between

cycle ways and streets. According to the rule of such relationships, the attributes of street

names are assigned to cycle ways. As a result of every change in the two object classes

(street or cycle ways), this table is updated automatically.

Cycleway Address: This table is created as a result of many-to-many relationships between

cycle ways and addresses. According to the rule of this table, a set of addresses are

attributed to every cycleway and updated automatically after a change is made to cycle ways

or addresses.

Cycleway Aa: This table is created as a result of defining a rule for many-to-many

relationships between allowed areas and cycle ways. It indicates the allowed area of every

object on cycle ways. This object class is computed and updated automatically after a

change is made to every allowed area or cycleway.

21

Figure 7. UML model of the database.

22

3.5 Logical Model and Physical Implementation

The two last steps of creating a traffic database are logical model and physical

implementation. In these two steps, a real traffic database is created and by using triggers,

traffic database is made automatic.

3.5.1 Logical Model

Six steps should be taken to codify a logical model for this traffic database. The first step is

to create a table for every object class. Given the fact that there are 10 object classes in the

conceptual model, a table is created for each one in the traffic database. Therefore, there will

be 10 tables in total. All the values, and attributes of an object are defined and put on the

columns in front of it in the second step. These attributes can be of the saved or derived

types. In other words, the attributes can be entered directly by users or derived from the

attributes of other objects in the traffic database. The attributes can also be generated by

conducting spatial computations on other attributes. Then, they can be assigned to the object

of interest. In the third step, the primary key is defined. This key serves as an ID giving a

unique identity to every object in the object class due to the possession of a primary key. In

the fourth step, a table is created for every many-to-many relationship in the conceptual

model. Thus, three tables can be created in the traffic database by having three many-to-

many relationships. The tables are named cycleway name, cycleway address, and cycleway

aa. In the fifth step, the primary keys of attributes are added to tables with many-to-many

relationships. One-to-many relationships are identified in the sixth step in which external

keys are added to tables existing on the other side of a relation ship (Table 2).

Table 2. Shows multiplicity, name, ID and FK of each object.

No Object or

M:M table

Name of Object or M:M table ID Posting FK for each

object 1:1 and 1:M

1 Object Address IDAD

2 Object Allowed Area IDAA

3 Object Middle of Streets IDMS

4 Object Bus Station IDBS IDCS, IDAA, IDAD

5 Object Speed bump IDSB IDAA, IDAD,

6 Object Cycle pump IDCP IDAA, IDAD

7 Object Car barriers IDCB IDAA, IDAD

8 Object Way Signs IDWS IDAA, IDAD, IDMS

9 Object Cycle Station IDCS IDAD

10 Object Cycle Ways IDCW

11 M:M table Cycle way_Area IDCW-AA IDCW, IDAA

12 M:M table Cycle way_Address IDCW-AD IDCW, IDAD

13 M:M table Cycle way_Middle of street IDCW-MS IDCW, IDMS

23

Figure 8. Database schema of implemented database.

In the physical implementation, the traffic database is created on the basis of the schematic

view generated in the logical model (Figure 8). After creating the traffic database, special

attention should be paid to the defined needs in the requirement specifications. Since there

are spatial and conceptual relationships between the traffic database objects, a change in one

object can change other objects. Therefore, it is necessary to establish consistency and

integrity in the traffic database. It is difficult to provide the traffic database with consistency

and integrity manually; thus, an automated mechanism is required. Such a mechanism can

be created by using triggers in the traffic database. The triggers are defined to be fired after

every change/addition/deletion/update in the traffic database in order to execute a set of

SQL commands on the traffic database. The triggers can be used to create an automated,

consistent, and integrated traffic database with low (defined) redundancy to provide all the

internal relationships. There were 26 triggers created in this traffic database to execute 10

rules defined in the requirement analysis. Generally, the defined triggers were divided into

two types based on the load of work and type of update. The first type includes the triggers

which are fired after a change is made to a table and update the same table of trigger. The

second type includes the triggers which are fired after a change is made to a table and update

many other tables. In Table 3, the number of triggers and functions defined in the traffic

database can be observed. It shows the name of every table trigger and the table updated by

that trigger. It also indicates the duration required for executing every trigger and the

duration needed to update a table in the traffic database completely (Table 3).

24

Table 3. Shows name of each table with related triggers, function and updated tables. Here we can

see the time of execution for each trigger and for each table separately.

N
o

On Table Name of

Triggers

Name of

Functions

Updated Tables Execution

Time for

each

trigger(Sec)

Execution

Time to

update

table (Sec)

1 Cycle station
Trig1_cs Func1_cs Cycle station <1

4
Trig2_cs Func2_cs Bus Station 4

2 Bus Station Trig2_bs Func2_bs Bus Station <1 <1

3 Speed bump Trig3_sb Func3_sb Speed bump <1 <1

4 Cycle pump Trig4_cp Func4_cp Cycle pump <1 <1

5 Car barrier Trig5_cbar Func5_cbar Car barrier <1 <1

6 Way signs Trig6_ws Func6_ws Way signs <1 <1

7 Cycle way

Trig4_cw, Func4_cw, Cycle pump <1

35
Trig71_cw, Func71_cw, Cycle way_aa 33

Trig72_cw, Func72_cw, Cycle way_ad <1

Trig73_cw Func73_cw Cycle way_name <1

8 Address

Trig1_ad Func1_ad Cycle station 4.9

24

Trig2_ad Func2_ad Bus Station 4

Trig3_ad Func3_ad Speed bump <1

Trig4_ad Func4_ad Cycle pump <1

Trig5_ad Func5_ad Car barrier <1

Trig6_ad Func6_ad Way signs 12

Trig72_ad Func72_ad Cycle way_ad <1

9
Allowed

Area

Trig2_lu Func2_lu Bus Station 4

52

Trig3_lu Func3_lu Speed bump <1

Trig4_lu Func4_lu Cycle pump <1

Trig5_lu Func5_lu Car barrier <1

Trig6_lu Func6_lu Way signs 12

Trig71_lu Func71_lu Cycle way_aa 33

10 Middle Street
Trig6_ms Func6_ms Way signs 12

13
Trig73_ms Func73_ms Cycle way_name <1

Triggers of the First Type: These triggers update only changed object. They compute new

values for the attributes of that object. In other words, the trigger of a table is activated after

a change is made to the table. Then, the trigger updates only the row (object) where the

change occurred. Since such triggers update only one object or row after activation, they

take very little time to perform the update. Hence, they are very fast. In this traffic database,

such triggers were used in the following tables including bus station, cycle station, cycle

pump, speed bump, car barriers, and traffic signs.

25

Triggers of the Second Type: These triggers update the entire object class and several

dependent object classes (if necessary) after a change is made to an object. In other words,

the trigger updates the entire table (every row) after a change is made to that table. This

trigger can update one or more tables at the same time. Since doing update using these

triggers takes a large size, they need more time to update all of the required tables. For

instance, if a change is observed in the address table, other tables are updated. It might be

time-consuming to update all of these tables having the address attribute with a large

number of rows. In traffic database, such triggers were used in the tables including address,

allowed areas, middle of streets, and cycle ways.

Challenges with triggers:

Triggers are very useful to apply the essential rules

to a database and make the database smart. Using

triggers, one can run a set of SQL commands with

every change in the database, which increase the

consistency, integrity and attribution of the

quantities automatically in the database. However,

using triggers has some disadvantages. The most

important disadvantage of trigger’s use includes the

loop of SQL commands due to the infinite

activation of triggers. If all the defined triggers are

created into the database to enforce the essential

rules, any change in one of the tables will activate

the trigger of that table, which in turn will cause another table to be updated and its trigger

will be activated; this will eventually lead to the re-update of the first table and re-activate

its trigger. If this process starts, there is no end to it and the triggers will continuously

activate each other (Figure 9). The difficulty with active database is no easy-to-use

techniques for modeling, designing and writing active rules. It means it is quite hard to

guarantee a termination for two rules in active database, which activate each other.

3.6 System Architecture of User Interface

It is very effective and efficient to use triggers to perform computations and analyses,

establish consistency and integrity, and data relationship in the traffic database

automatically. However, the use of triggers is error prone. A major disadvantage of using

triggers is the loop of SQL commands caused by firing triggers infinitely.

 To resolve the infinite activation of triggers in the traffic database, the iTRIMAN user

interface was designed. It can create necessary triggers on the traffic database and delete

them if they are not required. This interface allows a trigger to exist in the traffic database

only if its relevant table is being edited. Different applications such as QGIS, ArcGIS, and

Internal Web GIS of Malmö Municipality can be used to edit the spatial data existing in the

PostgreSQL traffic database with PostGIS extention. When data are edited, only relevant

triggers should be created by the iTRIMAN user interface. There should not be any triggers

in the traffic database by default when data are not edited.

Figure 9. Shows the loop challenge.

26

 The iTRIMAN user interface was designed in two platforms: desktop and web. The

web-based platform was designed exclusively for Internal Web GIS of Malmö Municipality.

However, the desktop platform can be used in desktop applications.

3.6.1 Desktop iTRIMAN

Since desktop applications such as

QGIS and ArcGIS are used widely in

GIS Section to display and edit spatial

data, the iTRIMAN user interface is

employed simultaneously with desktop

applications. The applications are

responsible for displaying and editing

data, and the iTRIMAN user interface

is responsible for creating and deleting triggers. With this combination, the data of interest

can be displayed first. Then, the iTRIMAN user interface can be used to activate relevant

triggers and update them automatically after every change. Finally, the results can be

displayed in desktop applications. Following is described architecture of desktop iTRIMAN:

 Trigger Area: In fact, this is a folder in which all 26 triggers are written inside it.

Each of these triggers is associated with one specific rule (section 3.2) and stored inside of

this folder (Trigger Area) in form of separate file. This folder, along with the triggers which

are inside this folder, is a part of the iTRIMAN which has a two-way relationship (send

command and receive data) with iTRIMAN. These triggers are written in both Python and

SQL languages. In case of need for editing, the administrator can edit the triggers directly in

this folder.

 iTRIMAN: iTRIMAN is an interface which

is written using the Python programming language

with help of Tkinter library. Tkinter is a Python

library for creating GUI (Graphic User Interface).

This interface, on the one hand, it is connected to

trigger area (the folder of triggers) and on the

other side with the PostgreSQL traffic database.

All of the buttons are also located inside this

interface. This interface, with every click on the

buttons, call the related triggers from trigger area

and run them on the traffic database. To

implement the iTRIMAN commands on the

traffic database, the PSYCOPG2 adaptor (connect

Python language to PostgreSQL traffic database)

is used.

 Database: This is a PostgreSQL traffic database with installed PostGIS extension

which can support geographic data. This traffic database receives commands from the

iTRIMAN Interface and displays the results in the visualization.

Figure 10. Shows architecture of desktop iTRIMAN.

Figure 11. Shows interface of desktop iTRIMAN.

27

 Visualization: This is for displaying geographic data. The information displayed in

this section is received from PostgreSQL traffic database. In addition to displaying, data can

be edited and the results are saved to the traffic database. For the visualization, can use

available desktop software such as QGIS and ArcGIS.

 Followings are instructions, which show how iTRIMAN works: Three menus (file,

edit, and help) and several other important built-in buttons were designed for this user

interface. The following buttons have the key roles in updating the traffic database

automatically:

 Start/End Editing: This button is used before starting and after finishing editing the

spatial data to delete all of the traffic database triggers and ensure the user that no

other triggers exist in the traffic database. Therefore, it can prevent performance

interferences and unwanted results in the traffic database (Figure 11).

 Automatic Update: This button creates the triggers of interest in the traffic database.

After they are created, the editing can be started. With every change in the traffic

database, the entire relevant data are updated automatically. This button was

designed in two colors, i.e. gray and orange, indicating the update time. In other

words, gray buttons need a very short time for updating (nearly a few milliseconds),

whereas orange buttons need more time for the automatic update. The two colors are

meant to notify the user of the time to update different tables so that the right buttons

can be selected when the user interface is used (Figure 11).

 Manual Update: It is sometimes possible that many changes should be made to the

traffic database. Moreover, the time of these changes may entirely belong to the

second-type triggers updating

many tables. Therefore, it can

be very time-consuming to

update a large traffic database.

In this case, manual update

buttons are designed. These

buttons can be used only by

pressing the start/end editing

button to make start editing

session. Finally, the manual

update button can be pressed to

apply all the changes and

update the traffic database

(Figure 11).

3.6.2 Web iTRIMAN

Since GIS Section use the internal

Web GIS of Malmö Municipality

which is used constantly by the GIS

personnel and engineers, it is essential

to integrate web iTRIMAN with the

Figure 12. Shows architecture of web iTRIMAN in

relation with SWECO Web GIS.

28

Web GIS of Malmö Municipality. For this purpose, web iTRIMAN was designed as a

module inside Web GIS of Malmö Municipality. JavaScript, HTML, CSS, Node.js, Ajax,

and jQuery were used to design this module. Web iTRIMAN is exactly the same as desktop

iTRIMAN in structure and performance. The only difference is that desktop iTRIMAN was

programmed in Python. It is also used with desktop applications, whereas web iTRIMAN is

web-based and used with Web GIS (Figure 12).

 There are three necessary steps in designing and implementing web iTRIMAN in

Web GIS of Malmö Municipality. In the first step, an iTRIMAN button should be defined in

the XML structure of Web GIS of Malmö Municipality. In the second step, a container

should be designed so that iTRIMAN module can run in Web GIS of Malmö Municipality

after clicking on the iTRIMAN button. The container includes all the necessary buttons and

tags to receive the commands in the exact same way as desktop iTRIMAN. Finally, the third

step is to establish the relationship between web iTRIMAN and PostgreSQL traffic database

so that SQL commands can be sent to this traffic database.

System architecture of web iTRIMAN (Figure 12) is as follow:

iTRIMAN Module: This module is displayed on the Web GIS of Malmö Municipality by

iTRIMAN button. This module has four different parts including container, visualization

board, server side and trigger area, which is connected to the traffic database.

 Container: Container is a part of the iTRIMAN module, which includes all of

buttons, tags, labels and icons. But this section does not display for the user. With each

click on the buttons in this section, a message is sent to the visualization board for further

processing. The most important file in this section is called "index.dust".

 Itriman Visualization Board: This section act like a monitor or display board for the

iTRIMAN interface. In other words, the user sees only the result of this section. This section

includes CSS files, Javascript files and "layout.dust". In addition, the most important

activity of this section is to receive clicks from the container section. Each click on a button

is detected and then is sent to the visualization board with a special ID. Then visualization

board sends the related commands to the server side to be applied on the traffic database

with the help of jQuery and Ajax. It is worth to mention that the two sections of the

container and the visualization board are located in the user side.

 Trigger Area: All 26 triggers are located in the trigger area. The Trigger area is

located on the server side. Each button which is clicked on the user side, based on its ID

number, it sends specific commands to the server side. Depending on the commands sent to

the server side, the related triggers are selected from the trigger area and sent to the traffic

database for execution. Depending on the commands are sent to the server side, the related

triggers are selected from the trigger area and are sent to the traffic database for execution.

 Server Side: One of the most important parts of the iTRIMAN is server side. All

commands are sent from the user side with a special ID to the server side. The server side is

designed using Node.js server framework and all required libraries are also installed on

server side. The server side has trigger area and related files for connecting with both user

side and traffic database. Server receive commands from the user side and then based on the

ID of the received commands, select the relevant trigger and run it on the traffic database.

29

 Database: The traffic database of this section, like iTRIMAN desktop, is a

PostgreSQL traffic database with PostGIS extension which can support geographic data.

This traffic database receives commands from the iTRIMAN server side. Then displays the

results in the visualization area (Web GIS of Malmö Municipality).

 Visualization area: The visualization area is for displaying the geographic

information, which is received from the PostgreSQL traffic database. The Visualization area

of web iTRIMAN is interal Web GIS of Malmö Municipality. The user can edit the data in

addition to the display and the result is saved again in the traffic database.

4 Results

In this section smart traffic database will be tested which is created according to the

requirement analysis and based on the selected technique (active method). For this purpose,

triggers and iTRIMAN interface were used for the automatic update. Then desktop and Web

GIS applications were employed to edit and display a spatial traffic database. As a result of

all the aforesaid steps, an integrated traffic database was created in accordance with the

requirements of GIS section. The traffic database can automatically update itself after every

change. The traffic database should be tested practically to analyze the results and observe

its integrity, behavior, and performance. Various requirements were defined in the

requirement specifications in addition to designing two different types of triggers to design

this traffic database. Therefore, the good tests include all or most of the requirements, both

triggers, and their applications in both web and desktop GIS environments. Hence, the

accurate functions of triggers and the fulfillment of requirements can be guaranteed.

 This section is going to demonstrate three test scenarios as the result of the work. Bus

station and cycle pump tables were used to test the first-type triggers. These tables include a

number of defined requirements. Other tables include certain requirements tested and

evaluated for bus station and cycle pump object classes. Therefore, it is not necessary to

retest requirements with other tables. The address table was used to test the second-type

triggers. Therefore, every change in this tables results in the update of a large number of

other tables.

4.1 Bus Station

This table uses the first-type triggers for updating. It meets the following requirements for

GIS section: 1) the closest address, 2) the type of allowed area , 3) inside or outside of the

allowed area, 4) the closest cycle station, and 5) the distance from the closest cycle station.

 The above requirements are computed and assigned to the bus station automatically

by using the first-type trigger. For this purpose, the bus station layer is displayed in Web

GIS first to activate its geometric editability. Then the iTRIMAN button is clicked to run

iTRIMAN user interface (Figure 13). In this step, the start editing button is clicked first to

ensure that there are no triggers in the traffic database. Then the automatic update button,

designed for the bus station layer, is clicked to create the respective trigger in the traffic

database (Figure 13). Then a new object is created for the bus station using Web GIS

interface. After that, the entire attributes are computed and assigned to the bus station

automatically. According to the Figure 14, then, they are displayed in the right place.

Moreover, all of the attributes and values are recomputed and allocated to the bus station

30

automatically after the object is moved from one position to another (Figure 15). If the new

position is empty or undefined, a null value is allocated to the respective attribute.

According to the Figure 16, the moved bus station is outside of allowed areas. Therefore, no

allowed area attributes are displayed for this section. The value shown in the table is null.

The respective cell, indicating whether the bus station is located inside or outside a piece of

allowed area by unticked or false column. In this case, a geometric serial ID is entered by

the user. However, other attributes are computed automatically. Since only a changed object

is updated, computations and attributions occur very fast.

Figure 13: Open iTRIMAN interface by clicking on “iTRIMAN” module button on the top

right side.

Figure 14: Shows iTRIMAN automatically updates attributes of created bus station object.

(A) Shows the created new bus station, (B) Attributes of created new bus station.

31

Figure 15: Shows iTRIMAN automatically updates attributes of bus station object, when its

geometry is changed (bus station is moved from location A to location B).

Figure 16: Shows iTRIMAN automatically updates attributes of bus station object, when its

geometry is changed (bus station is moved from location B to location C).

32

4.2 Cycle Pump

This table also uses the first-type triggers for updating. The requirements of this table are as

follows: 1) a mechanism for preventing objects from being saved and send a message to the

user if the new geometry is outside the defined domain, 2) a column which can show the

proximity of cycle pumps to cycle ways as true or false, 3) the closest address, and 4) the

type of allowed area.

 A cycle pump is a point object which should always be near cycle ways. QGIS was

used to edit and display this object class. To test this object class, it should first be opened in

QGIS. Then the start editing button should be activated. After that, the iTRIMAN user

interface should be opened, and the start editing button should be activated again to delete

any other triggers. In the next step, the automatic update button of the cycle pump layer

should be clicked to create the respective trigger in the traffic database (Figure 17). Now a

new object can be created for the cycle pump (Figure 17). Since the position of the created

object is inside the predefined domain, all of its attributes and features are assigned to the

respective object automatically (Figure 17). In the next step, the object created near cycle

ways is moved to a farther position to observe how the traffic database function towards it

(Figure 18). After sending the request to save the moved object, the system notifies the user

of an error to indicate that the new position is outside the predefined domain for the cycle

pump (Figure 18). Therefore, the system does not accept to save the new position.

Furthermore, the system sends the moved object to the initial position after sending the error

(Figures 19). The Boolean column, indicating the correctness of cycle pump position, is

always true by definition if there are some changes made to the cycle pump. It will never

turn to false unless the changes are made to the layer of cycle ways. In this case, the user

will become aware of the cycle pump status and position and can edit them appropriately.

Regarding a cycle pump, attributes such as object number, object type, and geometry are

entered by the user. However, other attributes such as address and allowed area type are

computed and allocated by the system after an acceptable change is made to the traffic

database.

33

Figure 17: Both iTRIMAN desktop and QGIS are open. It shows also attributes of a cycle

pump object, which is near to a cycle way object. (A) iTRIMAN interface, (B) Created new

cycle pump, (C) Attributes of new created cycle pump.

Figure 18: when want to save the new location of cycle pump, user will face with an error

message, which prevent him from saving new location to the cycle pump object. (A) Shows

changing the geometry of a cycle pump, (B) Shows error message, which prevent user to

save new location.

34

Figure 19: iTRIMAN (trigger) will not accept new location, which far away from cycle way

and return back cycle pump object to the original location. (A) Original location, (B) New

location which is not accepted.

4.3 Address

Since this table has second-type trigger, many of other tables should be updated as a result

of a change in this table. The traffic signs, bus station, speed bump, and car barriers tables

were used with the address table to observe their automatic updates after every change in the

address table. The abovementioned layers were opened with their tables in QGIS to display

the automatic update (Figure 20). First, the start editing should be activated in QGIS and

iTRIMAN user interface (Figure 21). Then, the respective triggers should be created in

iTRIMAN by pushing the automatic update button (Figure 22). All of the attributes and

features are entered by the user into the address table. However, the address attributes of

other tables are computed and assigned automatically in accordance with their positions

(Figure 23). Therefore, an object is selected in the address layer by changing its geometry.

After applying spatial changes to the object address, the attributes are recomputed and

assigned to the abovementioned objects automatically.

35

Figure 20: Shows attributes of four objects, which have a nearest address.(A) Address

object,(B) Attribute of address object A,(C) Four different object (way signs, car barrier, bus

station and speed bump) ,(D) Attributes of four mentioned objects, (E) Address object.

Figure 21: Shows iTRIMAN is open and “Start/End Editing” button is clicked. (A)

iTRIMAN interface, (B) message shows editing session is started.

36

Figure 22: shows “Automatic Update” button is clicked and automatic update for address

table is activated. (A) Automatic update button is clicked, (B) Message showing automatic

update is activated.

Figure 23: shows new nearest address abject for four objects by moving closer an address

object to four objects. (A) Address object moved from its old position to a new position, (B)

Shows attributes of moved address object (C) All of address attribute of four different

objects (way signs, car barrier, bus station and speed bump) are changed.

A

B

C

37

5 Evaluation

There are 10 different requirements that were identified for the creation of the traffic

database of GIS section. Triggers have been used to assign the attributes automatically and

to satisfy the requirements. Triggers can calculate and assign attributes automatically from

an object to another object after any change but have infinite loop problem. To resolve the

problem, the iTRIMAN interface was designed in two versions: desktop and web. These

interfaces create the triggers on the traffic database when needed and delete them when they

are not needed.

 The first and the second requirements (A, B) mentioned in the requirement analysis

section are related to the assignment of the attributes of the area objects to point and linear

objects. Using the first and the second types of triggers and the iTRIMAN interface,

attributes are calculated and assigned from allowed area objects to the point and linear

objects, which are within the allowed area. If the point and linear objects are outside of the

allowed area, the value of the null is assigned to them which will be very fast when using

the first type of triggers.

 The third requirement (C) mentioned in the requirement analysis is the assignment of

cycle way attributes to the address objects. This requirement is satisfied by creating a many

to many relationship and the relevant table, which is created based on the two object classes

of the cycle way and the address. This table is updated automatically by the use of triggers

and the iTRIMAN interface after any changes in these object classes.

 According to the fourth requirement (D), street names should be assigned to the

nearest cycle ways. This requirement is satisfied in the traffic database as a many to many

relationship and the relevant table, which is constructed based on street and cycle way. This

table is automatically updated by using the triggers and the iTRIMAN interface. Then, this

table is updated automatically after any changes in each of the two object classes.

 The fifth requirement (E) is to assign the cycle station's attribute to the nearest bus

station along with the distance between the two. For this purpose, the triggers and

iTRIMAN interface have been used to calculate nearest cycle station for each bus station

and then assign cycle station's attributes along with the distance between these two objects

to the bus station. This process is completely automatic and after any changes of the two

object classes, the bus station will be automatically updated.

 The sixth requirement (F) in the requirement analysis section is related to the nearest

address. Based on this requirement, the attributes of the nearest address are extracted for any

given point object and get assigned to that point object. To assign the attributes of the

nearest address to the point object, the distance between these two objects must be less than

100 meters. Triggers and iTRIMAN interface calculate the nearest address attributes and

assign them to the point object and then update it after any changes.

 The seventh requirement (G) is to assign the street attributes to traffic signs. To

satisfy this requirement, the attributes of the nearest street to all traffic signs will be assigned

to them. Triggers and iTRIMAN interface have been used for this purpose to automatically

assign attributes from the nearest street to traffic signs and after any changes, it will be

automatically updated.

38

 The eighth and the ninth requirements (H, I) are related to the integration of point and

linear objects with an allowed area and showing it in a separate column. Based on this

requirement, a separate column has been created for each point and linear object class,

which indicates the position of the point and linear objects in relation to the allowed area.

This is an automatic process, which is made by triggers and iTRIMAN interface and with

any change in the mentioned objects; the column will automatically be updated.

 The tenth requirement (J) is related to the integration between the cycle pump and the

cycling ways. According to this requirement, cycle pumps can only be created at a certain

distance from the cycle ways and the cycle pumps created outside the specified distance are

not accepted by the system. This requirement is automated with the triggers and iTRIMAN

interface, which updated automatically with any change in the cycle pumps or the cycle

ways.

 Considering above, all the requirements are satisfied. Our test shows that an active

traffic database that works based on triggers could be a possible solution for making smart

the traffic database of the GIS section in Malmö municipality. The use of triggers increase

the consistency, integrity, and automatic attribution in the traffic database.

6 Discussion

This study reached the first objective by identifying the requirement for creating a smart

traffic database. The second objective was achieved by studying three techniques for

creating smart databases including: active database, deductive database, ontology and

semantics techniques. Considering the current technical and financial capabilities and

preferences of the GIS section, the active database method was selected for the traffic

database.

 The third objective was achieved by developing a smart traffic database based on the

selected technique. The fourth objective was met by evaluating the implementation of the

selected technique according to the requirement analysis. There were certain challenges in

the design and completion of this traffic database. In this study we could provide address

some of them. However, other challenges still remain for future works. Both groups of these

challenges should be taken into account when the traffic database is used. Triggers are used

to update an automated traffic database (the main advantage). But still there are some

disadvantage or challenges for active method like triggering loop, triggers runtime, new user

definition and edited v.s. saved attributes.

6.1 Challenges

A challenge of designing the traffic database was the infinite fire of triggers. It was met by

designing and completing iTRIMAN user interface. However, in the current

implementation, several triggers relevant to different tables cannot be triggered at the same

time. The long execution time of the triggers is another challenge which still persists in

some tables after completing the traffic database. This traffic database is also characterized

by the ability of edit saved attributes and the inability to edit derived attributes.

39

6.1.1 The Execution time of Triggers

There are two types of triggers in the traffic database. The first type updates an object

instantly and very quickly, whereas the second type updates other tables which may include

a large number of objects. The second-type triggers are very time-consuming to run due to

the large size of updates (Table 3). Many tables in the traffic database use the first-type

triggers. However, tables such as addresses and allowed areas use the second-type triggers.

If there is a small number of edits in these tables, automatic update can be applied. If there

are a large number of edits, real-time update will be time consuming. Thus, the update

should be run once after applying the entire changes.

6.1.2 The Infinite Firing of Triggers

Using many triggers simultaneously can result in infinite loop of triggers. The reason is that

updating the values of one table, say table 1, may also update in another table, say table 2

and accordingly updating table 2 may change some values in table 1. Such a situation may

create infinite loop. It is also worth to mention the infinite loop is not because of error in

modeling. iTRIMAN user interface helps in managing this situation. However, if the

interface is used inappropriately (such as the creation of all triggers at the same time), the

infinite loop of triggers will still remain in the traffic database.

6.1.3 New Users Definition and Their Concurrent Access to the

Database

In the current traffic database, each new user needs to be individually defined. All the

relevant parameters are defined separately for each user to access the traffic database. Then,

while a table is edited by a user in the traffic database, only the trigger which belongs to this

user is able to execute the function. Other triggers which are related to other users for this

table will not execute the functions.

 Users are divided into traffic database administrator (DBA) and ordinary users. The

traffic database admin is able to use both types of triggers but ordinary users are limited to

use only first-type of triggers. This limitation has been made because of the second-type of

triggers are time consuming and result to time interference.

6.2 Suggestions and Future Works

Since the triggers of the first type are very effective and quick, it is suggested to develop and

use them. Regarding the second type of triggers, it should be noted that running the triggers

is time consuming for a large size of data.

 iTRIMAN has a significant role in generating a smart traffic database. It is suggested

to develop iTRIMAN and turn it into a professional user interface so that it can control

trigger parameters in addition to creating and deleting triggers. Then the user can enter

necessary parameters into iTRIMAN user interface without referring to SQL codes.

When the traffic database is used, a mechanism is required for rolling back the traffic

database if any unwanted edits occur. It is also necessary to design a mechanism, which can

automatically make periodic backups.

40

It is also recommended to consider testing and using ontologies and semantic approaches for

creating smart traffic databases as future studies.

7 Conclusions

This thesis had four objectives which were achieved successfully. Requirements analysis

was conducted and ten rules were identified. Three different kinds of smart database

including ontology and semantic in database, active and deductive database

es were studied, and then active database was selected for test in this study. Then

implemented techniques were evaluated against requirement analysis.

 The traffic database was designed and implemented in the first step in which certain

interviews were conducted with GIS section personnel to define all of the requirements as

essential rules. Then a conceptual model was designed. After that, a logical model was

devised. Finally, the traffic database was implemented practically.

 In the second step, triggers were used to implement the rules and update the traffic

database automatically. The use of triggers increased consistency, integrity, and automatic

attribution in the traffic database. Triggers are mainly based on ECA (event, condition, and

action). The trigger-generated smart traffic database is an active traffic database which can

automatically compute values and attributes for objects and update them after every change.

There were 26 triggers designed and implemented in this traffic database. They were

divided into two types. In the first type, triggers were executed on the same tables of those

triggers. On the other hand, the triggers of the second type were executed on the other

tables. The triggers of the first type are very fast. They can update respective tables very

quickly.

References

1) Bernstein, P.A., and B.T. Blaustein, 1982. Fast methods for testing quantified relational

calculus assertions. In Proceedings of the 1982 ACM SIGMOD international conference

on Management of datapp, 39-50.

2) Bernstein, P.A., B.T. Blaustein., and E.M. Clarke, 1988. Fast maintenance of semantic

integrity assertions using redundant aggregate data. In Readings in Artificial Intelligence

and Databases, pp.457-467.

3) Decker, H., and D. Martinenghi., 2008. Database Integrity Checking. In M. Khosrow-

Pour, editor, Encyclopedia of Information Science and Technology (Second Edition),

volume II, pp.961–966.

4) Egenhofer, M., F. Fonseca, C. Davis, and K. Borges, 2000. Ontologies and Knowledge

Sharing in Urban Gis. CEUS - Computer, Environment and Urban Systems, Volume 24,

Issue 3, pp.251-272.

5) Elmasri, R., Navathe, Sh.B., 2011. Fundamentals of database systems, 6th edition, ISBN-

13: 978-0-136-08620-8.

6) Eswaran, K., and D. Chamberlin, 1975. Functional specifications of a subsystem for

database integrity. In Douglass S. Kerr (Ed.), Proceedings of the First VLDB,

Framingham, MA: ACM Press, pp.48-68.

7) Fonseca, F., 2001. “Ontology-Driven Geographic Information Systems”. Phd Thesis.

University of Maine.

https://www.sciencedirect.com/science/journal/01989715/24/3
https://www.sciencedirect.com/science/journal/01989715/24/3

41

8) Friis-Christensen, A., N. Tryfona, and C.S. Jensen, 2001. November. Requirements and

research issues in geographic data modeling. In Proceedings of the 9th ACM

international symposium on Advances in geographic information systems, pp. 2-8.

9) Gaurav J., B. Simmi, 2012. Hierarchical Model Leads to the Evolution of Relational

Model, International Journal of Engineering and Management Research, Vol. 2, ISSN

No.: 2250-0758, pp.11-14.

10) Grady, B., I. Jacobson, and J. Rumbaugh, 2005. Unified Modeling Language User

Guide, The (2 ed.). Publisher: Addison-Wesley, ISBN 0321267974.

11) Guarino, N., 1998. “Formal Ontology and Information Systems”. In: Formal Ontology

and Information Systems (FOI´S 98). Italy, 1998.

12) Hardy, P. G., 2000. Multi-scale database generalisation for topographic mapping,

hydrography and web-mapping, using active object techniques. International Archives

of Photogrammetry and Remote Sensing, 33(b4/1; part 4), pp.339-347.

13) Hardy, P. G., K.r. Haire, R. Sheehan, and P. A. Woodsford, 2001. Mobile Mapping On-

Demand, Using Active Representation and Generalisation. In Proceedings of the 20th

International Cartographic Conference, Beijing, China, pp.3239-3247.

14) Jha, A. K., 2015. An introduction to deductive database and its query evaluation.

International journal of advanced computer technology, volume 3, number 3.

15) Lausen, G., B. Ludäscher, and W. May, 1997. On active deductive databases: The

statelog approach. In Workshop on (Trans) Actions and Change in Logic Programming

and Deductive Databases, Springer, Berlin, Heidelberg, pp. 69-106.

16) Mansourian, A., L. Harrie, 2012. Geographical Databases, Lecture Notes, GIS Center,

Lund University.

17) Muñoz, A., and J. Aguilar, 2007. Ontological scheme for intelligent database. In Proc. of

the 11th WSEAS Int. Conf. on Computers, ICCOMP, pp.1-6.

18) Praveen, S., Chandra, U. and Wani, A.A., 2017. A Literature Review on Evolving

Database. International Journal of Computer Applications, 162(9).

19) Ranjana I., R. Khandal, R. Mohare, 2015. Comparison of HDBMS, NDBMS, RDBMS

and OODBMS, International Journal of Advance Research in Computer Science and

Management Studies, Volume 3, Issue 6, ISSN: 2321-7782 (Online)

20) Tveite H., January 1997. Data Modelling and Database Requirements for Geographical

Data.

21) Vaz, D., M. Ferreira, and R. Lopes, 2007. Spatial-yap: a logic-based geographic

information system. Logic Programming, pp.195-208.

22) Viegas, R., and V. Soares, 2007. Querying a geographic database using an ontology-

based methodology. In Advances in Geoinformatics. Springer Berlin Heidelberg,

pp.165-182.

Online References

1) Paul and Margaret Hardy’s home page at www.pghardy.net, derived at 2017-08-30.

2) PostgreSQL documentation at www.postgresql.com, derived at 2017-09-05.

http://www.postgresql.com/

42

Institutionen för naturgeografi och ekosystemvetenskap, Lunds Universitet.

Studentexamensarbete (seminarieuppsatser). Uppsatserna finns tillgängliga på institutionens

geobibliotek, Sölvegatan 12, 223 62 LUND. Serien startade 1985. Hela listan och själva uppsatserna

är även tillgängliga på LUP student papers (https://lup.lub.lu.se/student-papers/search/) och via

Geobiblioteket (www.geobib.lu.se)

The student thesis reports are available at the Geo-Library, Department of Physical Geography and

Ecosystem Science, University of Lund, Sölvegatan 12, S-223 62 Lund, Sweden. Report series

started 1985. The complete list and electronic versions are also electronic available at the LUP

student papers (https://lup.lub.lu.se/student-papers/search/) and through the Geo-library

(www.geobib.lu.se)

408 Julia Schütt (2017) Assessment of forcing mechanisms on net community production and

dissolved inorganic carbon dynamics in the Southern Ocean using glider data

409 Abdalla Eltayeb A. Mohamed (2016) Mapping tree canopy cover in the semi-arid Sahel using

satellite remote sensing and Google Earth imagery

410 Ying Zhou (2016) The link between secondary organic aerosol and monoterpenes at a boreal

forest site

411 Matthew Corney (2016) Preparation and analysis of crowdsourced GPS bicycling data: a

study of Skåne, Sweden

412 Louise Hannon Bradshaw (2017) Sweden, forests & wind storms: Developing a model to

predict storm damage to forests in Kronoberg county

413 Joel D. White (2017) Shifts within the carbon cycle in response to the absence of keystone

herbivore Ovibos moschatus in a high arctic mire

414 Kristofer Karlsson (2017) Greenhouse gas flux at a temperate peatland: a comparison of the

eddy covariance method and the flux-gradient method

415 Md. Monirul Islam (2017) Tracing mangrove forest dynamics of Bangladesh using historical

Landsat data

416 Bos Brendan Bos (2017) The effects of tropical cyclones on the carbon cycle

417 Martynas Cerniauskas (2017) Estimating wildfire-attributed boreal forest burn in Central and

Eastern Siberia during summer of 2016

418 Caroline Hall (2017) The mass balance and equilibrium line altitude trends of glaciers in

northern Sweden

419 Clara Kjällman (2017) Changing landscapes: Wetlands in the Swedish municipality

Helsingborg 1820-2016

420 Raluca Munteanu (2017) The effects of changing temperature and precipitation rates on free-

living soil Nematoda in Norway.

421 Neija Maegaard Elvekjær (2017) Assessing Land degradation in global drylands and possible

linkages to socio-economic inequality

422 Petra Oberhollenzer, (2017) Reforestation of Alpine Grasslands in South Tyrol: Assessing

spatial changes based on LANDSAT data 1986-2016

423 Femke, Pijcke (2017) Change of water surface area in northern Sweden

424 Alexandra Pongracz (2017) Modelling global Gross Primary Production using the

correlation between key leaf traits

425 Marie Skogseid (2017) Climate Change in Kenya - A review of literature and evaluation

of temperature and precipitation data

426 Ida Pettersson (2017) Ekologisk kompensation och habitatbanker i kommunalt planarbete

427 Denice Adlerklint (2017) Climate Change Adaptation Strategies for Urban Stormwater

Management – A comparative study of municipalities in Scania

428 Johanna Andersson (2017) Using geographically weighted regression (GWR) to explore

spatial variations in the relationship between public transport accessibility and car use : a

case study in Lund and Malmö, Sweden

429 Elisabeth Farrington (2017) Investigating the spatial patterns and climate dependency

of Tick-Borne Encephalitis in Sweden

43

430 David Mårtensson (2017) Modeling habitats for vascular plants using climate factors

and scenarios - Decreasing presence probability for red listed plants in Scania

431 Maja Jensen (2017) Hydrology and surface water chemistry in a small forested

catchment : which factors influence surface water acidity?

432 Iris Behrens (2017) Watershed delineation for runoff estimations to culverts in the

Swedish road network : a comparison between two GIS based hydrological modelling

methods and a manually delineated watershed

433 Jenny Hansson (2017) Identifying large-scale land acquisitions and their agro-

ecological consequences : a remote sensing based study in Ghana

434 Linn Gardell (2017) Skyddande, bevarande och skapande av urbana ekosystemtjänster

i svenska kommuner

435 Johanna Andersson (2017) Utvärdering av modellerad solinstrålning i södra Sverige

med Points Solar Radiation i ArcGIS

436 Huiting Huang (2017) Estimating area of vector polygons on spherical and ellipsoidal

earth models with application in estimating regional carbon flows

437 Leif Holmquist (2017) Spatial runner: environmental and musical exposure effects on

runners through an idealized routing network

438 Adriana Bota (2017) Methodology for creating historical land use databases – a case

study for ICOS-station Hyltemossa, Sweden

439 Michael Araya Ghebremariam (2017) Urban flood modelling: a GIS based approach in

Lomma, Skåne region

440 Stina Sandgren (2017) Climate change impact on water balance and export of

dissolved organic carbon - a sub-catchment modelling approach

441 Karla Münzner (2017) Variability and regulation of the planktonic respiratory quotient

in a eutrophic lake (Lake Vombsjön) in summer 2016

442 Bastian Berlin (2017) Modeling the Weibull shape parameter to improve estimates of

the annual wind energy potential in Sweden

443 Christine Walder (2018) Humpback whale (Megaptera novaeangliae) location in

Southeast Alaska: modeling the influence of mesoscale krill (Euphausiacea) patch

depth and size

444 Astrid Zimmermann (2018) Projecting invasive species using remote sensing and

spatial explicit models

445 Linnéa Larsson (2018) Identifiering av riskområden för extremer av markfuktighet

med Soil Topografic Index : Jordbruksmarken i Helsingborgs kommun i nutida och

framtida perspektiv

446 Sayed Hassan Alavi (2018) Constructing and developing an integrated smart spatial

database for Malmö Municipality, Case study: Västra innerstaden in Malmö

