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Kalle Åström
kalle@maths.lth.se

Assisting supervisor
Martin Ahrnbom
ahrnbom@maths.lth.se

Assisting supervisor
Siri Dovner
siri.dovner@axis.com

May 30, 2018



Abstract

Emotion recognition is a relatively new research area within image analysis
where machine learning models learn to interpret facial expressions. In this
thesis paper the authors have investigated how close to human accuracy
selected deep convolutional neural network models can reach on the Emotion
Recognition Problem, what the purpose of such an application might be and
what compromises can be made when balancing computational power and
classification performance.
A number of deep convolutional neural network models of varying depth were
trained on mainly two datasets; FER2013 and AffectNet. Results showed
that the best model managed to reach 74.6 % accuracy on a three label
testset, where a human performed 80.7 %. The conclusion was made that
for the most interesting use cases, label binning facial expressions into three
classes positive, neutral and negative might be favorable. Lastly, as for
trade-off when balancing accuracy and computational power, deeper net-
works perform insignificantly better than the more shallow ones, while the
latter dramatically reduce the computational effort.
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Glossary

CNN Abbreviation of convolutional neural network. 12

dropout The process of randomly dropping neurons at training time in a neural network, given dropout
probabilites. 11

dynamic range The ratio between the largest and smallest value of some quantity, in this case pixel values.
18

epoch The timescale in which a machine learning model has trained on all components in a dataset. 7

facial landmarks Coordinates for data points of features in an image, for example coordinates for a mouth
or an eye. 3

gate An unary, atomic mathematical operation, i.e. it has one input and cannot be reduced into a combi-
nation of other operations. 10

hyperparameter A parameter whose value is set before the learning process begins. 24

in-the-wild Images from various sources which are captured in a non-staged laboratory environment. 3

loss function A differentiable function of trainable parameters outputting a value representing the error of
a model. 6

neocognitron The predecessor of the convolutional neural network. 12

neuron An atomic part of the neural network outputting a scalar value after operations on input value(s).
7

overfitting A model is considered overfitted when it has adapted to its training data in too much detail. 6

padding The process of adding a border of zeros around an input. 12

pooling The process of down-sampling a layer in a CNN. 12

saddle point A point on a graph surface where the gradient is zero but the point cannot be the same kind
of local extremum on both axes. 25

2



1 Introduction

Although the precursor to the neural network was
theorized as early as in 1943 by Warren McCulloch
and Walter Pitts [1], it is in recent years with the
advent of powerful GPU’s that these systems have
become popular. One of the fields where neural
networks have shown great promise is the field of
computer vision, where in particular convolutional
neural networks are useful for solving a number of
different problems.

One of the potential areas where convolutional neu-
ral networks can be utilized is for recognizing fa-
cial expressions in images of faces, more commonly
known as emotion recognition. The possible appli-
cations for recognizing facial expressions are many:
it could be used as a direct tool to evaluate a per-
sons mood or to detect responses to different kinds
of stimuli. Some of the more evident areas of use
would be within marketing and surveillance, but it
is not unthinkable that emotion recognition would
be of high use for synergy between man and ma-
chine.

Like most machine learning problems, the results of
neural network models rely heavily on the amount
and quality of training data. For the emotion recog-
nition task most datasets have six categories, the six
basic facial expressions defined by Ekman in 1971:
happiness, sadness, anger, surprise, disgust and fear
[2]. On top of these six basic emotions a few oth-
ers also commonly appear, such as neutral and con-
tempt. By extension this means that most previ-
ous work on emotion recognition using neural net-
works have tried to classify facial expressions based
on these emotions.

Our approach to the classification task is slightly
different. What if the interesting case is not to clas-
sify these six different emotions (or up to eight de-
pending on which dataset you use), but instead to
classify using broader terms such as positive, neu-
tral or negative response? One could argue that a
useful use case would not be whether a computer
could interpret a very specific facial expression such
as ’disgust’, but rather whether a person is satisfied
or not.

Since we have chosen to focus on the application and
usefulness of the emotion recognition problem rather
than trying to produce new competitive model de-
signs, we focus on testing models designed by oth-
ers. We have namely noticed that despite abundant

research on emotion recognition, the usefulness in-
the-wild is not well understood, which we want to
investigate.

2 Background

Neither the classification task nor the model designs
in this project are unique. The fundamental con-
volutional layer was first introduced in 1988 by Y.
Lecun et al. [3] and the earliest efforts at emotion
recognition which we can find are by I. Cohen et al.
in 2002 [4]. All research on emotion recognition we
have come across is evaluated on a specific test set
with no efforts of applying the classification task on
a real life problem, which is is why we have chosen
not to try to produce a top of the line classifier, but
rather to use existing ones to evaluate their perfor-
mance and usefulness in a real life setting.

3 Related work

In this report we have focused on mainly three dif-
ferent papers for choice of neural network models;
Facial Expression Recognition Using Deep Convolu-
tional Neural Networks by Sang et al. [5], Densely
Connected Convolutional Networks by Huang et al.
[6] and Deep Residual Learning for Image Recogni-
tion by He et al. [7]. Out of these three only the
first article by Sang et al. focuses on the emotion
recognition problem, while the other two are focused
on object detection.

Earlier work utilizing machine learning has tried to
solve the emotion recognition problem in a num-
ber of ways. Perhaps the most straight forward ap-
proach, which has been used by Sang et al. [5], is
to simply analyze every image individually with a
convolutional neural network and in that way pre-
dict the facial expressions. Other researchers have
focused on analyzing a series of images in a video
sequence utilizing time-delay neural networks and
recurrent neural networks [8] [9]. The analysis is
in most cases applied to images of faces displaying
facial expressions, but sometimes it is also used in
conjunction with facial landmarks, which are coor-
dinates for facial features in an image, such as for
example the mouth, the eyebrows or the eyes.

Our approach to the problem has been to focus on
simple convolutional neural networks on individual
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images instead of video sequences. The reason for
this stems from three arguments: (1) datasets which
contains facial expressions in video sequences are
rather limited, there is far more available data on
single images, (2) we want to create a neural net-
work model which does not require too much com-
putational power, since the area of use might be to
embed the software on a network camera, and (3)
when trying to analyze facial expressions in a video
stream it is hard to distinguish when a facial expres-
sion starts and when one ends. If you still have to
do a single image analysis to determine this, then
you might as well try to create a classifier which is
good at classifying single images.

4 Problem definition

The main questions we are trying to answer in this
thesis work are:

1. Using selected deep convolutional neural net-
work models; how close to human performance
can we reach on the emotion recognition prob-
lem?

2. What real life applications could arise from the
emotion recognition classification task?

(a) What is the purpose of the application?

(b) What are the trade-offs that can be made
between prediction accuracy and execu-
tion speed?

4



5 Theory

5.1 The image classification
problem

5.1.1 Goal

The goal of the image classification problem is to,
given an image (in our case an image of a face),
classify it i.e. providing it with a single label from
a known set of labels (in our case the labels are
different emotions).

5.1.2 Approach

One way of solving the image classification problem
would be to somehow find patterns among labels and
hard code some way of detecting these patterns. A
simple example would be to use pixel value gradi-
ents to find eyes and then for example use eye dis-
tance and proportions to classify between different
animals. This kind of approach proves to be a tricky
task and the addition of a new label would result in
a lot of work. A more simple approach, made possi-
ble by the computational power of the modern day
computer, is to train a classifier much like the way
you teach a child what different things are. With a
child you point at a horse and say ”horse”. With a
computer you could input a 3-dimensional array of
integers representing an image of a horse together
with a label corresponding to ”horse”. This way
of tackling the image classification problem is re-
ferred to as a data-driven approach, since it requires
the collection of already labeled images - a training
set.

To evaluate the performance of the trained classifier,
predictions are made on an already labeled set of im-
ages. Predictions and true labels are then compared
to obtain a final score. The latter set of images is
usually called a test set and cannot contain images
from the training set. This because such an evalua-
tion wouldn’t test the classifiers performance to see
general patterns in labels, but rather its ability to
remember exact images. An analogy would be if you
took a math test where you’ve seen all the answers
beforehand and thus does not need to derive them.
Your ability to remember the answer to a problem
is therefore tested rather than your ability to solve
an arbitrary problem of a given kind.

5.1.3 Challenges

There are a lot of factors affecting the performance
of a classifier. The way the classifier works and
whether it is optimal for a certain data set is very
important. A good training set is however funda-
mental to high classification performance regardless
of classifier.

A good training set should mirror the reality of the
classification task at hand as well as possible. If you
imagine a master set, which consists of every pos-
sible image displaying a classification label, then a
good training set is a subset of this master set, as
big as possible and with as high diversity as possi-
ble.

Even with an optimal classifier and a great training
set, the classification performance might be inade-
quate. This could be caused by one of the following
image problems:

• Perspective. The same motif looking different
depending on the camera angle.

• Scale variation. A class of objects showing
big differences in size.

• Deformation. Non rigid bodies exhibiting dif-
ferent levels of deformation.

• Occlusion. The object of interest being
blocked in some way.

• Light conditions. Images being under- or
overexposed dramatically differing in pixel val-
ues.

• Camouflage. The object of interest blending
into the background.

• Label diversity. Instances of the same label
differing in looks.

5.2 Linear Classification

In order to understand how a neural network works,
one needs to be familiar with the basic concepts
of linear classification. Therefore, a short theo-
retical background of linear classification follows,
before moving on to the neural network architec-
ture.
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5.2.1 Score function

When predicting the label of an image, a linear clas-
sifier outputs a class score for every possible label.
The highest class score represent the most likely la-
bel. A simple linear class score function can be de-
fined as

f(xi,W, b) = Wxi + b = s, (1)

where xi is a n x 1 vector of input data, W a m x n
matrix of weights and b am x 1 vector of biases. The
letter n corresponds to the amount of data and m to
the number of classes. Usually the pixel matrices of
an image are flattened to a single dimension vector,
in this case xi of length n. The class score vector s is
a m x 1 column vector representing a metric of how
well the input data matches the m labels. Simply
put, the index of the highest value in the class score
vector is the predicted label in the classifiers current
state.

5.2.2 Loss function

Now that we have a way of predicting labels, we can
also measure the classification performance. This is
usually done using a loss function. The ”loss” repre-
sents the error of the classification and should thus
be minimized. The function defining the loss is usu-
ally referred to as the loss function, cost function
or objective function. Two common loss functions
for this kind of classification are the Multiclass Sup-
port Vector Machine (Multiclass SVM), also known
as multiclass hinge loss or max margin loss, and the
Cross Entropy loss function. They both use the class
scores from (1) to define a loss, but with slightly dif-
ferent approaches.

5.2.2.1 Multiclass SVM loss function

The Multiclass SVM loss function is defined
as

Li =
∑
j 6=yi

max(0, sj − syi
+ ∆), (2)

where Li is the loss for the i:th data example, j:s
domain is the class labels, the s terms are the class
scores from (1) and yi is the correct class label for
example i. The ∆ term is a threshold for when to

penalize class scores. If an incorrect class score is
more than ∆ smaller than the correct class score,
then there is no penalty. Otherwise there is penal-
ization proportional to the difference between the
correct and incorrect class scores. Let’s look at an
example using ∆ = 10 and yi = 1;

xi =

−1
1
3

 , W =

 1 −2 3
−2 −1 4
1 2 3

 , b =

 0
1
−1

 ,
(3)

(3)

(1)

}
=⇒ s =

 6
14
9

 , (4)

(2)

(4)

}
=⇒ Li = (6−14+10)+(9−14+10) = 7. (5)

We can see that even though the correct class score
is the highest, i.e. this sample is predicted correctly,
the loss is nonzero. This is because a relatively high
threshold ∆ = 10 is used.

To get a final loss function for the whole dataset,
the losses Li are summed up. A regularization term
is usually added as well to prevent overfitting. An
overfitted model has adapted to its training set in
too much detail, instead of capturing more general
patterns of the labels. To avoid this, high value
weights are penalized, promoting a more balanced
weight distribution and thus a less extreme fit. A
common regularizer is the L2 regularizer which uses
the L2 norm to penalize the weights. The total loss
L can be expressed as

L =
1

N

 N∑
i

M∑
j 6=yi

max(0, sj − syi + ∆) + λ
K∑
i

M∑
j

w2
i,j

 ,

(6)

where N is the size of the dataset, λ the regular-
ization weight, K the number of data values per
example, M the number of labels and w the corre-
sponding weights.

5.2.2.2 Cross Entropy loss function

The Cross Entropy loss function is minimizing the
cross entropy between the estimated distribution q
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and the true distribution p. In our case, for example
i, these distributions can be defined as

q : P (X = x) =
esx

M∑
j

esj
(7)

and

p : P (X = yi) = 1, (8)

where X is a discrete random variable representing
the label. So if X = 1 then sx = s1 is the score
function for label 1. The cross entropy between an
estimated distribution q and true distribution p is
defined as

H(p, q) = −
∑
x

p(x) log q(x). (9)

Inserting (7) and (8) into (9) gives us

H(p, q) = − log
esyi

M∑
j

esj
= Li (10)

which is our loss Li for example i. A total loss
L including a regularization term can be defined
as

L = − 1

N

N∑
i

log
esyi

M∑
j

esj
+ λ

K∑
i

M∑
j

w2
i,j . (11)

Minimizing the cross entropy between the true dis-
tribution p and the predicted distribution q can be
interpreted as forcing the mass of q towards the dis-
tribution of p, i.e. towards the correct labels. Study-
ing (10), we can see that a perfect prediction (q = p)
yields zero loss, while a non overlapping distribution
situation such as p = [1, 0, 0], q = [0, 0.5, 0.5] yields
an infinite loss.

5.2.3 Optimization

The goal is to train the classifier, i.e. to minimize the
total loss over the training set. This is done with the
help of an optimizer. The optimizer uses the model

to predict labels for a batch of images at a time. The
loss function is then used to figure out in what way
to update the weights to achieve a lower loss. The
weights are updated accordingly and the optimizer
starts over with a new batch. Once everything in
the training set has gone through the training pro-
cedure once, the process starts over. This is called
an epoch.

A foundation in many optimizers is the use of gradi-
ent descent, an approach where weights are updated
in the opposite direction of the gradient of the loss
function. The optimization process is described in
more detail and for a neural network architecture in
Section 5.3.2.

5.3 Neural Networks

5.3.1 Architecture

A Neural Network consists of an input layer, an out-
put layer and any number of hidden layers. Every
layer consists of one or more neurons. The neurons
are the building blocks of the neural network, each
performing mathematical operations. Neuron layers
can be connected in different ways, for example in
the commonly used fully connected manner, where
every neuron in layer i is pairwise connected to ev-
ery neuron in layer i+1, while no connections within
a layer exists. In this case, layer i + 1 is fully con-
nected. A neuron with n inputs xi has n weights
wi corresponding to the inputs and one bias term b.
Every neuron performs the operations

f

(
n∑
i

wixi + b

)
= O, (12)

where f is an arbitrary function called ”activation
function” and O is the neuron output. It is a com-
mon practise to use activation functions which are
nonlinear. Non-linearity is needed to acquire depth
in a network. One way to look at this is to consider
the following: a linear neural network is effectively
never deeper than one layer, since summing up a set
of linear layers is still only one linear function. The
same does not apply when non-linearity has been in-
troduced, thus allowing the network to easily model
more complex patterns.

7



Figure 1: A simple fully connected neural network architecture using cross entropy loss.
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Commonly used activation functions are tanh

f(x) =
ex − e−x

ex + e−x
, (13)

Rectified Linear Units (ReLU)

f(x) = max(0, x), (14)

and on the last layer using cross entropy loss func-
tion as seen in (7), softmax

f(x)i =
exi∑
j

exj
, (15)

which squashes the outputs, i.e. the class scores
into probabilities. To clarify, it seems to be com-
mon practise for the cross entropy loss from (11)
not to include the softmax part, but to expect in-
put equal to q in (7). This results in the fact that
you have to use a softmax activation function in the
output layer, which holds the class scores, to utilize
the cross entropy loss function as defined.

Let’s look at a simple neural network design of fully
connected layers, portrayed in Figure 1. The clas-
sification task at hand could be anything, but let’s
consider the case of determining whether a given
text is written in French or English. The first input
value represents the average number of the letter
”a” in a sentence. The second input value repre-
sents the average word length. Cross entropy loss is
used and therefore also softmax activation function
on the output layer. Given this and that we have
2 labels, ”English” and ”French”, the output layer
consists of 2 neurons expressing the class probabil-
ities. All other layers use ReLU as activation func-
tion. Since this network is an example with made
up weights, i.e. it has not been trained, it is not de-
fined which output probability corresponds to what
label.

5.3.2 Optimization

A fundamental part of training a neural network
model is updating weights and biases in such a way
that the model is ”improved”. As described in Sec-
tion 5.2.2, a loss function is the used measure of how
big the model error is. Whether the model is im-
proved after updating weights and biases is thus easy
to see using the loss function. This however does not

help in the task of updating weights and biases in a
smart way. Simply put, we want to find a ”good”
minimum of the loss function, in as few iterations
as possible. A ”good” minimum is a general mini-
mum, meaning that it’s not specific for the training
set, but should be present in any test set as well.
Ending up at a loss function minimum specific for
the training set is what’s called overfitting.

A first, very simple approach of finding a loss func-
tion minimum would be to iterate over the weights
and biases using a grid. For example, without bi-
ases, the 2D grid in Figure 2 could be traversed to
find the optimal combination of w1 and w2, given
the grid size and domain. For a more precise train-
ing, you can just use a finer grid. This approach
is a classic example of a brute-force search, which
usually isn’t an optimal method due to its rapidly
increasing run cost for an increasing problem size.
We will, as you will see later on, have millions of
weights to train which makes the brute-force search
impossible to use in practise. As stated above, we
want to find a good minimum in as few iterations
as possible, and this is where the backpropagation
algorithm comes into play.

Figure 2: A 2D grid search domain of [-1 1], for
weights w1 and w2. Every intersection in the grid
represents a point where the loss given w1 and w2 is
calculated.
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5.3.2.1 Backpropagation

Backpropagation, also called backward pass, is the
process of sending expression derivative values back-
wards through a network. This is done by using the
chain rule

df

dx
=
df

dy

dy

dx
(16)

to calculate the local derivative in every part of the
network and then propagating this backwards. Let’s
examine this process with the help of a simple exam-
ple. Consider the neural network in Figure 3.

Figure 3: A simple fully connected neural network.

Let’s assume the use of a L2 norm loss function to-
gether with this network. The L2 norm loss function
is defined as

L =

n∑
i=1

(si − yi)2, (17)

where n is the batch size to compute the loss over,
yi is the correct score and si is the predicted score.
The prediction si is outputted from the output layer
in Figure 3. For simplicity we assume the batch
size n = 1. All mathematical expressions in this
network are a combination of the following unary,
atomic expressions, usually called gates

fa(x) = ax,
dfa(x)

dx
= a, (18)

fc(x) = c+ x,
dfc(x)

dx
= 1, (19)

fd(x) = d− x, dfd(x)

dx
= −1, (20)

f(x) = x2,
df(x)

dx
= 2x, (21)

where a, c and d are real number constants. The
ReLU function can be expressed using (18), but for
clarity ReLU and its derivative is defined in (22),
where ReLU is abbreviated as R.

R(x) =

{
0, x ≤ 0

x, x > 0
,

dR(x)

dx
=

{
0, x ≤ 0

1, x > 0
.

(22)

The full expression for the network is

(R(w1x1 + w2x2 + b1)w3 + b2 − y)2. (23)

Using (18) through (22), (23) can be expressed as
a circuit diagram shown in Figure 4, where y is the
given correct value, green values are flowing forward
and red values are flowing backward through the
network. The green values (above the lines) origi-
nate from the weights, biases and the y-term. These
values are sent through the gates to finally result in
a loss, L = 25. Similarily, the red values (under the
lines) originate in the outmost local derivative value
of 10, calculated using (21). Every local derivative
value can with the help of (16) generate the con-
nected derivative values to the left. Let’s for exam-
ple look at the top left of Figure 4, which we can
investigate using the following functions

f(w1, x1) = w1x1,
df

dx1
= w1,

df

dw1
= x1,

g(w2, x2) = w2x2,
dg

dx2
= w2,

dg

dw2
= x2,

q(f, g) = f + g,
dq

df
= 1,

dq

dg
= 1,

where f and g represent f(w1, x1) and g(w2, x2) re-
spectively. In this section of the circuit our start
value is the derivative of the total circuit expression
with regard to q, dL

dq = 10. From here we can go
deeper and calculate the derivatives next in line, by
applying (16)

dL

df
=
dL

dq

dq

df
= 10,

dL

dg
=
dL

dq

dq

dg
= 10.

In the same way the next layer of derivatives can be
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Figure 4: A circuit diagram describing the network in Figure 3 with L2 norm loss function. Green values
are propagated forward and red backwards through the network.

determined

dL

dw1
=

dL

df

df

dw1
= 20,

dL

dx1
=
dL

df

df

dx1
= 20,

dL

dw2
=

dL

dg

dg

dw2
= 50,

dL

dx2
=
dL

dg

dg

dx2
= 30.

Since only weights and biases are to be updated,
these are the only derivatives of interest. Combin-
ing all such derivatives result in a gradient, which
tells us in what direction the total expression L
grows the fastest, with regard to all trainable pa-
rameters.

5.3.2.2 Parameter update

Using the gradient descent technique, the trainable
parameters will be updated in the opposite direction
of above mentioned gradient. Gradient descent can
mathematically be expressed as

xi+1 = xi − γ∇L(xi), (24)

where xi+1 is the new updated vector of trainable
parameters, xi the current vector of trainable pa-

rameters, γ the step size factor and ∇L(xi) the gra-
dient of the loss function L with regard to the train-
able parameters in xi.

Most high performance optimizers use some vari-
ation of the gradient descent technique. Exam-
ples are Adagrad, RMSProp, AdaDelta and Adam.
These optimizers have the additional property of
taking knowledge from previous steps, usually called
momentum, which makes the stepping process
smoother and less sensitive to highly divergent train-
ing examples. We have mostly used the AdaDelta
and Adam optimizers.

5.3.2.3 Regularization

Overfitting can be prevented as mentioned in Sec-
tion 5.2.2 using a regularization term in the loss
function, which penalizes high value weighs result-
ing in a less specific fit. Another regularization tech-
nique is the dropout technique [10], which is applied
in the training phase at run time. The main idea is
to train random subsets of the neural network ev-
ery training iteration, to prevent neurons from co-
adapting too much. Any neuron, except in the out-
put layer, can be given a nonzero probability pd to be
dropped in any training iteration. If a certain neu-
ron is to be dropped, all connections to and from
that neuron is removed for that iteration. When
training is done, all neuron are used together again
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and their weights and biases are multiplied by 1−pd.
This ensures every neuron to have the same expected
output for both training and testing. Consider the
simple example in Figure 5.

Figure 5: Example of a dropped neuron during
training using the dropout technique.

Here we are observing the model for a training itera-
tion where 1 out of 2 neurons with nonzero dropout
probability pd has been dropped. The dropped neu-
ron is not updated during this iteration, and neither
is the corresponding weight w1 in the output neuron.
All weights and biases in the hidden layer are mul-
tiplied by 1− pd = 0.6 when predicting labels since
the dropout probabilities here are pd = 0.4.

5.4 Convolutional Neural
Networks

One downside to a fully connected neural network is
the number of weights, which quickly grows out of
hand with increasing input data dimensions. With
a small image of say 100x100 pixels, each neuron
in a fully connected first hidden layer would have
10000 weights. To solve this problem researchers
once again turned to nature, which gave rise to
Fukushima’s neocognitron [11] and LeCun’s convo-
lutional neural network (CNN) [3]. Although the
latter would be the name that stuck, the principle
is the same.

5.4.1 Convolutional layer

A CNN tries to mimic the photo receptors of the
eye, where the neurons map to a small region of the
visual field. The equivalent of this in a CNN are
the convolutional layers which has a number of ker-
nels (also known as filters). These kernels consists
of small matrices of weights, usually the size 3x3

or 5x5. The kernels takes an input region with the
same size as the kernel, and performs a element-wise
multiplication of all the element (a Hadamard prod-
uct). After the Hadamard product is calculated, the
sum is computed and the bias of the kernel is added.
The mathematical expression is

O(kl) = bl +
∑
i

∑
j

xi,jw
l
ij , (25)

where O(kl) is the output of kernel kl, xi,j is the in-
put value for position [i, j], wl

i,j is the weights of the

kernel kl for position [i, j] and bl is the bias of the
kernel kl. [i, j] is the x and y values in the kernel,
and the corresponding values in the input. In or-
der to construct an entire convolutional layer, these
kernels are moved across the input image with a set
stride. For each new position, (25) is performed and
added to the output. This greatly reduces the num-
ber of weights needed, since the weights of a kernel
are the same for the entire input. A convolutional
layer with 10 kernels of the size 3x3, where the in-
put is two-dimensional (say for example a gray-scale
image), then only needs 10 · 9 + 10 · 1 = 100 param-
eters. Figure 6 depicts how the operation is per-
formed with a 3x3 kernel on a 5x5 input, padded
with zeros. One thing that should be mentioned is
that non-linear activation function is still applied to
the output after a convolutional layer.

5.4.2 Padding

One direct consequence of moving the kernel across
the input layer is that the output size will be lower
than the input size. To counteract this padding is
sometime used. Padding simply appends a set bor-
der of zeros around the input image. This is done
to increase the size of the output from the convolu-
tional layer.

5.4.3 Pooling

In addition to the convolutional layers inside a CNN,
another operation called pooling is usually used.
Pooling is performed to reduce the spatial size of
the data through out the network, something that
reduces the number of computations in each itera-
tion, and also prevents overfitting (due to less pa-
rameters).

12



Figure 6: An example of a convolution in a CNN. The input is padded with zeros to preserve the grid size.
The convolution is performed by a 3x3 kernel using a stride of 1.

There are mainly two types of pooling operations
that are used; average pooling and max pooling. In
both versions of pooling a kernel is moved across an
input layer with a specified stride length, but how
the output is calculated differs slightly. In average
pooling, the output is equal to the average of the to-
tal kernel, while in max pooling the maximum value
of the kernel is chosen as the output. In Figure 7 a
max pooling operation is shown.

An intuitive explanation to why pooling works is by
local similarity. An area adjacent to a point (or in
our case, a pixel) often share similarities with that
point. This means that we with high probability can

compress the information of that local feature into
one point (in our case pixel).

Figure 7: Max pooling operation using a 2x2 pooling
kernel, with stride length 2.
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5.4.4 Batch normalization

Batch normalization is a fairly new CNN concept in
which the goal is to reduce the amount the hidden
unit values are shifted around inside the network.
This is called covariance shift. Since the input of
hidden layers in a neural network is dependent on
the output of previous layers, this means that dis-
tribution of the input to hidden layers change as
earlier layers parameters are changed. This is done
by normalizing on each batch in between hidden lay-
ers. It also has a regularizing effect, which counter-
acts overfitting. In this project we will not go into
to much detail about batch normalization, but the
original paper by Ioffe et al. is a great source of
information [12].

5.4.5 Bottleneck layers

Another concept which is used within CNN’s are bot-
tleneck layers. Bottleneck layers tries to reduce the
dimensionality of the information in the network,
but instead of reducing it spatially like a pooling
layer, it reduces the dimensionality in the kernel
space through a convolutional layer consisting of 1x1
kernels. Since one can decide the number of kernels
for a specific convolutional layer, these 1x1 kernels
with stride one can be used to ’merge’ higher di-
mensional input into an output of reduced dimen-
sions.

5.5 Residual networks

Since the introduction of neural networks for im-
age recognition the field has been on constant move
to create deeper and more complex models. One
of the earlier, deeper, models from 2015 was VGG,
which had in between 11 to 19 layers [13]. These
new models broke older records and further evolved
the computer vision field. One of the obstacles that
arose with deeper models was the notorious van-
ishing/exploding gradients problem. This has since
then been mostly addressed by normalized initial-
ization and intermediate normalization layers such
as batch normalization.

However, a new problem has been exposed when
deeper networks start converging; a degradation
problem. With the network depth increasing, ac-
curacy gets saturated and then degrades rapidly.
This is not caused by overfitting (which has been

confirmed through experiments on the accuracy of
training data) [7, 14, 15], which means that the
deeper architecture seems unable to find additional
features in an image.

A proposed solution to this problem was introduced
with deep residual learning framework (ResNets)
[7]. Where ordinary architectures hope that stacked
layers directly fit a desired underlying mapping,
ResNets instead tries to fit these layers to a resid-
ual mapping. This is implemented by having short-
cut connections in the network, which means that
the input signal takes a shortcut around a num-
ber of layers. See Figure 8 for an explanation of
the shortcut connection. These residual blocks will
be instantiated with weights close to zero, and they
are therefore an approximative identity of the prob-
lem. If it shows that any layers are redundant, they
can easily converge to zero without hindering the
forward propagation of information in the model
(since the information can take a shortcut around
layers).

Figure 8: Residual learning; the idea of shortcut
connections. Image courtesy of [7].

This underlying residual mapping that we want to
fit is denoted F (x) + x, where F (x) is the output
of the previous layer. The building block shown in
Figure 8 is therefore defined as

y = F (x, {Wi}) + x, (26)

where x and y are the input and output vector, and
Wi are the weights for layer i. The operation F + x
is performed through element-wise addition, some-
thing that means that the dimensions of x and F
must be equal. When this is not true, one can per-
form a linear projection Ws on the shortcut connec-
tion to receive
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Figure 9: A 5-layer dense block. Each layer takes all preceding feature-maps as input.

y = F (x, {Wi}) +Wsx. (27)

5.6 DenseNets

As mentioned in the section about ResNets, CNNs
are currently moving towards deeper and deeper ar-
chitectures. The approach for solving the problem of
vanish gradients and input usually share a key char-
acteristic; they try to create short paths from early
layers to later layers (or the other way around). The
Dense Convolutional Network, or short DenseNet,
tries to distill this feature into a simple connectivity
pattern [6]. In DenseNets, all layers (with matching
feature-map sizes) are connected to each other. To
preserve the feed-forward nature of neural networks,
layers are only connected forward, i.e. a layer does
not get any input from succeeding layers. These
modules of highly connected layers are called blocks,
and the structure is illustrated in Figure 9. This
means that the lth layer in a dense block has l inputs,
and the total amount of connections in an L-layer

network is L(L+1)
2 (instead of L connections like an

ordinary CNN).

Something that might be rather counter-intuitive
with DenseNets is that they require fewer param-
eters than traditional convolutional networks. This
is due to the fact that they don’t need to relearn re-
dundant feature maps. In traditional architectures
one could view the entire network as an algorithm
where a state is passed between the layers; it changes
the state slightly but also passes on information that
needs to be preserved. This means that some fea-
tures will be relearned between layers. In DenseNets
the layers are very narrow (with in between 6 to
64 filters per layer), which means that every layer

only adds a small set of feature-maps to the entire
model.

The second big advantage with DenseNets is the
improved flow of information and gradients in the
network. Since each layer has direct access to the
gradient from the loss function and original input
signal, the network is trained utilizing deep super-
vision.

An input image x0 passes through a convolutional
network consisting of L layers. These layers imple-
ments a non-linear transformation Hl(·) which con-
sists of a composition of the operations mentioned
earlier. Here · depicts the input into the non-linear
transformation. The output of the lth layer is de-
noted as xl.

In a traditional convolutional neural network the
lth layer output is connected to the (l + 1)th layer,
which means that the following will be true: xl+1 =
Hl(xl). In DenseNets a different connectivity pat-
tern is used; within a dense block a layer l has a di-
rect connection to all subsequent layers within the
block. This is illustrated in Figure 9, and means
that a layer l receives the feature maps of all pre-
ceding layers within a dense block. The output from
layer l is therefore

xl = Hl([x0, x1, ..., xl−1]), (28)

where the vector [x0, x1, ..., xl−1] refers to the output
of all previous layers in the dense block.
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6 Setup

6.1 Datasets

6.1.1 Facial Expression Recognition 2013
(FER2013)

6.1.1.1 Reasons for use

The Facial Expression Recognition 2013 dataset was
created by Pierre Luc Carrier and Aaron Courville,
and was the dataset used in the Challenges in Rep-
resentation Learning: Facial Expression Recogni-
tion Challenge competition hosted by Université de
Montréal and Google in 2013. We chose to train
and validate on this particular dataset because of
its relatively big size and due to the fact that it has
been collected ”in-the-wild”. After examining the
dataset further we came to the conclusion that the
dataset contains a broad range of subjects and the
images have been taken with differing light condi-
tions.

6.1.1.2 Specifications

The images in FER2013 was collected using Google’s
image search API, where a set of 184 emotion-
related keywords such as ”blissful” and ”enraged”
were used. These keywords were used with words
for gender, age and ethnicity to obtain a total of
almost 600 facial image search queries [16]. Out of
these queries, the first 1000 images were saved and
cropped using OpenCV’s face detection. The result
was a dataset of 35887 grayscale images divided as
shown in Table 1.

These images were then further divided into three
sets: a training set of 28709 images, a public test set
of 3589 images, and a competition test set of 3589
images. Figure 10 shows an example of images from
the dataset.

Figure 10: An example of images of the seven labels
from FER2013.

6.1.2 AffectNet

6.1.2.1 Reasons for use

The name AffectNet is derived through the words
”facial Affect from the InterNet”, and is another
dataset that is produced from images ”in-the-wild”.
It tries to fill in the gaps of other big, ”in-the-
wild”, datasets which usually only has one or two of
the affective-related categorical system: basic emo-
tions defined by Ekman [2], the dimensional model
which measures valence and arousal over a continu-
ous scale, and Facial Action Coding System (FACS),
where all facial actions are described in terms of ac-
tion units (AUs) [17]. AffectNet has values for all
these three categorical systems.

Label Anger Disgust Fear Happiness Sadness Surprise Neutral
# of images 4953 547 5121 8989 6077 4002 6198

Table 1: Distribution of data over the different labels for FER2013.

16



6.1.2.2 Specifications

A total of 362 emotion related keywords were put
together and translated into five languages: Span-
ish, Portuguse, German, Arabic and Farsi. All in
total 1250 different emotion related tags were cre-
ated, and used for parsing the three search engines
Google, Bing and Yahoo. Figure 11 shows an exam-
ple of images from the dataset.

Figure 11: An example of images from eight of the
labels of AffectNet.

Roughly 450000 images were manually annotated
by 12 professional annotators [18] using 11 differ-
ent labels: Neutral, Happiness, Sadness, Surprise,
Fear, Anger, Disgust, Contempt, None, Uncertain
and Non-face. The None label defines facial expres-
sions/emotions which do not belong to the other
eight (such as sleepy, seducing, focused etc.) The
Non-face category was defined as images that: (1)
do not contain a face in the image, (2) contain a

watermark on the face, (3) the face detection algo-
rithm utilized to crop images does not find a face, (4)
the face is drawn, animated or painted, or (5) the
face is distorted beyond normal or natural shape.
The Uncertain label was used by the annotator if
they were uncertain about the facial expression. The
dataset includes a validation set of about 4500 im-
ages. There is also bounding box information for
every image for easy face cropping. Table 2 shows
the distribution of labels across the dataset.

6.1.3 Imaging, Robotics, and Intelligent
Systems (IRIS) Thermal/Visible Face
Database

6.1.3.1 Reasons for use

The new General Data Protection Regulation
(GDPR) [19] protects the personal data of EU res-
idents, anywhere in the world. The regulations ap-
ply to all companies based in the EU, collecting
data from the EU or of EU residents. In short this
means that working with images, in whatever shape
or form, capable of revealing a persons identity may
require consent. Machine Learning work and possi-
bly research using this kind of images will probably
have to adapt to this law, for example by buying
GDPR-safe datasets.

A way of possibly getting around this extra cost is to
use thermal images. Whether these images are ex-
empt from the GDPR regulations seems to be rather
ambiguous since it can be debated whether such an
image is a personal data. In our experience, if you
don’t know who you’re looking for, identifying a per-
son from a thermal image is practically impossible.
However, in the case of comparing a thermal image
to a given set of people, identification is indeed a
possible task.

Whether thermal images are a solution to GDPR
compliance or not, it is in our interest to investigate
the usefulness of these in comparison to visible im-
ages. Thermal images are for example unaffected by
light conditions, something that can make or break
the recording of visible images.

6.1.3.2 Specifications

Despite the lack of thermal data out there, especially
with the appropriate labels, we found the small data
set IRIS Thermal/Visible Face Database[20] to work
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Label Neutral Happiness Sadness Surprise Fear Disgust Anger Contempt
# of images 75374 134915 25959 14590 6878 4303 25382 4250

Table 2: Distribution of data over the different labels for AffectNet.

with. This data set contains synced visible and ther-
mal images in a lab setting with three labels; sur-
prise, happiness and anger. For every person and
label there are 11 images taken from an angle of -
90 to 90 degrees where 0 degrees is straight onto the
face. The data set is divided into different light con-
ditions, for example normal lighting, lighting from
the side and poor lighting. From the normal lighting
collection of images we extracted a training and vali-
dation set of images. Our extracted data set features
30 individuals, male and female, and consists of 715
images. Out of these 715 images, 640 and 75 belong
to the train and validation set respectively. Figure
12 shows an example of images from the dataset,
where the visual image is shown together with its
thermal counterpart.

Figure 12: An example of images from the three la-
bels of IRIS. The visual image is shown in the upper
row and the thermal counterpart in the lower row.

6.2 Data preprocessing

All datasets cannot be processed exactly the same
due to varying image formats, resolutions, color
channels and facial crops. There are however two
major processing steps all training data go through;
augmentation and normalization.

6.2.1 Augmentation

To reduce overfitting, different augmentation tech-
niques can be applied. We opted to replicate the
augmentation made by Sang et al. in [5], and our
training images all go through the following steps
every training iteration:

1. Horizontal flip with probability 0.5

2. Random rotation of -45 to 45 degrees

3. Random resize of 0 to 12 pixels increase

4. Crop back to model input size

As stated, this should counteract overfitting since
a certain image most likely will look more or less
different in every training iteration. This means that
the model won’t adapt to images in too much detail
which will result in a more general fit.

6.2.2 Normalization

Normalization is applied to both training sets and
test sets. The purpose of normalizing the images is
to ”center” the data, to force all pixel values into a
similar range. This makes the training less sensitive
to varying light conditions, and the test set is nor-
malized the same for consistency. Imagine for exam-
ple two images of the same exact motif, in different
light conditions. We want the network to react sim-
ilarily to these two images, even though they might
have different dynamic ranges and major pixel wise
inequalities. As a result the class scores could differ
a lot and gradients during backpropagation would
do the same resulting in a significantly different pa-
rameter update.

First the below defined Image normalization is ap-
plied while reading the images from file. When all
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images from the same dataset is in memory, the be-
low defined Pixel normalization is applied. The nor-
malization process is applied exactly as in [5], since
it seems to be favorable for the emotion recognition
problem.

6.2.2.1 Image normalization

First the mean value of an image is subtracted from
the image, channel wise. This centers the values
around zero. To minimize said variation in dynamic
range, all pixel values are channel wise multiplied
by a factor to end up with a standard deviation of
σ = 3.125. This value was chosen since it was used
by Sang et al. [5]. The value of the image after
subtracting the mean is given by

f(x, y) = I(x, y)− 1

x · y
∑
x,y

I(x, y), (29)

where x and y are the coordinates for a given im-
age I, and f(x, y) is the value of the image after
subtracting the mean.

The biased standard deviation is given by

s =

√
1

N
f(x, y)2, (30)

where s is the standard deviation for an image,
f(x, y) is the image with the mean subtracted from
Equation 29 and N is the number of pixels in an
image. As a final step the solution of 29 is divided
with 30 and then multiplied by the value σ = 3.125
(which was taken from Sang et al. [5]).

6.2.2.2 Pixel normalization

First the mean value for each pixel over a given data
set is subtracted from said pixel, channel wise. This
centers the values around zero. To minimize said
pixel inequalities the training and test sets are nor-
malized pixel wise. For each pixel, the correspond-
ing value in every image in the data set is channel
wise multiplied by a factor to end up with a standard
deviation of σ = 1 for that pixel. The equations for
calculating the mean of a pixel across a dataset is
given by

f(x, y) = I(x, y)− 1

M

M∑
m=1

Im(x, y), (31)

where x and y are the coordinates of an image I, M
is the number of images which we are normalizing
over and f(x, y) is the value of a pixel in an image
after subtracting the pixel mean.

The biased standard deviation for a pixel is given
by

sx,y =

√
1

M
f(x, y)2, (32)

where s is the standard deviation for a pixel (x, y),
f(x, y) is the value of a pixel with the mean sub-
tracted from Equation 31 and M is the number of
images in the dataset. As a final step the normal-
ized pixel value is calculated by dividing f(x, y) by
the standard deviation sx,y and multiplying with
one.

6.3 Models

6.3.1 BK models

6.3.1.1 Background

In this project, two of the models we’ve chose to fo-
cus on are BKStart and BKVGG12. The BKStart
model described is the authors recreation of the win-
ning model of the 2013 Kaggle Facial Expression
Competition. The BKVGG12 model is one of four
BKVGG models proposed by the authors, which are
based on the VGGNet models that placed second in
the 2014 ImageNet Large Scale Visual Recognition
Competition. The four BKVGG models proposed
have a heavily reduced number of filters in the con-
volutional layers. The VGGNets were trained on
the ImageNet dataset which is much bigger than the
FER2013 dataset, see Section 6.1.1, used in this pa-
per. Training on a smaller dataset is more prone to
overfitting which is what the authors try to avoid
with this change.

6.3.1.2 BKStart

The BKStart model is a rather simple CNN working
with image input size 42x42. The architecture is
combined with dropout on the fully connected layer
(3072 neurons) before the output layer and can be
seen in Table 3.
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Layer Filters Filter size Stride Act. Neurons
Input - - - - -

Conv2D 32 5x5 1 ReLU -
Max Pool - 3x3 2 - -
Conv2D 32 4x4 1 ReLU -

Avg. Pool - 3x3 2 - -
Conv2D 64 5x5 1 ReLU -

Avg. Pool - 3x3 2 - -
FC - - - ReLU 3072
FC - - - ? 7

Table 3: The BKStart model architecture, where
FC is short for fully connected layer and Act. is
short for activation function. The ? means that
the activation function depends on the chosen loss
function. For cross entropy loss, softmax activation
is used and for SVM loss there is no activation.

Our implementation of the BKStart model comes
in two different versions; with and without added
padding. Padding to preserve the grid size after ev-
ery convolution has been added as a measure to ex-
tract more information from the original pixels. The
drawback is that the number of trainable parame-
ters grows by roughly factor 10, see Figure 20. The
BKStart model without padding is denominated as
BKMin.

6.3.1.3 BKVGG12

The BKVGG12 model is just like BKStart built
using the definition given in by Sang et al. [5],
with input size 42x42. Dropout is used on all
fully connected layers except for the output layer.
BKVGG12 is very similar to BKStart, but has a
deeper layer architecture which is displayed in Ta-
ble 4.

Just like BKStart, the BKVGG12 model has
padding preserving the grid size after a convolution.
Due to the higher number of layers however, there
is no unpadded version. Without padding an image
propagated through the network would run out of
pixels to operate on.

Layer Filters Filter size Stride Act. Neurons
Input - - - - -

Conv2D 32 3x3 1 ReLU -
Conv2D 32 3x3 1 ReLU -

Max Pool - 2x2 2 - -
Conv2D 64 3x3 1 ReLU -
Conv2D 64 3x3 1 ReLU -

Max Pool - 2x2 2 - -
Conv2D 128 3x3 1 ReLU -
Conv2D 128 3x3 1 ReLU -

Max Pool - 2x2 2 - -
Conv2D 256 3x3 1 ReLU -
Conv2D 256 3x3 1 ReLU -
Conv2D 256 3x3 1 ReLU -

FC - - - ReLU 256
FC - - - ReLU 256
FC - - - ? 7

Table 4: The BKVGG12 model architecture, where
FC is short for fully connected layer and Act. is
short for activation function. The ? means that
the activation function depends on the chosen loss
function. For cross entropy loss, softmax activation
is used and for svm loss there is no activation.

6.3.1.4 Andreas100

The Andreas100 model is simply the BKVGG12
model adapted for input size 100x100. The only dif-
ference is that the filter sizes for the convolutional
layers have been doubled to 6x6. This has been done
to roughly preserve the filter size to image size ra-
tio.

6.3.2 ResNet

6.3.2.1 Technical information

The ResNets utilizes the operations batch normal-
ization, rectified linear units, bottleneck and convo-
lutional layers. All downsampling is done directly
by convolutional layers instead of pooling layers, a
concept introduced in Springenberg’s paper on all
convolutional nets [21]. Whenever the feature maps
are halved in size, the number of filters for succeed-
ing layers are doubled.

The shortcut connection described in Figure 8 only
works whenever the input and the output is of the
same dimension. To solve this problem whenever a
downsampling occurs, the network utilizes two pos-
sible options: (A) it adds zero padding to increase
the dimension of the input, or (B) use the projec-
tion shortcut defined in 27, which is done by 1x1
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Layer Input Output ResNet-18 ResNet-34 ResNet-50

Conv 1
42 x 42 21 x 21 7 x 7 conv, stride 2
21 x 21 11 x 11 3 x 3 max pooling, stride 2

Convolutions
(1)

11 x 11 11 x 11

[
3 x 3, 64
3 x 3, 64

]
x 2

[
3 x 3, 64
3 x 3, 64

]
x 3

 1 x 1, 64
3 x 3, 64
1 x 1, 256

 x 3

Convolutions
(2)

11 x 11 6 x 6

[
3 x 3, 128
3 x 3, 128

]
x 2

[
3 x 3, 128
3 x 3, 128

]
x 4

 1 x 1, 128
3 x 3, 128
1 x 1, 512

 x 4

Convolutions
(3)

6 x 6 3 x 3

[
3 x 3, 256
3 x 3, 256

]
x 2

[
3 x 3, 256
3 x 3, 256

]
x 6

 1 x 1, 256
3 x 3, 256
1 x 1, 1024

 x 6

Convolutions
(4)

3 x 3 2 x 2

[
3 x 3, 512
3 x 3, 512

]
x 2

[
3 x 3, 512
3 x 3, 512

]
x 3

 1 x 1, 512
3 x 3, 512
1 x 1, 2048

 x 3

Classification
2 x 2 1 x 1 2 x 2 global average pooling
1 x 1 7 classes, fully connected, softmax

Table 5: Different model setups for ResNet.

convolutions.

One thing to mention is that ResNet’s were origi-
nally constructed to solve the object classification
problem, and was tested on CIFAR-10 and Ima-
geNet. This might mean that the model is not op-
timized for finding good features for facial expres-
sions, something that would warrant further inves-
tigations.

If the reader wishes to learn more about ResNets
structure and the residual mapping, we refer you to
read the original paper by He et al. [7].

6.3.2.2 Model settings

The different models that we tried out in this thesis
work were the ResNet-18, ResNet-34 and ResNet-50
models, where the numbers refers to the number of
convolutional layers in each of the models. ResNet-
34 and ResNet-50 are very similar in the way they
are constructed, but the ResNet-50 utilizes bottle-
neck layers to a higher degree. As can be seen in the
6th column of Table 5, it first reduces the number
of dimensions, then performs a 3x3 convolution, and
finally restores the number of dimensions. Dropout
appears in between each residual block, which are

denoted by

[
3 x 3, 64
3 x 3, 64

]
in Table 5.

The source code for the ResNet was implemented by
R. Kotikalapudi [22].

6.3.3 Dense

6.3.3.1 Technical information

DenseNets utilizes the operations batch normal-
ization (BN), rectified linear units (ReLU), pool-
ing, bottleneck and convolution layers (Bottleneck-
conv/Conv) which are further explained in Section
5.4. The composite function Hl(·), which was ex-
plained in Section 5.6 is defined as the following
consecutive operations:

BN → ReLU → Bottleneck-Conv → Dropout

→ BN → ReLU → Zero Padding → Conv-(3x3)

→ Dropout

In the DenseNet the composite functions is called a
convolutional block.

Between all dense blocks a transition block is uti-
lized. Transition blocks are used to incorporate
down-sampling throughout the network, since it
isn’t possible to concatenate feature maps of differ-
ent sizes. The transition block also contains batch
normalization, activation functions, compression
convolutions, dropout and average pooling. The fol-
lowing consecutive operations are performed:

BN → ReLU → Compression-Conv → Dropout

→ Average Pooling-(2x2), stride 2

Compression convolutions follow the same principle
as bottleneck layers, but instead of always reducing
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Layer Input Output Dense-121 Dense-121 red Dense-169 Dense-169 red Dense-161 Dense-161 red

Input Block
42 x 42 42 x 42 7 x 7 conv, stride 1
42 x 42 21 x 21 3 x 3 max pooling, stride 2

Dense Block
(1)

21 x 21 21 x 21

[
1 x 1 conv
3 x 3 conv

]
x 6

Transition Block
(1)

21 x 21 21 x 21 1 x 1 conv
21 x 21 10 x 10 2 x 2 average pooling, stride 2

Dense Block
(2)

10 x 10 10 x 10

[
1 x 1 conv
3 x 3 conv

]
x 12

Transition Block
(2)

10 x 10 10 x 10 1 x 1 conv
10 x 10 5 x 5 2 x 2 average pooling, stride 2

Dense Block
(3)

5 x 5 5 x 5

[
1 x 1 conv
3 x 3 conv

]
x 24

[
1 x 1 conv
3 x 3 conv

]
x 32

[
1 x 1 conv
3 x 3 conv

]
x 36

Transition Block
(3)

5 x 5 5 x 5 1 x 1 conv
5 x 5 2 x 2 2 x 2 average pooling, stride 2

Dense Block
(4)

2 x 2 2 x 2

[
1 x 1 conv
3 x 3 conv

]
x 16 -

[
1 x 1 conv
3 x 3 conv

]
x 32 -

[
1 x 1 conv
3 x 3 conv

]
x 24 -

Classification Block
2 x 2 1 x 1 2 x 2 global average pooling
1 x 1 7 classes, fully connected, softmax

Table 6: Different model setups for DenseNet.

the number of output layers to a fixed amount, it
compresses the number of layers to a number θm,
where 0 < θ ≤ 1 is the compression factor and m is
the number of layers before compression. In all of
our experiments we’ve set the compression factor to
θ = 0.5

A factor which is used throughout the DenseNet is
the growth factor k. The growth rate is primarily
used for two things within the DenseNet: to regu-
late how many new feature maps that are added to
the total network knowledge, and to regulate how
compression and bottleneck layers are changing the
output.

A final parameter that decides how many features
that are created is the initial filter number, which
decides how many filters the initial convolutional
layers should output. If the reader wish to learn
more about how DenseNets are built we refer you
to read the original paper by Huang et al. [6]. Fig-
ure 13 shows all the parts of the DenseNet tied to-
gether.

One thing to mention is that DenseNet’s were orig-
inally constructed to solve the object classification
problem, and was trained and tested against CIFAR,
SVHN and ImageNet. This might mean that the
model is not optimized for finding good features for
facial expressions, but investigation this further is of
interest.

6.3.3.2 Model settings

Mainly six different versions of DenseNets were tried
to evaluate how different settings affect the perfor-
mance of the model. These can be seen in Ta-

ble 6 and are Dense-121, Dense-121-reduced, Dense-
169, Dense-169-reduced, Dense-161 and Dense-161-
reduced. The word ”reduced” refers to a reduced
version where the final block of the original model
is removed; the reduced models only contains three
dense blocks. Dense-121(-reduced) and Dense-169(-
reduced) all have the initial filter size of 64, and
a growth rate of 32, where as Dense-161(-reduced)
have the initial filter size of 96 and a growth rate
of 48. The number of Convolutional blocks differ
between Dense-121(-reduced), Dense-169(-reduced),
and Dense-161(-reduced); the exact number can be
seen in Table 6.

The source code for the DenseNet was implemented
by F. Yu [23], although some modifications were
made to how dropout is handled (more on that in
Section 7.1.3).
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Figure 13: All parts of the DenseNet tied together. This model contains one initial block which downsamples
the input, and is followed by two dense blocks, one transition block, and a final output block.
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7 Method

This section describes our experimental work going
from the defined model architectures in Section 6.3
to optimally trained neural networks. Our approach
has been to isolate and fine tune one variable at a
time, since trying a big number of variable combina-
tions is unfeasible due to the time consuming model
training. Properly training a model could take any-
where from a few hours to a week depending on the
model and training dataset. This is why we’ve also
tried to limit most variable tuning to the FER2013
dataset, which is roughly 7 % the size of our main
dataset AffectNet. Our hypothesis is namely that
the FER2013 dataset is big and diverse enough to
indicate what model settings are in general prefer-
able. If the influence of a variable still is uncertain
or extra interesting it could be investigated further
on AffectNet.

7.1 Model optimization against
FER2013

Even though the models described in Section 6.3
are well defined, there are still a variety of settings
and hyperparameters to tune. The tuning of these
variables including optimal settings for the FER2013
dataset are presented in this section one variable at a
time. For FER2013, the public test set mentioned in
Section 6.1.1 has been used as validation set.

7.1.1 Loss function

As explained in Section 5.2.2 there are two com-
monly used loss functions for multiclass classifica-
tion problems; Cross-Entropy and Multiclass SVM.
Sang et al. used these two loss functions with sim-
ilar results. [5] They conclude however that the L2
(squared) Multiclass SVM loss function produces
slightly better results on the FER2013 dataset.
On the public test set, which is what we evaluate
against, the Multiclass SVM loss produces 0.5 per-
centage points higher accuracy using the BKStart
model. No corresponding comparison is presented
for BKVGG12.

The Cross-Entropy loss function is already defined
in the Keras API which we are using, making it easy
to start using. The Multiclass SVM loss function as
defined in Section 5.2.2.1 is however not defined in

Keras. Instead there is a loss function called mul-
ticlass hinge which is a variation of the Multiclass
SVM loss which only takes the most likely incor-
rect class score into account, instead of all incorrect
class scores. This does not work for our problem and
probably not very well in general for classification
tasks with many labels. This seems quite intuitive
since every time the the most likely incorrect class
score is trained down another class score takes over
and so on, hindering the training process from mak-
ing any progress. All dimensions i.e. class scores
need to be taken into account, always. Fortunately
Keras allows you to write your own loss function
using Tensorflow, which made it possible for us to
implement Multiclass SVM loss as well as the L2
norm version

L =
1

N

√√√√ N∑
i

M∑
j 6=yi

max(0, sj − syi
+ ∆)2. (33)

With ∆ = 1 we concluded that the L2 Multiclass
SVM loss performs better than the normal one,
which agrees with the fact that Sang et al. [5] only
presents results with this SVM loss version. The
used value for ∆ is however not specified, so we
tested a few different values for this hyperparam-
eter.

Figure 14: L2 Multiclass SVM loss validation accu-
racy using BKVGG12 model for different ∆ values.

As displayed in Figure 14, our initial value of ∆ = 1
was the optimal one of our tests.

The Cross-Entropy and L2 Multiclass SVM loss
functions performs almost equally in terms of test
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accuracy, where the former seems to have a slight
advantage. With everything but the loss function
isolated, the Cross-Entropy and L2 Multiclass SVM
ended up with highest validation accuracies of 68.23
% and 67.59 % respectively, using the BKVGG12
model. This makes our finding contradictory to the
one by Sang et al. [5] regarding what loss function
performs the best. However, they reached accuracies
roughly 2 percentage points higher than us, which
means that there are other factors possibly affect-
ing this outcome. The loss performance difference
is however relatively small in both cases and will
probably be negligible in a real life application of
the emotion recognition problem.

7.1.2 Optimizer

We have tried three different optimizers when run-
ning our model training. Two of these are what
you would call high performance optimizers, Adam
and AdaDelta, and we have thus only used the de-
fault optimizer parameters when running these. The
third optimizer tried is the Stochastic Gradient De-
scent or SGD for short, which is a less flexible al-
gorithm which for example struggles to break sym-
metry on saddle points. The latter optimizer was
used since multiple sources, for example by Sang et
al. [5] and Huang et al. [6], have seen improvements
in training by using the SGD optimizer in a spe-
cific way. Figure 15 shows these symmetry breaks
on saddle points.

Figure 15: SGD optimizer which breaks symmetry
on saddle points. Image courtesy of [6].

The approach by Sang et al. [5] is described as fol-
lows:

”During training phase, we use a strategy that de-
crease the learning rate 10 times if the training loss
stops improving. The experiments show that the

learning rate is often decreased about 5 times, and
the training phase is often finished after about 1400
epochs.”

We have tried to apply this technique without suc-
cess. The statement ”if the training loss stops im-
proving” is rather vague which makes it hard to ex-
actly replicate the algorithm. We tried an approach
where the learning rate is decreased by a factor k
if the training loss hasn’t decreased at least d in n
epochs. It seems as no matter what combinations
of k, d and n we use, the same thing happens; af-
ter the first learning rate decrease the training just
does not improve anymore. Also the training per-
formance at this point is inferior to the other op-
timizers. This realization made us rather quickly
abandon this technique.

The two remaining optimizers seem to be rather
equal in their performance, where AdaDelta has
been almost negligibly better. On a training setup
using BKVGG12 on FER2013 with the optimizer
as the only non-fixed variable, the average valida-
tion accuracies ended up being 67.78 % and 67.17
% using AdaDelta and Adam respectively. This is
for three training runs using each optimizer, which
means that another set of training runs could con-
tradict this result since training a model is a non-
deterministic process. Based on this we decided to
settle on using AdaDelta, and in practise you proba-
bly wouldn’t notice the small performance difference
in the two optimizers.

7.1.3 Dropout

Dropout has been used by a varying degree by the
different models; on exactly which layers it has been
utilized can be seen in Section 6.3.1.2, 6.3.1.3, 6.3.2
and 6.3.3.

The initial approach involved setting the dropout
rate to a fixed probability for all layers in a model,
we experimented with different settings in between
0 and 0.5. During this experimentation phase we
came to the realization that dropout should most
likely be tuned lower on earlier layers. To support
this claim we had the following hypothesis:

Big, important features in an image will most likely
be extracted in the beginning of a neural network,
since we have not yet done any downsampling or
other convolutional operations on the input. There-
fore we want to be able to save as much as possible of
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this initial information, which led us to want to re-
move the random property of introducing dropout.
The solution to this was to add dropout which grad-
ually increases, with a low amount of dropout on
the initial layers or Dense/Residual block, and a
higher amount on the later layers or Dense/Residual
blocks. The final parameter settings for dropout
was chosen to [0.05, 0.2, 0.4] for BKStart and
BKVGG12, and [0.05, 0.2, 0.2, 0.3] for DenseNets
and ResNets.

The tests we conducted to support this hypothesis
can be seen in Figure 16. One can see that a grad-
ually increasing dropout do perform better then a
static one.

Figure 16: Validation accuracy on FER2013 for
BKVGG12 and Dense121 when trained with varying
dropout rates.

7.1.4 Model training

To give the reader a better understanding of how the
accuracy and loss changes for a model as it trains
over several epochs, we’ve added an image which
illustrates how these values are changed over time.
This can be seen in Figure 17. Here one can see that
after around 200 epochs, the values starts to diverge
and the model overfits on the training set.

Figure 17: Accuracy and loss for training set
and validation set when training BKVGG12 on
FER2013 for 1000 epochs. The training accu-
racy/loss is depicted in blue and the validation ac-
curacy/loss in red.

7.1.5 Label binning

One of the questions defined in the problem defini-
tion was whether we could find a real life application
for utilizing emotion recognition. Early on in the
project we realized that it might be sufficient to just
be able to distinguish between the three emotions
positive, neutral and negative. Since the datasets we
are training against are divided into seven or eight
labels, we opted to use label binning.

Using label binning, we merged the labels in
FER2013 and AffectNet as shown in Table 7. Our
reasoning for putting surprise as neutral was that a
facial expression conveying surprise can be triggered
by both a positive or negative situation, and should
therefore be labeled as neither.

Initial tests were conducted to verify whether it
would make any difference to train on seven or three
labels on FER2013, or to do label binning on a
model trained on seven labels. These results can
be seen in Figure 18.
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Binned label Anger Disgust Fear Happiness Sadness Surprise Neutral Contempt
Positive - - - + - - - -
Neutral - - - - - + + -
Negative + + + - + - - +

Table 7: Label binning of the seven/eight emotions present in FER2013/AffectNet.

Figure 18: Validation accuracy on three labels when
trained on a binned training set versus validation ac-
curacy on three labels when binning is done retroac-
tively.

Since it does not seem to make a difference whether
you train on three or seven labels, a follow-up inves-
tigation was conducted on AffectNet where surprise
was excluded from the neutral label. This was done
to see whether our hypothesis of putting surprise
as a neutral label would influence the test results.
For comparable results, the effect of omitting the
surprise label was investigated on our testset, which
are described in Section 7.2, and the results from
omitting surprise can be found in Section 8.7.

One final label binning scenario was tested; dividing
facial expressions into positive/non-positive. This
was done due to the fact that it might be sufficient
for a classifier to register whether a person is happy
or not.

7.1.6 Choice of models

Once optimal settings for the loss function, the
optimizer and dropout was found, we did a test
to see how the different models performed against
FER2013. This was done to see whether different
settings for the models would have a non-negligible
impact on the result, or if additional parameters are
unnecessary.

As can be seen in Figure 19, the results for dif-
ferent models of DenseNets and ResNets are quite
constant with a mean of 65.47 % accuracy 61.28 %
respectively. With these results we opted to focus
training on one of the DenseNet models, Dense121,
and not conduct any more training on any of the
ResNet models due to their weak performance. We
felt that this choice was justified since we still have
the deep neural network model DenseNet to mea-
sure the performance on a larger dataset. Dense121
was chosen since it was the smallest of the DenseNet
models.

In Figure 20 the number of number of FLOP (float-
ing point operations) needed to predict the label
of one input image is plotted against the valida-
tion accuracy shown in Figure 19. This further
strengthened our choice of conducting less experi-
ments on the larger neural network models, since a
lower number of FLOPs with a higher accuracy is
sought-after.

7.2 Creating our own testset

Since our models are trained on two different
datasets and these do not reflect the real life scenar-
ios we most likely would apply the emotion recog-
nition problem to, we decided to collect a testset
of our own. One plausible real life scenario would
be the adaption of advertisements in for example
shoppings malls, depending on the feedback of the
visitors. The dataset FER2013 mostly contains im-
ages which are captured straight onto the faces and
a lot of them seem to be staged, i.e. the facial ex-
pressions are forced, which is unwanted since the
classification most likely will be applied to unstaged
images. In reality we will not end up with images
captured exactly in front of peoples faces, but rather
from varying angles, and more so from an upward
position due to how surveillance cameras are usually
mounted. There are in other words several reasons
to why evaluating a model on FER2013 is subopti-
mal for a real life application. The same goes for Af-
fectNet, although it seems to have a slightly higher
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Figure 19: Results for different models when validating against FER2013, using the 7 original labels.

ratio of unstaged images. Simply put, we want a
dataset to benchmark our models with which is as
close as possible to what you would end up with in a
real life application. This means that the camera an-
gles should mimic those of normal surveillance cam-
eras and the facial expressions should be unstaged.
Furthermore we chose to annotate this dataset us-
ing three labels; negative, neutral and positive, since
our hypothesis is that this is more useful in a real
life application.

Fortunately we did not have to produce new im-
ages for our testset, but were able to go through
some datasets our employer already had. From this
dataset we extracted 258 images which displayed
seemingly unstaged faces with reasonable facial ex-
pressions, i.e. nothing too extreme. Roughly half of
the extracted images are captured by actual surveil-
lance cameras mounted accordingly in our employers
building. The other half are images similar to those

of AffectNet since they are taken from the internet,
but they are as mentioned not staged. Since some
of our models have an input size of 100x100 pixels
while not all the 258 images are this big after fa-
cial cropping, we had to omit some images. This
resulted in a testset of 192 images. Furthermore
we wanted to have a balanced testset, meaning that
there are the same number of examples for every la-
bel. The least represented label was negative with
35 images, which meant that we had to omit images
with other labels. After doing this in a random man-
ner we ended up with a final testset of 105 images.
Since we are no annotation specialists and also since
it greatly increases the credibility of the annotation,
we let 9 people, including ourselves, individually an-
notate the testset. The labels to choose from were
negative, neutral and positive. The testset was then
labeled using the most chosen label for every image.
Fortunately, there were no ties in the label voting.
By dividing the number of ”correct” label votes by
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Figure 20: Validation accuracy on FER2013 plotted against the number of FLOPs needed to run one
prediction.

all label votes, we could define an ”agreement accu-
racy” which ended up being 85 %.

7.3 Tests on IRIS

As stated in Section 7.3, we want to investigate
whether thermal images could be a viable alterna-
tive to visible images on the emotion recognition
problem. Furthermore, the IRIS dataset consists
of color images of 320x240 pixels which allows the
opportunity to test the impact of color channels
and image resolution. Training has thus been run
on grayscale and RGB color channels for the vis-
ible dataset and grayscale images for the thermal
dataset as seen in Figure 21 and 22. Test results on
42x42 versus 100x100 pixels are found in Figure 23.
Since the face detection algorithm used can’t find
faces in the thermal images, no images have been
cropped.

When evaluating visible vs. thermal images and
42x42 vs. 100x100 pixels, grayscale images were cho-
sen.

Figure 21: Validation accuracy of BKStart and
BKVGG12 when evaluating the impact of color in
visible images.
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Figure 22: Validation accuracy of BKStart and
BKVGG12 when evaluating thermal versus visible
images in grayscale.

Figure 23: Validation accuracy of BKVGG12 and
its 100 pixel counterpart, Andreas100, trained on
visible grayscale images.

It is quite clear that for this dataset, the results are
better using the RGB color channels compared to
a single grayscale channel. The visible images also
have a significant advantage on the thermal images,
using these models. Finally a higher image resolu-
tion seems to increase the model accuracy. The IRIS
dataset is however relatively small and one needs to
be careful drawing conclusions only based on such
a small amount of data. When it comes to the re-
search on thermal images, which for us was a bit of
a side track, we abandon it here since training on
these images clearly show a lower performance on

this only thermal dataset we have. Color channels
and higher resolution images seems promising and
we will thus investigate these parameters further on
a bigger dataset.

7.4 Model optimization against
AffectNet

One of the biggest challenges encountered with this
thesis is the sheer number of parameters one can
fine tune to reach higher results. As mentioned in
Section 7 our approach to solving this problem has
been to isolate one parameter at a time, find an
optimal value, and then fix that parameter to find an
”optimal configuration” using FER2013. AffectNet
is about 14 times bigger than FER2013 and we have
thus tried to optimize only a few, most important
settings. These are first and foremost; color versus
black and white images, image size, dropout and
training on three labels where the surprise label has
been omitted.

Since the images in AffectNet are in color, further
investigation on color versus black and white was an
obvious choice. The images are also larger than the
48x48 pixel images in FER, which made investiga-
tion on image size a choice. Finally, no surprise was
investigated due to the reasons clarified in Section
7.1.5.

When training on AffectNet, the dropout amount
was decreased. It was set to [0, 0, 0.5] for
BKStart, BKMin and BKVGG12, and [0, 0, 0, 0]
for DenseNet and ResNet. This was chosen due
to the reasoning that with a bigger dataset the
model should be less prone to overfitting, thus less
dropout is needed. The first few training runs
on AffectNet used the dropout settings optimal for
FER2013, which proved inferior on AffectNet com-
pared to above mentioned values. For example using
BKVGG12 isolating the dropout values, [0, 0, 0.5]
outperformed [0.05, 0.2, 0.4] with accuracies 39.63
% and 38.0 % respectively. Testing more dropout
settings than this on AffectNet was not a priority
and since a training on AffectNet usually takes two
days there was simply no time to investigate this
further.

30



7.5 Demo Application

7.5.1 Background

As a final part of the thesis project we decided to
implement a demo application to act as an example
and inspiration for anyone thinking of applying emo-
tion recognition on a real life problem. The applica-
tion will collect images from a network camera, pre-
dict emotions on any detected faces (by OpenCV’s
face detection) in the images, and display the video
stream with facial bounding boxes and correspond-
ing emotions in real time.

For this task we decided to use a trained model
which has a good balance between performance and
required computations, since we want it to be as fast
as possible without losing significant accuracy. How-
ever, even for our smallest models, running face de-
tection and emotion prediction embedded on a cam-
era is most likely not possible in real time. That’s
why we decided to let a desktop computer with GPU
support run the application, while anyone on the
network can access the video stream through a web
client.

In order to get a smoother real time prediction we
wanted to analyze multiple images before presenting
a prediction. To be able to do this, one needs to keep
track on which face corresponds to which in different
frames. This is why we implemented a very simple
tracking algorithm, which pairs together faces frame
by frame, by looking at the facial bounding box cen-
ter values. If a value is present in the next frame
which is within a given euclidean range from present
value for a given bounding box, then these two faces
are assumed to be the same. Otherwise the tracker
loses that face until the next prediction iteration. A
”lost” face will results in an empty prediction, i.e.
no prediction, unless the tracker already had picked
up enough images of the face before losing it to make
a prediction that prediction iteration. How often a
new label is presented and how many images there
are in a prediction iteration can be decided by the
user.

7.5.2 Application Features

The user of our application has a range of different
settings to play around with, to be able to optimize
the performance for different conditions:

• Camera. Any camera connected to the net-
work can be chosen for the analysis.

• Emotion spectra. The user can chose be-
tween a full range of emotions, or a binned
version with three possible emotions; negative,
neutral and positive.

• Prediction Sense. If the predicted label does
not have a probability greater or equal to this
value, the label is automatically changed to un-
certain.

• Tracking Sense. The maximum euclidean dis-
tance in pixels between a face in two consecutive
frames.

• Prediction Frequency. Every so many im-
ages predictions are made.

• Label Frequency. Every so many images a
new label is presented.
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8 Results

8.1 Model setups

In the following section most parameters have been
fixed in order to evaluate the impact of other set-
tings, such as color, image size and label binning
configuration. As mentioned in Section 7.1 Cross-
Entropy loss was chosen, AdaDelta was picked as
the optimizer, dropout was set to [0.05, 0.2, 0.4] for
BKStart, BKMin, BKVGG12 and Andreas100 when
training on FER2013 and [0, 0, 0.5] when training
on AffectNet, and [0.05, 0.2, 0.2, 0.3] for DenseNet
when training on FER2013 and [0, 0, 0, 0] when
training on AffectNet. Dense121 was trained on
both images of sizes 42x42 pixels and 100x100 pixels,
and is therefore denoted Dense121 and Dense121-
100 in the following section. Both Andreas100 and
Dense121-100 were trained on RGB images unless
stated otherwise.

8.2 Validation accuracy on
AffectNet

Figure 24 shows the validation accuracy of our
models trained and validated on AffectNet. The
DenseNet models perform slightly better on the vali-
dation problem with eight labels, where as DenseNet
trained on 100 pixels performs the best with 48.58
% accuracy.

Figure 24: Validation accuracy of our models
trained and validated on AffectNet.

8.3 Confusion matrix on
AffectNet

Table 8 shows the confusion matrix for BKVGG12
when validating against AffectNet. This means that
the correct label is written in the first column, and
the guesses which are made on each individual label
is shown for that row in the other eight columns.
The numbers in bold are therefore correct predic-
tions for each label. Something to notice here is
that the model is very good at predicting the labels
Neutral and Happiness, where 73.4 % and 94.4 %
respectively are guessed correct. Another interest-
ing observation which can be made is that almost
no predictions are made on Contempt for the entire
validation set.

8.4 Grayscale vs RGB

Figure 25 shows the results when evaluating the im-
pact of training on grayscale versus RGB images.
As can be seen, the color does not seem to have any
impact on the result what so ever.

Figure 25: BKVGG12 trained on 42 pixel of Affect-
Net, grayscale images versus RGB images. The two
label categories are standard 8 labels, and binned
three labels; positive, neutral and negative.

8.5 42 vs 100 pixels

Figure 26 shows the results from training DenseNet
models on 42x42 and 100x100 pixels. Higher res-
olution does provide a higher accuracy, something
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Ground truth
Prediction

Neutral Happiness Sadness Surprise Fear Disgust Anger Contempt

Neutral 0.734 0.15 0.05 0.02 0.012 0 0.034 0
Happiness 0.052 0.944 0 0.004 0 0 0 0
Sadness 0.384 0.094 0.412 0.014 0.028 0.002 0.066 0
Surprise 0.344 0.228 0.044 0.252 0.106 0.002 0.024 0
Fear 0.25 0.078 0.104 0.1 0.362 0.014 0.092 0
Disgust 0.252 0.166 0.106 0.03 0.016 0.136 0.294 0
Anger 0.356 0.068 0.062 0.016 0.024 0.016 0.458 0
Contempt 0.284 0.636 0.02 0.002 0. 0.008 0.048 0.002

Table 8: Confusion matrix for BKVGG12 against the validation set of AffectNet. Each row shows how often
the labels in each column have been predicted for that given ground truth. The correct predictions are found
along the diagonal in bold text.

that confirms the results made in Figure 23, Section
7.3.

Figure 26: Dense models trained on grayscale 42x42
and 100x100 pixels of AffectNet. The two label cate-
gories are standard 8 labels, and binned three labels;
positive, neutral and negative.

8.6 Testset results

8.6.1 AffectNet trained models

In Figure 27 the performance of models trained on
AffectNet on our testset can be seen. Things worth
to notice is that the Dense121 100x100 pixel per-
forms marginally better on the three class classifica-
tion problem than the rest of the 42x42 pixel mod-
els.

Figure 27: AffectNet trained models evaluated on
our testset for 3 labels; negative, neutral and posi-
tive, and 2 labels; non-positive and positive.

8.6.2 FER2013 trained models

In Figure 28 the performance of models trained on
FER2013 on our testset can be seen. Worth noticing
is that the more shallow neural network BK-models
perform equally good or better than the deeper neu-
ral network models of DenseNet.

33



Figure 28: FER2013 trained models evaluated on
our testset for 3 labels; negative, neutral and posi-
tive, and 2 labels; non-positive and positive.

8.7 Omitting surprise label

As mentioned in Section 7.1.5, we investigated how
omitting the surprise result would affect the classifi-
cation accuracy. To do this, we compared the testset
accuracies of our models trained on AffectNet with
and without surprise label in the training set. The
results are presented in Figure 29.

Figure 29: Testset accuracy investigating the effect
of removing surprise label. All models have been
trained on AffectNet, 42x42 pixels, grayscale images
and the presented accuracies are for 3 labels.

8.8 Omitting pixel
normalization

Since our demo doesn’t have a given dataset to pre-
dict on, but a constant flow of new images, the pixel
normalization part in the preprocessing step could
not be performed in the same manner as before. In-
stead we chose to completely drop this normaliza-
tion step which actually seems to slightly improve
the classification performance, at least for the few
configurations we’ve tested. For example using our
optimal settings for BKVGG12 on FER2013, the
best validation accuracy during a training was 68.34
% and 67.78 % without and with pixel normalization
respectively. Similarly for BKStart on AffectNet,
we could see an increase in validation accuracy from
33.3 % to 34.5 %. The same applies for Dense121
with an increase from 43.2 % to 45.5 %. To get a fi-
nal verdict on whether omitting pixel normalization
is a gain or a loss for us, we investigated this effect
on our testset, as seen in Figure 30.

Figure 30: Testset accuracy investigating the effect
of pixel normalization. All models have been trained
on AffectNet, 42x42 pixels, grayscale images and the
presented accuracies are for 3 labels.

8.9 Demo application

In Figure 31 we have printed both the eight and
three class labels for clarity. The BKVGG12 model
trained on AffectNet without pixel normalization
has been used for the analysis.
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Figure 31: Demo application screen shot.

The faces in the image have rather clear facial ex-
pressions and it is no surprise that the model seems
to classify them all very well. The effect of the cam-
era angle is evident since the missed face in the bot-
tom is found in the top where the angle is more
straight on. In general, face detection algorithms
seem to be quite bad at detecting faces from de-
viant angles. Lastly, there is the rather conspicu-
ous effect of mistaking a doorstep for a face. Some-
times the face detection returns these false positives
which potentially could harm for example a statis-
tical recording. However, this problem could be re-
duced by calibrating the camera angle since most
often the background is more or less static.

In general, we are very happy with the performance
of our application. The biggest practical issue would
be the face detection performance, which is not part
of our core problem - emotion recognition. It has be-
come quite clear that the ”happy” label is the most
consistent label in terms of prediction probability
for eight classes. For example if the prediction sense
parameter is set to 70 %, then in general all facial
expressions result in the ”uncertain” label except for
”happy”. A good compromise seems to be a predic-
tion sense of 30-40 %, i.e. this results in a nice and
seemingly correct experience for the viewer. The
same goes for 3 and 9 for prediction and label fre-
quency respectively. Lower values tend to drive the
stream out of ”real time” rather fast, due to the
analysis lagging behind.
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9 Discussion

9.1 Dataset size

It has become quite clear during this thesis work
that dataset size is extremely important. Looking
at Figure 28 we see that for three labels no model
reaches a test accuracy of more than 59 %. These
models have been trained on FER2013 which con-
tains roughly 29 000 training images. The Affect-
Net dataset we’ve used contains over 287 000 train-
ing images and the corresponding testset results can
be seen in Figure 27. Here all models perform well
above 60 % with a highest accuracy of 72.4 %. The
same trend can be seen for the 2 label accuracies. In
summation, a larger dataset seems to be more im-
portant than choosing the right model, even though
this of course also is important. This conclusion
matches the one made by Domingos, P. in [24],
where he states that:

”As a rule of thumb, a dumb algorithm with lots and
lots of data beats a clever one with modest amounts
of it”.

The reason for this is quite intuitive and is easily
explained using the metaphor from Section 5.1.2.
You train a model much like how you teach a child.
With a child you point at a horse and say ”horse”
and with a computer model you give it an image of a
horse together with a label that says ”horse”. Let’s
say the problem is to classify animals. The more
different animals and specimens the child sees, the
better will it learn to classify them. It is a process
which with proper teaching (correct labels) leads to
more knowledge, i.e. better classification perfor-
mance. As we see it, a classifier should in theory
be able to perform better with increasing dataset
size, no matter the dataset size. However, a clas-
sification model only has so many parameters and
can thus only learn a limited amount of informa-
tion, just like a human. This should mean that in
practise a model cannot improve indefinitely with
increasing dataset size. Furthermore, simple clas-
sification problems might be more or less perfectly
solved before the dataset size reaches extreme val-
ues.

Another noteworthy effect of dataset size appears
when comparing the performance of models trained
using grayscale versus RGB images. One of the
things mentioned in Section 7.3 was that the re-
sults from training on color images of IRIS seemed

to contribute to a higher validation accuracy. When
the same test was conducted on AffectNet the re-
sults seemed to say something else, see Figure 25.
On AffectNet, grayscale and RGB images performed
equally well, leaving us with the conclusion that the
color images have no additional information about a
person’s facial expression. However, since the men-
tioned IRIS tests claimed the opposite, it seems as
if you need a certain amount of training data for
color and grayscale to perform equally well. A train-
ing set of RGB images technically have three times
the information of corresponding grayscale images.
Even though most of this extra data could be use-
less for the emotion recognition problem, for a small
enough training set it might have an influence and
boost the performance noticeably. This is our best
explanation for these results.

9.2 Pixel normalization and image
size

Looking at Figure 30, it seems as omitting the pixel
normalization step from Section 6.2.2.2 slightly in-
creases the testset accuracy. In theory it should
rather be the opposite since normalizing, i.e. cen-
tering and fixing the variance of the data is done
to aid the network in learning. For example us-
ing the ReLU activation function you want your
data close to zero to fully utilize the non-linearity,
which in general helps to model more complex prob-
lems. However, when a model uses batch normal-
ization (explained in Section 5.4.4), for example
DenseNet, image normalization steps are redundant.
This makes the Dense121 model results in Figure 30
even more inexplicable since here the data is nor-
malized either way. In summation, we have no the-
ory supporting increased performance by omitting
pixel normalization, this is probably just a coinci-
dence.

As for higher resolution images granting higher ac-
curacies, which can be seen in Figure 26, the results
are a bit easier to interpret. First of all, with higher
image resolution you can fit more information within
an image; an image of input size 100x100 pixels con-
tains about 5.7 times more pixels than an image of
size 42x42 pixels. Secondly; the results on image size
originates from DenseNet models. Since DenseNet is
optimized against ImageNet with input size 224x224
pixels, it is reasonable to believe that the 100x100
images should fit the model better.
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9.3 An unbalanced training set

One of the obstacles one can encounter in a machine
learning problem is an unbalanced training set. If
one of the classes in a training set is more common,
then the model will reach a higher accuracy if it pre-
dicts that class more often when unsure; the model
will become biased. This is something that you gen-
erally want to avoid; even though a facial expression
showing happiness might be more prevalent, the pre-
dictor should still be unbiased in its guess.

If we take a look at Table 2 we can see that some
classes are heavily unbalanced. There are for exam-
ple almost 32 times more images of facial expressions
showing happiness than facial expressions showing
contempt, where happiness is 1.8 times more occur-
ring than the second biggest label neutral. This can
be connected to the results shown in Table 8. Here
happiness is the label guessed correctly most of the
times. This could be because happiness is a very dis-
tinct facial expression, i.e. the network manages to
extract good features from happiness but not to the
same degree for other labels, and/or because happi-
ness is more prevalent in the training set.

This is also most likely the reason for the low accu-
racy on the label contempt. Contempt is the label
with the fewest number of images in AffectNet at
4250. It is however closely followed by disgust at
4303 images, which reaches 13.6 % accuracy. Confu-
sion matrices on other models have similar results,
but better models reach around 7 % accuracy on
contempt. It is therefore probably not an implemen-
tation issue, but rather that the dataset is unbal-
anced combined with that the CNN’s don’t manage
to pick up any good features for contempt.

9.4 Evaluation of models

One of the more interesting observations that can
be made is the performance by the different models.
All models with the prefix BK could be considered
shallower CNN’s, while DenseNet and ResNet can
be considered deeper CNN’s. As can be seen in Fig-
ure 19, our deeper neural network models don’t per-
form better than the shallower ones (where ResNet
performs well below BKVGG12) on FER2013. On
AffectNet, see Figure 27, the results have changed
slightly where the DenseNet121 trained on 100 pixel
RGB images performs the best on the three class
problem. However, they all perform relatively simi-
larly.

The reasons for this could be many, but our the-
ory is that this is mainly because of one or two
things:

When the creators of DenseNet and ResNet tested
their models, they were benchmarked against the
VGG16 model, which the BKVGG12 model is based
on. In both articles by Huang et al. and He et
al. [6] [7] DenseNet and ResNet performed better
than the VGG16 model, but in our case it performs
equally good or even better. The first thing to no-
tice is that these neural networks were trained and
tested against ImageNet. The images in ImageNet,
which contains a total of 1000 classes, are consid-
erably different from the images and the problem
of classifying facial expressions. Therefore it might
be satisfactory to utilize a smaller neural network
model, and still achieve good accuracy.

The second reason which we believe could be a cul-
prit is the fact that DenseNet and ResNet are con-
structed to classify higher resolution images. The
images in ImageNet are of the resolution 224x224
pixels, which is well above our maximum of 100x100
images. Since we have chosen not to focus on creat-
ing an optimal neural network model for this specific
problem, it might be that the designs of DenseNet
and ResNet are not optimized for the images we
have.

9.5 The human error

One must remember that the goal working with the
emotion recognition problem should not be to reach
a ”perfect” 100 % classification accuracy. While
many classification problems like the ImageNet ob-
ject recognition problem are highly unambiguous to
annotate, the emotion recognition problem is not.
In a lot of cases people will not agree on the same
emotion label and annotation is thus rather subjec-
tive. Consequently, a perfect 100 % classification
accuracy could just mean that the model has over-
fitted to the annotator’s opinions. If that annotator
happens to be deviant in their facial expression in-
terpretation, then an objectively good model could
perform worse than an objectively bad one. As we
see it, this problem can be reduced to some extent
in two ways; using professional annotators and/or
using multiple annotators. The former is applied on
AffectNet and the latter on our own testset.

Even though a given AffectNet image is annotated
by only one person, they did investigate the agree-
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ment among annotators by letting two of them an-
notate a subset of AffectNet. The two annotators
agreed on 60.7 % of the images, with 11 possible
labels. Even though this might sound like a poor
agreement, we believe it to be very difficult for non-
professionals to achieve this level of agreement with
that many labels. Let’s for example compare it to
the agreement of the 9 annotators on our own test-
set. In Section 7.2 we defined an agreement accuracy
as: number of ”correct” label votes divided by to-
tal number of label votes. The agreement accuracy
on our testset was 85 % using three possible labels.
The AffectNet agreement of 60.7 % converted to this
metric is 80.4 %, using 11 labels. Whether this met-
ric is a fair comparator could be discussed, but the
point is that the AffectNet label agreement is very
good; the agreement accuracy is almost as high as
for our testset but with more than three times the
labels. We believe that AffectNet is the best dataset
publicly available for the emotion recognition prob-
lem thanks to its size and annotation quality - the
human error has been minimized.

9.6 Human vs AI

An interesting test, maybe the most interesting of
them all, is to benchmark our model against a hu-
man. To begin with, we’ll compare the validation
accuracy of our top performing model, Dense121-
100 trained on AffectNet grayscale images. This
model had a validation accuracy of 49.53 % which
can be seen in Figure 26. Comparing this to the
agreement that the professional annotators had on
AffectNet, 60.7 %, the neural network performance
is not too far off.

Secondly, we would like to compare our model
against an annotator on our testset. To do this,
we chose one person out of the 9 annotators to omit
from the annotation so that this person’s classifi-
cations accuracy could be determined. This per-
son was neither the most nor least deviant among
the annotators. The person’s accuracy turned out
to be 80.7 %. The best model from Section 8.6.1
was Dense121-100 (trained on color images), which
achieved 74.6 %. The performance difference be-
tween an average human and a neural network
can thus be rather small on the emotion recogni-
tion problem, at least for our interpretation of it.
Chances are also that this difference will decrease
with increased computational power. As we see it,
an AI performing as well as a human is definitely

realistic, which basically is the goal.

An additional thing to mention when studying hu-
man emotions is that we as human beings rarely
interpret the mood of other people from a snapshot;
it is mostly based on a sequence of images, body
language and the current situation. Therefore our
machine learning models can be seen as competitors
when trying to analyze single images, but for inter-
preting human emotions as a whole, a human still
has to be seen as the expert.

9.7 Label binning methods

As mentioned in Section 7.1.5 one of the areas we
wanted to further investigate was how different la-
bel binning methods could impact the accuracy of
our CNN models. As mentioned, one of things we
were uncertain about was whether surprise should
be labeled as a neutral facial expression or not. One
could after all advocate that a surprised facial ex-
pression could originate from both a positive and
negative reaction.

To investigate this we conducted training on our
models where the surprise label was removed from
the training set, to see how these models performed
against models which had seen the surprised facial
expression. This can be seen in Figure 29. Even
though it’s not possible to draw any final conclu-
sions from this figure since the results are not unan-
imous, it seems as if the models trained on surprise
images does perform better than the models who
are not. This is most likely because of one of two
things. First of all, the models trained on images de-
picting a surprised facial expression have had more
data to train against, and could therefore have man-
aged to recognize facial expressions more generally.
Secondly, this result could be an indication that bin-
ning surprise as neutral is reasonable, thus giving
models trained with surprise images an obvious ad-
vantage.

As a final argument on label binning, we believe that
it in most cases is sufficient to condense the stan-
dard seven/eight facial expressions into the three la-
bels positive, neutral and negative. By doing so you
can easily eliminate unnecessary uncertainty. Know-
ing whether a person is disgusted or angry probably
makes little difference for an application user. It is
most likely sufficient to know that the person con-
veys a negative facial expression.
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9.8 Demo application

For our in Section 8.9 mentioned frequency settings
there will always be three predictions contributing
to the presented label, i.e. the probability of en-
countering a tie is somewhat minimized. If a tie
happens anyway, our implementation handles it by
choosing the first possible ”winner” which is not op-
timal, but could easily be changed if wanted. As
mentioned in Section 8.9, the ”happy” or ”happi-
ness” label most often has the highest prediction
probability; the network is very confident when pre-
dicting happiness. This agrees with the fact that
this label always seems to have the highest predic-
tion accuracy, which for example can be seen in Ta-
ble 8. As mentioned in Section 9.3, we believe there
are two main reasons for this. First of all, as seen
in Table 2, ”happiness” is by far the most frequent
label in the AffectNet dataset. This means that a
model trained on AffectNet most likely will become
somewhat biased since it becomes advantageous to
predict ”happiness” when uncertain. Second of all,
being happy might display relatively distinct visible
features such as a certain shape of the lips combined
with displaying teeth which results in high contrasts
in this area.

9.9 Practical application
considerations

When working with the emotion recognition prob-
lem ”in-the-wild”, theoretically optimal solutions
might not be the best choices. For example would
it in theory be motivated to use as big images as
possible with all color channels for analysis, to max-
imize the available information. This would go hand
in hand with deeper network architectures which
would be able to pick up more features. The ob-
vious problem with this is the computational ef-
fort required to train such a model and to use it
for predictions. One must find a sensible balance
between algorithm speed and prediction accuracy,
which we seem to have found in BKVGG12 as an
example. In Figure 27 BKVGG12 is just 1.9 per-
centage points less accurate than Dense121-100 for
three labels. BKVGG12 uses grayscale images of
42x42 pixels while Dense121-100 uses RGB images
of 100x100 pixels. Furthermore, BKVGG12 requires
6.93M FLOPs to predict one image, while Dense121-
100 needs 16.6M FLOPs. Although dependent on
the use case, the gains in accuracy are probably not

worth the increased running time. Additionally, an-
other drawback of using a higher image resolution
is that the face detection would find less faces since
a face needs to be closer to the camera to be de-
tected.

One big drawback of our demo application is as men-
tioned earlier that it only works from a very straight
on angle. If the angle is a bit off, the face detection
algorithm will miss faces and such a face doesn’t
even reach the analysis step. Even if it did, the pre-
diction performance would most likely be inferior
since our models have been trained using datasets
with mostly ”straight angles”. So in order to solve
the angle problem, one would have to build or find
a face detector capable of detecting faces from vary-
ing angles as well as train a model with facial images
from varying angles. We don’t know how much work
this would require, but it is definitely an interesting
problem that might be worth trying to solve if one
wants to build an application of this kind.

9.10 Possible use cases

One of the questions we asked ourselves in the prob-
lem definition was what real life applications which
could emanate from the emotion recognition prob-
lem. The following section should not be seen as fi-
nal answers to that question, but rather as thoughts
and reflections on where we as authors think that
the problem might be applicable.

One of the more obvious areas of use for recognizing
people’s emotions would be within the commercial
sector. A tool which can instantaneously measure a
group of people’s response to for example products,
commercials etc. could be highly useful. However,
one should not overlook the potential inaccuracy in
such data. Even though a customer in a shop might
be happy while he/she is browsing wares, it does not
have to mean that the reason for expressing a posi-
tive facial expression stems from a positive shopping
experience.

Instead, we think that the emotion detection prob-
lem is more useful when it comes to measuring spon-
taneous reactions. If the user would be able to for
example measure a crowd reaction during a funny
or scary part of a movie, then the producer of the
movie would be able to evaluate how well a certain
scene lives up to its purpose.

Another potential area of use which lies further on
the horizon is within the synergy between human
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and AI. As machines will be utilized in areas where
they need to be able to interpret human responses,
the ability to understand facial expressions could be
highly useful.
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10 Conclusion

The emotion recognition problem does indeed seem
solvable by a neural network. The models trained in
this thesis achieve relatively close to human perfor-
mance when tested on our three label testset, 74.6
% versus a human performance of 80.7 % accuracy.
When comparing with eight labels instead of three,
the difference is slightly higher where our top per-
forming model Dense121-100 on grayscale images
reaches 49.5 % validation accuracy on AffectNet and
the agreement of professional annotators on a subset
of AffectNet is 60.7 %.

As for possible use cases for the emotion recogni-
tion problem, we’ve deduced that it in most cases
might be sufficient to be able to interpret three la-
bels; positive, neutral or negative facial expressions.
Although the recognition of facial expressions could
be used in a number of different areas, we believe
that it is best suited for situations where you want
to measure the response of a sudden event, such
as the crowd’s reaction during a specific scene of a
movie, or a potential customer’s response to a com-
mercial.

When it comes to trade-offs between prediction ac-
curacy and execution speed, we’ve concluded that
models does not have to be necessarily deep in or-
der to perform well on the emotion recognition prob-
lem. The more shallow BK-models perform insignifi-
cantly worse than the deeper DenseNet models while
executing significantly faster. Some gains in accu-
racy can be made if larger images are analyzed, but
it is questionable if this small performance improve-
ment is justifiable when set in comparison with the
extra computational power needed to classify an im-
age.

11 Future work

If we were to continue this work, there are a few
things we’d like to look into more. For example,
the DenseNet and ResNet models are designed for
an input size of 224x224 pixels. We have only used
them for 42x42 and 100x100 pixels and it would be
very interesting to see how they perform using the
image size they were built for. As camera resolu-
tions increase and computers get more powerful, it
also becomes more reasonable to analyze bigger im-
ages.

There are some things which possibly could be im-
proved, for example getting the SGD optimizer ap-
proach described in Section 7.1.2 to work since this
seems to have been a successful approach for multi-
ple authors. Also as mentioned in Section 9.9, we’d
like to improve our application to work for faces of
varying angles.

To reach a wanted product it would be interest-
ing to speak to potential users to see exactly what
functionalities and features are of interest to them.
Also combining our application with already exist-
ing functionalities created by our employer, we could
record emotions together with gender and age for
more valuable statistics. For practical purposes we
would also like to investigate whether our applica-
tion could be run embedded on a camera with ac-
ceptable performance.

41



References

[1] W. McCulloch and W. Pitts. “A Logical Calculus of the Ideas Immanent in Nervous Activity”. In:
Bulletin of Mathematical Biophysics 5 (1943), pp. 115–133.

[2] P. Ekman and W. V. Friesen. “Constants Across Cultures in the Face and Emotion”. In: Journal of
Personality and Social Psychology 17(2) (Feb. 1971), pp. 124–129.

[3] Y. LeCun et al. “Gradient-based Learning Applied to Document Recognition”. In: Proceedings of the
IEEE. Vol. 86. 11. Nov. 1998, pp. 2278–2324.

[4] I. Cohen et al. “Facial expression recognition from video sequences”. In: Computer Vision and Image
Understanding (2002).

[5] D. V. Sang, N. V. Dat, and D. P. Thuan. “Facial Expression Recognition Using Deep Convolutional
Neural Networks”. In: Knowledge and Systems Engineering (KSE) 9th International Conference. Oct.
2017, pp. 130–135.

[6] G. Huang et al. “Densely Connected Convolutional Networks”. In: IEEE Conference on Computer
Vision and Pattern Recognition (CVP). July 2017, pp. 2261–2269.

[7] K. He et al. “Deep Residual Learning for Image Recognition”. In: IEEE Conference on Computer
Vision and Pattern Recognition (CVP). June 2016, pp. 770–778.

[8] K. Zhang et al. “Facial Expression Recognition Based on Deep Evolutional Spatial-Temporal Net-
works”. In: IEEE Transactions on Image Processing 26 (Sept. 2017), pp. 4193–4203.

[9] H. Meng et al. “Time-Delay Neural Network for Continuous Emotional Dimension Prediction From
Facial Expression Sequences”. In: IEEE Transaction on Cybernetics 46 (Apr. 2016), pp. 916–929.

[10] N. Srivastava et al. “Dropout: A Simple Way to Prevent Neural Networks from Overfitting”. In: Journal
of Machine Learning Research 15 (2014), pp. 1929–1958.

[11] K. Fukushima. “Neocognitron: A Self-organizing Neural Network Model for a Mechanism of Pattern
Recognition Unaffected by Shift in Position”. In: Biological Cybernetics 36 (1980), pp. 193–202.

[12] S. Ioffe and C. Szegedy. Batch Normalization: Accelerating Deep Network Training by Reducing Internal
Covariate Shift. url: https://arxiv.org/pdf/1502.03167.pdf.

[13] K. Simonyan and A. Zisserman. Very Deep Convolutional Networks for Large-Scale Image Recognition.
url: https://arxiv.org/abs/1409.1556.

[14] R. K. Srivastava, K. Greff, and J. Schmidhuber. Highway Networks. url: https://arxiv.org/abs/
1505.00387.

[15] K. He and J. Sun. Convolutional Neural Networks at Constrained Time Cost. url: https://arxiv.
org/abs/1505.00387.

[16] I. J. Goodfellow et. al. “Challenges in Representation Learning: A report on three machine learning
contests”. In: Neural Networks 64 (Apr. 2015). Special Issue on ”Deep Learning of Representations,
pp. 59–63.

[17] P. Ekman and W. V. Friesen. “Facial Action Coding System: A Technique for the Measurement of
Facial Movement”. In: Consulting Psychologists Press, Palo Alto (1978).

[18] A. Mollahosseini, B. Hasani, and M. H. Mahoor. “AffectNet: A Database for Facial Expression, Valence,
and Arousal Computing in the Wild”. In: IEEE Transactions on Affective Computing (2017).

[19] Datainspektionen. Dataskyddsförordningen - General Data Protection Regulation (GDPR). url:
https : / / www . datainspektionen . se / Documents / Dataskyddsf \ %C3 \ %B6rordningen \ %20 - \ %

20Datainspektionen.pdf.
[20] B. Abidi. Dataset 02: IRIS Thermal/Visible Face Database. IEEE OTCBVS WS Series

Bench; DOE University Research Program in Robotics under grant DOE-DE-FG02-86NE37968;
DOD/TACOM/NAC/ARC Program under grant R01-1344-18; FAA/NSSA grant R01-1344-48/49;
Office of Naval Research under grant #N000143010022. url: http://vcipl-okstate.org/pbvs/
bench/index.html.

[21] J. T. Springenberg et al. Striving for Simplicity: The All Convolutional Net. url: https://arxiv.
org/abs/1412.6806.

[22] R. Kotikalapudi. Keras implementation of ResNet. url: https://github.com/raghakot/keras-
resnet.

42

https://arxiv.org/pdf/1502.03167.pdf
https://arxiv.org/abs/1409.1556
https://arxiv.org/abs/1505.00387
https://arxiv.org/abs/1505.00387
https://arxiv.org/abs/1505.00387
https://arxiv.org/abs/1505.00387
https://www.datainspektionen.se/Documents/Dataskyddsf\%C3\%B6rordningen\%20-\%20Datainspektionen.pdf
https://www.datainspektionen.se/Documents/Dataskyddsf\%C3\%B6rordningen\%20-\%20Datainspektionen.pdf
http://vcipl-okstate.org/pbvs/bench/index.html
http://vcipl-okstate.org/pbvs/bench/index.html
https://arxiv.org/abs/1412.6806
https://arxiv.org/abs/1412.6806
https://github.com/raghakot/keras-resnet
https://github.com/raghakot/keras-resnet


[23] F. Yu. DenseNet-Keras with ImageNet Pretrained Models. url: https://github.com/flyyufelix/
DenseNet-Keras.

[24] P. Domingos. A Few Useful Things to Know about Machine Learning. url: https://homes.cs.

washington.edu/~pedrod/papers/cacm12.pdf.

43

https://github.com/flyyufelix/DenseNet-Keras
https://github.com/flyyufelix/DenseNet-Keras
https://homes.cs.washington.edu/~pedrod/papers/cacm12.pdf
https://homes.cs.washington.edu/~pedrod/papers/cacm12.pdf


Master’s Theses in Mathematical Sciences 2018:E25
ISSN 1404-6342

LUTFMA-3348-2018

Mathematics
Centre for Mathematical Sciences

Lund University
Box 118, SE-221 00 Lund, Sweden

http://www.maths.lth.se/


	Glossary
	Introduction
	Background
	Related work
	Problem definition
	Theory
	The image classification problem
	Linear Classification
	Neural Networks
	Convolutional Neural Networks
	Residual networks
	DenseNets

	Setup
	Datasets
	Data preprocessing
	Models

	Method
	Model optimization against FER2013
	Creating our own testset
	Tests on IRIS
	Model optimization against AffectNet
	Demo Application

	Results
	Model setups
	Validation accuracy on AffectNet
	Confusion matrix on AffectNet
	Grayscale vs RGB
	42 vs 100 pixels
	Testset results
	Omitting surprise label
	Omitting pixel normalization
	Demo application

	Discussion
	Dataset size
	Pixel normalization and image size
	An unbalanced training set
	Evaluation of models
	The human error
	Human vs AI
	Label binning methods
	Demo application
	Practical application  considerations
	Possible use cases

	Conclusion
	Future work

