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Abstract

In this thesis, the Wideband Sparse Exponential Mode Analysis (WSEMA) estimator is introduced.
It combines two recently developed techniques, the wideband dictionary and the Sparse Exponential
Mode Analysis (SEMA) to make for an efficient estimator. WSEMA estimates the parameters of
decaying sinusoids, without a priori-information about the number of modes present in the signal.
WSEMA works with arbitrary sampling schemes and is therefore compatible with sampling scheme
optimization ideas presented recently. The suggested estimator is evaluated using both simulated
data and real nuclear magnetic resonance (NMR) spectroscopy data. The results in this thesis sug-
gests that WSEMA can be used to efficiently estimate the frequencies and dampings of multi-modal
signals with minimum variance, although work remains concerning the handling of closely spaced
peaks.

Parts of the content in this thesis have been published in the article Computationally Efficient Esti-
mation of Multi-dimensional Damped Modes Using Sparse Wideband Dictionaries, accepted to the
26th European Signal Processing Conference (EUSIPCO 2018).
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1 Background

1.1 Introduction

A sum of decaying sinusoids is a model used throughout a variety of applications, such as speech
and audio signals [1], radar imaging [2], and nuclear magnetic resonance (NMR) spectroscopy [3].
The model traces its roots back to as early as 1795, when Gaspard Riche de Prony developed the
so called Prony’s method. Practical relevance was however delayed until the development of the
modern computer [4]. On account of the number of possible applications, the topic has received
a lot of attention in the recent literature and there exists several different types of algorithms to
estimate the parameters of the model. The maximum likelihood (ML) estimator can attain opti-
mal performance, but due to the need of a multidimensional search, the computational burden is
huge, making it practically infeasible in more than two dimensions [5]. Amongst other methods
are subspace based methods such as e.g. matrix pencil [6], M-D DMUSIC [7], ESPRIT [8] and
PUMA [9]. These methods suffer from requiring a priori knowledge about the exact number of
sinusoids present in the signal. Other approaches, like dCAPON and dAPES [10], have difficulty
separating closely spaced components [11]. The recently introduced Sparse Exponential Mode Anal-
ysis (SEMA) [12] attempts to find a computationally efficient way to estimate the parameters by
exploiting the Kronecker structure in the model. This, however, introduces restrictions on how the
signal can be sampled. In this thesis, I propose the Wideband Sparse Exponential Mode Analysis
(WSEMA) estimator for efficient estimation of decaying sinusoids. It is a general method although
the application focus has been on NMR spectroscopy.

NMR is one of the most powerful, but still non-destructive, tools available when trying to determine
the structure of chemical compounds. The mode of procedure is to alter the nuclear spins in a
sample from equilibrium. After that, the time-dependant response is measured. This is called free
induction decay (FID) and contains information from the entire sample. By spectral analysis, the
goal is to identify the contributions made by the different parts of the sample and thereby determine
it’s structure [13, p. ix-x]. This alteration from equilibrium, accomplished by so called pulses, can be
modified with respect to e.g. time between pulses. This way, the FID can become multidimensional,
each dimension corresponding to a pulse setting. The multidimensional nature of applications like
NMR fuels a need for efficient estimators. A desirable property of such an estimator is the ability
to work with an arbitrary sampling scheme, since uniform sampling is practically impossible for
multidimensional problems [11]. As an example, non-uniform sampling allowed for performing an
NMR-experiment in 89 hours, instead of the 2.5 years it would have taken using conventional uni-
form sampling [14]. This motivates a section in this thesis about sampling scheme optimization.
The section contains a discussion on the impact of the damping parameter and a conjecture about
how it should be picked.

The proposed WSEMA-estimator combines two recently developed techniques. The first is the con-
cept of wideband dictionary elements. In short, it utilizes integration over the frequency space to
more efficiently find the frequency components present in the signal. The second technique is the
aforementioned SEMA, that uses a relaxation-based procedure to estimate the parameters one mode
a time to minimize the residual, rather than all at once.

This thesis is organized as follows. In the first chapter, the general framework regarding sparse
spectral estimation, that is used throughout this thesis, is introduced. In chapter two, the concept
of sampling scheme optimization is presented. The WSEMA-algorithm is introduced in chapter
three, which also includes a discussion on spurious peaks. Results, using simulated as well as real
NMR-data, is presented in chapter four. Finally, in chapter five, there is a discussion about the
results as well as suggestions for further research.
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1.2 Spectral estimation, parametric and non-parametric methods

Consider a discrete time, zero-mean, weak-sense stationary, random signal y(t), t = 0,±1,±2, ....
The autocovariance function for such a process is defined as

r(k) = E{y(t)y∗(t− k)} (1)

and assumed to depend only on the lag k. The power spectral density (PSD) is, under reasonable
assumptions on r(k), defined as

φ(f) = lim
N→∞

E

{
1

N

∣∣∣∣ N∑
t=1

y(t)e−2iπft

∣∣∣∣2
}

(2)

and represents the average power of the signal at the normalized frequency f ∈ [0, 1]. Estimating
the PSD from a finite number of samples is the essence of spectral analysis [15].

Spectral estimation techniques are commonly divided into parametric and non-parametric methods.
As the name suggest, non-parametric methods make no assumption about but the nature of the
signal and instead estimates the spectrum from the definition of the PSD. An example of this is the
periodogram,

φ̂p(f) =
1

N

∣∣∣∣ N∑
t=1

y(t)e−2iπft

∣∣∣∣2. (3)

In contrast to the non-parametric methods are the parametric methods. Here, the signal is assumed
to satisfy a general model. The task at hand is then to estimate the parameters of that model. Non-
parametric remain useful when little is known about the signal of interest and they are less sensitive
to modelling errors, but assuming that the signal model is correct, parametric methods generally
outperform non-parametric ones [15]. Along with parametric and non-parametric methods, there
are semi-parametric methods. They contain elements from both the parametric and non-parametric
realms and can be useful when some properties of the signal are known whereas others are not.

Consider a D-dimensional space with a K-mode decaying sinusoid. The number of dimensions,D,
known, butK is here assumed to be unknown. The signal observed at τn = [ t

(1)
n t

(2)
n . . . t

(D)
n ]T

can then be written as

xτn
=

K∑
k=1

αk

D∏
d=1

ξ(f
(d)
k , β

(d)
k )t

(d)
n + ετn

, (4)

with
ξ(f

(d)
k , β

(d)
k ) = e2πif

(d)
k −β

(d)
k . (5)

Here, αk ∈ C denotes the amplitude of mode k, f
(d)
k ∈ [0, 1], and β

(d)
k ∈ R+ the normalized

frequency and damping respectively, in dimension d for the k:th mode, and ετn is an additive noise
term. The noise is assumed to be circularly symmetric1, white and Gaussian. Assuming that
the signal is observed over N , possibly non-uniformly spaced, multidimensional sampling points
Ω = {τn , n = 1, 2, . . . , N}, the measurement vector y can be written as

y =

K∑
k=1

αkã
Ω
k + εΩ, (6)

where

ãΩ
k =

[ ∏D
d=1 ξ(f

(d)
k , β

(d)
k )t

(d)
1 . . .

∏D
d=1 ξ(f

(d)
k , β

(d)
k )t

(d)
N

]T
(7)

εΩ =
[
ετ1 . . . ετN

]T
, (8)

1eiφz has the same distribution as z for all real φ.
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or in an equivalent matrix form

y = ÃΩα + εΩ, (9)

with

ÃΩ =
[

ãΩ
1 . . . ãΩ

K

]
(10)

α =
[
α1 . . . αK

]T
(11)

1.3 Sparsity, regularized optimization, LASSO and ADMM

Estimating the order and parameters of (6) is an example of an often occurring situation, trying to
fit a model to a set of measurements. This is commonly written on the form

y = Ax + ε. (12)

Here, y is an vector with N elements, representing the measurements. The vector x is of length P
and represent a set of coefficients. The linear map A is of size N × P. Finally, ε is a noise vector of
length N. The goal is then to minimize the model residual, i.e. to find

arg min
x
||y−Ax||22. (13)

In many applications, the assumption is made that A has full rank, that N ≥ P and that the noise
terms are zero-mean, white, and independent. In this case, the least squares estimate can be found
as

x̂ = arg min
x
||y−Ax||22

= arg min
x
{[y −Ax]H [y −Ax]}

= arg min
x
{[x−A†y]H [AHA][x−A†y] + yHy − yHAA†y}

= A†y,

(14)

where A† denotes the Moore-Penrose pseudoinverse, defined as A† =∆ (AHA)−1AH .

In the common approach of the application considered in this thesis, however, P � N. The columns
of A are closely spaced candidate frequencies, implying a discretization of the frequency space. This
yields a vastly underdetermined system and (13) generally has infinitely many solutions. Another
distinguishing feature of the application is that the system is assumed to be sparse. We don’t neces-
sarily know the exact number of components in the signal, but we know that it’s a reasonably small
number. This means that the majority of the entries in x should be equal to 0. In general, when
solving (13), this will not be the case. This sparsity needs to be imposed on the solution.

To impose sparsity, equation (13) may be modified slightly. Instead of trying to minimize only the
loss function, 1

2 ||y−Ax||22, a regularizing penalty term, g(x), is added, to ensure that a less sparse
solution significantly reduces the loss. This yields the problem

minimize
x

1

2
||y−Ax||22 + λg(x), (15)

where λ controls the degree of regularization. The choice of penalty function is not obvious. To
effectively impose sparsity, one would ideally like to put a significant penalty on each non-zero term
used in x, no matter the size of the element, i.e.

g(x) = ||x||0 =

M∑
m=1

|xm|0, (16)
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known as the `0-”norm”. The quotation marks are highly deliberate, since `0 is not a proper norm,
failing the homogeneity criterion2. The big drawback of using the `0-”norm” as regularizing function
is that it would require a search over all possible combinations of zero and non-zero elements of x,
a task that is infeasible for almost all practically relevant problems. A popular remedy for this is to
use a convex relaxation, see e.g. [16, p. 7], instead using the `1-norm, defined as

g(x) = ||x||1 =

M∑
m=1

|xm|. (17)

Equation (15) can now be written as

minimize
x

1

2
||y−Ax||22 + λ||x||1, (18)

known as the Least Optimal Shrinkage and Selection Operator, LASSO, introduced in [17]. The
LASSO has the major advantage that it’s convex, meaning that both the cost function and the set
over which the function is minimized, are convex. Convex problems have the desirable property that
a locally optimal point is also globally optimal. Much like the choice of penalty function, the choice
of the parameter λ is not obvious. Commonly one prefers to connect the value of λ to the inner
product between the signal and the dictionary,

λ = γ max
i=1,...,P

|aTi y|, (19)

where ai denotes the i:th column of A, instead forcing a decision on γ. This is discussed in greater
detail in [17] and [18]. In this thesis, γ has been selected to be in the range between 0.2 and 0.4.
To further impose sparsity, a re-weighting scheme, as described in [19], will also be used. In such a
scheme, instead of minimizing just the `1-norm of x, one sets out to minimize ||Wx||1, where W is
a diagonal matrix consisting of weights w1, ..., wP , yielding

minimize
x

1

2
||y−Ax||22 + λ||Wx||1. (20)

All weights are initialized as 1, then after solving (20), the weights for the q:th iteration are updated
according to

w(q+1)
p =

1

|x(q)
p |+ δ

(21)

where δ is a small number inserted to provide stability and to make sure that x
(q)
p = 0 not entirely

excludes the possibility of x
(q+1)
p 6= 0. After that, (20) is solved again. This process is repeated

a desired number of times. The reweighing scheme, that is utilized throughout the proposed algo-
rithm whenever the LASSO is solved, also decreases the sensitivity of the choice of γ. To illustrate
the difference between a sparse and a non-sparse solution, we simulate a simple, one-dimensional,
undamped signal, uniformly sampled on [0, N − 1], where N = 100 denotes the number of sam-
ples. The signal consists of two modes with unit amplitude and with f1 = 0.25 and f2 = 0.38
respectively, disturbed by a noise with a variance σ2

e = 4. With a dictionary A consisting of 100
candidates, equations (13) and (18) are solved. The results are shown in figure 1. The least squares
solution models the noise to large extent and violates the underlying sparsity assumption, whereas
the LASSO solution consists of two components only. The LASSO solution at the bottom of figure 1
reveals an amplitude bias, common amongst sparse based methods. The estimated amplitudes are
smaller than the ground truth. However, this is not a big problem, as the amplitude estimates may
be refined later [16].

There exists several numerical solvers to convex optimization problems. Throughout this thesis, the
Alternating Direction Method of Multipliers [20], is used. In our problem, the variable x in (18) is

2g(ax) 6= ag(x)

7
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Figure 1: Non-sparse (least squares) solution (top), clearly modelling the noise to large extent, along
with a sparse (LASSO) solution (bottom).

split into x and z, and (18) is rewritten as

minimize
x, z

1

2
||y−Ax||22 + λ||z||1, subject to x = z. (22)

This is solved via the so called scaled augmented Lagrangian

minimize
x, z

1

2
||y−Ax||22 + λ||z||1 +

ρ

2
||x− z + u||22, (23)

where u is the scaled dual variable and ρ is the step length. Equation (23) is solved iteratively for
x and z and u is updated as well, according to the following set of equations,

x(j+1) =
(
AHA + ρI

)−1(
AHy + z(j) − u(j)

)
, (24)

z(j+1) = S
(
x(j+1) + u(j), λ/ρ

)
, (25)

u(j+1) = u(j) + x(j+1) − z(j+1), (26)

where S is the soft threshold operator, defined as

S(x, κ) = max

(
0, 1− κ� 1

|x|

)
� x (27)

where � denotes element-wise multiplication. This, of course, is defined only when |x| 6= 0. If
|x| = 0, S(x, κ) = 0. More details on convex optimization in general can be found in [21] and on
ADMM in particular in [20].

1.4 Dictionary considerations

As previously mentioned, A is often referred to as a dictionary in the sparse spectral estimation
environment, since it can be seen as a dictionary of possible signal candidates. Each column of the
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Figure 2: Inner product of the dictionary (100 elements) and the signal, N = 100, along with the
true frequencies. The tight frequency grid ensures that both frequency components is close enough
to at least one frequency candidate.

dictionary, called an atom, representing a unique combination of frequencies and dampings and their
propagation over time

āΩ
p =

[ ∏D
d=1 ξ(f

(d)
p , β

(d)
p )t

(d)
1 . . .

∏D
d=1 ξ(f

(d)
p , β

(d)
p )t

(d)
N

]T
(28)

The dictionary Ā
Ω

will then have the following form,

Ā
Ω

=

[
ā1 · · · āP

]
. (29)

We here term this a narrowband dictionary. The assumption is that with a large enough number
of candidate frequencies, the true frequencies will be close enough to a candidate frequency and
it will be possible to recover the correct frequencies. This is illustrated in figure 2, where we see
the inner product of a two-mode signal of length 100 and a dictionary containing 100 atoms. Both
frequencies are successfully recovered. However if one tries to do this with a smaller dictionary, one
might irretrievably lose components of the signal. This is illustrated in figure 3. Here, we have a one-
dimensional, two mode signal without any damping. One of the frequency components, f1 = 0.38
is located on the frequency grid, whereas the other, f2 = 0.25 is off-grid, in between two dictionary
elements, and in, in this case, in the null space of A. To avoid losing any frequency components, the
number of grid points in each dimension needs to be at least as many as the number of observations.
In a multidimensional application such as NMR spectroscopy, this is devastating as the curse of
dimensionality will balloon the size of the dictionary.

1.5 Integrated wideband dictionary elements

The idea of using integrated wideband dictionary elements (IWDE) is introduced in [18] as a possible
remedy to using large dictionaries. In an integrated wideband framework, each dictionary element
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Figure 3: Inner product of the dictionary (50 elements) and the signal, N = 100, along with the true
frequencies. The coarse grid causes the inability to recover one of the signal components.

is formed not as a single frequency but instead over an integrated range of the parameter space. In
the one-dimensional undamped case, for two adjacent grid points fa and fb, this will be{

1, for fa ≤ f ≤ fb
0, elsewhere

F−1

→ e2iπfbt − e2iπfat

2iπt
. (30)

In a multidimensional setting, we can imagine dividing the parameter space into P D-dimensional
hypercubes. Letting Hp denote one of these hypercubes, we then define the wideband dictionary as

aΩ
p =

[
ψ(τ 1,βp,Hp) . . . ψ(τN ,βp,Hp)

]T
, (31)

where

ψ(τn,β,H) =

∫
H

D∏
d=1

ξ(f (d), β(d))t
(d)
n df (1) . . . df (D), (32)

yielding the full dictionary

A =
[

aΩ
1 . . . aΩ

P

]
. (33)

To demonstrate the IWDE, we use the same signal as in figure 3, using frequencies f1 = 0.38,
f2 = 0.25. The inner product of the signal and a 25 element wideband dictionary is displayed in
figure 4. Note that despite the dictionary being half the size compared to figure 3, the more evenly
spread power of the elements allow for successful recovery of both the frequency components. The
resolution of the estimate can then be improved by zooming in on and place a finer grid around
the found peaks. The difference in distribution of power between the narrowband element and the
wideband element is further illustrated in figure 5. This shows the larger, but significantly thinner
peak of the narrowband dictionary, compared to the weaker, but more spread out wideband peak.
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less power at it’s peak, but in return it covers more of the frequency space.
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1.6 Computational complexity

The benefit of using an IWDE dictionary becomes evident when studying the computational com-
plexity of solving the LASSO via ADMM, as done in [18]. The computationally most demanding
steps is computing AHA, creating the inverse and computing AHy, all in (24). Fortunately, this
can be done once before the iterations, commonly by doing a QR-factorization of A. Assuming
that A is of size N × P , the cost of these operations depends on the relative size of N and P . If
P < N , computing AHA, forming the inverse and computing AHy is roughly P 3 +(N+1)P 2 +NP ,
whereas it’s approximately N3 + 3PN2 +PN +P 2 if N < P . Therefore, comparing a oversampled,
one-stage, narrowband dictionary with P > N , with a wideband dictionary with N = P (to simplify
calculations) one can save N3 + 3PN2 + PN + P 2 − 2(N3 + N2) computations in the initial step.
Computations that can be used in the zooming procedure. Zooming can of course be performed
using a narrowband dictionary, but to avoid missing off-grid components the size of the dictionary
would have to be at least N in the initial step.

2 Sampling scheme optimization

2.1 Optimal sampling scheme

As previously mentioned, uniform sampling quickly becomes practically infeasible for multidimen-
sional data. This yields the obvious question: how should non-uniform sampling be performed? This
question is addressed in [11] where the aim is to minimize the Cramér-Rao Lower Bound (CRLB) of
the parameters given the number of samples to be used. Among different bounds for the variance of
an estimator, the CRLB is the bound most commonly used. The CRLB determines a lower bound on
the optimal performance of an unbiased estimator. The CRLB is defined via the Fisher Information
Matrix (FIM); which is, for a D-dimensional sampling time τn and a set of parameters θ, defined as

F(τn;θ) = E{∇θln(p(y(τn);θ))∇Hθ ln(p(y(τn);θ))}, (34)

where p(y(τ ;θ)) denotes the probability density function. The CRLB of a parameter θ ∈ θ is
then the corresponding element on the diagonal of the inverse of FIM. The sum of the CRLB of
the parameters is consequently the trace of the inverse of FIM. Assuming that the samples are
independent, the corresponding FIM for a set of samples indices Ω is∑

n∈Ω

F(τn;θ). (35)

Letting w denote the vector of possible sampling points and wn = 1 meaning that the n:th sample
is used and wn = 0 that it is not used, the problem can be reformulated as

minimize
w

tr

(( N∑
n=1

wnF(τn;θ)

)−1)
subject to ||w||1 ≤ γ

wn ∈ {0, 1}, n = 1, ..., N,

(36)

where γ > 0 is an upper bound on the norm of the number of samples chosen to be activated. Once
again we are facing a combinatorial problem, why a convex relaxation, similar to the one used before,
is used, allowing wn to vary in the interval [0, 1]. Further, since all entries in w are non-negative,
we can replace ||w||1 with 1Tw where 1 is a vector of ones of appropriate size, yielding

minimize
w

tr

(( N∑
n=1

wnF(τn;θ)

)−1)
subject to 1Tw ≤ γ

wn ∈ [0, 1], n = 1, ..., N,

(37)
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Given a solution ŵ to (37) the Fisher information matrix then becomes

I(ŵ;θ) =
∑
j∈Ω

F(tj ; Ω), Ω = {j : ŵj > ξ}, (38)

where ξ ≥ 0 is a threshold determining whether an element wj should be rounded to 1 or 0. This
allows for a minimization of the sum of the CRLB’s of the parameters. However, since the parameters
may be estimated with varying degree of precision, and the estimation of some parameters might
be much more interesting than others, one would like to be able to weight the importance of the
different parameters, to avoid a lopsided sum of the CRLB’s. To allow for a parameter to be of
arbitrary importance, including none, it is noted in [11] that

tr
(
B−1

)
=

P∑
p=1

eTp B−1ep, (39)

with ep denoting a vector with zeroes at every position except the p:th, where there is a one. Further,
for a positive definite matrix3 B, scalar µ and vector a

µ− aTB−1a ≥ 0 ⇐⇒
[

B a
aT µ

]
� 0 (40)

where C � 0 means that C is positive semi-definite. From this it follows that

minimize
B�0

aTB−1a (41)

and

minimize
µ,B�0

µ

Subject to

[
B a
aT µ

]
� 0

(42)

is minimized by the same matrix B, B � 0 meaning that B is positive definite. Thanks to this
observation, and by letting ψp denote the weight of the p:th parameter, we may, as noted in [11],
now reformulate (37) as a semi-definite program (SDP)

minimize
µ,w

P∑
p=1

ψpµp

subject to

[∑N
n=1 wnF(tn;θ) ep

eTp µp

]
� 0 ∀p

N∑
n=1

wnF(tn;θ) � 0

1w ≤ γ, wn ∈ [0, 1], ∀ n,

(43)

which can be solved using for instance Matlab’s CVX-toolbox. This framework also allow for in-
corporation of a priori-knowledge that might be available regarding some parameters. Another
advantage is that it is possible to set a limit on the CRLB of a specific parameter. Once again
using NMR spectroscopy as an example, the frequencies might be fairly well known, often it is the
damping parameters that are of real interest. Letting Θ denote the set of possible parameters and

3zTBz > 0 for any non-zero, real vector z.
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λp the CRLB-bound on the p:th parameter,

minimize
µ,w

P∑
p=1

ψpµp

subject to

[∑N
n=1 wnF(tn;θ) ep

eTp µp

]
� 0 ∀ p, ∀ θ ∈ Θ

N∑
n=1

wnF(tn;θ) � 0

1w ≤ γ, wn ∈ [0, 1], ∀ n
µp ≤ λp, ∀ p.

(44)

The solution µp is now the worst-case CRLB for the p:th parameter, assuming that all parameters
are within the set Θ. The solution will therefore be

µp = arg max
θ∈Θ

eTp I(ŵ;θ)−1ep. (45)

2.2 Selection of β

Naturally, true values of the parameters is not known prior to the sampling scheme optimization.
However, prior information in form of an interval regarding a parameter, might be available. The
authors of [11] have proposed that if there’s uncertainty regarding the damping parameter, it’s better
to overestimate the parameter than to underestimate it, choosing the largest value in the interval,
when optimizing the sampling scheme. This way one ensures the best worst-case scenario CRLB.
That this is a reasonable suggestion is demonstrated in figure 6. Here, we see two one-dimensional
one-mode signals, identical with respect to frequency, amplitude, phase and noise, but with different
damping. The top picture shows a signal with β = 0.2, whereas for the signal in the bottom picture
β = 0.05. Out of the 50 possible samples, 13 have been chosen according to the method previously
described. The optimal sampling schemes are shown in the pictures as well. Although the perfor-
mance would be suboptimal, employing the sampling scheme from the top picture to the signal in
the bottom picture, one would still get a descent estimate. Doing the opposite, using the sampling
scheme from the bottom picture to the signal in the top picture, would be equivalent of throwing
away the samples used between t = 30 and t = 35 since the signal in the top picture have decayed
completely at that point.

To address this more rigorously, assume that the true value of the parameter β is the to us unknown
β̃. We know that β̃ ∈ B. in [11], the optimization was done by finely gridding B. Here, I formulate
the proposition made by the authors of [11], that optimization of the sampling scheme should be
done with respect to the largest value in B, βmax, to ensure the best worst-case scenario sampling
scheme.

Conjecture 1 (Swärd-Elvander conjecture). Optimization of the sampling scheme should be done
with the largest β in the uncertainty interval B.

To be consistent with previous literature on the subject, a slightly different notation will be used
throughout this section. The complex amplitude will be replaced by a real-valued α, equal to the
absolute value of the previous α, and a phase shift eiφ, φ ∈ [0, 2π]. Since any complex number
z = a+ bi can be written as a z = reiφ, where r = |z| and φ = arg(z), theses forms of notation are
equivalent. Further, we concentrate on the simplest thinkable case, considering only a single mode
in one dimension, yielding

yn = α exp{2iπftn − βktn + iφ}+ εn. (46)
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Figure 6: Comparison of the optimized sampling schemes (red dots) of two signals with different
rate of decay. The faster decay of the signal in the top picture necessitates earlier sampling.

From [11], the Fisher Information Matrix (FIM) corresponding to the sampling time tn, with a slight
modification of the order of the parameters, is formulated as

F(tn;θ) =
2

σ2


F1,1(tn) · · · F1,K(tn) 0

... · · ·
...

...
FK,1(tn) · · · FK,K(tn) 0

0 · · · 0 1/σ2

 (47)

where

θ = [θT1 · · ·θ
T
K ], (48)

θk = [αk βk fk φk] (49)

and

Fk,`(tn) =


ck,`(tn)
αkα`

−tnck,`(tn)
αk

2πtnsk,`(tn)
αk

sk,`(tn)
αk

−tnck,`(tn)
α`

t2nck,`(tn) −2πt2nsk,`(tn) −tnsk,`(tn)
−2πtnsk,`(tn)

α`
2πt2nsk,`(tn) (2πtn)2ck,`(tn) 2πtnck,`(tn)

−sk,`(tn)
α`

tnsk,`(tn) 2πck,`(tn) ck,`(tn)

 (50)

with

ck,`(tn) = αkα`e
−(βk+β`)tn cos(2π(fk − f`)tn + (φk − φ`)), (51)

sk,`(tn) = αkα`e
−(βk+β`)tn sin(2π(fk − f`)tn + (φk − φ`)). (52)

Given that there is only one mode, k = `, making the cosine-term in (51) equal to 1 and the sine-term
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in (52) equal to 0. This simplifies the matrix in (50) quite a bit, yielding
e−2βtn −tnαe−2βtn 0 0

−tnαe−2βtn t2nα
2e−2βtn 0 0

0 0 (2πtnα)2e−2βtn 2πtnα
2e−2βtn

0 0 2πtnα
2e−2βtn α2e−2βtn

 . (53)

The FIM for the sum over all N sampling points will then be
∑
n e
−2βtn −α

∑
n tne

−2βtn 0 0
−α

∑
n tne

−2βtn α2
∑
n t

2
ne
−2βtn 0 0

0 0 (2πα)2
∑
n t

2
ne
−2βtn 2πα2

∑
n tne

−2βtn

0 0 2πα2
∑
n tne

−2βtn α2
∑
n e
−2βtn

 . (54)

The block nature of this matrix makes it fairly easy to invert and then compute the CRLB for the
parameter β, being the second diagonal element of the inverse of (54),

CRLB(β) =

∑
j e
−2βtj

σ2α2
∑
n

∑
m(t2n − tntm)e−2β(tn+tn)

(55)

Proving that the β one should optimize with respect to, to yield the best worst-case CRLB, is the
largest β ∈ B, is then equivalent to proving that CRLB(β2) - CRLB(β1) ≥ 0 under the assumption
that β2 ≥ β1. To prove this analytically has proven to be challenging. Using numerical simulations to
provide support for the conjecture, 105 Monte Carlo-simulations was performed. For each simulation
of CRLB(β2) - CRLB(β1), the number of samples was selected randomly on [2, 1000], the time points
t1 ≤ ... ≤ tN was randomly selected on [0,100], and β2 ≥ β1 was selected randomly on [0, 5]. The
inequality held for every simulation, supporting that the conjecture may be plausible.

3 WSEMA

3.1 WSEMA algorithm

The initial step of the wideband SEMA (WSEMA) algorithm is to divide the frequency space
into P hypercubes. Unless some a priori information regarding the location of the frequency
peaks are available, it is advisable to let these hypercubes cover the entire frequency space, i.e.,
∪Pp=1Hp = [0, 1)D = D, Hp ∩ Hq = ∅, p 6= q. The dictionary corresponding to these hypercubes is
then formed according to (33). Because of computational reasons previously discussed, one would
like to keep the size of the dictionary as small as possible. Therefore the dampings are set to zero
to avoid having to grid in additional dimensions. Using this dictionary to solve (18) will yield a
solution x, likely containing both zero and non-zero elements. A zero-element of x corresponds
to a hypercube where no power is found, why these areas can be removed from further considera-
tion. Similarly, the non-zero elements corresponds to regions where some power has been detected.
These hypercubes are subsequently divided into smaller hypercubes, the corresponding dictionary
is created according to (33) and (18) is then solved anew. This way, regions of the frequency space
containing no power is systematically disregarded while the resolution of the parts in fact containing
power gets progressively better. This procedure can be iterated until desired resolution is attained.
Worth noting is that, because of the dampings, one will get a less sparse solution, as the power of
the damped modes will leak out to adjacent frequencies.

At this point, the frequency components should be fairly well located. Assume that K̂ modes are
found. To refine the frequency estimates and form estimates of the dampings of these K̂ modes, non-
linear least squares estimation is then performed in an iterative manner presented in [12]. There, the
problem of minimizing the residual with respect to K̂ modes at once is relaxed to instead forming
frequency and damping estimates one mode at a time. This is done by first forming the model
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residual

R = y −
K̂∑
k=1

α̂kak (56)

and then systematically add back one mode at a time

y = R + α̂kak, (57)

and estimate its parameters using NLS

min
θ

N∑
n=1

(yn − g(θn))2, (58)

where g is a non-linear function of the parameter θ. In this case, g(θ) = αe2iπftn−βtn is a function
of several parameters and θ will by turns refer to f and β, while the other remain constant. Since,
as previously established, the frequencies are fairly well known at this point and the damping pa-
rameters are reasonably small, the minimization in (58) is done approximately by finely gridding the
vicinity of the parameter in question and minimizing the model residual. After the parameters of
the mode is estimated, the mode is removed, the next mode is added to the residual, its parameters
are then estimated, and so forth. This NLS-minimization procedure is repeated a desired number
of times. The proposed WSEMA-algorithm is summarized in algorithm 1.

The WSEMA estimator possesses two important features. It requires no a priori-knowledge of the
number of modes present in the signal, which is commonly not available [22]. This is advantageous
since this is usually unknown in applications such as NMR spectroscopy [12]. Instead, one have to
chose the hyper parameter λ, indirectly determining the number of peaks, a topic discussed in [23].
The second feature is that of being compatible with non-uniform sampling. As previously established,
for multidimensional problems, uniform sampling is practically infeasible. Some previous estimators,
like PUMA, requires uniform sampling. Others, such as SEMA, requires that the sampling scheme
in one dimension is consistent throughout the other dimensions. In contrast, WSEMA works with an
arbitrary sampling scheme, making it compatible with the ideas like the ones discussed in section 2.

3.2 Spurious peaks

A commonly occurring problem is that of spurious peaks. When a frequency peak ends on the grid,
it triggers two non-zero elements in x in the solution of (18), i.e., it is interpreted as two different
peaks. Being able to deal with this difficulty is an important component of an estimator since mis-
judgement of the number of modes present in the signal will impair the estimations of the dampings
and amplitudes. What had been previously noted was that for such spurious peaks, the amplitude
estimates stemming from the NLS-estimation of the frequencies and the dampings respectively, are
not consistent. This can be used when trying to identify spurious peaks. For simulated data, the
difference was clear enough to spot with a very crude criterion. If the maximum absolute difference
between the amplitude estimate relating to the frequency estimate and the amplitude estimate re-
lating to the damping estimate was larger than the quotient of the range of the absolute value of
either amplitude estimate and the mean of difference, then it was concluded that there were spurious
peaks present in the estimate. Subsequently, closely spaced peaks were merged into one and the
NLS-procedure was repeated.

This was as a rule good enough for simulated data to generate satisfactory results, causing at most
one extra iteration of the NLS-procedure. For real NMR data, being significantly more complicated
than the signals previously simulated, this simple heuristic yielded sub par results, often prompt-
ing several time consuming iterations of the NLS-step. On account of this, other methods were
tested. Amongst them the removal of closely located peaks before the NLS-estimation. The method
showed some promise, but it has two obvious drawbacks. Firstly, it leaves the user with another
hyper parameter choice, the criterion of two peaks being too close prior to the NLS-estimation.
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Algorithm 1 WSEMA

1: Chose initial number of hypercubes P and create hypercubes Hp, p = 1, ..., P
2: repeat
3: Create dictionary A according to (33)
4: Solve (18) using ADMM
5: Determine active components I = {p : |xp| > 0 }
6: Construct new hypercubes subdividing Hp, p ∈ I and discard hypercubes Hp, p 6∈ I
7: until Desired frequency resolution is attained
8: Determine active components I = {p : |xp| > 0 }
9: Create dictionary A according to (33) with elements corresponding to xp ∈ I

10: Solve (18) using ADMM
11: for i = 1, ..., itermax do
12: Compute residual R according to (56)
13: for k = 1, ..., K̂ do
14: Add mode to the residual according to (57).
15: Estimate parameters according to (58)
16: Remove the estimated mode from the residua
17: end for
18: end for
19: Determine active components I = {p : |xp| > 0 }
20: Create dictionary A according to (33) with elements corresponding to xp ∈ I
21: Solve (18) using ADMM

Secondly, closely spaced modes with different damping is characteristic in several spectroscopic ap-
plications [24] and precipitately merging them would prevent detecting closely spaced modes. An
obvious alternative is ignoring the step of removing potentially spurious peaks and directly deter-
mine the amplitudes by taking the pseudo-inverse of the parts of the dictionary corresponding the
the non-zero elements. This yields solutions very appealing to the naked eye, when comparing the
WSEMA-estimate to the periodogram. When reviewing it closer however, the estimate was found to
contain several closely spaced very large components with cancelling phases. Therefore, to further
promote sparsity, additional steps was added to the process. After the zooming procedure is fin-
ished and desired frequency resolution is attained, the dictionary A was created according to (33),
with the atoms of A corresponding to the non-zero elements of x, and (18) is solved anew. This
step is also performed after the NLS-estimation. These additions correspond to row 8-10 and 19-21
in algorithm 1 respectively. Together, these two late added steps helped provide a solution much
sparser, but visibly just as good. The difficult balancing act of allowing closely spaced peaks and
in the meanwhile provide a sparse solution will be discussed further in section 5. Since these extra
steps were a late addition to the algorithm, they are employed only to the real data described in
section 4.4.

4 Results

4.1 Multimodal recovery

To demonstrate the proposed algorithms ability to recover the correct frequencies of a multi-modal
signal, a nine-mode signal was simulated. The frequencies for each dimension were randomly selected
on the interval [1/Nd, 1 − 1/Nd], where Nd denotes the number of samples in dimension d = 1, 2.

The damping parameters β
(d)
k where randomly picked on the interval [0.015, 0.02], k = 1, ..., 9 and

d = 1, 2. Further, checks were included to ensure that no two frequencies were closer than 1/Nd. The
periodogram estimate of a typical realisation can be found in figure 7. Then, for different settings of
the number of samples per dimension and hypercubes per sample, the recovery rate was analysed.
The frequencies were considered to be recovered if the estimated number of modes where correct and
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Figure 7: Periodogram estimate of a typical 9-mode signal used in the simulations in section 4.1.

each frequency estimate was within 1/(2Nd) of the ground truth. The results are computed using
150 Monte Carlo-simulations, each corrupted by circularly symmetric white Gaussian noise with a
signal-to-noise ratio (SNR) of 15, defined as

SNR = 10 log10

(
σ2
x

σ2
e

)
, (59)

where σ2
x denotes the variance of the signal, estimated as σ2

x = 1
N−1

∑N
n=1 |xn − µ|2 where N is

the total number of samples in the signal and µ is the mean, and σ2
e denotes the variance of the

noise. The results are shown in figure 8. As can be seen, the algorithm quickly achieves near perfect
recovery of the frequency components.

4.2 Variance

To demonstrate the statistical performance of the proposed algorithm, a 2-dimensional signal was
simulated. The signal consisted of two modes with unit amplitude and random phase. The frequen-

cies of the components was f
(1)
1 = 0.2, f

(2)
1 = 0.6, f

(1)
2 = 0.7, and f

(2)
2 = 0.3. To make sure that

the frequency components were off-grid, a perturbation, uniformly random selected on [0, 0.04) was
added to each frequency component. The damping parameter was randomly selected on the interval

[0.014, 0.022) for β
(d)
k , d = 1, 2, k = 1, 2. The signal was uniformly sampled on the 2-dimensional

interval [0,
√
N−1]× [0,

√
N−1], where N = 784 is the total number of samples. Then, for a varying

level of white circularly symmetric Gaussian noise, the proposed algorithms ability to estimate the
frequency and damping was analysed. For each noise level, the root mean squared errors (RMSE),

RMSE =

√√√√ M∑
m=1

K∑
k=1

(
θm,k − θ̂m,k

)2
, (60)

where θm,k denotes the true parameter value, θ̂m,k the estimate, M = 500 the number of Monte
Carlo-simulations and K denotes the number of modes, was calculated. For comparison, the RMSE
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Figure 8: Recovery rate for the proposed algorithm as a function of number of samples and tightness
of the grid. WSEMA achieves near-perfect recovery for a number as low as 0.3 hypercubes per
sample.

was also computed for the PUMA estimator. Also in the plot is the CRLB. Because the frequencies
and dampings are slightly altered for each simulation, the CRLB was computed for every Monte
Carlo-simulation whereupon the average was computed,

CRLBavg =

√√√√ M∑
m=1

K∑
k=1

(CRLBm,k)2. (61)

To prevent outliers from spoiling the results, simulations where a method had failed to recover the
correct frequencies was removed. A recovery was considered correct if the estimated frequency was
within 0.05 of ground truth in each dimension. The number of samples kept is displayed in the
figure 9. It should be stressed that only the PUMA estimator is given a priori-knowledge of the
number of peaks. As shown in the figure, the WSEMA estimator reaches the CRLB.

4.3 Sampling scheme optimization

Up until this point all estimations by WSEMA have been done with a uniform sampling scheme. To
demonstrate the algorithm’s ability to work with a non-uniform sampling scheme we use simulated
data to evaluate the performance. We use a simple two-mode signal with unit amplitude and random

phase, f
(1)
1 = f

(2)
1 = 0.6, f

(1)
2 = 0.6, f

(2)
2 = 0.4 and β

(1)
1 = β

(2)
1 = 0.04, β

(1)
2 = β

(2)
2 = 0.05. The

signal is disturbed by a white circular Gaussian noise with variance σ2 = 0.1. The signal is first
evaluated on a uniform 40×40-grid, shown in figure 10. Subsequently, the optimal sampling scheme
was computed according to the procedure described in section 2. The optimization is done with
perfect information, but solely with respect to the damping parameters. An example of such an
optimized scheme, containing 400 samples, is shown in figure 11, where a 1 indicates that a possible
sampling point is used, whereas a 0 indicates that it is not.
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Figure 10: Periodogram of the signal described in section 4.3.
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Figure 11: Optimal sampling scheme for the signal described in section 4.3. Samples used indicated
by a one (yellow), unused samples by a zero (blue).

The WSEMA estimate of the reduced signal is done with 20 bands/dimension initially and 10
bands/dimension/mode in the one and only zoom step. The WSEMA estimate is displayed in
figure 12. As can be seen, the recovery of the damped modes is successful. For comparison, in
figure 13, we see the DFT formed for the same samples, where the interior have been padded with
zeros to generate a regular sampling grid. This is the so called Lomb-Scargle periodogram and
demonstrates the difficulty to handle a non-uniform grid.

To quantify the effect of the sampling scheme optimization, a simple two-mode signal was simulated.
WSEMA estimated the parameters of the signal with optimal sampling scheme as well as with
random sampling. The frequencies of the modes were randomly picked on [1/(2N), 1 − 1/(2N)],
however with the restriction that a peak was not allowed to be closer than 1/(2N), where N = 30
is the number of samples in each of the two dimensions. Then, out of the 900 possible sampling
points, 512 were optimized, with perfect information, with respect to the damping parameters only.
Subsequently, a white circularly symmetric Gaussian noise with variance of σ2 = 0.2 was added
and a random scheme was established. After that, WSEMA estimated the parameters of the model
on the optimized and random sampling scheme respectively, and the relative error was determined,
where the total relative RMSE (RRMSE) is defined as

RRMSE =

√√√√ 1

MK

M∑
m=1

K∑
k=1

(
θm,k − θ̂m,k

θm,k

)2

, (62)

using the same notation as in equation (62). In total, 200 different signal parameters and optimal
schemes were generated and for each of these, 10 different signals and random schemes was created.
Similar to the procedure described in section 4.2, a simulation was disregarded if the recovery was
considered unsuccessful, i.e. if any of the frequency parameters were not within 1/(2N) from the
ground truth. The results are displayed in table 1.
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Figure 12: WSEMA estimate of the signal described in section 4.3.
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Figure 13: Lomb-Scargle periodogram of the signal described in section 4.3.

Table 1: RRMSE of WSEMA using optimal and random sampling scheme respectively

Simulations used RRMSE f RRMSE β
Optimal scheme 99.25 % 0.0021 13.5518
Random scheme 99.45 % 0.0030 17.9065
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The number of simulations disregarded is larger for the optimal sampling scheme than for the random
one. A possible explanation for this is that the scheme is optimized with respect to the damping
parameters, and not with respect to the frequency. Similar simulations, where the optimization
instead is done with respect to frequency, indicates a lower rate of disregarded simulations for the
optimized scheme compared to the random one.

4.4 Real data

It is of course of greatest importance that an estimator hoping to have any practical use is able
to handle not only simulated data, but real data as well, with all difficulties that come with it.
Therefore, WSEMA was given the task to estimate the parameters of real FID data. The FFT of
the 60 × 60-signal can be seen in figure 14 and the corresponding WSEMA-estimate in figure 15.
The estimation is done with 40 bands/dimension in the initial step and 10 bands/dimension/sample
in the one and only zooming step. The hyper parameter γ is set to 0.2. Provided in figure 16 is
the residual, i.e. the absolute difference between the real data and the estimated signal. With the
exception of a couple of peaks, corresponding to the smaller peaks in the original signal, WSEMA’s
recovery appears successful.

5 Discussion

5.1 Evaluation of WSEMA

Estimation of the parameters of decaying sinusoids is a difficult task. In this thesis I introduce an
efficient method to estimate the parameters of a signal with separated peaks whose damping coeffi-
cient are not too large, with β ≈ 25/N , with N being the total number of samples. The introduced
method is capable of estimating the parameters of the signal with the lowest possible variance for
decent SNR-levels, stacking up well against an established estimator like PUMA, despite lacking
the a priori-knowledge of the number of peaks required by the latter. Further, it is able to recover
multi-modal signals using a dictionary as small as 0.3 hypercubes per sample.
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Figure 15: WSEMA estimate of the FID-signal described in section 4.4.
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Figure 16: Residual between the FID-signal described in section 4.4 and the WSEMA estimate of
the signal.
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Regarding WSEMA:s ability to estimate real NMR spectroscopy data, the evaluation is a tougher
task. No ground truth regarding the signal is available, so evaluation have to be made by comparing
the WSEMA estimate to the FFT. The estimation and the residual, figure 15 and 16 respectively,
shows that WSEMA successfully recovers a majority of the frequency peaks seen in figure 14. The
peaks in the residual reveals the inherent difficulty of estimating a signal containing modes with
widely varying amplitudes. However, comparing the scales of figure 14 and 16 shows that the size of
the peaks that WSEMA missed is relatively small compared to the major components of the signal
and the noise level. Here, the importance of proper management of spurious peaks is highlighted.
Before the two additional LASSO-solving steps described at the end of section 3.2 was added, the
solution contained 61 components. This is more than intuition would allow and certainly not as
sparse as one would have liked. With the additional steps, however, the number of components was
reduced to 14. With a smaller γ, rather than finding the ignored, smaller, peaks, the method adds
peaks close to already existing ones.

5.2 Further research

To be able to fully reap the benefits of the WSEMA-estimator, further work has to be done. Firstly,
a closer look at WSEMA’s ability to detect closely spaced modes would be beneficial. Secondly,
albeit being a general method, possible to use to estimate decaying sinusoids in different applica-
tions, it has been developed with NMR spectroscopy primarily in mind and it has with some success
been used on real FID-signals. The evaluation have however been solely visual, comparing the signal
estimated by WSEMA with the FFT. To more closely evaluate the quality of the algorithm, scrutiny
by experts in the field is needed.

Further, an implementation of the algorithm in an arbitrary number of dimensions remains to be
done. This would likely present some coding challenges and demand some afterthought to make sure
that the computational time remains reasonable. The fundamental design however remains the same.

Another feature that would benefit the WSEMA is a more robust method to manage spurious peaks.
Finally, proving the Swärd-Elvander conjecture eluded the author and this important task remains.
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