
Abstract

In this thesis we state and give elementary proofs for some fundamental results about intersections of algebraic curves, namely Bezout's, Max Noether's, Pappus's, Pascal's and Chasles' theorems. Our main tools are linear algebra and basic ring theory. We conclude the thesis by applying the results to elliptic curves.

Keywords: Bezout's theorem, Max Noether's fundamental theorem, Pappus's theorem, Pascal's theorem, Chasles' theorem, algebraic curves, elliptic curves

Contents

Introduction 3
Notation 4
1 A Weak Form of Bezout's Theorem 5
2 Intersection Multiplicities 17
3 Bezout's Theorem 28
4 Simple Points 32
5 Max Noether's Fundamental Theorem 35
6 Pappus's, Pascal's and Chasles' Theorems 36
7 Addition on Elliptic Curves 39
References 41

Introduction

The main motivation for this thesis is to rigorously define addition on elliptic curves and to show that the resulting structure is an abelian group. In order to do this, we use Bezout's theorem and Chasles' theorem, which we also state and prove. Since the latter relies on Max Noether's theorem in its proof, we deduce that theorem as well.

In the first chapter we show a weak version of Bezout's theorem (1.10), namely that two curves of degree n_{1} and n_{2}, respectively, intersect in at most $n_{1} n_{2}$ distinct points, under suitable conditions. We do this by first showing the weak theorem for the affine plane and then strengthening it by performing a number of projective coordinate changes. Along the way we develop the basic correspondence between the affine and projective plane.

The second chapter is concerned with intersection multiplicities, since these are needed in the strong version of Bezout's theorem. The chapter is introduced with an affine definition, followed by properties thereof that will be used in the subsequent chapters. We then show that the definition extends to the projective plane, and that we can make linear changes of variables without affecting multiplicities.

After dealing with intersection multiplicities we state and prove Bezout's theorem (3.1) in Chapter 3, which is the result that any two curves of degree n_{1} and n_{2}, respectively, intersect at exactly $n_{1} n_{2}$ points, under certain conditions and counting multiplicities. Our proof is mostly a detailed version of the outline given in Appendix A Section 4 in Silverman and Tate 1992, albeit in a different order. We have deviated somewhat from the outline by proving Lemma 1.18 in the first chapter, although we only need it for a result which we could have given a more direct proof of. The lemma is not part of the outline in Silverman and Tate 1992, but is instead inspired by the proof of Max Noether's theorem in Fulton 2008.

Before stating and proving Max Noether's theorem we introduce simple points, and deduce some consequences necessary for subsequent chapters.

With all the preparation in the earlier chapters, the proof of Max Noether's theorem (5.1) in Chapter 5 is two lines. In this chapter we also introduce intersection cycles to simplify bookkeeping of intersections. Before continuing we cite a proposition that will allow us to use Max Noether's theorem in the proceeding chapter.

The goal of Chapter 6 is to prove Chasles' theorem (6.6). Due to the amount of work spent on developing the fundamentals in previous sections, the proof is quite short, so we fill out the section by deducing two other interesting consequences of Max Noether's theorem, namely Pappus's and Pascal's theorem. These results date back to the fourth and seventeenth century respectively. For a more detailed reference see David Eisenbud and Harris 1996.

Finally, in the last chapter we use the theorems shown to give a definition of addition on elliptic curves, and to show that the curve endowed with this addition constitutes an abelian group.

We assume the reader is familiar with the definition of the projective plane, \mathbb{P}_{k}^{2} over a given base field. Furthermore, the reader is assumed to be accustomed to linear algebra and elementary ring theory.

Notation

$|A| \quad$ The cardinality of the set A.
$A \subseteq B \quad$ The set A is a subset of B.
$A \subset B \quad$ The set A is a proper subset of B.
$k \quad$ A field.
$\mathbb{P}_{k}^{2} \quad$ The projective plane over k.
$\operatorname{dim} V \quad$ The dimension of the vector space V over k
$U \oplus V \quad$ The direct sum of U and V.
$R\left[x_{1}, \ldots, x_{n}\right] \quad$ The polynomial ring in n variables over R.
$R\left(x_{1}, \ldots, x_{n}\right) \quad$ The field of fractions over $R\left[x_{1}, \ldots, x_{n}\right]$.
$R / I \quad$ The quotient ring R modulo the ideal I.
$(a, b) \quad$ Coordinates in k^{2}.
$[A, B, C] \quad$ Homogeneous coordinates in \mathbb{P}_{k}^{2}.
$\left.\varphi\right|_{S} \quad$ The restriction of the $\operatorname{map} \varphi$ to the set S.
$f_{i}^{\prime} \quad$ The partial derivative of f w.r.t. the i :th argument.
$\nabla f \quad$ The gradient of f, i.e. $\left(f_{1}^{\prime}, \ldots, f_{n}^{\prime}\right)$.

1 A Weak Form of Bezout's Theorem

In this first section we set out to prove a weak form of Bezout's theorem. Before formulating it, we will state and prove lemmas used in its proof.

Through the entirety of this text, we let k be a field. Whenever we find the need to introduce extra conditions on k, those conditions will be stated.

The next lemma is a solution to exercise 2.42(a) in Fulton 2008.
Lemma 1.1. Let R be a ring and suppose that I and J are ideals in R such that $I \subseteq J$. Then

$$
\varphi: R / I \ni r+I \mapsto r+J \in R / J
$$

is a well-defined surjective homomorphism.
Proof. Suppose that $r_{1}+I=r_{2}+I$. Then $r_{1}-r_{2} \in I$ so that the assumption gives $r_{1}-r_{2} \in J$. Thus, $r_{1}+J=r_{2}+J$, showing that φ is well-defined.

Because

$$
\varphi(a+I)+\varphi(b+I)=(a+J)+(b+J)=a+b+J=\varphi(a+b+I)
$$

and

$$
\varphi(a+I) \varphi(b+I)=(a+J)(b+J)=a b+J=\varphi(a b+I)
$$

φ is a homomorphism.
For any element $r+J \in R / J$ one can take one of its preimages $r \in R$ and get $\varphi(r+I)=r+J$. Hence, φ is surjective.

Lemma 1.2. Let R be a ring that contains k as a subring. Suppose that I and J are ideals in R such that $I \subseteq J$. Then

$$
\operatorname{dim}(J / I)=\operatorname{dim} J-\operatorname{dim} I
$$

In particular, if $\operatorname{dim} J$ is finite, then $\operatorname{dim}(J / I)$ and $\operatorname{dim} I$ are finite.
Proof. If $I=J$, then

$$
\operatorname{dim}(J / I)=0=\operatorname{dim} J-\operatorname{dim} J=\operatorname{dim} J-\operatorname{dim} I
$$

Otherwise, it may be assumed that $I \subset J$. If $s \in k \cap I$ with $s \neq 0$, then s is invertible in R, so that $1=s^{-1} s \in I$, and consequently $I=R$ contradicting that $I \subset J$. Thus, $k \cap I=\{0\}$. Consider the natural homomorphism $\varphi: R \rightarrow R / I$. If $s, t \in k$ then

$$
\begin{aligned}
\varphi(s)=\varphi(t) & \Longrightarrow \varphi(s-t)=0 \\
& \Longrightarrow s-t \in k \cap I \\
& \Longrightarrow s-t=0 \\
& \Longrightarrow s=t
\end{aligned}
$$

showing that the restriction of $\left.\varphi\right|_{k}$ is an isomorphism $k \cong \varphi(k)$. Hence, one may identify k with $\varphi(k)$.

Consider $\left.\varphi\right|_{J}: J \rightarrow J / I$. Suppose that $s, t \in k$ and that $f, g \in J$. Because $s, t \in R$ one has $s f+t g \in J$ due to J being an ideal in R, and

$$
\varphi(s f+t g)=\varphi(s) \varphi(f)+\varphi(t) \varphi(g)=s \varphi(f)+t \varphi(g)
$$

This shows that $\left.\varphi\right|_{J}$ is a linear transformation. The rank-nullity theorem gives
$\operatorname{dimim}\left(\left.\varphi\right|_{J}\right)+\operatorname{dim} \operatorname{ker}\left(\left.\varphi\right|_{J}\right)=\operatorname{dim} J \Longleftrightarrow \operatorname{dim}(J / I)=\operatorname{dim} J-\operatorname{dim} I$.

Lemma 1.3. Let R be a ring containing k as a subring. Let I, J and K be ideals in R such that $I \subseteq J \subseteq K$. Then

$$
\operatorname{dim}(K / J)=\operatorname{dim}(K / I)-\operatorname{dim}(J / I)
$$

In particular, if $\operatorname{dim}(K / I)$ is finite, then $\operatorname{dim}(K / J)$ and $\operatorname{dim}(J / I)$ are finite.
Proof. If $I=R$, the equality to prove is $0=0-0$. Otherwise, one may as in the proof of Lemma 1.2 assume that $I \subset R$, with the natural homomorphism $\varphi: R \rightarrow R / I$ being an isomorphism when restricted to k. Thus, we may regard k as a subring of R / I. By the third isomorphism theorem J / I and K / I are ideals in R / I, and $J / I \subseteq K / I$. Furthermore, the same theorem gives

$$
(K / I) /(J / I) \cong K / J
$$

whence applying Lemma 1.2 completes the proof.
We first define algebraic curves in k^{2}. Curves in the projective plane \mathbb{P}_{k}^{2} are defined analogously. It is easy to verify that the relation \sim on $k[x, y]$ defined by $f \sim g$ if and only if $f=\lambda g$ for some $\lambda \in k$ with $\lambda \neq 0$ is an equivalence relation. The equivalence classes of non-constant polynomials under \sim are called algebraic curves. If f is a representative of C then f is called the defining polynomial of C and one writes $C: f=0$. It is clear that the set

$$
\left\{(a, b) \in k^{2} ; f(a, b)=0\right\}
$$

does not depend on the representative f of C. Thus, every algebraic curve induces a unique point set in k^{2}. The reverse does not hold as is seen by the fact that the distinct algebraic curves $x=0$ and $x^{2}=0$ induce the same point set. If $f(P)=0$ one writes $P \in C$. Similarly, we will treat algebraic curves as point sets whenever necessary. For example $C \cap D$ means the set of intersection points of the curves C and D.

An irreducible polynomial $g \in k[x, y]$ is said to be a component of $C: f=0$ if $g \mid f$. It follows that the curves $C_{1}: f_{1}=0$ and $C_{2}: f_{2}=0$ have no components in common if and only if $\operatorname{gcd}\left(f_{1}, f_{2}\right)=1$.

To relate points of the affine plane k^{2} with points of \mathbb{P}_{k}^{2} the usual injection

$$
k^{2} \ni(a, b) \mapsto[a, b, 1] \in \mathbb{P}_{k}^{2}
$$

is used. To pass from algebraic curves in k^{2} to their projective counterparts in \mathbb{P}_{k}^{2} consider the map $\xi: k[x, y] \ni f \mapsto F \in k[X, Y, Z]$ defined by

$$
F=\sum_{i+j \leq n} a_{i, j} X^{i} Y^{j} Z^{n-i-j} \quad \text { where } \quad f=\sum_{i+j \leq n} a_{i, j} x^{i} y^{j}
$$

where $\operatorname{deg} f=n$. Because ξ maps polynomials to polynomials and $f \sim g$ if and only if $\xi(f) \sim \xi(g), \xi$ can be seen as a map between algebraic curves.

The map ξ has the desirable property that it respects the induced point sets in the sense that if $C: f=0$ and $\widetilde{C}: F=0$ is the projective counterpart with $F=\xi(f)$, then

$$
(a, b) \in C \Longleftrightarrow[a, b, 1] \in \widetilde{C}
$$

This follows from that $f(a, b)=F(a, b, 1)$.
It shall be shown that the mapping of curves from k^{2} to \mathbb{P}_{k}^{2} is injective and respects multiplication. In order to simplify this two lemmas are stated. The proofs, which are trivial, have been left out.

Lemma 1.4. Suppose that R is a subring of $k\left[x_{1}, \ldots, x_{n}\right]$ and let S be a commutative ring that contains k as a subring. If s_{1}, \ldots, s_{n} are some fixed elements of S, then the evaluation map

$$
R \ni f \mapsto f\left(s_{1}, \ldots, s_{n}\right) \in S
$$

is a homomorphism.
Lemma 1.5. Suppose that R is a subring of $k\left[x_{1}, \ldots, x_{n}\right]$ and that S is a commutative ring containing k as a subring. Assume that $s_{1}, \ldots, s_{n} \in S$ are algebraically independent over k, i.e.

$$
f\left(s_{1}, \ldots, s_{n}\right)=0 \Longrightarrow f=0
$$

for all $f \in k\left[x_{1}, \ldots, x_{n}\right]$. Then

$$
R \ni f \mapsto f\left(s_{1}, \ldots, s_{n}\right) \in S
$$

is an injective homomorphism.
Note that X / Z and Y / Z are algebraically independent elements of $k(X, Y, Z)$ over k. Also note that the map $f \mapsto F$ above can be written as

$$
\begin{equation*}
\xi: k[x, y] \ni f \mapsto Z^{m} f(X / Z, Y / Z) \in k[X, Y, Z], \quad \operatorname{deg} f=m . \tag{1.1}
\end{equation*}
$$

Because

$$
Z^{m} f(X / Z, Y / Z) \cdot Z^{n} g(X / Z, Y / Z)=Z^{m+n}(f g)(X / Z, Y / Z)
$$

by Lemma 1.5 and $\operatorname{deg}(f g)=m+n, \xi(f) \xi(g)=\xi(f g)$ so that ξ respects multiplication. If $Z^{m} f(X / Z, Y / Z)=Z^{n} g(X / Z, Y / Z)$, then by comparing degrees of the sides one gets that $\operatorname{deg} f=\operatorname{deg} g$. Thus, $f(X / Z, Y / Z)=g(X / Z, Y / Z)$ and Lemma 1.5 gives $f=g$, showing that ξ is injective and respects multiplication.

That ξ is not a homomorphism is for example seen by the fact that $f=x$ and $g=y^{2}$ map to $F=X$ and $G=Y^{2}$, respectively, but $f+g=x+y^{2}$ maps to $X Z+Y^{2} \neq F+G$.

Because ξ is injective and respects multiplication g is a component of C if and only if the homogenization G is a component of the corresponding projective curve \widetilde{C}. We may now dispense with the tildes and pass between k^{2} and \mathbb{P}_{k}^{2} without notice. We have shown how to pass from affine curves to projective curves. The next lemma shows when we may pass from a projective curve to an affine one using the maps introduced.

Lemma 1.6. Let $C: F=0$ be a projective curve, where F is a homogeneous polynomial in $k[X, Y, Z]$. If the line at infinity, $Z=0$, is not a component of C, then $F=\xi(f)$ for some $f \in k[x, y]$.
Proof. Let $n=\operatorname{deg} F$. Note that

$$
F=Z^{n} F(X / Z, Y / Z, 1)
$$

By setting $f=F(x, y, 1)$ one has

$$
F=Z^{n} f(X / Z, Y / Z)
$$

and $\operatorname{deg} f \leq \operatorname{deg} F=n$. Suppose toward a contradiction that $\operatorname{deg} f<n$ and let $m=\operatorname{deg} f$. Then $Z^{m} f(X / Z, Y / Z) \in k[X, Y, Z]$ and

$$
Z\left|Z^{n-m} \Longrightarrow Z\right| Z^{n-m} Z^{m} f(X / Z, Y / Z) \Longleftrightarrow Z \mid F
$$

contradicting the assumption. Thus, $\operatorname{deg} f=n$ and $F=\xi(f)$.
From now on we fix the notation $R=k[x, y]$.
Lemma 1.7. Let $\left\{P_{i}\right\}_{i=1}^{m}$ be a set of m points of k^{2}. Then for each i there exists a polynomial $h_{i} \in R$ such that $h_{i}\left(P_{j}\right)=\delta_{i j}$ where $\delta_{i j}$ is the Kronecker delta.

Proof. Let i be given and let $P_{j}=\left(x_{j}, y_{j}\right)$ for all j. For each j let K_{j} be the kernel of

$$
k^{3} \ni(a, b, c) \mapsto a x_{j}+b y_{j}+c \in k .
$$

Suppose $K_{j} \subseteq K_{i}$. Then because $\left(1,0,-x_{j}\right) \in K_{j}$ one has $\left(1,0,-x_{j}\right) \in K_{i}$ so that

$$
x_{i}-x_{j}=1 \cdot x_{i}+0 \cdot y_{i}+\left(-x_{j}\right)=0
$$

showing that $x_{i}=x_{j}$. Similarly, $y_{i}=y_{j}$. Thus, $P_{i}=P_{j}$ so that $i=j$. Therefore, one may for each $j \neq i$ take a $\mathbf{v}_{j}=\left(a_{j}, b_{j}, c_{j}\right) \in k^{3}$ such that $\mathbf{v}_{j} \in K_{j}$ in but $\mathbf{v}_{j} \notin K_{i}$ and let

$$
g_{i}(x, y)=\prod_{j \neq i}\left(a_{j} x+b_{j} y+c_{j}\right)
$$

By construction $g_{i}\left(P_{j}\right)=0$ for all $j \neq i$ and $g_{i}\left(P_{i}\right) \neq 0$. Now $h_{i}=\left(g_{i}\left(P_{i}\right)\right)^{-1} g_{i}$ satisfies the requirements.

We are now in a position to formulate a weak form of Bezout's theorem. The assumption that the line at infinity is not a component of either curve will be lifted later on.

Theorem 1.8. If the projective curves C_{1} and C_{2}, of degree n_{1} and n_{2} respectively have no common component and the line at infinity is not a component of either curve, then C_{1} and C_{2} intersect at at most $n_{1} n_{2}$ points of k^{2}.

Proof. By Lemma 1.6 one may let $f_{1}, f_{2} \in R$ such that the affine parts can be written as $C_{1}: f_{1}=0$ and $C_{2}: f_{2}=0$.

Let $\left(f_{1}, f_{2}\right)=R f_{1}+R f_{2}$ be the ideal in R generated by f_{1} and f_{2}. The theorem follows whenever it has been shown that

$$
\begin{equation*}
\left|C_{1} \cap C_{2} \cap k^{2}\right| \leq \operatorname{dim}\left(R /\left(f_{1}, f_{2}\right)\right) \leq n_{1} n_{2} \tag{1.2}
\end{equation*}
$$

For each $d \in \mathbb{Z}$ define

$$
\phi(d)=\binom{d+2}{2}=\frac{1}{2}(d+1)(d+2) \quad \text { and } \quad R_{d}=\{f \in R ; \operatorname{deg} f \leq d\}
$$

R_{d} is a linear space over k for all d. Let

$$
W_{d}=R_{d-n_{1}} f_{1}+R_{d-n_{2}} f_{2} .
$$

Now W_{d} is a vector space over k such that $W_{d} \subseteq\left(f_{1}, f_{2}\right)$ and $W_{d}=\{0\}$ if $d<\min \left\{n_{1}, n_{2}\right\}$.

Because each polynomial $f \in R_{d}$ has a unique representation

$$
f=\sum_{i+j \leq d} c_{i, j} x^{i} y^{j}
$$

with $c_{i, j} \in k$ the monomials $\left\{x^{i} y^{j}\right\}_{i+j \leq d}$ form a basis for R_{d}. There are

$$
\phi(e)-\phi(e-1)=\frac{1}{2}((e+1)(e+2)-e(e+1))=\frac{1}{2}(e+1)(e+2-e)=e+1
$$

monomials of degree $e \leq d$ in R_{d}. Therefore, there are

$$
\phi(d)=\phi(d)-\phi(-1)=\sum_{e=0}^{d}(\phi(e)-\phi(e-1))
$$

monomials in R_{d} showing that $\operatorname{dim} R_{d}=\phi(d)$.
Suppose that $d \geq n_{1}+n_{2}$. If $h \in R_{d-n_{1}-n_{2}} f_{1} f_{2}$ then $h=g f_{1} f_{2}$ for some $g \in R$ with $\operatorname{deg} g \leq d-n_{1}-n_{2}$. Thus,

$$
h=\left(g f_{1}\right) f_{2}=\left(g f_{2}\right) f_{1}
$$

with $\operatorname{deg}\left(g f_{1}\right)=\operatorname{deg} g+\operatorname{deg} f_{1} \leq d-n_{2}$ and $\operatorname{deg}\left(g f_{2}\right) \leq d-n_{1}$, from which $h \in R_{d-n_{1}} f_{1} \cap R_{d-n_{2}} f_{2}$ follows. Conversely suppose that $h \in R_{d-n_{1}} f_{1} \cap R_{d-n_{2}} f_{2}$. Then

$$
h=g_{1} f_{1}=g_{2} f_{2}
$$

for some $g_{1}, g_{2} \in R$ with $\operatorname{deg} g_{i} \leq d-n_{i}$. It follows that $f_{1} \mid g_{2} f_{2}$, but because $\operatorname{gcd}\left(f_{1}, f_{2}\right)=1$ one has $f_{1} \mid g_{2}$, so that $g_{2}=g f_{1}$ for some $g \in R$. It follows that $h=g f_{1} f_{2}$ with

$$
d-n_{2} \geq \operatorname{deg} g_{2}=\operatorname{deg} g+\operatorname{deg} f_{1} \Longrightarrow \operatorname{deg} g \leq d-n_{1}-n_{2}
$$

so that $h \in R_{d-n_{1}-n_{2}} f_{1} f_{2}$ showing that

$$
R_{d-n_{1}} f_{1} \cap R_{d-n_{2}} f_{2}=R_{d-n_{1}-n_{2}} f_{1} f_{2}
$$

for all $d \geq n_{1}+n_{2}$.
For all non-zero $f \in R$, the map

$$
R_{d} \ni g \mapsto g f \in R_{d} f
$$

is a linear bijection. It is clearly surjective. If $g f=h f$ for some $g, h \in R$, then because R is an integral domain one has $g=h$. The linearity follows from

$$
(a g+b h) f=a(g f)+b(h f)
$$

for all $a, b \in k$ and $g, h \in R$. Thus,

$$
\operatorname{dim}\left(R_{d} f\right)=\operatorname{dim} R_{d}=\phi(d)
$$

Because $\operatorname{dim}(U+V)=\operatorname{dim} U+\operatorname{dim} V-\operatorname{dim}(U \cap V)$ for all subspaces of a finite dimensional subspace one has that

$$
\operatorname{dim} W_{d}=\operatorname{dim}\left(R_{d-n_{1}} f_{1}\right)+\operatorname{dim}\left(R_{d-n_{2}} f_{2}\right)-\operatorname{dim}\left(R_{d-n_{1}-n_{2}} f_{1} f_{2}\right)
$$

for all $d \geq n_{1}+n_{2}$. Analogously with Lemma 1.2 it follows that

$$
\begin{align*}
\operatorname{dim}\left(R_{d} / W_{d}\right) & =\operatorname{dim} R_{d}-\operatorname{dim} W_{d} \\
& =\phi(d)-\phi\left(d-n_{1}\right)-\phi\left(d-n_{2}\right)+\phi\left(d-n_{1}-n_{2}\right) \tag{1.3}\\
& =n_{1} n_{2}
\end{align*}
$$

where the last equality follows from a simple but lengthy calculation.
Now suppose $r>n_{1} n_{2}$ and suppose g_{1}, \ldots, g_{r} are polynomials in R. Take $d=\max \left\{\operatorname{deg} g_{1}, \ldots, \operatorname{deg} g_{r}, n_{1}+n_{2}\right\}$. Then $g_{i} \in R_{d}$ for all i and $d \geq n_{1}+n_{2}$. Due to (1.3) there are $c_{1}, \ldots, c_{r} \in k$ not all zero such that that

$$
\begin{aligned}
\sum_{i=1}^{r} c_{i} g_{i} \equiv 0 \quad\left(\bmod W_{d}\right) & \Longleftrightarrow \sum_{i=1}^{r} c_{i} g_{i} \in W_{d} \\
& \Longleftrightarrow \sum_{i=1}^{r} c_{i} g_{i} \in\left(f_{1}, f_{2}\right) \\
& \Longleftrightarrow \sum_{i=1}^{r} c_{i} g_{i} \equiv 0 \quad\left(\bmod \left(f_{1}, f_{2}\right)\right)
\end{aligned}
$$

This shows that any collection of more than $n_{1} n_{2}$ polynomials in R are linearly dependent modulo (f_{1}, f_{2}), or in other words that

$$
\begin{equation*}
\operatorname{dim}\left(R /\left(f_{1}, f_{2}\right)\right) \leq n_{1} n_{2} \tag{1.4}
\end{equation*}
$$

This proves the latter inequality of (1.2).
Suppose that $\left\{P_{i}\right\}_{i=1}^{m} \subseteq C_{1} \cap C_{2} \cap k^{2}$ and take for each i an $h_{i} \in R$ such that $h_{i}\left(P_{j}\right)=\delta_{i j}$. Suppose that

$$
\sum_{i=1}^{m} c_{i} h_{i} \equiv 0 \quad\left(\bmod \left(f_{1}, f_{2}\right)\right)
$$

for some $c_{1}, \ldots, c_{m} \in k$. Then

$$
\sum_{i=1}^{m} c_{i} h_{i}=g_{1} f_{1}+g_{2} f_{2}
$$

for some $g_{1}, g_{2} \in R$ and it follows that

$$
c_{j}=\sum_{i=1}^{m} c_{i} \delta_{i j}=\sum_{i=1}^{m} c_{i} h_{i}\left(P_{j}\right)=g_{1}\left(P_{j}\right) f_{1}\left(P_{j}\right)+g_{2}\left(P_{j}\right) f_{2}\left(P_{j}\right)=0
$$

for each j by construction and the assumption on P_{j}. Hence, h_{1}, \ldots, h_{m} are linearly independent modulo $\left(f_{1}, f_{2}\right)$ showing that

$$
m \leq \operatorname{dim}\left(R /\left(f_{1}, f_{2}\right)\right)
$$

Since $\operatorname{dim}\left(R /\left(f_{1}, f_{2}\right)\right)$ is finite by (1.4), it follows that so is $C_{1} \cap C_{2} \cap k^{2}$ and one may therefore let $\left\{P_{i}\right\}_{i=1}^{m}=C_{1} \cap C_{2} \cap k^{2}$. Then

$$
\left|C_{1} \cap C_{2} \cap k^{2}\right|=m \leq \operatorname{dim}\left(R /\left(f_{1}, f_{2}\right)\right)
$$

completing the proof of (1.2).

Corollary 1.9. If the projective curves C_{1} and C_{2} have no common component and the projective line L is not a component of either curve, then C_{1} and C_{2} intersect at at most $n_{1} n_{2}$ points of $\mathbb{P}_{k}^{2} \backslash L$.

Proof. Given any invertible matrix $M \in k^{3 \times 3}$ the space \mathbb{P}_{k}^{2} is transformed with

$$
\mathbb{P}_{k}^{2} \ni\left[\begin{array}{l}
A \\
B \\
C
\end{array}\right] \mapsto M\left[\begin{array}{l}
A \\
B \\
C
\end{array}\right] \in \mathbb{P}_{k}^{2} .
$$

It is clear that this map is a well-defined bijection. If $C: F=0$ is an algebraic curve, then the transformed curve C^{\prime} must satisfy

$$
P \in C \Longleftrightarrow M P \in C^{\prime}
$$

where $M P$ is the point acquired by applying M to the homogeneous coordinates of P. Due to this the polynomial F^{\prime} defining C^{\prime} satisfies

$$
F^{\prime}(M P)=F(P) \Longleftrightarrow F^{\prime}(P)=F\left(M^{-1} P\right)
$$

Polynomials are therefore transformed with

$$
k[X, Y, Z] \ni F \mapsto F\left(M^{-1}\left[\begin{array}{c}
X \tag{1.5}\\
Y \\
Z
\end{array}\right]\right) \in k[X, Y, Z] .
$$

Because the inverse of this map is acquired by replacing M^{-1} with M, the map is a bijection. By Lemma 1.4 the map is an isomorphism. If two integral domains are isomorphic, then so are their fields of fractions. Thus,

$$
k(X, Y, Z) \ni \Phi \mapsto \Phi\left(M^{-1}\left[\begin{array}{l}
X \tag{1.6}\\
Y \\
Z
\end{array}\right]\right) \in k(X, Y, Z)
$$

is an isomorphism. Hence, a linear transformation of \mathbb{P}_{k}^{2} induces an isomorphism on the set of rational expressions on $k(X, Y, Z)$.

Let L be any projective line that is a component of neither C_{1} nor C_{2}. Considering the geometric configurations as part of the U, V, W projective plane one can write L as

$$
L: a U+b V+c W=0
$$

for some $a, b, c \in k$, not all zero. Since the space k^{3} is three dimensional, there are vectors (m_{11}, m_{12}, m_{13}) and (m_{21}, m_{22}, m_{23}) in k^{3} such that the matrix

$$
M=\left[\begin{array}{ccc}
m_{11} & m_{12} & m_{13} \\
m_{21} & m_{22} & m_{23} \\
a & b & c
\end{array}\right]
$$

is invertible. By considering the transformation

$$
\left[\begin{array}{l}
X \\
Y \\
Z
\end{array}\right]=M\left[\begin{array}{c}
U \\
V \\
W
\end{array}\right]
$$

one has

$$
Z=0 \Longleftrightarrow a U+b V+c W=0
$$

so that the line at infinity in the X, Y, Z plane is mapped to L in the U, V, W plane. This map induces an isomorphism between the X, Y, Z and U, V, W planes, and their curves, respectively. Since L is a component of neither C_{1} nor C_{2} the line at infinity is not a component of any of the curves corresponding to C_{1} and C_{2} in the X, Y, Z plane. An application of Theorem 1.8 completes the proof.

To apply the corollary one must have a line that is not a component of either curve at disposal. We shall strengthen Corollary 1.9 considerably by not requiring the existence of such a line. However, to do this we will require that k is infinite.

Theorem 1.10. Let k be an infinite field. If the projective curves C_{1} and C_{2} have no common component, then $\left|C_{1} \cap C_{2}\right| \leq\left(\operatorname{deg} C_{1}\right)\left(\operatorname{deg} C_{2}\right)$

To deduce Theorem 1.10 from Corollary 1.9 one only needs to find a line L that is a component of neither C_{1} nor C_{2} and does not meet any of their intersections. We now set out to show the existence of such a line using the infinitude of k.

Lemma 1.11. Let C_{1}, \ldots, C_{r} be any finite collection of curves in \mathbb{P}_{k}^{2} where k is infinite. Then there exists a line L that is not a component of any of the curves in the collection.

Proof. Since the degree of each algebraic curve C_{i} is finite, there are only finitely many lines $L_{i j}$ that are components of C_{i}. Therefore the set of all such components $\left\{L_{i j}\right\}_{i, j}$ is finite. However, the set of all lines is infinite, because the map

$$
k \ni a \mapsto\left\{[X, Y, Z] \in \mathbb{P}_{k}^{2} ; a X+Y+Z=0\right\}
$$

is injective. Therefore there exists a line that is not a component of any of C_{1}, \ldots, C_{r}.

Using the lemma, take a line L_{1} that is not a component of either C_{1} and C_{2}. Next, take another line L_{2} that is not a component of any of L_{1}, C_{1} and C_{2}. Because L_{1} and L_{2} are distinct lines, they intersect at exactly one point, i.e. $\left|L_{1} \cap L_{2}\right|=1$. By some set theoretic manipulation one has

$$
C_{1} \cap C_{2}=C_{1} \cap C_{2} \cap \mathbb{P}_{k}^{2}=C_{1} \cap C_{2} \cap\left(\left(\mathbb{P}_{k}^{2} \backslash L_{1}\right) \cup\left(\mathbb{P}_{k}^{2} \backslash L_{2}\right) \cup\left(L_{1} \cap L_{2}\right)\right)
$$

By distributing $C_{1} \cap C_{2}$ over the intersection, taking cardinality on both sides and using Corollary 1.9 one gets

$$
\left|C_{1} \cap C_{2}\right| \leq n_{1} n_{2}+n_{1} n_{2}+1
$$

whence $C_{1} \cap C_{2}$ is finite. This finding we summarize in a lemma.
Lemma 1.12. Suppose that the projective curves C_{1} and C_{2} share no component. Then $C_{1} \cap C_{2}$ is finite.
Proof. If the base field k is finite, $C_{1} \cap C_{2}$ is finite by virtue of being a subset of \mathbb{P}_{k}^{2}, which is finite. Otherwise, k is infinite and the discussion prior to the lemma suffices as proof.

Lemma 1.13. Suppose that S is a finite subset of \mathbb{P}_{k}^{2} where k is infinite. Then there are infinitely many projective lines not meeting any of the points of S.

Proof. It is shown that there exist infinitely many lines L not intersecting S and $\{[0,1,0]\}$, from which the desired result follows.

Suppose toward a contradiction that there are only a finite number, n, of lines not meeting any of the points. Any point $[A, B, C] \in \mathbb{P}_{k}^{2}$ with $C \neq 0$ can be written as $[A / C, B / C, 1]$. On the other hand if $C=0$ and $A \neq 0$ the point has a unique representation $[1, B / A, 0]$. Lastly, if $C=0$ and $A=0$ the point can be uniquely represented as $[0,1,0]$. Thus, it is possible to uniquely write

$$
S \cup\{[0,1,0]\}=\left\{\left[A_{1}, B_{1}, 1\right], \ldots,\left[A_{r}, B_{r}, 1\right],\left[1, D_{1}, 0\right], \ldots,\left[1, D_{q}, 0\right],[0,1,0]\right\}
$$

for some $A_{1}, \ldots, A_{r}, B_{1}, \ldots, B_{r}, D_{1}, \ldots, D_{q} \in k$.
Let \mathcal{A} be a finite subset with $n+1$ elements of $k \backslash\left\{A_{1}, \ldots, A_{r}\right\}$. For each $A \in \mathcal{A}$ choose an $a \in k$ such that

$$
a \neq 0, \quad a \neq \frac{B_{i}}{A_{i}-A} \quad \text { and } \quad a \neq D_{j}
$$

for all $i \in\{1, \ldots, r\}$ and $j \in\{1, \ldots, q\}$. This is possible to do since k is infinite. Now the line

$$
L_{A}: X-\frac{1}{a} Y-A Z=0
$$

does not meet any point of $S \cup\{[0,1,0]\}$, as is now shown. If $\left[A_{i}, B_{i}, 1\right] \in L$ then

$$
A_{i}-\frac{1}{a} B_{i}-A=0 \Longrightarrow a=\frac{B_{i}}{A_{i}-A}
$$

contrary to the construction. If $\left[1, D_{j}, 0\right] \in L$ then

$$
1-\frac{1}{a} D_{j}=0 \Longrightarrow a=D_{j}
$$

which also contradicts the construction. Clearly, $[0,1,0] \notin L$.
If $L_{A}=L_{A^{\prime}}$, then since $[A, 0,1] \in L_{A}$ one also has $[A, 0,1] \in L_{A^{\prime}}$ so that $A-A^{\prime}=0$ after insertion into the equation of $L_{A^{\prime}}$. This shows that the map $A \mapsto L_{A}$ is injective, but then there are $n+1$ lines not meeting any of the points of S. This contradicts the supposition, whence there are infinitely many lines not meeting S.

Using this lemma the proof of Theorem 1.10 is a simple manoeuvre.
Proof of Theorem 1.10. There are only finitely many components of C_{1} and C_{2}. By the lemma there is a line L that is not a component of either C_{1} and C_{2} and does not meet $C_{1} \cap C_{2}$. Now one has

$$
\begin{aligned}
C_{1} \cap C_{2} & =C_{1} \cap C_{2} \cap \mathbb{P}_{k}^{2} \\
& =C_{1} \cap C_{2} \cap\left(\left(\mathbb{P}_{k}^{2} \backslash L\right) \cup L\right) \\
& =\left(C_{1} \cap C_{2} \cap\left(\mathbb{P}_{k}^{2} \backslash L\right)\right) \cup\left(C_{1} \cap C_{2} \cap L\right) \\
& =\left(C_{1} \cap C_{2} \cap\left(\mathbb{P}_{k}^{2} \backslash L\right)\right),
\end{aligned}
$$

so after taking the cardinality on both sides and using Corollary 1.9 one gets

$$
\left|C_{1} \cap C_{2}\right| \leq n_{1} n_{2}
$$

completing the proof of Theorem 1.10.

By the next lemma we may apply Theorem 1.10 to any algebraically closed field.

Lemma 1.14. Any algebraically closed field is infinite.
Proof. Suppose toward a contradiction that an algebraically closed field k is finite. Then by listing the elements one has $k=\left\{a_{1}, \ldots, a_{n}\right\}$. Now

$$
f=\prod_{i=1}^{n}\left(x-a_{i}\right)+1
$$

is a polynomial without any zero in k, contrary to the assumption that k is algebraically closed. This completes the proof.

To further strengthen the theorem one needs to introduce intersection multiplicities. Before doing so, we show that (1.4) is in fact an equality under the assumption that k is algebraically closed and that C_{1} and C_{2} do not meet at infinity. As we have seen, the latter condition can be erased by applying a suitable linear change of variables, after which the equality holds in the entirety of \mathbb{P}_{k}^{2}.

The following lemmas are more general than necessary at the moment, but the additional generality will pay off greatly in the proof of Max Noether's fundamental theorem.

Lemma 1.15. For all $F \in k\left[x_{1}, \ldots, x_{d}\right]$ there exist unique homogeneous polynomials $F_{i} \in k\left[x_{1}, \ldots, x_{d}\right]$ of degree i where at most a finite number of the F_{i} 's are non-zero, such that $F=\sum_{i \in \mathbb{N}} F_{i}$.

Proof. Let

$$
F=\sum_{j_{1}+\cdots+j_{d} \leq n} c_{j_{1}, \ldots, j_{d}} x_{1}^{j_{1}} \cdots x_{d}^{j_{d}} .
$$

The existence is seen by rearranging the terms so that

$$
F=\sum_{i=0}^{n} \underbrace{\sum_{j_{1}+\cdots+j_{d}=i} c_{j_{1}, \ldots, j_{d}} x_{1}^{j_{1}} \cdots x_{d}^{j_{d}}}_{F_{i}}=\sum_{i \in \mathbb{N}} F_{i}
$$

where $F_{i}=0$ for $i>n$.
For the uniqueness suppose that $F=\sum_{i \in \mathbb{N}} F_{i}=\sum_{i \in \mathbb{N}} G_{i}$ where F_{i} and G_{i} are homogeneous and at most finitely many F_{i} 's and G_{i} 's are non-zero. Let

$$
n=\max \left\{i \in \mathbb{N} ; F_{i} \neq 0 \text { or } G_{i} \neq 0\right\} .
$$

Then

$$
F=\sum_{i=0}^{n} F_{i}=\sum_{i=0}^{n} G_{i} \Longrightarrow \sum_{i=0}^{n}\left(F_{i}-G_{i}\right)=0
$$

We now show by induction that if $\sum_{i=0}^{n} H_{i}=0$ for some homogeneous polynomials H_{i} of degree i then $H_{i}=0$ for $i \leq n$, from which the result follows. For
$n=0$ the assumption directly yields the desired result. Assume that the result is true for n and that $\sum_{i=0}^{n+1} H_{i}=0$. It then follows that

$$
-H_{n+1}=\sum_{i=0}^{n} H_{i}
$$

but the left hand side is either 0 or has degree $n+1$. However, the right hand side has degree at most n. Thus, $H_{n+1}=0$ and $\sum_{i=0}^{n} H_{i}=0$. The induction hypothesis gives that $H_{i}=0$ for $i \leq n$ completing the induction step. By the induction principle the proof is complete.

For any polynomial $F \in k[X, Y, Z]$ define $F_{0}=F(X, Y, 0) .{ }^{1}$
Lemma 1.16. Suppose that k is an algebraically closed field. If $F=0$ and $G=0$ are projective curves not meeting at infinity, then $\operatorname{gcd}\left(F_{0}, G_{0}\right)=1$.

Proof. Let $\operatorname{deg} F=m$ and set

$$
F=\sum_{i_{1}+i_{2}+i_{3}=m} c_{i_{1}, i_{2}, i_{3}} X^{i_{1}} Y^{i_{2}} Z^{i_{3}} .
$$

By rearranging the terms one has

$$
F=\sum_{i+j=m} c_{i, j} X^{i} Y^{j}+Z \sum_{\substack{i_{1}+i_{2}+i_{3}=m \\ i_{3} \geq 1}} c_{i_{1}, i_{2}, i_{3}} X^{i_{1}} Y^{i_{2}} Z^{i_{3}-1}
$$

with $c_{i, j}=c_{i, j, 0}$. Thus,

$$
F_{0}=\sum_{i+j=m} c_{i, j} X^{i} Y^{j}
$$

is a homogeneous polynomial in $k[X, Y]$. Because k is algebraically closed one has that

$$
F_{0}=\prod_{i=1}^{m}\left(a_{i} X+b_{i} Y\right)
$$

for some $a_{i}, b_{i} \in k$. Similarly, $G_{0}=\prod_{j=1}^{n}\left(a_{j}^{\prime} X+b_{j}^{\prime} Y\right)$ for some $a_{j}^{\prime}, b_{j}^{\prime} \in k$. If F_{0} and G_{0} share a common factor, then they share a factor on the form $a X+b Y$. It then follows that F_{0} and G_{0} have common zeros at $(t b,-t a)$ for all $t \in k$, but then $[b,-a, 0]$ is a common zero of F and G that lie on the line at infinity, which contradicts the assumption. Hence, F_{0} and G_{0} share no factor and $\operatorname{gcd}\left(F_{0}, G_{0}\right)=1$ follows as desired.

Lemma 1.17. Suppose that k is an algebraically closed field. Let $F=0$ and $G=0$ be projective curves not meeting at infinity. Let $H, A, B \in k[X, Y, Z]$. If $Z H=A F+B G$, then $H=A^{\prime} F+B^{\prime} G$ for some $A^{\prime}, B^{\prime} \in k[X, Y, Z]$.

Proof. By passing to the homomorphism $J \mapsto J_{0}$ one has $A_{0} F_{0}+B_{0} G_{0}=0$. Lemma 1.16 gives that $\operatorname{gcd}\left(F_{0}, G_{0}\right)=1$ and it follows that $F_{0} \mid B_{0}$ so that $B_{0}=E F_{0}$ for some $E \in k[X, Y]$. Consequently, $A_{0}=-E G_{0}$. Let $A_{1}=A+E G$ and $B_{1}=B-E F$. Note that $Z H=A_{1} F+B_{1} G$. Because Z is a monic

[^0]polynomial one may divide A_{1} by viewing it as a polynomial in Z over $k[X, Y]$. Doing this one gets
$$
A_{1}=Z A^{\prime}+S
$$
for some $A^{\prime} \in k[X, Y, Z]$ and $S \in k[X, Y]$. By passing to the homomorphism $J \mapsto J_{0}$ one sees that
$$
S=\left(A_{1}\right)_{0}=A_{0}+E G_{0}=0
$$
so $A_{1}=Z A^{\prime}$. Similarly, $B_{1}=Z B^{\prime}$ for some $B^{\prime} \in k[X, Y, Z]$. Now
$$
Z H=Z A^{\prime} F+Z B^{\prime} G
$$
and the result follows by canceling Z.
Lemma 1.18. Let $F=0$ and $G=0$ be projective curves with no intersections on the line at infinity. Suppose that H is a homogeneous polynomials in $k[X, Y, Z]$. Let $f=F(x, y, 1), g=G(x, y, 1)$ and $h=H(x, y, 1)$. If $h=a f+b g$ for some $a, b \in R$, then $H=A F+B G$ for some homogeneous polynomials $A, B \in k[X, Y, Z]$ with $\operatorname{deg} A=\operatorname{deg} H-\operatorname{deg} F$ and $\operatorname{deg} B=\operatorname{deg} H-\operatorname{deg} G$.

Proof. Let

$$
n=\max \{\operatorname{deg} H, \operatorname{deg} a+\operatorname{deg} F, \operatorname{deg} b+\operatorname{deg} G\}
$$

and

$$
r+\operatorname{deg} H=\operatorname{deg} a+r_{a}+\operatorname{deg} F=\operatorname{deg} b+r_{b}+\operatorname{deg} G=n .
$$

By passing to the isomorphism $j \mapsto j(X / Z, Y / Z)$ and multiplying by Z^{n} one has

$$
Z^{r} H=A F+B G
$$

where $A=Z^{\operatorname{deg} a+r_{a}} a(X / Z, Y / Z)$ and $B=Z^{\operatorname{deg} b+r_{b}} b(X / Z, Y / Z)$. By repeated use of Lemma 1.17 one has that

$$
H=A^{\prime} F+B^{\prime} G
$$

for some $A^{\prime}, B^{\prime} \in k[X, Y, Z]$.
By virtue of Lemma 1.15 let $A^{\prime}=\sum A_{i}$ and $B^{\prime}=\sum B_{j}$ with A_{i} and B_{j} homogeneous of degree i and j, respectively. Set $s=\operatorname{deg} H-\operatorname{deg} F$ and $t=\operatorname{deg} H-\operatorname{deg} G$. It is possible to write

$$
\sum_{i \neq s} A_{i} F+\sum_{j \neq t} B_{j} G=\sum_{l \neq \operatorname{deg} H} C_{l}
$$

where C_{l} are homogeneous polynomials of degree l. Since

$$
A_{s} F+B_{t} G-H+\sum_{l \neq \operatorname{deg} H} C_{l}=0
$$

where the first part is homogeneous of degree $\operatorname{deg} H$ one has by the uniqueness of Lemma 1.15 that $H=A_{s} F+B_{t} G$, completing the proof.

It is now shown that

$$
\begin{equation*}
R_{d} \cap\left(f_{1}, f_{2}\right)=W_{d} \tag{1.7}
\end{equation*}
$$

for all $d \geq n_{1}+n_{2}$. Firstly, if $f \in W_{d}$, then $f=g_{1} f_{1}+g_{2} f_{2}$ for some $g_{1}, g_{2} \in R$ with $\operatorname{deg} g_{i} \leq d-n_{i}$. In particular $f \in\left(f_{1}, f_{2}\right)$ and it also follows that

$$
\operatorname{deg} f \leq \max _{i \in\{1,2\}} \operatorname{deg}\left(g_{i} f_{i}\right)=\max _{i \in\{1,2\}}\left(d-n_{i}+n_{i}\right)=d
$$

which means $f \in R_{d}$. Thus, $f \in R_{d} \cap\left(f_{1}, f_{2}\right)$.
Conversely, suppose $f=g_{1} f_{1}+g_{2} f_{2}$ with $\operatorname{deg} f \leq d$ and $g_{1}, g_{2} \in R$. Letting $F=\xi(f)$ and $F_{i}=\xi\left(f_{i}\right)$ and applying Lemma 1.18 one has that

$$
F=G_{1}^{\prime} F_{1}+G_{2}^{\prime} F_{2}, \quad \operatorname{deg} G_{i}^{\prime}=\operatorname{deg} F-\operatorname{deg} F_{i}
$$

for some homogeneous polynomials $G_{i}^{\prime} \in k[X, Y, Z]$. By applying the homomorphism $J \mapsto J(x, y, 1)$ one gets

$$
f=g_{1}^{\prime} f_{1}+g_{2}^{\prime} f_{2}
$$

where $g_{i}^{\prime}=G_{i}^{\prime}(x, y, 1)$ and consequently

$$
\operatorname{deg} g_{i}^{\prime} \leq \operatorname{deg} G_{i}^{\prime}=\operatorname{deg} F-\operatorname{deg} F_{i}=\operatorname{deg} f-\operatorname{deg} f_{i} \leq d-n_{i}
$$

Finally, $f \in W_{d}$ which shows (1.7)
Take $d \geq n_{1}+n_{2}$. Let $r=n_{1} n_{2}$. By (1.3) there exist $g_{1}, \ldots, g_{r} \in R_{d} \subseteq R$ that are linearly independent modulo W_{d}. Suppose that

$$
g=\sum_{i=1}^{r} c_{i} g_{i} \equiv 0 \quad\left(\bmod \left(f_{1}, f_{2}\right)\right)
$$

where $c_{i} \in k$. This means by definition that $g \in\left(f_{1}, f_{2}\right)$. Because R_{d} is a k-vector space one also has $g \in R_{d}$. Since $R_{d} \cap\left(f_{1}, f_{2}\right)=W_{d}$, it follows that $g \in W_{d}$, but then

$$
\sum_{i=1}^{r} c_{i} g_{i} \equiv 0 \quad\left(\bmod W_{d}\right)
$$

and $c_{1}=\cdots=c_{r}=0$ by construction. This shows that g_{1}, \ldots, g_{r} are linearly independent as elements of R modulo $\left(f_{1}, f_{2}\right)$. Hence, $\operatorname{dim}\left(R /\left(f_{1}, f_{2}\right)\right) \geq n_{1} n_{2}$ and (1.4) is indeed an equality. We record this finding as a lemma for referencing later on.

Lemma 1.19. Suppose that k is algebraically closed. Let C_{1} and C_{2} be projective curves of degree n_{1} and n_{2}, respectively, with no common component. Assume that the curves do not meet at infinity. If $f_{i}=0$ is the affine part of C_{i}, then $\operatorname{dim}\left(R /\left(f_{1}, f_{2}\right)\right)=n_{1} n_{2}$.

2 Intersection Multiplicities

With notation as in the previous section, the intersection multiplicity of C_{1} and C_{2} at $P \in k^{2}$ shall be defined. From now on let $K=k(x, y)$ be the field of fractions over R. A rational expression $f / g \in K$ is said to be defined at P if $g(P) \neq 0$. Let the local ring of P,

$$
\mathcal{O}_{P}=\{f / g \in K ; g(P) \neq 0\}
$$

be the set of defined fractions at P. Because $k \subseteq \mathcal{O}_{P}$ one has $\mathcal{O}_{P} \neq \varnothing$. If $f_{1} / g_{1}, f_{2} / g_{2} \in \mathcal{O}_{P}$ then

$$
\left(g_{1} g_{2}\right)(P)=g_{1}(P) g_{2}(P) \neq 0
$$

due to k being a field. Thus

$$
\frac{f_{1}}{g_{1}}-\frac{f_{2}}{g_{2}}=\frac{f_{1} g_{2}-f_{2} g_{1}}{g_{1} g_{2}} \quad \text { and } \quad \frac{f_{1}}{g_{1}} \cdot \frac{f_{2}}{g_{2}}=\frac{f_{1} f_{2}}{g_{1} g_{2}}
$$

are defined at P, showing that \mathcal{O}_{P} is a subring of K.
Proposition 2.1. The evaluation

$$
\mathcal{O}_{P} \ni \phi \mapsto \phi(P) \in k
$$

is a surjective homomorphism which induces the identity map on k. With M_{P} being the kernel of this homomorphism one has $\mathcal{O}_{P} / M_{P} \cong k$ and $\mathcal{O}_{P}=k \oplus M_{P}$.

Proof. The map is well-defined since the denominator of ϕ is by definition nonzero at P. That evaluation is a homomorphism is trivial. For all constant expressions $a \in k$ one has $a(P)=a$, from which it follows that the map induces the identity map on k. In particular, the homomorphism is surjective. The first isomorphism theorem gives $\mathcal{O}_{P} / M_{P} \cong k$. Note that $k \cap M_{P}=\{0\}$ since all constant expression that are zero at P must be identically zero. If $\phi \in \mathcal{O}_{P}$, then

$$
\phi=\phi(P)+(\phi-\phi(P)) \in k+M_{P}
$$

Consequently, $\mathcal{O}_{P}=k \oplus M_{P}$.
Proposition 2.2. $\phi \in \mathcal{O}_{P}$ has a multiplicative inverse if and only if $\phi \notin M_{P}$.
Proof. Suppose $\phi \in \mathcal{O}_{P}$ has a multiplicative inverse $\psi \in \mathcal{O}_{P}$. Evaluation yields $\phi(P) \psi(P)=1$ showing that $\phi(P) \neq 0$, or equivalently that $\phi \notin M_{P}$. Conversely, suppose $\phi \notin M_{P}$. Then $\phi=f / g$ for some $f, g \in R$ where $f(P) \neq 0$. It follows by definition of \mathcal{O}_{P} that $\psi=g / f \in \mathcal{O}_{P}$, but then $\phi \psi=1$, so that ϕ has a multiplicative inverse.

Proposition 2.3. M_{P} is the unique maximal ideal in \mathcal{O}_{P}.
Proof. Let I be an ideal in \mathcal{O}_{P}. If I contains an invertible element, then $I=\mathcal{O}_{P}$. Otherwise, no element in I is invertible, or in other words $I \subseteq M_{P}$.

Define $\left(f_{1}, f_{2}\right)_{P}=\mathcal{O}_{P} f_{1}+\mathcal{O}_{P} f_{2}$ to be the ideal in \mathcal{O}_{P} generated by f_{1} and f_{2}. We are now ready to define the intersection multiplicity.

Definition 2.4. With notation as before, the intersection multiplicity of the curves C_{1} and C_{2} at $P \in k^{2}$ is defined as

$$
I_{P}\left(C_{1}, C_{2}\right)=\operatorname{dim}\left(\mathcal{O}_{P} /\left(f_{1}, f_{2}\right)_{P}\right)
$$

We continue this section by showing a few consequences of the definition. It is clear that $\left(f_{1}, f_{2}\right)_{P}=\left(f_{2}, f_{1}\right)_{P}$. The next proposition is a consequence of this.

Proposition 2.5. $I_{P}(C, D)=I_{P}(D, C)$ for all curves C and D and points $P \in k^{2}$.

Proposition 2.6. If $P \notin C_{1} \cap C_{2}$, then $I_{P}\left(C_{1}, C_{2}\right)=0$.
Proof. Suppose that $P \notin C_{1} \cap C_{2}$. Then at least one of $f_{1}(P) \neq 0$ and $f_{2}(P) \neq 0$. Without loss of generality, it might be assumed that $f_{1}(P) \neq 0$. Then $f_{1}^{-1} \in \mathcal{O}_{P}$ so that

$$
1=f_{1}^{-1} f_{1}+0 \cdot f_{2} \in\left(f_{1}, f_{2}\right)_{P}
$$

It follows that $\left(f_{1}, f_{2}\right)_{P}=\mathcal{O}_{P}$, and consequently that $I_{P}\left(C_{1}, C_{2}\right)=0$.
Proposition 2.7. If $P \in C_{1} \cap C_{2}$, then

$$
I_{P}\left(C_{1}, C_{2}\right)=1+\operatorname{dim}\left(\frac{M_{P}}{\left(f_{1}, f_{2}\right)_{P}}\right) .
$$

Proof. If $P \in C_{1} \cap C_{2}$, then $f_{1}(P)=f_{2}(P)=0$ so that $\left(f_{1}, f_{2}\right)_{P} \subseteq M_{P} \subseteq \mathcal{O}_{P}$. Lemma 1.3 gives that

$$
\operatorname{dim}\left(\frac{\mathcal{O}_{P}}{\left(f_{1}, f_{2}\right)_{P}}\right)=\operatorname{dim}\left(\frac{\mathcal{O}_{P}}{M_{P}}\right)+\operatorname{dim}\left(\frac{M_{P}}{\left(f_{1}, f_{2}\right)_{P}}\right)
$$

but since $\mathcal{O}_{P} / M_{P} \cong k$ the result follows.
Note that the dimension of the space $\mathcal{O}_{P} /\left(f_{1}, f_{2}\right)_{P}$ might be infinite, in which case we will consider $I_{P}\left(C_{1}, C_{2}\right)=\infty$. This implies that I_{P} in general has range $\mathbb{N} \cup\{\infty\}$. However, for the curves we are mostly intereseted in, infinite multiplicities need not be considered, which is a result of the next proposition.

Proposition 2.8. Suppose that C_{1} and C_{2} are affine curves with no component in common and set $n_{i}=\operatorname{deg} C_{i}$. Then $I_{P}\left(C_{1}, C_{2}\right) \leq n_{1} n_{2}$ for all $P \in k^{2}$.

Proof. It is shown that

$$
\operatorname{dim}\left(\mathcal{O}_{P} /\left(f_{1}, f_{2}\right)_{P}\right) \leq \operatorname{dim}\left(R /\left(f_{1}, f_{2}\right)\right)
$$

after which inequality (1.4) completes the proof. Suppose that $\phi_{1}, \ldots, \phi_{r} \in \mathcal{O}_{P}$ are linearly independent modulo $\left(f_{1}, f_{2}\right)_{P}$. Take $g_{1}, \ldots, g_{r}, h \in R$ with $h(P) \neq 0$ such that $\phi_{i}=g_{i} / h$ for $i=1, \ldots, r$. Because

$$
\begin{aligned}
\sum_{i=1}^{r} c_{i} g_{i} \in\left(f_{1}, f_{2}\right) & \Longleftrightarrow \sum_{i=1}^{r} c_{i} g_{i}=h_{1} f_{1}+h_{2} f_{2} \text { for some } h_{1}, h_{2} \in R \\
& \Longleftrightarrow \sum_{i=1}^{r} c_{i} \frac{g_{i}}{h}=\frac{h_{1}}{h} f_{1}+\frac{h_{2}}{h} f_{2} \text { for some } h_{1}, h_{2} \in R \\
& \Longleftrightarrow \sum_{i=1}^{r} c_{i} \phi_{i}=\psi_{1} f_{1}+\psi_{2} f_{2} \text { for some } \psi_{1}, \psi_{2} \in \mathcal{O}_{P} \\
& \Longleftrightarrow \sum_{i=1}^{r} c_{i} \phi_{i} \in\left(f_{1}, f_{2}\right)_{P} \\
& \Longleftrightarrow c_{1}=\cdots=c_{r}=0
\end{aligned}
$$

g_{1}, \ldots, g_{r} are linearly independent as elements of R modulo (f_{1}, f_{2}), completing the proof.

The finiteness of the intersection multiplicity implies a characterization of the local ring that will be useful later on in the proof of Bezout's theorem.

Lemma 2.9. $\mathcal{O}_{P}=R+\left(f_{1}, f_{2}\right)_{P}$ whenever $\operatorname{gcd}\left(f_{1}, f_{2}\right)=1$.
Proof. The assumption together with Proposition 2.8 guarantees the existence of a finite collection $g_{1} / h, \ldots, g_{r} / h$, with $g_{1}, \ldots, g_{r}, h \in R$ and $h(P) \neq 0$, that span \mathcal{O}_{P} modulo $\left(f_{1}, f_{2}\right)_{P}$. This means that given any $\phi \in \mathcal{O}_{P}$ there exists $c_{1}, \ldots, c_{r} \in k$ and $\psi \in\left(f_{1}, f_{2}\right)_{P}$ such that

$$
\frac{\phi}{h}=\sum_{i=1}^{r} c_{i} \frac{g_{i}}{h}+\psi
$$

because $\phi / h \in \mathcal{O}_{P}$. It follows that

$$
\phi=\sum_{i=1}^{r} c_{i} g_{i}+h \psi
$$

where $\sum_{i=1}^{r} c_{i} g_{i} \in R$ and $h \psi \in\left(f_{1}, f_{2}\right)_{P}$ due to the latter being an ideal. Since ϕ is arbitrary this shows $\mathcal{O}_{P} \subseteq R+\left(f_{1}, f_{2}\right)_{P}$. The inclusion \supseteq is trivial.

If $C: f=0$ and $D: g=0$ are affine curves, we denote by $C D$ the affine curve whose equation is $f g=0$. The proof of the next proposition is merely a detailed version of the proof found in Fulton 2008.

Proposition 2.10. If C is a curve sharing no component with either D or E, then $I_{P}(C, D E)=I_{P}(C, D)+I_{P}(C, E)$ for all $P \in k^{2}$.

Proof. Let $C: f=0, D: g=0$ and $E: h=0$. It shall be shown that the map

$$
\alpha: \mathcal{O}_{P} /(f, h)_{P} \ni \phi+(f, h)_{P} \mapsto g \phi+(f, g h)_{P} \in \mathcal{O}_{P} /(f, g h)_{P}
$$

is a well-defined linear injection. To show that it is well-defined, it is sufficient to show that

$$
\phi \in(f, h)_{P} \Longrightarrow g \phi \in(f, g h)_{P}
$$

for all $\phi \in \mathcal{O}_{P}$. This is clear since if $\phi=\psi_{1} f+\psi_{2} h$ for some $\psi_{1}, \psi_{2} \in \mathcal{O}_{P}$, then

$$
g \phi=\psi_{1} g f+\psi_{2} g h \in(f, g h)_{P} .
$$

The map is obviously linear. To prove the injectivity, it is sufficient to show

$$
g \phi \in(f, g h)_{P} \Longrightarrow \phi \in(f, h)_{P}
$$

for all $\phi \in \mathcal{O}_{P}$. Thus, suppose that $g \phi \in(f, g h)_{P}$. Then $g \phi=f \psi_{1}+g h \psi_{2}$ for some $\psi_{1}, \psi_{2} \in \mathcal{O}_{P}$. Choose an $e \in R$ with $e(P) \neq 0$ such that $\phi e \in R, \psi_{1} e \in R$ and $\psi_{2} e \in R$, and set $a=\phi e, b=\psi_{1} e$ and $c=\psi_{2} e$. It follows that

$$
g(a-h c)=f b
$$

so the assumption that $\operatorname{gcd}(f, g)=1$ gives that $a-h c=d f$ for some $d \in R$. Finally

$$
\phi=\frac{a}{e}=\frac{d}{e} f+\frac{c}{e} h \in(f, h)_{P}
$$

For α the following identity holds

$$
\operatorname{im} \alpha=(f, g)_{P} /(f, g h)_{P},
$$

since firstly $g \phi+(f, g h)_{P} \in \operatorname{im} \alpha$ implies that $g \phi+(f, g h)_{P} \in(f, g)_{P} /(f, g h)_{P}$. Conversely, if $\psi+(f, g h)_{P} \in(f, g)_{P} /(f, g h)_{P}$, then

$$
\psi+(f, g h)_{P}=\psi_{1} f+\psi_{2} g+(f, g h)_{P}=\psi_{2} g+(f, g h)_{P}
$$

for some $\psi_{1}, \psi_{2} \in \mathcal{O}_{P}$ and consequently $\psi+(f, g h)_{P} \in \operatorname{im} \alpha$.
The map

$$
\beta: \mathcal{O}_{P} /(f, g h)_{P} \ni \phi+(f, g h)_{P} \mapsto \phi+(f, g)_{P} \in \mathcal{O}_{P} /(f, g)_{P}
$$

is a well-defined surjective homomorphism by Lemma 1.1.
Suppose that $\phi+(f, g h)_{P} \in \operatorname{ker} \beta$. Then $\phi \in(f, g)_{P}$ and it follows that $\phi+(f, g h)_{P} \in(f, g)_{P} /(f, g h)_{P}$. Conversely, if $\phi+(f, g h)_{P} \in(f, g)_{P} /(f, g h)_{P}$, then $\phi \in(f, g)_{P}$ so that $\phi \in \operatorname{ker} \beta$ and

$$
\operatorname{ker} \beta=(f, g)_{P} /(f, g h)_{P} .
$$

This shows that $\operatorname{im} \alpha=\operatorname{ker} \beta$.
The rank-nullity theorem gives that

$$
\begin{aligned}
I_{P}(C, D E) & =\operatorname{dim}\left(\mathcal{O}_{P} /(f, g h)_{P}\right) \\
& =\operatorname{dimim} \beta+\operatorname{dim} \operatorname{ker} \beta \\
& =\operatorname{dim}\left(\mathcal{O}_{P} /(f, g)_{P}\right)+\operatorname{dimim} \alpha \\
& =\operatorname{dim}\left(\mathcal{O}_{P} /(f, g)_{P}\right)+\operatorname{dim}\left(\mathcal{O}_{P} /(f, h)_{P}\right) \\
& =I_{P}(C, D)+I_{P}(C, E) .
\end{aligned}
$$

Proposition 2.11. Let $C: f=0$ and $D: g=0$ be affine curves without a common component. If E is an affine curve whose defining polynomial is $a f+g$ for some $a \in R$, then $I_{P}(C, E)=I_{P}(C, D)$.

Proof. We show that $(f, a f+g)_{P}=(f, g)_{P}$, from which the proposition follows. If $\phi \in(f, a f+g)_{P}$, then

$$
\phi=\psi_{1} f+\psi_{2}(a f+g)=\left(\psi_{1}+a \psi_{2}\right) f+\psi_{2} g
$$

for some $\psi_{1}, \psi_{2} \in \mathcal{O}_{P}$ so that also $\phi \in(f, g)_{P}$ and $(f, a f+g)_{P} \subseteq(f, g)_{P}$. Because there are no restrictions on $a \in R$ the reverse inclusion follows from

$$
(f, g)_{P}=(f,(-a) f+a f+g)_{P} \subseteq(f, a f+g)_{P}
$$

Before continuing with the proof of Bezout's theorem, we first show how the definition carries over to the projective plane, and second show that it is invariant under a linear change of variables. This will allow us to make simplifying assumptions in proving Bezout's theorem.

To be able to define the local ring for a point in the projective plane we introduce a counterpart of K. Consider the set

$$
\widetilde{K}=\{F / G \in k(X, Y, Z) ; F \text { and } G \text { are homogeneous of the same degree }\} .
$$

All elements $\Phi \in \widetilde{K}$ satisfy

$$
\Phi(t A, t B, t C)=\frac{F(t A, t B, t C)}{G(t A, t B, t C)}=\frac{t^{n} F(A, B, C)}{t^{n} G(A, B, C)}=\frac{F(A, B, C)}{G(A, B, C)}=\Phi(A, B, C)
$$

for all $t \neq 0$ and $[A, B, C] \in \mathbb{P}_{k}^{2}$, which means all $\Phi \in \widetilde{K}$ are well-defined functions in \mathbb{P}_{k}^{2}.

We want to define the function

$$
\begin{equation*}
\eta: K \ni \frac{f}{g} \mapsto \frac{Z^{n} f(X / Z, Y / Z)}{Z^{n} g(X / Z, Y / Z)} \in k(X, Y, Z) \tag{2.1}
\end{equation*}
$$

where $n=\max \{\operatorname{deg} f, \operatorname{deg} g\}$. The next proposition verifies that \widetilde{K} is indeed the projective counterpart of K.

Proposition 2.12. The map η defined in (2.1) is a well-defined isomorphism $K \rightarrow \widetilde{K}$.

Proof. The proof is completed whenever all of the following assertions have been shown:
(i) η is a well-defined function.
(iv) η respects multiplication.
(ii) $\eta(K) \subseteq \widetilde{K}$.
(v) η is injective.
(iii) η respects addition.
(vi) η is surjective.
(i) Firstly $n=\max \{\operatorname{deg} f, \operatorname{deg} g\} \in \mathbb{N}$ because $g \neq 0$ implies $\operatorname{deg} g \geq 0$. Suppose that $f_{1} / g_{1}=f_{2} / g_{2}$. Let $n_{i}=\max \left\{\operatorname{deg} f_{i}, \operatorname{deg} g_{i}\right\}$. Now
$\frac{f_{1}(X / Z, Y / Z)}{g_{1}(X / Z, Y / Z)}=\frac{f_{2}(X / Z, Y / Z)}{g_{2}(X / Z, Y / Z)} \Longleftrightarrow \frac{Z^{n_{1}} f_{1}(X / Z, Y / Z)}{Z^{n_{1}} g_{1}(X / Z, Y / Z)}=\frac{Z^{n_{2}} f_{2}(X / Z, Y / Z)}{Z^{n_{2}} g_{2}(X / Z, Y / Z)}$
shows that η is a well-defined function.
(ii) It is clear that $F=Z^{n} f(X / Z, Y / Z)$ is homogeneous of degree n, and similarly for $G=Z^{n} g(X / Z, Y / Z)$. Thus, F and G are homogeneous of the same degree so that $F / G \in \widetilde{K}$.
(iii) By Lemma 1.4 one has

$$
\begin{aligned}
\eta\left(\frac{f_{1}}{g_{1}}\right)+\eta\left(\frac{f_{2}}{g_{2}}\right) & =\frac{Z^{m} f_{1}(X / Z, Y / Z)}{Z^{m} g_{1}(X / Z, Y / Z)}+\frac{Z^{n} f_{2}(X / Z, Y / Z)}{Z^{n} g_{2}(X / Z, Y / Z)} \\
& =\frac{Z^{m+n}\left(f_{1} g_{2}+f_{2} g_{1}\right)(X / Z, Y / Z)}{Z^{m+n}\left(g_{1} g_{2}\right)(X / Z, Y / Z)} \\
& =\frac{Z^{l}\left(f_{1} g_{2}+f_{2} g_{1}\right)(X / Z, Y / Z)}{Z^{l}\left(g_{1} g_{2}\right)(X / Z, Y / Z)} \\
& =\eta\left(\frac{f_{1} g_{2}+f_{2} g_{1}}{g_{1} g_{2}}\right) \\
& =\eta\left(\frac{f_{1}}{g_{1}}+\frac{f_{2}}{g_{2}}\right)
\end{aligned}
$$

for $l=\max \left\{\operatorname{deg}\left(f_{1} g_{2}+f_{2} g_{1}\right), \operatorname{deg}\left(g_{1} g_{2}\right)\right\} \geq 0$.
(iv) Another use of Lemma 1.4 gives

$$
\begin{aligned}
\eta\left(\frac{f_{1}}{g_{1}}\right) \eta\left(\frac{f_{2}}{g_{2}}\right) & =\frac{Z^{m} f_{1}(X / Z, Y / Z)}{Z^{m} g_{1}(X / Z, Y / Z)} \cdot \frac{Z^{n} f_{2}(X / Z, Y / Z)}{Z^{n} g_{2}(X / Z, Y / Z)} \\
& =\frac{Z^{m+n}\left(f_{1} f_{2}\right)(X / Z, Y / Z)}{Z^{m+n}\left(g_{1} g_{2}\right)(X / Z, Y / Z)} \\
& =\frac{Z^{l}\left(f_{1} f_{2}\right)(X / Z, Y / Z)}{Z^{l}\left(g_{1} g_{2}\right)(X / Z, Y / Z)} \\
& =\eta\left(\frac{f_{1} f_{2}}{g_{1} g_{2}}\right) \\
& =\eta\left(\frac{f_{1}}{g_{1}} \cdot \frac{f_{2}}{g_{2}}\right)
\end{aligned}
$$

for $l=\max \left\{\operatorname{deg}\left(f_{1} f_{2}\right), \operatorname{deg}\left(g_{1} g_{2}\right)\right\} \geq 0$.
(v) Suppose that $\eta\left(f_{1} / g_{1}\right)=\eta\left(f_{2} / g_{2}\right)$. Then by definition

$$
\frac{Z^{m} f_{1}(X / Z, Y / Z)}{Z^{m} g_{1}(X / Z, Y / Z)}=\frac{Z^{n} f_{2}(X / Z, Y / Z)}{Z^{n} g_{2}(X / Z, Y / Z)}
$$

so that after multiplying with the denominators and applying the homomorphism part of Lemma 1.4 one has

$$
Z^{m+n}\left(f_{1} g_{2}\right)(X / Z, Y / Z)=Z^{m+n}\left(f_{2} g_{1}\right)(X / Z, Y / Z)
$$

Canceling Z^{m+n} and applying Lemma 1.5 one finally has

$$
f_{1} g_{2}=f_{2} g_{1} \Longleftrightarrow \frac{f_{1}}{g_{1}}=\frac{f_{2}}{g_{2}}
$$

completing the proof of the injectivity.
(vi) Take $F / G \in \widetilde{K}$. By definition $F / G \in k(X, Y, Z)$ with F and G homogeneous of the same degree n. Let $f=F(x, y, 1)$ and $g=G(x, y, 1)$. Then $f, g \in R$,

$$
F=Z^{n} F(X / Z, Y / Z, 1)=Z^{n} f(X / Z, Y / Z),
$$

and similarly for G. Finally,

$$
\frac{F}{G}=\frac{Z^{n} f(X / Z, Y / Z)}{Z^{n} g(X / Z, Y / Z)}=\frac{Z^{l} f(X / Z, Y / Z)}{Z^{l} g(X / Z, Y / Z)}=\eta\left(\frac{f}{g}\right)
$$

where $l=\max \{\operatorname{deg} f, \operatorname{deg} g\}$ completing the proof.
If $P \in \mathbb{P}_{k}^{2}$ we now define

$$
\widetilde{\mathcal{O}}_{P}=\left\{\frac{F}{G} \in \widetilde{K} ; G(P) \neq 0\right\} .
$$

Firstly, \mathcal{O}_{P} is a subring of \widetilde{K}. This follows from an argument similar to the one before that showed that \mathcal{O}_{P} is a subring of K.
Proposition 2.13. $\left.\eta\right|_{\mathcal{O}_{P}}$ is an isomorphism $\mathcal{O}_{P} \cong \widetilde{\mathcal{O}}_{P}$ for all $P=[a, b, 1] \in k^{2}$.

Proof. One only needs to show that $\eta\left(\mathcal{O}_{P}\right)=\widetilde{\mathcal{O}}_{P}$ since all other properties follow from the corresponding properties of η.

Suppose that $f / g \in \mathcal{O}_{P}$ and let $n=\max \{\operatorname{deg} f, \operatorname{deg} g\}$. Now

$$
G=Z^{n} g(X / Z, Y / Z) \Longrightarrow G(P)=G(a, b, 1)=g(a, b) \neq 0
$$

showing that $\eta(f / g) \in \widetilde{\mathcal{O}}_{P}$.
Conversely, if $F / G \in \widetilde{\mathcal{O}}_{P}$, then by letting

$$
n=\operatorname{deg} G, \quad f=F(x, y, 1) \quad \text { and } \quad g=G(x, y, 1)
$$

one has

$$
Z^{n} g(X / Z, Y / Z)=Z^{n} G(X / Z, Y / Z, 1)=G
$$

and consequently $g(a, b) \neq 0$ by insertion of $(X, Y, Z)=(a, b, 1)$. Now $f / g \in \mathcal{O}_{P}$ and $\eta(f / g)=F / G$.

With $P=[a, b, 1]$, take $\Phi=F / G \in \widetilde{\mathcal{O}}_{P}$ and its preimage $\phi=f / g \in \mathcal{O}_{P}$. Then

$$
\phi(a, b)=\frac{f(a, b)}{g(a, b)}=\frac{F(a, b, 1)}{G(a, b, 1)}=\Phi(a, b, 1)
$$

showing that the values of the expressions are preserved upon passing between \mathcal{O}_{P} and $\widetilde{\mathcal{O}}_{P}$.

For all $P \in \mathbb{P}_{k}^{2}$ define $\widetilde{M}_{P}=\left\{\Phi \in \widetilde{\mathcal{O}}_{P} ; \Phi(P)=0\right\}$.
Proposition 2.14. $\left.\eta\right|_{M_{P}}$ is an isomorphism $M_{P} \cong \widetilde{M}_{P}$ for all $P \in k^{2}$.
Proof. As before one only needs to show that $\eta\left(M_{P}\right)=\widetilde{M}_{P}$. For all $\phi \in \mathcal{O}_{P}$ and $\Phi \in \widetilde{\mathcal{O}}_{P}$ with $\Phi=\eta(\phi)$ one has

$$
\phi \in M_{P} \Longleftrightarrow \phi(P)=0 \Longleftrightarrow \Phi(P)=0 \Longleftrightarrow \Phi \in \widetilde{M}_{P}
$$

It follows directly that $\eta\left(M_{P}\right) \subseteq \widetilde{M}_{P}$. Surjectivity of $\left.\eta\right|_{\mathcal{O}_{P}}$ implies that regardless of $\Phi \in \widetilde{M}_{P}$ there is a $\phi \in \mathcal{O}_{P}$ such that $\eta(\phi)=\Phi$. Thus, one may read the above chain of equivalences from right to left for all $\Phi \in \widetilde{M}_{P}$ and the proposition follows.

Proposition 2.15. Let \widetilde{R} be the set of homogeneous polynomials in $k[X, Y, Z]$. Suppose $F_{1}, F_{2} \in \widetilde{R} \backslash\{0\}$ and let $P \in \mathbb{P}_{k}^{2}$. Then $\left(F_{1}, F_{2}\right)_{P}$ defined by

$$
\left(F_{1}, F_{2}\right)_{P}=\left\{\frac{F}{G} \in \widetilde{\mathcal{O}}_{P} ; F=H_{1} F_{1}+H_{2} F_{2} \text { for some } H_{1}, H_{2} \in \widetilde{R}\right\}
$$

is an ideal in $\widetilde{\mathcal{O}}_{P}$.
Proof. $0 / 1 \in\left(F_{1}, F_{2}\right)_{P}$ so $\left(F_{1}, F_{2}\right)$ is non-empty.
Let $F / G, F^{\prime} / G^{\prime} \in\left(F_{1}, F_{2}\right)_{P}$. If either $F=0$ or $F^{\prime}=0$ it is clear that $F / G-F^{\prime} / G^{\prime} \in\left(F_{1}, F_{2}\right)_{P}$. Otherwise, one may by definition take $H_{i}, H_{i}^{\prime} \in \widetilde{R}$ such that $F=H_{1} F_{1}+H_{2} F_{2}$ and $F^{\prime}=H_{1}^{\prime} F_{1}+H_{2}^{\prime} F_{2}$. If $H_{1}=0$ or $H_{1}^{\prime}=0$, then clearly $H_{1} G^{\prime}-H_{1}^{\prime} G$ is homogeneous. Otherwise

$$
\operatorname{deg} H_{1}+\operatorname{deg} F_{1}=\operatorname{deg} F=\operatorname{deg} G \quad \text { and } \quad \operatorname{deg} H_{1}^{\prime}+\operatorname{deg} F_{1}=\operatorname{deg} F^{\prime}=\operatorname{deg} G^{\prime}
$$

and it follows that

$$
\begin{aligned}
\operatorname{deg} H_{1}+\operatorname{deg} G^{\prime} & =\operatorname{deg} H_{1}+\operatorname{deg} H_{1}^{\prime}+\operatorname{deg} F_{1} \\
& =\operatorname{deg} H_{1}^{\prime}+\operatorname{deg} H_{1}+\operatorname{deg} F_{1}=\operatorname{deg} H_{1}^{\prime}+\operatorname{deg} G .
\end{aligned}
$$

Therefore $H_{1} G^{\prime}-H_{1}^{\prime} G$ is homogeneous. Similarly it is shown that $H_{2} G^{\prime}-H_{2}^{\prime} G$ is homogeneous. Now

$$
\begin{aligned}
\frac{F}{G}-\frac{F^{\prime}}{G^{\prime}} & =\frac{\left(H_{1} F_{1}+H_{2} F_{2}\right) G^{\prime}-G\left(H_{1}^{\prime} F_{1}+H_{2}^{\prime} F_{2}\right)}{G G^{\prime}} \\
& =\frac{\left(H_{1} G^{\prime}-H_{1}^{\prime} G\right) F_{1}+\left(H_{2} G^{\prime}-H_{2}^{\prime} G\right) F_{2}}{G G^{\prime}} \in\left(F_{1}, F_{2}\right)_{P}
\end{aligned}
$$

Furthermore, if $F / G \in \widetilde{\mathcal{O}}_{P}$ and $F^{\prime} / G^{\prime} \in\left(F_{1}, F_{2}\right)_{P}$, then

$$
\frac{F}{G} \cdot \frac{F^{\prime}}{G^{\prime}}=\frac{F\left(H_{1}^{\prime} F_{1}+H_{2}^{\prime} F_{2}\right)}{G G^{\prime}}=\frac{F H_{1}^{\prime} F_{1}+F H_{2}^{\prime} F_{2}}{G G^{\prime}} \in\left(F_{1}, F_{2}\right)_{P},
$$

where $F{\underset{\sim}{1}}_{1}^{\prime}$ and $F H_{2}^{\prime}$ are clearly homogeneous. This shows that $\left(F_{1}, F_{2}\right)_{P}$ is an ideal in $\widetilde{\mathcal{O}}_{P}$.

Recall the map ξ, defined in (1.1), that is used to transform affine curves to their projective counterparts. Before presenting the last proposition needed to define intersection multiplicities in the projective plane, a lemma is needed.

For all $F \in \widetilde{R}$ such that $F \neq 0$, let

$$
d(F)=\max \left\{n \in \mathbb{N} ; Z^{n} \mid F\right\}
$$

Lemma 2.16. For all $F \in \widetilde{R}$ with $F \neq 0$ there exists an $f \in R$ such that $F=Z^{d(F)} \xi(f)$.

Proof. Because $Z^{d(F)} \mid F$ one has that $F=Z^{d(F)} G$ for some $G \in \widetilde{R}$. By construction $Z \nmid G$. Lemma 1.6 gives $G=\xi(f)$ for some $f \in R$.

The next proposition is the last piece needed to carry the definition of intersection multiplicity over to the projective plane. However simple the proposition might seem, its proof is quite cumbersome.

Proposition 2.17. Let $P \in k^{2}$. If $f_{1}, f_{2} \in R \backslash\{0\}$ and $F_{i}=\xi\left(f_{i}\right)$, then $\left.\eta\right|_{\left(f_{1}, f_{2}\right)_{P}}$ is an isomorphism $\left(f_{1}, f_{2}\right)_{P} \cong\left(F_{1}, F_{2}\right)_{P}$.
Proof. The proof is carried out by showing that $\eta\left(\left(f_{1}, f_{2}\right)_{P}\right)=\left(F_{1}, F_{2}\right)_{P}$.
Take

$$
\phi=\frac{h_{1}}{g} \cdot f_{1}+\frac{h_{2}}{g} \cdot f_{2} \in\left(f_{1}, f_{2}\right)_{P},
$$

with $h_{1}, h_{2}, g \in R$. It shall be shown that $\eta(\phi) \in\left(F_{1}, F_{2}\right)_{P}$. Let $n_{i}=\operatorname{deg} f_{i}$, $m=\operatorname{deg} g$ and $l_{i}=\operatorname{deg} h_{i}$. Set $r=\max \left\{l_{1}+n_{1}, l_{2}+n_{2}, m\right\}$. If both $h_{i}=0$, then clearly $\eta(\phi)=0 \in\left(F_{1}, F_{2}\right)_{P}$ since $\left(F_{1}, F_{2}\right)_{P}$ is an ideal. Note that

$$
h_{i} \neq 0 \Longrightarrow H_{i}=Z^{r-n_{i}} h_{i}(X / Z, Y / Z)=Z^{r-l_{i}-n_{i}} Z^{l_{i}} h_{i}(X / Z, Y / Z) \in \widetilde{R} .
$$

If exactly one of $h_{1} \neq 0$ and $h_{2} \neq 0$ one may without loss of generality assume that $h_{1} \neq 0$ and $h_{2}=0$. Then

$$
\begin{aligned}
\eta(\phi) & =\frac{Z^{r}\left(h_{1} f_{1}\right)(X / Z, Y / Z)}{Z^{r} g(X / Z, Y / Z)} \\
& =\frac{Z^{r-n_{1}} h_{1}(X / Z, Y / Z) Z^{n_{1}} f_{1}(X / Z, Y / Z)}{Z^{r} g(X / Z, Y / Z)} \\
& =\frac{H_{1} F_{1}+0 F_{2}}{G} \in\left(F_{1}, F_{2}\right)_{P}
\end{aligned}
$$

where $G=Z^{r} g(X / Z, Y / Z)$. Similarly, if $h_{1} \neq 0$ and $h_{2} \neq 0$, one has

$$
\begin{aligned}
\eta(\phi) & =\frac{Z^{q}\left(h_{1} f_{1}+h_{2} f_{2}\right)(X / Z, Y / Z)}{Z^{q} g(X / Z, Y / Z)} \\
& =\frac{Z^{r}\left(h_{1} f_{1}+h_{2} f_{2}\right)(X / Z, Y / Z)}{Z^{r} g(X / Z, Y / Z)} \\
& =\frac{H_{1} F_{1}+H_{2} F_{2}}{G} \in\left(F_{1}, F_{2}\right)_{P}
\end{aligned}
$$

where H_{i} and G are as before and

$$
q=\max \left\{\operatorname{deg}\left(h_{1} f_{1}+h_{2} f_{2}\right), \operatorname{deg} g\right\} \leq r
$$

In any case $\eta(\phi) \in\left(F_{1}, F_{2}\right)_{P}$.
Conversely, let $F / G \in\left(F_{1}, F_{2}\right)_{P}$. By definition $F=H_{1} F_{1}+H_{2} F_{2}$ for some $H_{1}, H_{2} \in \widetilde{R}$. If it can be shown that there exist $\phi_{1}, \phi_{2} \in\left(f_{1}, f_{2}\right)_{P}$ such that $\eta\left(\phi_{i}\right)=H_{i} F_{i} / G$, then it follows that

$$
\frac{H_{1} F_{1}+H_{2} F_{2}}{G}=\frac{H_{1} F_{1}}{G}+\frac{H_{2} F_{2}}{G}=\eta\left(\phi_{1}\right)+\eta\left(\phi_{2}\right)=\eta\left(\phi_{1}+\phi_{2}\right)
$$

since η is an isomorphism $\mathcal{O}_{P} \rightarrow \widetilde{\mathcal{O}}_{P}$. Because $\left(f_{1}, f_{2}\right)_{P}$ is an ideal it follows that $\phi_{1}+\phi_{2} \in\left(f_{1}, f_{2}\right)_{P}$ so that $F / G \in \eta\left(\left(f_{1}, f_{2}\right)_{P}\right)$. Therefore one only needs to find a $\phi_{1} \in\left(f_{1}, f_{2}\right)_{P}$ such that $\eta\left(\phi_{1}\right)=H_{1} F_{1} / G$, to show that $F / G \in \eta\left(\left(f_{1}, f_{2}\right)_{P}\right)$, since finding ϕ_{2} is similar.

For $H_{1}=0$ it is clear that $\phi_{1}=0$ suffices. Thus, assume $H_{1} \neq 0$. Then $H_{1}=Z^{d\left(H_{1}\right)} \xi\left(h_{1}\right)$ and $G=Z^{d(G)} \xi(g)$ for some $h_{1}, g \in R$, so

$$
\frac{H_{1} F_{1}}{G}=\frac{Z^{d\left(H_{1}\right)} \xi\left(h_{1}\right) \xi\left(f_{1}\right)}{Z^{d(G)} \xi(g)}=\frac{Z^{d\left(H_{1}\right)} \xi\left(h_{1} f_{1}\right)}{Z^{d(G)} \xi(g)}=\frac{Z^{a} \xi\left(h_{1} f_{1}\right)}{Z^{b} \xi(g)}
$$

where $a=0$ or $b=0$. By definition of $\widetilde{\mathcal{O}}_{P}$ it holds that

$$
a+\operatorname{deg}\left(h_{1} f_{1}\right)=a+\operatorname{deg} \xi\left(h_{1} f_{1}\right)=b+\operatorname{deg} \xi(g)=b+\operatorname{deg} g
$$

If $a=0$, then $\max \left\{\operatorname{deg}\left(h_{1} f_{1}\right), \operatorname{deg} g\right\}=\operatorname{deg}\left(h_{1} f_{1}\right)$ so that

$$
\begin{aligned}
\eta\left(\frac{h_{1} f_{1}}{g}\right) & =\frac{Z^{\operatorname{deg}\left(h_{1} f_{1}\right)}\left(h_{1} f_{1}\right)(X / Z, Y / Z)}{Z^{\operatorname{deg}\left(h_{1} f_{1}\right)} g(X / Z, Y / Z)} \\
& =\frac{Z^{\operatorname{deg}\left(h_{1} f_{1}\right)}\left(h_{1} f_{1}\right)(X / Z, Y / Z)}{Z^{b} Z^{\operatorname{deg} g} g(X / Z, Y / Z)} \\
& =\frac{\xi\left(h_{1} f_{1}\right)}{Z^{b} \xi(g)} \\
& =\frac{H_{1} F_{1}}{G} .
\end{aligned}
$$

If $b=0$, then $\max \left\{\operatorname{deg}\left(h_{1} f_{1}\right), \operatorname{deg} g\right\}=\operatorname{deg} g$, and it follows that

$$
\begin{aligned}
\eta\left(\frac{h_{1} f_{1}}{g}\right) & =\frac{Z^{\operatorname{deg} g}\left(h_{1} f_{1}\right)(X / Z, Y / Z)}{Z^{\operatorname{deg} g} g(X / Z, Y / Z)} \\
& =\frac{Z^{a} Z^{\operatorname{deg}\left(h_{1} f_{1}\right)}\left(h_{1} f_{1}\right)(X / Z, Y / Z)}{Z^{\operatorname{deg} g} g(X / Z, Y / Z)} \\
& =\frac{Z^{a} \xi\left(h_{1} f_{1}\right)}{\xi(g)} \\
& =\frac{H_{1} F_{1}}{G} .
\end{aligned}
$$

Anyhow $\eta\left(\phi_{1}\right)=H_{1} F_{1} / G$, where $\phi_{1}=h_{1} f_{1} / g \in\left(f_{1}, f_{2}\right)_{P}$ and the proof is complete.

By the propositions one has

$$
\operatorname{dim}\left(\mathcal{O}_{P} /\left(f_{1}, f_{2}\right)_{P}\right)=\operatorname{dim}\left(\widetilde{\mathcal{O}}_{P} /\left(F_{1}, F_{2}\right)_{P}\right), \quad P \in k^{2}
$$

showing that one may extend the definition of intersection multiplicity from the affine plane to the projective plane using the following definition. Due to the propositions shown we will dispense with the tildes and transport the relevant structure from k^{2} to \mathbb{P}_{k}^{2}.

Definition 2.18. The intersection multiplicity at the point $P \in \mathbb{P}_{k}^{2}$ of the projective curves C_{1} and C_{2}, whose equations are $F_{1}=0$ and $F_{2}=0$, respectively, is defined as

$$
I_{P}\left(C_{1}, C_{2}\right)=\operatorname{dim}\left(\mathcal{O}_{P} /\left(F_{1}, F_{2}\right)_{P}\right) .
$$

Recall the induced linear transformation defined in (1.6), and call it φ. We now show that the intersection multiplicity is invariant under φ. This will allow us to apply a suitable linear transformation of the projective plane to simplify the proof of Bezout's theorem.

Note that $G(P) \neq 0$ if and only if $G\left(M^{-1} M P\right) \neq 0$, that is $\varphi(G)(M P) \neq 0$. This means that $\varphi\left(\mathcal{O}_{P}\right) \subseteq \mathcal{O}_{M P}$, since φ also preserves the degrees of polynomials as is easily seen. By considering the inverse transformation φ^{-1} one has similarly that $\varphi^{-1}\left(\mathcal{O}_{M P}\right) \subseteq \mathcal{O}_{P}$. Thus, $\left.\varphi\right|_{\mathcal{O}_{P}}$ is an isomorphism $\mathcal{O}_{P} \cong \mathcal{O}_{M P}$.

To finally show that the definition of intersection multiplicity is invariant under linear changes of variables, it must be shown that the transformation of $\left(F_{1}, F_{2}\right)_{P}$ to $\left(F_{1}^{\prime}, F_{2}^{\prime}\right)_{M P}$, where F_{i}^{\prime} is the image of F_{i} under φ, is an isomorphism. Suppose that $\Phi \in\left(F_{1}, F_{2}\right)_{P}$. Then $\Phi=F / G$ with F and G homogeneous of the same degree and $F=H_{1} F_{1}+H_{2} F_{2}$ for some homogeneous H_{1} and H_{2}. Because φ preserves the degrees of polynomials

$$
\varphi(F)=\varphi\left(H_{1}\right) F_{1}^{\prime}+\varphi\left(H_{2}\right) F_{2}^{\prime}
$$

is homogeneous with $\varphi\left(H_{i}\right)$ homogeneous. Thus,

$$
\varphi(\Phi)=\frac{\varphi(F)}{\varphi(G)} \in\left(F_{1}^{\prime}, F_{2}^{\prime}\right)_{M P}
$$

showing that $\varphi\left(\left(F_{1}, F_{2}\right)_{P}\right) \subseteq\left(F_{1}^{\prime}, F_{2}^{\prime}\right)_{M P}$. The reverse inclusion follows by replacing φ with its inverse. This shows that $\left.\varphi\right|_{\left(F_{1}, F_{2}\right)_{P}}$ is an isomorphism $\left(F_{1}, F_{2}\right)_{P} \cong\left(F_{1}^{\prime}, F_{2}^{\prime}\right)_{M P}$.

3 Bezout's Theorem

Throughout this section we let k be an algebraically closed field and let the curves C_{1} and C_{2} have affine parts $f_{1}=0$ and $f_{2}=0$, respectively, with $\operatorname{gcd}\left(f_{1}, f_{2}\right)=1$. After the endeavor of the previous section, we are finally ready to show Bezout's theorem.

Theorem 3.1 (Bezout's Theorem). If the projective curves C_{1} and C_{2}, of degrees n_{1} and n_{2} respectively, have no common component, then C_{1} and C_{2} intersect at exactly $n_{1} n_{2}$ points of \mathbb{P}_{k}^{2} counting multiplicity, i.e.

$$
\sum_{P \in C_{1} \cap C_{2}} I_{P}\left(C_{1}, C_{2}\right)=n_{1} n_{2} .
$$

In the rest of this section, let for notional purposes $\mathcal{P}=C_{1} \cap C_{2} \cap k^{2}$.
Lemma 3.2. If $P \in \mathcal{P}$ and $r \geq I_{P}\left(C_{1}, C_{2}\right)$, then $\prod_{i=1}^{r} t_{i} \in\left(f_{1}, f_{2}\right)_{P}$ for all $t_{1}, \ldots, t_{r} \in M_{P}$.

Proof. Define the ideals J_{1}, \ldots, J_{r+1} in \mathcal{O}_{P} by

$$
J_{q}=\left(\prod_{i=1}^{q} t_{i}\right) \mathcal{O}_{P}+\left(f_{1}, f_{2}\right)_{P} \quad \text { and } \quad J_{r+1}=\left(f_{1}, f_{2}\right)_{P}
$$

where $1 \leq q \leq r$. If $\psi \in J_{r+1}$, then because $0 \in \mathcal{O}_{P}$ one has

$$
\psi=\left(\prod_{i=1}^{r} t_{i}\right) \cdot 0+\psi \in J_{r}
$$

If $\gamma \in J_{q+1}$ for some $1 \leq q<r$, then $\gamma=\prod_{i=1}^{q+1} t_{i} \phi+\psi$ for some $\phi \in \mathcal{O}_{P}$ and $\psi \in\left(f_{1}, f_{2}\right)_{P}$, but because \mathcal{O}_{P} is a ring one has $t_{q+1} \phi \in \mathcal{O}_{P}$ and

$$
\gamma=\prod_{i=1}^{q} t_{i}\left(t_{q+1} \phi\right)+\psi \in J_{q} .
$$

Hence,

$$
\left(f_{1}, f_{2}\right)_{P}=J_{r+1} \subseteq J_{r} \subseteq J_{r-1} \subseteq \cdots \subseteq J_{1} \subseteq M_{P}
$$

Firstly Lemma 1.3 gives that

$$
\begin{equation*}
\operatorname{dim}\left(\frac{M_{P}}{J_{q+1}}\right)=\operatorname{dim}\left(\frac{M_{P}}{J_{q}}\right)+\operatorname{dim}\left(\frac{J_{q}}{J_{q+1}}\right) \tag{3.1}
\end{equation*}
$$

for all $1 \leq q \leq r$. Assume that

$$
\begin{equation*}
\operatorname{dim}\left(\frac{M_{P}}{J_{q+1}}\right)=\operatorname{dim}\left(\frac{M_{P}}{J_{1}}\right)+\sum_{i=1}^{q} \operatorname{dim}\left(\frac{J_{i}}{J_{i+1}}\right) . \tag{3.2}
\end{equation*}
$$

Note that (3.2) is true for $q=1$ by (3.1). Together (3.1) and (3.2) give

$$
\operatorname{dim}\left(\frac{M_{P}}{J_{q+2}}\right)=\operatorname{dim}\left(\frac{M_{P}}{J_{q+1}}\right)+\operatorname{dim}\left(\frac{J_{q+1}}{J_{q+2}}\right)=\operatorname{dim}\left(\frac{M_{P}}{J_{1}}\right)+\sum_{i=1}^{q+1} \operatorname{dim}\left(\frac{J_{i}}{J_{i+1}}\right)
$$

so that one by induction has that (3.2) is true for $q=r$. Thus, by Proposition 2.7 one has

$$
r \geq 1+\operatorname{dim}\left(\frac{M_{P}}{\left(f_{1}, f_{2}\right)_{P}}\right) \geq 1+\sum_{i=1}^{r} \operatorname{dim}\left(\frac{J_{i}}{J_{i+1}}\right)
$$

Because all $r+1$ terms in the right hand sides are natural numbers and their sum is at most r, one term is zero. Therefore $J_{q}=J_{q+1}$ for some $1 \leq q \leq r$. If $q=r$ then

$$
\prod_{i=1}^{r} t_{i}=\prod_{i=1}^{r} t_{i} \cdot 1+0 \in\left(\prod_{i=1}^{r} t_{i}\right) \mathcal{O}_{P}+\left(f_{1}, f_{2}\right)_{P}=\left(f_{1}, f_{2}\right)_{P}
$$

as desired. Otherwise

$$
\prod_{i=1}^{q} t_{i}=\prod_{i=1}^{q} t_{i} \cdot 1+0 \in\left(\prod_{i=1}^{q} t_{i}\right) \mathcal{O}_{P}+\left(f_{1}, f_{2}\right)_{P}=\left(\prod_{i=1}^{q+1} t_{i}\right) \mathcal{O}_{P}+\left(f_{1}, f_{2}\right)_{P}
$$

so that

$$
\prod_{i=1}^{q} t_{i}=\left(\prod_{i=1}^{q+1} t_{i}\right) \phi+\psi
$$

for some $\phi \in \mathcal{O}_{P}$ and $\psi \in\left(f_{1}, f_{2}\right)_{P}$. It follows that

$$
\left(\prod_{i=1}^{q} t_{i}\right)\left(1-t_{q+1} \phi\right)=\psi \in\left(f_{1}, f_{2}\right)_{P}
$$

but because $t_{q+1} \in M_{P}$ implies

$$
\left(1-t_{q+1} \phi\right)(P)=1-t_{q+1}(P) \phi(P)=1-0 \cdot \phi(P)=1
$$

one has $\left(1-t_{q+1} \phi\right)^{-1} \in \mathcal{O}_{P}$. Since $\left(f_{1}, f_{2}\right)_{P}$ is an ideal in \mathcal{O}_{P} one has that $\prod_{i=1}^{q} t_{i} \in\left(f_{1}, f_{2}\right)_{P}$, and finally $\prod_{i=1}^{r} t_{i} \in\left(f_{1}, f_{2}\right)_{P}$.

Lemma 3.3. Let $P \in \mathcal{P}$ and $\phi \in \mathcal{O}_{P}$. Then there exists a $g \in R$ such that

$$
g \equiv \phi \quad\left(\bmod \left(f_{1}, f_{2}\right)_{P}\right) \quad \text { and } \quad g \equiv 0 \quad\left(\bmod \left(f_{1}, f_{2}\right)_{Q}\right)
$$

for all $Q \in \mathcal{P}$ such that $Q \neq P$.
Proof. Define $\mathcal{Q}=\{Q \in \mathcal{P} ; Q \neq P\}$. By Lemma 1.12 the sets \mathcal{P} and \mathcal{Q} are finite. By Lemma 1.7 there is a polynomial $h \in R$ such that $h(P)=1$ and $h(Q)=0$ for all $Q \in \mathcal{Q}$. This means that $h^{-1} \in \mathcal{O}_{P}$ and $h \in M_{Q}$ for $Q \in \mathcal{Q}$. Let

$$
r=\max _{Q \in \mathcal{Q}} I_{Q}\left(C_{1}, C_{2}\right)
$$

By Lemma $3.2 h^{r} \in\left(f_{1}, f_{2}\right)_{Q}$. Trivially, $h^{-r} \in \mathcal{O}_{P}$. Since $\phi h^{-r} \in \mathcal{O}_{P}$ and $\mathcal{O}_{P}=R+\left(f_{1}, f_{2}\right)_{P}$, by Lemma 2.9, there is an $f \in R$ and a $\psi \in\left(f_{1}, f_{2}\right)_{P}$ such that $\phi h^{-r}=f+\psi$, but then $f \equiv \phi h^{-r}\left(\bmod \left(f_{1}, f_{2}\right)_{P}\right)$. Set $g=f h^{r}$. Then

$$
g \equiv \phi h^{-r} h^{r}=\phi \quad\left(\bmod \left(f_{1}, f_{2}\right)_{P}\right) \quad \text { and } \quad g \equiv 0 \quad\left(\bmod \left(f_{1}, f_{2}\right)_{Q}\right)
$$

for all $Q \in \mathcal{Q}$.

Lemma 3.4. Let M be an ideal in R such that $\left(f_{1}, f_{2}\right) \subseteq M \subseteq R$ and $1 \notin M$. Suppose that p is a polynomial in R. Then there exists an $s \in k$ such that

$$
1 \notin M+R(p-s) .
$$

Proof. By Lemma 1.3, $m=\operatorname{dim}(R / M)$ is finite. Thus, $1, p, p^{2}, \ldots, p^{m}$ are linearly dependent modulo M, so there exist $b_{0}, \ldots, b_{m} \in k$, not all zero, such that

$$
\sum_{i=0}^{m} b_{i} p^{i} \in M
$$

By setting $n=\max \left\{i \in\{1, \ldots, m\} ; b_{i} \neq 0\right\}$ and $c_{i}=b_{i} / b_{n}$ for $0 \leq i \leq n$ one has

$$
p^{n}+c_{n-1} p^{n-1}+\cdots+c_{1} p+c_{0}=\sum_{i=0}^{n} c_{i} p^{i}=\frac{1}{b_{n}} \sum_{i=0}^{n} b_{i} p^{i}=\frac{1}{b_{n}} \sum_{i=0}^{m} b_{i} p^{i} \in M
$$

Because k is algebraically closed there exist $s_{1}, \ldots, s_{n} \in k$ such that

$$
\begin{equation*}
\prod_{i=1}^{n}\left(p-s_{i}\right)=\sum_{i=0}^{n} c_{i} p^{i} \in M \tag{3.3}
\end{equation*}
$$

Suppose toward a contradiction that $1 \in M+R\left(p-s_{i}\right)$ for all i. For each i, take $h_{i} \in M$ and $g_{i} \in R$ such that $1=h_{i}+g_{i}\left(p-s_{i}\right)$. It now follows that

$$
1=\prod_{i=1}^{n}\left(h_{i}+g_{i}\left(p-s_{i}\right)\right) \in M
$$

because upon expansion of the product, all terms are on the form

$$
h_{i_{1}} \cdots h_{i_{r}} g_{i_{r+1}}\left(p-s_{i_{r+1}}\right) \cdots g_{i_{n}}\left(p-s_{i_{n}}\right)
$$

More precisely, any term that includes an h_{i} belongs to M due to the latter being an ideal and the term $g_{1} \cdots g_{n}\left(p-s_{1}\right) \cdots\left(p-s_{n}\right)$ belongs to the ideal by (3.3). This is a contradiction, so $1 \notin M+R\left(p-s_{i}\right)$ for some i.

Lemma 3.5. $R /\left(f_{1}, f_{2}\right) \cong \prod_{P \in \mathcal{P}}\left(\mathcal{O}_{P} /\left(f_{1}, f_{2}\right)_{P}\right)$.
Proof. Consider the homomorphism

$$
\alpha: R \ni f \mapsto\left(f \bmod \left(f_{1}, f_{2}\right)_{P}\right)_{P \in \mathcal{P}} \in \prod_{P \in \mathcal{P}} \frac{\mathcal{O}_{P}}{\left(f_{1}, f_{2}\right)_{P}}
$$

Any element in the codomain of α can be written as $\left(\phi_{P} \bmod \left(f_{1}, f_{2}\right)_{P}\right)_{P \in \mathcal{P}}$ with $\left(\phi_{P}\right)_{P \in \mathcal{P}} \in \prod_{P \in \mathcal{P}} \mathcal{O}_{P}$. To show that α is surjective, take any such $\left(\phi_{P}\right)_{P \in \mathcal{P}}$. For each $P \in \mathcal{P}$ there is by Lemma 3.3 a $g_{P} \in R$ such that

$$
g_{P} \equiv \phi_{P} \quad\left(\bmod \left(f_{1}, f_{2}\right)_{P}\right) \quad \text { and } \quad g_{P} \equiv 0 \quad\left(\bmod \left(f_{1}, f_{2}\right)_{Q}\right)
$$

for all $Q \in \mathcal{P}$ with $Q \neq P$. Now let $f=\sum_{Q \in \mathcal{P}} g_{Q}$. For any $P \in \mathcal{P}$ one now has

$$
f=\sum_{Q \in \mathcal{P}} g_{Q} \equiv g_{P} \equiv \phi_{P} \quad\left(\bmod \left(f_{1}, f_{2}\right)_{P}\right)
$$

As a consequence of this, α is surjective. Let $J=\operatorname{ker} \alpha$. The first isomorphism theorem gives $R / J \cong \prod_{P \in \mathcal{P}}\left(\mathcal{O}_{P} /\left(f_{1}, f_{2}\right)_{P}\right)$. The proof is completed by showing that $J=\left(f_{1}, f_{2}\right)$.

Because $\left(f_{1}, f_{2}\right) \subseteq\left(f_{1}, f_{2}\right)_{P}$ for all $P \in \mathcal{P}$, one has $\left(f_{1}, f_{2}\right) \subseteq J$. To show the reverse inclusion, let f be an arbitrary polynomial in J and set

$$
L=\left\{g \in R ; g f \in\left(f_{1}, f_{2}\right)\right\} .
$$

Whenever it has been shown that $1 \in L$, the proof is complete.
First it is shown that L is an ideal in R satisfying $\left(f_{1}, f_{2}\right) \subseteq L \subseteq R$. The inclusions being obvious, only the first part is shown. Because of the inclusion L is non-empty. If $g_{1}, g_{2} \in L$, then $g_{1} f, g_{2} f \in\left(f_{1}, f_{2}\right)$ so that

$$
\left(g_{1}-g_{2}\right) f=g_{1} f-g_{2} f \in\left(f_{1}, f_{2}\right)
$$

because the latter is a ring. Thus, $g_{1}-g_{2} \in L$. If $h \in R$ and $g \in L$, then, since $\left(f_{1}, f_{2}\right)$ is an ideal in R, one has

$$
(h g) f=h(g f) \in\left(f_{1}, f_{2}\right)
$$

showing that $h g \in L$. Hence, L is an ideal in R.
Secondly, it is shown that for all $P \in k^{2}$ there is a polynomial $g \in L$ such that $g(P) \neq 0$. By definition $f \in J$ means that

$$
f \equiv 0 \quad\left(\bmod \left(f_{1}, f_{2}\right)_{P}\right) \quad \text { for all } \quad P \in \mathcal{P} .
$$

If $P \in \mathcal{P}$ this means that there exist polynomials $g_{1}, g_{2}, h \in R$ such that

$$
f=\frac{g_{1}}{h} f_{1}+\frac{g_{2}}{h} f_{2} \Longleftrightarrow h f=g_{1} f_{1}+g_{2} f_{2} \Longrightarrow h f \in\left(f_{1}, f_{2}\right)
$$

and $h(P) \neq 0$. Otherwise, if $P \notin \mathcal{P}$, then $f_{1}(P) \neq 0$ or $f_{2}(P) \neq 0$. Without loss of generality assume that the first holds. Then one has $f_{1} f \in\left(f_{1}, f_{2}\right)$. This completes the proof of the second property.

Using these two properties of L it shall be shown that $1 \in L$. Assume toward a contradiction that $1 \notin L$. By applying Lemma 3.4 on $M=L$ and $p=x$ one gets the existence of an $a \in k$ such that $1 \notin L+R(x-a)$. Applying the lemma again, but this time with $M=L+R(x-a)$ and $p=y$ one can find a $b \in k$ such that $1 \notin L+R(x-a)+R(y-b)$. Let $g \in L$ be arbitrary. Since the polynomial $y-b$ is monic, divison of g as a polynomial in y over $k[x]$ is admissible with

$$
g=g_{2}(y-b)+r
$$

for some $g_{2} \in k[x, y]$ and $r \in k[x]$. Dividing r by $x-a$ in $k[x]$ gives

$$
r=g_{1}(x-a)+c
$$

for some $c \in k$. Thus,

$$
g=g_{1}(x-a)+g_{2}(y-b)+c .
$$

If $c \neq 0$, then

$$
1=\frac{1}{c} \cdot c=\frac{1}{c}\left(g-g_{1}(x-a)-g_{2}(y-b)\right),
$$

but the latter clearly belongs to $L+R(x-a)+R(y-b)$, which is a contradiction. Therefore $c=0$ and one gets

$$
g(a, b)=g_{1}(a, b)(a-a)+g_{2}(a, b)(b-b)=0
$$

but since $g \in L$ is arbitrary this contradicts that there exists a $g \in L$ such that $g(a, b) \neq 0$. Hence, the assumption that $1 \notin L$ is false, completing the proof.

Finally, the proof of Bezout's theorem is merely putting the pieces together.
Proof of Bezout's Theorem. As in the proof of Theorem 1.10 we can find a line L that does not meet $C_{1} \cap C_{2}$ and that is a component of neither C_{1} nor C_{2}. Because the intersection multiplicities do not change with a linear change of coordinates, we may apply a linear transformation that maps L to the line at infinity. Therefore we assume that C_{1} and C_{2} do not meet at infinity and that the line at infinity is not a component of either curve. This assumption gives that $\mathcal{P}=C_{1} \cap C_{2}$. Lemma 3.5 and Lemma 1.19 give

$$
\sum_{P \in C_{1} \cap C_{2}} I_{P}\left(C_{1}, C_{2}\right)=\operatorname{dim}\left(\prod_{P \in C_{1} \cap C_{2}}\left(\mathcal{O}_{P} /\left(f_{1}, f_{2}\right)_{P}\right)\right)=\operatorname{dim} \frac{R}{\left(f_{1}, f_{2}\right)}=n_{1} n_{2}
$$

completing the proof.

4 Simple Points

Before stating and proving Max Noether's theorem and its consequences we introduce simple points in this separate section.

Definition 4.1. A point P on an affine curve $C: f=0$ is said to be simple if ∇f does not vanish at P.

In other words, a point (a, b) on an affine curve is simple if $f_{1}^{\prime}(a, b) \neq 0$ or $f_{2}^{\prime}(a, b) \neq 0$, where f_{1}^{\prime} and f_{2}^{\prime} are the partial derivatives of f. Because we will have reason to consider simple points on the line at infinity, we need a projective definition as well. Note that if $F \in k[X, Y, Z]$ is homogeneous of order n, then the partial derivatives $F_{i}^{\prime}, i=1,2,3$, are homogeneous of order $n-1$. This is what makes the projective definition good.

Definition 4.2. A point P on a projective curve $C: F=0$ is said to be simple if $\nabla F(P) \neq 0$. If this is the case the tangent of C at P is defined as the line

$$
F_{1}^{\prime}(P) X+F_{2}^{\prime}(P) Y+F_{3}^{\prime}(P) Z=0
$$

the definition being independent of the representative for P.
Note that by Euler's theorem (Fulton 2008, p. 3) the tangent intersects C at P. As usual we must verify the following properties prior to making simplifying assumptions:
(i) If (a, b) is a simple point on the affine curve $f=0$, then $[a, b, 1]$ is a simple point on the projective curve $F=0$, where F is the homogenization of f.
(ii) If F is the homogenization of f and $[a, b, 1]$ is a simple point on $F=0$, then (a, b) is a simple point on $f=0$.
(iii) Linear coordinate changes map simple points to simple points.

We now show these assertions.
(i) Suppose that (a, b) is a simple point on $f=0$. Then $f_{i}^{\prime}(a, b) \neq 0$ for some $i \in\{1,2\}$. Let $F=Z^{n} f(X / Z, Y / Z)$, where $n=\operatorname{deg} f$, be the homogenization of f. Then

$$
F_{i}^{\prime}=Z^{n} f_{i}^{\prime}(X / Z, Y / Z) \cdot \frac{1}{Z}=Z^{n-1} f_{i}^{\prime}(X / Z, Y / Z)
$$

so that $F_{i}^{\prime}(a, b, 1)=f_{i}^{\prime}(a, b)$ showing that $[a, b, 1]$ is a simple point on $F=0$.
(ii) Let $[a, b, 1]$ be a simple point on $F=0$ where $F=Z^{n} f(X / Z, Y / Z)$ for some $f \in k[x, y]$ with $\operatorname{deg} f=n$. Then $F_{i}^{\prime}(a, b, 1)=f_{i}^{\prime}(a, b)$ for $i \in\{1,2\}$ as above, and a computation shows that

$$
F_{3}^{\prime}=n Z^{n-1} f(X / Z, Y / Z)-Z^{n-2}\left(X f_{1}^{\prime}(X / Z, Y / Z)+Y f_{2}^{\prime}(X / Z, Y / Z)\right),
$$

so insertion gives

$$
F_{3}^{\prime}(a, b, 1)=-a f_{1}^{\prime}(a, b)-b f_{2}^{\prime}(a, b)
$$

since $f(a, b)=0$. If both $f_{1}^{\prime}(a, b)=0$ and $f_{2}^{\prime}(a, b)=0$, then $F_{i}^{\prime}(a, b, 1)=0$ for all $i \in\{1,2,3\}$, contradicting the assumption, so (a, b) must be a simple point.
(iii) Suppose that P is a simple point on $F=0$ and suppose that points of \mathbb{P}_{k}^{2} are transformed with $P \mapsto M P$ where M is an invertible 3×3 matrix. Then polynomials are mapped with the map given in (1.5) on page 11 , which we will here denote by $F \mapsto F \circ M^{-1}$. It is easy to verify that

$$
\nabla\left(F \circ M^{-1}\right)=\left(M^{-1}\right)^{t}(\nabla F) \circ M^{-1}
$$

from which it follows that

$$
\nabla\left(F \circ M^{-1}\right)(M P)=\left(M^{-1}\right)^{t} \cdot \nabla F(P) \neq 0
$$

by the assumption on P and the fact that $\left(M^{-1}\right)^{t}$ is invertible.
It is clear that given two distinct points there is a unique line passing through them. If we dispense with the assumption that the points are distinct, we arrive at the following proposition.

Proposition 4.3. Assume that k is an infinite field. Suppose that P is a simple point on C. The tangent of C at P is the unique line L such that $I_{P}(C, L) \geq 2$.

Proof. We first show that we without loss of generality can work in the affine plane with P being the origin and $x=0$ being the tangent. We start in the U, V, W projective plane. Let $C: F=0, P=\left[U_{0}, V_{0}, W_{0}\right]$ and $m_{1 i}=F_{i}^{\prime}(P)$. Set $\mathbf{m}_{1}=\left(m_{11}, m_{12}, m_{13}\right)$. Let K be the kernel of the map

$$
(a, b, c) \mapsto a U_{0}+b V_{0}+c W_{0} .
$$

Since $\operatorname{dim} K=2$ and $\mathbf{m}_{1} \in K$ there is a vector $\mathbf{m}_{2} \in K$ such that \mathbf{m}_{1} and \mathbf{m}_{2} are linearly independent. Since C has only finitely many linear components it is possible to choose a vector (a, b, c) from k^{3} that does not lie in K, such that $a U+b V+c W$ is not a component of C. Set $\mathbf{m}_{3}=(a, b, c) /\left(a U_{0}+b V_{0}+c W_{0}\right)$.

Take M to be the 3×3 matrix whose rows are $\mathbf{m}_{1}, \mathbf{m}_{2}$ and \mathbf{m}_{3}. By applying the projective transformation

$$
\left[\begin{array}{c}
X \\
Y \\
Z
\end{array}\right]=M\left[\begin{array}{c}
U \\
V \\
W
\end{array}\right]
$$

we see that P maps to the origin and the tangent line $m_{11} U+m_{12} V+m_{13} W=0$ is mapped to $X=0$. Furthermore, the line at infinity is by construction not a component of the transformed curve, so we may consider C an affine curve and work in the affine plane.

We first show that the tangent line actually satisfies the given requirements. Note that $M=R x+R y$ is the ideal in R consisting of all curves intersecting the origin, and $M_{P}=\mathcal{O}_{P} x+\mathcal{O}_{P} y$. We have $f \in M$, where $C: f=0$. The construction implies that

$$
f=x+g
$$

where $g=\sum_{2 \leq i+j \leq n} c_{i j} x^{i} y^{j}$ are the higher terms. (To simplify notation we here take the liberty to identify the curves with their defining polynomials.) By Proposition 2.11, $I_{P}(x, f)=I_{P}(x, g)$. The same proposition can be applied as long as there is a term in g with a factor x to finally get $I_{P}(x, f)=I_{P}(x, g(0, y))$. If $g(0, y)=0$ the intersection multiplicity is infinite and we are done. Otherwise let $m \geq 2$ be the largest integer such that $g(0, y)=y^{m} h$ for some h. By construction $h(0) \neq 0$ so Propositions 2.6 and 2.10 give $I_{P}(x, h)=0$, and

$$
I_{P}(x, f)=I_{P}\left(x, y^{m} h\right)=I_{P}\left(x, y^{m}\right)+I_{P}(x, h)=I_{P}\left(x, y^{m}\right)
$$

After m further applications of Proposition 2.10 one has

$$
I_{P}(x, f)=m I_{P}(x, y)
$$

By Proposition 2.7 one finally has $I_{P}(x, f)=m \geq 2$.
Lastly, to show the uniqueness suppose $L: a x+b y+c=0$ is any line such that $I_{P}(L, C) \geq 2$ where $C: f=x+g$. Firstly, $c=0$ by Proposition 2.6. Suppose toward a contradiction that $b \neq 0$. Then we can make the linear change of variables

$$
\left[\begin{array}{l}
u \\
v
\end{array}\right]=\left[\begin{array}{ll}
1 & 0 \\
a & b
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]
$$

and let $\widetilde{L}: v=0$ and $\widetilde{C}: \widetilde{f}=u+\widetilde{g}=0$, where \widetilde{g} are the higher terms, be the images of L and C, respectively. Write $\widetilde{g}=v \widetilde{h}+u^{2} \widetilde{r}$ where $\overparen{h} \in k[u, v]$ and $\tilde{r} \in k[u]$. A computation using the same propositions as before shows that

$$
\begin{aligned}
I_{P}(v, \widetilde{f}) & =I_{P}\left(v, u+v \widetilde{h}+u^{2} \widetilde{r}\right) \\
& =I_{P}(v, u(1+u \widetilde{r})) \\
& =I_{P}(v, u)+I_{P}(v, 1+u \widetilde{r}) \\
& =I_{P}(v, u) \\
& =1<2
\end{aligned}
$$

contrary to the assumption. Thus, $b=0$ and the line is $L: x=0$ as desired.
A curve is said to be non-singular if all its points are simple.

Proposition 4.4. A non-singular curve over an algebraically closed field is irreducible.

Proof. Let C be a non-singular curve and suppose that it is reducible. Then $C=D E$ for some curves D and E. Let $C: F=0, D: G=0$ and $E: H=0$. Differentiation yields

$$
F_{i}^{\prime}=G H_{i}^{\prime}+G_{i}^{\prime} H
$$

D and E intersect at some point P. If they do not have a component in common Bezout's theorem guarantees this, and else it is obvious. Inserting this point in the above identity gives $F_{i}^{\prime}(P)=0$, so that P is not a simple point on C, contrary to the assumption, whence C must be irreducible.

The example $x^{2}-y^{3}=0$ shows that there are irreducible singular curves.

5 Max Noether's Fundamental Theorem

In this and all subsequent sections, we let k be an algebraically closed field.
Max Noether's fundamental theorem is a key part in the proof of Chasles theorem. Luckily, with the work that has been done in the proof of Bezout's theorem, the proof becomes very slick. There is a shorter formulation of the theorem that does not require the assumption that the curves C and D do not meet at infinity, but to use such a formulation one would need to replace the homomorphism $J \mapsto J(x, y, 1)$ with something that works on the line at infinity. Because the extra generality will not be necessary in this text, the assumption is kept.

Theorem 5.1 (Max Noether's Fundamental Theorem). Let $C: F=0$ and $D: G=0$ be projective curves with no common component. Assume that C and D do not meet at infinity. Suppose that H is a homogeneous polynomials in $k[X, Y, Z]$. Let $f=F(x, y, 1), g=G(x, y, 1)$ and $h=H(x, y, 1)$. If $h \in(f, g)_{P}$ for all $P \in C \cap D$, then $H=A F+B G$ for some homogeneous polynomials $A, B \in k[X, Y, Z]$ with $\operatorname{deg} A=\operatorname{deg} H-\operatorname{deg} F$ and $\operatorname{deg} B=\operatorname{deg} H-\operatorname{deg} G$.

Proof. Lemma 3.5 gives that $h \in(f, g)$ so that $h=a f+b g$ for some $a, b \in R$. The result follows by an application of Lemma 1.18.

To use Max Noether's theorem we will utilize the following proposition, the proof of which requires more theory than is given in this text, so we refer the reader to Proposition 1 of $\S 5.5$ in Fulton 2008. The proposition given here is not as general as the cited one, but the extra generality will not be needed here.

Proposition 5.2. Let $C: f=0, D: g=0$ and $E: h=0$ be affine curves. If P is a simple point on C and $I_{P}(C, E) \geq I_{P}(C, D)$ then $h \in(f, g)_{P}$.

It is easily seen that

$$
\mathcal{G}=\left\{\left(n_{P}\right)_{P \in \mathbb{P}_{k}^{2}} \in \prod_{P \in \mathbb{P}_{k}^{2}} \mathbb{Z} ; n_{P} \neq 0 \text { for at most a finite number of } P \in \mathbb{P}_{k}^{2}\right\}
$$

form an additive group under element-wise addition. We denote an element $\left(n_{P}\right)_{P \in \mathbb{P}_{k}^{2}} \in \mathcal{G}$ with the formal sum $\sum_{P \in \mathbb{P}_{k}^{2}} n_{P} P$. Usually the index is clear
from context, and will be dispensed with. If $m_{P} \geq n_{P}$ for all $P \in \mathbb{P}_{k}^{2}$ we write $\sum m_{P} P \geq \sum n_{P} P$.

Given two curves C and D that have no component in common we define their intersection cycle to be

$$
C \cdot D=\sum I_{P}(C, D) P
$$

Given curves C, D and E such that C and $D E$ do not intersect at infinity, Proposition 2.10 translates to

$$
C \cdot D E=C \cdot D+C \cdot E
$$

By performing a suitable linear change of coordinates one sees that the identity holds even if C and $D E$ do meet at infinity.

Similarly Proposition 2.11 translates to

$$
C \cdot E=C \cdot D
$$

whenever $C: F=0, D: G=0$ and $E: A F+G=0$.
We are now in a position to give a detailed proof of the following corollary, which is an instance of the Corollary of $\S 5.5$ in Fulton 2008.
Corollary 5.3. Let C, D and E be projective plane curves such that C and $D E$ do not have a common component. If all points of $C \cap D$ are simple points on C and $C \cdot E \geq C \cdot D$, then there is a curve B such that $C \cdot B=C \cdot E-C \cdot D$.

Proof. Firstly, if C and $D E$ meet at infinity we can make a linear coordinate change so that the line at infinity does not meet any of the intersection points of C and $D E$. We may therefore assume that C and $D E$ do not meet at infinity.

Let $C: F=0, D: G=0$ and $E: H=0$. Set f, g and h as in the formulation of Max Noether's theorem. The assumption $C \cdot E \geq C \cdot D$ gives that $I_{P}(C, E) \geq I_{P}(C, D)$ for all $P \in C \cap D$. Since all these points are simple and C and D do not meet at infinity, Proposition 5.2 gives that $h \in(f, g)_{P}$ for all $P \in C \cap D$. An application of Max Noether's theorem gives that $H=I F+J G$ for some homogeneous polynomials I and J. Let $B: J=0$. Now

$$
C \cdot E=C \cdot B D=C \cdot B+C \cdot D
$$

so that the result follows from rearranging the terms.

6 Pappus's, Pascal's and Chasles' Theorems

As an applications of Max Noether's theorem and its corollary we show three results which are due to Pappus, Pascal and Chasles, respectively. These results are stated and proved briefly in Fulton 2008. The proofs given here are basically the same, but more detailed.

Note that Bezout's theorem states that

$$
C \cdot D=\sum_{i=1}^{m n} P_{i}
$$

where $\operatorname{deg} C=m, \operatorname{deg} D=n$ and the points P_{i} are not necessarily distinct, whenever C and D do not share a component. We first state a lemma that will be used in the upcoming proofs.

Lemma 6.1. Let C and D be curves. If P is a simple point on C and $P \notin D$, then P is a simple point on $C D$.

Proof. Let $C: f=0$ and $D: g=0$. Then by definition $C D: f g=0$ so that by differentiating and inserting P one has

$$
(f g)_{1}^{\prime}(P)=f_{1}^{\prime}(P) g(P)+f(P) g_{1}^{\prime}(P)=f_{1}^{\prime}(P) g(P)
$$

by the assumption that $P \in C$. Similarly $(f g)_{2}^{\prime}(P)=f_{2}^{\prime}(P) g(P)$ and consequently $\nabla(f g)(P)=\nabla f(P) g(P)$. The assumption that $P \notin D$ gives that $g(P) \neq 0$ and it follows that P is a simple point on $C D$.

Proposition 6.2. Let C_{1} and C_{2} be cubics with no common component, such that $C_{1} \cdot C_{2}=\sum_{i=1}^{9} P_{i}$ where all P_{i} 's are simple points on C_{1}. Suppose that D is a conic with no components in common with C_{1}, and $C_{1} \cdot D=\sum_{i=1}^{6} P_{i}$. Then P_{7}, P_{8} and P_{9} are collinear.

Proof. Because $C_{1} \cdot C_{2} \geq C_{1} \cdot D$ there is by Corollary 5.3 a curve L such that

$$
C_{1} \cdot L=C_{1} \cdot C_{2}-C_{1} \cdot D=P_{7}+P_{8}+P_{9} .
$$

L must be a line. Therefore P_{7}, P_{8} and P_{9} lie on the same line, as desired.
Corollary 6.3 (Pappus's Theorem). Let L and L^{\prime} be two distinct projective lines. Suppose that P_{1}, P_{2}, P_{3} and $P_{1}^{\prime}, P_{2}^{\prime}, P_{3}^{\prime}$ are distinct points on $L \backslash L^{\prime}$ and $L^{\prime} \backslash L$ respectively. Let $L_{i j}$ be the line through P_{i} and P_{j}^{\prime} for $i, j \in\{1,2,3\}$ with $i \neq j$. Then the three intersection points $L_{i j} \cdot L_{j i}$ for $i \neq j$ lie on a straight line.

Proof. Let C_{1} be the cubic $L_{12} L_{23} L_{31}$ and $C_{2}=L_{13} L_{21} L_{32}$. Furthermore let D be the conic $L L^{\prime}$. When the hypotheses of Proposition 6.2 have been shown, the proof is complete.

We first show that C_{1} and C_{2} do not share a component. Suppose toward contradiction that C_{1} and C_{2} have a component in common. Then two lines $L_{i j}$ and $L_{k l}$ are the same line where $j-i \equiv 1(\bmod 3)$ and $l-k \equiv 2(\bmod 3)$. If $i \neq k$ then P_{i} and P_{k} both lie on the line $L_{i j}$ so $L_{i j}=L$. It follows that $P_{j}^{\prime} \in L$ contradicting the construction. Otherwise, if $i=k$, then $j \neq l$ so that P_{j}^{\prime} and P_{l}^{\prime} lie on $L_{k l}$ and it follows that $L^{\prime}=L_{k l}$ contradicting that $P_{k} \notin L^{\prime}$. Hence, C_{1} and C_{2} do not share a component.

Similarly, if C_{1} and D share a component then without loss of generality $L=L_{i j}$ for some i and j, but this contradicts that $P_{j}^{\prime} \notin L$. Thus, C_{1} and D do not have a common component.

Let $R_{1}=L_{12} \cdot L_{21}, R_{2}=L_{13} \cdot L_{31}$ and $R_{3}=L_{23} \cdot L_{32}$. By construction

$$
C_{1} \cdot C_{2}=\sum_{i=1}^{3} P_{i}+\sum_{i=1}^{3} P_{i}^{\prime}+\sum_{i=1}^{3} R_{i}
$$

It shall be shown that $P_{1}, P_{2}, P_{3}, P_{1}^{\prime}, P_{2}^{\prime}, P_{3}^{\prime}$ and R_{1}, R_{2}, R_{3} are simple points on C_{1}.

Suppose toward a contradiction that $P_{1} \in L_{23}$. Then L_{23} goes through both P_{1} and P_{2} so that $L_{23}=L$. It then follows that $P_{3}^{\prime} \in L$, but this contradicts the assumption that $P_{3}^{\prime} \in L^{\prime} \backslash L$. Thus, $P_{1} \notin L_{23}$, and $P_{1} \notin L_{31}$ is shown similarly. Since P_{1} is a simple point on L_{12} it follows P_{1} is a simple point on C_{1} by Lemma 6.1. Similarly, $P_{2}, P_{3}, P_{1}^{\prime}, P_{2}^{\prime}, P_{3}^{\prime}$ are simple points one C_{1}.

We only show that R_{1} is a simple point on C_{1}. That also R_{2} and R_{3} are simple points is shown similarly.

Note that if $R_{1}=P_{2}$, then $P_{1}, P_{2} \in L_{12}$ so that $L_{12}=L$, which contradicts that $P_{2}^{\prime} \notin L$. Thus, $R_{1} \neq P_{2}$. Similarly $R_{1} \neq P_{1}^{\prime}$.

Suppose first that $R_{1} \in L_{23}$. Then R_{1}, P_{2} lie on both L_{21} and L_{23} and it follows that $L_{21}=L_{23}$. Now both P_{1}^{\prime} and P_{3}^{\prime} lie on L_{23} and it follows that $L_{23}=L^{\prime}$, but this contradicts that $P_{2} \notin L^{\prime}$. Suppose next that $R_{1} \in L_{31}$. Then R_{1}, P_{1}^{\prime} lie on both L_{31} and L_{21} so that $L_{31}=L_{21}$. Now one gets the contradiction that $P_{1}^{\prime} \in L$. Therefore $R_{1} \in L_{12}, R_{1} \notin L_{23}$ and $R_{1} \notin L_{31}$ Lemma 6.1 gives that R_{1} is a simple point on C_{1}.

The next named result we will show is Pascal's theorem, and to show it we will utilize a property of conics. To keep the proof of Pascal's theorem relatively clean we state the result as a lemma.

Lemma 6.4. If three distinct points of a conic are collinear, then it is reducible.
Proof. Let L be the line through the distinct points, and let C be the conic. If L and C do not share a component, then the weak form of Bezout's theorem states that they intersect in at most two points, but since they intersect in three points the curves must have a common component. Because the only component of L is L itself, it is a component of C, showing that C is reducible.

The very short formulation of this the next corollary affords the clarification that the sides might need to be extended outside the conic.

Corollary 6.5 (Pascal's Theorem). Suppose that a hexagon is inscribed in an irreducible conic. Then the intersections of the opposite sides are collinear.

Proof. Let D be the conic and let P_{1}, \ldots, P_{6} be the distinct points on the hexagon. Define L_{i} to be the line through P_{i} and P_{i+1} for $i=1, \ldots, 5$ and L_{6} the line through P_{6} and P_{1}. Set $C_{1}=L_{1} L_{3} L_{5}$ and $C_{2}=L_{2} L_{4} L_{6}$.

First it is shown that C_{1} and C_{2} do not share a component. If $L_{i}=L_{j}$ for any two i and j, then three distinct points of D are collinear. An application of the previous lemma gives that D is reducible contrary to the assumption. Thus, $L_{i} \neq L_{j}$ for all $i \neq j$.

Let $R_{i}=L_{i} \cdot L_{i+3}$ be the intersections of the opposite sides. By construction

$$
C_{1} \cdot C_{2}=\sum_{i=1}^{6} P_{i}+\sum_{i=1}^{3} R_{i}
$$

and $C_{1} \cdot D=\sum_{i=1}^{6} P_{i}$. It only remains to show that the points are simple points on C_{1} to be allowed to use Proposition 6.2, after which the result is immediate.

It is shown that P_{1} is a simple point on C_{1}. That P_{2}, \ldots, P_{6} are simple points is shown similarly. First suppose that $P_{1} \in L_{i}$ for some $i \in\{3,5\}$. Then the points P_{1}, P_{i}, P_{i+1} of D lie on a line. The lemma gives that D is reducible, contrary to the assumption. Hence, $P_{1} \in L_{1}$, but $P_{1} \notin L_{3}$ and $P_{1} \notin L_{5}$. Lemma 6.1 gives that P_{1} is a simple point.

We now show that $R_{i} \neq P_{j}$ for all meaningful i and j. Suppose toward a contradiction that $R_{i}=P_{j}$ for some i and j. Note that $R_{i} \in L_{i}$ and $R_{i} \in L_{i+3}$. It holds that

$$
(j \neq i \wedge j \neq i+1) \vee(j \neq i+3 \wedge j \neq l)
$$

where $l=i+4$ if $i \neq 3$ or $l=1$ otherwise. It follows that three distinct points of D are collinear, so that D is reducible, but this is impossible, so $R_{i} \neq P_{j}$ as desired.

We show that R_{1} is a simple point, but the same procedure applies to R_{2} and R_{3}. If $R_{1} \in L_{3}$, then the distinct points R_{1} and P_{4} lie on both L_{3} and L_{4}, whence $L_{3}=L_{4}$, which is a contradiction. If $R_{1} \in L_{5}$, then the distinct points R_{1} and P_{5} lie on both L_{4} and L_{5}, whence $L_{4}=L_{5}$, which is also contradiction. Thus, R_{1} belongs to exactly one of L_{1}, L_{3} and L_{5} so Lemma 6.1 gives that R_{1} is a simple point on C_{1}.

By an application of Proposition 6.2 the proof is complete.
The next theorem is given in Fulton 2008 with weaker conditions, namely that the curve C is only assumed to be irreducible and not non-singular. We have opted for including the restriction that C be non-singular to simplify both the formulation and the proof. This theorem is the same as the Cubic CayleyBacharach theorem given in Silverman and Tate 1992.

Theorem 6.6 (Chasles' Theorem). Suppose that C is a non-singular cubic such that $C \cdot C^{\prime}=\sum_{i=1}^{9} P_{i}$ for some cubic C^{\prime} and not necessarily distinct points P_{i}. If $C \cdot C^{\prime \prime}=\sum_{i=1}^{8} P_{i}+Q$ for some cubic $C^{\prime \prime}$, then $Q=P_{9}$.

Proof. Assume toward a contradiction that $P_{9} \neq Q$. Let L be a line that passes through P_{9}, but not through Q. Bezout's theorem gives that $C \cdot L=P_{9}+R+S$ for some not necessarily distinct points R and S. By using Proposition 2.10 one has that

$$
C \cdot C^{\prime \prime} L=\sum_{i=1}^{8} P_{i}+Q+P_{9}+R+S=C \cdot C^{\prime}+Q+R+S
$$

The assumption gives that all involved points are simple, so an application of Corollary 5.3 guarantees the existence of a curve L^{\prime} (necessarily a line) such that $C \cdot L^{\prime}=Q+R+S$. If R and S are distinct L and L^{\prime} have two points in common so $L=L^{\prime}$. Otherwise one gets that $L=L^{\prime}$ by using the uniqueness of Proposition 4.3. It finally follows that $P_{9}=Q$, contradicting the assumption, whence $P_{9}=Q$.

7 Addition on Elliptic Curves

In this last section we apply the results shown to show that addition on an elliptic curve gives rise to an abelian group. We will use the following definition of elliptic curves.

Definition 7.1. An elliptic curve is a non-singular cubic curve.
Let C be any elliptic curve. Given any two points $P, Q \in C$ there is by Bezout's theorem and Proposition 4.3 a unique line L such that $C \cdot L=P+Q+R$. We define the binary composition $*$ on C by $P * Q=R$.

Take any point $\mathcal{O} \in C$. We define addition on C by $P+Q=\mathcal{O} *(P * Q)$. That $(C,+)$ is an abelian group is verified by the next four propositions.

Proposition 7.2. $P+Q=Q+P$ for all $P, Q \in C$.

Proof. It is clear that $P * Q=Q * P$, since there is only one line containing both P and Q, counting multiplicity. The result follows from this.

Proposition 7.3. $P+\mathcal{O}=P$ for all $P \in C$.
Proof. Let L be the line containing P and \mathcal{O} and let $C \cdot L=P+\mathcal{O}+R$. By definition $P * \mathcal{O}=R$, but then $P+\mathcal{O}=\mathcal{O} * R$. The definition gives $\mathcal{O} * R=P$, completing the proof.

Proposition 7.4. For all $P \in C$ there exists a $Q \in C$ such that $P+Q=\mathcal{O}$.
Proof. Let $R=\mathcal{O} * \mathcal{O}$, and let L_{1} be the line such that $C \cdot L_{1}=2 \mathcal{O}+R$. We claim that $Q=P * R$ meets the requirements. Let L_{2} be the line such that $C \cdot L_{2}=P+Q+R$. By definition we now have

$$
P+Q=\mathcal{O} *(P * Q)=\mathcal{O} * R=\mathcal{O}
$$

Proposition 7.5. $P+(Q+R)=(P+Q)+R$ for all $P, Q, R \in C$.
Proof. We will use parentheses to distinguish between addition in intersection cycles and addition on the cubic. Let L_{1}, \ldots, L_{6} be the lines such that

$$
\begin{gathered}
C \cdot L_{1}=Q+R+Q * R, \\
C \cdot L_{2}=\mathcal{O}+Q * R+(Q+R), \\
C \cdot L_{3}=P+(Q+R)+P *(Q+R), \\
C \cdot L_{4}=P+Q+P * Q, \\
C \cdot L_{5}=\mathcal{O}+P * Q+(P+Q), \\
C \cdot L_{6}=(P+Q)+R+(P+Q) * R .
\end{gathered}
$$

By letting $C^{\prime}=L_{1} L_{3} L_{5}$ and $C^{\prime \prime}=L_{2} L_{4} L_{6}$ one sees that
$C \cdot C^{\prime}=\mathcal{O}+P+Q+R+P * Q+Q * R+(P+Q)+(Q+R)+P *(Q+R)$
and
$C \cdot C^{\prime \prime}=\mathcal{O}+P+Q+R+P * Q+Q * R+(P+Q)+(Q+R)+(P+Q) * R$.
By an application of Chasles' theorem, $P *(Q+R)=(P+Q) * R$, so that

$$
P+(Q+R)=\mathcal{O} *(P *(Q+R))=\mathcal{O} *((P+Q) * R)=(P+Q)+R
$$

References

David Eisenbud, Mark Green and Joe Harris (June 1996). "Cayley-Bacharach Theorems and Conjectures". In: Bulletin (New Series) of the American Mathematical Society 33.3, pp. 295-324.
Fulton, William (2008). Algebraic Curves (An Introduction to Algebraic Geometry). URL: http://www.math.lsa.umich.edu/~wfulton/CurveBook.pdf.
Silverman, Joseph H. and John Tate (1992). Rational Points on Elliptic Curves (Undergraduate Texts in Mathematics). Ed. by J.H. Ewing, F.W. Gehring, and P.R. Halmos. Springer-Verlag. ISBN: 0-387-97825-9.

[^0]: ${ }^{1}$ This F_{0} is of course different from the F_{0} in Lemma 1.15.

