
Abstract

In this thesis we state and give elementary proofs for some fundamen-
tal results about intersections of algebraic curves, namely Bezout’s, Max
Noether’s, Pappus’s, Pascal’s and Chasles’ theorems. Our main tools are
linear algebra and basic ring theory. We conclude the thesis by applying
the results to elliptic curves.
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Introduction

The main motivation for this thesis is to rigorously define addition on elliptic
curves and to show that the resulting structure is an abelian group. In order to
do this, we use Bezout’s theorem and Chasles’ theorem, which we also state and
prove. Since the latter relies on Max Noether’s theorem in its proof, we deduce
that theorem as well.

In the first chapter we show a weak version of Bezout’s theorem (1.10),
namely that two curves of degree n1 and n2, respectively, intersect in at most
n1n2 distinct points, under suitable conditions. We do this by first showing the
weak theorem for the affine plane and then strengthening it by performing a
number of projective coordinate changes. Along the way we develop the basic
correspondence between the affine and projective plane.

The second chapter is concerned with intersection multiplicities, since these
are needed in the strong version of Bezout’s theorem. The chapter is introduced
with an affine definition, followed by properties thereof that will be used in the
subsequent chapters. We then show that the definition extends to the projec-
tive plane, and that we can make linear changes of variables without affecting
multiplicities.

After dealing with intersection multiplicities we state and prove Bezout’s
theorem (3.1) in Chapter 3, which is the result that any two curves of degree n1
and n2, respectively, intersect at exactly n1n2 points, under certain conditions
and counting multiplicities. Our proof is mostly a detailed version of the outline
given in Appendix A Section 4 in Silverman and Tate 1992, albeit in a different
order. We have deviated somewhat from the outline by proving Lemma 1.18
in the first chapter, although we only need it for a result which we could have
given a more direct proof of. The lemma is not part of the outline in Silverman
and Tate 1992, but is instead inspired by the proof of Max Noether’s theorem
in Fulton 2008.

Before stating and proving Max Noether’s theorem we introduce simple
points, and deduce some consequences necessary for subsequent chapters.

With all the preparation in the earlier chapters, the proof of Max Noether’s
theorem (5.1) in Chapter 5 is two lines. In this chapter we also introduce
intersection cycles to simplify bookkeeping of intersections. Before continuing
we cite a proposition that will allow us to use Max Noether’s theorem in the
proceeding chapter.

The goal of Chapter 6 is to prove Chasles’ theorem (6.6). Due to the amount
of work spent on developing the fundamentals in previous sections, the proof
is quite short, so we fill out the section by deducing two other interesting con-
sequences of Max Noether’s theorem, namely Pappus’s and Pascal’s theorem.
These results date back to the fourth and seventeenth century respectively. For
a more detailed reference see David Eisenbud and Harris 1996.

Finally, in the last chapter we use the theorems shown to give a definition
of addition on elliptic curves, and to show that the curve endowed with this
addition constitutes an abelian group.

We assume the reader is familiar with the definition of the projective plane,
P2
k over a given base field. Furthermore, the reader is assumed to be accustomed

to linear algebra and elementary ring theory.
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Notation

|A| The cardinality of the set A.

A ⊆ B The set A is a subset of B.

A ⊂ B The set A is a proper subset of B.

k A field.

P2
k The projective plane over k.

dimV The dimension of the vector space V over k.

U ⊕ V The direct sum of U and V .

R[x1, . . . , xn] The polynomial ring in n variables over R.

R(x1, . . . , xn) The field of fractions over R[x1, . . . , xn].

R/I The quotient ring R modulo the ideal I.

(a, b) Coordinates in k2.

[A,B,C] Homogeneous coordinates in P2
k.

ϕ|S The restriction of the map ϕ to the set S.

f ′i The partial derivative of f w.r.t. the i:th argument.

∇f The gradient of f , i.e. (f ′1, . . . , f
′
n).
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1 A Weak Form of Bezout’s Theorem

In this first section we set out to prove a weak form of Bezout’s theorem. Before
formulating it, we will state and prove lemmas used in its proof.

Through the entirety of this text, we let k be a field. Whenever we find the
need to introduce extra conditions on k, those conditions will be stated.

The next lemma is a solution to exercise 2.42(a) in Fulton 2008.

Lemma 1.1. Let R be a ring and suppose that I and J are ideals in R such
that I ⊆ J . Then

ϕ : R/I 3 r + I 7→ r + J ∈ R/J
is a well-defined surjective homomorphism.

Proof. Suppose that r1 + I = r2 + I. Then r1 − r2 ∈ I so that the assumption
gives r1 − r2 ∈ J . Thus, r1 + J = r2 + J , showing that ϕ is well-defined.

Because

ϕ(a+ I) + ϕ(b+ I) = (a+ J) + (b+ J) = a+ b+ J = ϕ(a+ b+ I)

and
ϕ(a+ I)ϕ(b+ I) = (a+ J)(b+ J) = ab+ J = ϕ(ab+ I)

ϕ is a homomorphism.
For any element r + J ∈ R/J one can take one of its preimages r ∈ R and

get ϕ(r + I) = r + J . Hence, ϕ is surjective.

Lemma 1.2. Let R be a ring that contains k as a subring. Suppose that I and
J are ideals in R such that I ⊆ J . Then

dim(J/I) = dim J − dim I.

In particular, if dim J is finite, then dim(J/I) and dim I are finite.

Proof. If I = J , then

dim(J/I) = 0 = dim J − dim J = dim J − dim I.

Otherwise, it may be assumed that I ⊂ J . If s ∈ k ∩ I with s 6= 0, then s is
invertible in R, so that 1 = s−1s ∈ I, and consequently I = R contradicting that
I ⊂ J . Thus, k ∩ I = {0}. Consider the natural homomorphism ϕ : R → R/I.
If s, t ∈ k then

ϕ(s) = ϕ(t) =⇒ ϕ(s− t) = 0

=⇒ s− t ∈ k ∩ I
=⇒ s− t = 0

=⇒ s = t

showing that the restriction of ϕ|k is an isomorphism k ∼= ϕ(k). Hence, one may
identify k with ϕ(k).

Consider ϕ|J : J → J/I. Suppose that s, t ∈ k and that f, g ∈ J . Because
s, t ∈ R one has sf + tg ∈ J due to J being an ideal in R, and

ϕ(sf + tg) = ϕ(s)ϕ(f) + ϕ(t)ϕ(g) = sϕ(f) + tϕ(g).

This shows that ϕ|J is a linear transformation. The rank-nullity theorem gives

dim im (ϕ|J) + dim ker (ϕ|J) = dim J ⇐⇒ dim(J/I) = dim J − dim I.
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Lemma 1.3. Let R be a ring containing k as a subring. Let I, J and K be
ideals in R such that I ⊆ J ⊆ K. Then

dim(K/J) = dim(K/I)− dim(J/I).

In particular, if dim(K/I) is finite, then dim(K/J) and dim(J/I) are finite.

Proof. If I = R, the equality to prove is 0 = 0 − 0. Otherwise, one may as in
the proof of Lemma 1.2 assume that I ⊂ R, with the natural homomorphism
ϕ : R→ R/I being an isomorphism when restricted to k. Thus, we may regard
k as a subring of R/I. By the third isomorphism theorem J/I and K/I are
ideals in R/I, and J/I ⊆ K/I. Furthermore, the same theorem gives

(K/I)/(J/I) ∼= K/J

whence applying Lemma 1.2 completes the proof.

We first define algebraic curves in k2. Curves in the projective plane P2
k are

defined analogously. It is easy to verify that the relation ∼ on k[x, y] defined by
f ∼ g if and only if f = λg for some λ ∈ k with λ 6= 0 is an equivalence relation.
The equivalence classes of non-constant polynomials under∼ are called algebraic
curves. If f is a representative of C then f is called the defining polynomial of
C and one writes C : f = 0. It is clear that the set

{(a, b) ∈ k2 ; f(a, b) = 0}

does not depend on the representative f of C. Thus, every algebraic curve
induces a unique point set in k2. The reverse does not hold as is seen by the
fact that the distinct algebraic curves x = 0 and x2 = 0 induce the same point
set. If f(P ) = 0 one writes P ∈ C. Similarly, we will treat algebraic curves as
point sets whenever necessary. For example C ∩D means the set of intersection
points of the curves C and D.

An irreducible polynomial g ∈ k[x, y] is said to be a component of C : f = 0
if g | f . It follows that the curves C1 : f1 = 0 and C2 : f2 = 0 have no
components in common if and only if gcd(f1, f2) = 1.

To relate points of the affine plane k2 with points of P2
k the usual injection

k2 3 (a, b) 7→ [a, b, 1] ∈ P2
k

is used. To pass from algebraic curves in k2 to their projective counterparts in
P2
k consider the map ξ : k[x, y] 3 f 7→ F ∈ k[X,Y, Z] defined by

F =
∑

i+j≤n

ai,jX
iY jZn−i−j where f =

∑
i+j≤n

ai,jx
iyj .

where deg f = n. Because ξ maps polynomials to polynomials and f ∼ g if and
only if ξ(f) ∼ ξ(g), ξ can be seen as a map between algebraic curves.

The map ξ has the desirable property that it respects the induced point sets
in the sense that if C : f = 0 and C̃ : F = 0 is the projective counterpart with
F = ξ(f), then

(a, b) ∈ C ⇐⇒ [a, b, 1] ∈ C̃.
This follows from that f(a, b) = F (a, b, 1).

It shall be shown that the mapping of curves from k2 to P2
k is injective and

respects multiplication. In order to simplify this two lemmas are stated. The
proofs, which are trivial, have been left out.

6



Lemma 1.4. Suppose that R is a subring of k[x1, . . . , xn] and let S be a com-
mutative ring that contains k as a subring. If s1, . . . , sn are some fixed elements
of S, then the evaluation map

R 3 f 7→ f(s1, . . . , sn) ∈ S

is a homomorphism.

Lemma 1.5. Suppose that R is a subring of k[x1, . . . , xn] and that S is a
commutative ring containing k as a subring. Assume that s1, . . . , sn ∈ S are
algebraically independent over k, i.e.

f(s1, . . . , sn) = 0 =⇒ f = 0

for all f ∈ k[x1, . . . , xn]. Then

R 3 f 7→ f(s1, . . . , sn) ∈ S

is an injective homomorphism.

Note that X/Z and Y/Z are algebraically independent elements of k(X,Y, Z)
over k. Also note that the map f 7→ F above can be written as

ξ : k[x, y] 3 f 7→ Zmf(X/Z, Y/Z) ∈ k[X,Y, Z], deg f = m. (1.1)

Because

Zmf(X/Z, Y/Z) · Zng(X/Z, Y/Z) = Zm+n(fg)(X/Z, Y/Z)

by Lemma 1.5 and deg(fg) = m+n, ξ(f)ξ(g) = ξ(fg) so that ξ respects multi-
plication. If Zmf(X/Z, Y/Z) = Zng(X/Z, Y/Z), then by comparing degrees of
the sides one gets that deg f = deg g. Thus, f(X/Z, Y/Z) = g(X/Z, Y/Z) and
Lemma 1.5 gives f = g, showing that ξ is injective and respects multiplication.

That ξ is not a homomorphism is for example seen by the fact that f = x
and g = y2 map to F = X and G = Y 2, respectively, but f + g = x+ y2 maps
to XZ + Y 2 6= F +G.

Because ξ is injective and respects multiplication g is a component of C if
and only if the homogenization G is a component of the corresponding projective
curve C̃. We may now dispense with the tildes and pass between k2 and P2

k

without notice. We have shown how to pass from affine curves to projective
curves. The next lemma shows when we may pass from a projective curve to
an affine one using the maps introduced.

Lemma 1.6. Let C : F = 0 be a projective curve, where F is a homogeneous
polynomial in k[X,Y, Z]. If the line at infinity, Z = 0, is not a component of
C, then F = ξ(f) for some f ∈ k[x, y].

Proof. Let n = degF . Note that

F = ZnF (X/Z, Y/Z, 1).

By setting f = F (x, y, 1) one has

F = Znf(X/Z, Y/Z)
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and deg f ≤ degF = n. Suppose toward a contradiction that deg f < n and let
m = deg f . Then Zmf(X/Z, Y/Z) ∈ k[X,Y, Z] and

Z | Zn−m =⇒ Z | Zn−mZmf(X/Z, Y/Z) ⇐⇒ Z | F

contradicting the assumption. Thus, deg f = n and F = ξ(f).

From now on we fix the notation R = k[x, y].

Lemma 1.7. Let {Pi}mi=1 be a set of m points of k2. Then for each i there
exists a polynomial hi ∈ R such that hi(Pj) = δij where δij is the Kronecker
delta.

Proof. Let i be given and let Pj = (xj , yj) for all j. For each j let Kj be the
kernel of

k3 3 (a, b, c) 7→ axj + byj + c ∈ k.

Suppose Kj ⊆ Ki. Then because (1, 0,−xj) ∈ Kj one has (1, 0,−xj) ∈ Ki so
that

xi − xj = 1 · xi + 0 · yi + (−xj) = 0

showing that xi = xj . Similarly, yi = yj . Thus, Pi = Pj so that i = j.
Therefore, one may for each j 6= i take a vj = (aj , bj , cj) ∈ k3 such that
vj ∈ Kj in but vj /∈ Ki and let

gi(x, y) =
∏
j 6=i

(ajx+ bjy + cj).

By construction gi(Pj) = 0 for all j 6= i and gi(Pi) 6= 0. Now hi = (gi(Pi))
−1gi

satisfies the requirements.

We are now in a position to formulate a weak form of Bezout’s theorem.
The assumption that the line at infinity is not a component of either curve will
be lifted later on.

Theorem 1.8. If the projective curves C1 and C2, of degree n1 and n2 respec-
tively have no common component and the line at infinity is not a component
of either curve, then C1 and C2 intersect at at most n1n2 points of k2.

Proof. By Lemma 1.6 one may let f1, f2 ∈ R such that the affine parts can be
written as C1 : f1 = 0 and C2 : f2 = 0.

Let (f1, f2) = Rf1 + Rf2 be the ideal in R generated by f1 and f2. The
theorem follows whenever it has been shown that

|C1 ∩ C2 ∩ k2| ≤ dim(R/(f1, f2)) ≤ n1n2. (1.2)

For each d ∈ Z define

φ(d) =

(
d+ 2

2

)
=

1

2
(d+ 1)(d+ 2) and Rd = {f ∈ R ; deg f ≤ d}.

Rd is a linear space over k for all d. Let

Wd = Rd−n1
f1 +Rd−n2

f2.
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Now Wd is a vector space over k such that Wd ⊆ (f1, f2) and Wd = {0} if
d < min{n1, n2}.

Because each polynomial f ∈ Rd has a unique representation

f =
∑

i+j≤d

ci,jx
iyj

with ci,j ∈ k the monomials {xiyj}i+j≤d form a basis for Rd. There are

φ(e)− φ(e− 1) =
1

2
((e+ 1)(e+ 2)− e(e+ 1)) =

1

2
(e+ 1)(e+ 2− e) = e+ 1

monomials of degree e ≤ d in Rd. Therefore, there are

φ(d) = φ(d)− φ(−1) =

d∑
e=0

(φ(e)− φ(e− 1))

monomials in Rd showing that dimRd = φ(d).
Suppose that d ≥ n1 + n2. If h ∈ Rd−n1−n2

f1f2 then h = gf1f2 for some
g ∈ R with deg g ≤ d− n1 − n2. Thus,

h = (gf1)f2 = (gf2)f1

with deg(gf1) = deg g + deg f1 ≤ d − n2 and deg(gf2) ≤ d − n1, from which
h ∈ Rd−n1f1∩Rd−n2f2 follows. Conversely suppose that h ∈ Rd−n1f1∩Rd−n2f2.
Then

h = g1f1 = g2f2

for some g1, g2 ∈ R with deg gi ≤ d− ni. It follows that f1 | g2f2, but because
gcd(f1, f2) = 1 one has f1 | g2, so that g2 = gf1 for some g ∈ R. It follows that
h = gf1f2 with

d− n2 ≥ deg g2 = deg g + deg f1 =⇒ deg g ≤ d− n1 − n2,

so that h ∈ Rd−n1−n2
f1f2 showing that

Rd−n1
f1 ∩Rd−n2

f2 = Rd−n1−n2
f1f2

for all d ≥ n1 + n2.
For all non-zero f ∈ R, the map

Rd 3 g 7→ gf ∈ Rdf

is a linear bijection. It is clearly surjective. If gf = hf for some g, h ∈ R, then
because R is an integral domain one has g = h. The linearity follows from

(ag + bh)f = a(gf) + b(hf)

for all a, b ∈ k and g, h ∈ R. Thus,

dim(Rdf) = dimRd = φ(d).

Because dim(U +V ) = dimU + dimV −dim(U ∩V ) for all subspaces of a finite
dimensional subspace one has that

dimWd = dim(Rd−n1f1) + dim(Rd−n2f2)− dim(Rd−n1−n2f1f2)
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for all d ≥ n1 + n2. Analogously with Lemma 1.2 it follows that

dim(Rd/Wd) = dimRd − dimWd

= φ(d)− φ(d− n1)− φ(d− n2) + φ(d− n1 − n2)

= n1n2,

(1.3)

where the last equality follows from a simple but lengthy calculation.
Now suppose r > n1n2 and suppose g1, . . . , gr are polynomials in R. Take

d = max{deg g1, . . . ,deg gr, n1 + n2}. Then gi ∈ Rd for all i and d ≥ n1 + n2.
Due to (1.3) there are c1, . . . , cr ∈ k not all zero such that that

r∑
i=1

cigi ≡ 0 (mod Wd) ⇐⇒
r∑

i=1

cigi ∈Wd

=⇒
r∑

i=1

cigi ∈ (f1, f2)

⇐⇒
r∑

i=1

cigi ≡ 0 (mod (f1, f2)).

This shows that any collection of more than n1n2 polynomials in R are linearly
dependent modulo (f1, f2), or in other words that

dim(R/(f1, f2)) ≤ n1n2. (1.4)

This proves the latter inequality of (1.2).
Suppose that {Pi}mi=1 ⊆ C1 ∩ C2 ∩ k2 and take for each i an hi ∈ R such

that hi(Pj) = δij . Suppose that

m∑
i=1

cihi ≡ 0 (mod (f1, f2))

for some c1, . . . , cm ∈ k. Then

m∑
i=1

cihi = g1f1 + g2f2

for some g1, g2 ∈ R and it follows that

cj =

m∑
i=1

ciδij =

m∑
i=1

cihi(Pj) = g1(Pj)f1(Pj) + g2(Pj)f2(Pj) = 0

for each j by construction and the assumption on Pj . Hence, h1, . . . , hm are
linearly independent modulo (f1, f2) showing that

m ≤ dim(R/(f1, f2)).

Since dim(R/(f1, f2)) is finite by (1.4), it follows that so is C1 ∩ C2 ∩ k2 and
one may therefore let {Pi}mi=1 = C1 ∩ C2 ∩ k2. Then

|C1 ∩ C2 ∩ k2| = m ≤ dim(R/(f1, f2))

completing the proof of (1.2).
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Corollary 1.9. If the projective curves C1 and C2 have no common component
and the projective line L is not a component of either curve, then C1 and C2

intersect at at most n1n2 points of P2
k \ L.

Proof. Given any invertible matrix M ∈ k3×3 the space P2
k is transformed with

P2
k 3

AB
C

 7→M

AB
C

 ∈ P2
k.

It is clear that this map is a well-defined bijection. If C : F = 0 is an algebraic
curve, then the transformed curve C ′ must satisfy

P ∈ C ⇐⇒ MP ∈ C ′

where MP is the point acquired by applying M to the homogeneous coordinates
of P . Due to this the polynomial F ′ defining C ′ satisfies

F ′(MP ) = F (P ) ⇐⇒ F ′(P ) = F (M−1P ).

Polynomials are therefore transformed with

k[X,Y, Z] 3 F 7→ F

M−1
XY
Z

 ∈ k[X,Y, Z]. (1.5)

Because the inverse of this map is acquired by replacing M−1 with M , the
map is a bijection. By Lemma 1.4 the map is an isomorphism. If two integral
domains are isomorphic, then so are their fields of fractions. Thus,

k(X,Y, Z) 3 Φ 7→ Φ

M−1
XY
Z

 ∈ k(X,Y, Z) (1.6)

is an isomorphism. Hence, a linear transformation of P2
k induces an isomorphism

on the set of rational expressions on k(X,Y, Z).
Let L be any projective line that is a component of neither C1 nor C2.

Considering the geometric configurations as part of the U, V,W projective plane
one can write L as

L : aU + bV + cW = 0

for some a, b, c ∈ k, not all zero. Since the space k3 is three dimensional, there
are vectors (m11,m12,m13) and (m21,m22,m23) in k3 such that the matrix

M =

m11 m12 m13

m21 m22 m23

a b c


is invertible. By considering the transformationXY

Z

 = M

UV
W


11



one has
Z = 0 ⇐⇒ aU + bV + cW = 0

so that the line at infinity in the X,Y, Z plane is mapped to L in the U, V,W
plane. This map induces an isomorphism between the X,Y, Z and U, V,W
planes, and their curves, respectively. Since L is a component of neither C1 nor
C2 the line at infinity is not a component of any of the curves corresponding to
C1 and C2 in the X,Y, Z plane. An application of Theorem 1.8 completes the
proof.

To apply the corollary one must have a line that is not a component of
either curve at disposal. We shall strengthen Corollary 1.9 considerably by not
requiring the existence of such a line. However, to do this we will require that
k is infinite.

Theorem 1.10. Let k be an infinite field. If the projective curves C1 and C2

have no common component, then |C1 ∩ C2| ≤ (degC1)(degC2)

To deduce Theorem 1.10 from Corollary 1.9 one only needs to find a line
L that is a component of neither C1 nor C2 and does not meet any of their
intersections. We now set out to show the existence of such a line using the
infinitude of k.

Lemma 1.11. Let C1, . . . , Cr be any finite collection of curves in P2
k where k is

infinite. Then there exists a line L that is not a component of any of the curves
in the collection.

Proof. Since the degree of each algebraic curve Ci is finite, there are only finitely
many lines Lij that are components of Ci. Therefore the set of all such com-
ponents {Lij}i,j is finite. However, the set of all lines is infinite, because the
map

k 3 a 7→ {[X,Y, Z] ∈ P2
k ; aX + Y + Z = 0}

is injective. Therefore there exists a line that is not a component of any of
C1, . . . , Cr.

Using the lemma, take a line L1 that is not a component of either C1 and
C2. Next, take another line L2 that is not a component of any of L1, C1 and
C2. Because L1 and L2 are distinct lines, they intersect at exactly one point,
i.e. |L1 ∩ L2| = 1. By some set theoretic manipulation one has

C1 ∩ C2 = C1 ∩ C2 ∩ P2
k = C1 ∩ C2 ∩ ((P2

k \ L1) ∪ (P2
k \ L2) ∪ (L1 ∩ L2))

By distributing C1 ∩ C2 over the intersection, taking cardinality on both sides
and using Corollary 1.9 one gets

|C1 ∩ C2| ≤ n1n2 + n1n2 + 1,

whence C1 ∩ C2 is finite. This finding we summarize in a lemma.

Lemma 1.12. Suppose that the projective curves C1 and C2 share no compo-
nent. Then C1 ∩ C2 is finite.

Proof. If the base field k is finite, C1 ∩ C2 is finite by virtue of being a subset
of P2

k, which is finite. Otherwise, k is infinite and the discussion prior to the
lemma suffices as proof.
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Lemma 1.13. Suppose that S is a finite subset of P2
k where k is infinite. Then

there are infinitely many projective lines not meeting any of the points of S.

Proof. It is shown that there exist infinitely many lines L not intersecting S
and {[0, 1, 0]}, from which the desired result follows.

Suppose toward a contradiction that there are only a finite number, n, of
lines not meeting any of the points. Any point [A,B,C] ∈ P2

k with C 6= 0 can
be written as [A/C,B/C, 1]. On the other hand if C = 0 and A 6= 0 the point
has a unique representation [1, B/A, 0]. Lastly, if C = 0 and A = 0 the point
can be uniquely represented as [0, 1, 0]. Thus, it is possible to uniquely write

S ∪ {[0, 1, 0]} = {[A1, B1, 1], . . . , [Ar, Br, 1], [1, D1, 0], . . . , [1, Dq, 0], [0, 1, 0]}

for some A1, . . . , Ar, B1, . . . , Br, D1, . . . , Dq ∈ k.
Let A be a finite subset with n + 1 elements of k \ {A1, . . . , Ar}. For each

A ∈ A choose an a ∈ k such that

a 6= 0, a 6= Bi

Ai −A
and a 6= Dj

for all i ∈ {1, . . . , r} and j ∈ {1, . . . , q}. This is possible to do since k is infinite.
Now the line

LA : X − 1

a
Y −AZ = 0

does not meet any point of S ∪ {[0, 1, 0]}, as is now shown. If [Ai, Bi, 1] ∈ L
then

Ai −
1

a
Bi −A = 0 =⇒ a =

Bi

Ai −A
contrary to the construction. If [1, Dj , 0] ∈ L then

1− 1

a
Dj = 0 =⇒ a = Dj

which also contradicts the construction. Clearly, [0, 1, 0] /∈ L.
If LA = LA′ , then since [A, 0, 1] ∈ LA one also has [A, 0, 1] ∈ LA′ so that

A − A′ = 0 after insertion into the equation of LA′ . This shows that the map
A 7→ LA is injective, but then there are n+1 lines not meeting any of the points
of S. This contradicts the supposition, whence there are infinitely many lines
not meeting S.

Using this lemma the proof of Theorem 1.10 is a simple manoeuvre.

Proof of Theorem 1.10. There are only finitely many components of C1 and C2.
By the lemma there is a line L that is not a component of either C1 and C2 and
does not meet C1 ∩ C2. Now one has

C1 ∩ C2 = C1 ∩ C2 ∩ P2
k

= C1 ∩ C2 ∩ ((P2
k \ L) ∪ L)

= (C1 ∩ C2 ∩ (P2
k \ L)) ∪ (C1 ∩ C2 ∩ L)

= (C1 ∩ C2 ∩ (P2
k \ L)),

so after taking the cardinality on both sides and using Corollary 1.9 one gets

|C1 ∩ C2| ≤ n1n2
completing the proof of Theorem 1.10.
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By the next lemma we may apply Theorem 1.10 to any algebraically closed
field.

Lemma 1.14. Any algebraically closed field is infinite.

Proof. Suppose toward a contradiction that an algebraically closed field k is
finite. Then by listing the elements one has k = {a1, . . . , an}. Now

f =

n∏
i=1

(x− ai) + 1

is a polynomial without any zero in k, contrary to the assumption that k is
algebraically closed. This completes the proof.

To further strengthen the theorem one needs to introduce intersection mul-
tiplicities. Before doing so, we show that (1.4) is in fact an equality under the
assumption that k is algebraically closed and that C1 and C2 do not meet at
infinity. As we have seen, the latter condition can be erased by applying a suit-
able linear change of variables, after which the equality holds in the entirety of
P2
k.

The following lemmas are more general than necessary at the moment, but
the additional generality will pay off greatly in the proof of Max Noether’s
fundamental theorem.

Lemma 1.15. For all F ∈ k[x1, . . . , xd] there exist unique homogeneous poly-
nomials Fi ∈ k[x1, . . . , xd] of degree i where at most a finite number of the Fi’s
are non-zero, such that F =

∑
i∈N Fi.

Proof. Let

F =
∑

j1+···+jd≤n

cj1,...,jdx
j1
1 · · ·x

jd
d .

The existence is seen by rearranging the terms so that

F =

n∑
i=0

∑
j1+···+jd=i

cj1,...,jdx
j1
1 · · ·x

jd
d︸ ︷︷ ︸

Fi

=
∑
i∈N

Fi

where Fi = 0 for i > n.
For the uniqueness suppose that F =

∑
i∈N Fi =

∑
i∈NGi where Fi and Gi

are homogeneous and at most finitely many Fi’s and Gi’s are non-zero. Let

n = max{i ∈ N ; Fi 6= 0 or Gi 6= 0}.

Then

F =

n∑
i=0

Fi =

n∑
i=0

Gi =⇒
n∑

i=0

(Fi −Gi) = 0

We now show by induction that if
∑n

i=0Hi = 0 for some homogeneous polyno-
mials Hi of degree i then Hi = 0 for i ≤ n, from which the result follows. For
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n = 0 the assumption directly yields the desired result. Assume that the result
is true for n and that

∑n+1
i=0 Hi = 0. It then follows that

−Hn+1 =

n∑
i=0

Hi

but the left hand side is either 0 or has degree n+ 1. However, the right hand
side has degree at most n. Thus, Hn+1 = 0 and

∑n
i=0Hi = 0. The induction

hypothesis gives that Hi = 0 for i ≤ n completing the induction step. By the
induction principle the proof is complete.

For any polynomial F ∈ k[X,Y, Z] define F0 = F (X,Y, 0).1

Lemma 1.16. Suppose that k is an algebraically closed field. If F = 0 and
G = 0 are projective curves not meeting at infinity, then gcd(F0, G0) = 1.

Proof. Let degF = m and set

F =
∑

i1+i2+i3=m

ci1,i2,i3X
i1Y i2Zi3 .

By rearranging the terms one has

F =
∑

i+j=m

ci,jX
iY j + Z

∑
i1+i2+i3=m

i3≥1

ci1,i2,i3X
i1Y i2Zi3−1

with ci,j = ci,j,0. Thus,

F0 =
∑

i+j=m

ci,jX
iY j

is a homogeneous polynomial in k[X,Y ]. Because k is algebraically closed one
has that

F0 =

m∏
i=1

(aiX + biY )

for some ai, bi ∈ k. Similarly, G0 =
∏n

j=1(a′jX + b′jY ) for some a′j , b
′
j ∈ k.

If F0 and G0 share a common factor, then they share a factor on the form
aX + bY . It then follows that F0 and G0 have common zeros at (tb,−ta) for all
t ∈ k, but then [b,−a, 0] is a common zero of F and G that lie on the line at
infinity, which contradicts the assumption. Hence, F0 and G0 share no factor
and gcd(F0, G0) = 1 follows as desired.

Lemma 1.17. Suppose that k is an algebraically closed field. Let F = 0 and
G = 0 be projective curves not meeting at infinity. Let H,A,B ∈ k[X,Y, Z]. If
ZH = AF +BG, then H = A′F +B′G for some A′, B′ ∈ k[X,Y, Z].

Proof. By passing to the homomorphism J 7→ J0 one has A0F0 + B0G0 = 0.
Lemma 1.16 gives that gcd(F0, G0) = 1 and it follows that F0 | B0 so that
B0 = EF0 for some E ∈ k[X,Y ]. Consequently, A0 = −EG0. Let A1 = A+EG
and B1 = B − EF . Note that ZH = A1F + B1G. Because Z is a monic

1 This F0 is of course different from the F0 in Lemma 1.15.
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polynomial one may divide A1 by viewing it as a polynomial in Z over k[X,Y ].
Doing this one gets

A1 = ZA′ + S

for some A′ ∈ k[X,Y, Z] and S ∈ k[X,Y ]. By passing to the homomorphism
J 7→ J0 one sees that

S = (A1)0 = A0 + EG0 = 0

so A1 = ZA′. Similarly, B1 = ZB′ for some B′ ∈ k[X,Y, Z]. Now

ZH = ZA′F + ZB′G

and the result follows by canceling Z.

Lemma 1.18. Let F = 0 and G = 0 be projective curves with no intersec-
tions on the line at infinity. Suppose that H is a homogeneous polynomials in
k[X,Y, Z]. Let f = F (x, y, 1), g = G(x, y, 1) and h = H(x, y, 1). If h = af + bg
for some a, b ∈ R, then H = AF + BG for some homogeneous polynomials
A,B ∈ k[X,Y, Z] with degA = degH − degF and degB = degH − degG.

Proof. Let
n = max{degH,deg a+ degF,deg b+ degG}

and
r + degH = deg a+ ra + degF = deg b+ rb + degG = n.

By passing to the isomorphism j 7→ j(X/Z, Y/Z) and multiplying by Zn one
has

ZrH = AF +BG

where A = Zdeg a+raa(X/Z, Y/Z) and B = Zdeg b+rbb(X/Z, Y/Z). By repeated
use of Lemma 1.17 one has that

H = A′F +B′G

for some A′, B′ ∈ k[X,Y, Z].
By virtue of Lemma 1.15 let A′ =

∑
Ai and B′ =

∑
Bj with Ai and

Bj homogeneous of degree i and j, respectively. Set s = degH − degF and
t = degH − degG. It is possible to write∑

i 6=s

AiF +
∑
j 6=t

BjG =
∑

l 6=degH

Cl

where Cl are homogeneous polynomials of degree l. Since

AsF +BtG−H +
∑

l 6=degH

Cl = 0

where the first part is homogeneous of degree degH one has by the uniqueness
of Lemma 1.15 that H = AsF +BtG, completing the proof.

It is now shown that
Rd ∩ (f1, f2) = Wd (1.7)
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for all d ≥ n1 + n2. Firstly, if f ∈Wd, then f = g1f1 + g2f2 for some g1, g2 ∈ R
with deg gi ≤ d− ni. In particular f ∈ (f1, f2) and it also follows that

deg f ≤ max
i∈{1,2}

deg(gifi) = max
i∈{1,2}

(d− ni + ni) = d

which means f ∈ Rd. Thus, f ∈ Rd ∩ (f1, f2).
Conversely, suppose f = g1f1 + g2f2 with deg f ≤ d and g1, g2 ∈ R. Letting

F = ξ(f) and Fi = ξ(fi) and applying Lemma 1.18 one has that

F = G′1F1 +G′2F2, degG′i = degF − degFi,

for some homogeneous polynomials G′i ∈ k[X,Y, Z]. By applying the homomor-
phism J 7→ J(x, y, 1) one gets

f = g′1f1 + g′2f2

where g′i = G′i(x, y, 1) and consequently

deg g′i ≤ degG′i = degF − degFi = deg f − deg fi ≤ d− ni.

Finally, f ∈Wd which shows (1.7)
Take d ≥ n1 + n2. Let r = n1n2. By (1.3) there exist g1, . . . , gr ∈ Rd ⊆ R

that are linearly independent modulo Wd. Suppose that

g =

r∑
i=1

cigi ≡ 0 (mod (f1, f2))

where ci ∈ k. This means by definition that g ∈ (f1, f2). Because Rd is a
k-vector space one also has g ∈ Rd. Since Rd ∩ (f1, f2) = Wd, it follows that
g ∈Wd, but then

r∑
i=1

cigi ≡ 0 (mod Wd)

and c1 = · · · = cr = 0 by construction. This shows that g1, . . . , gr are linearly
independent as elements of R modulo (f1, f2). Hence, dim(R/(f1, f2)) ≥ n1n2
and (1.4) is indeed an equality. We record this finding as a lemma for referencing
later on.

Lemma 1.19. Suppose that k is algebraically closed. Let C1 and C2 be pro-
jective curves of degree n1 and n2, respectively, with no common component.
Assume that the curves do not meet at infinity. If fi = 0 is the affine part of
Ci, then dim(R/(f1, f2)) = n1n2.

2 Intersection Multiplicities

With notation as in the previous section, the intersection multiplicity of C1 and
C2 at P ∈ k2 shall be defined. From now on let K = k(x, y) be the field of
fractions over R. A rational expression f/g ∈ K is said to be defined at P if
g(P ) 6= 0. Let the local ring of P ,

OP = {f/g ∈ K ; g(P ) 6= 0},
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be the set of defined fractions at P . Because k ⊆ OP one has OP 6= ∅. If
f1/g1, f2/g2 ∈ OP then

(g1g2)(P ) = g1(P )g2(P ) 6= 0

due to k being a field. Thus

f1
g1
− f2
g2

=
f1g2 − f2g1

g1g2
and

f1
g1
· f2
g2

=
f1f2
g1g2

are defined at P , showing that OP is a subring of K.

Proposition 2.1. The evaluation

OP 3 φ 7→ φ(P ) ∈ k

is a surjective homomorphism which induces the identity map on k. With MP

being the kernel of this homomorphism one has OP /MP
∼= k and OP = k⊕MP .

Proof. The map is well-defined since the denominator of φ is by definition non-
zero at P . That evaluation is a homomorphism is trivial. For all constant
expressions a ∈ k one has a(P ) = a, from which it follows that the map induces
the identity map on k. In particular, the homomorphism is surjective. The first
isomorphism theorem gives OP /MP

∼= k. Note that k ∩MP = {0} since all
constant expression that are zero at P must be identically zero. If φ ∈ OP , then

φ = φ(P ) + (φ− φ(P )) ∈ k +MP .

Consequently, OP = k ⊕MP .

Proposition 2.2. φ ∈ OP has a multiplicative inverse if and only if φ /∈MP .

Proof. Suppose φ ∈ OP has a multiplicative inverse ψ ∈ OP . Evaluation yields
φ(P )ψ(P ) = 1 showing that φ(P ) 6= 0, or equivalently that φ /∈MP . Conversely,
suppose φ /∈ MP . Then φ = f/g for some f, g ∈ R where f(P ) 6= 0. It follows
by definition of OP that ψ = g/f ∈ OP , but then φψ = 1, so that φ has a
multiplicative inverse.

Proposition 2.3. MP is the unique maximal ideal in OP .

Proof. Let I be an ideal in OP . If I contains an invertible element, then I = OP .
Otherwise, no element in I is invertible, or in other words I ⊆MP .

Define (f1, f2)P = OP f1 +OP f2 to be the ideal in OP generated by f1 and
f2. We are now ready to define the intersection multiplicity.

Definition 2.4. With notation as before, the intersection multiplicity of the
curves C1 and C2 at P ∈ k2 is defined as

IP (C1, C2) = dim(OP /(f1, f2)P ).

We continue this section by showing a few consequences of the definition.
It is clear that (f1, f2)P = (f2, f1)P . The next proposition is a consequence of
this.
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Proposition 2.5. IP (C,D) = IP (D,C) for all curves C and D and points
P ∈ k2.

Proposition 2.6. If P /∈ C1 ∩ C2, then IP (C1, C2) = 0.

Proof. Suppose that P /∈ C1∩C2. Then at least one of f1(P ) 6= 0 and f2(P ) 6= 0.
Without loss of generality, it might be assumed that f1(P ) 6= 0. Then f−11 ∈ OP

so that
1 = f−11 f1 + 0 · f2 ∈ (f1, f2)P .

It follows that (f1, f2)P = OP , and consequently that IP (C1, C2) = 0.

Proposition 2.7. If P ∈ C1 ∩ C2, then

IP (C1, C2) = 1 + dim

(
MP

(f1, f2)P

)
.

Proof. If P ∈ C1 ∩ C2, then f1(P ) = f2(P ) = 0 so that (f1, f2)P ⊆ MP ⊆ OP .
Lemma 1.3 gives that

dim

(
OP

(f1, f2)P

)
= dim

(
OP

MP

)
+ dim

(
MP

(f1, f2)P

)
but since OP /MP

∼= k the result follows.

Note that the dimension of the space OP /(f1, f2)P might be infinite, in
which case we will consider IP (C1, C2) = ∞. This implies that IP in general
has range N∪{∞}. However, for the curves we are mostly intereseted in, infinite
multiplicities need not be considered, which is a result of the next proposition.

Proposition 2.8. Suppose that C1 and C2 are affine curves with no component
in common and set ni = degCi. Then IP (C1, C2) ≤ n1n2 for all P ∈ k2.

Proof. It is shown that

dim(OP /(f1, f2)P ) ≤ dim(R/(f1, f2))

after which inequality (1.4) completes the proof. Suppose that φ1, . . . , φr ∈ OP

are linearly independent modulo (f1, f2)P . Take g1, . . . , gr, h ∈ R with h(P ) 6= 0
such that φi = gi/h for i = 1, . . . , r. Because

r∑
i=1

cigi ∈ (f1, f2) ⇐⇒
r∑

i=1

cigi = h1f1 + h2f2 for some h1, h2 ∈ R

⇐⇒
r∑

i=1

ci
gi
h

=
h1
h
f1 +

h2
h
f2 for some h1, h2 ∈ R

=⇒
r∑

i=1

ciφi = ψ1f1 + ψ2f2 for some ψ1, ψ2 ∈ OP

⇐⇒
r∑

i=1

ciφi ∈ (f1, f2)P

=⇒ c1 = · · · = cr = 0

g1, . . . , gr are linearly independent as elements of R modulo (f1, f2), completing
the proof.
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The finiteness of the intersection multiplicity implies a characterization of
the local ring that will be useful later on in the proof of Bezout’s theorem.

Lemma 2.9. OP = R+ (f1, f2)P whenever gcd(f1, f2) = 1.

Proof. The assumption together with Proposition 2.8 guarantees the existence
of a finite collection g1/h, . . . , gr/h, with g1, . . . , gr, h ∈ R and h(P ) 6= 0, that
span OP modulo (f1, f2)P . This means that given any φ ∈ OP there exists
c1, . . . , cr ∈ k and ψ ∈ (f1, f2)P such that

φ

h
=

r∑
i=1

ci
gi
h

+ ψ

because φ/h ∈ OP . It follows that

φ =

r∑
i=1

cigi + hψ

where
∑r

i=1 cigi ∈ R and hψ ∈ (f1, f2)P due to the latter being an ideal. Since
φ is arbitrary this shows OP ⊆ R+ (f1, f2)P . The inclusion ⊇ is trivial.

If C : f = 0 and D : g = 0 are affine curves, we denote by CD the affine
curve whose equation is fg = 0. The proof of the next proposition is merely a
detailed version of the proof found in Fulton 2008.

Proposition 2.10. If C is a curve sharing no component with either D or E,
then IP (C,DE) = IP (C,D) + IP (C,E) for all P ∈ k2.

Proof. Let C : f = 0, D : g = 0 and E : h = 0. It shall be shown that the map

α : OP /(f, h)P 3 φ+ (f, h)P 7→ gφ+ (f, gh)P ∈ OP /(f, gh)P

is a well-defined linear injection. To show that it is well-defined, it is sufficient
to show that

φ ∈ (f, h)P =⇒ gφ ∈ (f, gh)P ,

for all φ ∈ OP . This is clear since if φ = ψ1f +ψ2h for some ψ1, ψ2 ∈ OP , then

gφ = ψ1gf + ψ2gh ∈ (f, gh)P .

The map is obviously linear. To prove the injectivity, it is sufficient to show

gφ ∈ (f, gh)P =⇒ φ ∈ (f, h)P ,

for all φ ∈ OP . Thus, suppose that gφ ∈ (f, gh)P . Then gφ = fψ1 + ghψ2 for
some ψ1, ψ2 ∈ OP . Choose an e ∈ R with e(P ) 6= 0 such that φe ∈ R, ψ1e ∈ R
and ψ2e ∈ R, and set a = φe, b = ψ1e and c = ψ2e. It follows that

g(a− hc) = fb

so the assumption that gcd(f, g) = 1 gives that a − hc = df for some d ∈ R.
Finally

φ =
a

e
=
d

e
f +

c

e
h ∈ (f, h)P .
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For α the following identity holds

imα = (f, g)P /(f, gh)P ,

since firstly gφ+ (f, gh)P ∈ imα implies that gφ+ (f, gh)P ∈ (f, g)P /(f, gh)P .
Conversely, if ψ + (f, gh)P ∈ (f, g)P /(f, gh)P , then

ψ + (f, gh)P = ψ1f + ψ2g + (f, gh)P = ψ2g + (f, gh)P

for some ψ1, ψ2 ∈ OP and consequently ψ + (f, gh)P ∈ imα.
The map

β : OP /(f, gh)P 3 φ+ (f, gh)P 7→ φ+ (f, g)P ∈ OP /(f, g)P

is a well-defined surjective homomorphism by Lemma 1.1.
Suppose that φ + (f, gh)P ∈ kerβ. Then φ ∈ (f, g)P and it follows that

φ + (f, gh)P ∈ (f, g)P /(f, gh)P . Conversely, if φ + (f, gh)P ∈ (f, g)P /(f, gh)P ,
then φ ∈ (f, g)P so that φ ∈ kerβ and

kerβ = (f, g)P /(f, gh)P .

This shows that imα = kerβ.
The rank-nullity theorem gives that

IP (C,DE) = dim(OP /(f, gh)P )

= dim imβ + dim kerβ

= dim(OP /(f, g)P ) + dim imα

= dim(OP /(f, g)P ) + dim(OP /(f, h)P )

= IP (C,D) + IP (C,E).

Proposition 2.11. Let C : f = 0 and D : g = 0 be affine curves without a
common component. If E is an affine curve whose defining polynomial is af+g
for some a ∈ R, then IP (C,E) = IP (C,D).

Proof. We show that (f, af+g)P = (f, g)P , from which the proposition follows.
If φ ∈ (f, af + g)P , then

φ = ψ1f + ψ2(af + g) = (ψ1 + aψ2)f + ψ2g

for some ψ1, ψ2 ∈ OP so that also φ ∈ (f, g)P and (f, af + g)P ⊆ (f, g)P .
Because there are no restrictions on a ∈ R the reverse inclusion follows from

(f, g)P = (f, (−a)f + af + g)P ⊆ (f, af + g)P .

Before continuing with the proof of Bezout’s theorem, we first show how
the definition carries over to the projective plane, and second show that it
is invariant under a linear change of variables. This will allow us to make
simplifying assumptions in proving Bezout’s theorem.

To be able to define the local ring for a point in the projective plane we
introduce a counterpart of K. Consider the set

K̃ = {F/G ∈ k(X,Y, Z) ; F and G are homogeneous of the same degree}.
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All elements Φ ∈ K̃ satisfy

Φ(tA, tB, tC) =
F (tA, tB, tC)

G(tA, tB, tC)
=
tnF (A,B,C)

tnG(A,B,C)
=
F (A,B,C)

G(A,B,C)
= Φ(A,B,C)

for all t 6= 0 and [A,B,C] ∈ P2
k, which means all Φ ∈ K̃ are well-defined

functions in P2
k.

We want to define the function

η : K 3 f

g
7→ Znf(X/Z, Y/Z)

Zng(X/Z, Y/Z)
∈ k(X,Y, Z) (2.1)

where n = max{deg f, deg g}. The next proposition verifies that K̃ is indeed
the projective counterpart of K.

Proposition 2.12. The map η defined in (2.1) is a well-defined isomorphism

K → K̃.

Proof. The proof is completed whenever all of the following assertions have been
shown:

(i) η is a well-defined function.

(ii) η(K) ⊆ K̃.
(iii) η respects addition.

(iv) η respects multiplication.
(v) η is injective.
(vi) η is surjective.

(i) Firstly n = max{deg f, deg g} ∈ N because g 6= 0 implies deg g ≥ 0.
Suppose that f1/g1 = f2/g2. Let ni = max{deg fi,deg gi}. Now

f1(X/Z, Y/Z)

g1(X/Z, Y/Z)
=
f2(X/Z, Y/Z)

g2(X/Z, Y/Z)
⇐⇒ Zn1f1(X/Z, Y/Z)

Zn1g1(X/Z, Y/Z)
=
Zn2f2(X/Z, Y/Z)

Zn2g2(X/Z, Y/Z)

shows that η is a well-defined function.
(ii) It is clear that F = Znf(X/Z, Y/Z) is homogeneous of degree n, and

similarly for G = Zng(X/Z, Y/Z). Thus, F and G are homogeneous of the same

degree so that F/G ∈ K̃.
(iii) By Lemma 1.4 one has

η

(
f1
g1

)
+ η

(
f2
g2

)
=
Zmf1(X/Z, Y/Z)

Zmg1(X/Z, Y/Z)
+
Znf2(X/Z, Y/Z)

Zng2(X/Z, Y/Z)

=
Zm+n(f1g2 + f2g1)(X/Z, Y/Z)

Zm+n(g1g2)(X/Z, Y/Z)

=
Zl(f1g2 + f2g1)(X/Z, Y/Z)

Zl(g1g2)(X/Z, Y/Z)

= η

(
f1g2 + f2g1

g1g2

)
= η

(
f1
g1

+
f2
g2

)
.

for l = max{deg(f1g2 + f2g1),deg(g1g2)} ≥ 0.
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(iv) Another use of Lemma 1.4 gives

η

(
f1
g1

)
η

(
f2
g2

)
=
Zmf1(X/Z, Y/Z)

Zmg1(X/Z, Y/Z)
· Z

nf2(X/Z, Y/Z)

Zng2(X/Z, Y/Z)

=
Zm+n(f1f2)(X/Z, Y/Z)

Zm+n(g1g2)(X/Z, Y/Z)

=
Zl(f1f2)(X/Z, Y/Z)

Zl(g1g2)(X/Z, Y/Z)

= η

(
f1f2
g1g2

)
= η

(
f1
g1
· f2
g2

)
,

for l = max{deg(f1f2),deg(g1g2)} ≥ 0.
(v) Suppose that η(f1/g1) = η(f2/g2). Then by definition

Zmf1(X/Z, Y/Z)

Zmg1(X/Z, Y/Z)
=
Znf2(X/Z, Y/Z)

Zng2(X/Z, Y/Z)

so that after multiplying with the denominators and applying the homomor-
phism part of Lemma 1.4 one has

Zm+n(f1g2)(X/Z, Y/Z) = Zm+n(f2g1)(X/Z, Y/Z).

Canceling Zm+n and applying Lemma 1.5 one finally has

f1g2 = f2g1 ⇐⇒
f1
g1

=
f2
g2

completing the proof of the injectivity.
(vi) Take F/G ∈ K̃. By definition F/G ∈ k(X,Y, Z) with F and G homo-

geneous of the same degree n. Let f = F (x, y, 1) and g = G(x, y, 1). Then
f, g ∈ R,

F = ZnF (X/Z, Y/Z, 1) = Znf(X/Z, Y/Z),

and similarly for G. Finally,

F

G
=
Znf(X/Z, Y/Z)

Zng(X/Z, Y/Z)
=
Zlf(X/Z, Y/Z)

Zlg(X/Z, Y/Z)
= η

(
f

g

)
where l = max{deg f, deg g} completing the proof.

If P ∈ P2
k we now define

ÕP =

{
F

G
∈ K̃ ; G(P ) 6= 0

}
.

Firstly, OP is a subring of K̃. This follows from an argument similar to the one
before that showed that OP is a subring of K.

Proposition 2.13. η|OP
is an isomorphism OP

∼= ÕP for all P = [a, b, 1] ∈ k2.
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Proof. One only needs to show that η(OP ) = ÕP since all other properties
follow from the corresponding properties of η.

Suppose that f/g ∈ OP and let n = max{deg f, deg g}. Now

G = Zng(X/Z, Y/Z) =⇒ G(P ) = G(a, b, 1) = g(a, b) 6= 0

showing that η(f/g) ∈ ÕP .

Conversely, if F/G ∈ ÕP , then by letting

n = degG, f = F (x, y, 1) and g = G(x, y, 1)

one has
Zng(X/Z, Y/Z) = ZnG(X/Z, Y/Z, 1) = G

and consequently g(a, b) 6= 0 by insertion of (X,Y, Z) = (a, b, 1). Now f/g ∈ OP

and η(f/g) = F/G.

With P = [a, b, 1], take Φ = F/G ∈ ÕP and its preimage φ = f/g ∈ OP .
Then

φ(a, b) =
f(a, b)

g(a, b)
=
F (a, b, 1)

G(a, b, 1)
= Φ(a, b, 1)

showing that the values of the expressions are preserved upon passing between
OP and ÕP .

For all P ∈ P2
k define M̃P = {Φ ∈ ÕP ; Φ(P ) = 0}.

Proposition 2.14. η|MP
is an isomorphism MP

∼= M̃P for all P ∈ k2.

Proof. As before one only needs to show that η(MP ) = M̃P . For all φ ∈ OP

and Φ ∈ ÕP with Φ = η(φ) one has

φ ∈MP ⇐⇒ φ(P ) = 0 ⇐⇒ Φ(P ) = 0 ⇐⇒ Φ ∈ M̃P .

It follows directly that η(MP ) ⊆ M̃P . Surjectivity of η|OP
implies that regard-

less of Φ ∈ M̃P there is a φ ∈ OP such that η(φ) = Φ. Thus, one may read the

above chain of equivalences from right to left for all Φ ∈ M̃P and the proposition
follows.

Proposition 2.15. Let R̃ be the set of homogeneous polynomials in k[X,Y, Z].

Suppose F1, F2 ∈ R̃ \ {0} and let P ∈ P2
k. Then (F1, F2)P defined by

(F1, F2)P =

{
F

G
∈ ÕP ; F = H1F1 +H2F2 for some H1, H2 ∈ R̃

}
is an ideal in ÕP .

Proof. 0/1 ∈ (F1, F2)P so (F1, F2) is non-empty.
Let F/G,F ′/G′ ∈ (F1, F2)P . If either F = 0 or F ′ = 0 it is clear that

F/G − F ′/G′ ∈ (F1, F2)P . Otherwise, one may by definition take Hi, H
′
i ∈ R̃

such that F = H1F1 + H2F2 and F ′ = H ′1F1 + H ′2F2. If H1 = 0 or H ′1 = 0,
then clearly H1G

′ −H ′1G is homogeneous. Otherwise

degH1 + degF1 = degF = degG and degH ′1 + degF1 = degF ′ = degG′
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and it follows that

degH1 + degG′ = degH1 + degH ′1 + degF1

= degH ′1 + degH1 + degF1 = degH ′1 + degG.

Therefore H1G
′−H ′1G is homogeneous. Similarly it is shown that H2G

′−H ′2G
is homogeneous. Now

F

G
− F ′

G′
=

(H1F1 +H2F2)G′ −G(H ′1F1 +H ′2F2)

GG′

=
(H1G

′ −H ′1G)F1 + (H2G
′ −H ′2G)F2

GG′
∈ (F1, F2)P .

Furthermore, if F/G ∈ ÕP and F ′/G′ ∈ (F1, F2)P , then

F

G
· F
′

G′
=
F (H ′1F1 +H ′2F2)

GG′
=
FH ′1F1 + FH ′2F2

GG′
∈ (F1, F2)P ,

where FH ′1 and FH ′2 are clearly homogeneous. This shows that (F1, F2)P is an

ideal in ÕP .

Recall the map ξ, defined in (1.1), that is used to transform affine curves to
their projective counterparts. Before presenting the last proposition needed to
define intersection multiplicities in the projective plane, a lemma is needed.

For all F ∈ R̃ such that F 6= 0, let

d(F ) = max{n ∈ N ; Zn | F}.

Lemma 2.16. For all F ∈ R̃ with F 6= 0 there exists an f ∈ R such that
F = Zd(F )ξ(f).

Proof. Because Zd(F ) | F one has that F = Zd(F )G for some G ∈ R̃. By
construction Z - G. Lemma 1.6 gives G = ξ(f) for some f ∈ R.

The next proposition is the last piece needed to carry the definition of inter-
section multiplicity over to the projective plane. However simple the proposition
might seem, its proof is quite cumbersome.

Proposition 2.17. Let P ∈ k2. If f1, f2 ∈ R \ {0} and Fi = ξ(fi), then
η|(f1,f2)P is an isomorphism (f1, f2)P ∼= (F1, F2)P .

Proof. The proof is carried out by showing that η((f1, f2)P ) = (F1, F2)P .
Take

φ =
h1
g
· f1 +

h2
g
· f2 ∈ (f1, f2)P ,

with h1, h2, g ∈ R. It shall be shown that η(φ) ∈ (F1, F2)P . Let ni = deg fi,
m = deg g and li = deg hi. Set r = max{l1 + n1, l2 + n2,m}. If both hi = 0,
then clearly η(φ) = 0 ∈ (F1, F2)P since (F1, F2)P is an ideal. Note that

hi 6= 0 =⇒ Hi = Zr−nihi(X/Z, Y/Z) = Zr−li−niZlihi(X/Z, Y/Z) ∈ R̃.
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If exactly one of h1 6= 0 and h2 6= 0 one may without loss of generality assume
that h1 6= 0 and h2 = 0. Then

η(φ) =
Zr(h1f1)(X/Z, Y/Z)

Zrg(X/Z, Y/Z)

=
Zr−n1h1(X/Z, Y/Z)Zn1f1(X/Z, Y/Z)

Zrg(X/Z, Y/Z)

=
H1F1 + 0F2

G
∈ (F1, F2)P

where G = Zrg(X/Z, Y/Z). Similarly, if h1 6= 0 and h2 6= 0, one has

η(φ) =
Zq(h1f1 + h2f2)(X/Z, Y/Z)

Zqg(X/Z, Y/Z)

=
Zr(h1f1 + h2f2)(X/Z, Y/Z)

Zrg(X/Z, Y/Z)

=
H1F1 +H2F2

G
∈ (F1, F2)P

where Hi and G are as before and

q = max{deg(h1f1 + h2f2),deg g} ≤ r.

In any case η(φ) ∈ (F1, F2)P .
Conversely, let F/G ∈ (F1, F2)P . By definition F = H1F1 +H2F2 for some

H1, H2 ∈ R̃. If it can be shown that there exist φ1, φ2 ∈ (f1, f2)P such that
η(φi) = HiFi/G, then it follows that

H1F1 +H2F2

G
=
H1F1

G
+
H2F2

G
= η(φ1) + η(φ2) = η(φ1 + φ2)

since η is an isomorphism OP → ÕP . Because (f1, f2)P is an ideal it follows that
φ1+φ2 ∈ (f1, f2)P so that F/G ∈ η((f1, f2)P ). Therefore one only needs to find
a φ1 ∈ (f1, f2)P such that η(φ1) = H1F1/G, to show that F/G ∈ η((f1, f2)P ),
since finding φ2 is similar.

For H1 = 0 it is clear that φ1 = 0 suffices. Thus, assume H1 6= 0. Then
H1 = Zd(H1)ξ(h1) and G = Zd(G)ξ(g) for some h1, g ∈ R, so

H1F1

G
=
Zd(H1)ξ(h1)ξ(f1)

Zd(G)ξ(g)
=
Zd(H1)ξ(h1f1)

Zd(G)ξ(g)
=
Zaξ(h1f1)

Zbξ(g)

where a = 0 or b = 0. By definition of ÕP it holds that

a+ deg(h1f1) = a+ deg ξ(h1f1) = b+ deg ξ(g) = b+ deg g.

If a = 0, then max{deg(h1f1),deg g} = deg(h1f1) so that

η

(
h1f1
g

)
=
Zdeg(h1f1)(h1f1)(X/Z, Y/Z)

Zdeg(h1f1)g(X/Z, Y/Z)

=
Zdeg(h1f1)(h1f1)(X/Z, Y/Z)

ZbZdeg gg(X/Z, Y/Z)

=
ξ(h1f1)

Zbξ(g)

=
H1F1

G
.

26



If b = 0, then max{deg(h1f1),deg g} = deg g, and it follows that

η

(
h1f1
g

)
=
Zdeg g(h1f1)(X/Z, Y/Z)

Zdeg gg(X/Z, Y/Z)

=
ZaZdeg(h1f1)(h1f1)(X/Z, Y/Z)

Zdeg gg(X/Z, Y/Z)

=
Zaξ(h1f1)

ξ(g)

=
H1F1

G
.

Anyhow η(φ1) = H1F1/G, where φ1 = h1f1/g ∈ (f1, f2)P and the proof is
complete.

By the propositions one has

dim(OP /(f1, f2)P ) = dim(ÕP /(F1, F2)P ), P ∈ k2,

showing that one may extend the definition of intersection multiplicity from the
affine plane to the projective plane using the following definition. Due to the
propositions shown we will dispense with the tildes and transport the relevant
structure from k2 to P2

k.

Definition 2.18. The intersection multiplicity at the point P ∈ P2
k of the pro-

jective curves C1 and C2, whose equations are F1 = 0 and F2 = 0, respectively,
is defined as

IP (C1, C2) = dim(OP /(F1, F2)P ).

Recall the induced linear transformation defined in (1.6), and call it ϕ. We
now show that the intersection multiplicity is invariant under ϕ. This will allow
us to apply a suitable linear transformation of the projective plane to simplify
the proof of Bezout’s theorem.

Note that G(P ) 6= 0 if and only if G(M−1MP ) 6= 0, that is ϕ(G)(MP ) 6= 0.
This means that ϕ(OP ) ⊆ OMP , since ϕ also preserves the degrees of polyno-
mials as is easily seen. By considering the inverse transformation ϕ−1 one has
similarly that ϕ−1(OMP ) ⊆ OP . Thus, ϕ|OP

is an isomorphism OP
∼= OMP .

To finally show that the definition of intersection multiplicity is invariant
under linear changes of variables, it must be shown that the transformation of
(F1, F2)P to (F ′1, F

′
2)MP , where F ′i is the image of Fi under ϕ, is an isomorphism.

Suppose that Φ ∈ (F1, F2)P . Then Φ = F/G with F and G homogeneous of the
same degree and F = H1F1 +H2F2 for some homogeneous H1 and H2. Because
ϕ preserves the degrees of polynomials

ϕ(F ) = ϕ(H1)F ′1 + ϕ(H2)F ′2

is homogeneous with ϕ(Hi) homogeneous. Thus,

ϕ(Φ) =
ϕ(F )

ϕ(G)
∈ (F ′1, F

′
2)MP ,

showing that ϕ((F1, F2)P ) ⊆ (F ′1, F
′
2)MP . The reverse inclusion follows by

replacing ϕ with its inverse. This shows that ϕ|(F1,F2)P
is an isomorphism

(F1, F2)P ∼= (F ′1, F
′
2)MP .
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3 Bezout’s Theorem

Throughout this section we let k be an algebraically closed field and let the
curves C1 and C2 have affine parts f1 = 0 and f2 = 0, respectively, with
gcd(f1, f2) = 1. After the endeavor of the previous section, we are finally ready
to show Bezout’s theorem.

Theorem 3.1 (Bezout’s Theorem). If the projective curves C1 and C2, of de-
grees n1 and n2 respectively, have no common component, then C1 and C2

intersect at exactly n1n2 points of P2
k counting multiplicity, i.e.∑

P∈C1∩C2

IP (C1, C2) = n1n2.

In the rest of this section, let for notional purposes P = C1 ∩ C2 ∩ k2.

Lemma 3.2. If P ∈ P and r ≥ IP (C1, C2), then
∏r

i=1 ti ∈ (f1, f2)P for all
t1, . . . , tr ∈MP .

Proof. Define the ideals J1, . . . , Jr+1 in OP by

Jq =

(
q∏

i=1

ti

)
OP + (f1, f2)P and Jr+1 = (f1, f2)P

where 1 ≤ q ≤ r. If ψ ∈ Jr+1, then because 0 ∈ OP one has

ψ =

(
r∏

i=1

ti

)
· 0 + ψ ∈ Jr.

If γ ∈ Jq+1 for some 1 ≤ q < r, then γ =
∏q+1

i=1 tiφ + ψ for some φ ∈ OP and
ψ ∈ (f1, f2)P , but because OP is a ring one has tq+1φ ∈ OP and

γ =

q∏
i=1

ti(tq+1φ) + ψ ∈ Jq.

Hence,
(f1, f2)P = Jr+1 ⊆ Jr ⊆ Jr−1 ⊆ · · · ⊆ J1 ⊆MP .

Firstly Lemma 1.3 gives that

dim

(
MP

Jq+1

)
= dim

(
MP

Jq

)
+ dim

(
Jq
Jq+1

)
(3.1)

for all 1 ≤ q ≤ r. Assume that

dim

(
MP

Jq+1

)
= dim

(
MP

J1

)
+

q∑
i=1

dim

(
Ji
Ji+1

)
. (3.2)

Note that (3.2) is true for q = 1 by (3.1). Together (3.1) and (3.2) give

dim

(
MP

Jq+2

)
= dim

(
MP

Jq+1

)
+ dim

(
Jq+1

Jq+2

)
= dim

(
MP

J1

)
+

q+1∑
i=1

dim

(
Ji
Ji+1

)
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so that one by induction has that (3.2) is true for q = r. Thus, by Proposition 2.7
one has

r ≥ 1 + dim

(
MP

(f1, f2)P

)
≥ 1 +

r∑
i=1

dim

(
Ji
Ji+1

)
.

Because all r + 1 terms in the right hand sides are natural numbers and their
sum is at most r, one term is zero. Therefore Jq = Jq+1 for some 1 ≤ q ≤ r. If
q = r then

r∏
i=1

ti =

r∏
i=1

ti · 1 + 0 ∈

(
r∏

i=1

ti

)
OP + (f1, f2)P = (f1, f2)P ,

as desired. Otherwise

q∏
i=1

ti =

q∏
i=1

ti · 1 + 0 ∈

(
q∏

i=1

ti

)
OP + (f1, f2)P =

(
q+1∏
i=1

ti

)
OP + (f1, f2)P

so that
q∏

i=1

ti =

(
q+1∏
i=1

ti

)
φ+ ψ

for some φ ∈ OP and ψ ∈ (f1, f2)P . It follows that(
q∏

i=1

ti

)
(1− tq+1φ) = ψ ∈ (f1, f2)P ,

but because tq+1 ∈MP implies

(1− tq+1φ)(P ) = 1− tq+1(P )φ(P ) = 1− 0 · φ(P ) = 1

one has (1 − tq+1φ)−1 ∈ OP . Since (f1, f2)P is an ideal in OP one has that∏q
i=1 ti ∈ (f1, f2)P , and finally

∏r
i=1 ti ∈ (f1, f2)P .

Lemma 3.3. Let P ∈ P and φ ∈ OP . Then there exists a g ∈ R such that

g ≡ φ (mod (f1, f2)P ) and g ≡ 0 (mod (f1, f2)Q)

for all Q ∈ P such that Q 6= P .

Proof. Define Q = {Q ∈ P ; Q 6= P}. By Lemma 1.12 the sets P and Q are
finite. By Lemma 1.7 there is a polynomial h ∈ R such that h(P ) = 1 and
h(Q) = 0 for all Q ∈ Q. This means that h−1 ∈ OP and h ∈ MQ for Q ∈ Q.
Let

r = max
Q∈Q

IQ(C1, C2).

By Lemma 3.2 hr ∈ (f1, f2)Q. Trivially, h−r ∈ OP . Since φh−r ∈ OP and
OP = R+ (f1, f2)P , by Lemma 2.9, there is an f ∈ R and a ψ ∈ (f1, f2)P such
that φh−r = f + ψ, but then f ≡ φh−r (mod (f1, f2)P ). Set g = fhr. Then

g ≡ φh−rhr = φ (mod (f1, f2)P ) and g ≡ 0 (mod (f1, f2)Q),

for all Q ∈ Q.
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Lemma 3.4. Let M be an ideal in R such that (f1, f2) ⊆ M ⊆ R and 1 /∈ M .
Suppose that p is a polynomial in R. Then there exists an s ∈ k such that

1 /∈M +R(p− s).

Proof. By Lemma 1.3, m = dim(R/M) is finite. Thus, 1, p, p2, . . . , pm are
linearly dependent modulo M , so there exist b0, . . . , bm ∈ k, not all zero, such
that

m∑
i=0

bip
i ∈M.

By setting n = max{i ∈ {1, . . . ,m} ; bi 6= 0} and ci = bi/bn for 0 ≤ i ≤ n one
has

pn + cn−1p
n−1 + · · ·+ c1p+ c0 =

n∑
i=0

cip
i =

1

bn

n∑
i=0

bip
i =

1

bn

m∑
i=0

bip
i ∈M.

Because k is algebraically closed there exist s1, . . . , sn ∈ k such that

n∏
i=1

(p− si) =

n∑
i=0

cip
i ∈M. (3.3)

Suppose toward a contradiction that 1 ∈ M + R(p − si) for all i. For each i,
take hi ∈M and gi ∈ R such that 1 = hi + gi(p− si). It now follows that

1 =

n∏
i=1

(hi + gi(p− si)) ∈M

because upon expansion of the product, all terms are on the form

hi1 · · ·hirgir+1
(p− sir+1

) · · · gin(p− sin).

More precisely, any term that includes an hi belongs to M due to the latter
being an ideal and the term g1 · · · gn(p− s1) · · · (p− sn) belongs to the ideal by
(3.3). This is a contradiction, so 1 /∈M +R(p− si) for some i.

Lemma 3.5. R/(f1, f2) ∼=
∏

P∈P(OP /(f1, f2)P ).

Proof. Consider the homomorphism

α : R 3 f 7→ (f mod (f1, f2)P )P∈P ∈
∏
P∈P

OP

(f1, f2)P
.

Any element in the codomain of α can be written as (φP mod (f1, f2)P )P∈P with
(φP )P∈P ∈

∏
P∈P OP . To show that α is surjective, take any such (φP )P∈P .

For each P ∈ P there is by Lemma 3.3 a gP ∈ R such that

gP ≡ φP (mod (f1, f2)P ) and gP ≡ 0 (mod (f1, f2)Q)

for all Q ∈ P with Q 6= P . Now let f =
∑

Q∈P gQ. For any P ∈ P one now has

f =
∑
Q∈P

gQ ≡ gP ≡ φP (mod (f1, f2)P )
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As a consequence of this, α is surjective. Let J = kerα. The first isomorphism
theorem gives R/J ∼=

∏
P∈P(OP /(f1, f2)P ). The proof is completed by showing

that J = (f1, f2).
Because (f1, f2) ⊆ (f1, f2)P for all P ∈ P, one has (f1, f2) ⊆ J . To show

the reverse inclusion, let f be an arbitrary polynomial in J and set

L = {g ∈ R ; gf ∈ (f1, f2)}.

Whenever it has been shown that 1 ∈ L, the proof is complete.
First it is shown that L is an ideal in R satisfying (f1, f2) ⊆ L ⊆ R. The

inclusions being obvious, only the first part is shown. Because of the inclusion
L is non-empty. If g1, g2 ∈ L, then g1f, g2f ∈ (f1, f2) so that

(g1 − g2)f = g1f − g2f ∈ (f1, f2)

because the latter is a ring. Thus, g1 − g2 ∈ L. If h ∈ R and g ∈ L, then, since
(f1, f2) is an ideal in R, one has

(hg)f = h(gf) ∈ (f1, f2)

showing that hg ∈ L. Hence, L is an ideal in R.
Secondly, it is shown that for all P ∈ k2 there is a polynomial g ∈ L such

that g(P ) 6= 0. By definition f ∈ J means that

f ≡ 0 (mod (f1, f2)P ) for all P ∈ P.

If P ∈ P this means that there exist polynomials g1, g2, h ∈ R such that

f =
g1
h
f1 +

g2
h
f2 ⇐⇒ hf = g1f1 + g2f2 =⇒ hf ∈ (f1, f2)

and h(P ) 6= 0. Otherwise, if P /∈ P, then f1(P ) 6= 0 or f2(P ) 6= 0. Without
loss of generality assume that the first holds. Then one has f1f ∈ (f1, f2). This
completes the proof of the second property.

Using these two properties of L it shall be shown that 1 ∈ L. Assume toward
a contradiction that 1 /∈ L. By applying Lemma 3.4 on M = L and p = x one
gets the existence of an a ∈ k such that 1 /∈ L+R(x− a). Applying the lemma
again, but this time with M = L+R(x−a) and p = y one can find a b ∈ k such
that 1 /∈ L+R(x− a) +R(y− b). Let g ∈ L be arbitrary. Since the polynomial
y − b is monic, divison of g as a polynomial in y over k[x] is admissible with

g = g2(y − b) + r

for some g2 ∈ k[x, y] and r ∈ k[x]. Dividing r by x− a in k[x] gives

r = g1(x− a) + c

for some c ∈ k. Thus,

g = g1(x− a) + g2(y − b) + c.

If c 6= 0, then

1 =
1

c
· c =

1

c
(g − g1(x− a)− g2(y − b)) ,
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but the latter clearly belongs to L+R(x−a)+R(y−b), which is a contradiction.
Therefore c = 0 and one gets

g(a, b) = g1(a, b)(a− a) + g2(a, b)(b− b) = 0,

but since g ∈ L is arbitrary this contradicts that there exists a g ∈ L such that
g(a, b) 6= 0. Hence, the assumption that 1 /∈ L is false, completing the proof.

Finally, the proof of Bezout’s theorem is merely putting the pieces together.

Proof of Bezout’s Theorem. As in the proof of Theorem 1.10 we can find a line
L that does not meet C1 ∩ C2 and that is a component of neither C1 nor C2.
Because the intersection multiplicities do not change with a linear change of
coordinates, we may apply a linear transformation that maps L to the line at
infinity. Therefore we assume that C1 and C2 do not meet at infinity and that
the line at infinity is not a component of either curve. This assumption gives
that P = C1 ∩ C2. Lemma 3.5 and Lemma 1.19 give

∑
P∈C1∩C2

IP (C1, C2) = dim

( ∏
P∈C1∩C2

(OP /(f1, f2)P )

)
= dim

R

(f1, f2)
= n1n2,

completing the proof.

4 Simple Points

Before stating and proving Max Noether’s theorem and its consequences we
introduce simple points in this separate section.

Definition 4.1. A point P on an affine curve C : f = 0 is said to be simple if
∇f does not vanish at P .

In other words, a point (a, b) on an affine curve is simple if f ′1(a, b) 6= 0 or
f ′2(a, b) 6= 0, where f ′1 and f ′2 are the partial derivatives of f . Because we will
have reason to consider simple points on the line at infinity, we need a projective
definition as well. Note that if F ∈ k[X,Y, Z] is homogeneous of order n, then
the partial derivatives F ′i , i = 1, 2, 3, are homogeneous of order n − 1. This is
what makes the projective definition good.

Definition 4.2. A point P on a projective curve C : F = 0 is said to be simple
if ∇F (P ) 6= 0. If this is the case the tangent of C at P is defined as the line

F ′1(P )X + F ′2(P )Y + F ′3(P )Z = 0,

the definition being independent of the representative for P .

Note that by Euler’s theorem (Fulton 2008, p. 3) the tangent intersects C at
P . As usual we must verify the following properties prior to making simplifying
assumptions:

(i) If (a, b) is a simple point on the affine curve f = 0, then [a, b, 1] is a simple
point on the projective curve F = 0, where F is the homogenization of f .

(ii) If F is the homogenization of f and [a, b, 1] is a simple point on F = 0,
then (a, b) is a simple point on f = 0.
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(iii) Linear coordinate changes map simple points to simple points.
We now show these assertions.
(i) Suppose that (a, b) is a simple point on f = 0. Then f ′i(a, b) 6= 0 for some

i ∈ {1, 2}. Let F = Znf(X/Z, Y/Z), where n = deg f , be the homogenization
of f . Then

F ′i = Znf ′i(X/Z, Y/Z) · 1

Z
= Zn−1f ′i(X/Z, Y/Z),

so that F ′i (a, b, 1) = f ′i(a, b) showing that [a, b, 1] is a simple point on F = 0.
(ii) Let [a, b, 1] be a simple point on F = 0 where F = Znf(X/Z, Y/Z) for

some f ∈ k[x, y] with deg f = n. Then F ′i (a, b, 1) = f ′i(a, b) for i ∈ {1, 2} as
above, and a computation shows that

F ′3 = nZn−1f(X/Z, Y/Z)− Zn−2(Xf ′1(X/Z, Y/Z) + Y f ′2(X/Z, Y/Z)),

so insertion gives
F ′3(a, b, 1) = −af ′1(a, b)− bf ′2(a, b)

since f(a, b) = 0. If both f ′1(a, b) = 0 and f ′2(a, b) = 0, then F ′i (a, b, 1) = 0 for
all i ∈ {1, 2, 3}, contradicting the assumption, so (a, b) must be a simple point.

(iii) Suppose that P is a simple point on F = 0 and suppose that points of
P2
k are transformed with P 7→MP where M is an invertible 3×3 matrix. Then

polynomials are mapped with the map given in (1.5) on page 11, which we will
here denote by F 7→ F ◦M−1. It is easy to verify that

∇(F ◦M−1) =
(
M−1

)t
(∇F ) ◦M−1

from which it follows that

∇(F ◦M−1)(MP ) =
(
M−1

)t · ∇F (P ) 6= 0

by the assumption on P and the fact that
(
M−1

)t
is invertible.

It is clear that given two distinct points there is a unique line passing through
them. If we dispense with the assumption that the points are distinct, we arrive
at the following proposition.

Proposition 4.3. Assume that k is an infinite field. Suppose that P is a simple
point on C. The tangent of C at P is the unique line L such that IP (C,L) ≥ 2.

Proof. We first show that we without loss of generality can work in the affine
plane with P being the origin and x = 0 being the tangent. We start in the
U, V,W projective plane. Let C : F = 0, P = [U0, V0,W0] and m1i = F ′i (P ).
Set m1 = (m11,m12,m13). Let K be the kernel of the map

(a, b, c) 7→ aU0 + bV0 + cW0.

Since dimK = 2 and m1 ∈ K there is a vector m2 ∈ K such that m1 and m2

are linearly independent. Since C has only finitely many linear components it
is possible to choose a vector (a, b, c) from k3 that does not lie in K, such that
aU + bV + cW is not a component of C. Set m3 = (a, b, c)/(aU0 + bV0 + cW0).
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Take M to be the 3 × 3 matrix whose rows are m1, m2 and m3. By applying
the projective transformation XY

Z

 = M

UV
W


we see that P maps to the origin and the tangent line m11U+m12V +m13W = 0
is mapped to X = 0. Furthermore, the line at infinity is by construction not a
component of the transformed curve, so we may consider C an affine curve and
work in the affine plane.

We first show that the tangent line actually satisfies the given requirements.
Note that M = Rx + Ry is the ideal in R consisting of all curves intersecting
the origin, and MP = OPx + OP y. We have f ∈ M , where C : f = 0. The
construction implies that

f = x+ g

where g =
∑

2≤i+j≤n cijx
iyj are the higher terms. (To simplify notation we

here take the liberty to identify the curves with their defining polynomials.) By
Proposition 2.11, IP (x, f) = IP (x, g). The same proposition can be applied as
long as there is a term in g with a factor x to finally get IP (x, f) = IP (x, g(0, y)).
If g(0, y) = 0 the intersection multiplicity is infinite and we are done. Otherwise
let m ≥ 2 be the largest integer such that g(0, y) = ymh for some h. By
construction h(0) 6= 0 so Propositions 2.6 and 2.10 give IP (x, h) = 0, and

IP (x, f) = IP (x, ymh) = IP (x, ym) + IP (x, h) = IP (x, ym).

After m further applications of Proposition 2.10 one has

IP (x, f) = mIP (x, y).

By Proposition 2.7 one finally has IP (x, f) = m ≥ 2.
Lastly, to show the uniqueness suppose L : ax + by + c = 0 is any line

such that IP (L,C) ≥ 2 where C : f = x+ g. Firstly, c = 0 by Proposition 2.6.
Suppose toward a contradiction that b 6= 0. Then we can make the linear change
of variables [

u
v

]
=

[
1 0
a b

] [
x
y

]
and let L̃ : v = 0 and C̃ : f̃ = u + g̃ = 0, where g̃ are the higher terms, be
the images of L and C, respectively. Write g̃ = vh̃+ u2r̃ where h̃ ∈ k[u, v] and
r̃ ∈ k[u]. A computation using the same propositions as before shows that

IP (v, f̃) = IP (v, u+ vh̃+ u2r̃)

= IP (v, u(1 + ur̃))

= IP (v, u) + IP (v, 1 + ur̃)

= IP (v, u)

= 1 < 2

contrary to the assumption. Thus, b = 0 and the line is L : x = 0 as desired.

A curve is said to be non-singular if all its points are simple.
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Proposition 4.4. A non-singular curve over an algebraically closed field is
irreducible.

Proof. Let C be a non-singular curve and suppose that it is reducible. Then
C = DE for some curves D and E. Let C : F = 0, D : G = 0 and E : H = 0.
Differentiation yields

F ′i = GH ′i +G′iH.

D and E intersect at some point P . If they do not have a component in common
Bezout’s theorem guarantees this, and else it is obvious. Inserting this point
in the above identity gives F ′i (P ) = 0, so that P is not a simple point on C,
contrary to the assumption, whence C must be irreducible.

The example x2 − y3 = 0 shows that there are irreducible singular curves.

5 Max Noether’s Fundamental Theorem

In this and all subsequent sections, we let k be an algebraically closed field.
Max Noether’s fundamental theorem is a key part in the proof of Chasles

theorem. Luckily, with the work that has been done in the proof of Bezout’s
theorem, the proof becomes very slick. There is a shorter formulation of the
theorem that does not require the assumption that the curves C and D do not
meet at infinity, but to use such a formulation one would need to replace the
homomorphism J 7→ J(x, y, 1) with something that works on the line at infinity.
Because the extra generality will not be necessary in this text, the assumption
is kept.

Theorem 5.1 (Max Noether’s Fundamental Theorem). Let C : F = 0 and
D : G = 0 be projective curves with no common component. Assume that C
and D do not meet at infinity. Suppose that H is a homogeneous polynomials in
k[X,Y, Z]. Let f = F (x, y, 1), g = G(x, y, 1) and h = H(x, y, 1). If h ∈ (f, g)P
for all P ∈ C ∩ D, then H = AF + BG for some homogeneous polynomials
A,B ∈ k[X,Y, Z] with degA = degH − degF and degB = degH − degG.

Proof. Lemma 3.5 gives that h ∈ (f, g) so that h = af + bg for some a, b ∈ R.
The result follows by an application of Lemma 1.18.

To use Max Noether’s theorem we will utilize the following proposition, the
proof of which requires more theory than is given in this text, so we refer the
reader to Proposition 1 of §5.5 in Fulton 2008. The proposition given here is
not as general as the cited one, but the extra generality will not be needed here.

Proposition 5.2. Let C : f = 0, D : g = 0 and E : h = 0 be affine curves. If
P is a simple point on C and IP (C,E) ≥ IP (C,D) then h ∈ (f, g)P .

It is easily seen that

G =

(nP )P∈P2
k
∈
∏

P∈P2
k

Z ; nP 6= 0 for at most a finite number of P ∈ P2
k


form an additive group under element-wise addition. We denote an element
(nP )P∈P2

k
∈ G with the formal sum

∑
P∈P2

k
nPP . Usually the index is clear

35



from context, and will be dispensed with. If mP ≥ nP for all P ∈ P2
k we write∑

mPP ≥
∑
nPP .

Given two curves C and D that have no component in common we define
their intersection cycle to be

C ·D =
∑

IP (C,D)P.

Given curves C, D and E such that C and DE do not intersect at infinity,
Proposition 2.10 translates to

C ·DE = C ·D + C · E.

By performing a suitable linear change of coordinates one sees that the identity
holds even if C and DE do meet at infinity.

Similarly Proposition 2.11 translates to

C · E = C ·D

whenever C : F = 0, D : G = 0 and E : AF +G = 0.
We are now in a position to give a detailed proof of the following corollary,

which is an instance of the Corollary of §5.5 in Fulton 2008.

Corollary 5.3. Let C, D and E be projective plane curves such that C and
DE do not have a common component. If all points of C ∩D are simple points
on C and C ·E ≥ C ·D, then there is a curve B such that C ·B = C ·E−C ·D.

Proof. Firstly, if C and DE meet at infinity we can make a linear coordinate
change so that the line at infinity does not meet any of the intersection points of
C and DE. We may therefore assume that C and DE do not meet at infinity.

Let C : F = 0, D : G = 0 and E : H = 0. Set f , g and h as in the
formulation of Max Noether’s theorem. The assumption C · E ≥ C · D gives
that IP (C,E) ≥ IP (C,D) for all P ∈ C ∩D. Since all these points are simple
and C and D do not meet at infinity, Proposition 5.2 gives that h ∈ (f, g)P for all
P ∈ C ∩D. An application of Max Noether’s theorem gives that H = IF + JG
for some homogeneous polynomials I and J . Let B : J = 0. Now

C · E = C ·BD = C ·B + C ·D

so that the result follows from rearranging the terms.

6 Pappus’s, Pascal’s and Chasles’ Theorems

As an applications of Max Noether’s theorem and its corollary we show three
results which are due to Pappus, Pascal and Chasles, respectively. These results
are stated and proved briefly in Fulton 2008. The proofs given here are basically
the same, but more detailed.

Note that Bezout’s theorem states that

C ·D =

mn∑
i=1

Pi

where degC = m, degD = n and the points Pi are not necessarily distinct,
whenever C and D do not share a component. We first state a lemma that will
be used in the upcoming proofs.
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Lemma 6.1. Let C and D be curves. If P is a simple point on C and P /∈ D,
then P is a simple point on CD.

Proof. Let C : f = 0 and D : g = 0. Then by definition CD : fg = 0 so that by
differentiating and inserting P one has

(fg)′1(P ) = f ′1(P )g(P ) + f(P )g′1(P ) = f ′1(P )g(P )

by the assumption that P ∈ C. Similarly (fg)′2(P ) = f ′2(P )g(P ) and con-
sequently ∇(fg)(P ) = ∇f(P )g(P ). The assumption that P /∈ D gives that
g(P ) 6= 0 and it follows that P is a simple point on CD.

Proposition 6.2. Let C1 and C2 be cubics with no common component, such
that C1 · C2 =

∑9
i=1 Pi where all Pi’s are simple points on C1. Suppose that

D is a conic with no components in common with C1, and C1 · D =
∑6

i=1 Pi.
Then P7, P8 and P9 are collinear.

Proof. Because C1 · C2 ≥ C1 ·D there is by Corollary 5.3 a curve L such that

C1 · L = C1 · C2 − C1 ·D = P7 + P8 + P9.

L must be a line. Therefore P7, P8 and P9 lie on the same line, as desired.

Corollary 6.3 (Pappus’s Theorem). Let L and L′ be two distinct projective
lines. Suppose that P1, P2, P3 and P ′1, P

′
2, P

′
3 are distinct points on L \ L′ and

L′ \L respectively. Let Lij be the line through Pi and P ′j for i, j ∈ {1, 2, 3} with
i 6= j. Then the three intersection points Lij ·Lji for i 6= j lie on a straight line.

Proof. Let C1 be the cubic L12L23L31 and C2 = L13L21L32. Furthermore let
D be the conic LL′. When the hypotheses of Proposition 6.2 have been shown,
the proof is complete.

We first show that C1 and C2 do not share a component. Suppose toward
contradiction that C1 and C2 have a component in common. Then two lines Lij

and Lkl are the same line where j − i ≡ 1 (mod 3) and l − k ≡ 2 (mod 3). If
i 6= k then Pi and Pk both lie on the line Lij so Lij = L. It follows that P ′j ∈ L
contradicting the construction. Otherwise, if i = k, then j 6= l so that P ′j and
P ′l lie on Lkl and it follows that L′ = Lkl contradicting that Pk /∈ L′. Hence,
C1 and C2 do not share a component.

Similarly, if C1 and D share a component then without loss of generality
L = Lij for some i and j, but this contradicts that P ′j /∈ L. Thus, C1 and D do
not have a common component.

Let R1 = L12 · L21, R2 = L13 · L31 and R3 = L23 · L32. By construction

C1 · C2 =

3∑
i=1

Pi +

3∑
i=1

P ′i +

3∑
i=1

Ri.

It shall be shown that P1, P2, P3, P ′1, P
′
2, P

′
3 and R1, R2, R3 are simple points on

C1.
Suppose toward a contradiction that P1 ∈ L23. Then L23 goes through both

P1 and P2 so that L23 = L. It then follows that P ′3 ∈ L, but this contradicts
the assumption that P ′3 ∈ L′ \ L. Thus, P1 /∈ L23, and P1 /∈ L31 is shown
similarly. Since P1 is a simple point on L12 it follows P1 is a simple point on C1

by Lemma 6.1. Similarly, P2, P3, P
′
1, P

′
2, P

′
3 are simple points one C1.
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We only show that R1 is a simple point on C1. That also R2 and R3 are
simple points is shown similarly.

Note that if R1 = P2, then P1, P2 ∈ L12 so that L12 = L, which contradicts
that P ′2 /∈ L. Thus, R1 6= P2. Similarly R1 6= P ′1.

Suppose first that R1 ∈ L23. Then R1, P2 lie on both L21 and L23 and it
follows that L21 = L23. Now both P ′1 and P ′3 lie on L23 and it follows that
L23 = L′, but this contradicts that P2 /∈ L′. Suppose next that R1 ∈ L31.
Then R1, P

′
1 lie on both L31 and L21 so that L31 = L21. Now one gets the

contradiction that P ′1 ∈ L. Therefore R1 ∈ L12, R1 /∈ L23 and R1 /∈ L31

Lemma 6.1 gives that R1 is a simple point on C1.

The next named result we will show is Pascal’s theorem, and to show it we
will utilize a property of conics. To keep the proof of Pascal’s theorem relatively
clean we state the result as a lemma.

Lemma 6.4. If three distinct points of a conic are collinear, then it is reducible.

Proof. Let L be the line through the distinct points, and let C be the conic. If L
and C do not share a component, then the weak form of Bezout’s theorem states
that they intersect in at most two points, but since they intersect in three points
the curves must have a common component. Because the only component of L
is L itself, it is a component of C, showing that C is reducible.

The very short formulation of this the next corollary affords the clarification
that the sides might need to be extended outside the conic.

Corollary 6.5 (Pascal’s Theorem). Suppose that a hexagon is inscribed in an
irreducible conic. Then the intersections of the opposite sides are collinear.

Proof. Let D be the conic and let P1, . . . , P6 be the distinct points on the
hexagon. Define Li to be the line through Pi and Pi+1 for i = 1, . . . , 5 and L6

the line through P6 and P1. Set C1 = L1L3L5 and C2 = L2L4L6.
First it is shown that C1 and C2 do not share a component. If Li = Lj for

any two i and j, then three distinct points of D are collinear. An application of
the previous lemma gives that D is reducible contrary to the assumption. Thus,
Li 6= Lj for all i 6= j.

Let Ri = Li ·Li+3 be the intersections of the opposite sides. By construction

C1 · C2 =

6∑
i=1

Pi +

3∑
i=1

Ri,

and C1 ·D =
∑6

i=1 Pi. It only remains to show that the points are simple points
on C1 to be allowed to use Proposition 6.2, after which the result is immediate.

It is shown that P1 is a simple point on C1. That P2, . . . , P6 are simple
points is shown similarly. First suppose that P1 ∈ Li for some i ∈ {3, 5}. Then
the points P1, Pi, Pi+1 of D lie on a line. The lemma gives that D is reducible,
contrary to the assumption. Hence, P1 ∈ L1, but P1 /∈ L3 and P1 /∈ L5.
Lemma 6.1 gives that P1 is a simple point.

We now show that Ri 6= Pj for all meaningful i and j. Suppose toward a
contradiction that Ri = Pj for some i and j. Note that Ri ∈ Li and Ri ∈ Li+3.
It holds that

(j 6= i ∧ j 6= i+ 1) ∨ (j 6= i+ 3 ∧ j 6= l)
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where l = i+ 4 if i 6= 3 or l = 1 otherwise. It follows that three distinct points
of D are collinear, so that D is reducible, but this is impossible, so Ri 6= Pj as
desired.

We show that R1 is a simple point, but the same procedure applies to R2

and R3. If R1 ∈ L3, then the distinct points R1 and P4 lie on both L3 and L4,
whence L3 = L4, which is a contradiction. If R1 ∈ L5, then the distinct points
R1 and P5 lie on both L4 and L5, whence L4 = L5, which is also contradiction.
Thus, R1 belongs to exactly one of L1, L3 and L5 so Lemma 6.1 gives that R1

is a simple point on C1.
By an application of Proposition 6.2 the proof is complete.

The next theorem is given in Fulton 2008 with weaker conditions, namely
that the curve C is only assumed to be irreducible and not non-singular. We
have opted for including the restriction that C be non-singular to simplify both
the formulation and the proof. This theorem is the same as the Cubic Cayley-
Bacharach theorem given in Silverman and Tate 1992.

Theorem 6.6 (Chasles’ Theorem). Suppose that C is a non-singular cubic such

that C · C ′ =
∑9

i=1 Pi for some cubic C ′ and not necessarily distinct points Pi.

If C · C ′′ =
∑8

i=1 Pi +Q for some cubic C ′′, then Q = P9.

Proof. Assume toward a contradiction that P9 6= Q. Let L be a line that passes
through P9, but not through Q. Bezout’s theorem gives that C ·L = P9 +R+S
for some not necessarily distinct points R and S. By using Proposition 2.10 one
has that

C · C ′′L =

8∑
i=1

Pi +Q+ P9 +R+ S = C · C ′ +Q+R+ S.

The assumption gives that all involved points are simple, so an application of
Corollary 5.3 guarantees the existence of a curve L′ (necessarily a line) such
that C · L′ = Q + R + S. If R and S are distinct L and L′ have two points in
common so L = L′. Otherwise one gets that L = L′ by using the uniqueness of
Proposition 4.3. It finally follows that P9 = Q, contradicting the assumption,
whence P9 = Q.

7 Addition on Elliptic Curves

In this last section we apply the results shown to show that addition on an
elliptic curve gives rise to an abelian group. We will use the following definition
of elliptic curves.

Definition 7.1. An elliptic curve is a non-singular cubic curve.

Let C be any elliptic curve. Given any two points P,Q ∈ C there is by
Bezout’s theorem and Proposition 4.3 a unique line L such that C ·L = P+Q+R.
We define the binary composition ∗ on C by P ∗Q = R.

Take any point O ∈ C. We define addition on C by P + Q = O ∗ (P ∗ Q).
That (C,+) is an abelian group is verified by the next four propositions.

Proposition 7.2. P +Q = Q+ P for all P,Q ∈ C.
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Proof. It is clear that P ∗ Q = Q ∗ P , since there is only one line containing
both P and Q, counting multiplicity. The result follows from this.

Proposition 7.3. P +O = P for all P ∈ C.

Proof. Let L be the line containing P and O and let C · L = P + O + R. By
definition P ∗O = R, but then P +O = O ∗R. The definition gives O ∗R = P ,
completing the proof.

Proposition 7.4. For all P ∈ C there exists a Q ∈ C such that P +Q = O.

Proof. Let R = O ∗ O, and let L1 be the line such that C · L1 = 2O + R. We
claim that Q = P ∗ R meets the requirements. Let L2 be the line such that
C · L2 = P +Q+R. By definition we now have

P +Q = O ∗ (P ∗Q) = O ∗R = O.

Proposition 7.5. P + (Q+R) = (P +Q) +R for all P,Q,R ∈ C.

Proof. We will use parentheses to distinguish between addition in intersection
cycles and addition on the cubic. Let L1, . . . , L6 be the lines such that

C · L1 = Q+R+Q ∗R,
C · L2 = O +Q ∗R+ (Q+R),

C · L3 = P + (Q+R) + P ∗ (Q+R),

C · L4 = P +Q+ P ∗Q,
C · L5 = O + P ∗Q+ (P +Q),

C · L6 = (P +Q) +R+ (P +Q) ∗R.

By letting C ′ = L1L3L5 and C ′′ = L2L4L6 one sees that

C · C ′ = O + P +Q+R+ P ∗Q+Q ∗R+ (P +Q) + (Q+R) + P ∗ (Q+R)

and

C ·C ′′ = O + P +Q+R+ P ∗Q+Q ∗R+ (P +Q) + (Q+R) + (P +Q) ∗R.

By an application of Chasles’ theorem, P ∗ (Q+R) = (P +Q) ∗R, so that

P + (Q+R) = O ∗ (P ∗ (Q+R)) = O ∗ ((P +Q) ∗R) = (P +Q) +R.
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