Abstract

In this thesis we state and give elementary proofs for some fundamen-
tal results about intersections of algebraic curves, namely Bezout’s, Max
Noether’s, Pappus’s, Pascal’s and Chasles’ theorems. Our main tools are
linear algebra and basic ring theory. We conclude the thesis by applying
the results to elliptic curves.
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Introduction

The main motivation for this thesis is to rigorously define addition on elliptic
curves and to show that the resulting structure is an abelian group. In order to
do this, we use Bezout’s theorem and Chasles’ theorem, which we also state and
prove. Since the latter relies on Max Noether’s theorem in its proof, we deduce
that theorem as well.

In the first chapter we show a weak version of Bezout’s theorem (1.10),
namely that two curves of degree ny and ns, respectively, intersect in at most
ning distinct points, under suitable conditions. We do this by first showing the
weak theorem for the affine plane and then strengthening it by performing a
number of projective coordinate changes. Along the way we develop the basic
correspondence between the affine and projective plane.

The second chapter is concerned with intersection multiplicities, since these
are needed in the strong version of Bezout’s theorem. The chapter is introduced
with an affine definition, followed by properties thereof that will be used in the
subsequent chapters. We then show that the definition extends to the projec-
tive plane, and that we can make linear changes of variables without affecting
multiplicities.

After dealing with intersection multiplicities we state and prove Bezout’s
theorem (3.1) in Chapter 3, which is the result that any two curves of degree n;
and ns, respectively, intersect at exactly nins points, under certain conditions
and counting multiplicities. Our proof is mostly a detailed version of the outline
given in Appendix A Section 4 in Silverman and Tate 1992, albeit in a different
order. We have deviated somewhat from the outline by proving Lemma 1.18
in the first chapter, although we only need it for a result which we could have
given a more direct proof of. The lemma is not part of the outline in Silverman
and Tate 1992, but is instead inspired by the proof of Max Noether’s theorem
in Fulton 2008.

Before stating and proving Max Noether’s theorem we introduce simple
points, and deduce some consequences necessary for subsequent chapters.

With all the preparation in the earlier chapters, the proof of Max Noether’s
theorem (5.1) in Chapter 5 is two lines. In this chapter we also introduce
intersection cycles to simplify bookkeeping of intersections. Before continuing
we cite a proposition that will allow us to use Max Noether’s theorem in the
proceeding chapter.

The goal of Chapter 6 is to prove Chasles’ theorem (6.6). Due to the amount
of work spent on developing the fundamentals in previous sections, the proof
is quite short, so we fill out the section by deducing two other interesting con-
sequences of Max Noether’s theorem, namely Pappus’s and Pascal’s theorem.
These results date back to the fourth and seventeenth century respectively. For
a more detailed reference see David Eisenbud and Harris 1996.

Finally, in the last chapter we use the theorems shown to give a definition
of addition on elliptic curves, and to show that the curve endowed with this
addition constitutes an abelian group.

We assume the reader is familiar with the definition of the projective plane,
P2 over a given base field. Furthermore, the reader is assumed to be accustomed
to linear algebra and elementary ring theory.
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The cardinality of the set A.

The set A is a subset of B.

The set A is a proper subset of B.

A field.

The projective plane over k.

The dimension of the vector space V over k.
The direct sum of U and V.

The polynomial ring in n variables over R.
The field of fractions over R[z1,...,Zy].
The quotient ring R modulo the ideal I.
Coordinates in k2.

Homogeneous coordinates in P3.

The restriction of the map ¢ to the set S.
The partial derivative of f w.r.t. the i:th argument.
The gradient of f,i.e. (fi,...,f}).



1 A Weak Form of Bezout’s Theorem

In this first section we set out to prove a weak form of Bezout’s theorem. Before
formulating it, we will state and prove lemmas used in its proof.

Through the entirety of this text, we let k be a field. Whenever we find the
need to introduce extra conditions on k, those conditions will be stated.

The next lemma is a solution to exercise 2.42(a) in Fulton 2008.

Lemma 1.1. Let R be a ring and suppose that I and J are ideals in R such
that I C J. Then
p:R/ISr+1—r+JeR/J

is a well-defined surjective homomorphism.

Proof. Suppose that 71 +1 = ry + I. Then ry — ro € I so that the assumption
gives r1 — r9 € J. Thus, r1 + J = ro + J, showing that ¢ is well-defined.
Because
pla+D)+ob+D=(a+J)+Ob+J)=a+b+J=pla+b+1)
and
ela+Deb+I)=(a+J)b+J)=ab+J =p(ab+ 1)

© is a homomorphism.
For any element r + J € R/J one can take one of its preimages r € R and
get o(r + 1) =r+ J. Hence, ¢ is surjective. O

Lemma 1.2. Let R be a ring that contains k as a subring. Suppose that I and
J are ideals in R such that I C J. Then

dim(J/I) = dim J — dim I.
In particular, if dim J is finite, then dim(J/I) and dim I are finite.
Proof. If I = J, then
dim(J/I) =0=dimJ — dim J = dim J — dim I.

Otherwise, it may be assumed that I C J. If s € kNI with s # 0, then s is
invertible in R, so that 1 = s~!s € I, and consequently I = R contradicting that
I c J. Thus, kNI = {0}. Consider the natural homomorphism ¢ : R — R/I.
If s,t € k then

o(s) =p(t) = @(s—1)=0
= s—teknl
— s—t=0
= s=t

showing that the restriction of |, is an isomorphism k =2 ¢ (k). Hence, one may
identify k& with (k).

Consider ¢|; : J — J/I. Suppose that s,t € k and that f,g € J. Because
s,t € R one has sf +tg € J due to J being an ideal in R, and

o(sf +1tg) = @(s)p(f) +@(t)p(g) = sp(f) +te(g)-

This shows that ¢|; is a linear transformation. The rank-nullity theorem gives

dimim (¢|;) + dimker (¢|,) = dimJ <= dim(J/I) =dimJ —dimI. O



Lemma 1.3. Let R be a ring containing k as a subring. Let I, J and K be
ideals in R such that I C J C K. Then

dim(K/J) = dim(K/I) — dim(J/I).
In particular, if dim(K/I) is finite, then dim(K/J) and dim(J/I) are finite.

Proof. If I = R, the equality to prove is 0 = 0 — 0. Otherwise, one may as in
the proof of Lemma 1.2 assume that I C R, with the natural homomorphism
¢ : R — R/I being an isomorphism when restricted to k. Thus, we may regard
k as a subring of R/I. By the third isomorphism theorem J/I and K/I are
ideals in R/I, and J/I C K/I. Furthermore, the same theorem gives

(K/D)/(J/T) = K/J
whence applying Lemma 1.2 completes the proof. O

We first define algebraic curves in k2. Curves in the projective plane P? are
defined analogously. It is easy to verify that the relation ~ on k[x, y] defined by
f ~ gifand only if f = Ag for some A € k with A # 0 is an equivalence relation.
The equivalence classes of non-constant polynomials under ~ are called algebraic
curves. If f is a representative of C' then f is called the defining polynomial of
C and one writes C': f = 0. It is clear that the set

{(a,0) € k*; f(a,b) =0}

does not depend on the representative f of C'. Thus, every algebraic curve
induces a unique point set in k2. The reverse does not hold as is seen by the
fact that the distinct algebraic curves = 0 and z? = 0 induce the same point
set. If f(P) =0 one writes P € C. Similarly, we will treat algebraic curves as
point sets whenever necessary. For example C'N D means the set of intersection
points of the curves C' and D.

An irreducible polynomial g € k[z,y] is said to be a component of C': f =0
if g | f. It follows that the curves Cy : f; = 0 and Cy : fo = 0 have no
components in common if and only if ged(f1, fo) = 1.

To relate points of the affine plane k? with points of P? the usual injection

k* > (a,b) — [a,b,1] € P?

is used. To pass from algebraic curves in k2 to their projective counterparts in
P2 consider the map ¢ : k[z,y] o f — F € k[X,Y, Z] defined by

F= Z ai; X'YIZ""7)  where f = Z ai o'y’
i+5i<n itj<n
where deg f = n. Because £ maps polynomials to polynomials and f ~ ¢ if and
only if £(f) ~ &(g), £ can be seen as a map between algebraic curves.

The map § has the desirable property that it respects the induced point sets
in the sense that if C': f =0 and C : F = 0 is the projective counterpart with
F= f(f)a then

(a,b) € C <> [a,b,1] € C.

This follows from that f(a,b) = F(a,b,1).

It shall be shown that the mapping of curves from k2 to P? is injective and
respects multiplication. In order to simplify this two lemmas are stated. The
proofs, which are trivial, have been left out.



Lemma 1.4. Suppose that R is a subring of k[xy,...,x,] and let S be a com-
mutative ring that contains k as a subring. If s1,...,s, are some fized elements
of S, then the evaluation map

R>frw f(s1,...,8,) €S
is a homomorphism.

Lemma 1.5. Suppose that R is a subring of kl[x1,...,z,] and that S is a
commutative ring containing k as a subring. Assume that sy,...,s8, € S are
algebraically independent over k, i.e.

f(s1,...,8,)=0 = f=0
for all f € klz1,...,2z,]. Then

R> fr f(s1,...,8,) €S
s an injective homomorphism.

Note that X/Z and Y/Z are algebraically independent elements of k(X,Y, Z)
over k. Also note that the map f — F' above can be written as

€ kly) > f o Z7f(X/Z.Y)Z) € MX,Y,Z), degf=m. (L)
Because
Z"f(X/2,Y|Z)- Z"9(X/Z,Y[Z) = Z""(fg)(X/Z,Y]Z)

by Lemma 1.5 and deg(fg) = m+mn, £(f)&(g) = £(fg) so that £ respects multi-
plication. If Z™ f(X/Z,Y/Z) = Z"¢(X/Z,Y/Z), then by comparing degrees of
the sides one gets that deg f = degyg. Thus, f(X/Z,Y/Z) = ¢(X/Z,Y/Z) and
Lemma 1.5 gives f = g, showing that £ is injective and respects multiplication.

That £ is not a homomorphism is for example seen by the fact that f = =
and ¢ = y? map to F = X and G = Y2, respectively, but f + g = = + % maps
to XZ+Y?2#+F+G.

Because ¢ is injective and respects multiplication g is a component of C' if
and only if the homogenization G is a component of the corresponding projective
curve C. We may now dispense with the tildes and pass between k? and IE”%
without notice. We have shown how to pass from affine curves to projective
curves. The next lemma shows when we may pass from a projective curve to
an affine one using the maps introduced.

Lemma 1.6. Let C' : F = 0 be a projective curve, where F' is a homogeneous
polynomial in k[X,Y,Z]. If the line at infinity, Z = 0, is not a component of
C, then F =¢£(f) for some f € k[z,y].

Proof. Let n = deg F'. Note that
F=2"F(X/Z,Y/Z,1).
By setting f = F'(z,y,1) one has

F=27"f(X/Z,Y)Z)



and deg f < deg F' = n. Suppose toward a contradiction that deg f < n and let
m =deg f. Then Z™"f(X/Z,Y/Z) € k[ X,Y, Z] and

2|27 = Z| 272 f(X)Z,Y/Z) < Z|F
contradicting the assumption. Thus, deg f = n and F = £(f). O

From now on we fix the notation R = k[, y].

Lemma 1.7. Let {P;}", be a set of m points of k*. Then for each i there
exists a polynomial h; € R such that h;(P;) = d;; where &;; is the Kronecker
delta.

Proof. Let i be given and let P; = (z;,y;) for all j. For each j let K; be the
kernel of

k* > (a,b,¢) = ax; +by; +c € k.
Suppose K; C K;. Then because (1,0, —z;) € K, one has (1,0, —x;) € K, so
that
showing that x; = =x;. Similarly, y; = y;. Thus, P, = P; so that i = j.
Therefore, one may for each j # i take a v; = (aj,bj,¢;) € k® such that
v; € K; in but v; ¢ K; and let

gi(xy) = [ [(ajz + by +¢)).
i#i

By construction g;(P;) = 0 for all j # i and g;(P;) # 0. Now h; = (9:(P)) *gi
satisfies the requirements. O

We are now in a position to formulate a weak form of Bezout’s theorem.
The assumption that the line at infinity is not a component of either curve will
be lifted later on.

Theorem 1.8. If the projective curves C1 and Cs, of degree ny and ng respec-
tively have no common component and the line at infinity is not a component
of either curve, then C1 and Co intersect at at most niny points of k2.

Proof. By Lemma 1.6 one may let f1, fo € R such that the affine parts can be
written as C7 : fy =0 and Cs : fo =0.

Let (f1,f2) = Rf1 + Rfa be the ideal in R generated by f; and fo. The
theorem follows whenever it has been shown that

|Cl N 02 n k‘2| S dlm(R/(fl, fz)) S ninsg. (1.2)

For each d € Z define

o) = ("37) = JH D@+ wd Ri= (€ R dens <

R, is a linear space over k for all d. Let

Wq = Rg_n, f1 + Ra—n, fa.



Now W, is a vector space over k such that Wy C (f1, f2) and Wy = {0} if
d < min{ny,na}.
Because each polynomial f € Ry has a unique representation

y
f=Y ciy
i+j<d

with ¢; ; € k the monomials {z'y’ };; j<q form a basis for R4. There are

¢(e)—¢(e—1):%((e+1)(e+2)—e(e+1)):%(e+1)(e+2—e):e+1

monomials of degree e < d in Ry. Therefore, there are

d

¢(d) = d(d) — d(=1) = Y _(d(e) — ¢(e —1))

e=0

monomials in Ry showing that dim Rq = ¢(d).
Suppose that d > ny +no. If h € Rg_pn,—n, f1fo then h = gf; fo for some
g € R with degg < d —ny — ny. Thus,

h=(g9f1)f2 = (9f2) fr

with deg(gfi1) = degg + deg f1 < d — ny and deg(gf2) < d — ny, from which
h € Ri—n, fiNR4—n, fo follows. Conversely suppose that h € Rg_p,, fiNRg—n, fo-
Then

h=g1fi=g2f2

for some g1, g2 € R with degg; < d — n;. It follows that fi | gof2, but because
ged(f1, f2) = 1 one has f1 | go, so that go = ¢gf; for some g € R. It follows that
h = gf1f2 with

d—ng >deggeo =degg+deg fi = degg < d—nj3 —no,
so that h € Rq_n, —n, f1f2 showing that
Ra—n, J1 N Ra—n, fo = Ra—ny—n, f1[2

for all d > ny + no.
For all non-zero f € R, the map

Ry>gw—gf € Ryf

is a linear bijection. It is clearly surjective. If gf = hf for some g, h € R, then
because R is an integral domain one has g = h. The linearity follows from

(ag +bh)f = a(gf) + b(hf)
for all a,b € k and g, h € R. Thus,
dim(Ryf) = dim Rq = ¢(d).

Because dim(U + V) = dim U +dim V — dim(U N V) for all subspaces of a finite
dimensional subspace one has that

dim Wy = dim(Rd,nl fl) + dim(Rd,nz fg) — (ﬁIIl(,Rd,nl,r12 f1f2)



for all d > ni + no. Analogously with Lemma 1.2 it follows that

dlm(Rd/Wd) = dim Rd —dim Wd
= ¢(d) — d(d — 1) — ¢(d — n2) + ¢(d — n1 — 1) (1.3)

=ning,

where the last equality follows from a simple but lengthy calculation.

Now suppose r > ning and suppose ¢i, ..., g, are polynomials in R. Take
d = max{deggi,...,degg,,n1 + na}. Then g; € Ry for all i and d > ny + no.
Due to (1.3) there are ¢y, ..., ¢, € k not all zero such that that

Zcigi =0 (mod Wy) <— Zcigi e Wy
i=1 i=1

— Y cigi € (f1, f2)
i=1

— Zcigi =0 (mod (f1, f2))-
i=1

This shows that any collection of more than nins polynomials in R are linearly
dependent modulo (f1, f2), or in other words that

dll’Il(R/(fl,fg)) S ninsg. (14)

This proves the latter inequality of (1.2).
Suppose that {P;}™; C C; N Cy Nk? and take for each i an h; € R such
that h;(P;) = 6;;. Suppose that

Zcihi =0 (mod (f1,f2))
i=1
for some cq,...,¢, € k. Then
> cihi=g1fi + g2/
i=1

for some g1, g2 € R and it follows that

m m

cj =Y cidiy =Y cihi(P)) = g1(P) f1(P;) + g2(P;) fa(P;) = 0
i=1 i=1
for each j by construction and the assumption on P;. Hence, hq,...,hy, are

linearly independent modulo (fi, f2) showing that

m < dim(R/(fla fZ))

Since dim(R/(f1, f2)) is finite by (1.4), it follows that so is C; N Cy N k? and
one may therefore let {P;}™, = C; N Cy N k?. Then

|Cy N CoNEk?| =m < dim(R/(f1, f2))

completing the proof of (1.2). O

10



Corollary 1.9. If the projective curves Cy and Cy have no common component
and the projective line L is not a component of either curve, then C1 and Cs
intersect at at most nins points of IP’% \ L.

Proof. Given any invertible matrix M € k3*3 the space P% is transformed with

A A
P25 |B| — M |B| € P
C C

It is clear that this map is a well-defined bijection. If C': F' = 0 is an algebraic
curve, then the transformed curve C’ must satisfy

PeC < MPec(C

where M P is the point acquired by applying M to the homogeneous coordinates
of P. Due to this the polynomial F’ defining C’ satisfies

F'(MP)=F(P) < F'(P)=FM™'P).
Polynomials are therefore transformed with

X
kXY, Z|>F—F M |Y| | €k[X,Y,Z]. (1.5)
z

Because the inverse of this map is acquired by replacing M~! with M, the
map is a bijection. By Lemma 1.4 the map is an isomorphism. If two integral
domains are isomorphic, then so are their fields of fractions. Thus,

X
EX,)Y,Z)20—® | M |Y| | ckX,Y,2) (1.6)
Z

is an isomorphism. Hence, a linear transformation of IP’% induces an isomorphism
on the set of rational expressions on k(X,Y, 7).

Let L be any projective line that is a component of neither C; nor Cs.
Considering the geometric configurations as part of the U, V, W projective plane

one can write L as
L:aU+bV +cW =0

for some a,b,c € k, not all zero. Since the space k3 is three dimensional, there
are vectors (myy,mi2,m13) and (may, Maa, Ma3) in k3 such that the matrix

mi1r M2 Mi3
M = [mo1 moz a3
a b c

is invertible. By considering the transformation

X U
Y| =M|V
Z w

11



one has
Z =0« aU+bV +cW =0

so that the line at infinity in the X,Y, Z plane is mapped to L in the U,V,W
plane. This map induces an isomorphism between the X,Y,Z and U,V,W
planes, and their curves, respectively. Since L is a component of neither C; nor
(5 the line at infinity is not a component of any of the curves corresponding to
C1 and Cs in the X, Y, Z plane. An application of Theorem 1.8 completes the
proof. O

To apply the corollary one must have a line that is not a component of
either curve at disposal. We shall strengthen Corollary 1.9 considerably by not
requiring the existence of such a line. However, to do this we will require that
k is infinite.

Theorem 1.10. Let k be an infinite field. If the projective curves C1 and Co
have no common component, then |C1 N Cs| < (deg C1)(deg Cs)

To deduce Theorem 1.10 from Corollary 1.9 one only needs to find a line
L that is a component of neither C; nor C5 and does not meet any of their
intersections. We now set out to show the existence of such a line using the
infinitude of k.

Lemma 1.11. Let Cy,...,C, be any finite collection of curves in P% where k is
infinite. Then there exists a line L that is not a component of any of the curves
in the collection.

Proof. Since the degree of each algebraic curve Cj is finite, there are only finitely
many lines L;; that are components of C;. Therefore the set of all such com-
ponents {L;;}; ; is finite. However, the set of all lines is infinite, because the
map

ksa—{[X,Y,Z]cP}; aX +Y +2Z =0}

is injective. Therefore there exists a line that is not a component of any of

Ch,...,C. O

Using the lemma, take a line Ly that is not a component of either C; and
C5. Next, take another line Lo that is not a component of any of Ly, C; and
C5. Because Ly and L, are distinct lines, they intersect at exactly one point,
i.e. |L1 N Ly| = 1. By some set theoretic manipulation one has

CiNCy=CiNC,NPE=C1NCyN ((PE\ L) U(P2\ Ly) U (Ly N Ly))

By distributing C7 N Cs over the intersection, taking cardinality on both sides
and using Corollary 1.9 one gets

|Ci N Cs| < nying +ning + 1,
whence C7 N (s is finite. This finding we summarize in a lemma.

Lemma 1.12. Suppose that the projective curves Cy and Cy share no compo-
nent. Then C1 N Cy is finite.

Proof. If the base field k is finite, C; N C5 is finite by virtue of being a subset
of P2, which is finite. Otherwise, k is infinite and the discussion prior to the
lemma suffices as proof. O

12



Lemma 1.13. Suppose that S is a finite subset of P2 where k is infinite. Then
there are infinitely many projective lines not meeting any of the points of S.

Proof. Tt is shown that there exist infinitely many lines L not intersecting S
and {[0, 1,0]}, from which the desired result follows.

Suppose toward a contradiction that there are only a finite number, n, of
lines not meeting any of the points. Any point [4, B,C] € P} with C # 0 can
be written as [A/C, B/C,1]. On the other hand if C'= 0 and A # 0 the point
has a unique representation [1, B/A,0]. Lastly, if C = 0 and A = 0 the point
can be uniquely represented as [0,1,0]. Thus, it is possible to uniquely write

SU{[O,].,O}} = {[AlvBlal]a”'v[AT,BTa]-]?[]-le’O]a"-v[17DQ70]7 [071’0]}

for some Ai,..., A, B1,...,By,D1,..., D4 € k.
Let A be a finite subset with n 4+ 1 elements of k \ {A;,..., A, }. For each
A € A choose an a € k such that
B;
0
a#0, a#/h—A
foralli e {1,...,r}and j € {1,...,¢}. This is possible to do since k is infinite.
Now the line

and a# D;

LA:XlefAZ:O
a

does not meet any point of S U {[0,1,0]}, as is now shown. If [4;,B;,1] € L

then ) B
Aj— =B, — A= =
- 0= a=73"4

contrary to the construction. If [1, D;,0] € L then
1
1—*Dj:0 — a:Dj
a

which also contradicts the construction. Clearly, [0,1,0] ¢ L.

If Ly = La, then since [A,0,1] € L4 one also has [A4,0,1] € Ly so that
A — A’ = 0 after insertion into the equation of L 4,. This shows that the map
A L4 is injective, but then there are n+1 lines not meeting any of the points
of S. This contradicts the supposition, whence there are infinitely many lines
not meeting S. O

Using this lemma the proof of Theorem 1.10 is a simple manoeuvre.

Proof of Theorem 1.10. There are only finitely many components of C; and Cs.
By the lemma there is a line L that is not a component of either C; and Cy and
does not meet C; N Cy. Now one has

CiNCy=CiNCyNPE
=CiNCyN((PE\L)UL)
=(C1NCyN(PE\L)U(CiNCyNL)
= (C1NCyN(PE\ L)),
so after taking the cardinality on both sides and using Corollary 1.9 one gets
|C1 N Cs| < ning

completing the proof of Theorem 1.10. O

13



By the next lemma we may apply Theorem 1.10 to any algebraically closed
field.

Lemma 1.14. Any algebraically closed field is infinite.

Proof. Suppose toward a contradiction that an algebraically closed field & is
finite. Then by listing the elements one has k = {a1,...,a,}. Now

n

f:H(xfai)Jrl

i=1

is a polynomial without any zero in k, contrary to the assumption that k is
algebraically closed. This completes the proof. O

To further strengthen the theorem one needs to introduce intersection mul-
tiplicities. Before doing so, we show that (1.4) is in fact an equality under the
assumption that k is algebraically closed and that C; and C3 do not meet at
infinity. As we have seen, the latter condition can be erased by applying a suit-
able linear change of variables, after which the equality holds in the entirety of
P2.

The following lemmas are more general than necessary at the moment, but
the additional generality will pay off greatly in the proof of Max Noether’s
fundamental theorem.

Lemma 1.15. For all F' € klxy,...,x4] there exist unique homogeneous poly-
nomials F; € klz1,...,24) of degree i where at most a finite number of the F;’s
are non-zero, such that F' =73, F;.

Proof. Let

_ . CJ1 L add
F= E , Cjrsenjatl Ly -
Jit+ja<n

The existence is seen by rearranging the terms so that

n
_ J1 Jd _
F= E , E Cjryenga®l g = E :Fl

=0 j1+-+ja=1 €N

F;

where F; = 0 for ¢ > n.
For the uniqueness suppose that F' = . F; = >,y G; where F; and G;
are homogeneous and at most finitely many F;’s and G;’s are non-zero. Let

n=max{i € N; F; #0or G; # 0}.
Then
n n n
F=Y F=Y G = > (F;—G)=0
i=0 i=0 i=0

We now show by induction that if Z?:o H, = 0 for some homogeneous polyno-
mials H; of degree i then H; = 0 for i < n, from which the result follows. For
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n = 0 the assumption directly yields the desired result. Assume that the result
is true for n and that Z?:Ol H; = 0. It then follows that

n
—IInpy1 — § Hz
1=0

but the left hand side is either 0 or has degree n + 1. However, the right hand
side has degree at most n. Thus, H,4+; = 0 and Z?:o H; = 0. The induction
hypothesis gives that H; = 0 for i < n completing the induction step. By the
induction principle the proof is complete. O

For any polynomial F € k[X,Y, Z] define Fy = F(X,Y,0).!

Lemma 1.16. Suppose that k is an algebraically closed field. If FF = 0 and
G = 0 are projective curves not meeting at infinity, then ged(Fy, Go) = 1.

Proof. Let deg F = m and set
F= > CiiaX"Y2Z5
i1tiztiz=m
By rearranging the terms one has
F= Y ;XY 4+Z > ciiuX1Y2Z57!

it+j=m i1+iz+iz=m
ia>1

with Ci,j = Ci45,0- Thus,
FQ = Z Ci’inYj
i+j=m
is a homogeneous polynomial in k[X,Y]. Because k is algebraically closed one
has that

Fy = [J(a:iX +b:Y)
i=1
for some a;,b; € k. Similarly, Go = [[;_,(a}X + b}Y) for some af, b € k.

If Fy and G share a common factor, then they share a factor on the form
aX 4 bY . Tt then follows that Fy and Gy have common zeros at (tb, —ta) for all
t € k, but then [b, —a,0] is a common zero of F' and G that lie on the line at
infinity, which contradicts the assumption. Hence, Fy and G share no factor
and ged(Fp, Go) = 1 follows as desired. O

Lemma 1.17. Suppose that k is an algebraically closed field. Let FF = 0 and
G = 0 be projective curves not meeting at infinity. Let H, A, B € k[X,Y, Z]. If
ZH = AF + BG, then H = A'F + B'G for some A',B' € k[X,Y, Z].

Proof. By passing to the homomorphism J +— Jy one has AgFy + BoGg = 0.
Lemma 1.16 gives that ged(Fyp,Go) = 1 and it follows that Fy | By so that
By = EF, for some F € k[X,Y]. Consequently, Ag = —EGq. Let A1 = A+ EG
and By = B — EF. Note that ZH = A{F + B1G. Because Z is a monic

1 This Fy is of course different from the Fy in Lemma 1.15.
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polynomial one may divide A; by viewing it as a polynomial in Z over k[X,Y].
Doing this one gets
A =ZA"+S

for some A’ € k[X,Y,Z] and S € k[X,Y]. By passing to the homomorphism
J — Jp one sees that
S=(A1)o=Ao+EGy=0

so Ay = ZA’. Similarly, B; = ZB' for some B’ € k[X,Y, Z]. Now
ZH =ZA'F +ZB'G
and the result follows by canceling Z. O

Lemma 1.18. Let FF = 0 and G = 0 be projective curves with no intersec-
tions on the line at infinity. Suppose that H is a homogeneous polynomials in
kXY, Z]. Let f = F(z,y,1), g = G(z,y,1) and h = H(x,y,1). If h =af +bg
for some a,b € R, then H = AF 4+ BG for some homogeneous polynomials
A, B € k[X,Y, Z] with deg A = deg H — deg F' and deg B = deg H — degG.

Proof. Let
n = max{deg H,dega + deg F,deg b + deg G}

and
r+deg H=dega+r, +degF' =degb+ r, + deg G = n.

By passing to the isomorphism j — j(X/Z,Y/Z) and multiplying by Z™ one
has
7Z"H = AF + BG

where A = Z9€9+7aq(X/Z,Y/Z) and B = Z98b+™0b(X /7 Y/Z). By repeated
use of Lemma 1.17 one has that
H=AF+Bd

for some A, B’ € k[X,Y, Z].

By virtue of Lemma 1.15 let A" = > A; and B’ = > B; with A; and
B; homogeneous of degree ¢ and j, respectively. Set s = deg H — deg F' and
t = deg H — deg G. It is possible to write

Y AF+Y BG= > C
i#S J#t l#deg H

where () are homogeneous polynomials of degree [. Since

AF+BG-H+ Y C=0
l#deg H

where the first part is homogeneous of degree deg H one has by the uniqueness
of Lemma 1.15 that H = A,F + B;G, completing the proof. O

It is now shown that
RsN (fl, fg) =Wy (1.7)
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for all d > nj + ngy. Firstly, if f € Wy, then f = g1 f1 + g2 f2 for some g1,92 € R
with deg g; < d — n;. In particular f € (f1, f2) and it also follows that

d < d iJi) = d—mn; i)=d
egf_igg} eg(9:fi) Z_g{lg}( ni +n;)

which means f € Rq. Thus, f € Ry N (f1, f2).
Conversely, suppose f = g1 f1 + g2 fo with deg f < d and g¢1,g2 € R. Letting
F =¢(f) and F; = £(f;) and applying Lemma 1.18 one has that

F=G\F) +GL4F;, degG)=degF —degF;,

for some homogeneous polynomials G} € k[X,Y, Z]. By applying the homomor-
phism J — J(x,y,1) one gets

f=91fi + 93>
where g, = G%(z,y,1) and consequently
degg; < deg G = deg F — deg F; = deg f — deg f; < d —n;.

Finally, f € W4 which shows (1.7)
Take d > ny + n2. Let r = nyny. By (1.3) there exist ¢1,...,9- € R¢ C R
that are linearly independent modulo Wy. Suppose that

9= Zcigi =0 (mod (f1,f2))
i=1

where ¢; € k. This means by definition that g € (fi, f2). Because Ry is a
k-vector space one also has g € Ry. Since Ry N (f1, fa) = Wy, it follows that
g € Wy, but then

Zcigi =0 (mod Wy)
i=1

and ¢; = --- = ¢, = 0 by construction. This shows that ¢1,..., g, are linearly
independent as elements of R modulo (f1, f2). Hence, dim(R/(f1, f2)) > ning
and (1.4) is indeed an equality. We record this finding as a lemma for referencing
later on.

Lemma 1.19. Suppose that k is algebraically closed. Let Cv and Cy be pro-
jective curves of degree ny and mo, respectively, with no common component.
Assume that the curves do not meet at infinity. If f; = 0 is the affine part of
Ci, then dlm(R/(fl, fg)) = Nning.

2 Intersection Multiplicities

With notation as in the previous section, the intersection multiplicity of C; and
Cy at P € k? shall be defined. From now on let K = k(x,y) be the field of
fractions over R. A rational expression f/g € K is said to be defined at P if

g(P) # 0. Let the local ring of P,

Op={f/lge K ; g(P) #0},
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be the set of defined fractions at P. Because k C Op one has Op # @. If
f1/91, f2/g2 € Op then

(9192)(P) = g1(P)g2(P) # 0
due to k being a field. Thus

h P he-ha o h L L
g1 g2 9192 g1 92 9192

are defined at P, showing that Op is a subring of K.

Proposition 2.1. The evaluation
Op3¢—o¢(P) ek

s a surjective homomorphism which induces the identity map on k. With Mp
being the kernel of this homomorphism one has Op/Mp =2 k and Op = k® Mp.

Proof. The map is well-defined since the denominator of ¢ is by definition non-
zero at P. That evaluation is a homomorphism is trivial. For all constant
expressions a € k one has a(P) = a, from which it follows that the map induces
the identity map on k. In particular, the homomorphism is surjective. The first
isomorphism theorem gives Op/Mp = k. Note that kN Mp = {0} since all
constant expression that are zero at P must be identically zero. If ¢ € Op, then

¢ =o(P)+(¢—9(P)) € k+ Mp.
Consequently, Op = k @& Mp. O
Proposition 2.2. ¢ € Op has a multiplicative inverse if and only if ¢ ¢ Mp.

Proof. Suppose ¢ € Op has a multiplicative inverse ¢ € Op. Evaluation yields
¢(P)y(P) = 1 showing that ¢(P) # 0, or equivalently that ¢ ¢ Mp. Conversely,
suppose ¢ ¢ Mp. Then ¢ = f/g for some f,g € R where f(P) # 0. It follows
by definition of Op that v = g/f € Op, but then ¢p = 1, so that ¢ has a
multiplicative inverse. O

Proposition 2.3. Mp is the unique mazximal ideal in Op.

Proof. Let I be an ideal in Op. If I contains an invertible element, then I = Op.
Otherwise, no element in [ is invertible, or in other words I C Mp. O

Define (f1, f2)p = Opf1 + Opfs to be the ideal in Op generated by f; and
f2. We are now ready to define the intersection multiplicity.

Definition 2.4. With notation as before, the intersection multiplicity of the
curves C; and Cy at P € k? is defined as

Ip(C1,C2) = dim(Op/(f1, f2)P)-
We continue this section by showing a few consequences of the definition.

It is clear that (f1, fo)p = (f2, f1)p. The next proposition is a consequence of
this.
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Proposition 2.5. Ip(C,D) = Ip(D,C) for all curves C and D and points
P e k%

Proposition 2.6. If P ¢ Cy N Cy, then Ip(Cy,Cy) = 0.

Proof. Suppose that P ¢ C1NCs. Then at least one of f1(P) # 0 and fo(P) # 0.
Without loss of generality, it might be assumed that f;(P) # 0. Then f;* € Op
so that

1= fi'f1+0 fa € (f1, f2)p.
It follows that (f1, fo)p = Op, and consequently that Ip(Cy,Cs) = 0. O

Proposition 2.7. If P € C; N Cs, then
Mp
Ip(C1,Cy) =1+dim | ——— .
Pl ) <(f1,f2)p)

Proof. If P € C1 N Cy, then f1(P) = fo(P) = 0 so that (f1, fo)p € Mp C Op.
Lemma 1.3 gives that

. Op ) . (Op ) . ( Mp )
dm|—+— | =dim|— ) +dim | ————
((fl,fz)P Mp (f1, f2)p
but since Op/Mp = k the result follows. O

Note that the dimension of the space Op/(f1, f2)p might be infinite, in
which case we will consider Ip(Cy,Cs) = oo. This implies that Ip in general
has range NU{oo}. However, for the curves we are mostly intereseted in, infinite
multiplicities need not be considered, which is a result of the next proposition.

Proposition 2.8. Suppose that Cy and Cy are affine curves with no component
in common and set n; = deg C;. Then Ip(Cy,Cy) < ning for all P € k2.

Proof. 1t is shown that

dim(Op/(f1, f2)p) < dim(R/(f1, f2))

after which inequality (1.4) completes the proof. Suppose that ¢1,...,¢,. € Op
are linearly independent modulo (f1, f2)p. Take ¢1,...,gr, h € R with h(P) # 0
such that ¢; = g;/h for i = 1,...,r. Because

> cigi € (f1, f2) <= Y cigi =hafr + hafs for some hy,hy € R
i=1

i=1
" g h h

— ZQ‘%Z#JH%—%]‘Q for some hi,ho € R
i=1

= > ci¢i = 1 f1 + Yo fp for some 1,1 € Op
i=1

= Y i € (fr.f2)p
i=1
S

g1, - -, gr are linearly independent as elements of R modulo (f1, f2), completing
the proof. O
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The finiteness of the intersection multiplicity implies a characterization of
the local ring that will be useful later on in the proof of Bezout’s theorem.

Lemma 2.9. Op = R+ (f1, f2)p whenever ged(f1, f2) = 1.

Proof. The assumption together with Proposition 2.8 guarantees the existence
of a finite collection ¢1/h,...,g,/h, with g1,...,g,,h € R and h(P) # 0, that
span Op modulo (f1, fo)p. This means that given any ¢ € Op there exists
c1,...,¢ €k and ¢ € (f1, fo)p such that

o] ~ g
because ¢/h € Op. It follows that
¢ = Z ¢igi + hy
i=1

where >°!_, ¢;9; € R and hi) € (f1, f2)p due to the latter being an ideal. Since
¢ is arbitrary this shows Op C R+ (f1, f2) p. The inclusion 2 is trivial. O

IfC:f=0and D:g =0 are affine curves, we denote by CD the affine
curve whose equation is fg = 0. The proof of the next proposition is merely a
detailed version of the proof found in Fulton 2008.

Proposition 2.10. If C is a curve sharing no component with either D or E,
then Ip(C, DE) = Ip(C, D) + Ip(C, E) for all P € k?.

Proof. Let C: f=0,D:g=0and E:h=0. It shall be shown that the map

a:0p/(f,h)p2 o+ (f,h)p— 9o+ (f.gh)p € Op/(f,gh)p

is a well-defined linear injection. To show that it is well-defined, it is sufficient
to show that

¢ € (fvh)P - quE (fagh)Pa
for all ¢ € Op. This is clear since if ¢ = ¥ f + Yoh for some 1,12 € Op, then
99 = 1gf +2gh € (f, gh)p.

The map is obviously linear. To prove the injectivity, it is sufficient to show

ggbe (fagh)P - d)e (fzh)P7

for all ¢ € Op. Thus, suppose that g¢ € (f,gh)p. Then g¢ = fi)1 + ght)y for
some 11,15 € Op. Choose an e € R with e(P) # 0 such that ¢e € R, {1e € R
and e € R, and set a = ¢e, b = ip1e and ¢ = qe. It follows that

gla —hc) = fb

so the assumption that ged(f,g) = 1 gives that a — he = df for some d € R.
Finally

o= =5y e mp.
e e e
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For « the following identity holds

ima = (f,9)p/(f, gh)p,

since firstly gé + (f, gh)p € ima implies that g¢ + (f, gh)p € (f,9)p/(f,gh)p-
COI’IVEI‘SEly, if 77[’ + (f7 gh)P € (f7 g)P/(fa gh’)P7 then

Y+ (f,gh)p = 1 f +bag + (f,gh)p = b2g + (f,gh)p

for some 91,19 € Op and consequently ¥ + (f,gh)p € im a.
The map

ﬁ:OP/(f7gh)P 9¢+(fvgh)P’_>¢+(fvg)P GOP/(fag)P

is a well-defined surjective homomorphism by Lemma 1.1.
Suppose that ¢ + (f,gh)p € ker 8. Then ¢ € (f,g)p and it follows that

(b + (f?gh)P € (f7 g)P/(fa gh)P Conversely7 if ¢ + (f7 gh)P € <f7g)P/(f>gh')Pa
then ¢ € (f,g)p so that ¢ € ker 8 and

kerﬁ = (f?g)P/(fagh)P

This shows that im o = ker 3.
The rank-nullity theorem gives that

Ip(C,DE) = dim(Op/(f, gh)p)
= dimim 8 + dim ker 3
=dim(Op/(f,g9)p) + dimim «
=dim(Op/(f,9)p) + dim(Op/(f, h)p)
:IP(C,D)+IP(C7E) O]

Proposition 2.11. Let C' : f = 0 and D : g = 0 be affine curves without a
common component. If E is an affine curve whose defining polynomial is af + g
for some a € R, then Ip(C,E) = Ip(C, D).

Proof. We show that (f,af+g)p = (f,9)p, from which the proposition follows.
It ¢ € (f,af + g)p, then

¢ =1f +Ya(af +g) = (Y1 + ap2) f + g

for some 1,12 € Op so that also ¢ € (f,g)p and (f,af + 9)p C (f,9)p.
Because there are no restrictions on a € R the reverse inclusion follows from

(f,9)p = (f,(=a)f +af +g)p € (f,af +9)p. O

Before continuing with the proof of Bezout’s theorem, we first show how
the definition carries over to the projective plane, and second show that it
is invariant under a linear change of variables. This will allow us to make
simplifying assumptions in proving Bezout’s theorem.

To be able to define the local ring for a point in the projective plane we
introduce a counterpart of K. Consider the set

K ={F/G € k(X,Y,Z); F and G are homogeneous of the same degree}.

21



All elements ® € K satisfy

F(tA,tB,tC) {"F(A,B,C) F(A,B,C) _

O(tA,tB,tC) = = = —
(t4,15,10) G(tA,tB,tC) t"G(A,B,C) G(A,B,C)

®(A, B,C)

for all ¢ # 0 and [A, B,C] € P?, which means all ® € K are well-defined
functions in P3.
We want to define the function
fo 2N (X/2Y/Z)

n:K3=—

7 T RIZYID) € k(X,Y,Z) (2.1)

where n = max{deg f,deg g}. The next proposition verifies that K is indeed
the projective counterpart of K.

Proposition 2.12. The map n defined in (2.1) is a well-defined isomorphism
K — K.

Proof. The proof is completed whenever all of the following assertions have been
shown:

(i) n is a well-defined function. (iv) n respects multiplication.
(i) n(K) C K. (v) n is injective.
(iii) n respects addition. (vi) n is surjective.

(i) Firstly n = max{deg f,degg} € N because g # 0 implies degg > 0.
Suppose that f1/g1 = fa/g2. Let n; = max{deg f;,deg g;}. Now

N(X/Z2,Y)Z)  f(X/Z,Y]Z) — Z™MfI(X)2,Y]Z)  Z" fo(X/Z2,Y]Z)

G (X/Z.Y]Z) " g(X]Z.Y[Z)  Zmg(X[Z.Y]Z) | Zrgy(X/Z.Y/Z)

shows that 7 is a well-defined function.

(i) It is clear that F' = Z"f(X/Z,Y/Z) is homogeneous of degree n, and
similarly for G = Z"g(X/Z,Y/Z). Thus, F and G are homogeneous of the same
degree so that F/G € K.

(iii) By Lemma 1.4 one has

f 2\  Z"H(X/Z)Y)Z)  Z"f(X/Z,Y/Z)
1 <g> o <g) T 77 (X/Z.Y]Z) | 27:(X/2.Y]Z)
_ZM(frge + fon (X/Z,Y) Z)
2t (g190)(X/Z2,Y ] Z)
_ ZYf192 + foq1)(X/Z2,Y ) Z)

21(9192)(X/Za Y/Z)

_ (fig2+ faon
B n( 9192 )

—o (B 2)
g1 g2 '

for I = max{deg(f1g2 + f291),deg(g192)} > 0.
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(iv) Another use of Lemma 1.4 gives

(f1 > (f ) _ZMA(X)Z,Y)Z) ZMfa(X/Z,Y)Z)
Na)"\g:) =~ 2mq1(X)2,Y]2)  Z79:(X]Z.Y]Z)
2 £2)(X)2,Y ) Z)

- Zmtn(g199)(X/Z,Y ) Z)

21 2)(X/2,Y)2)

B Zl(glgz)(X/Za Y/Z)

N <f1f2)
=n|—
9192
_ <f1 f2>
= 77 .= ,
g1 g2
for | = max{deg(f1/2),deg(g192)} = 0.

(v) Suppose that 1(f1/g1) = n(f2/g2). Then by definition

Zmf(X)Z,Y)Z) 7" fo(X)Z,Y]Z)
Zmg(X/Z,Y]Z)  Z"gy(X/Z,Y]Z)

so that after multiplying with the denominators and applying the homomor-
phism part of Lemma 1.4 one has

Zm M (f192)(X/2,Y/)Z) = 2™ (f200)(X/2,Y | Z).
Canceling Z™*" and applying Lemma 1.5 one finally has
Lt

g1 g2

f192 = fog1 =

completing the proof of the injectivity.
(vi) Take F/G € K. By definition F/G € k(X,Y,Z) with F and G homo-
geneous of the same degree n. Let f = F(x,y,1) and ¢ = G(x,y,1). Then

[,9€R,
F=2"F(X/Z,Y]Z1)=2Z"f(X/Z,Y]Z),

and similarly for G. Finally,

F_ 20 f(X/2,Y)2) Z'f(X/2,Y]Z) _ (f)

g

G Zrg(X/2,Y)Z)  Z'9(X/Z.Y]Z)
where | = max{deg f, deg g} completing the proof. O

IfPG]P’% we now define
~ F o~
Opz{GEK;G(P);éO}.

Firstly, Op is a subring of K. This follows from an argument similar to the one
before that showed that Op is a subring of K.

Proposition 2.13. 7|, , is an isomorphism Op = Op for all P = [a,b,1] € k2.
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Proof. One only needs to show that n(Op) = Op since all other properties
follow from the corresponding properties of 7.
Suppose that f/g € Op and let n = max{deg f,deg g}. Now

G=27"¢(X/Z2,Y/Z) = G(P)=_G(a,b,1) =g(a,b) #0

showing that 1(f/g) € Op.
Conversely, if F/G € Op, then by letting

n=degG, f=F(zy1) and g=G(z,y,1)

one has
Z"g(X/)Z2,Y]Z)=Z2"G(X/Z,Y/Z,1) =G

and consequently g(a, b) # 0 by insertion of (X,Y, Z) = (a,b,1). Now f/g € Op
and n(f/g) = F/G. O

With P = [a,b,1], take ® = F/G € Op and its preimage ¢ = f/g € Op.
Hhen fah) _ Flab1)
a a
b) = L= 2 = ®(a,b, 1
(b(a? ) g(a,b) G(a,b, 1) (a7 ? )
showing that the values of the expressions are preserved upon passing between
Op and Op. . _
For all P € P? define Mp = {® € Op ; ®(P) = 0}.

Proposition 2.14. 77|Mp s an wsomorphism Mp =2 Mp for all P € k2.

Proof. As before one only needs to show that n(Mp) = Mp. For all ¢ € Op
and ® € Op with ® = n(¢) one has

g€ Mp < ¢$(P)=0 < ®P)=0 < < Mp.

It follows directly that n(Mp) C Mp. Surjectivity of 7|, implies that regard-
less of ® € Mp there is a ¢ € Op such that n(¢) = ®. Thus, one may read the

above chain of equivalences from right to left for all ® € Mp and the proposition
follows. O

Proposition 2.15. Let R be the set of homogeneous polynomials in k[X,Y, Z].
Suppose Fy, Fy € R\ {0} and let P € P2. Then (Fy,Fs)p defined by
F -~ ~
(Fl,FQ)P: EEOP; F=HF + HyF, forsome Hl,H2€R

is an ideal in Op.

Proof. 0/1 € (F1, F»)p so (F1, F») is non-empty.

Let F/G,F'/G" € (Fy,Fy)p. If either F = 0 or F/ = 0 it is clear that
F/G — F'/G' € (Fy,Fy)p. Otherwise, one may by definition take H;, H € R
such that ' = H1F1 + H2F2 and F/ = H{Fl + HéFQ If H1 =0or H{ = 0,
then clearly H1 G’ — H|G is homogeneous. Otherwise

deg Hy + deg F} =deg F = degG and deg H;| + deg F} = deg I’ = deg G’
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and it follows that

deg Hy + deg G’ = deg Hy + deg H; + deg I}
= deg H] + deg H; + deg F} = deg H; + degG.

Therefore H;G' — H{G is homogeneous. Similarly it is shown that HoG' — H4G
is homogeneous. Now

F F  (HiF + HF)G — GHF + HyF,)
G @ GG’
(H\G' — H,G)F, + (H,G' — H)G)F,

= relel € (F1, Fy)p.

Furthermore, if F//G € Op and F'/G'" € (Fy, F3)p, then

F F' _ F(H|F, + HyF,) FH{F, + FH}F,

ehiedn relel relel € (1, By)p,

where FH] and F'H), are clearly homogeneous. This shows that (Fy, F»)p is an
ideal in Op. O]

Recall the map &, defined in (1.1), that is used to transform affine curves to
their projective counterparts. Before presenting the last proposition needed to
define intersection multiplicities in the projective plane, a lemma is needed.

For all F € R such that F' # 0, let

d(F)=max{n e N; Z" | F}.
Lemma 2.16. For all F € R with F # 0 there exists an f € R such that
F = Z4¢(f).

Proof. Because ZF) | F one has that F = Z9)@G for some G € R. By
construction Z 1 G. Lemma 1.6 gives G = &(f) for some f € R. O

The next proposition is the last piece needed to carry the definition of inter-
section multiplicity over to the projective plane. However simple the proposition
might seem, its proof is quite cumbersome.

Proposition 2.17. Let P € k?. If fi,f» € R\ {0} and F; = &(f;), then
77|(f17f2)P is an isomorphism (f1, fo)p = (F1, Fa)p.

Proof. The proof is carried out by showing that n((f1, fo)p) = (F1, F2)p.
Take

h h
¢p=—"fi+—"fac(f.fo)p,
g g
with hi,he,g € R. It shall be shown that n(¢) € (Fy, Fs)p. Let n; = deg f;,
m = degg and l; = degh;. Set r = max{ly + n1,ls + n2,m}. If both h; = 0,
then clearly n(¢) = 0 € (Fy, F»)p since (Fy, F3)p is an ideal. Note that

hi #0 = H; = 2" "hi(X/2,Y/|Z) = 2"\ Z4h(X/Z,Y/Z) € R.
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If exactly one of h; # 0 and he # 0 one may without loss of generality assume
that hy # 0 and ho = 0. Then
_ 2" (M f)(X/2,Y)Z)
") = X2V /Z)
_ Z""h(X/Z,)Y]Z)Z™ [1(X)Z,Y ] Z)
B 279(X/2,Y/Z)
_ HF\ +0F,
N G
where G = Z"g(X/Z,Y/Z). Similarly, if hy # 0 and hs # 0, one has
_ ZUhif1 +hafo)(X/Z2,Y]Z)
299(X/2,Y/Z)
_ Z'(mfi+he f2)(X/2,Y)Z)
279(X/2,Y/Z)
i Fi+ HoFy
B G

S (Fl,Fg)p

n(¢)

€ (F1, Fy)p
where H; and G are as before and

q = max{deg(hy fi + haf2),degg} <.
In any case 1(¢) € (F1, Fa)p.

Convers~ely, let F/G € (Fy, Fy)p. By definition F' = H,Fy + HyF5 for some
H,,H; € R. If it can be shown that there exist ¢1,$2 € (f1, f2)p such that
n(¢:) = H;F; /G, then it follows that

H\F| + HyFy _ H{F; n HyFy

G e G
since 7 is an isomorphism Op — 10) p. Because (f1, f2)p is an ideal it follows that
o1+ b2 € (f1, fo)p so that F/G € n((f1, f2)p). Therefore one only needs to find

a @1 € (f1, f2)p such that n(¢1) = H1F1/G, to show that F/G € n((f1, f2)p),
since finding ¢o is similar.

For Hy = 0 it is clear that ¢; = 0 suffices. Thus, assume H; # 0. Then
H, = z4M)¢(hy) and G = Z4UG)¢(g) for some hy,g € R, so

HiFy Z4Ug(h)E(fr)  Z29E(h f)  Z°6(hafr)

G Z4%¢g)  Z49(g)  Z%(9)
where a = 0 or b = 0. By definition of 613 it holds that
a+deg(hifi) = a+deg{(hifi1) = b+ deg{(g) =b+degg.
If @ = 0, then max{deg(hyf1),degg} = deg(hif1) so that

mfi\ 2980 (h f1)(X/2,Y/2)
”( g )‘ 7901 g(X/Z,Y [ Z)
_ 28I (hy 1)(X/2,Y/2)
Z07429¢(X/Z,Y | Z)
_ &(hfr)
A1)
HiFy
G

=n(¢1) + n(d2) = n(é1 + ¢2)
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If b = 0, then max{deg(h;f1),degg} = degg, and it follows that
Mp\ _ 2% f)(X/2,Y/2)
"y Z2%%99(X/2.Y]2)
_ zezds i) (b /1)(X/2,Y ) Z)
Z899(X/2,Y/Z)

_Z%(hf1)
¢(9)
_ HF
==
Anyhow n(¢1) = H1F1/G, where ¢1 = hif1/g9 € (f1, f2)p and the proof is
complete. O

By the propositions one has

dim(Op/(f1, f2)p) = dim(Op/(F1, F2)p), P €k,

showing that one may extend the definition of intersection multiplicity from the
affine plane to the projective plane using the following definition. Due to the
propositions shown we will dispense with the tildes and transport the relevant
structure from k2 to P2.

Definition 2.18. The intersection multiplicity at the point P € P of the pro-
jective curves C7 and C5, whose equations are F; = 0 and F5 = 0, respectively,
is defined as

IP(Ch CQ) = dlm(Op/(Fl, Fg)p).

Recall the induced linear transformation defined in (1.6), and call it ¢. We
now show that the intersection multiplicity is invariant under . This will allow
us to apply a suitable linear transformation of the projective plane to simplify
the proof of Bezout’s theorem.

Note that G(P) # 0 if and only if G(M~1MP) # 0, that is ¢(G)(MP) # 0.
This means that ¢(Op) C Opp, since ¢ also preserves the degrees of polyno-
mials as is easily seen. By considering the inverse transformation ¢~! one has
similarly that o= 1(Opp) € Op. Thus, ¢lo,, is an isomorphism Op = Oprp.

To finally show that the definition of intersection multiplicity is invariant
under linear changes of variables, it must be shown that the transformation of
(F1, F2)p to (FY, F3)a p, where F is the image of F; under ¢, is an isomorphism.
Suppose that ® € (Fy, F»)p. Then ® = F/G with F and G homogeneous of the
same degree and F' = Hq Fy + Hy F; for some homogeneous H; and Hs. Because
o preserves the degrees of polynomials

p(F) = o(H)F{ + ¢(H2) F}
is homogeneous with ¢(H;) homogeneous. Thus,

_»(F) -
gp(@) - m € (F17F2)MPa

showing that o((F1, Fa)p) C (F{,F3)ap. The reverse inclusion follows by

replacing ¢ with its inverse. This shows that ¢ (Fy,Fy)p 15 an isomorphism
(F1, F2)p = (F{, F3)mp.
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3 Bezout’s Theorem

Throughout this section we let k be an algebraically closed field and let the
curves C7; and C5 have affine parts f; = 0 and fy = 0, respectively, with
ged(f1, f2) = 1. After the endeavor of the previous section, we are finally ready
to show Bezout’s theorem.

Theorem 3.1 (Bezout’s Theorem). If the projective curves Cy and Cs, of de-
grees n1 and no respectively, have mo common component, then Cy and Cs
intersect at exactly ning points of IP’% counting multiplicity, i.e.

Z IP(Cl,CQ) = Nnins.

PeCiNC>

In the rest of this section, let for notional purposes P = C; N Cy N k2.

Lemma 3.2. If P € P and r > Ip(C1,Cy), then []_,t; € (f1,f2)p for all
ti,...,t. € Mp.

Proof. Define the ideals Ji,...,J,+1 in Op by

q
Jq: <Ht1> OP+(f17f2)P and Jr+1:(f17f2)P

=1

where 1 < ¢ <r. If ¢ € J41, then because 0 € Op one has

) = (ﬁa) 0+ e J,.
=1

If v € Jg41 for some 1 < ¢ < r, then v = Hg;l t;¢ + 1 for some ¢ € Op and
¥ € (f1, f2) p, but because Op is a ring one has t,11¢ € Op and

q

v=[titer10) +¢ € Jy.

i=1

Hence,
(fi,fo)p=J1 € CJo1 C--- CJ1 C Mp.

Firstly Lemma 1.3 gives that

) Mp . MP) . < Jq )
dim =dim | — | +dim 3.1
(Jq+1> ( Jq Jot1 (31

for all 1 < g < r. Assume that

dim (jwf’ > = dim (?) + édim ( Ji ) . (3.2)

q+1 Jit1

Note that (3.2) is true for ¢ = 1 by (3.1). Together (3.1) and (3.2) give

+1
. Mp . Mp ) . (Jq+1> . (MP> & ( Ji )
dim = dim +dim | — | =dim | — | + dim
(Jq+2> (Jq+1 Jo+2 J1 ; Jit1
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so that one by induction has that (3.2) is true for ¢ = r. Thus, by Proposition 2.7

one has
r21+dim((f17f2 )>1+Zd1m( )

Because all 7 4+ 1 terms in the right hand sides are natural numbers and their
sum is at most r, one term is zero. Therefore J, = Jy41 for some 1 < g < r. If
q = r then

Ht —Ht 140€ (Ht>op+(f1,f2)p—(f1,f2)

=1 =1

as desired. Otherwise

g+1

Hti = Hti -1+0¢€ (H%) Op+ (f1, f2)p = (HE) Op+ (f1, f2)p

i=1

q+1
Ht = (Ht ) b+
for some ¢ € Op and ¥ € (f1, f2)p. It follows that

q
(H ti) (1 —tg410) = ¢ € (f1, f2)p,
i=1
but because t,41 € Mp implies

(1 =tg110)(P) =1 —tg41(P)p(P) =1 -0-¢(P) =

one has (1 —t,41¢)" 1 € Op. Since (f1, f2)p is an ideal in Op one has that
L1 ti € (f1, f2)p, and finally TT;_, t; € (f1, f2)p- O

Lemma 3.3. Let P € P and ¢ € Op. Then there ezists a g € R such that
g = (b (mod (fl, fz)p) and g = 0 (mod (fl, fQ)Q)
for all Q € P such that Q # P.

Proof. Define Q@ = {Q € P ; Q # P}. By Lemma 1.12 the sets P and Q are
finite. By Lemma 1.7 there is a polynomial h € R such that h(P) = 1 and
h(Q) = 0 for all Q@ € Q. This means that h™! € Op and h € Mg for Q € Q.
Let
= Io(C1,C3).
r=paxle(Ch, G

By Lemma 3.2 h" € (f1, f2)g. Trivially, A" € Op. Since ¢h~" € Op and
Op = R+ (f1, f2)p, by Lemma 2.9, there is an f € R and a ¥ € (f1, fo)p such
that ¢h~" = f 4 4, but then f = ¢h~" (mod (f1, f2)p). Set g = fh". Then

g=oh™"h" =¢ (mod (fi,f2)p) and g¢g=0 (mod (fi,f2)q),

for all Q € Q. O
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Lemma 3.4. Let M be an ideal in R such that (f1,f2) CM C R and1 ¢ M.
Suppose that p is a polynomial in R. Then there exists an s € k such that

1¢ M+ R(p—s).

Proof. By Lemma 1.3, m = dim(R/M) is finite. Thus, 1,p,p% ...,p™ are
linearly dependent modulo M, so there exist by, ..., b, € k, not all zero, such

that .
Z bzp7 e M.
=0

By setting n = max{i € {1,...,m}; b; # 0} and ¢; = b;/b,, for 0 < i < n one
has

n n m
— : 1 ) 1 .
Pt enap" Tt apteo =) cip’=;§ :bz—p’Zb*E bip' € M.
i=0 " i=0 ™ i=0

Because k is algebraically closed there exist sq,...,s, € k such that

n

H(p —8i) = Zcipi € M. (3.3)
i=0

i=1

Suppose toward a contradiction that 1 € M + R(p — s;) for all i. For each ¢,
take h; € M and g; € R such that 1 = h; + g;(p — s;). It now follows that

n

1=]]hi+g(p—s) e M
i=1

because upon expansion of the product, all terms are on the form
Riy = i, Gips (P = Sivi) 95, (P — Si,)-

More precisely, any term that includes an h; belongs to M due to the latter
being an ideal and the term g -+ g, (p — s1) - - (p — $n) belongs to the ideal by
(3.3). This is a contradiction, so 1 ¢ M + R(p — s;) for some 1. O

Lemma 3.5. R/(f1, f2) 2 [Ipep(Opr/(f1, f2)P)-

Proof. Consider the homomorphism

| _Or
a:R> f (f mod (f1, fo)p)pep € IE) (fr1, f2)p

Any element in the codomain of a can be written as (¢p mod (f1, f2)p) pep with
(¢p)pep € [[pep Op. To show that a is surjective, take any such (¢p)pep.
For each P € P there is by Lemma 3.3 a gp € R such that

gp =¢p (mod (f1,f2)p) and gp =0 (mod (f1,f2)qQ)
for all Q € P with Q # P. Now let f =}, p gq. For any P € P one now has

f=> 9a=gpr=¢p (mod (fi,fo)p)

QeP
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As a consequence of this, « is surjective. Let J = ker a. The first isomorphism
theorem gives R/.J = [[pcp(Op/(f1, f2)p). The proof is completed by showing

that J = (f17f2)-
Because (f1, f2) C (f1, fo)p for all P € P, one has (fi, f2) € J. To show
the reverse inclusion, let f be an arbitrary polynomial in J and set

L={g€R; gf € (f1,f)}

Whenever it has been shown that 1 € L, the proof is complete.

First it is shown that L is an ideal in R satisfying (f1, fo) € L C R. The
inclusions being obvious, only the first part is shown. Because of the inclusion
L is non-empty. If g1, g2 € L, then ¢1 f,g2f € (f1, f2) so that

(91 —g2)f = 1.f — 92f € (f1, f2)

because the latter is a ring. Thus, g1 — g2 € L. If h € R and g € L, then, since
(f1, f2) is an ideal in R, one has

(hg)f = h(gf) € (f1, f2)

showing that hg € L. Hence, L is an ideal in R.
Secondly, it is shown that for all P € k? there is a polynomial g € L such
that g(P) # 0. By definition f € J means that

f=0 (mod (f1,f2)p) forall PeP.

If P € P this means that there exist polynomials g1, g2, h € R such that
g1 g2
f=5h+3h <= h=ah+pf = hfe (f1, f2)

and h(P) # 0. Otherwise, if P ¢ P, then fi1(P) # 0 or fo(P) # 0. Without
loss of generality assume that the first holds. Then one has fi f € (f1, f2). This
completes the proof of the second property.

Using these two properties of L it shall be shown that 1 € L. Assume toward
a contradiction that 1 ¢ L. By applying Lemma 3.4 on M = L and p = x one
gets the existence of an a € k such that 1 ¢ L + R(x — a). Applying the lemma
again, but this time with M = L+ R(x —a) and p = y one can find a b € k such
that 1 ¢ L+ R(x —a)+ R(y — b). Let g € L be arbitrary. Since the polynomial
y — b is monic, divison of g as a polynomial in y over k[x] is admissible with

9=92y—b) +r
for some gy € k[x,y] and r € k[z]. Dividing r by  — a in k[z] gives
r=gi(x—a)+c
for some ¢ € k. Thus,
g=g1(r—a)+g(y—b)+e

If ¢ # 0, then
1

1= ~c:E(gfgl(xfa)fgz(y*b)),

ol
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but the latter clearly belongs to L+ R(z—a)+ R(y—b), which is a contradiction.
Therefore ¢ = 0 and one gets

g(aab) = gl(a’vb)(a - Cl) +92(a" b)(b - b) =0,

but since g € L is arbitrary this contradicts that there exists a g € L such that
g(a,b) # 0. Hence, the assumption that 1 ¢ L is false, completing the proof. [

Finally, the proof of Bezout’s theorem is merely putting the pieces together.

Proof of Bezout’s Theorem. As in the proof of Theorem 1.10 we can find a line
L that does not meet C; N Cy and that is a component of neither C; nor Cs.
Because the intersection multiplicities do not change with a linear change of
coordinates, we may apply a linear transformation that maps L to the line at
infinity. Therefore we assume that C'; and C5 do not meet at infinity and that
the line at infinity is not a component of either curve. This assumption gives
that P = C; N Cy. Lemma 3.5 and Lemma 1.19 give

Z [p(Cl,Cg) = dim ( H (Op/(fl, fg)p)) = dlmﬁ = ninag,

PeC1NCy PeCi1NCy

completing the proof. O

4 Simple Points

Before stating and proving Max Noether’s theorem and its consequences we
introduce simple points in this separate section.

Definition 4.1. A point P on an affine curve C' : f = 0 is said to be simple if
V f does not vanish at P.

In other words, a point (a,b) on an affine curve is simple if f{(a,b) # 0 or
f4(a,b) # 0, where fi and f4 are the partial derivatives of f. Because we will
have reason to consider simple points on the line at infinity, we need a projective
definition as well. Note that if F' € k[X,Y, Z] is homogeneous of order n, then
the partial derivatives F}, ¢ = 1,2,3, are homogeneous of order n — 1. This is
what makes the projective definition good.

Definition 4.2. A point P on a projective curve C' : F' = 0 is said to be simple
if VEF(P) # 0. If this is the case the tangent of C' at P is defined as the line

F{(P)X + Fy(P)Y + F4(P)Z =0,
the definition being independent of the representative for P.

Note that by Euler’s theorem (Fulton 2008, p. 3) the tangent intersects C' at
P. As usual we must verify the following properties prior to making simplifying
assumptions:
(i) If (a,b) is a simple point on the affine curve f = 0, then [a, b, 1] is a simple
point on the projective curve F' = 0, where F' is the homogenization of f.
(ii) If F is the homogenization of f and [a,b, 1] is a simple point on F = 0,
then (a,b) is a simple point on f = 0.
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(iii) Linear coordinate changes map simple points to simple points.
We now show these assertions.
(i) Suppose that (a,b) is a simple point on f = 0. Then f/(a,b) # 0 for some
i€ {1,2}. Let F =Z"f(X/Z,Y/Z), where n = deg f, be the homogenization
of f. Then

F =2"fl(X/2,Y/|Z) - % = 2" f(X/2,Y]Z),

so that F/(a,b,1) = f!(a,b) showing that [a,b, 1] is a simple point on F' = 0.

(ii) Let [a,b, 1] be a simple point on F' = 0 where F = Z"f(X/Z,Y/Z) for
some f € k[z,y] with deg f = n. Then F/(a,b,1) = f/(a,b) for i € {1,2} as
above, and a computation shows that

Fy = nZ" " {(X)2,Y]2) — 2 XX F{(X]Z,Y|Z) + Y £5(X/2.Y/2)),

so insertion gives
Fé(a‘v b, 1) = _af{(aa b) - bfé(av b)

since f(a,b) = 0. If both f{(a,b) = 0 and f}(a,b) = 0, then F/(a,b,1) = 0 for
all i € {1, 2,3}, contradicting the assumption, so (a,b) must be a simple point.

(iii) Suppose that P is a simple point on F' = 0 and suppose that points of
]P’i are transformed with P — M P where M is an invertible 3 x 3 matrix. Then
polynomials are mapped with the map given in (1.5) on page 11, which we will
here denote by F + F o M~ It is easy to verify that

V(FoM™)= (M) (VF)oM™
from which it follows that
V(FoM ) MP)= (MY -VF(P)#0

by the assumption on P and the fact that (M _1)t is invertible.

It is clear that given two distinct points there is a unique line passing through
them. If we dispense with the assumption that the points are distinct, we arrive
at the following proposition.

Proposition 4.3. Assume that k is an infinite field. Suppose that P is a simple
point on C. The tangent of C' at P is the unique line L such that Ip(C,L) > 2.

Proof. We first show that we without loss of generality can work in the affine
plane with P being the origin and x = 0 being the tangent. We start in the
U,V,W projective plane. Let C' : F = 0, P = [Uy, Vp, Wp] and mq; = F/(P).
Set m; = (mq1,m12,my3). Let K be the kernel of the map

(a,b,c) — aly + bV + cWy.

Since dim K = 2 and m; € K there is a vector my € K such that m; and my
are linearly independent. Since C' has only finitely many linear components it
is possible to choose a vector (a,b,c) from k3 that does not lie in K, such that
alU + bV + cW is not a component of C. Set m3 = (a, b, ¢)/(aUy + bVy + cWyp).
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Take M to be the 3 x 3 matrix whose rows are m;, ms and ms. By applying
the projective transformation

X U
Y| =M|V
Z w

we see that P maps to the origin and the tangent line m1,U+m12V +msW =0
is mapped to X = 0. Furthermore, the line at infinity is by construction not a
component of the transformed curve, so we may consider C an affine curve and
work in the affine plane.

We first show that the tangent line actually satisfies the given requirements.
Note that M = Rx + Ry is the ideal in R consisting of all curves intersecting
the origin, and Mp = Opx + Opy. We have f € M, where C : f = 0. The
construction implies that

f=z+g

where g = 37, ;1 i, cijz'y’ are the higher terms. (To simplify notation we
here take the liberty to identify the curves with their defining polynomials.) By
Proposition 2.11, Ip(z, f) = Ip(x,g). The same proposition can be applied as
long as there is a term in g with a factor z to finally get Ip(z, f) = Ip(z, g(0,v)).
If g(0,y) = 0 the intersection multiplicity is infinite and we are done. Otherwise
let m > 2 be the largest integer such that g(0,y) = y™h for some h. By
construction h(0) # 0 so Propositions 2.6 and 2.10 give Ip(x, h) = 0, and

IP(:L'7 f) = Ip(fﬂ, ymh) = IP(xa ym) + IP(:Ev h) = IP(x,ym)
After m further applications of Proposition 2.10 one has
Ip(z, f) =mlp(z,y).

By Proposition 2.7 one finally has Ip(x, f) =m > 2.

Lastly, to show the uniqueness suppose L : ax + by + ¢ = 0 is any line
such that Ip(L,C) > 2 where C : f = 2 4 g. Firstly, ¢ = 0 by Proposition 2.6.
Suppose toward a contradiction that b £ 0. Then we can make the linear change

of variables
ul |1 0|z
v |a b| |y

and let L : v =0 and C : fN’: u + g = 0, where g are the higher terms, be
the images of L and C, respectively. Write § = vh + u*7 where h € k[u,v] and
7 € k[u]. A computation using the same propositions as before shows that

contrary to the assumption. Thus, b = 0 and the line is L : x = 0 as desired. [

A curve is said to be non-singular if all its points are simple.
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Proposition 4.4. A non-singular curve over an algebraically closed field is
trreducible.

Proof. Let C be a non-singular curve and suppose that it is reducible. Then
C = DF for some curves D and E. Let C: F =0,D:G=0and £ : H=0.
Differentiation yields

F! =GH+ G,H.

D and F intersect at some point P. If they do not have a component in common
Bezout’s theorem guarantees this, and else it is obvious. Inserting this point
in the above identity gives F/(P) = 0, so that P is not a simple point on C,
contrary to the assumption, whence C' must be irreducible. O

The example 22 — y> = 0 shows that there are irreducible singular curves.

5 Max Noether’s Fundamental Theorem

In this and all subsequent sections, we let k& be an algebraically closed field.

Max Noether’s fundamental theorem is a key part in the proof of Chasles
theorem. Luckily, with the work that has been done in the proof of Bezout’s
theorem, the proof becomes very slick. There is a shorter formulation of the
theorem that does not require the assumption that the curves C' and D do not
meet at infinity, but to use such a formulation one would need to replace the
homomorphism J — J(z,y, 1) with something that works on the line at infinity.
Because the extra generality will not be necessary in this text, the assumption
is kept.

Theorem 5.1 (Max Noether’s Fundamental Theorem). Let C' : F = 0 and
D : G = 0 be projective curves with no common component. Assume that C
and D do not meet at infinity. Suppose that H is a homogeneous polynomials in
k[X,Y,Z]. Let f = F(x,y,1), g = G(x,y,1) and h = H(z,y,1). If h € (f,9)p
for all P € CN D, then H = AF + BG for some homogeneous polynomials
A,B € k[X,Y, Z] with deg A =deg H — deg F' and deg B = deg H — deg G.

Proof. Lemma 3.5 gives that h € (f,g) so that h = af + bg for some a,b € R.
The result follows by an application of Lemma 1.18. O

To use Max Noether’s theorem we will utilize the following proposition, the
proof of which requires more theory than is given in this text, so we refer the
reader to Proposition 1 of §5.5 in Fulton 2008. The proposition given here is
not as general as the cited one, but the extra generality will not be needed here.

Proposition 5.2. Let C: f =0, D :9g=0 and E: h =0 be affine curves. If
P is a simple point on C and Ip(C, E) > Ip(C, D) then h € (f,g)p.

It is easily seen that
G = (nP)Pe]pi € H Z; np # 0 for at most a finite number of P € P
PeP?
form an additive group under element-wise addition. We denote an element

(np)pepz € G with the formal sum ZPGIP% npP. Usually the index is clear
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from context, and will be dispensed with. If mp > np for all P € P} we write
Z mpP Z Z in.

Given two curves C' and D that have no component in common we define
their intersection cycle to be

C-D=> Ip(C,D)P.

Given curves C, D and F such that C' and DFE do not intersect at infinity,
Proposition 2.10 translates to

C-DE=C-D+C-E.

By performing a suitable linear change of coordinates one sees that the identity
holds even if C' and DE do meet at infinity.
Similarly Proposition 2.11 translates to

C-E=C-D

whenever C : F=0,D:G=0and F: AF+G=0.
We are now in a position to give a detailed proof of the following corollary,
which is an instance of the Corollary of §5.5 in Fulton 2008.

Corollary 5.3. Let C, D and E be projective plane curves such that C and
DFE do not have a common component. If all points of C'N D are simple points

onC and C-E > C- D, then there is a curve B such that C-B=C-E—C-D.

Proof. Firstly, if C and DE meet at infinity we can make a linear coordinate
change so that the line at infinity does not meet any of the intersection points of
C and DE. We may therefore assume that C' and DE do not meet at infinity.

Let C: F=0,D:G=0and F: H=0. Set f, g and h as in the
formulation of Max Noether’s theorem. The assumption C - E > C - D gives
that Ip(C, E) > Ip(C,D) for all P € C'N D. Since all these points are simple
and C' and D do not meet at infinity, Proposition 5.2 gives that h € (f, g) p for all
P € CND. An application of Max Noether’s theorem gives that H = IF + JG
for some homogeneous polynomials I and J. Let B : J = 0. Now

C-E=C-BD=C-B+C-D

so that the result follows from rearranging the terms. O

6 Pappus’s, Pascal’s and Chasles’ Theorems

As an applications of Max Noether’s theorem and its corollary we show three
results which are due to Pappus, Pascal and Chasles, respectively. These results
are stated and proved briefly in Fulton 2008. The proofs given here are basically
the same, but more detailed.

Note that Bezout’s theorem states that

C-ngrfPi
i=1

where degC = m, deg D = n and the points P; are not necessarily distinct,
whenever C' and D do not share a component. We first state a lemma that will
be used in the upcoming proofs.
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Lemma 6.1. Let C and D be curves. If P is a simple point on C and P ¢ D,
then P is a simple point on CD.

Proof. Let C: f =0and D : g = 0. Then by definition CD : fg = 0 so that by
differentiating and inserting P one has

(f9)1(P) = fi(P)g(P) + f(P)gy(P) = fi(P)g(P)
by the assumption that P € C. Similarly (fg)5(P) = f4(P)g(P) and con-
sequently V(fg)(P) = Vf(P)g(P). The assumption that P ¢ D gives that
g(P) # 0 and it follows that P is a simple point on C'D. O

Proposition 6.2. Let Cy and Cy be cubics with no common component, such
that Cy - Cy = Z?:l P; where all P;’s are simple points on Cy. Suppose that
D is a conic with no components in common with C1, and Cy - D = Z?:1 P;.
Then P;, Pg and Py are collinear.

Proof. Because Cy - Cy > C1 - D there is by Corollary 5.3 a curve L such that
Ci-L=C1-Co—-C1-D=P;+ P+ P,.
L must be a line. Therefore P;, Ps and Py lie on the same line, as desired. [J

Corollary 6.3 (Pappus’s Theorem). Let L and L' be two distinct projective
lines. Suppose that Py, Py, P3 and Py, Py, P} are distinct points on L\ L' and
L'\ L respectively. Let Li; be the line through P; and Pj fori,j € {1,2,3} with
i # j. Then the three intersection points Li; - Lj; for i # j lie on a straight line.

Proof. Let C7 be the cubic LisLo3L3; and Co = Lyl L3s. Furthermore let
D be the conic LL'. When the hypotheses of Proposition 6.2 have been shown,
the proof is complete.

We first show that C'; and C; do not share a component. Suppose toward
contradiction that € and C5 have a component in common. Then two lines L;;
and Ly; are the same line where j —¢ =1 (mod 3) and | — k = 2 (mod 3). If
i # k then P; and Py both lie on the line L;; so L;; = L. It follows that PJ{ eL
contradicting the construction. Otherwise, if i = k, then j # [ so that P; and
P/ lie on Ly; and it follows that L’ = Ly, contradicting that P, ¢ L’. Hence,
C4 and C5 do not share a component.

Similarly, if C; and D share a component then without loss of generality
L = L;; for some 4 and j, but this contradicts that PJ’» ¢ L. Thus, C; and D do
not have a common component.

Let Ry = Lo - Loy, Ro = L13 - L3y and R3 = Log - L3o. By construction

3 3 3
=1 =1 i=1

It shall be shown that Py, Py, P, P{, Py, Py and Ry, Ry, R3 are simple points on
C1.

Suppose toward a contradiction that P; € La3. Then Lag goes through both
Py and P; so that Loz = L. It then follows that P € L, but this contradicts
the assumption that P{ € L'\ L. Thus, P; ¢ Loz, and P; ¢ L3; is shown
similarly. Since Pj is a simple point on Li5 it follows P; is a simple point on Cy
by Lemma 6.1. Similarly, Py, Ps, P{, P, P} are simple points one Cf.
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We only show that R; is a simple point on Cj. That also Ry and R3 are
simple points is shown similarly.

Note that if Ry = P,, then Py, P, € L5 so that L1, = L, which contradicts
that Py ¢ L. Thus, Ry # P». Similarly Ry # P;.

Suppose first that Ry € Lss. Then Ry, P> lie on both Lo; and Loz and it
follows that Loy = Los. Now both Pj and Pj lie on Los and it follows that
Loz = L', but this contradicts that P, ¢ L’. Suppose next that Ry € Lg;.
Then Ry, Pj lie on both Ls; and Loy so that Ls; = La;. Now one gets the
contradiction that P; € L. Therefore Ry € Lia, Ry ¢ Log and Ry ¢ L3
Lemma 6.1 gives that R; is a simple point on Cj. O

The next named result we will show is Pascal’s theorem, and to show it we
will utilize a property of conics. To keep the proof of Pascal’s theorem relatively
clean we state the result as a lemma.

Lemma 6.4. If three distinct points of a conic are collinear, then it is reducible.

Proof. Let L be the line through the distinct points, and let C be the conic. If L
and C' do not share a component, then the weak form of Bezout’s theorem states
that they intersect in at most two points, but since they intersect in three points
the curves must have a common component. Because the only component of L
is L itself, it is a component of C', showing that C' is reducible. O

The very short formulation of this the next corollary affords the clarification
that the sides might need to be extended outside the conic.

Corollary 6.5 (Pascal’s Theorem). Suppose that a hexagon is inscribed in an
irreducible conic. Then the intersections of the opposite sides are collinear.

Proof. Let D be the conic and let Pp,..., Ps be the distinct points on the
hexagon. Define L; to be the line through P; and P, for ¢ =1,...,5 and Lg
the line through Ps and P;. Set C; = L1L3Ls and Cy = LoL4Lg.

First it is shown that C; and Cy do not share a component. If L; = L; for
any two ¢ and 7, then three distinct points of D are collinear. An application of
the previous lemma gives that D is reducible contrary to the assumption. Thus,
Li # Lj for all 4 7é]

Let R; = L;- L;13 be the intersections of the opposite sides. By construction

6 3
C1-Co ZZPi—i—ZRu
i=1 i=1

and C1-D = Z?:1 P;. Tt only remains to show that the points are simple points
on (' to be allowed to use Proposition 6.2, after which the result is immediate.

It is shown that P; is a simple point on C;. That Ps,..., Ps are simple
points is shown similarly. First suppose that P; € L; for some i € {3,5}. Then
the points Py, P;, P11 of D lie on a line. The lemma gives that D is reducible,
contrary to the assumption. Hence, P, € Ly, but P, ¢ Ly and P, ¢ Ls.
Lemma 6.1 gives that P; is a simple point.

We now show that R; # P; for all meaningful ¢ and j. Suppose toward a
contradiction that R; = P; for some ¢ and j. Note that R; € L; and R; € L 3.
It holds that

(G#iINF#i+ )V [G#i+3NT#])
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where | =i+ 4 if i # 3 or [ = 1 otherwise. It follows that three distinct points
of D are collinear, so that D is reducible, but this is impossible, so R; # P; as
desired.

We show that R, is a simple point, but the same procedure applies to Ry
and R3. If Ry € L3, then the distinct points Ry and Py lie on both L3 and Ly,
whence L3z = L4, which is a contradiction. If Ry € Ls, then the distinct points
R and Ps lie on both Ly and L5, whence Ly = L5, which is also contradiction.
Thus, R; belongs to exactly one of Ly, L3 and Ly so Lemma 6.1 gives that R
is a simple point on C.

By an application of Proposition 6.2 the proof is complete. O

The next theorem is given in Fulton 2008 with weaker conditions, namely
that the curve C' is only assumed to be irreducible and not non-singular. We
have opted for including the restriction that C' be non-singular to simplify both
the formulation and the proof. This theorem is the same as the Cubic Cayley-
Bacharach theorem given in Silverman and Tate 1992.

Theorem 6.6 (Chasles’ Theorem). Suppose that C is a non-singular cubic such
that C - C' = 2?21 P; for some cubic C' and not necessarily distinct points P;.
Ifc-o"= Z§:1 P, + Q for some cubic C", then Q = Py.

Proof. Assume toward a contradiction that Py # ). Let L be a line that passes
through Py, but not through @. Bezout’s theorem gives that C'- L = Py+ R+ S
for some not necessarily distinct points R and S. By using Proposition 2.10 one
has that

8
C-C'L=) P+Q+P+R+S=C-C'+Q+R+S.
=1

The assumption gives that all involved points are simple, so an application of
Corollary 5.3 guarantees the existence of a curve L' (necessarily a line) such
that C- L' = Q+ R+ S. If R and S are distinct L and L’ have two points in
common so L = L’. Otherwise one gets that L = L’ by using the uniqueness of
Proposition 4.3. It finally follows that Py = @, contradicting the assumption,
whence Py = Q. [

7 Addition on Elliptic Curves

In this last section we apply the results shown to show that addition on an
elliptic curve gives rise to an abelian group. We will use the following definition
of elliptic curves.

Definition 7.1. An elliptic curve is a non-singular cubic curve.

Let C be any elliptic curve. Given any two points P, € C there is by
Bezout’s theorem and Proposition 4.3 a unique line L such that C-L = P+Q+R.
We define the binary composition * on C' by P *x Q = R.

Take any point O € C. We define addition on C by P+ Q = O *x (P x Q).
That (C,+) is an abelian group is verified by the next four propositions.

Proposition 7.2. P+ Q =Q + P for all P,Q € C.
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Proof. Tt is clear that P x Q = @Q = P, since there is only one line containing
both P and @, counting multiplicity. The result follows from this. O

Proposition 7.3. P+ O =P forall P € C.

Proof. Let L be the line containing P and O and let C- L = P+ O+ R. By
definition P+ O = R, but then P+ O = O % R. The definition gives O« R = P,
completing the proof. O

Proposition 7.4. For all P € C there exists a Q € C such that P+ Q = O.

Proof. Let R = O % O, and let Ly be the line such that C - L; = 20 + R. We
claim that @ = P * R meets the requirements. Let Ly be the line such that
C-Ls = P+ Q+ R. By definition we now have

P+Q=0%x(P+xQ)=0xR=0. O
Proposition 7.5. P+ (Q+ R)=(P+ Q)+ R for all P,Q,R € C.

Proof. We will use parentheses to distinguish between addition in intersection
cycles and addition on the cubic. Let Lq,..., Lg be the lines such that

C-Li=Q+R+QxR,
C-Ly=0+Q*R+(Q+R),
C-L3y=P+(Q+R)+Px(Q+R),
C-Ly=P+Q+PxQ,
C-Ly=0+PxQ+ (P+Q),
C-Lg=(P+Q)+R+(P+Q)*R.

By letting C’ = L1L3Ls and C"” = LoL4Lg one sees that
C-C"=04P+Q+R+PxQ+Q*xR+(P+Q)+(Q+R)+Px(Q+R)
and
C-C"=0+P+Q+R+P+xQ+Q*R+(P+Q)+(Q+R)+(P+Q)*R.
By an application of Chasles’ theorem, P * (Q + R) = (P 4+ Q) * R, so that

P+(Q@+R)=0x(Px(Q+R)=0x(P+Q)+R)=(P+Q)+R. [0
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