
Neural Networks and the Stock Market
- a practical experiment on predicting price changes

Lars Åström
Bachelor Thesis

Department of Economics
Supervisor: Peter Jochumzen

July 26, 2018

Abstract

In the 19th century, gold diggers emigrated from Europe to North America with
the hopes of a brighter future. Gold diggers today might look to the stock mar-
ket with hopes of finding the key to incredible wealth. The introduction of neural
networks has revolutionized data analysis and the possibility of using them to do sig-
nificantly better than chance on the stock market is investigated in this report. The
aim of the report is to investigate a short period after a stock drastically decreases
in price with neural networks.

Firstly, neural networks are constructed and trained to estimate price changes.
Thereafter an investment strategy is constructed and evaluated. The results of the
investigation is that it is possible, under some assumptions, to do significantly better
than chance in the stock market. It appears to be possible to do this for all days from
the third to the ninth after a drastic crash. The predictions are significantly better
than chance, however probably not large enough to compensate for transaction costs.

It appears that the gold diggers of the 21st century, operating on the stock mar-
ket, have to wait a while longer. It is possible to guess significantly better than
chance if the price will increase or decrease, however the difference might not be
large enough to profit from the trades. The networks that are developed in this
thesis are not good enough to give rise to sufficient profits on the stock market.
However, maybe it is possible to do so with slight changes in the structures of the
networks, and thus earn incredible profits by investing wisely on the stock market?

Key words: Neural Networks, Machine Learning, Stock Market, Efficient Market
Hypothesis, Artificial Intelligence

1

Contents

1 Introduction, aim and problem formulation 4

2 Limitations and theory 5

2.1 Assumptions and Limitations . 5

2.2 Introduction to neural networks . 5

2.3 Short sale investments . 9

2.4 Efficient Market Hypothesis . 10

2.5 Evaluation of estimations . 11

2.6 Cross Validation . 12

2.7 Confidence interval of mean estimation . 12

2.8 Arithmetic vs Geometric mean . 13

2.9 Overview of previous work on Neural Networks in finance 14

3 Method 15

3.1 Construction of data sets . 15

3.2 Construction and training of the neural networks 15

3.3 Estimation of test data . 16

3.4 Description of choices . 16

3.5 Statistical analysis of mean performance 16

4 Results 18

4.1 Predictions for each day . 20

5 Analysis 22

6 Discussion 24

2

6.1 Assumptions . 24

6.2 Arithmetic mean vs geometric mean performance 24

6.3 Ethical aspects of day trading . 25

7 Conclusions 26

8 Thoughts for further investigations 27

9 Reference list 28

A Figures of predictions for each day 29

B Python-code for the neural networks 32

3

1 Introduction, aim and problem formulation

Predicting if, and when, a stock increases in price has been a big question for capital
investors since the debut of the stock market. The introduction of large technical analyses
has given hope to investors who wish to easily earn money by simply analyzing previous
stock price movements.

Analyzing data series is a common problem within various fields of study, and recently
neural networks have made their great breakthrough. These networks try to simulate the
functioning of the human brain, in order to teach the computer to find patterns people
cannot find themselves.

It has long been an unproven, but still widely established, hypothesis that it should not be
possible to detect patterns to beat the market. This has seemed to be true for humans,
but possibly computers can detect patterns even humans could not find. Furthermore
computers have over and over proved their ability to teach themselves how to detect
patterns, meanwhile humans only can teach computers patterns they can find themselves.
This makes it possible to hope that neural networks might be able to predict stocks better
than just randomly guessing.

The aim of this thesis is to investigate if neural networks can be used to predict changes
of stock prices. More specifically the unstable period after a drastic decrease in price will
be investigated. The main question is “Is it possible to predict increases and decreases in
stock prices shortly after a drastic decrease in price with a neural network?”

4

2 Limitations and theory

Throughout this paper, the following convention will be used: In the time series data day
0 is defined to be the day of the crash, and the following days are numbered increasingly.

The rest of this section is dedicated to assumptions, limitations, general theory and finally
a brief presentation of previous papers correlated to this one. The theory is intended to
explain the main concepts of the method and results.

2.1 Assumptions and Limitations

In the thesis some assumptions are made, and some limitations to the problem are used.
The underlying assumptions are:

• No transaction costs are present for stock investments.

• It is possible to short sell all stocks at no cost.

• Stock prices are never more than doubled in one day.

The investigated problem is restricted to

• Only changes of stock prices directly after a crash are investigated.

• Only a period of a total of ten days is investigated for each stock and crash, meaning
that only nine first business days after the crash are investigated.

2.2 Introduction to neural networks

Neural networks were developed in the middle of the 20th century, and is a way to
mathematically resemble the human brain in order to try to teach a computer to find
patterns in data sets. In order for a neural network to succeed, huge data sets are usually
needed and these are used by the network to learn. (Bishop, 2006) The reason large
sets are needed is that otherwise there is a major risk of overfitting, which is that the
network adapts and becomes biased on noise specific to the dataset. If the dataset is
big however, there is still noise in the data but it will be more evenly distributed. The
need of large data sets was a major problem in the first centuries after neural networks
were developed, since computers were very slow compared to those that are used today.

5

(Rogers & Girolami, 2016) Now, in the 2010’s, neural networks really have gotten their
breakthrough and are used in various fields solving different complex problems.

This subchapter will briefly introduce the concept of neural networks, however no deeper
insights will be presented - only the most fundamental concepts are introduced. It should
be noted that all the methods described here are not complete, but they should rather
be viewed as the main principals of the methods of a neural network. In the end of this
section, a source for further understandings of neural networks will be presented.

Construction of network

A neural network can be viewed as a directed graph, where all nodes in previous layers
are connected to all nodes in the following layer. (Rogers & Girolami, 2016) In figure 2.1
a basic neural network is shown, with one input layer consisting of five data points, two
hidden layers with four nodes each and one output layer, consisting of a single output
data. The arcs between a layer and its successor are supposed to visualize the connections
that transfer information from one layer to the next one.

Figure 2.1: A schematic illustration of a basic neural network.

To illustrate what a layer might do, consider the following problem which is widely used to
explain neural networks and deep learning. (Rogers & Girolami, 2016) Input is a picture
of a hand-drawn digit, and the goal is to predict which digit the user tried to write. Then
the input layer might consist of the picture (or more precisely the pixels of the picture),
the first hidden layer could find patterns like straight lines or circles, the second hidden
layer could combine the patterns and finally an output is produced - which is a guess of

6

which digit was drawn.

Transfer of information in the network

The previous description of a neural network and what the layers might do is a good
thought experiment, but not how the network really works. Instead a neural network is
trained by optimizing parameters in the model. (Bishop, 2006) First of all it is important
to see how information is transfered from one layer to the next. Assume two consecutive
layers are given - layer P and layer S, where P and S are acronyms for Predecessor and
Successor. These might be any of the consecutive layers in figure 2.1, for example input
layer and hidden layer 1, or hidden layer 2 and output layer. In a general network there
might be many more hidden layers than in figure 2.1, although each step from one layer
to its successor is performed in the same fashion.

Assume that layer P has nP nodes and layer S has nS nodes. Then there are nP · nS
weights between the layers, since all nodes in P are connected to all nodes in S. Let wi,j
denote the weight from node j in layer P to node i in layer S. Also let the previously
calculated values of the nodes in P be denoted by

[
p1, p2, . . . , pnP

]
. Now the values in the

nodes in S are being calculated, which are denoted by
[
s1, s2, . . . , snS

]
. In matrix notation,

where W is the matrix with dimensions nS × nP and the element in position (i, j) is wj,i,
P =

[
p1, . . . , pnP

]T and S =
[
s1, . . . , snS

]T the transformation could be written as

S = WP,

which is the same as saying

si =

nP∑
j=1

wi,j · pj, for i = 1, 2, . . . , nS.

There is a major limitation with this transformation in that it is linear. This would imply
that even the output layer would be a linear function of the input layer - which is not
desired. (Rogers & Girolami, 2016) Therefore an activation function is used - which is an
non-linear function - for example tanh or the step-function. Also a bias is used, which
is a constant that is added to each node before applying the activation function. Let
AF denote the activation function and let B =

[
b1, . . . , bnS

]T be a bias vector, then the
transformation can be written as

S = AF (B +WP),

which is the same as

si = AF (bi +

nP∑
j=1

wi,j · pj), for i = 1, 2, . . . , nS.

This transformation from one layer to the next is what actually is used in neural networks.

7

Training of a neural network and the loss function

The training of a neural network is when the weights are optimized in order to minimize the
error of the predictions. This is done by optimizing with respect to a loss function, which
is a measurement of the error. (Rogers & Girolami, 2016) Usually the mean absolute error
or the mean squared error of the predictions is used as a loss function, but the important
thing is that the function is continuous, differentiable and that a smaller value means a
better prediction.

Let L denote the loss function. Then the total loss for a given training set is a function
of all weights and biases:

L = L(W ∗, B∗),

where W ∗, B∗ denote all weights and biases between all pairs of consecutive layers. There
are many weights and biases in a general neural network. In the very small network in
figure 2.1 the number of weights and biases are described in the following table:

Layer pair Weights Biases

Input layer to hidden layer 1 5 · 4 = 20 4

Hidden layer 1 to hidden layer 2 4 · 4 = 16 4

Hidden layer 2 to output layer 4 · 1 = 4 1

As can be seen in the table there are a total of 49 weights and biases in the small neural
network in figure 2.1. This means that the loss function is a function of 49 variables -
and in general neural networks it is a function of thousands of variables. The goal is to
minimize the error, which is minimizing the loss function. In order to do this, partial
derivatives are used to see if a weight has a positive or a negative impact in the loss.

In each training step the partial derivatives are considered; which are[
∂L

∂w∗
1

, . . . ,
∂L

∂w∗
wn

,
∂L

∂b∗1
, . . . ,

∂L

∂b∗bn

]
,

where w∗
1, . . . , w

∗
wn

are all the weights and b∗1, . . . , b∗bn are all the biases. Then for all weights
with positive partial derivative the weight is decreased and for all weights with negative
partial derivative the weight is increased - hence the weight is moved in the opposite
direction of the partial derivative. This method is called “Gradient descent”. (Bishop,
2006) In one dimension, this is very easily understood and shown in figure 2.2. As can
be seen graphically in the figure, the minimizing method should move right from the left
tangent point and left from the right tangent point in order to approach the minimum
point of the function. This is the same as moving opposite to the gradients direction at
the points.

8

Figure 2.2: Illustration of gradient descent in one dimension.

In more complex neural networks, more sophisticated methods to reach the minimum
have to be used, otherwise too much computer power would be needed. In simple cases
gradient descent is sufficient, and all other methods are somewhat similar - although the
methods differ in some ways the main principals are the same. (Bishop, 2006)

For a deeper understanding of neural networks the reader is referred to the great course
literature books used in many introductory Machine Learning courses, namely A first
course in Machine Learning by Rogers and Girolami (2016) and Pattern Recognition and
Machine Learning by Bishop (2006). These books are used in the introductory courses
of Machine Learning at, among others, Chalmers Institute of Technology and the faculty
of Engineering at Lund University, respectively. Furthermore these books offer a deep
understanding of all concepts used in this thesis. If the reader instead is interested in
a brief introduction in order to get a grasp of the most important concepts of Machine
Learning, then the videos explaining deep learning and neural networks by the Youtube-
channel “3blue1brown” (2017) are recommended.

2.3 Short sale investments

Short sale investments is a sort of opposite of long investments - which is when a stock
is bought. This method is used when the investor believes the stock price is going to
decrease. Short sale investments can be viewed as the following steps:

1. Loan a stock day i

9

2. Sell the stock day i

3. Buy the stock day i+ 1

4. Return the stock day i+ 1.

The horizon of investment does not have to be one day, although in this thesis all invest-
ments are done from one day to the next. The profit of this investment strategy, given
stock prices Si and Si+1 is Si − Si+1, or in relative prices

Si − Si+1

Si
.

In the calculations in the report, it is assumed that a loan of stocks with equal size as the
current wealth is taken. This means that if the wealth today is W then using a short sale
strategy gives a value the next day of

W ·
(

1 +
(

1− Si+1

Si

))
= W ·

(
2− Si+1

Si

)
,

hence the change factor is 2 − Si+1

Si
. Here there is a problem if Si+1

Si
> 2, since then the

change factor would be negative, meaning that the wealth would be negative. This is a
risk while using a short sale strategy; if the stock price more than doubles the wealth
would be less than zero. It is assumed that this never occurs shortly after a drastic
decrease in price, which is not too controversial.

Short sales are possible to trade on some market platforms - where it is possible to invest
with a payoff scheme similar to the one that has been derived in this subchapter. Then
the steps 1-4 are not actually performed, but rather a trade contract with similar payoff
structure is constructed and used instead.

2.4 Efficient Market Hypothesis

The efficient market hypothesis states that the price of a stock reflects all available infor-
mation. This in turns implies that it is impossible to beat the market in the long run.
There are three forms of the hypothesis - weak, semi-strong and strong. The weak form
states that the prices reflect all previous information; the semi-strong states also that the
price reflects all new public information instantaneously; and the strong states that the
price even reflects insider information instantaneously. (Fama, 1970) Even though this
hypothesis, in all its forms, implies that it should not be possible to profit through tech-
nical analysis, this thesis does not necessarily contradict the efficient market hypothesis.
The reason for this lies in the assumptions that short sales can always be done at no loan
rate, and that there are no transaction costs.

10

Critiques against the hypothesis

There is one large critique against the efficient market hypothesis, which is somewhat
related to the hypothesis behind this thesis and is presented by behavioral economists.
Here the counter hypothesis is that human behavior is irrational, not rational as usually
is assumed, and not only reflecting the information about a stock. (Malkiel, 2003) One
example of this is “herding”. Herding is when lots of people make the same decision,
others follow - possibly without any kind of investigation of the information. This can
be the case if for example experts recommend a stock. One consequence of herding is
that overshoots might appear. Overshoots is when for example the change in price first
increases more than it should, and thereafter it decreases.

2.5 Evaluation of estimations

In order to evaluate the performance of the neural networks, some metric has to be
constructed. The neural networks are constructed to estimate the relative price change
a given day after a crash. From these estimations a decision has to be made regarding
investing or short selling the stock. This metric is defined by the following investment
scheme.

Given is a vector of estimated price changes P e =
[
P e
1 , P

e
2 , . . . , P

e
n

]
, and a vector of

real price changes for the corresponding stocks P r =
[
P r
1 , P

r
2 , . . . , P

r
n

]
. Here P denotes

relative price change, superscript e is short for estimated and superscript r is short for
real. Furthermore the numerical index is the index of the current stock. Note that when
the price changes are estimated, the neural network of course does not know the real price
changes.

The decision for stock i is given by:

• If P e
i > 1, the strategy invests in the stock,

• If P e
i ≤ 1, the strategy short sells the stock.

Let Ci denote the change factor of the portfolio given the decision. This means that Ci
is given by:

Ci =

P r
i , if the strategy invests in the stock, i.e. P e

i > 1

2− P r
i , if the strategy short sells the stock, i.e. P e

i ≤ 1

11

From this the total change of the portfolio, C, is given by:

C = C1 · C2 · . . . · Cn =
n∏
i=1

Ci.

2.6 Cross Validation

Cross validation is a statistical method used to validate different estimation methods.
The total data set is divided into two parts - the training and the testing set. The former
is used to calibrate the model - in the case of neural networks it is the weights and biases
- while the latter is used to test the performance. Of course a model cannot be tested on
the same data is has been trained, since the model simply could remember the answers -
which is called overfitting. Therefore the test set is hidden from the training part. (Rogers
& Girolami, 2016)

One common type of cross validation is “Leave-p-out cross validation”. Here p data points
are left out from the training, while the rest are used. Then the left out data points are
used for testing. (Rogers & Girolami, 2016) This procedure may be performed for all
possible choices of p data points as test data. There is a major problem with this method
however, namely that there is an enormous number of ways to pick p data points out
of all data points. If for instance 100 data points are going to be picked out of 10000
data points in total, then the number of ways to combine those is far more than 10200.
Therefore, it is not possible to perform a complete Leave-p-out cross validation.

An alternative way is to perform some randomly picked cross validations among the
possible ones in Leave-p-out cross validation. Since the mean performance is of interest,
this can be estimated for all possible ways to Leave-p-out, only by investigating a rather
small subset of those.

2.7 Confidence interval of mean estimation

Let a =
[
a1, a2, . . . , an

]
be a large random sample from an arbitrary distribution. Let µ

be the expected value and σ be the standard deviation of the distribution. Furthermore
let ā denote the mean and s̄a denote the standard deviation of the sample. If n is large,
then

ā ∼ N
(
µ,

σ√
n

)
according to the central limit theorem. This yields a confidence interval of µ, given by

Iµ =
(
ā− zα/2 ·

s̄a√
n
, ā+ zα/2 ·

s̄a√
n

)
,

12

with approximate confidence level 1− α. Here zα/2 denotes the value the normal inverse
cumulative distribution function evaluated at probability α/2. (Blom, Enger, Englund,
Grandell & Holst, 2005)

2.8 Arithmetic vs Geometric mean

When evaluating a mean performance of a given investment strategy, either an arithmetic
or a geometric mean can be used. The interpretation of the two are quite different, and
therefore they should be used differently. The arithmetic mean of {a1, a2, . . . , an}, which
is what usually is meant by “the mean”, is given by

ā =
1

n
·

n∑
i=1

ai.

This can be used to answer questions like “Given an investment of size q in n portfolios
simultaneously and independently, what is the total performance?” If ai is the change
factor of the i-th portfolio, then the total profit, Π, from all the n portfolios is given by

Π = n · q · ā.

The geometric mean is instead a multiplicative mean, whereas the arithmetic is an addi-
tive, and is given by

ã =

(n∏
i=1

ai

) 1
n

.

This mean is used to answer questions like “Given an investment of size q in n portfolios
sequentially, where the amount invested in the i+ 1-st portfolio is what was left from the
i-th, what is the total performance?” If ai is the change factor of the i-th portfolio then
the total profit, Π, of the investment in all n portfolios sequentially is given by

Π = q · ãn.

It should be noted that the arithmetic mean is always larger than the geometric mean,
which follows from the arithmetic-geometric mean inequality. This means that the arith-
metic mean might be larger than 1, which corresponds to an increased value of the port-
folio, while the geometric mean is smaller than 1. In this case, the estimated value is
larger by investing in n different portfolios simultaneously. On the other hand if both the
arithmetic and the geometric means are larger than 1, it is almost always preferable to
invest sequentially since profits from previous investments also increase - just like interest
on interest. This means that a much smaller amount can be invested, and still the same
expected profit can be obtained.

13

Note that whenever “mean” is written in the report it refers to the arithmetic mean, and
whenever a geometric mean is meant this is clearly stated.

2.9 Overview of previous work on Neural Networks in finance

The approach of trying to predict stock prices with neural networks is quite natural. Some
reasons for this are that the amounts of data of historical stock prices are huge, and at
the same time the possible earnings of predicting stock prices accurately are enormous.
This also means that the work done in this thesis is not the first of its kind; trying to
predict stock prices with neural networks has been a field of study since at least the 1990s
and still lots of papers are produced annually on the subject. In this subchapter some of
the most interesting papers are presented briefly, just to give the reader a hint of what
has been investigated related to neural networks and stock prices.

In 1990 Kamijo and Tanigawa tried predicting stock price patterns by a recurrent neural
network. Then the authors investigated certain so called triangular patterns, which are
related to future stock price movements. Then Saad, Prokhorov and Wunsch (1998)
tried predicting stock trends and compared three different kinds of neural networks. The
authors concludes that all three are feasible to use. These two papers are both cited
various times and can be viewed as some sort of foundation for the field.

Looking at some even closer related to the subject investigated in this thesis Malliaris
(1994) looked at modelling the S&P500 index using neural networks. Malliaris’ paper
supports that the market has an underlying chaotic structure.

In 2010 Li and Ma appraised the potential of using neural networks when trying to predict
financial systems. In their paper future possible opportunities of research are presented,
along with presentations of neural networks and their application to exchange rates. Lastly
Gündüz, Yaslan and Çataltepe (2018) tried predicting stock prices of nine banks using
LSTM-neural networks. Their results were better than the random benchmark, and the
approach used in their paper is very similar to the one of this thesis although the time
frame of investigation is completely different.

14

3 Method

There are five steps in the analysis performed in this paper, all of which will be thoroughly
explained in the following subchapters. Firstly, data is extracted and reshaped to only
contain the relevant days and stocks. Secondly, the neural networks are constructed and
trained. Thirdly, the networks estimate price changes of test data. Thereafter some
choices for the networks are presented and finally the mean performances of the networks
are analyzed using statistical methods.

3.1 Construction of data sets

Firstly historical daily stock prices are found in a database. (Kaggle, 2018) Daily data
(closing values) are used for the last five years from S&P500. Then data is transformed
from stock prices to relative price changes. Thereafter the relevant data is filtered out,
obtaining a total data set of periods of ten consecutive relative price changes. The relevant
data is defined to be when a large decrease in price is found, and then the nine days
following the crash. A large decrease is defined to be a decrease of at least 5%. This
yields a time series of ten data points, where the first one always is less than 0.95.

Then this total data is further divided into two sets called training and testing data.
In order to prevent the network from overfitting, the test set is used to evaluate the
performance of the network, hence the testing is done by cross validation. When multiple
rounds are run, the division into training and testing data is randomized each time.

3.2 Construction and training of the neural networks

Several neural networks are constructed and trained on the training data set, one for each
day to predict. This means that one neural network is constructed to predict the change
of price for day 1 after the crash, given the magnitude of the crash which is on day 0.
Another neural network is constructed for predicting the price day 2, given the previous
data from day 0 and 1, and so on. This means that a total of nine neural networks are
constructed and trained.

The model used in this thesis is a LSTM-network and the training is performed in a
number of epochs, where each epoch consists of training the network on the training data
once. The training is done by giving the network both an input and the corresponding
answer, then the network optimizes its weights and biases in order to minimize the loss
function.

15

3.3 Estimation of test data

When the network has been trained for some epochs the values of the test data is estimated
- given the inputs. Then the network estimates the relative price change the given day of
estimation. This estimation is further used to decide how to invest the following day.

Note that it is not the trading strategy that is given by the neural network, it will only
provide you with a prediction of the relative price change. From this, the user can choose
different strategies for investment. The strategy used in the following investigations of
this report is the one described in section 2.5.

3.4 Description of choices

When a network is constructed and trained some choices are made. First of all some
parameters of the network are chosen:

• Number of layers - in the networks only one hidden layer is used.

• Number of nodes in each layer - in the networks the layer consists of 20 nodes.

• How much data to use as training and test data - these proportions are chosen to
be 90% and 10% of all data that is collected, respectively.

• How many epochs the network is trained for - in the experiments presented in this
report the networks are trained for 200 epochs.

Besides the characteristics of the network, the method of decision making has to be chosen,
which is how to invest given the estimations made by the network. In all cases in this
report the method described in section 2.5 is used with performance of a neural network,
C, given by

C =
n∏
i=1

Ci,

where Ci are the change of the value of the portfolio. Lastly, the change factor, C, is
transformed by subtracting 1 and multiplying by 100, in order to get the relative price
change.

3.5 Statistical analysis of mean performance

When investing in stocks, one important metric to consider is mean performance. In order
to get an estimate of the mean performance of the neural networks, multiple rounds are

16

run. In each round each of the steps in sections 3.1 - 3.3 are performed, with the choices
presented in 3.4. Then the performance is measured, according to section 2.5. In total
100 rounds are run and the performance for each round is calculated. The mean, the
standard deviation and the confidence interval of the mean performance are estimated -
all according to section 2.7.

Once the confidence intervals have been calculated, they are analyzed to answer the
hypothesis “The mean performance is C = 0” - with alternative hypothesis “The mean
performance is not C = 0.” This is done by a hypothesis test, and the hypothesis is
rejected if the confidence interval for C does not contain 0.

17

4 Results

When mean performance is estimated for each individual stock, the results in figure 4.1
are given for each investigated day. The evaluations are made for each day, one at the
time. For each day to predict, the stocks are given from 100 individual and separate
rounds, and for each round 355 stock prices are predicted and evaluated.

Figure 4.1: Estimation of mean performance and confidence intervals for a single stock,
divided into separate days.

Looking at this for an estimated annual profit, the results in figure 4.2 are given for each
investigated day. For each day there have been 100 rounds of testing. In each round 355
stocks are predicted. Thereafter two rounds are joined together to form an estimation of
annual profit since there are on average 710 drastical decreases in price per year in the
observed data.

In both figures green bars indicate that the mean value is significantly different from 0,
hence the null hypothesis is rejected. Red bars indicate that the mean is non-significantly
different from 0, hence the null hypothesis cannot be rejected. Both for individual stocks
and for annual profit the mean is different from 0 for days 3-9.

The rest of this section will consist of a graphical representation of the profits from
investing in stocks. This will be presented by one figure per day and then summarized in
a table. For each day, all predictions of change factors are used and plotted in increasing
order. This means that the first stock is defined to be the one with smallest change factor,
while the last stock is defined to be the one with largest change factor. It will be seen that

18

the days with means significantly different from 0 also will have a prediction accuracy for
a price increase or decrease quite different from 50%.

Figure 4.2: Estimation of mean performance and confidence intervals for one year of
investments, divided into separate days.

In order to make the reading easier, only three figures are shown in section 4.1 while the
rest are shown in appendix A. The three chosen figures each show one interesting result
each, which are described in the following section.

19

4.1 Predictions for each day

Figure 4.3: Change factors given by the investment strategy for each stock.

On day 1, the performance of the neural network is not significantly different from 0 in
figures 4.1-4.2. This can also be seen in the corresponding figure for day 1, namely figure
4.3, where the prediction accuracy is very close to 50%.

Figure 4.4: Change factors given by the investment strategy for each stock.

On the other hand, the performance of the neural networks of day 5 and 7 are significantly
different from 0 in figures 4.1-4.2, with smaller than 0 on day 5 and larger than 0 on day

20

7. This can be seen in figures 4.4-4.5, where the prediction accuracies are well below and
well above 50% for day 5 and 7, respectively.

Figure 4.5: Change factors given by the investment strategy for each stock.

When the statistics of figures 4.3-4.5 and A.1-A.6 are extracted, the following table is
given.

Day Prediction accuracy Arithmetic mean Geometric mean
1 50.65% 0.0100% -0.1323%
2 49.56% -0.0006% -0.0474%
3 53.92% 0.1890% 0.1404%
4 51.17% 0.0786% 0.0361%
5 47.10% -0.0866% -0.1269%
6 46.95% -0.1394% -0.1859%
7 53.65% 0.2363% 0.1958%
8 52.05% 0.1042% 0.0683%
9 52.39% 0.1149% 0.0805%

Now it can be seen that days with a mean performance that was far from 0 in figure
4.1-4.2, also have prediction accuracies far from 50%. Usually the prediction accuracy
is compared 50%, since that is what randomly guessing if price will increase or decrease
would obtain. Although the neural networks for some days have prediction accuracies
larger than 50%, the accuracies are still far from 100%. This result is quite expected,
since otherwise the efficient market hypothesis could be rejected.

21

5 Analysis

It has been shown that the mean performance, if the strategy presented in section 2.5
is used, is significantly different from 0 for days 3-9. There are two unintuitive results,
namely those for day 5 and 6. On these days, the mean performance is significantly
less than 0, meaning that the value of the portfolio decreases. This, on the other hand,
means that if each decision is reversed for these days then the performance might be
significantly larger than 0, yielding an increased value. Reversing the decision means that
if the previous decision was to invest, then the new decision is to short sale and vice versa.
Then this means that if the change factor was Ci for a given stock, then the change factor
of the reversed decision would be 2 − Ci. Doing this reversed decision making for day 5
and 6 yields the results in figures 5.1-5.2. These figures should be compared to figures
4.1-4.2.

Figure 5.1: Estimation of mean performance and confidence intervals for a single stock,
divided into separate days, and with reversed decisions for day 5 and 6.

22

Figure 5.2: Estimation of mean performance and confidence intervals for one year of
investments, divided into separate days, and with reversed decisions for day 5 and 6.

These results show that the change of price can be estimated such a strategy can be derived
that gives an estimated performance which is significantly larger than 0, for all days except
the first two after the crash. The neural networks are not extremely good, however, at
guessing if the price will increase or decrease. The best network has a prediction accuracy
of 53.92% which is just 3.92 percentage points above randomly guessing. This is expected
to be the case, since the analysis is technical and the efficient market hypothesis states
that it should not be possible to beat the market in the long run just through technical
analysis.

It can be seen that the shape of the figures for the change factors for each day, figures
4.3-4.5 and A.1-A.6, are all very similar. The largest difference is a horizontal shift, where
the graph is shifted to the left when the prediction accuracy is high and to the right when
the prediction accuracy is low. This result is quite expected since it shows that most
of the price changes are quite near 0. It is also expected that the difference between a
network that has a large mean profit per stock and a network that has a small mean profit
per stock is prediction accuracy.

23

6 Discussion

In this section assumptions will be questioned, and problems surrounding the method are
discussed.

6.1 Assumptions

First of all it is assumed that no transaction costs are present. Transaction costs can be
divided mainly into search costs and costs for reaching an agreement. (Byström, 2014)
Identifying stocks that decrease drastically and running the analysis can be made by a
computer, hence the search costs are close to none. The costs for reaching an agreement
is in the purchase of stocks the brokerage fees that are associated with buying the stocks.
This can be an fixed cost, which means that if a sufficiently large amount is invested then
the relative cost could be very small. (Stockbrokers, 2018)

Secondly, it is assumed that it is possible to short sale stocks at no extra costs. The
results would most likely be a bit different without assuming that short sales are possible,
but I have not investigated this issue further.

Thirdly stock prices are assumed to never more than double its price in one day. This is
quite reasonable shortly after a crash however for one stock and one day in the analyzed
data set, the price more than doubled for one day - hence the assumption is not waterproof.
Therefore it is important to be extra careful when short sales are used, and all the value
of the portfolio should not be invested in a short sale transaction.

6.2 Arithmetic mean vs geometric mean performance

In section 2.8 it is described that arithmetic and geometric means are quite different but
still both are widely used, although for different purposes. The arithmetic mean should be
used if the same amount is invested into different stocks simultaneously, while geometric
mean should be used if one amount is invested sequentially in a number of stocks. In
section 2.5 something very similar to a geometric mean has been used, since it has been
assumed that the same amount is invested sequentially in different stocks.

The difference between the two measurements is how an investor decides to invest the
money in the portfolio into different stocks. In this thesis both strategies have been
evaluated and combined. First a sort of geometric mean has been used in order to get
an estimation of the performance of the investment strategy. Thereafter an arithmetic

24

mean has been used in order to estimate mean performance if the investment strategy
is used. Also in the analysis of individual stocks an arithmetic mean is used to measure
performance.

6.3 Ethical aspects of day trading

It is an usual point of discussion whether day trading is ethical or not. These investments
are a part of making the financial market more efficient, and makes it reflect the underlying
values in a better way. Still there are various disadvantages of day trading. Usually when
someone profits from day trading, someone else loses. It is possible that the profiters of
day trading generally are huge companies, while the losers are private small investors.

25

7 Conclusions

From the results and analysis the only possible conclusion is that a neural network may
predict increases and decreases in stock prices shortly after drastic decreases in price, at
least better than what chance does. The result is clear, however not necessarily large
enough to contradict the efficient market hypothesis - at least not with the specific neural
networks that have been constructed in the work of this thesis. Still, the result is clear
enough to give a positive conclusion to the problem formulation.

26

8 Thoughts for further investigations

There are of course numerous ways to deepen the understanding of the financial market
using neural networks. Therefore more analyses like the one presented in this thesis most
likely will be presented within the next years. There are many further investigations that
can be conducted, that are somewhat similar to this one.

First of all the type of network could be varied; different number of nodes and layers, and
other neural network models can be used. This can be done by varying the parameters
in the model and the exact same problem formulation can be further investigated. Using
more nodes and layers would need a longer training period which takes time, on the other
hand the network could possibly be more successful.

Secondly other characteristics could be analyzed. For example other time periods, apart
from shortly after large decreases in price, can be investigated. The first and most obvious
example is shortly after a large increase in price. Another interesting hypothesis to test if
a neural network can predict price changes of stocks better than chance on general data.

Thirdly, other underlying assets could be investigated, with a similar approach. Possibly it
is also feasible to do better than chance when predicting prices of derivatives and futures.

Apart from these very obvious continuations of the results from this thesis, there are other
similar problems that can be investigated. One very interesting application could be to
analyze the variance of the prices. An analysis of variance could then be compared to the
commonly used ARCH- and GARCH-models. Also the hypothesis that a neural network
could predict variances more accurately than statistical methods does not contradict any
widely accepted hypothesis, like the one of the efficient markets.

Finally it could be investigated how transaction costs might affect the results presented in
this report. One approach would be to find a trading platform and calculate the brokerage
fees. Then this information could be used to calculated how large the investments would
have to be in order to still have a positive mean performance. For example on the Swedish
bank and trading platform Avanza, the brokerage fee can be a fixed cost of 99 Swedish
crowns. (Avanza, 2018) The largest arithmetic mean of the performance for one stock is
0.2363% increase. If the arithmetic mean of increase should be at least 0.2%, then this
would give that an investment of about 300000 Swedish crowns, or about 35000 USD, is
needed to obtain an arithmetic mean of at least 0.2%. This number is of course not a
valid estimation, since among other things only stocks on the Stockholm Stock Exchange
market can be traded on Avanza. Therefore a more thorough investigation is needed.

27

9 Reference list

3blue1brown, 2017. Deep learning. https://www.youtube.com/watch?v=aircAruvnKk&
list=PLZHQObOWTQDNU6R1_67000Dx_ZCJB-3pi

[
2018-05-13

]
Avanza, 2018. Så funkar våra courtageklasser. https://www.avanza.se/konton-lan-prislista
/prislista/courtageklasser.html

[
2018-05-21

]
Bishop, C.M., 2006. Pattern Recognition and Machine Learning

Blom, G., Enger, J., Englund, G., Grandell, J. & Holst, L., 2005. Sannolikhetsteori och
statistikteori med tillämpningar

Byström, H., 2014. Finance - Markets, Instruments and Investments

Fama, E.F., 1970. Efficient Capital Markets: A Review of Theory and Empirical Work

Gündüz, H., Yaslan, Y., & Çataltepe, Z., 2018. Stock market prediction with deep learning
using financial news

Kaggle, 2018. S&P500 Stock Data. https://www.kaggle.com/camnugent/sandp500
[
2018-

03-30
]

Kamijo, K. & Tanigawa, T., 1990. Stock price pattern recognition: A recurrent neural
network approach

Li, M., & Ma, W., 2010. Applications of Artificial Neural Networks in Financial Eco-
nomics: A Survey

Malkiel, B., 2003. The Efficient Market Hypothesis and Its Critics

Malliaris, M.E., 1994. Modeling the behavior of the S&P 500 index: a neural network
approach

Rogers, S. & Girolami, M., 2016. A first course in Machine Learning

Saad, E.W., Prokhorov, D.V., & Wunsch, D.C., 1998. Comparative study of stock trend
prediction using time delay, recurrent and probabilistic neural networks

Stockbrokers, 2018. 21 Most Common Online Broker Features & Fees. https://www.stock
brokers.com/guides/features-fees#stocktradingfees

[
2018-05-12

]

28

A Figures of predictions for each day

Figure A.1: Change factors given by the investment strategy for each stock.

Figure A.2: Change factors given by the investment strategy for each stock.

29

Figure A.3: Change factors given by the investment strategy for each stock.

Figure A.4: Change factors given by the investment strategy for each stock.

30

Figure A.5: Change factors given by the investment strategy for each stock.

Figure A.6: Change factors given by the investment strategy for each stock.

31

B Python-code for the neural networks

from __future__ import division

import tensorflow as tf

import numpy as np

import math

import pandas

from keras.models import Sequential

from keras.layers import Dense, LSTM, Embedding, Dropout, TimeDistributed

↪→ , Activation

from keras import losses

from random import shuffle

#Returns data as a list.

def inputs():

csv = pandas.read_csv(file_path, header = None)

data = []

for i in range(len(csv)): data.append(csv[i:i+1].values.tolist()[0])

return data

#Transfering vector to binary, if increase or decrease.

def to_binary(vec):

if binary_answer:

ret = []

for i in range(len(vec)):

if vec[i] >= 1: ret.append(1)

else: ret.append(0)

return ret

return vec

#Returns a list of train_data, ans_train_data, test_data, ans_test_data.

def create_batches(data):

ret = []

test_size = int(no_data*test_proportion)

if test_size % batch_size != 0: test_size -= test_size % batch_size

test_data = data[:test_size]

training_data = data[test_size:(no_data - no_data % batch_size)]

32

ret.append(np.array([trd[:inp_to_guess] for trd in training_data]).

↪→ reshape(len(training_data), inp_to_guess,1))

ret.append(np.array([trd[inp_to_guess] for trd in training_data]).

↪→ reshape(len(training_data),1))

ret.append(np.array([ted[:inp_to_guess] for ted in test_data]).reshape

↪→ (len(test_data),inp_to_guess,1))

ret.append(np.array([ted[inp_to_guess] for ted in test_data]).reshape(

↪→ len(test_data),1))

return ret

#Give result of a test, given predicted and answers.

def test(predicted, answers):

ret = 1

val = [1]

for ak in range(len(predicted)):

if predicted[ak][0] > 1: ret *= answers[ak][0]

else: ret *= (2-answers[ak][0])

val.append(ret)

return ret, val

print(’-----------Start␣of␣file--------------’)

#-----------------Config------------------

file_path = ’csv95.csv’ #File name of csv.

batch_size = 355 #Size of batches that are analysed together.

no_layers = 1 #Number of hidden layers

inp_to_guess = 7

data = inputs()

input_size = len(data[0])

state_size = [20]*no_layers #Number of nodes in each layer. Can be

↪→ different sizes for different layers.

test_proportion = 0.1

spread_factor = 2

spread_factor2 = 2

output_size = 1

no_data = len(data)

#Parameters to change!

epochs_of_training = 200

dropout_rate = 0

33

activation_hidden = ’relu’

activation_output = ’linear’

loss_function = ’mae’

optimizer_method = ’Adam’

binary_answer = False

shuffle_train_data = True

no_of_rounds = 100

#Runs the same test multiple rounds, and storing the results.

allRes = []

allPreds = []

allAnsws = []

allAllVals = []

results = []

preds = []

answs = []

all_values = []

for i in range(1,no_of_rounds+1):

print ’Round␣’ + str(i) + ’␣started’

shuffle(data)

#----------------Graph Building-----------

model = Sequential()

for lay in range(no_layers):

model.add(LSTM(state_size[lay], batch_input_shape = (batch_size,

↪→ inp_to_guess, 1), dropout = dropout_rate, activation =

↪→ activation_hidden))

model.add(Dense(1,activation = activation_output))

#-------------------Compiling-------------

model.compile(loss = loss_function, optimizer = optimizer_method,

↪→ metrics=[’mae’])

#---------------Training--------------------

training_data, ans_training_data, test_data, ans_test_data =

↪→ create_batches(data)

model.fit(training_data, ans_training_data, verbose = 0, batch_size=

↪→ batch_size, epochs=epochs_of_training, shuffle=

↪→ shuffle_train_data)

34

#--------------Testing-----------------

score, acc = model.evaluate(test_data, ans_test_data, batch_size =

↪→ batch_size)

predicted = model.predict(test_data, batch_size = batch_size)

score, values = test(predicted, ans_test_data)

preds.append(predicted)

answs.append(ans_test_data)

results.append(score)

print ’Round’, str(i), ’finished.␣The␣score␣was’, str(score)

#all_values.append(values)

print results

resFile = open(’res.txt’,’w’)

resFile.write("%s\n" % str(results))

predFile = open(’preds.txt’,’w’)

predFile.write("%s\n" % str(preds))

answsFile = open(’answs.txt’,’w’)

answsFile.write("%s\n" % str(answs))

print(’-----------End␣of␣file--------------’)

35

	Introduction, aim and problem formulation
	Limitations and theory
	Assumptions and Limitations
	Introduction to neural networks
	Short sale investments
	Efficient Market Hypothesis
	Evaluation of estimations
	Cross Validation
	Confidence interval of mean estimation
	Arithmetic vs Geometric mean
	Overview of previous work on Neural Networks in finance

	Method
	Construction of data sets
	Construction and training of the neural networks
	Estimation of test data
	Description of choices
	Statistical analysis of mean performance

	Results
	Predictions for each day

	Analysis
	Discussion
	Assumptions
	Arithmetic mean vs geometric mean performance
	Ethical aspects of day trading

	Conclusions
	Thoughts for further investigations
	Reference list
	Figures of predictions for each day
	Python-code for the neural networks

