
Master’s thesis

Cell Image Transformation Using
Deep Learning

Jesper Jönsson and Emmy Sjöstrand

May 29, 2018

Supervisors:
Adam Morell, CellaVision AB
Kent Str̊ahlen, CellaVision AB

Niels Christian Overgaard, Lunds Tekniska Högskola

Abstract

This thesis was written at CellaVision who sells digital microscope systems, mainly used for
blood analysis. Blood tests are an important part of modern health care and today digital
microscopes are widely used to replace conventional microscopy. It is important that the
digital images of blood cells are of high quality and that they look as they would in a tra-
ditional microscope. CellaVision has digital microscope systems with different optics, which
means images from different systems do not look the same.

In this thesis we investigate the possibility of transforming images between systems using
neural networks. The main focus is on generative adversarial networks, also known as GANs,
but we also experiment with a simple CNN and a network with a perceptual loss based on
the VGG-16 network. Our results include two variations of GANs, a conditional GAN and
a cyclic GAN. An advantage of the cyclic GAN is that it can be used in an unsupervised
setting. It does however require a lot more memory compared to the conditional GAN. We
present results from four different network setups. With these methods we have attained very
good results that are better than previous tries at CellaVision. The networks are however
too slow to be implemented in the actual systems today.

1

Acknowledgements

We would like to thank our supervisor Niels Christian Overgaard at the Department of
Mathematics for constructive feedback, especially during the writing process. We would
also like to thank our supervisors Kent Str̊ahlen and Adam Morell at CellaVision who have
helped us with everyday matters as well as giving us valuable comments on this report. A
special thanks to Martin Almers at CellaVision who has served us with a constant flow of
ideas and provided us with tools and data needed to complete this project. Finally we would
like to thank all the personnel at CellaVision for making us feel welcome and as part of the
group from day one.

2

Contents

1 Introduction 4
1.1 Motivation . 4
1.2 Aim . 6

2 Background 7
2.1 Blood Cells . 7
2.2 Hedlund-Morell Normalization . 7
2.3 Artificial Neural Networks . 8
2.4 Generative Adversarial Networks (GANs) . 16
2.5 Conditional GANs (cGANs) . 20
2.6 Pix2Pix . 27
2.7 CycleGAN . 27

3 Methodology 29
3.1 Cell Images . 29
3.2 Simple Network with an l1-loss (L1Net) . 30
3.3 Conditional GAN with an l1-loss (L1GAN) 31
3.4 Conditional CycleGAN (ccGAN) . 31
3.5 Perceptual Cycle Network (pcNET) . 31
3.6 Network Architectures . 32

4 Results 34

5 Discussion 40
5.1 General Conclusions . 40
5.2 L1Net . 41
5.3 L1GAN . 41
5.4 Conditional CycleGAN (ccGAN) . 42
5.5 Perceptual Cycle Network (pcNET) . 42
5.6 Classification . 42
5.7 Future Work and Improvements . 43
5.8 Ethical Considerations . 43

3

1 Introduction

1.1 Motivation

Blood tests are an important part of modern health care and are widely used to screen for
different diseases and confirm diagnoses. A peripheral blood smear is blood that has been
smeared onto a microscope slide. The blood sample is stained in order to make the blood
cells more visible in a microscope. Examining blood smears is part of the procedure when
investigating different hematological diseases. The traditional way to do this is to use man-
ual microscopy, which is time consuming and labour intensive. CellaVision sells analyzers
and supporting software that replaces conventional microscopy to improve the efficiency and
quality of blood analysis. Their customers consist of large and mid-size laboratories and
hospitals.

CellaVision’s best selling system is an integrated system called DI-60 and it is the result of
an OEM partnership with Sysmex. CellaVision has two other systems called DM9600 and
DM1200. Both DM9600 and DM1200 are part of the third generation of systems developed
by CellaVision. The loading capacity of DM9600 is 96 microscope slides and the loading
capacity of DM1200 is 12 microscope slides. A popular product from the previous generation
is the DM96 system which is the predecessor of the DM9600 system. The DM96 is no longer
for sale. Figure 1 shows the DM9600, the DM1200 and the DM96. CellaVision’s main anal-
ysis is a differential count of white blood cells. There are many types of white blood cells. A
differential count finds a number of white blood cells and gives the proportions of each cell
type. If a differential count deviates from the normal distribution that could be an indication
of e.g. an inflammation or a bacterial infection. CellaVision also counts immature cells that
are not present in a healthy person’s blood. Immature cells detected in the blood could be
an indicator of more serious conditions such as leukemia and lymphoma. The result of the
analysis, which includes images of white blood cells, is presented to the user on a screen.
Images from a system that have not been processed in any way are called raw images. When
the images are presented to the user they should look like traditional microscope images.
The process that makes the images look more similar to how they would look in traditional
microscope is called normalization. See Figure 2 for a comparison between a raw image
and a normalized image. The normalization algorithm segments the background and sets it
to a constant predefined color. The dynamic of the image is also changed to make it look
pleasing, for example by enhancing the contrast in the image, especially in the nucleus of
the cell.

One major difference between the third generation systems and the second generation sys-
tems is the optics and the illumination. The second generation systems use a halogen lamp
and the third generation use an LED. Because of the different optics and illumination, raw
images taken with systems from different generations do not look the same. Many customers
reacted to this change since they were used to the previous generation. Figure 3 shows a
raw image from the third generation and a raw image from the second generation. Since all
the normalized images should look the same it is obvious that images from different systems
cannot be normalized the same way. Ideally one would like to use the same normalization

4

process for all images. This can be done if it is possible to somehow transform raw images
from one generation to look like they came from the other. Otherwise there needs to be
different normalizations for systems from different generations.

(a) CellaVision DM9600. (b) CellaVision DM1200. (c) CellaVision DM96.

Figure 1: Digital microscopy systems from CellaVision.

(a) Raw image. (b) Normalized image.

Figure 2: Comparison of a raw image and a normalized image.

CellaVision’s third generation systems implement two options for normalizing images, a
transformation to the second generation combined with a second generation normalization,
as well as a direct normalization of the raw third generation images. It is up to the cus-
tomer to choose their preferred method. The problem with the direct normalization is that
customers that have been using earlier generations feel that the images look very different
compared to before. The other option is the transformation from third generation images
to second generation images. Unfortunately this transformation is not very simple and a
global transformation cannot solve the problem. Today an algorithm called Hedlund-Morell
(HM) normalization is used to transform the third generation images to second generation

5

images and normalize them. The main idea of HM normalization is to segment the image
and apply different transformations to different parts. This works fairly well, but the result
is not entirely satisfactory. This is where deep learning comes in. The hope is that some
kind of neural network that is complex enough will be able to capture the need for different
transformations of different cell components without having to do any segmentation. In this
thesis a transformation of images from the third generation to the second generation will be
discussed. The DM96 system has been used to collect images from generation two and the
DM1200 system has been used to collect images from generation three.

(a) Second generation. (b) Third generation.

Figure 3: Raw images taken with systems with different optics and illumination.

The classification of white blood cells that was mentioned earlier is done with artificial neural
networks. Those networks were originally trained using images from DM96 and the networks
had to be retrained in order to work for DM1200 images. That is something one wants to
avoid since training of networks requires data labeled by experts and since the training is
time consuming. If the transformation from DM1200 images to DM96 images is good enough
the classification networks might work for the transformed DM1200 images as well. This is
something that could be useful when developing systems in the future.

1.2 Aim

The aim of this thesis is to develop a pre-processing step in order to make raw images from
different systems look the same: a transformation from the domain X (DM1200 images) to
the domain Y (DM96 images). This pre-processing step will be a neural network. The main
focus is to transform the DM1200 images to be visually indistinguishable from the DM96
images, but if possible we also want the classification networks to classify the transformed
images correctly.

6

2 Background

2.1 Blood Cells

CellaVision’s main analysis is the differential blood count as mentioned in Section 1.1. Blood
consists of 60 % plasma and 40 % is made up of three types of blood cells, white blood cells
(WBCs), red blood cells (RBCs) and platelets (PLTs) [6]. This thesis will focus on transform-
ing images of white blood cells. White blood cells can be divided into five main categories,
neutrophils, lymphocytes, monocytes, eosinophils and basophils, which play different roles
in the immune system. Approximately 50 − 80 % of all WBCs are neutrophils [31] while
basophils only consitute < 1 % of the total amount of WBCs [30]. Figure 4 shows examples
of white blood cells. Eosinophils have a color in the granules that does not appear as much
in the other cell types and has proved to be one of the more challenging colors to get right.
The granules are the small particles present in the cytoplasm around the nucleus.

(a) Neutrophil (b) Lymphocyte (c) Monocyte (d) Eosinophil (e) Basophil

Figure 4: Five different white blood cells [3].

2.2 Hedlund-Morell Normalization

The pixels of an image of a white blood cell can be divided into four areas, background,
red blood cells, nucleus and cytoplasm. In the HM normalization each class has a separate
pre-determined transformation. Furthermore, every pixel is given a probability of belonging
to the different classes. For every pixel all transformations are carried out and the result is
weighted against the probability of the pixel belonging to that class. This has the effect that
even if the classification is not completely correct the transitions in the image are smooth.

Images from the target system as well as original images are needed in order to find the four
transformations. All images are segmented into the four classes (background, red blood cells,
nucleus and cytoplasm). This is done by first finding the white blood cell, i.e. the nucleus
and the cytoplasm. This cell can be cut out from the image and then the background and
the red blood cells are easily separated by some thresholding method. Segmenting the white
blood cell itself into nucleus and cytoplasm is harder, but there exist good methods to do
this. Examples of such segmentation methods are described in [18]. When the segmentation
is done a three dimensional Gaussian approximation in the RGB space is calculated for each
class. This is done for target images and the original images separately, so there are two
Gaussian approximations for each class. Then an affine transformation from every class in

7

the original images to the corresponding class in the target images is estimated. These are
the transformations used when normalizing the images.

2.3 Artificial Neural Networks

One can think of an artificial neural network as a function of two variables, a matrix of
weights w and a matrix of input x. When using a neural network for image transformations
the input x will be an image. A loss function L is defined to capture how good the output
from the network is. To improve the performance of the network some optimization algo-
rithm is used to update the weights of the network based on the loss function.

Neural networks are, as the name suggests, loosely inspired by the structure of the biological
neural networks in our brains. The simplest version of a neural net is the perceptron which
is a model of a biological neuron. It was introduced by Frank Rosenblatt in 1958 [34]. The
definition of the perceptron is as follows

f(x) =

{
1 if wTx+ b > 0
0 otherwise,

where w is the weights, x is the input and b is a bias term. Figure 5 shows an illustration of
the perceptron. Since it is a linear classifier it can only learn to separate sets that are in fact
linearly separable, i.e. the data can be separated by a hyperplane. A famous example that is
not linearly separable is the exclusive-or (XOR) function. To produce an XOR function one
can create a multi-layer perceptron by adding more layers and introduce non-linear activation
functions between the layers. This way the classifier can learn much more complex patterns.

Figure 5: Illustration of the perceptron. The input x is multiplied by the weights w and
then the bias is added before it is sent through a step function (see (6)) to compute the end
result y.

8

2.3.1 Loss Functions

The training of neural networks is a data driven process and the driving force is the loss
function. Therefore it is important to have a good loss function in order for the network
to learn the right things. The network can be seen as a function f . If x is the input, y
is the target and w is the weights of the network, then the minimization problem can be
formulated as

min
w
L
(
y, f(x,w)

)
, (1)

where L is some loss function.

Different loss functions are used for different learning tasks. The cross entropy loss function
is often a very good choice for binary classification tasks [28]. If ŷi is the output from some
network and di is its label (either 0 or 1) defining what class the sample belongs to, the cross
entropy error function is defined as

L = − 1

N

N∑
i

(
di log(ŷi) + (1− di) log(1− ŷi)

)
. (2)

By studying (2) we can immediately verify how the choice of error function makes sense. If
a sample has target di = 1, the second term cancels. The network will then minimize its loss
by outputting a value as close to 1 as possible. Similarly, if a sample has target di = 0 the
first term cancels and the network will minimize its loss by outputting a value as close to 0
as possible. Therefore the network is always encouraged to match its target value.

When transforming images it might be useful to introduce an l1- or l2-loss between the
transformed image and the target image (if a target image exists). This loss would just be
the norm of the pixel-wise difference between the transformed image ŷ and the target image
y,

Ll1 := ‖ŷ − y‖1. (3)

2.3.2 Optimization Methods

A traditional way of optimizing a function is to use gradient descent. This method updates
the weights of the network by studying the gradient of the loss function for the entire batch
of training data and moving in the direction of the steepest descent, see (4). The hyper-
parameter α is the learning rate which controls how much the parameters in the network
are updated each iteration. It is possible to have a constant learning rate but it can also
decrease over time as the network gets better.

w←− w − α∇wL (4)

This type of optimization algorithm where the whole training set is used is called a deter-
ministic gradient method. If one has a lot of data this probably is not the best method since
it requires a lot of memory. It is also not very efficient, for many datasets it can take hours
to do just one iteration [12]. To get around this problem one can use a so called mini-batch

9

of data instead. A mini-batch consists of m randomly drawn samples, xi, from the training
set. The gradient used for the weight update is the average of all gradients in the mini-batch,
(5) shows the update rule. This is called Stochastic Gradient Descent (SGD) and is the most
commonly used optimization method in machine learning today [9].

ĝ =
1

m

m∑
i

∇wL(f(xi, w))

w ←− w − αĝ
(5)

The neural networks in this thesis have been trained using the optimization method Adam
[21]. Adam is an efficient method for stochastic optimization that requires little memory and
often gives good results for most problems without too much tuning of the hyperparameters.
Adam is a good choice of optimizer when one has a lot of data or large networks. It has
been shown empirically that Adam works better compared to other popular optimization
methods when training convolutional neural networks [21]. Adam combines the advantages
from AdaGrad [7], which is able to handle sparse gradients well, and RMSProp [42] that
deals with non-stationary objectives in a good way [21].

The gradient of the loss function with respect to w is usually calculated with backpropagation.
First a forward pass is performed. This simply means that the input is sent through the
network. Next the loss is calculated and then backpropagated through the network to update
the weights. The name backpropagation originates from the fact that the loss is propagated
backwards through the network [32].

2.3.3 Activation Functions

Non-linear activation functions are used in all kinds of neural networks, not just different
types of perceptrons. A simple activation function is just a hard threshold, a step function
(6). However the gradient of this is zero almost everywhere which is not good for the learning
[11]. To avoid this problem one can use softer thresholds like the sigmoid function (7), which
is useful when the network should output a probability since it squashes R into (0, 1). The
most commonly used activation function today is the ReLU (Rectified Linear Unit) (8). The
ReLU looks a lot like the linear function but is actually non-linear, and in fact any function
can be approximated by combining ReLUs [35]. The main advantage using ReLU is that the
output from the activation function becomes sparse if the input is normalized (mean 0 and
unit variance) since approximately 50 % of the input will be less than zero. Sparse output
means it is a lighter and faster network [35]. Unfortunately this can cause problems too.
Since everything less than zero will not get activated it can cause the gradient to vanish.
Then there will be no weight update during gradient descent and the network can get stuck.
This is often called the dying ReLU problem [20]. Today there exist several variations of
the ReLU that try to get around this problem, one of the most well-known is the Leaky
ReLU (9). The idea is to make the gradient non-zero so that the network can recover during
training. This is done by replacing the flat part for x < 0 with a small slope, αx [20].

10

Table 1: Examples of activation functions.

Step function: f(x) =

{
1 if x > 0
0 otherwise

(6)

Sigmoid: f(x) = 1
1+e−x (7)

ReLU: f(x) =

{
x if x > 0
0 otherwise

(8)

Leaky ReLU: f(x) =

{
x if x > 0
αx otherwise

(9)

2.3.4 Convolutions and Transposed Convolutions

Today there are a lot of different types of neural networks being used in a wide array of
applications. Convolutional neural networks (CNNs) are networks where the main operation
is a convolution. This kind of network has proven to be very successful when dealing with
images, for example in image classification [19]. The convolution operation consists of a
kernel sliding over the input image performing matrix multiplications at every location. The
stride controls how the kernel slides, if the stride is 1 then the kernel moves one pixel at a
time, if the stride is 2 then it moves 2 pixels etc. The result of the convolution is an image
containing the features defined by the kernel. Figure 6 shows an example of a kernel that
detects edges in an image. In a neural network the kernel is not predefined, instead the
networks learns the parameters during training.

(a) Original image (b) Convolution kernel (c) Resulting image

Figure 6: Example of edge detection using convolution [39].

Image generation using neural networks often involves upsampling. Many interpolation
methods are fixed and do not have any learnable parameters. Sometimes it might be desir-
able for the network to learn an optimal upsampling procedure. Then the transposed convo-
lution is a good choice. Transposed convolutions are sometimes called deconvolutions, which
might be confusing since it is not actually the mathematical definition of a deconvolution.

11

Transposed convolutions are especially useful in neural networks with an encoder-decoder
setup (see Section 3.6) since upsampling and convolution is combined. For more details see
[36].

2.3.5 Generalization

An important term in machine learning is generalization. Generalization is a term used to
measure the performance of a trained network on data which has not been part of the train-
ing [32]. Data sets are often split into three subsets, a training set, a test set and a validation
set. The training set is the largest one and it contains the data used for training. The test set
is a data set used to measure how well the model performs on previously unseen data. The
test set needs to be completely unbiased since it is used to measure the final performance.
The validation set is somewhere in between the other two sets. It is not used to train a
model, but can still be used for evaluation during the training process. For example it could
be used to tune hyperparameters. The fact that it is used to evaluate performance during
the training means it is no longer unbiased even though the model has not actually been
trained on the validation set.

Many machine learning algorithms, including neural networks, have a tendency to overfit to
training data. An example of the concept is shown in Figure 7. The left model is too flexible
and will fit data too well, even noise. The right model on the other hand does not fit as well
to the training data but much better to the test data. This model has better generalization
performance.

Figure 7: An example of overfitting. The left model fits better to the training data but does
not generalize as well. The right model on the other hand captures the characteristics of the
training data and fits well to previously unseen data [32].

Our aim is of course to do well on test data rather than training data. Therefore ways of
improving the generalization performance are needed and there are a lot of them to choose

12

from. Methods designed to improve generalization are usually called regularization methods.
There are less subtle ones such as early stopping, meaning one stops the training when the
generalization performance deteriorates. A more sophisticated method is dropout, further
explained in the following section.

2.3.6 Dropout

A simple idea that many times seems to improve the generalization performance is combin-
ing the output of multiple networks into one single prediction. For example one can train a
number of different networks and then take the average of all of them to generate a single
prediction. These machines are sometimes called committees [2]. However, large networks
are slow to train and very source demanding. One can show that the best performance
of committees is obtained when the models are different from each other [32]. To achieve
this the networks need to be trained on different sets of data or use different architectures.
Finding optimal hyperparameters for each network and the resources needed to train all of
the networks make it difficult to use committees [41].

Dropout is a simple idea that tries to mitigate the problems which arise when using commit-
tees. It builds upon the idea of training multiple networks with different architectures. Only
one network is used but during training random nodes and their connections are dropped.
For each batch different nodes are dropped. Consider Figure 8; the left graph shows a regu-
lar neural network with two hidden layers and in the right graph dropout is applied. Some
nodes have been randomly chosen and temporarily dropped. No information will be sent
or processed in these nodes. When training on the next batch of images new nodes will
be randomly chosen and dropped. Dropout serves as a method of removing co-adaptation
between different neurons, forcing each node to learn independently of the other nodes in
the layer. Dropout greatly improves the generalization performance [40].

Figure 8: Illustration of dropout. The left graph illustrates a normal neural network with
two hidden layers. In the right graph dropout is applied to each layer. Some nodes and their
connections, the crossed ones, have been temporarily dropped when training the network on
this batch [41].

13

2.3.7 Batch Normalization

A common problem in deep neural networks is either vanishing or exploding gradients. One
way to deal with this problem is to normalize the input of the network [13]. Another is to
make normalization part of the training. This was first introduced in 2015 by Sergey Ioffe
and Christian Szegedy [15]. The method is called batch normalization and has shown great
performance, not only dealing with the problem of the gradients but also as a regularization
method [15].

It has been known for a long time that some pre-processing of the input to the network
can speed up convergence substantially. One alternative is to whiten the input, i.e. make
sure the input to the network has zero mean, unit variance and is decorrelated [22]. Batch
normalization generalizes this concept. It changes the mean and variance of the input to
any activation function in the network, but it does not remove correlation between input.

When the input to a neural network, or any other learning system, changes it is said to
experience a covariate shift [37]. Ioffe and Szegedy define internal covariate shift as the
change in the distribution of the network activations due to the change in network parame-
ters during training [15]. Consider a layer in the network. During training the parameters
continuously change as a result of the backpropagation algorithm. For every new batch of
training data the input to this layer will change its distribution slightly. This is what is called
an internal covariate shift. This makes the training of the network difficult since each time
the distribution is changed, the layers of the network need to adapt to the new distribution
[15]. Batch normalization tries to reduce the internal covariate shift. It does so by fixing the
mean and variance of the inputs to each activation function.

Consider a mini-batch training session and a layer with d-dimensional input where batch
normalization should be applied. Let x = (x1, . . . , xd) be the input vector. The normaliza-
tion is applied to each feature. The input is normalized as

x̂k =
xk − E[xk]√

Var[xk]
,

where the expectation and variation are computed over the training data set. This takes
care of the normalization of the features. It does however have a major drawback, it limits
what the network is able to learn. For example if this normalization is applied before a
sigmoid activation the inputs are constrained to be in the almost linear part of the function.
This is why Ioffe and Szegedy make sure that the batch normalization can also represent
the identity transformation. This way the network can recover the original signal if that is
the optimal thing to do. To be able to do this the new learnable parameters γ and β are
introduced, which will be part of the training of the network. The transformation will now
be

yk = γkx̂k + βk.

By letting βk = E[xk] and γk =
√

Var[xk] the original signal will be recovered. Batch
normalization has many good qualities. As a result of the reduced internal covariate shift

14

the learning rate can be increased to speed up training. Another advantage is that one does
not need to be as careful with the initialization of parameters [15].

2.3.8 Perceptual Losses

Losses like the l1-loss, which are based on the difference between the output image of the
network and the target image, have a huge drawback since they do not capture perceptual
differences between the two images [17]. Imagine a target image that has a black and white
zebra pattern. Every other column is black and the rest is white. If a network generates
an image that has a black and white zebra pattern that is shifted one column, then the
generated image will receive the highest possible loss, even though it has actually captured
the stylistic features of the target image.

One way to define a perceptual loss function which captures the essentials of the image
is to make use of a pre-trained classification network. Losses of this kind have been used
in multiple applications. For example [43] use a perceptual loss to de-rain images, meaning
they try to remove visual signs of rain or snow in an image. In [17] Johnson et al. use this
kind of loss to combine the content of one image with the style of another. One example
of this would be to combine the content of a photograph with the style of a painting. In
[24] a perceptual loss is used to train networks which take an image as input and outputs
the same image but with higher resolution. It is a type of loss that has been proven to give
good results when the goal is to create high quality images. There are a couple of different
variants of this loss. One thing these losses all have in common is that they use the output
of some intermediate layer of a pre-trained classification network. One such network is the
VGG network [38]. The VGG network won the 2014 edition of the ImageNet challenge [14]
and is pre-trained on the ImageNet dataset which consists of 14 million images split into
1000 classes.

Figure 9 shows a simple illustration of how this could work. The generated image ŷ and
the target image y are sent through the VGG network and a loss based on the output of
some intermediate layer φj of the network is defined. The core idea of a perceptual loss is to
represent the differences between the generated image and the target image with high level
features. The network is then encouraged to generate images with similar feature representa-
tion as the target image [43]. These kind of losses is believed to capture stylistic similarities
between images.

The perceptual loss can be defined in many ways. If φj is the output from the j:th layer of
VGG and (ŷ, y) is a generated image and a target image, then a common way to define the
perceptual loss function is to simply take some norm of the difference of the two outputs,

L = ‖φj(ŷ)− φj(y)‖. (10)

In [17] Johnson et al. define one loss called the feature reconstruction loss of the same
structure as (10) and one loss called the style reconstruction loss. Once again, let φj be the
output of the j:th layer of the pre-trained VGG network. If φj is a three dimensional matrix
with size cj×hj×wj then φj can be reconstructed as a cj×hjwj matrix called ψj. A matrix

15

Figure 9: Illustration of the idea of having a perceptual loss function based on a pre-trained
network, in this case VGG.

Gφ
j is defined as Gφ

j = ψjψ
T
j /(cjhjwj), which is a cj × cj dimensional matrix (sometimes

referred to as the Gram matrix). The feature reconstruction loss is then defined as

Lfeat(ŷ, y) = ‖Gφ
j (ŷ)−Gφ

j (y)‖2F , (11)

where ‖A‖F = (tr(ATA))
1
2 is the Frobenius norm of the matrix A. This loss captures stylistic

features of the image but does not preserve its spatial structure [17].

2.4 Generative Adversarial Networks (GANs)

In the previous section a loss function based on a pre-trained classification network was
defined. When Goodfellow et al. presented their article ”Generative Adversarial Nets” [8]
in 2014 they took this idea one step further. Two networks are defined, one network called
the generator and one network called the discriminator. The discriminator will, just as the
VGG-16 network did before, serve as a loss function for the generator but it will now be
part of the training, in the sense of getting its weights updated. The name originates from
the fact that the networks will compete against each other during training.

In order to understand the idea of a GAN better we will start with a simple example before
getting to the technical details. This is a common example that appear in many places, for
example [8], but this is our interpretation. Imagine a situation where a thief tries to man-
ufacture money and the police tries to determine whether this money is fake or not. If the
police detects the fake money, then the thief will have to do better next time to be able to
fool the police. On the other hand, if the police thinks the money is real, then the thief has
done a good job. In a GAN setting the thief is the generator. The thief tries to generate fake
money that looks like real money. The generator’s (thief’s) goal is to fool the police, which is
the discriminator in a GAN. The discriminator (police) is trained to distinguish between real
and fake money, it gives a probability of a sample being real. The generator (thief) sees this
probability and is able to improve. As the generator (thief) becomes better at generating
fake money the discriminator (police) needs to improve as well. This training process forces
both the generator and the discriminator to become better and better, competing against

16

each other.

A generator is a generative model and a discriminator is a discriminative model. A gen-
erative model takes a training set of samples from some distribution pdata (the real money
in the example above) and tries to learn an estimate of that distribution, called pmodel (the
fake money) [10]. Sometimes the generative model learns the distribution explicitly, but
sometimes it will only be able to sample from the learned distribution. The discriminative
model learns to represent some posterior probability p(y|x) (probability of a sample being
real money) [2]. The generative model takes noise as input and generates a sample. The
reason for giving the generator noise as input is that we get a higher variation in what the
generator is able to produce. Without noise the generator could only produce a determinis-
tic result. The discriminator takes a sample as input, either the output from the generative
model or a sample from pdata, and outputs a probability of the sample coming from pdata. In
Figure 10 an illustration of the framework is shown. From now on the generator is called G
and the discriminator is called D.

Figure 10: Illustration of the GAN framework. It consists of two networks, the generator and
the discriminator. The input to the generator is a sample from some noise prior. The output
of the generator is passed along to the discriminator. The discriminator is trained to separate
fake samples from real samples and the generator is trained to fool the discriminator.

For GANs the loss functions of the networks will not only depend on its own parameters.
The discriminator will try to minimize Ldisc(θG, θD), but can only do so by manipulating its
own weights, θD. Similarly, the generator will try to minimize Lgen(θG, θD), but can only
do so by manipulating its own weights, θG. This means training the networks will be more
like a game than a traditional optimization problem. The solution will be a Nash equilib-

17

rium, (θG, θD) which is a local minimum of Ldisc(θG, θD) given θD and a local minimum of
Lgen(θG, θD) given θG [10].

The discriminator is designed and trained to solve a binary classification problem. Sam-
ples y coming from the real distribution gets the label one and samples ŷ = G(z) coming
from the fake distribution gets the label zero. Consider having N such samples from each
class, then by using the cross entropy error function, see (2), the discriminator loss can be
constructed as

Ldisc = − 1

2N

N∑
i

log
(
D(yi)

)
− 1

2N

N∑
i

log
(
1−D(ŷi)

)
. (12)

By similar arguments as before (see (2) in Section 2.3.1) we realize this formulation encour-
ages the discriminator to output a probability close to 1 when samples are coming from the
real distribution and a probability close to 0 when samples are outputs of the generator.

It is also possible to formulate the loss function based on a more statistical approach, see
(13), which is the formulation usually presented in GAN papers.

Ldisc = −1

2
Ey∼pdata

[
logD(y)]− 1

2
Ez∼pz

[
log
(

1−D
(
G(z)

))]
(13)

When thinking of the generator’s loss function the easiest formulation would be

Lgen = −Ldisc. (14)

This means the generator is trained to maximize the discriminator’s loss function, i.e to
make the discriminator’s job as difficult as possible. This has the nice property of being a
zero-sum game, Lgen + Ldisc = 0. By defining a value function as V (θg, θd) = −2Ldisc the
entire problem can be formulated as the minimax game shown below [10].

min
θG

max
θD

V (θg, θd) = min
θG

max
θD

(
Ey∼pdata

[
logD(y)] + Ez∼pz

[
log
(

1−D
(
G(z)

))])
(15)

Training a classifier by minimizing the cross entropy error function is highly effective. This is
because the cost function always provides a strong gradient when the network classifies the
samples to the wrong class. On the other hand when the network does provide the correct
output the loss function will saturate. This is positive when training the discriminator, but
the generator will be completely without gradient if the discriminator becomes too good.
Therefore, if the generator falls behind in the training process it will not be able to catch up
again. The loss function defined in (14) has some nice theoretical properties but is usually
not the one used when training the generator. The cross entropy error function will still be
used but instead of flipping the sign of the discriminator loss when defining the generator
loss, the target variables will be flipped [10]. The fake samples get target one and the real
ones get target zero.

Let x be a vector with 2N elements, N samples from the real distribution and N samples

18

from the fake distribution, i.e. let x = [y1, . . . , yN , ŷ1, . . . , ŷN]. Let d̂ be the corresponding
target vector with flipped targets, i.e. d̂ = [0, . . . , 0, 1, . . . , 1]. The cross entropy loss function
becomes

L = − 1

2N

2N∑
i

d̂i log
(
D(xi)

)
+ (1− d̂i) log

(
1−D(xi)

)
. (16)

The first term cancels when i = 1, . . . , N , i.e. when the real samples are presented to the
loss function and the second term cancels when i = N + 1, . . . , 2N , i.e. when the generated
samples are presented. The loss can be rewritten as

L = − 1

2N

N∑
i

log
(
D(ŷi)

)
− 1

2N

N∑
i

log
(
1−D(yi)

)
. (17)

Since the second term does not depend on ŷ = G(z) it can be omitted. The loss function
that will be used for the generator is

Lgen = − 1

N

N∑
i

log
(
D(ŷi)

)
(18)

With this formulation both networks have strong gradients when falling behind in the game
[10]. By choosing the generator’s loss function according to (14) we encouraged the gener-
ator to make the life of the discriminator as difficult as possible, this implicitly means the
generator should generate samples that could be from the real distribution. By choosing the
loss function in accordance with (18) (flipping the labels) we explicitly train the generator
to fool the discriminator. In pseudo code the training algorithm looks as follows.

Learning algorithm GAN [8]

for number of training iterations do

• Sample minibatch of m noise sample z1, . . . , zm from noise prior pz(z).

• Sample minibatch of m examples from y1, . . . , ym from data generating distribution
pdata(y).

• Update the discriminator by moving in the negative direction of the gradient

∇θdLdisc = −∇θd

1

m

m∑
i=1

logD(yi) + log
(

1−D
(
G(zi)

))
.

• Sample minibatch of m noise sample z1, . . . , zm from noise prior pz(z).

• Update the generator by moving in the negative direction of the gradient

∇θgLgen = −∇θg

1

m

m∑
i=1

log
(
D
(
G(zi)

))
.

end for

19

2.5 Conditional GANs (cGANs)

When using a GAN one does not have a lot of control over what is being generated, and
that is why Mirza et al. introduced the conditional GAN (cGAN) [27] a few months after
the original paper. A cGAN is very similar to the normal GAN, but the input to both the
generator and the discriminator is conditioned on some additional information, for example
a class label. In Figure 11 a GAN is trained on the MNIST dataset. The MNIST dataset
consists of 70000 labeled grayscale images of handwritten digits and is commonly used as
a benchmark dataset. It is available to everyone online [23]. The network has learned to
generate what looks like handwritten digits, but there is no way to control what number the
network generates. By using a cGAN it is possible to condition on what number the network
should generate. Figure 12 shows the result of training a cGAN on the MNIST database
and Figure 13 illustrates the cGAN framework.

Figure 11: MNIST images generated using a GAN.

The training data is slightly different compared to before since every sample of the data
is now paired with a label, x, describing what number it illustrates. The label is called a
conditioning label. Input to the generator is some noise, just as before, and a conditioning
label. The output of the generator is sent with the conditioning label to the discriminator,
which outputs the probability of the sample being drawn from the real distribution. This
simple change in the input to the networks makes it possible to control what number is being
generated. If the generator generates the number one but the conditioning label was zero the
discriminator will immediately classify it as fake, assuming the discriminator is good enough
to realize the label and the image should be the same number. This way the generator is
forced to generate the number the conditioning label is coding for. The minimax game can
be formulated in almost the same way as for the GAN case (15), but now the conditional
information x is added as well, see below.

min
θG

max
θD

Ey∼py(y)
x∼px(x)

[logD(y|x)] + Ez∼pz(z)
x∼px(x)

[
log
(

1−D
(
G(z|x)|x

))]
(19)

20

Figure 12: MNIST images generated using a conditional GAN. Every row is conditioned on
a class label [27].

Figure 13: Illustration of the cGAN framework.

21

2.5.1 A Simple Example

To gain a better understanding of cGANs, show some of the typical challenges of GANs and
to illustrate how the training is performed a simple example will be constructed. The goal
is to approximate a one-dimensional zero mean Gaussian with unit variance using a cGAN.
To simplify the training of the networks no noise will be sent as input to the generator, only
the conditioning label. This is not how one usually would do it but it will suffice at this
point to illustrate the points we are trying to make.

The architectures of the generator and discriminator networks are not relevant to the ex-
ample and has been omitted. Figure 14 shows the probability density function which the
generator is trying to approximate, pdata(x), what the generator has predicted, G(x), and
the output from the discriminator when given fake data as input, D(x,G(x)). Since this is
before any training has been performed the output from the generator and the discriminator
is just nonsense. Throughout this example the discriminator plot will be the probability of
the generator output being a sample from the true distribution.

Figure 14: Output from the generator G(x) and the discriminator D(x,G(x)) before any
training has been performed, along with the probability density function, pdata(x), which the
generator is trying to approximate.

When training the discriminator a batch x1, . . . , xN is sampled uniformly along the x-axis
and then the batch is sent to the generator. Let ŷi = G(xi), i = 1, . . . , N . This gives N
pairs of ”fake” data (xi, ŷi). Next, a batch from the true distribution is sampled which gives
new pairs of data, (xi, pdata(xi)), i = 1, . . . , N . The two sets of data points, the fake one and
the real one, are presented to the discriminator along with their labels. The real ones get a

22

label equal to 1 and the fake ones get a label equal to 0. In accordance with (12) and (19)
the discriminator loss will be

Ldisc = − 1

2N

N∑
i

logD
(
pdata(xi)|xi

)
− 1

2N

N∑
i

log
(
1−D(ŷi|xi)

)
.

When training the generator a batch x1, x2, . . . , xN is once again sampled uniformly along
the x-axis. These points are sent through the generator to get ŷi = G(xi), i = 1, . . . , N . The
data is paired (xi, ŷi) and sent to the discriminator, this time with a label equal to 1. The
generator should be encouraged to get as good as it possibly can at fooling the discrimina-
tor. This way the generator will receive a lot of loss if the discriminator classifies the fake
samples as fake, driving the generator to perform better and better as the training progresses.

In Figure 15 some results during training are shown. After 100 iterations nothing much has
happened. After 200 iterations the generator fits a little better to the true distribution. By
studying the discriminator a little closer one can see how the probability of (0, G(0)) being
drawn from the true distribution is a little lower. This is good. As seen in the plot the
generator’s graph is far away from the true probability density function at this point. The
discriminator really cannot say anything about the generator’s graph in the tails of the graph,
it only gives a probability of 0.5 meaning it does not know if it is a sample from the real
distribution or not. After 10000 iterations the discriminator and the generator have become
much better. By studying the discriminator it is seen that whenever the generator’s graph
is close to the true probability density function the discriminator rewards the generator with
a high probability of the sample being from the true distribution. When the generator’s
graph deviates from the Gaussian the discriminator immediately gives the generated sample
a low probability, punishing the generator with a higher loss. After 92000 iterations the
generator fits well to the true distribution. The discriminator cannot separate the two distri-
butions anymore and just randomly guesses which distribution the samples are coming from.

One of the drawbacks of GANs is that you cannot tell by just studying the loss function how
well the training progresses. In Figure 16 it is shown how the generator’s loss function varies
during training. By solely studying the loss function we realize there is no way to decide if
the results are good or not. The loss oscillates heavily throughout the training. This is to be
expected. The loss is the result of the output of the discriminator which constantly changes
depending on how well the training of itself and of the generator progresses. With this simple
example it becomes clear that some other metric in which we can measure success is needed.
It is simply not enough to study the loss coming from the discriminator. Another consequence
of this is how the generator keeps receiving a high loss signal even though it is seen visually
that it performs very well. As a result the generator will keep on backpropagating a high
loss, changing its parameters. In Figure 17 the result after 120000 iterations is shown. The
generator is now substantially worse. The discriminator on the other hand is fully aware of
what may be samples from the true distribution or not. As a result the generator manages
to recover, but this still illustrates an apparent drawback of having a loss function which
only depends on a network that cannot separate the two distributions.

23

(a) After 0 iterations. (b) After 100 iterations.

(c) After 200 iterations. (d) After 400 iterations.

(e) After 10000 iterations. (e) After 92000 iterations.

Figure 15: Illustration of how the training of the generator and discriminator progresses.

Another well recognized problem of the GAN is the balance between the discriminator and
the generator. They need to improve at the same pace. The discriminator needs to be
good enough to give the generator a reasonable loss signal, it needs to lead the generator
towards the true distribution. If the discriminator is too good compared to the generator,

24

all of the samples from the generator will be classified as false. In this case the generator
will be fumbling in the dark having no clue what it should aim for, resulting in nothing but
nonsense.

Figure 16: Plot of the generator’s loss as a function of iterations.

Figure 17: Result after 120000 iterations. The generator has become much worse as a result
of the constant high loss from the discriminator.

Figure 18 shows the same example as before but this time the discriminator only sees half as
many samples as it did before, resulting in slower training of the network. The discriminator
never learns to separate the fake from real samples. This way it keeps sending a high loss to
the generator even though it has no idea what it is doing. The generator updates its weights
accordingly but since it is not getting qualified information from the discriminator it does

25

not converge towards the true distribution. As seen in Figure 18 the results are nowhere
near as good as the previous results. At the end the discriminator just gives a constant value
no matter what the input is.

(a) After 0 iterations. (b) After 500 iterations.

(c) After 1000 iterations. (d) After 2500 iterations.

(e) After 24000 iterations. (f) After 120000 iterations.

Figure 18: Illustration of how the training of the generator and discriminator progresses.

26

2.6 Pix2Pix

In the paper by Isola et al. [16] from 2016 it is shown that a slightly modified version of
the cGAN can be used for image-to-image translation with state-of-the-art results. Their
network is called Pix2Pix. Figure 19 shows two examples from their article. The left part
of the image shows construction of aerial photographs with maps as input. The right part
shows the reversed problem, from aerial photos maps are being generated. The minimax
game is almost the same as in the original cGAN, but it now also includes a term describing
an l1-loss, see (20). This term only includes the generator and will therefore be of no help
when training the discriminator. The fact that paired data is needed is a limitation of this
approach. Sometimes paired data is not available or is hard to collect.

min
θG

max
θD

Ex∼px(x)
y∼py(y)

[
logD(y|x)

]
+Ez∼pz(z)

x∼px(x)

[
log
(

1−D
(
G(z|x)|x

))]
+λEx∼px(x)

y∼py(y)
z∼pz(z)

[
‖y−G(z|x)‖1

]
(20)

Figure 19: Results from training Pix2Pix on paired images of maps and aerial photos. In
the left part of the figure the network is trained to generate an aerial photo given a map as
input. In the right part the problem is reversed, the network is trained to generate a map
given an aerial photo as input.

2.7 CycleGAN

When paired data is not available another approach is needed. In 2017 Zhu et al. proposed
the cycleGAN [45] which is a network that performs image translations between two domains
X and Y without the use of paired data. The cycleGAN has two generators and two
discriminators. The first generator G transforms an image from domain X to Y and the
second generator F transforms an image from domain Y to X. The two discriminators DX

and DY are trained on the different domains, DX is trained to recognize images from domain
X and DY is trained to recognize images from domain Y . Figure 20 shows an overview of
the network structure. This setup makes it possible to explore the idea of a so called cycle
loss. Given an image x ∈ X the first generator, G, transforms it to ŷ. Then ŷ can be
given as input to the second generator, F , which transforms it to x̂. Now it is possible to
compare x and x̂, and this is referred to as the forward cycle loss. Reversing the order of

27

Figure 20: Overview of the cycleGAN framework.

the generators and using y ∈ Y as input gives another cycle loss, the backward cycle loss.
The forward cycle is shown in Figure 21 and the cycle loss is defined as the l1-norm of the
difference between the input and the output from the whole cycle, see (21). In [45] Zhu et
al. also experiment with an identity loss, see (22). This loss encourages the generator F to
do an identity mapping given input from domain X and similarly encourages the generator
G to an identity mapping if G is given input from domain Y. The authors found this loss
to help the generators preserve color composition between the input and the output images.
Without this loss the generators often changed the tint of the images when there was no
need to do so.

Figure 21: Image describing the idea of a forward cycle loss. A sample from domain X is
sent through both generators and is then evaluated how much in l1-norm it differs from the
input.

Lcycle = ‖y −G(F (y))‖1 + ‖x− F (G(x))‖1 (21)

Lidentity = ‖y −G(y)‖1 + ‖x− F (x)‖1 (22)

Another concurrent work is the DualGAN by Yi et al. [44] which was released a few days
after cycleGAN. The basic idea and network structures are very similar, but there are some
differences. Both use the discriminator from Pix2Pix [16], but the cycleGAN uses the gen-
erator from the paper by Johnson et al. [17] while DualGAN has kept the generator from
Pix2Pix as well. Many generative models have some randomness in them, DualGAN in-
cluded, but cycleGAN is more of a deterministic style-transfer and makes no use of noise or
dropout [26].

28

3 Methodology

3.1 Cell Images

The raw cell images used for training our networks were collected at CellaVision with their
systems DM96 and DM1200. CellaVision provided us with anonymized blood samples to
use. The systems output BMP images of white blood cells with 100x magnification, which
in this case means that a pixel is equal to 0.1µm. The size of those images are 640 × 480
pixels. Before using the images for training they are cropped to contain one white blood cell
in the middle. The cropped images have the size 256 × 256 pixels. Because of restrictions
from our networks that originate from the up- and downsampling procedures, the size of the
images that are put through the networks need to be a multiple of 128. For details about of
our network structures see Section 3.6.

3.1.1 Pre-Processing

When the images are used in a conditional setting or in an l1-loss they need to be paired.
CellaVision’s systems are able to find the same cells on a slide on different systems, but
the images of the cells are not automatically connected or tagged in any way. Therefore
we needed to pair them ourselves and this pairing was done using template matching. The
nucleus was segmented based on a manual threshold and was then used as the template.
Now the images were paired but not aligned exactly. When using an l1-loss the pairs should
match as closely as possible pixel-wise in order to get a good result. If the images in a pair
is slightly rotated or scaled compared to each other it is impossible to get an exact matching
between the images using template matching. After the pairing is done one can extract
SIFT points [25] from both images. SIFT points are feature points in an image which are
invariant to scaling and rotation. We found the corresponding feature points in both images
and then approximated an affine transformation using a RANSAC algorithm. This gave us
images which were more or less matched pixel to pixel.

Blood samples can be colored using three different stainings, May-Grünwald-Giemsa (MGG),
Wright-Giemsa (WG) and Wright (W). The stainings look slightly different, see examples
in Figure 22. Intuitively one would want an equal distribution of stainings in the data, but
there is actually more variation within a staining than between them, so the proportions of
the stainings are not very important. The different cell types do however look very different.
When collecting blood cells from random slides you get more or less the same distribution
of cell types that an average person has in their blood, which means there are a lot less
eosinophils compared to neutrophils. Because of this it is reasonable to believe the network
would get a lot better at doing the transformation with neutrophils. In order to avoid
that and to get a more equal distribution of cells, data was augmented by rotating some of
the images 90, 180 and 270 degrees. The rotated images look exactly like real data since
there is no specific way a cell is positioned on a slide. Our data consists of 9810 pairs with
approximately the same number of cell types. The data was split into a training set (80 %),
a validation set (10 %) and a test set (10 %).

29

(a) May-Grünwald-Giemsa (b) Wright-Giemsa (c) Wright

Figure 22: Cell images showing neutrophils taken with the same DM96 system where the samples
have been stained using different stainings.

3.2 Simple Network with an l1-loss (L1Net)

When performing an image transformation with a neural network we need a transformation
network and a loss function. We also need some data to train it. We have paired data
(x, y), where x is the image we want to transform and y is the target image. We call our
transformation network a generator. As mentioned in Section 2.3.4 convolutional neural
networks are very good at handling images, so we will use a CNN as our generator. The
generator is based on the U-Net [33], an encoder-decoder structure with skip weights in order
to share information between layers. This is very useful in image transformation problems
since the underlying structure of the input image and output image often is the same. For
more details about the generator architecture see Section 3.6.1. The setup of what we will
call the L1Net is shown in Figure 23. The reason for the name L1Net is that the network
will only be trained with an l1-loss. This loss is defined as the l1-norm of the difference
between the transformed image ŷ and the original target image y, see (23). There are clear
disadvantages with this loss. The paired data needs to be exactly paired, pixel to pixel, for
this approach to give satisfactory results. It is well-known that using a norm between images
often causes blurrier results. The training of the L1Net is very straightforward, you simply
do a forward pass, calculate the loss (23) and then update the weights by backpropagation.

Figure 23: A simple CNN to transform an image.

L = ‖ŷ − y‖1 (23)

30

3.3 Conditional GAN with an l1-loss (L1GAN)

To improve the L1Net we add a discriminator to create a conditional GAN with an l1-loss.
The hope is that a discriminator will help capture more high frequency data compared to
only using a loss based on a norm which captures mostly low frequencies [16], see Section
3.6.2 for more details regarding the discriminator. We call this network L1GAN and it is
based on the ideas from Pix2Pix, it differs only in the design of the architecture of the
generator network. The L1GAN was however first trained using the Pix2Pix generator, but
based on the results we got we later changed it to our own generator.

3.4 Conditional CycleGAN (ccGAN)

We have also tried a variant of the cycleGAN. We call this network ccGAN, which is short for
conditional cycleGAN. Since we do have paired data, (xp, yp), we wanted to make use of that
as well, and therefore we introduced another loss that we will call paired loss. This is once
again an l1-loss between transformed images and target images, see (24). The complete loss
function (25) for one generator in ccGAN consists of a loss coming from the discriminator
(18), the cycle loss (21), the identity loss (22) and the paired loss (24), where the λi’s are
the weights of the loss functions.

Lpaired(xp, yp) = ‖yp −G(xp)‖1 + ‖xp − F (yp)‖1 (24)

Ltot = λ1Lgen + λ2Lcycle + λ3Lidentity + λ4Lpaired (25)

3.5 Perceptual Cycle Network (pcNET)

By combining the idea of a cycle from the cycleGAN and the feature reconstruction loss
based on the VGG network, see (11), we define a new framework called perceptual cycle
network (pcNET). This framework will consist of three networks, two generators and one
pre-trained VGG-16 network, which is a variant of the VGG network. Worth noting is that
there are no discriminator networks. The VGG-16 network is only part of the training as
an evaluation network (its the cornerstone of the perceptual loss) but it is not part of the
training in the sense of getting its weights updated. In this implementation φj (an interme-
diate layer in VGG-16) is extracted after the fifth max-pooling layer, see Table 1 in [38] for
a full overview of the VGG-16 network. As in the ccGAN the two generators are trained
using the cycle losses, the identity losses and the paired loss defined in (21), (22) and (24)
respectively. In Figure 24 the setup of the framework is shown.

To make everything a little bit clearer the loss function which generator F is trained against
is defined in (26). The samples (x, y) are randomly chosen images from the distributions X
and Y and (xp, yp) is randomly chosen paired data from the distributions X and Y . We have
the cycle loss

Lcycle(x, y) = ‖y −G
(
F (y)

)
‖1 + ‖x− F

(
G(x)

)
‖1,

the identity loss
Lidentity(x) = ‖x− F (x)‖1,

31

the paired loss
Lpaired(xp, yp) = ‖xp − F (yp)‖1,

and the feature reconstruction loss

Lfeat(xp, yp) = ‖Gφ
j

(
F (yp)

)
−Gφ

j (xp)‖2F .

The weighted sum which F is trained to minimize is

Ltot = λ1Lcycle + λ2Lidentity + λ3Lpaired + λ4Lfeat, (26)

where the λi’s are the loss weights. The loss for generator G is constructed in a similar way.

Figure 24: Cyclic network with two generators and no discriminators.

3.6 Network Architectures

All our operations are convolutions which means in theory they can be applied to an image
of any size. The images are however up- and downsampled by a factor two, and it is repeated
seven times which means the image size should be a multiple of 27 = 128.

3.6.1 Generator

The generator used for all different setups is inspired by the generator in the Pix2Pix paper
by Isola et al. [16]. It is based on the U-Net [33], which means it has a lot of skip connections
between layers, see Figure 25. Sharing information between layers like this is very common
in image transformation tasks where the target image might share a lot of structure with the
original image. The generator has 20043919 parameters which is approximately twice the size

32

of the discriminator. It is built up of encoding blocks and decoding blocks. An encoding block
consists of a convolution followed by a batch normalization and a Leaky ReLU activation
function. The size of the convolution kernel is 5 × 5 and the stride is 2. A decoding block
starts with upsampling, then a transposed convolution, a batch normalization followed by a
ReLU activation function. The difference between our generator and the Pix2Pix generator
is the decoding blocks. The Pix2Pix generator use a transposed convolution with stride 2 in
order to do upsampling and convolution in one step. We have separated these operations.
First an upsampling process is performed followed by a transposed convolution with stride
1. The reason for this is that artifacts like checkerboard patterns can appear in transposed
convolutions when the kernel size and stride do not match [29]. In our L1GAN we first used
the original Pix2Pix generator, and as seen later in the results we did get a checkerboard
pattern.

Figure 25: Illustration of the generator architecture. The number in each block is the number
of filters in the convolution layer.

3.6.2 Discriminator

In our suggested frameworks the generator is never trained solely against a discriminator.
The generator’s loss is usually made up of a combination of losses based on norms between
two images and a loss given by a discriminator. As previously mentioned losses based on
norms are good at capturing low frequency information in images, but might struggle with
style and texture. The idea of using a discriminator is to encourage the generator to generate
high frequency information in the images. Therefore the discriminator should only penalize
lack of high frequency data. This was the idea behind the ”PatchGAN” used in [16]. In the
article they propose a discriminator with a receptive field of 70 × 70 pixels. This implies

33

pixels further away from each other than 70 pixels (in maximum norm) are assumed to be
independent from each other. These small patches should capture the local style statistics
of the image. The discriminator gives the probability of each patch being real or fake. The
output of the discriminator is the mean of the result of the evaluation of all patches. An-
other advantage of a patch discriminator is that it has less parameters and therefore needs
less computing resources compared to a full discriminator that takes the whole image into
account [16].

Our patch discriminator has 11047809 parameters and consists of 5 blocks that start with a
convolutional layer, then a batch normalization followed by a Leaky ReLU activation. The
convolutions have kernel size 4× 4 and the stride is 2 for the first 3 blocks and 1 for the last
2 blocks. There is no batch normalization for the first and last block. The final activation
function before the mean layer is a sigmoid instead of a Leaky ReLU. Figure 26 shows a
simple illustration of our discriminator.

Figure 26: Illustration of the discriminator architecture. The first blocks are regular convo-
lution - batch normalization - Leaky ReLU blocks. The last block has a sigmoid activation
function and a mean layer. The number in each block is the number of filters in the convo-
lution layer.

4 Results

First of all it is worth mentioning that most of the images shown in this section are very sim-
ilar and therefore they should be viewed on a computer screen since a lot of details are lost
when printed on paper. For details regarding the training and the tools used see Appendix
A. Figure 27 shows an overview of our results. The first column shows the original image
from the DM1200 system. The four middle columns are the transformations: the L1Net,
the L1GAN, the ccGAN and the pcNET. Finally the original DM96 image is shown in the
last column. As mentioned in the introduction of this thesis, the most challenging task for
CellaVision has been to transform the eosinophils. Figure 28 shows our transformations of
eosinophils. All the images in Figure 27 and Figure 28 have been normalized and results
are shown in Figure 29 and 30. The order of the images is the same as before, but the first
column of original DM1200 is removed and replaced with images that have been normalized
using HM normalization, cf. Section 2.2.

As mentioned in the introduction of this thesis we also wanted to study the classification
of the transformed images and see how that compares to the classification of the original
images. The most important aspect is not whether the classification is good or not, we just

34

want the transformed image to be classified the same way as the original image. We used
our test set to do the classification. 981 image pairs consisting of a transformed image and
its corresponding original DM96 image were sent through the classification network. The
pcNet gave the best result, 88.6 % of the transformed images were classified the same way
as the original images. Next was the L1Net with 87.7 %, then the ccGAN with 85.2 % and
finally the L1GAN with 82.9 %. We also performed the same experiment with the original
DM1200 images. It turned out 84.4 % of the images were classified the same way as the
original DM96 images. A confusion matrix for the pcNet can be found in Appendix A.

Figure 27: Comparison of all networks with different raw cell images.

35

Figure 28: Comparison of all networks with different raw cell images of eosinophils.

36

Figure 29: Comparison of all networks with different normalized cell images.

37

Figure 30: Comparison of all networks with different normalized cell images of eosinophils.

38

The L1GAN suffers from some occasional black spots in the image when it is trained using
the Pix2Pix generator, see Figure 31. It also shows signs of other artifacts such as a checker-
board pattern. This can be difficult to see in the raw image, but in the normalized image
(b) it is more clear. Figure 31 (c) shows the transformation with the L1GAN after changing
the generator so that it has our own generator. Now the checkerboard pattern is completely
gone, but it still produces spots in the images sometimes.

(a) Transformed image from
DM1200.

(b) Normalized image with
Pix2Pix generator.

(c) Normalized image with
our generator.

Figure 31: Example of a black spot that appears in the transformation with the L1GAN is
shown in (a) and (b). The checkerboard pattern in the image is visible as well, especially in
(b). In (c) our own generator is used and the checkerboard pattern is not present.

Figure 32 shows a comparison of the L1Net, ccGAN and original images. This is to illustrate
the fact that training a network with only an l1-loss gives a blurrier result. At last we have
two images of full cycles from the ccGAN, a DM1200 cycle and a DM96 cycle in Figure 33
and 34 respectively.

(a) L1Net (b) ccGAN (c) Original DM96

Figure 32: Comparison of transformed DM1200 images from two networks and the original
DM96 image. All images have been normalized.

39

Figure 33: A full cycle starting with a DM1200 image. The DM1200 image is sent through
the generator G and then the output from generator G is sent through generator F, cf. Figure
21. As can be seen, the input image is more or less recovered after a full cycle rendering an
output which is completely matched pixel to pixel with the input.

Figure 34: Full cycle starting with a DM96 image. The DM96 image is sent through the
generator F and then the output from generator F is sent through generator G, cf. Figure
21. As can be seen, the input image is more or less recovered after a full cycle rendering an
output which is completely matched pixel to pixel with the input.

5 Discussion

5.1 General Conclusions

Overall the results are satisfactory. For the best network, pcNet, it is very hard for a person
to notice any differences between the original image and the transformed image. It is even
harder to decide if an image is transformed or real when shown just one image. However,
it is difficult to come up with some metric which captures important characteristics of the
generated images and the target images. Popular metrics for comparing images like SSIM
(structural similarity) and PSNR (peak signal-to-noise ratio) give very similar results for
the images and do not correlate with how good a person thinks the images are. Because
of this evaluation difficulty we have mostly evaluated our results by letting a person look

40

at them. The goal is that the user should not be able to distinguish between images and
we think that we have achieved that. We also think that we have achieved better results
than the HM normalization that is used today. As can be seen in Figure 29 and 30 the HM
normalized images have good structure in the nucleus but the colors are a bit off, especially
for the eosinophils in Figure 30. The HM normalization is however a lot faster than all of
our networks which is a significant advantage when using it in an actual system.

5.2 L1Net

The colors of the images transformed with the L1Net are very good. They are a little
blurry, see Figure 32 for a comparison with the ccGAN and the original image. The image
from the L1Net looks like a smoothed version of the image from the ccGAN. Overall it
contains less high frequency data compared to the original images and compared to the
other transformations. The L1Net is however good when it comes to low frequency data like
the colors in the image. An advantage of the L1Net is that it is simple which means it does
not need as much memory as for example the ccGAN. This allows us to use a larger batch
size than for the other networks. The L1Net is also fast to train since it only consists of one
network.

5.3 L1GAN

Column three of Figure 27 shows examples of transformations with the L1GAN. Overall the
results are good, but if one looks closer at the nucleus it is a bit blurry and some detail is
lost compared to the original image. This is probably because of the l1-loss function, it is
known that using a norm of the difference between images as a loss function causes a blurrier
result, but the overall color scheme benefits from this kind of loss. In the L1GAN the l1-loss
is the only loss function except for the discriminator loss which means it has a large impact.
Our hope was that the discriminator loss would help sharpen the images by giving a low
probability for a blurry image. This did not work out the way we wanted it to and we do not
know why. In general it was hard to train the discriminators due to the balancing problem
described in Section 2.5.1. The L1GAN is a simple structure and it is faster to train than
for example the ccGAN.

As seen in Figure 31 the L1GAN has a problem with occasional black spots. It also has a
slight checkerboard pattern which shows up especially in the normalized images. This is a
known problem and it is caused by the overlap that can occur in transposed convolutions
when the kernel size and stride do not match. This is something we did not realize would
be a problem at first. It can be avoided by separating the transposed convolution into
an upsampling step and then do the convolution after that. That is what we did in our
generator and then the checkerboard pattern disappeared. The result is shown in Figure 31
(c). One can see clearly that there is no checkerboard pattern present in the right image.
We do however still have problems with spots in the images. We do not know why the spots
appear, but they seem to get smaller the longer we train the networks so maybe the L1GAN
needs more training than the other networks. These artifacts are serious and the L1GAN
cannot be used until the problem with the spots has been resolved. Another reason why

41

the other networks are better than the L1GAN could be the different cycle losses, which
immediately punish the generator if it generates something that is structurally wrong.

5.4 Conditional CycleGAN (ccGAN)

The ccGAN shows promising results as can be seen in the fourth column in Figure 27. The
overall structure and detail is good especially in the nucleus, but as one can see the colors are
a bit off. Compared to the original images the colors of the ccGAN results are too saturated.
The cycle losses work well, as can be seen in Figure 33 and 34 the input image is almost
exactly reproduced after the entire cycle. As mentioned the detail in the ccGAN images
is good, and we believe that is because the majority of the losses are calculated based on
images that are an exact pixel-to-pixel match. When the images are normalized the colors
are slightly better, see Figure 29, but they are still too saturated. Overall the normalized
images of the ccGAN are better than the raw images.

A disadvantage of the ccGAN approach compared to the other frameworks is the large
number of networks. Four different networks are being trained but only one is used. Because
of memory limitations the large number of networks forces us to use a smaller batch size
which might slow down the training and make it more sensitive to bad training samples. If a
training batch does not capture the characteristics of the training data, the networks might
be updated in a suboptimal way.

5.5 Perceptual Cycle Network (pcNET)

Instead of using a discriminator we also tried a perceptual loss function as an attempt to
improve the resolution of the transformed images. The result is shown in Figure 27, column
five. As one can see the details are very good, there are not many visual differences in the
structure of the cell. The colors are also very good and in our opinion this is the best network.
It combines the advantages of other frameworks presented in this thesis. The paired l1-loss
used in for example L1Net helps capture low frequency data like the colors. The cycle losses
from the ccGAN and a perceptual loss make sure the high frequency data, such as details
and structure, is preserved.

5.6 Classification

Another thing that is a measure of quality is how well one of CellaVision’s classification
networks performs on the transformed images. Since the goal is to make the transformed
DM1200 images look the same as the original DM96 images we do not necessarily care
whether the images are classified correctly, but instead that they are classified as the same
cell type. We did not know if this would be a good way to measure similarity between the
images, but the results of the classification agree with our visual evaluation of the networks.
The pcNet was the best network according to the classification results, but all of the networks
performed quite well.

42

5.7 Future Work and Improvements

In this thesis the networks are very large which means the transformation takes a while,
approximately 300 ms on a CPU (Intel Core i7-7700 at 3.60 GHz) and 10-20 ms on a GPU
(NVidia GeForce GTX 1080 Ti). The actual systems the transformation would be run on
do not have a dedicated GPU and in many cases the CPU is worse than the one we did our
tests on. To be able to use the networks in those systems the transformation needs to be a
lot faster, less than 100 ms on an average CPU. In order to achieve this one option is to try
to scale down the networks. Implementing the networks in a low level language could also
improve the efficiency.

Another thing that would be interesting to investigate is how the intensity of the images
affect the transformation. It is known that images taken with different systems can have
different intensity, and this is something we have not taken into consideration while training
our networks. All our images were collected from the same systems at the same time, so
they have more or less the exact same intensity. The easiest way to investigate this would
be to augment data by randomly changing the intensity of the images slightly while training
the network. The more thorough approach is to actually change the settings in the system
while taking the images to get real images with different intensities.

5.8 Ethical Considerations

As always in medical applications that use patient data the integrity of the patient is very
important. The blood samples used in this thesis were anonymized so we never knew whose
blood it was.

43

References

[1] Mart́ın Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen, Craig
Citro, Greg S. Corrado, Andy Davis, Jeffrey Dean, Matthieu Devin, Sanjay Ghemawat,
Ian Goodfellow, Andrew Harp, Geoffrey Irving, Michael Isard, Yangqing Jia, Rafal Joze-
fowicz, Lukasz Kaiser, Manjunath Kudlur, Josh Levenberg, Dan Mané, Rajat Monga,
Sherry Moore, Derek Murray, Chris Olah, Mike Schuster, Jonathon Shlens, Benoit
Steiner, Ilya Sutskever, Kunal Talwar, Paul Tucker, Vincent Vanhoucke, Vijay Vasude-
van, Fernanda Viégas, Oriol Vinyals, Pete Warden, Martin Wattenberg, Martin Wicke,
Yuan Yu, and Xiaoqiang Zheng. TensorFlow: Large-scale machine learning on hetero-
geneous systems, 2015. Software available from tensorflow.org.

[2] Christopher M. Bishop. Pattern Recognition and Machine Learning (Information Sci-
ence and Statistics), pages 653, 43. Springer-Verlag New York, Inc., Secaucus, NJ, USA,
2006.

[3] CellaVision. Leukocytes in peripheral blood: http://www.cellavision.com/en/cellavision-
cellatlas/leukocytes, 2018.

[4] Sharan Chetlur, Cliff Woolley, Philippe Vandermersch, Jonathan Cohen, John Tran,
Bryan Catanzaro, and Evan Shelhamer. cuDNN: Efficient Primitives for Deep Learning.
abs/1410.0759, 2014.

[5] François Chollet et al. Keras. https://github.com/keras-team/keras, 2015.

[6] L. Dean. Blood groups and red cell antigens: Chapter 1, blood and the cells it contains.
Bethesda (MD): National Center for Biotechnology Information (US), 2005.

[7] John Duchi, Elad Hazan, and Yoram Singer. Adaptive subgradient methods for on-
line learning and stochastic optimization. The Journal of Machine Learning Research,
12:2121–2159, 2011.

[8] I. J. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair,
A. Courvile, and Y. Bengio. Generative Adversarial Networks. NIPS, pages 2672–2680,
2014.

[9] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning - chapter 8.1.3.
MIT Press, 2016. http://www.deeplearningbook.org.

[10] Ian J. Goodfellow. NIPS 2016 tutorial: Generative adversarial networks.
abs/1701.00160, 2017.

[11] Roger Grosse. Lecture 5: Multilayer perceptrons (csc321). University of Toronto, 2018.

[12] Roger Grosse. Lecture 8: Optimization (csc321). University of Toronto, 2018.

[13] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for
image recognition. abs/1512.03385, 2015.

44

[14] ImageNet. ImageNet Object Localization Challenge. 2018.

[15] Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep network
training by reducing internal covariate shift. abs/1502.03167, 2015.

[16] P. Isola, J.-Y. Zhu, T. Zhou, and A. A. Efros. Image-to-Image Translation with Condi-
tional Adversarial Networks. ArXiv e-prints, November 2016. ArXiv:1611.07004.

[17] Justin Johnson, Alexandre Alahi, and Fei-Fei Li. Perceptual losses for real-time style
transfer and super-resolution. abs/1603.08155, 2016.

[18] Adam Karlsson. Area-Based Active Contours with Applications in Medical Microscopy,
2005. Licentiate Thesis.

[19] Andrej Karpathy. Convolutional neural networks (cnns / convnets). Convolutional
Neural Networks for Visual Recognition.

[20] Andrej Karpathy. Neural networks. Convolutional Neural Networks for Visual Recog-
nition.

[21] Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization.
abs/1412.6980, 2014.

[22] Yann LeCun, Léon Bottou, Genevieve B. Orr, and Klaus-Robert Müller. Efficient
backprop. In Neural Networks: Tricks of the Trade, This Book is an Outgrowth of a
1996 NIPS Workshop, pages 9–50, London, UK, UK, 1998. Springer-Verlag.

[23] Yann LeCun and Corinna Cortes. MNIST handwritten digit database. 2010.

[24] Christian Ledig, Lucas Theis, Ferenc Huszár, Jose Caballero, Andrew Cunningham,
Alejandro Acosta, Andrew Aitken, Alykhan Tejani, Johannes Totz, Zehan Wang, et al.
Photo-realistic single image super-resolution using a generative adversarial network.
arXiv preprint, 2016.

[25] David G Lowe. Distinctive image features from scale-invariant keypoints. International
journal of computer vision, 60(2):91–110, 2004.

[26] Ruotian Luo. Reading notes: Triplets from different parents, cyclegan, discogan, dual-
gan. 2017.

[27] M. Mirza and S. Osindero. Conditional Generative Adversarial Nets. arXiv:1411.1784
[cs.LG], 2014.

[28] Michael A. Nielsen. Neural Networks and Deep Learning: Chapter 3, the cross-entropy
cost function, 2015.

[29] Augustus Odena, Vincent Dumoulin, and Chris Olah. Deconvolution and checkerboard
artifacts. Distill, 2016.

45

[30] Kara Rogers/The Editors of Encyclopaedia Britannica. Basophil. Encyclopædia Bri-
tannica, 2016.

[31] Kara Rogers/The Editors of Encyclopaedia Britannica. Neutrophil. Encyclopædia Bri-
tannica, 2016.

[32] Mattias Ohlsson. Lecture notes from course ”Introduction to Artificial Neural Networks
and Deep Learning” (FYTN14), Lund University. 2017.

[33] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-Net: Convolutional Networks
for Biomedical Image Segmentation. abs/1505.04597, 2015.

[34] Frank Rosenblatt. The Perceptron: A Probabilistic Model for Information Storage and
Organization in the Brain. Psychological Review, 65:6, 1958.

[35] Avinash Sharma. Understanding activation functions in neural networks. The Theory
Of Everything, 2017. https://medium.com/the-theory-of-everything/understanding-
activation-functions-in-neural-networks-9491262884e0.

[36] Naoki Shibuya. Up-sampling with Transposed Convolution. 2017.

[37] Hidetoshi Shimodaira. Improving predictive inference under covariate shift by weighting
the log-likelihood function. Journal of Statistical Planning and Inference, 90(2):227 –
244, 2000.

[38] Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-
scale image recognition. abs/1409.1556, 2014.

[39] Utkarsh Sinha. Image convolution examples. AI Shack, 2017.

[40] Johannes Skog. Re-identification with recurrent neural networks, 2017. Master’s Thesis.

[41] Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan
Salakhutdinov. Dropout: A simple way to prevent neural networks from overfitting.
Journal of Machine Learning Research, 15:1929–1958, 2014.

[42] T. Tieleman and G. Hinton. COURSERA: Neural Networks for Machine Learning.
technical report. 2012.

[43] C. Wang, C. Xu, C. Wang, and D. Tao. Perceptual Adversarial Networks for Image-to-
Image Transformation. abs/1706.09138, 2017.

[44] Zili Yi, Hao Zhang, Ping Tan, and Minglun Gong. Dual-GAN: Unsupervised Dual
Learning for Image-to-Image Translation. abs/1704.02510, 2017.

[45] J.-Y. Zhu, T. Park, P Isola, and A. A. Efros. Unpaired Image-to-Image Translation
using Cycle-Consistent Adversarial Networks. abs/1703.10593, 2017.

46

Appendix A

Tools Used

All code was written in Python 3.6.4. The two main frameworks used were TensorFlow [1]
(version 1.4.0) which is an open source library for numerical computations and Keras [5]
(version 2.1.3), a high-level neural networks API. The GPU version of TensorFlow was used
together with the CUDA Toolkit (version 8.0) and cuDNN (CUDA Deep Neural Network
library, version 5.1) [4] from Nvidia. Keras has built-in GPU support, it automatically runs
on the GPU if TensorFlow does which is very convenient. All the training was performed on
an NVidia GeForce GTX 1080 Ti GPU.

Training Details

The optimization method Adam was used in all training with learning rate α = 0.0002. The
L1Net only has one loss with weight 10 and the batch size was 8. For the L1GAN the loss
weights were λdisc = 1 and λpaired = 10 and it was trained with batch size 4. The ccGAN
had λdisc = 1 and the rest of the loss weights were all 10. The batch size for the ccGAN was
4. The pcNet had the loss weight 10 for all losses and was trained with batch size of 2. All
the networks have been trained for 50000 iterations.

47

Confusion Matrix

Figure 35: Confusion matrix for the classification of images transformed with pcNet. Some
images have been classified as ”Unidentified” or ”Undefined”. These images have not been
included here which is why the total amount of images is not 981.

48

