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Introduction

Toeplitz operators are among the most well studied examples of concrete operators, and
entire books have been written about them; in this work the main focus will be on a
particular question, a so called cut-off property: if the operator is small enough, does it
have to be zero? We will specify the question, suitably modify it to allow for more general
situations, and give an answer to it in a number of different Hilbert spaces. In one case the
answer is simple and classical and we will just summarize the results. In another important
case the question is more complicated and a solution lacked for a while, until it was given
quite recently by Daniel Luecking, and then generalized by several mathematicians in the
past few years; all of the generalizations use Luecking’s theorem as a base case in a way
or another. In this thesis we propose a proof of a fairly general theorem that encompasses
most of the known theorems in a unified fashion, and does not assume Luecking’s theorem;
in fact, our method furnishes a new proof as well as a generalization of that theorem.

The plan of the paper is to go through the basics of the spaces and the tools we will
consider in Chapter 1, to introduce Toeplitz operators and explore some properties that
pertain to our interest in Chapter 2, to state and prove our theorem in Chapter 3, and
finally to discuss an interesting application of this type of results to a mathematical physics
problem in Chapter 4.
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Chapter 1

Preliminaries

1.1 Reproducing Kernel Hilbert Spaces

Throughout this thesis we will work with operators that act on some Hilbert spaces of
analytic functions. We assume the reader to be familiar with the general theory of Hilbert
spaces, and here we will recall the definitions and main properties of the particular spaces
we will use. Almost everything will be stated without proofs, which can be found in any
text on the subject such as [11], [2], [12]. Throughout this section and in fact throughout
this entire work the angular brackets will denote inner product in the space under consid-
eration; since we will be dealing with one space at a time, this should cause no confusion.

A common feature of the spaces we will be considering is that they are Reproducing
Kernel Hilbert Spaces (RKHS). Here comes the definition:

Definition 1.1.1. Let H be a Hilbert space of C-valued functions on a set 2. H is a RKHS
if point evaluation functionals §, are bounded on H, that is if for every z € € and every
f € H there exists a constant C, > 0 such that

0-(N =17 (2)] < Ccel| fll- (1.1)

The terminology is explained by the Riesz Representation Theorem: since §, is a
bounded linear functional, its action on H can be represented by taking inner products
with a fixed function; that is, for every z € 2 there exists a function K, € H such that for
every f € H

f(Z) = 5z(f) = <f7 Kz>'

The function K, thus reproduces every function in the space at the point z and it is then
called the reproducing kernel (at z). Usually in the literature the reproducing kernels at
different points are grouped together in a function K : €2 x 2 — C defined as

K(w,z) = K,(w),

and K is called the reproducing kernel. It is easy to check that K(w,z) = K(z,w). More-
over, by definition, K( -, z) belongs to H for fixed z and f(z) = (f, K( - ,2)) for any f € H



and z € ). This last two properties actually characterize the reproducing kernel, namely if
a function H : Q x ) — C satisfies them then it coincides with K. Note that

IEC |2 = (K, K2) = Ka(2) = K(2, 2), (1.2)
so that K(z,z) > 0.

The reproducing kernel yields valuable information about the space H; a way to compute
it is if we know an orthonormal basis {e,,} of H, for then

K, = Z(Kz,en>en = Zﬁ(z)en.

If point evaluations also happen to be uniformly bounded on compact subsets of € (and
such will be the case in every space we will consider), that is for every compact E C €2 there
exists a constant Cg such that

sup | f(2)] < Cel fl,
z€E
then it can be shown that the series 3 e, (2)e,(w) converges uniformly on compact sets of
Q2 xQto K(w, 2).

It is now time to see some examples of RHKS, consisting of functions that are also
holomorphic in their domain.

1.1.1 Hardy Space of the Unit Disk

We let D be the unit disk in the complex plane. The vector space of functions holomorphic
on D will be denoted by H(D). For such a function and a number 0 < r < 1, we set

27 %
Mz(f, 7“) = <2177-/0 |f(,r,ei79)|2 dﬁ)

its square integral mean on the circle of radius 7. The Hardy space of the unit disk H? =
H?(D) is then defined as,

H? = {f € H(D): sup Mao(f,7r) < oo} (1.3)

0<r<1

with norm || f|| g2 = supge,«q Ma(f,r). It is possible to show that Ma(f,r) is increasing
in r, so that the sup in the definition is actually a limit as r approaches 1~.

Although we will only deal with the Hilbert space case, we feel compelled to mention
that an analogous definition could be given for any 0 < p < 400 in lieu of 2. All the
resulting spaces HP are called Hardy spaces in the literature. The space H consists of all
bounded analytic functions in the disk with the sup norm. Clearly, H> C H?.

The peculiar feature about the exponent 2 is that H? turns out to be an Hilbert space, as

anticipated. Consider the power series expansion of a function in H(D), f(z) = ZS(’) an2";



this series converges uniformly on compact subsets of the unit disk, so we can evaluate

1 21 ) 1 2w +oo )
2 _ & |2 _ = — n+m _i¥(n—m)
Moa(f,r) 271/0 |f(re')|* dv 277/0 g An QT e d9

n,m=0
+0o0
2 2
=2l
n=0
since the terms with n # m vanish in the integration. We then have

+oo
sup Ma(f,r)? = lanl?,
n=0

o<r<1

so that f is in H? if and only if its Taylor coefficients are square summable, with || f|| g2 =

1
( :L:% |an|2) 2. This also shows that H? is a Hilbert space, with inner product

r—1- 27T 0

If {an}22, and {b,}22, are the sequences of Taylor coefficients of f and g respectively, then
the calculation above shows that

+oo
(fr9) =D anbu = {an}, {ba}) 2. (1.4)
n=0

It also follows that if f € H? with power series expansion as above, then

is well defined as an element of L?(dD); its Fourier coefficients (which are zero for negative
indices) are the Taylor coefficients of f. This is one of the first manifestations of the deep
connection between complex and harmonic analysis, and indicates why the Hardy space
plays an important role in Fourier analysis. We call f the boundary value of f; note that
(fy9) = (f,9)r2(4m)- It can be shown that f can be reconstructed from its boundary value
by the Poisson or Cauchy integral; moreover, the Poisson integral of h € L?(0D) is analytic
in D if and only if the Fourier coefficients of h vanish for negative indices.

All of this can be summarized by saying that there is an isometric isomorphism between
H? and the subspace H?(0D) of L?(0D) consisting of elements whose Fourier coefficients
vanish for negative indices. The operator P defined on L?(dD) by

“+o00 —+00
P 2 : aneznﬁ — § :anemﬂ
n=-—0o n=0

is the orthogonal projection with range H?(9D); it is called the Cauchy—Szegé projection.
It is not difficult to show that P is a limit of (Cauchy) integral operators, precisely:

i N T P 1
P(g)(e") = lim /0 g(e'™ ))m do.



Using the Cauchy formula in a circle of radius r < 1 it is easy to show that point
evaluations are bounded linear functionals on H?, so that H? has a reproducing kernel; this

has the form )

1—wz’

K(w,z) =

In fact, K( -, z) is in H? for every fixed z € D and the reproducing identity (f, K( - ,z)) =
f(2) is easily seen using the Cauchy formula.

As a last property in our basic survey, we remark that using the density of trigonometric
polynomials in L2(dD) one can obtain the density of analytic polynomials in H?.

1.1.2 Bergman-type Spaces

Let 2 C C be a domain (a connected open subset). The Bergman space L2()) (sometimes
also called A%(Q)) is defined as the space of holomorphic function on 2 such that

/ G dAG) < o0
Q

where dA is the Lebesgue measure on . Asnorm on L2(92), weset || f[| = ([, [f(2)]? dA(z))%
and consider L2(12) as a subspace of L2(Q) we also deﬁne an inner product on L2(£2) which
is the restriction of the L? inner product, ( = [, f(2)g(z) dA(z). Note that the space so
defined could well be trivial; for example, L10uv1lle S theorem implies that there are no non—
zero entire functions which are square integrable on the whole of C, and thus L2(C) = {0}.
But if for example Q # C is simply connected, it can be shown that L2(Q) is infinite dimen-

sional; more simply, if 2 is bounded then the space of analytic polynomials is contained in
L3 (9).

It is not difficult to see that point evaluation functionals are bounded on L2(f2), and
actually that the aforementioned stronger property

sup | f(2)| < CEl/f] (1.5)
z€E

holds for any compact set E C Q, for any f € L2(f) and a constant Cg > 0. It follows
from (1.5) that convergence in the L?-norm implies uniform convergence on compacts for
functions in L2(£2), and therefore that L2() is a closed subspace of the Hilbert space L?(2),
thus Hilbert itself.

As anticipated then L2(€) is a RKHS with reproducing kernel K = Kgq; note that since
K(-,2) € L3(Q) and K (w, z) = K(z,w), K is analytic in the first variable and anti-analytic
in the second variable. The reproducing kernel provides us with an explicit formula for the
orthogonal projection P : L?(Q) — L2(Q2), called the Bergman projection; in fact, since
Pf € L2(Q) for f € L?(f), by the reproducing property

Pf(z) = (P}, K.) = (f, PE.) / fw dA(w)
:/Qf(w)K(z,w) dA(w), (1.6)



where the second equality holds because P is selfadjoint and the third because K, € L2(12).
The closed span of the set of finite linear combination with coefficients in QQ of reproducing
kernels at points 2, having an accumulation point in (2 is easily seen to be dense in L2(Q),
because if f is orthogonal to such space than f(z,) = 0 for every n, which by the identity
principle for holomorphic functions implies that f is identically zero; so L2(2) is always
separable.

There are some conditions on the domain 2 which ensure that analytic polynomials are
dense in L2(9); for example, if €2 is bounded and the boundary is a Jordan curve. However,
if Q is the unit disk (or any disk), then it is easy to show it directly, and every function
in L2(D) is approximated in the L2-norm by its Taylor polynomials; a calculation then

shows that the set {¢5}°5 with ¢p = 4/ %zk is an orthonormal set in L2(ID), complete by
the density of analytic polynomials. But then, as mentioned in the section about general
RKHS, the series S/ ¢r(2)pr(w) converges uniformly on compacts to the reproducing
kernel of L2(ID); the sum of the series can be calculated explicitly, and yields

1 1
Kizw) = ———-=s.
(2,w) 7 (1 —wz)?
Some noteworthy properties of this kernel are that it is never zero, it satisfies K(z,z) > 0
for every z € D, and K( - ,w) is a holomorphic function in a disk larger than D for fixed w.
Note that functions in the Hardy space H? also belong to L2(D), but the converse is
not true and the Hardy space norm is strictly stronger than the L?-norm.

We said that the space L2(C) is trivial and thus not very interesting, but one would
still like to work with entire functions in a similar context. One possibility is to consider
the Gaussian measure on C,

dv(z) = w(2)dA(z), where w(z) = %6_"2'2,
and to define the Fock space (sometimes also called Segal-Bargmann space) F2(C) as the
space of all entire functions that belong to L?(C, dv); then this space is clearly non trivial
since for examples analytic polynomials are contained in it. For a reference see [23], where
the definition of the Fock space depends on a parameter « incorporated into the measure.

It holds that F2(C) is a closed subspace of L?*(C,dv), and thus a Hilbert space with
inner product

(f.g) = /C £(2)3(2) dv(2)

1
which gives the norm || f|| = ([ |f(2)|* dv(2))2. Also in this space point evaluations
are bounded linear functionals, and convergence in F2(C) implies uniform convergence on
compact subsets of C; then F2(C) has a reproducing kernel, which has the form

K(z,w) = e*™.

Analogously to the Bergman space case, then the orthogonal projection P : L?(C,dv) —
F2(C) is an integral operator:

Pf(z) = /C F(w)K (2, w) dv(w),

5



for all f € L?(C,dv). Analytic polynomials turn out to be dense in F2(C), and actually it
is not difficult to show that the set {1, } 2 with

is an orthonormal basis for F2(C). In summary, using the Gaussian measure we obtain a
space whose basic properties are very similar to those of the Bergman space of the unit
disk; the differences emerge further in the study, and one of the most interesting aspects of
the Fock space is its connection with quantum mechanics. One difference that is already
noticeable at this basic stage is that there are no non—constant bounded functions in the
Fock space, by Liouville’s theorem.

1.2 Compactly Supported Distributions

We assume the reader to know the definitions of distribution, tempered distribution and
compactly supported distribution and we will not repeat them. Since we will use the Fourier
transform on the space of compactly supported distributions in our proof of the finite rank
theorem in Chapter 3, we will recall here the special properties it enjoys; here we are fol-
lowing closely Hormander [15].

Recall that the Fourier transform is an isomorphism on the space of tempered distribu-
tion on R, §’(R"); the Fourier transform on &’'(R™) is defined by duality with the Schwartz
space. However, if a distribution w is compactly supported on R”, that is u is a continuous
linear functional on C*°(R™) (the set of such functionals is denoted by &'(R™)), then the
expression

() = u(e”™*) (1.7)

is well defined for £ and x in R"™, where u is acting on x and the dot denotes the R™ scalar
product. The notation is not an abuse, since the expression on the right hand side of (1.7)
actually coincides with the Fourier transform of u defined by duality, as shown in [15],
chapter 7. Then @ thus defined is a C* function of &, and the right hand side makes sense
also for a complex vector £ € C"; allowing this extension, u(£) is actually an entire analytic
function on C". Theorem 7.3.1 in [15] additionally shows that the entire function u grows
at most like a polynomial of degree N on R"™, where N is the order of the distribution wu;
this fact will be frequently used in Chapter 3.

The interesting thing (which will not be used in this work) is that a converse holds:
if an entire function on C™ satisfies some estimate (which implies polynomial growth on
R™), then it is the Fourier transform of a compactly supported distribution. This is usually
called the Paley—Wiener—Schwartz theorem.



Chapter 2

Toeplitz operators in spaces of
analytic functions

Consider a set  C C, and let A be a closed subspace of L?(Q2). Denote by P the orthogonal
projection on L?(2) with range A, and take a to be a function on €; the Toeplitz operator
with symbol a is the generally unbounded operator defined as

T.f =P(af)

on its natural domain D(Ty,) = {f € A: P(af) € A}. In order to identify some interesting
properties of these operators, it is necessary to be more specific about the space A; in
this chapter we will study Toeplitz operators defined on some Hilbert spaces of analytic
functions, exploring boundedness and compactness properties. It is the latter that we will
be especially interested in, together with some other notions of smallness. In addition, the
particular structure of the Hilbert spaces under consideration will allow us to extend the
notion of a Toeplitz operator to symbols that are not necessarily functions.

2.1 Hardy Space

The Hardy space on the unit disk was the first in which Toeplitz operators were considered,
and the seminal paper [8] by Brown and Halmos proved the basic results and formulated
several open problems. The material of this section is largely taken from that paper.

Recall that H? = H?(D) is isometrically isomorphic to the closure of the linear span
of {e : n > 0} in L?*(9D, o) , where o is the normalized arc length. We will use this
isomorphism throughout this section and by a small abuse of notation still denote by H?
the above subspace of L?(0D, o). We denote by P the projection from L?(0D) onto its
closed subspace H?, and we set e, (1) = ¢™ for every integer n.

Definition 2.1.1. Let ¢ € L*°(9D). The Toeplitz operator with symbol ¢ is the operator
defined as:

Tof = P(ef) (2.1)

for every f € H?, i.e. the compression of the operator of multiplication by ¢ to H?2.



This choice for the symbol class gives us a bounded operator: It is easy to see that
T, | < [l¢lloo- In [8] it is shown that equality holds.

Remark 2.1.2. If ¢ happens to be analytic (by this we mean that its Fourier coefficients for
negative indices vanish, or equivalently that its harmonic extension in the disk is analytic),
then T}, coincides with the operator of multiplication by ¢.

Some immediate consequences of the definition are that T4,y = T, + BTy, and the
following:

Lemma 2.1.3. For f and g in H?, (Tof.9) = (ef,9).

Proof. From the properties of the projection P:

(Tpf.9) = (P(of).g) = (P(¢f), Pg) = (¢f, P*g) = (¢f,9).

Lemma 2.1.4. The adjoint of the operator T, is T.
Proof. For any ¢ in H?,
(T5f,9) = (f, To9) = (Tpg, f) = (vg, ) = (f,09) = (@f,9) = (Tf, 9)

where the third equality comes from the previous lemma. It follows that T7f = T f for
any f in H?. O

As a consequence, we see that T, is self-adjoint if and only if ¢ is real valued. The
following result is easy but conceptually important for the next chapter.

Proposition 2.1.5. T, is the zero operator if and only if ¢ = 0.

Proof. It would follow directly from || T, | = ||¢|lso, but since that is a more difficult result
we prefer to present a simple direct proof. One direction is trivial. Now suppose that T;, = 0;
then P(pe,) = 0 for every n > 0. Consider the Fourier expansion of ¢, o = Y 1o @(k)ex.
Then pe, =Y po . P(k)er+n, and P(pey,) = 0 implies that ¢(k) = 0 for every k such that
k +mn > 0. By choosing n larger and larger, we obtain @(k) = 0 for every k, and thus
p=20. O

The infinite matrix associated to a Toeplitz operator has a rather special form: Indeed,
let ¢,7 > 0; by Lemma 2.1.3,

(Toei, e5) = (pei, e5) = (peit1, ej+1) = (Tp€it1, €j41)- (2:2)
Thus the matrix (a;;) = (Te;, ;) is constant on the diagonals, and
aij = (j — ). (2.3)

The operator T, has an important history in the theory of Hardy spaces; it is called
the unilateral shift in virtue of the following fact:

Te,en = €nt1.



This means that in the isomorphism between H? and [?(N) given by the basis {e, : n > 0}
T., acts by shifting the coefficients one position to the right. The wunilateral shift shows
that the set of Toeplitz operators is neither commutative nor closed under multiplication.
In fact, T} T, is the identity on H? (thus a Toeplitz operator in particular), while T, T7

violates condition (2.2) (for example (T¢, T e1,e1) = 0 while (T¢, T e2,e2) = 1) and there-
fore cannot be a Toeplitz operator.

The above also disproves the tempting guess Ty, = T,,Ty, which is in fact true only
for a rather small subset of the symbol class; in [8], using the matrix characterization, it
is proved that a product T,,T) is a Toeplitz operator if and only if v is analytic or P is
analytic and in this case the multiplication identity holds (the sufficiency is clear since if 1
is analytic then T}, is multiplication by v, and the case ¢ co-analytic is handled by passing
to the adjoints). From the above and using the fact that zero sets of holomorphic functions
have zero measure it follows that a product of two Toeplitz operator is zero if and only if
at least one of the two factors is zero, a fact which can be expressed by saying that there
are no zero-divisors in the set of Toeplitz operators on the Hardy space. The corresponding
result for an arbitrary finite product of Toeplitz operators was an open problem for long
and has been settled only fairly recently in [1].

An important, albeit easy, consequence of the matrix structure, which in turn follows
from the fact that we know explicitly an orthonormal basis of L?(0D) which extends that
of H?, is that Toeplitz operators on the Hardy space cannot be too small; namely, the
following holds:

Theorem 2.1.6. The only compact Toeplitz operator on H? is the zero operator.

Proof. The sequence {ey}n>0 converges weakly to 0, therefore if T}, is compact ||T,e,| —
0. For every integer k, take n > 0 such that n + k > 0; by (2.2) we have:

(0, er) = (Tpen, entk) < [[Tpenl|

Sending n to co we see that (k) = 0 for every integer k, which gives the result. O

2.2 Bergman Space

For Toeplitz operators on the classical Bergman space of the unit disk ID or on a general
bounded domain 2 C C (Bergman—Toeplitz operators from now on), several questions have
been asked and answered since the 1970’s. As we will shortly see, Bergman—Toeplitz opera-
tors are in some sense much less rigid than Hardy—Toeplitz operators. Extensive discussions
for the unit disk case can be found in the references [2], [23]; in this section we have drawn
freely from these, making changes whenever it was necessary to our needs.

Let now P be the projection from L?(£2, dA) (where dA is the two-dimensional Lebesgue
measure on (2, normalized so that { has measure 1) onto its closed subspace L2(2); for
@ € L>®(Q), the Toeplitz operator acting on L2(£2) can be defined in much the same way as



n (2.1): T, f := P(pf) for any f in L2. Using the integral representation of the Bergman
projection,
Tof(2) = | () ()R] dA(w).
With this choice of symbols, since the Bergman projection has norm 1, it obviously
holds that ||T,|| < [|¢|lec, s0 T;, is @ bounded operator. However, unlike in the Hardy space
case, equality does not hold in general and this bound is far from optimal: there are even

unbounded symbols that give rise to bounded Toeplitz operators; in [10] (rather intricate)
explicit examples are constructed.

If ¢ is analytic, so that p € H*(Q), T, coincides with multiplication by ¢ on L2. The
easy algebraic properties hold as well (o and 8 are complex numbers):

Top+py = aTp + BTy, (2.4)
15 =T (2.5)

The equivalent of Lemma 2.1.3 is also true with the same proof and f and g in L2.
We should mention that the problem of when T, T is a Toeplitz operator is harder

than its Hardy space counterpart, and it is still not known whether the product of two
Bergman-Toeplitz operator being zero implies that one of the factors is zero.

The fact that in general for L?(Q) an explicit description of an orthonormal basis is
lacking means that the matrix form of a Toeplitz operator does not possess the easy struc-
ture of (2.3) even when the orthonormal basis of the Bergman space is known explicitly,
such as for L2(D).

2.2.1 Measures as Symbols

Now we see how Bergman-Toeplitz operators can be defined for more general classes of
symbols than bounded functions; we start with the case of a finite complex Borel measure
1 on the unit disk D.

Definition 2.2.1. Let the sesquilinear form t, be defined on analytic polynomials by:

G(frg) = /D (2)9() du(2). (2.6)

If this form is bounded, i.e. if there exists a constant C' > 0 such that |t,(f, g)| < C| flllgll,
where the norms are in L2(ID), then since analytic polynomials are dense in L(D) t,, can
be extended to L2(D) x L2(D) and it follows from the Riesz representation theorem that
there exists a linear bounded operator T}, : L2(D) — L2(D) such that

(Tuf:9) = tu(f9) (2.7)

for every f and g in L2(D). We call T), the Toeplitz operator with symbol y; its norm does
not exceed C.

10



Remark 2.2.2. The unit disk setting is not absolutely necessary and the same definition
could be given for a bounded domain 2, but we would need to identify a dense subset of
L%(Q) where the form t,,(f, g) is well defined, since analytic polynomials might not be dense
in L2(Q).

We will now discuss an alternative approach to the definition of Toeplitz operators with
finite measures as symbols.

Let K, be the reproducing kernel of L2(ID) at the point z. Mimicking the standard
definition as compression of the multiplication operator, the Toeplitz operator with symbol
u could be formally defined as:

T, f(z) = /D F () K (w) du(w) (2.8)

for f € L2(D). Without further conditions on the measure, this operator may be unbounded.
It is densely defined, since the integral on the right hand side of (2.8) converges for f being
an analytic polynomial or even f € H*°(D) (because K is a bounded function for a fixed z
in the disk). Even when the integral converges, T}, f defined in this way may not be square
integrable, although it is always an analytic function.

Note that formally, for g € L2(ID), by the reproducing property of the kernel,

@t = [ ([ 1) dutw) ) o5 aaco)

= [0 ([ Kule)G) 4 duto)
= [ #w)gtw) dutw)
= tu(f, 9).

We see then that if the exchange of integrals above can be justified, the two definitions
given by (2.7) and (2.8) coincide.

Perhaps more transparently, note that if the form t,, satisfies the boundedness condition
in Definition 2.2.1 we can evaluate

Tuf(2) = (Tuf K2) = 4(f. K2) = /D F(w) Ko (w) dpw).

Therefore at least when [t,(f, g)| < C|/f|||lg|| the expressions (2.7) and (2.8) define the
same (bounded) operator.

Let us note that if du(w) = ¢(w) dA(w) for some ¢ bounded in the disk, then the
form t, is bounded because of Cauchy-Schwarz, (2.8) defines a bounded operator and
T.f = P(pf) =T,f for every f € L2(D).

The approach through (2.8) is for instance the one chosen by [23]; we have chosen the
definition through a sesquilinear form because that is the expression we will need when

11



proving the Finite Rank Theorem in the next chapter, and ultimately in the literature re-
lated to such problems it is the formulation that turns out to be most useful.

The question of boundedness and compactness of 7}, (that is, of t,) is related to a very
important topic in the theory of Banach spaces of holomorphic functions, that of Carleson
measures. We will now define such objects and prove some sufficient conditions for the
Toeplitz operator to be bounded or compact.

Definition 2.2.3. A finite positive Borel measure 1 on D is called a Carleson measure for
L? if the inclusion map
11 L2(D) — L*(D, dp)

is bounded, i.e. if there exists C' > 0 such that
L P du <c [ 1P a) (29)

for every f € L2(D). If the inclusion map is required to be compact, then yu is called a
vanishing Carleson measure.

Remark 2.2.4. This definition could also be given for L% (D), for any p > 1; in [23] (which
on its turn draws on a number of older sources) equivalent conditions for p to be either a
Carleson measure or a vanishing Carleson measure are proved, from which it is apparent
that the definition is actually independent of p > 1.

Proposition 2.2.5. Let u be a finite complex Borel measure on D. If its total variation ||
is a Carleson measure, then the sesquilinear form t, is bounded on L3(D).

Proof. By Remark 2.2.4, if || is a Carleson measure it holds that

[l due) <c [ i) aae)
D D

for any h in L!(D). Noticing that for f and g in L2(ID) the product fg is in L.(ID) we can
now estimate:

tu(f, 9)| =

/ 1(2)9(2) dulz)
D

<c /D F(2)9(2)] dA(2)
< Clfllgll

< /D F(2)9()] dlul(2)

O]

Theorem 2.2.6. Let pu be a finite complex measure such that its total variation |p| is
vanishing Carleson; then the operator

T+ Ly(D) — Ly(D)

is compact on L2(D).

12



Proof. By definition for f in L? we have

\Tfll = sup{[(Tuf.g) - g € L2, |lgll = 1} = sup{

/ £(2)9() di(z)
D

g€l ngzl}.

Using the Cauchy-Schwarz inequality on the space L?(d|u|), we have:

/ F(2)9(2) du(2)
D

< / |f(2)g(2)] dlpl(2) < | fll2(du) 191 2 (@) -
D

Since |u| is Carleson, there exists a constant C' > 0 such that ||g[|z2(q),)y < C|lg|| for any g
in L2. Substituting the inequalities in the expression above for the norm, we get

TSN < ClF L2y -

Now take a sequence { f,} in L2 converging weakly to zero. By definition, |u| being vanishing
Carleson then implies that || f.[| £2(q),)) — 0 and thus ||T), f, | converges to zero, which shows
that T}, is compact. O

Remark 2.2.7. If the measure p is positive, the conditions expressed in Proposition 2.2.5
and Theorem 2.2.6 are also necessary for respectively boundedness and compactness of the
Toeplitz operator with symbol p; see [23], where also the sufficient conditions are only stated
for a positive measure.

The condition of being a vanishing Carleson measure is rather abstract at this point;
the following lemma provides us with many concrete examples of them, and therefore, in
stark contrast with the Hardy space case, with many compact Bergman-Toeplitz operators.

Lemma 2.2.8. If i is a finite complex measure compactly supported in D, |p| is a vanishing
Carleson measure.

Proof. The supports of p and |u| coincide, so |u| is compactly supported as well. Consider
a bounded sequence {f,} in L?(D), i.e. such that sup, |f.|| < C. Then, since pointwise
evaluations are locally uniformly bounded in the Bergman space, {f,} is an equibounded
family of holomorphic functions and by Montel’s theorem there is a subsequence {f,}
that converges uniformly on compacts to an holomorphic function f; in particular the
convergence is uniform on a compact set K containing the support of |u|. We can estimate

/D e — £ dlpl < [ — S sclal(D)

and the right hand side tends to zero as we let k to infinity. We have shown that the family
{fa} is relatively compact in L?(d|u|) and thus that the inclusion

v L2(D) — L(dlu])

is compact. ]
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Remark 2.2.9. Compactness of the Toeplitz operator with a compactly supported measure
as symbol can be proved directly without going through the machinery of Carleson measures;
as in Lemma 2.2.8 the proof is an easy consequence of the local uniform boundedness of
point evaluations in the Bergman space. For these measures, the unit disk setting is really
unnecessary and we can do everything on a bounded domain ; the form in (2.7) (with
integration over ) is bounded, again by local uniform boundedness of point evaluations.

We can get even more:
Lemma 2.2.10. If p is a measure compactly supported in §2, the Toeplitz operator
T, : L2(Q) — L2(Q)
belongs to the trace class.

Proof. Let {en}n>1 be an orthonormal basis of L2(€); from Chapter 1 we know that the
reproducing kernel of L2(€2) has the expression:

+00
K(z,w) = Zen(z)en(w).
n=1
By definition of the operator T}, we have

(Toen, en) = /Q e (2)? du(2).

We can then estimate:

+oo +oo )
[{Tens en)| < len(2)[7 dlul(2)

= [ K dl(o)
< sup | K (2, )] ()
z€F

where F' is any compact set in €2 containing the support of u, and the last quantity is thus
finite. Therefore the series defining the trace is absolutely convergent, and the lemma is
proved. ]

From the proof of the lemma we see that, when T}, is in the trace class or is positive,
the trace has the expression:

tr(T,) = /QK(Z,Z) du(z).

To conclude this survey of results about smallness of Toeplitz operator with symbol mea-
sure, let us mention that Daniel Luecking in [16] gave sufficient conditions (which become
also necessary in the case of a positive measure) on a finite complex measure on the unit
disk for the corresponding Toeplitz operators to belong to a Schatten class; the conditions
on the measure are of geometric Carleson-type, and the results are proved for a rather
wide class of Hilbert spaces of analytic functions which include standard weighted Bergman
spaces.
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2.2.2 A Necessary Condition for Compactness

An easy consequence of the above sufficient conditions for compactness is the following
observation: if ¢ is a continuous function on  that vanishes on the boundary of €2, the
operator T, is compact on L2(£2). This is because we can approximate ¢ in the sup norm
by compactly supported functions ¢,,, and then

HTw =T, |l < e — @nlloc — 0.

Since T, is compact and the compact operators form a closed ideal, T, is compact.

For symbols ¢ in C(2) the condition is not exactly necessary for general domains; it
turns out that the vanishing of ¢ is only required on a portion of the boundary, see [4] for
the statement and proof. We can however prove that the condition is necessary for the unit
disk; this would follow from the results of [4], but in the unit disk case a direct proof is
available using a tool called the Berezin transform. Since the latter object has proven to
be very useful in the study of Toeplitz operators and has connections to different areas of
mathematics, we have chosen to present the proof.

Let k. be the normalized reproducing kernel at z of L2(D),

1— |2

kr(w) = ———.
(w) (1 —wz)?

We will need the following:

Lemma 2.2.11. k, converges weakly to 0 in L2(D) when |z| — 1.

Proof. By the reproducing property, for any f in L2(D),

(f k) = (1= [2*) ().

We then have that (f, k,) — 0 as |z| — 1 for bounded analytic functions, and since those
are dense in L2(D) the lemma follows. O

The Berezin symbol of a linear operator on L2(ID) (bounded for simplicity, even though
it is not necessary) is the function on the unit disk defined as

A(z) = (Ak., k).

The Berezin transform of a bounded function ¢ is defined as the Berezin symbol of the
associated Toeplitz operator T, ¢ := T,. By definition of the Toeplitz operator we have
the following explicit form for the Berezin transform:

7e) = [ ptwlh.(w) dA(w). (2.10)
Recall that the function
(w) = w—z
¥z 1—wz



is an idempotent automorphism of the disk for z € D fixed, and note that ¢,(w) = k,(w).
By changing the variable w for ¢.(w) in the integral (2.10), since the Jacobian of the
transformation is |¢”(w)[? = |k,(w)|?, we obtain an alternative description of the Berezin
transform:

B(z) = /D (- (w)) dA(w).

Note that @(z) is a continuous function of z in the disk; if ¢ is a continuous function on
the closed disk, then the same is true for ¢(z) and their values coincide on dD. In fact, if
20 € 0D and z — 2z, @, (w) —> 2 for any w € D. Then

P(20) = lim | @(p.(w)) dA(w) = ¢(20),

Z—rZ20 D
where the second equality holds by dominated convergence. We are now ready to prove

Proposition 2.2.12. If ¢ is continuous in the closed disk, then T, is compact if and only
if o vanishes on the boundary.

Proof. The sufficiency was proved in an observation above. Assume now that 7T, is com-
pact; by Lemma 2.2.11, T,,k, converges to 0 in L2(D) as |z| approaches 1. Then ¢(z) =
(T'ykz,k2) — 0 as |z] — 1 and by the paragraph above this means that also ¢ = 0 on
oD. O

For general bounded symbols, the vanishing of ¢ in an almost-everywhere sense is far
from being necessary: in [2], an example of a compact Toeplitz operator whose symbol does
not have a limit on the boundary is given. What we proved in the above proposition is
actually that the vanishing of the Berezin transform of ¢ is necessary for arbitrary bounded
symbols (continuity was only needed to assert the equality of boundary values); Axler and
Zheng in [5] proved that it is also sufficient.

2.2.3 Distributions as Symbols

The sesquilinear form through which we defined Toeplitz operator does not necessarily have
the form (2.6), and could be associated to a more general analytic object. In the following
we will need to use a compactly supported distribution as a symbol.

Compactly supported distributions on a domain €2 coincide with continuous linear func-
tionals on C*°(£2), so the number

to(f,9) == O(f9) (2.11)

is well defined for f and g in L2(§)) and © a compactly supported distribution.

Since © as every compactly supported distribution has finite order, that is it can be
extended to a continuous linear functional on C*(Q2) for a certain positive integer k, the
right hand side of (2.11) is less than a constant times the product of the C¥-norm of f and
g in a compact set containing the support of ©. But, by the Cauchy formula for derivatives
of analytic functions, the C¥-norm of a function in L2(Q) is controlled by its L2(€2)-norm
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on compact sets just like the C°-norm. We then see that there exists a constant C' > 0 such
that

te(f,9) < Cll gl

for all f and g in L2(Q), and so the sesquilinear form tg analogously to the case of a measure
gives rise to a bounded operator Tg on L2(f2) such that

(Tof,g) = to(f, 9)-

As in the case of a measure, it is possible to get a pointwise expression for T f using
the reproducing kernel K, for L2(f2) as follows:

Tof(2) = (To f, K.) = O(fK>). (2.12)

Remark 2.2.13. Compactly supported distributions not only give rise to bounded Toeplitz
operators, but indeed to compact ones: much in the same way as for a measure, consider
a sequence {f,} weakly converging to 0 in L2; by boundedness of pointwise evaluation
functionals, it converges to 0 pointwise and uniformly on compacts. Now taking a compact
K containing the support of © we evaluate

I To full = sup [(Tofn, )| = sup |O(fng)]
lgll<1 lgli<1

< sup Ol falleryllgller
llgll<1
for some positive integer k. The CF-norm of ¢ is controlled by its L2-norm, so that for
lgll < 11it is controlled by a constant, and || fulcr (k) converges to 0 by uniform convergence
of derivatives on compacts. This implies then that Tg f,, converges to 0 in norm.

We mention that it is not immediate to extend the definition of Toeplitz operator to
distributions that are not compactly supported.

2.3 Fock Space

Much of what was said for Bergman spaces of a bounded domain can be repeated for the
Fock space; in this short section we will try to highlight some differences and mention the
techniques used to prove results equivalent to that of the previous section, without reporting
the proofs. The interested reader may consult the recent text [24], where previous results
are collected and systematized.

We will denote by v the gaussian measure on the complex plane, i.e.

dv(z) = w(2)dV(z), where w(z) = le"z

s

‘ 2

Here dV' denotes the unnormalized Lebesgue measure on the plane.

Recall that the Fock space F2(C) is the closed subspace of L?(C, dv) consisting of entire
functions. Using the orthogonal projection P : L?(dv) — F? we can define the Toeplitz
operator with symbol ¢ € L*(C) in the usual way,

Tof = P(ef)-
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Toeplitz operators acting on the Fock space are usually called Berezin—Toeplitz or Bargmann—
Toeplitz operators. One difference we note with the Bergman space setting is that, since
there are no bounded nonconstant entire functions by Liouville’s theorem, in the Fock space
there are no Toeplitz operators with analytic symbols that are not constant multiples of the
identity, at least with this classical definition.

As in the other spaces, T, is bounded with ||7,|| < [|¢|lsc. As in the Bergman space case
and in contrast to the Hardy space, this bound is far from optimal and we can considerably

enlarge the class of symbols.

Pointwise T, is described by the formula
1 _‘w‘Q
a=;¢g«awﬂwwww av(w)
where K(w,z) = K(z,w) = K,(w) = €** is the reproducing kernel of 72, and we have

(T f:9) / f(w )6_‘w‘2 v (w).

As we did in the previous section, this suggests to define for a o-finite complex Borel measure
on C the following sesquilinear form:

:iéﬂ@ﬂ@ewwmm, (2.13)

for f and g analytic polynomials (recall those are dense in the Fock space). If this form
satifies a bound |t,(f,g)| < C| fllllgll, then by Riesz representation there exists a unique
bounded linear operator T}, such that (7, f, g) = t,(f,g) which coincides with the standard
definition through the projection when du(z) = ¢(z) dV (z) for some bounded ¢.

A positive Borel measure ;1 on C is called a Fock-Carleson measure for F2(C) if there
exists a positive constant C' such that

/U )26 dp(2) /v )Pz
for any f in F2(C).

Analogously to the Bergman space case, using Cauchy—Schwarz inequality we can show
that if |u| is a Fock-Carleson measure the form t, is bounded. It is also true that if 4 is
positive, the boundedness of T}, implies that y is Fock-Carleson. The proof of this uses the
Berezin transform, which in the Fock space setting has a particularly interesting form. We
will briefly illustrate it.

The normalized reproducing kernel in the Fock space has the form

kz( /\/ Z Z = ezw—§

18



The Berezin symbol of an operator A on the Fock space is defined as in the Bergman space
as: N
A(z) = (Ak,, k).

The Berezin transform of a measure p is the Berezin symbol of the associated Toeplitz
operator (we will not mention the precise conditions under which this makes sense and we
refer to [24]):

() = / e ) P dpu(an)

== [ .

In particular we see that when du(z) = ¢(z) dV(2) a rescaling of the Berezin transform
yields the heat transform, the operator that assigns to a function ¢ the value of the solution
of the heat equation at a time instant with initial datum . Much of the interest in the
Berezin transform on the Fock space is related to this fact.

A positive Borel measure p is called a vanishing Fock—Carleson measure if

lim / \fn(z)|2e*‘z|2 du(z) =0
n—oo C

for every sequence {f,} C JF? converging weakly to 0 in F2. Repeating almost verbatim
the proof of Theorem 2.2.7 we have that if |u| is vanishing Fock—Carleson than the operator
T}, is compact. Again the converse holds for positive measures and it is proved through the
Berezin transform. Schatten ideals membership conditions for p > 1 also follow very closely
the ones for the Bergman space given first in [16].

Analogously to what was done for Bergman spaces, Toeplitz operators can also be
defined for compactly supported distributions © through the sesquilinear form

o112

to(f,9) = ( f9).

Note however that the weight inside the parenthesis is actually irrelevant, and at the cost
of substituting © with %e""z@ (which is still a distribution with the same support as that
of ©), we can (and will in the following chapter) use the sesquilinear form which has the
same appearance as in the Bergman space:

to(f,9) = ©(f9). (2.14)

This form satisfies the bound [to(f,g)| < C|/f]||lg||; then there exists a bounded opera-
tor T such that (T f, g) = to(f,g), and in the same way as in Remark 2.2.13 this operator
is compact.

Berezin—Toeplitz operators are more related to quantum mechanics and mathematical
physics than Toeplitz operators on other spaces; there is a strong relation between them
and certain Weyl pseudo-differential operators on L?(R, dx) ([24]), and much effort has been
dedicated to identifying a class of symbols adequate for a good symbol calculus.
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The difficulties of such problems are well exemplified by the following fact, which is very
relevant for the next chapter and shows that without further assumptions the quantization
map ¢ — T, is not one-to-one:

Remark 2.3.1. There exists a nonzero (unbounded) radial function such that the corre-
sponding Toeplitz operator is the zero operator on F2. The example was first constructed
in [13].
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Chapter 3

Finite rank Toeplitz Operators

We have seen in the previous chapter that both on the Fock space and in Bergman spaces
of various domains compact Toeplitz operators are in abundance, even for classical symbols
in L*°; we mentioned that there are also Schatten ideals membership conditions, which
essentially involve the way in which the function converges to the boundary (for a bounded
domain). In particular if the symbol is compactly supported the corresponding Toeplitz
operator belongs to every Schatten class. At this point it is natural to ask whether a cutoff
property, that is the deduction that if a Toeplitz operator is small enough then the symbol
must be zero, exists on the finite rank level. Due to Remark 2.3.1, we will consider only
compactly supported analytic objects as symbols.

Note that on the Hardy space of the unit disk the cutoff happens at the compactness
level. However, if we deal with particular subspaces of the Hardy space, the situation may
change drastically; we will start our investigation of finite rank Toeplitz operators with a
short overview of this case, which has attracted much attention recently.

3.1 Truncated Toeplitz Operators

An inner function is a bounded holomorphic function on D such that |u(z)] <1 on D and
[u(e?”)| = 1 almost everywhere in 9D, where U denotes the boundary value function of g as
defined in Chapter 1. The classical Beurling theorem in H?(ID) characterizes the unilateral
shift nonzero closed invariant subspaces of H? as those of the form wH? for an inner function
u. Then the subspaces invariant for the adjoint of the shift, the backward shift, are of the
form

Ky =H?*cuH?.

The notation means that K, is the orthogonal complement of uwH?. These are called model
spaces, due to the fact that the compression of the shift operator to them serves as a model
for a large class of contractions on Hilbert spaces. An introduction to model spaces is pro-
vided for instance by the survey [14].

There are several more concrete function theoretic descriptions of the spaces Ky, but we
will not mention them. Each K, is a reproducing-kernel Hilbert space, with the reproducing
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kernel at the point A € D being

1)

k)\(z) 1 —XZ

It is necessary to say that each model space has an isometric conjugate-linear involution (a
conjugation) C': K, — K,, defined on boundary functions as

Cf(¢) = f(E)¢u(C).

The so-called conjugate reproducing kernel of K, is defined as

u(z) — u(A) .

ka(2) = Cha(2) = =——

If we let P, : L?(0D) — K, be the projection onto the model space, the truncated
Toeplitz operator with symbol ¢ € L? is defined as

AL (f) = Pulef)

with natural domain

D(AY) = {f € Ku : Pu(pf) € Ku}.

Here we are looking at P, as an integral operator from L'(0D) to the space of holomorphic
functions on D. The operator AZ is thus densely defined, since K, N H* is included in
D(AY) and is dense in Ky (the set of kernels {ky} is included in K, N H* and is dense in
K, for X\ varying in a uniqueness set for /C,, for example a set having an accumulation point
on the disk).

If p is in L>° then A is everywhere defined and bounded with [ AZ[| < [l¢[|ec. Note that
the aforementioned very important compressed shift is a special case of the above definition
with ¢(z) = 2.

Note that for ¢ € uH?, ¢f is in uH? for every f € K, and then P,(¢f) = 0, so AZ is
the zero operator. The same happens if @ is in uH?, since {of, h) = (f,ph) = 0 for every
f and h in K, which means that ¢f is L?-orthogonal to KC,. Uniqueness of the symbol for
truncated Toeplitz operators is therefore out of question; Sarason in [22] proved that the
two above cases are the only way in which uniqueness can fail, namely he showed that A¢
is the zero operator if and only if ¢ = v + ¥ for some v and x in uH?.

Since truncated Toeplitz operators seem to be very different from their full Hardy space
counterpart, we can expect that there may be nonzero compact Toeplitz operators; in fact,
there are even nonzero finite rank truncated Toeplitz operators operators. Consider the
rank one operator Cky ® ky (where f ® g(h) = (h,g)f); its action on f € K, is

u(w) — u()\)

[Chx @ k] (F)(w) = FON)—2—
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u(z)

z—A

Let us now check how the truncated Toeplitz operator with symbol p(z) =

Aty g = P (50) @) =<

P
- )
+<z:< ,kw>
>

acts on f:

w—/\ ’

since the term in the third line of the equatlon vanishes because uf f ( ) ¢ wH? and the
term in the fourth line vanishes because ﬁ has only negative Fourler coefﬁments on the
boundary.

Similarly for any A € D we have that

ky® Cky = A"

Z-X

We have thus found nonzero rank one truncated Toeplitz operators, a stark contrast to
the Hardy space case. In model spaces it is possible to define reproducing kernels at points
in a subset of O that satisfies a certain property that we will leave unspecified; tensoring
those boundary kernels also gives rank one operators. Donald Sarason in [22] proved that
if a truncated Toeplitz operator has rank one then it is a scalar multiple of one of the
operators described above.

Now consider the map: ® : D — B(K,) such that ®(\) = Ck) ® ky; if we denote its
n-th derivative with respect to A by D"[Ck) ®k,], by Leibniz formula we get an operator of
rank n; this operator can also be defined at those special points on the boundary mentioned
above. Similarly the operator D" [kx ® Cky] can be defined as the derivative with respect
to A of ky ® Cky with the same consideration for the boundary points. As in the rank one
case, it turns out that

D"[Cky ® k)] = A,
D"[k\® Cky] = A%

where ¢(z) = % and equality also holds in the admissible boundary points in the
sense of boundary values.

Sarason asked whether every finite rank truncated Toeplitz operator was a finite linear
combination of the operators above; recently Bessonov in [6] answered this question in the
affirmative. In conclusion, we see that on model spaces no cutoff points exists and the small
Toeplitz operators are essentially related to the reproducing kernels.
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3.2 The finite rank theorem

If we want to prove a cutoff theorem on Bergman and Fock spaces that holds for objects as
general as compactly supported distributions, the statement cannot be that the symbol is
zero if the operator has finite rank. Indeed, consider a measure of the form u = Zé\le cj0z;,s
where z; € () for the Bergman space of a bounded domain or z; € C for the Fock space;
then by definition 7}, f(2) = Zjvzl ¢ f(2j)K (2, zj), where K (z,w) is the reproducing kernel
at w of the appropriate space under consideration. This means that the range of T}, is
contained in the linear span of {K|(z, zj)}j-vzl, i.e. it is finite dimensional. If we consider a
distribution of the form

N
©=> L;.,, (3.1)
j=1

where the L; are differential operators, then the range will be contained in the span of
reproducing kernels and their derivatives (up to the order of L;) at the points z;.

Our task will be to prove that if the Toeplitz operator T has finite rank for a compactly
supported distribution O, then © must be of the form (3.1). In case © coincides with a
compactly supported function, this implies that it must be zero. Therefore for symbols-
function the cutoff really happens at the finite rank level.

3.2.1 Problem setting and previous results

After having described conditions for Schatten class membership, naturally Luecking in [16]
deals with the finite rank hypothesis for symbol-measures. The proof proposed there was
later discovered to be seriously flawed, and the finite rank hypothesis remained unsettled
for more than twenty years.

Finally in 2008 in the paper [17] Luecking himself produced a correct proof of the
hypothesis. Luecking’s elegant proof is very algebraic, and he actually proves a theorem
about operators from the space of analytic polynomials to the space of linear functionals
on conjugate analytic polynomials. To be precise, he proves the following:

Theorem (D. Luecking, [17]). Let u be a measure compactly supported in C, and T}, the
operator defined by T, f(g) = [ fg du for f and g analytic polynomials. Then T), has finite
rank if and only if p has finite support.

The proof ultimately involves using the Stone—Weierstrass theorem on the space of sym-
metric continuous function, and this is the reason why the symbol of the operator is required
to be a measure and to have compact support.

In the years following the publication of Luecking’s paper several generalizations of
the theorem appeared, the most notable ones being to severable complex variables and
to a symbol that is a compactly supported distribution. A direct extension of Luecking’s
argument in order to cover compactly supported distributions does not seem to work because
of the aforementioned reliance on some form of the Stone—Weierstrass theorem, and the
existing proofs of the finite rank theorem for distributions use induction on the (finite)
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order of the distribution, with the base case being Luecking’s theorem, solving iteratively
the d-equation to produce a less singular distribution at every step.

The survey [21] contains the details, as well as references to other papers that proved it
and a discussion of the multidimensional case.

After reading the paper [7] we became aware of another approach to the proof of the
finite rank theorem, which essentially uses the Fourier transform. The idea is quite far
from the algebraic methods of [17] and actually originated in the failed proof of [16]; the
authors of [7] use it to prove that if a Toeplitz operator on the Fock space having as symbol
a function with certain growth restrictions at infinity has finite rank, then the symbol must
be zero.

We found out that this approach with some modifications worked in the Bergman space
setting as well; since the method uses the decay at infinity of the Fourier transform of an
integrable function (which in [7] is the symbol times the weight), there was some skepticism
that it could be extended to symbols that are measures or distributions. Surprisingly, with
some effort this turned out to be possible in the case of compactly supported distribution.
The advantage of our approach is that it furnishes a unified treatment of the Fock and
Bergman space case, and does not require to distinguish between symbol functions or more
general objects. In fact, the theorem being proved directly for compactly supported distri-
butions without relying on induction, it gives an alternative proof (and a generalization) of
the original theorem of Luecking.

In order to streamline the presentation of the proof and treat together the Bergman
and Fock spaces, we will modify some notation. We will let Q2 stand either for an arbitrary
bounded domain in C or for the whole of C, and we will denote by L2(2) respectively the
Bergman space or the Fock space. We let © be a distribution with compact support in §2;
the sesquilinear form defining the Toeplitz operator has the form

whatever  is. The Toeplitz operator with symbol © is then defined as usual by (Te f, g) =
to(f,g). We are now ready to state:

Theorem 3.2.1. The operator Te : L2(2) — L2(Q) has finite rank, say equal to N, if
and only the support of © consists of N points.

3.2.2 Proof of the theorem

The easy implication, that if © has finite support the operator has finite rank, was proved
at the beginning of the chapter. In order to prove the converse we will start by setting some
lemmas. First notice that having rank equal to N for T means that there exist orthogonal
sets {f]}J ; and {g] ", such that Tgf = Z;Vﬂ(f, fi)gj, where the scalar product is in

L2(Q); in terms of the sesquilinear form:

N
Z fyf] 95,9 (3.2)

J=1
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We now show how the problem can be reduced to a Bergman space in which analytic
polynomials are dense, and actually to the Bergman space of a disk. We will momentarily
denote the Toeplitz operator with symbol © acting on L2(Q) by T§.

Lemma 3.2.2. If the operator Tg has rank less than or equal to N, then the infinite matriz
Ag with entry to(z",2™) at the index (n,m) (n and m range from 0 to infinity) has rank
less than or equal to N.

Proof. Tt follows from the assumption that there exists a linear relation

N
Z enTE2" =0
n=0

for some ¢, which are not all zero. Taking the scalar product of this relation with z™ we
obtain a linear combination with nontrivial coefficients of the first N + 1 rows of the matrix
Ag, which means that the rank of this matrix cannot exceed N. O

Note now that the number tg (2", 2™) = ©(2"z™) (analytic polynomials are contained
in every space we are considering), and consequently the matrix Ag, does not depend on the
domain € as long as the latter contains the support of ©. We take a disk D that contains
such support, and we think of © as acting on C*°(D). We remark that © is still the same
object: a distribution compactly supported in a set U C C, which is a continuous linear
functional on C*°(U), is identified with a continuous linear functional on C*°(C) which has
support contained in U. See Hérmander’s book [15], Theorem 2.3.1, for a proof of this
seemingly obvious fact.

Lemma 3.2.3. The rank of the matrixz Ao is equal to the rank of Tg.

Proof. We have just shown that the rank of the matrix cannot exceed the rank of Tg .
For the reverse inequality, let the rank of Ag be M and suppose that the rank of Téj
is greater than M. Then there exist M + 1 functions ui,...,upr41 in L2(D) such that
the set {7 u]}JJVi 1 is linearly independent. The matrix with entries {(T5u;, T&ux)} for
J,k=1,..., M + 1 is thus non-singular. Take analytic polynomials p; that approximate u;
and analytic polynomals g that approximate T uy in the L2(D) norm (this is possible
because of the density of polynomials in L2(D)); the matrix with elements {(T'p;, gx)} for
jok=1,...,M + 1 is a submatrix of a matrix obtained from Ag by linear manipulation of
rows and columns, thus its determinant must be zero since rank Ag < M. But it should
approximate a matrix with nonzero determinant, which gives the desired contradiction. [J

Combining together the two lemmas, we obtain the desired reduction: if T3, for Q a
bounded domain or C, has finite rank, then the matrix Ag has finite rank which implies
that the operator 7, é) has finite rank, say N. If we prove Theorem 3.2.1 for T2, then the
form of © we will obtain implies that also the rank of Tg is N. Incidentally, this proves that
Lemma 3.2.3 holds for the Bergman space of a domain in which analytic polynomials are
not dense; the rank of the operator is solely determined by its rank on analytic polynomials,
even if those are not dense. From now on we will suppress the superscript D and we will
think of the operator Ty as acting on the Bergman space of a disk that contains the support
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of ©.

We will now prove the rank zero case, that is the uniqueness of the symbol. This follows
from the general case below, but since it serves as intuition for the subsequent steps we
thought it would be better to isolate it.

Lemma 3.2.4. If Ty is the zero operator, then © is identically zero.

Proof. Note that the function e,(w) = €*** is in L2(D) for every z € C. Since T = 0, the
expression tg(e_,,e,) is equal to 0 for every z € C. Think of z as z = x + iy, and O acting
on w = u + 1. Then

0= t6(6_27 ez) — 6(67i2w7izw)
— @(efQiRezw) — e(efQix-u)
= F(0)(2%),

where x = (7,9) € R?, u = (u,v) € R?, the scalar product in R? is indicated with a dot
and F is the Fourier transform in R?. Note that the Fourier transform is well defined since
O is compactly supported, and it being zero for every x implies that © = 0. 0

We are going to build up on the idea of using the Fourier transform. Let T have rank
N, so that tg is in the form (3.2). We have, in the same notation of the above lemma and
for every f and g in L2(D),

N

N
to(e_zf,ezg) = Y (e O f, £)(g, eV f) = 0 (2)5(2), (3.3)
j=1

J=1

where both ¢; and v; are entire functions of z. In the same way as in the previous lemma
we have that the first term in the above equalities is equal to F(O fg)(2x); note that the
support of the distribution © fg is contained in that of ©. By the Paley—Wiener—-Schwartz
theorem, the Fourier transform of a compactly supported distribution in C =2 R? can be
extended to an entire function on C? which grows polinomially on C.

Denoting by 0 the derivative with respect to z and by 0 the derivative with respect to
Z, we have

8&@’(@(6,#, ezg) — (—i)a+ﬁf(@f§w6@a)(2x)

for all positive integers « and 3. The distribution being Fourier transformed is still com-
pactly supported, which implies that also the mixed derivatives of tg(e_. f,e.g) grow poli-
nomially on C.

By equation (3.2) then

N N N
P Y i) = 3 0 (5 (2)

also grows polynomially and if we let o and 8 vary between 0 and N — 1 we have that
the right hand side is the product of the conjugate wronskian matrix of the ¢; with the
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transpose wronskian matrix of the ¢;, and this product matrix has entries that grow at
most polynomially. But then the modulus of the determinant (determinant denoted by W)
grows at most polynomially, and it follows that

(W(p1s s oN)W (@1, 908) | (2) < 7(2)

where r is a polynomial whose degree is bounded by a fixed multiple of the order of the
distribution ©.

The function inside the modulus is entire and bounded by a polynomial, so it has to be
a polynomial. Since the two Wronskians are entire functions of exponential type and their
product is a polynomial, we can then write:

W(pt, .., on) =e¥p(2) , W(,....n) = e “q(2) (3.4)

where the degree of p and ¢ is bounded by a multiple of the order of ©. Since by the def-
inition of ¢; and v; the Wronskians W (1, ..., on) and W (41, ...,9n) depend respectively
only on f and only on g, it follows that « is independent of both f and g.

Consider now the vector subspace V' of C*(R, C*") generated by

B o(t) = (O f, f1), ey (O f, i), (67O L g1), oo (7O F, ga )T

as f and g vary in L2(D). Note that the first N components are just the @;’s restricted
to the real line, while for j between N + 1 and 2N the j-th component is equal to 9;(—-)
restricted to the real line.

Since differentiating @, with respect to ¢ produces a multiple of the integration vari-
able in the first component of each inner product, the space we constructed is differentiation
invariant.

It follows by the special form of the Wronskian of the components of ®;, that the
closure of V' in the natural topology of C* is not the whole of C*°(R,C?"), and actually
has infinite codimension in it. To see this, consider the C'*° vector

expu(t) = (M . et emt ety

for A;’s and pi;’s complex numbers, \; # A\; and p; # p; for ¢ # j. The Wronskian of the
first N components is equal to V(\q, ..., )\N)e(zgzl)‘k)t and the Wronskian of the second
N components is equal to V(u1, -..,,uN)e(ZkN:l #e)t where V denotes the Van der Monde
determinant. Since by equation (3.4) the Wronskian of both the first N components and
the second N components of an element of V' is an exponential of fixed order multiplied by
a polynomial of bounded degree, if either Zszl A or Z]kvz1 i grows enough the vectors
ey, cannot be approximated by a sequence in V.

Since the space of distributions with compact support is the dual of C*° with the natural
topology, the above paragraph implies that there exists a distribution u = (uq,...,usn),
compactly supported in R, such that

u(®,) =0 Vf,ge L2(D).
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By definition u(®;,) = Z;V:1 u;(@5) + Ejvzl un+;(¥;(—)) (thinking of ¢; and v; as
restricted to the real line), where the terms in the sum are the usual action of a distribution
on a scalar function. From now on, we will take f = g = 1.

Let us examine the term u;(®;); since u; being compactly supported has finite order, by
the structure theorem for distributions it can be written as a finite sum u; = >, (%)k Ujk,
where the u;;,’s are continuous and bounded functions with compact support on R and the
derivative is intended in the distributional sense. Then we have

uﬂ@)zgynﬁé(i)%%wwuwdv=§3nﬁé(i)k(ée*MEwomﬂwQuﬂmdt

k
o e—itw iw kU‘ f(w w) = i (w) Fs (w w
_A(;/ ()MWQM)MU [ B@hwiaw)

and the last term is the L2(D) scalar product between the Fourier transform of u; extended
to the complex domain (which is an entire function, and thus belongs to L2(D)) and f;.
Calculations for the terms uny;(1;(—-)) are exactly the same. The condition u(®q,;) =0

then translates to
[a-@er =0
D

where u = (41, ...,u2n), f = (f1, ..., fn), & = (91, ..., gn) and the dot denotes scalar product
in C2V,

Since V is differentiation invariant, we also have for any polynomial P that u(P (%) P, )=
0; by repeating the calculation above this translates to [}, P(w)t(w) - (f,g)7 (w) = 0. Select
now distributions uy, ..., usy such that

l/a@-m@Tzo (3.5)
D

for every polynomial P;, ¢ = 1,...,2N; this is possible since the closure of V' has infinite
codimension (in particular it is greater than 2N whatever N is) in C*°, and the distributions
can be taken in such a way that uj,..., usy are linearly independent. By density of poly-
nomials in L2(D), we obtain relation (3.5) for P; being any function in L2(D). Summing

on ¢ we have:
/ (E Piﬁi> (f,g" =0.
D\

=1

Denote by U the 2N x 2N matrix having as columns the functions uy, ..., usy, and by P
the vector whose components are the P;’s. We are then left to check which vectors H can

be written in the form (Zfivl B@),tha‘c is we want to know for which vectors H whose

component are entire functions the matrix equation
O]p-H

can be solved for P whose components are in L2(D). Consider vectors of the form H =
(0,...,Hj,...,0)0T, where H; has the same zeros of det [IAJ} in D (the determinant is not
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identically zero, since the columns of the matrix are linearly independent), and note that

the latter are in a finite number in D since det [ﬁ} is an entire function; call the set of these

zeros Z. Then P = [[AJ} ' H has components in L2(D) and the equation can be solved.
We thus discovered that
0,....,Hj,...0)- (£.8)" =0
D

for every entire function H; with zeros in Z. By letting j run from 1 to 2N, this means
that all the f;’s and the g;’s are L2(D)-orthogonal to every such entire function. We do
not need to worry about the possible zeroes on dD; this is because (z — A\)L2(D) is dense in
L2(D) for A on the boundary on D, see for instance [3]. This means that being orthogonal
to every entire function with zeros in Z is equivalent to being orthogonal to every entire
function with zeros in Z N D. By density of polynomials in L2(D), this is equivalent to
being orthogonal to every function in L2(D) with zeros in ZN D. But functions orthogonal
to those are finite linear combinations of reproducing kernels and derivatives of reproducing
kernels (derivatives arise for zeros of multiplicity greater than one) at points z € Z N D.

But then, substituting in (3.2) the special form we found, we get for the Fourier trans-
form of ©:

N

"r(@)(2x) = t@(efz,ez) = Z <GZ7ZPk(a)sz> <Z Ql(a)Kz“ez>
k l

j=1
N
- Z (Z Pk(—iz)e_izz’“> (Z Ql(—iz)e_izzl) ,
j=1 k l

where P, and @Q; are polynomial expressions (the inner sums depend on j, but we do not
want to make the notation heavier). But now remember that the Fourier transform of ©
should grow at most polinomially in & (or z, which is the same); this implies that the mixed
terms in the sum that contain e~ “Zzx=2%0) for k # | must be zero, because Zz; — 2Z; can be
made to have a nonzero and positive imaginary part if k& # [ and then e~*#z—22) will grow
more than polinomially. So each inner sum contains only one term, and we can write

ZP zzz]Q ( ) —i2Z;

N
ZPJ —iz Qj ) —2iw-z;
J=1

But the latter expression is the Fourier transform of a linear combination of delta distri-
butions and derivatives of delta distributions at the points z;, and by uniqueness of the
Fourier transform we then get the desired result, namely

N
©=> L;,
j=1

for L; being differential operators.
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Chapter 4

Quantum Mechanical Applications

Luecking in [17] highlights a consequence of the finite rank theorem, concerning finite codi-
mensional subspaces in Bergman spaces. However, what captured our interest was a less
direct connection with mathematical physics and spectral theory, identified by G. Rozen-
blum and others for instance in [18],[20]. We will now attempt to briefly illustrate this
connection.

Consider a charged, spinless particle moving in a plane under the action of a constant
magnetic field perpendicular to the plane. Let us say that the particle is confined to the xy
plane and the magnetic field has the form B = (0,0,b)”. The Hamiltonian of this system
has the form

Hy = (—iV — A)zv

where A(x,y) = (Ai(z,y), A2(x,y)) is a magnetic vector potential for the field, that is we
have 0, A — 0yA; = b. The equations define A up to a gauge transform; we choose the
gauge in which A(z,y) = (—3y, 2). With this choice,

Hy = _'g_é 2+ _'2+9 ’
0=\ "or T 2 Zf)y 2% ) -

This operator is defined on C2°(R?) and essentially self-adjoint on L?(R?), which means
that its closure in L?(R?) (which will still be denoted by Hy) is self-adjoint.

The spectrum of Hy can be determined explicitly and has been known for several
decades; one way to find it is by means of the so called creation and annihilation oper-
ators, defined respectively as follows:

= . b b o b b
a-—2@8+§y—z§m , a ——218+2y+z2x. (4.1)

As usual, 8 = £(9, — i0,) and d = 1(0, + i0,). In the same way as for Hy, the operators
a and a* are defined on C°(R?) and then closed in L?(R?). The notation is consistent
since a* is the adjoint of a. Note that these operators can also be expressed in terms of the
function ¥(z) = £|z|2, which is the scalar potential of the magnetic field, as follows:

a=—2ie Y0e¥, a*=—2ie¥0e Y. (4.2)
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A calculation shows that they satisfy the commutation relation:
[a,a®] = 201, (4.3)

where I is the identity operator in L?(R?). We also have Hy = a*a + bI, which implies
that the spectrum of Hy lies in [b, +00). Actually b is an eigenvalue of Hy, with eigenspace
kera*a = kera. The equation au = 0 for u € L? is equivalent to 0(e¥u) = 0, which means
that f = e¥u is an entire function such that e~V f is in L?. Recalling the explicit form of
W, f belongs to the space

Fp = {f entire : / \f(z)|2e_%‘zl2dA(z) < oo} .
C

This space of holomorphic function is precisely the Fock space for b = 2. The eigenspace
of Hy corresponding to the first eigenvalue Ay = b is thus the infinite dimensional space
Ly = eilp]:b.

The relation (4.3) then shows that Ly is the eigenspace of the operator aa* with respect
to its first eigenvalue 2b (note that aa* > 2bI in the sense of positive operators). Since
the spectra without the zero of aa* and a*a coincide, 2b is also an eigenvalue of a*a with
relative eigenspace £1 = a*Ly. The spectrum of a*a between 0 and 2b is empty, because
otherwise also the spectrum of aa* to the left of 2b would be non-empty. £; is then the
eigenspace of Hy relative to the second eigenvalue Ay = 3b. Continuing in this way, we
obtain that the spectrum of Hy consists only of isolated eigenvalues

Ag=0b(2¢—-1) ¢=1,2,3,.. (4.4)
each with associated eigenspace of infinite dimension
L, = (a")? L. (4.5)

In the literature the A,’s are called Landau Levels. Note that the spectrum of Hy is purely
essential. The creation and annihilation operators act between Landau eigenspaces in the
following way:

a*:ﬁq—>£q+1 s a:ﬁq—>£q_1 s a:Ly—0.

Now the question is what happens to the Landau Levels under a perturbation intro-
duced by the action of an electric field. More precisely, let V' be a measurable, essentially
bounded and compactly supported real valued function in R?; we will indicate by the same
letter V the operator of multiplication by V in L?(R?). Consider the perturbed operator
H = Hy+V. Since the operator V is relatively compact with respect to Hy, Weyl’s theorem
on the essential spectrum implies that the essential spectrum of H and that of Hy coincide;
therefore the essential spectrum of H consists of the Landau Levels and the spectrum of
H consists entirely of eigenvalues. New eigenvalues, necessarily of finite multiplicity, may
appear with the perturbation, with only possible accumulation points at the Landau Lev-
els. The authors of the papers cited above are interested in whether the new eigenvalues
generated are finite in every spectral gap (interval between two consecutive Landau Levels),
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and in case they are not to the rate of convergence to the Landau Levels.

Denote by P, the L? orthogonal projection with range £,. It turns out that the asymp-
totics of the eigenvalues near A, are determined by the eigenvalue asymptotics of the com-
pact Toeplitz-like operator P,V|z . This was established in precise terms for example in
[18] for positive potentials, using a variational characterization of eigenvalues; in particular
it shows that if the number of eigenvalues generated by the perturbation is finite in the
interval (Ag, Aq11) then the operator P, V| £, has finite rank. In the papers above the po-
tential was assumed to be positive from the beginning because of lack of knowledge about
the spectrum of a Toeplitz operator with symbol of variable sign. The finite rank theorem
had not been established yet, so it was not even known whether the Toeplitz operator could
have finite rank without the potential being zero. In [19] the relation between eigenvalues
of the perturbed Hamiltonian with potential of variable sign around a Landau Level and
eigenvalues of the corresponding Toeplitz-like operator is stated in exact terms and proved,
but only for the ground level Ag. The proof uses some more advanced spectral theory tech-
niques than [18]. We tried for some time to produce a simpler proof of the fact that if the
eigenvalues in the spectral gap are finite than the Toeplitz operator has finite rank, but we
were unsuccessful. Let us now assume that this is true.

The operator corresponding to the ground state PyV|z, is practically one of the type
we studied in the above chapters, as there is an isometry between F, and Ly given by
f+— e Y f and thus the quadratic form of PyV|z, is unitarily equivalent to the quadratic
form of the Toeplitz operator Ty on the Fock space. Assume that the eigenvalue cluster
around Ag consists of a finite number of eigenvalues: then the operator PyV|z, has finite
rank, and consequently T3, has finite rank on the Fock space; but by the main result of the
previous chapter this implies that V is identically zero.

For higher Landau Levels, this is not as simple since the spaces £, do not immediately fit
into the framework of Luecking’s theorem. However, it is proved in [9], Corollary 9.3, that
the operator P,V P,: L*(R?) — L?(R?) for V bounded and compactly supported is uni-
tarily equivalent to the operator PoW Py: L?(R?) — L?(R?), where W = D,(A)V with D,
being a polynomial of degree ¢ with positive coeflicients and differentiation is in the sense of
distribution if V' is not smooth. This implies that if P,V'|, has finite rank, the same is true
for PoW|z,; but on Ly we can apply the theorem, so W = D,(A)V (not necessarily a func-
tion) is a finite linear combination of delta distributions and their derivatives. By Fourier
transforming the equation defining W, we obtain that D, (—|¢ 2)V(€) is a finite combination
of exponentials multiplied by polynomials; then either V has poles (the zeros of D,(—€%))
or Dy(—|¢[?) divides the right hand side, so V is itself a combination of exponentials multi-
plied by polynomials. The former case cannot happen since V is an entire function on the
complex plane, and the latter case cannot happen either unless V' is zero, because otherwise
V itself would be a combination of delta functions and their derivatives, but V' is a function.

We thus obtained that if a perturbation gives rise to a finite number of eigenvalue around
one Landau Level, then the perturbation is zero (and consequently the finite number of
new eigenvalues is in fact zero around any Landau Level); in other words, as soon as the
perturbation is nonzero an infinite number of eigenvalues of the perturbed Hamiltonian,
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necessarily having as only accumulation point the corresponding Landau Level, appear in
every spectral gap. Information on the rate of convergence can be found in the papers cited
above.
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