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Abstract

Domain decomposition methods can be used to numerically solve partial differential equations for cer-
tain problems, for example in cases where the domain has an irregular shape, or if there are differences
in material constants. By splitting the domain into subdomains, these problems can be solved using
domain decomposition methods. In this thesis, the topic is solving the steady-state heat equation using
more than one boundary condition for each subdomain, causing the domain decomposition method to
be overdetermined. The least squares method is used to handle this, and so it is explored if, by modi-
fying the method to use parts of the mathematical formulation as constraints, the method will find an
adequate approximation to the steady-state heat equation. It was found that overdetermined domain
decomposition methods can indeed find a good approximation of the temperature distribution, and that
using a constrained least squares method with different types of relaxation, can decrease the number of
iterations to reach termination. This paves way for more work in relation to the use of overdetermined
domain decomposition methods.

Keywords: Overdetermined non-overlapping domain decomposition methods, constrained least squares
methods, steady-state heat equation
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who has offered vast amounts of support. Finally, I would like to thank my family for the their curiosity,
interest, help, and love. I am very grateful.

Thank you.

— ii —





Contents

Abstract i

Acknowledgements ii

1 Introduction 1

1.1 Background 1

1.2 Aims 2

1.3 Delimitations 2

1.4 Methodology 3

2 The Global Problem Formulation 5

2.1 Problem formulation 5

2.2 Finding the Approximate Temperature Distribution 6

2.3 The Global case, formulated as two subdomains 10

2.3.1 The general case 10

2.3.2 Discretising the global case as two subdomains 11

2.4 Summary of global problem formulation 15

3 Subdomains-solving Problem Formulations 17

3.1 Dirichlet-Neumann algorithm 17

3.1.1 Imposing a Dirichlet condition on a subdomain 18

3.1.2 Imposing a Neumann condition on a subdomain 18

3.2 A proposition for a new approach 20

3.3 From algorithm to method 22

4 Subdomain Methods 23

4.1 Dirichlet-Neumann Method 23

4.2 Dirichlet & Neumann - Dirichlet & Neumann method 24

4.3 Solving an overdetermined system 24

4.3.1 The normal equations 25

4.4 Constraining the least squares method 26

4.4.1 Choice of constraints 26

4.4.2 Constraining the internal points condition 27

4.4.3 Constraining the derivatives condition 28

4.5 Choice of relaxation 29

4.6 The spectral radius of the iteration matrix 30

4.6.1 Iteration matrices for Dirichlet & Neumann - Dirichlet & Neumann iteration 31

4.6.2 Summary of the iteration matrices 33

5 Results 35

5.1 Methods 36

5.2 Types of relaxation 37

5.3 Convergence rate and spectral radius 41

5.4 Summary 42

— iii —



CONTENTS

6 Discussion 43
6.1 Overdetermined domain decomposition methods 43
6.2 Evaluation of methods 43
6.3 Evaluation of relaxation type 43
6.4 Spectral radius 44
6.5 Conclusion 44

7 Future Work 47

— iv —



Chapter 1

Introduction

1.1 Background

Imagine that you are building a one-room house, and you have decided that you want to fit in a radiator
to ensure that the room is comfortably warm. There is a large window, and a small air vent, letting
air seep in. How large does the radiator have to be? What capacity does it have to have? You could
purchase one based on a guess, but you run the risk of buying something that does not satisfy your wish
for a pleasantly warm room. Thankfully, it is possible to calculate the heat distribution in the room
using mathematics.

The room has four walls, a window, an air vent and your radiator. There are different ways of ex-
pressing these things mathematically. The walls, the radiator, and the windows can be viewed as having
a constant temperature. The walls and windows enclose the room, and are what is referred to as a
boundary of the room. The room itself is called a domain. When a boundary has a fixed value, in our
case a fixed temperature, this is called a Dirichlet boundary condition. The air vent letting in a constant
stream of cold air is distinctly different than the walls or window. The flow of cold air is referred to as
the flux, and for the boundary where the air vent is located, there is what is referred to as a Neumann
boundary condition.

Throughout this thesis, the example room used is a simplified. The room has two sides which act
like radiators, and two sides which act like widows.

Finding the temperature in a room such as the case above is, given enough simplification, can be done by
paper and pen, finding a continuous temperature distribution. However, in most cases it becomes almost
impossible, and for those cases, an approximation of the temperature in the room might be enough. This
is generally done by finding the temperature in specific points in the room, but it comes at a cost. The
more points you are looking for, the longer it takes to compute. In some cases it might be enough to
get a general idea of what the temperature looks like, whereas just a few points are necessary. In other
cases, where you might have many small sources of heat, using few points might result in your model not
picking up all the sources, and you end up with a result that does not adequately represent the reality.
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1.2. Aims

Instead of looking at finding the temperature in the entire room at once, it is possible to split the room
into two parts, and finding the temperature for each part separately. With our example case, it would
be perfectly fine to keep it as one domain and solve it as such. In more complex problems however, it
might be very difficult, or require a lot of simplification to solve as one domain. It is in these cases that
splitting the domain into smaller pieces might help in finding a good solution.

Finding the temperature in each part requires that the boundary between the parts, called an inter-
face, to be known. This is not the case, so a guess has to be made. With this guess, a solution can
be produced for each part. From these solutions, a better estimation of the interface is produced. By
repeatedly solving parts of the room, the estimation for the interface gets better and better. This it-
erative approach eventually sees a decline in improvement of the estimation. When the change of the
interface is very small between iterations, the solution produced by the two parts of the room is a good
approximation of the temperature distribution in the entire room. Methods such as these are called
domain decomposition methods.

In splitting the room into two parts, it is necessary to mathematically describe the new boundary
along the interface for each part. The most common method for this is stipulating that for one part, the
boundary has a fixed temperature — a Dirichlet condition, whilst the other has a fixed inflow, or flux
— a Neumann condition. This method is known as the Dirichlet-Neumann method.

Domain decomposition methods have proven to be very advantageous in areas such as continuum me-
chanics [4], fluid dynamics [3], and more specifically, heating and cooling in different materials [2].

1.2 Aims

I will focus on the temperature distribution over a room as a case study, by looking at a different way of
formulating the boundary between the two parts, or subdomains. The idea is to formulate two boundary
conditions for the interface for each subdomain — both a Dirichlet- and a Neumann condition.

When finding an approximate solution for the entire room as the one described above, it is a mat-
ter of solving a system of linear equations. In splitting the room in two parts, and adding a boundary
condition along the interface, the system of linear equations is solveable, since there are the same number
of equations as there are unknowns.

However, in adding more than one condition along the interface, the system becomes overdetermined.
One method to deal with this is to use the least squares method. This method distributes the deviation,
or residual for each unknown evenly over all unknowns. It is possible to set constraints as to how the
deviation is distributed, using a so called constrained least squares method. I will investigate if the least
squares method using boundary conditions as constraints improves upon the method.

To summarise, the aims of this thesis is to investigate —

— whether a domain decomposition method with more than one boundary condition per interface
can find a good approximation to the temperature distribution,

— how to handle the overdetermined nature of a discrete domain decomposition method with more
than one boundary condition,

— whether modifying the least squares method for solving overdetermined discrete problems work
worse, as good as, or better than currently existing domain decomposition methods,

— how these modifications affect the methods.

1.3 Delimitations

Since the spectrum of problems and methods one can divulge in is large, a number of choices have been
made in order to keep the scope narrow — many of the options mentioned here are further discussed in
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1. Introduction

Chapter 7. Future Work.

There are many different ways to decide how the points for which the temperature is found. In this
thesis, I have limited myself to use a regular, equidistant grid of points. The discretisation used is the
second order central difference scheme.
One type of problem has been solved, finding the temperature distribution in a rectangular room without
windows, where two walls are warm and two are cold. The temperature distribution when the tempera-
ture has settled to equilibrium, referred to as the steady-state temperature distribution, is sought.

In short,

— the effect of different grid sizes has not been evaluated,

— one type of problem has been evaluated, the steady-state heat equation over a rectangle room,

— two subdomains have been formulated, which are side by side,

— one type of discretisation scheme has been used, the second-order finite differences discretisation
scheme,

— the problem is formulated as a multi-domain formulation, and not on Schur complement form [3]
(p. 52).

1.4 Methodology

I will start by formulating the discretised Laplace equation over the entire room, as a reference when
validating the overdetermined methods.

By dividing the room into subdomains, I will formulate the mathematical tools needed to then set
up the problem to be solved with the Dirichlet-Neumann method, a commonly used domain decompo-
sition method, to use as a comparison when evaluating how well my own methods work.

Next follows a part where I construct my own methods, where I introduce both a Dirichlet-, and a
Neumann condition on both subdomains along the interface, and propose different approaches on how
to deal with the overdetermined nature of the systems of linear equations that arise.

The findings are presented at the end of the thesis, along with a discussion and ideas fo future work.
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Chapter 2

The Global Problem Formulation

2.1 Problem formulation

The problem on which the methods will be used upon remains the same throughout the thesis — finding
the steady-state temperature distribution over a room. The room is rectangular, with the long sides
twice as long as the short sides. There are no windows, two of the walls are warm, and two are cold.
The north and west walls (boundaries ∂N and ∂W) have temperature 30◦C, and the south and east walls
(boundaries ∂S and ∂W) have temperature 15◦C, as illustrated in the figure below.

Figure 2.1: The domain and its boundary conditions.

The solution produced by the discretised Laplace equation is used as a reference solution ur. The grid
remains the same as to be able to calculate the aberration between the reference solution and the solutions
produced from my own methods. This reference solution can be seen in Figure 2.2.

Figure 2.2: The reference temperature distribution over the room.
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2.2. Finding the Approximate Temperature Distribution

2.2 Finding the Approximate Temperature Distribution

Finding the steady-state temperature distribution of an area can be done by solving the Laplace
equation over the domain Ω. u(x, y) is the function describing the temperature distribution within the
domain. Since there is no source of heat inside the domain, only the surroundings affect the temperature
distribution. The surrounding area is expressed as a boundary around the domain, ∂Ω which encloses
the domain. The conditions over the boundary are expressed by the function g. For our example, the
walls surrounding the room are expressed as a Dirichlet condition with a given temperature.

∆u(x, y) = 0 in Ω ∈ R2

u = g on ∂Ω.
(2.1)

Solving this equation yields the steady-state temperature distribution over the domain Ω.

In order to find an approximate solution u(xi, yj), we discretise the equation and solve it for the discrete
points (xi, yj) on a grid over the room.

The grid

The room is twice as long as it is wide. Along the width of the room are placed n discrete grid points.
For simplicity later on in the thesis, the parts of the room consists of two squares size n × n, with the
interface between. This means that the room consists of n× (2n+ 1) internal points.

These internal points u(xi, yj) = ui,j are gathered in a column vector u, starting from the left top
corner as the first element (1, 1), going along the first row, then the second row, and so on;

u =



u1,1

u1,2

...
u2,1

...

...

...
un,2n+1


∈ R2n2+n (2.2)

where the last element is the bottom right element. The walls are also gathered as column vectors bN,
bW, bS, and bE, the long walls having 2n+ 1 elements, and the short walls n elements, as seen in Figure
2.3.
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2. The Global Problem Formulation

Figure 2.3: An illustration of the domain and the grid, with the different vectors indicated.

The discretisation

Next, we discretise the Laplace equation using a second order central difference scheme,

∆u(xi, yj) ≈
ui+1,j + ui−1,j − 4ui,j + ui,j+1 + ui,j−1

∆x2
(2.3)

where ∆x is the distance between each grid point, given by

L

n
= ∆x,

where L is the length of the short wall of the room. This thesis deals with the Laplace equation,
∆u(xi, yj) = 0 which means that in the equations that arise from the discretisation, ∆x can be disre-
garded.

The second order central difference discretisation can be visualised as a dot stencil, as seen in the
illustration below,

which illustrates the manner in which the temperature in a grid point is influenced by the temperature
in grid points in its vicinity. For internal points the unknowns follow the form given in Equation (2.3);

ui−1,j + ui+1,j − 4ui,j + ui,j−1 + ui,j+1 = 0.

For grid points right next to a wall, the known temperatures in those points enter as viewed in Figure
2.4.
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2.2. Finding the Approximate Temperature Distribution

N

W

Figure 2.4: The dot stencil for unknowns adjacent to the boundary.

Starting from the first element, (1, 1) in Equation (2.3), one equation is obtained,

b1W − 4u11 + u12 + b1N + u21 = 0.

Doing the same for each point in that row, continuing with all rows, gives a system of linear equations
with one equation for each unknown;

b1W − 4u11 + u12 + b1N + u21 = 0

u11 − 4u12 + u13 + b2N + u22 = 0

u12 − 4u13 + u14 + b3N + u23 = 0

...

The discrete values along the boundaries enter as indicated above. These values are known, and are
therefore moved to the right-hand side of the equality sign.

−4u11 + u12 + u21 = −b1N − b1W
u11 − 4u12 + u13 + u22 = −b2N
u12 − 4u13 + u14 + u23 = −b3N

...

This system of linear equations can be expressed by matrices. The unknowns ui,j are arranged as a

vector u, introduced in Equation (2.2). Forming a block matrix A ∈ R2n2+n×2n2+n, and having all
knowns, (the values that enter from the boundary) in a column vector b, the system of linear equations
is now expressed by matrices as

Au = b.

The characteristics of b is quite straightforward. The characteristics of A, is a bit more intricate.
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2. The Global Problem Formulation

A consists of n2 blocks of size 2n+ 1× 2n+ 1 because there are n× (2n+ 1) internal points in the
grid. This is due to the structure of u according to Equation (2.2).

...

......

A u

...

Figure 2.5: Graphical illustration of A and u. A consists of n2 blocks, where each block has (2n+ 1)×
(2n+ 1) elements.

Starting from the first row of block matrices in A, the first block details the discretisation of the
Laplace equation over the grid points on the same row in the discretisation. The second block in the
same row details the influence from the second row of grid points. There is no influence from the third
row on the first row of grid points according to the discrete Laplace equation, so that block will be zeroes
only, and the same follows for all blocks that row. For the first row of grid points, the sets of linear
equations can be grouped as follows;

element (1,1):
element (1,2):
element (1,3):

...

−4u11 +u12

u11 −4u12 +u13

u12 −4u13 +u14

...︸ ︷︷ ︸
One 2n + 1 × 2n + 1
block, accessing elements
from the same row

+u21

+u22

+u23

...︸ ︷︷ ︸
Accessing elements
from the row imme-
diately below

= −b1N − b1W
= −b2N
= −b3N
... .

Followng the same structure, each row of the block matrix has a similar structure. From Row 2 the four
point stencil will access both grid points from the row below and above the current grid point:

element (2,1):
element (2,2):
element (2,3):

...

u11

u12

u13

...︸ ︷︷ ︸
Accessing elements
from the row imme-
diately above

−4u21 +u22

+u21 −4u22 +u23

+u22 −4u23 +u24

...︸ ︷︷ ︸
Accessing elements
from the same row

+u31

+u32

+u33

...︸ ︷︷ ︸
Accessing elements
from the row imme-
diately below

After covering all rows of grid points in the discretisation, the assembled block matrix A gets the
structure:
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2.3. The Global case, formulated as two subdomains

A =



−4 1 0 1

1 −4
. . . 1 0

. . .
. . . 1

. . .

0 1 −4 0 1

1 0 −4 1 0
. . .

1 1 −4
. . .

. . .
. . .

. . . 1
1 0 1 −4

0
. . .

. . .



(2.4)

The solution from solving this system of linear equation is used as a reference solution, ur.

2.3 The Global case, formulated as two subdomains

2.3.1 The general case

So far the temperature distribution is found for the domain as a whole. Now, the domain is split into
subdomains Ω1 and Ω2 with the interface Γ inbetween. Essentially, this is simply a reshuffling in which
order the equations are in. By doing so, it is possible to express the necessary matrices to be used later
on.

Figure 2.6: Splitting a domain into two nonoverlapping subdomains

By splitting up the initial domain into subdomains, special conditions have to be formulated to guarantee
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2. The Global Problem Formulation

continuity over the interface boundary Γ [4]. The conditions are the following:

Ω1 :


∆u1 = 0 in Ω1 i) The Laplace equation is applied to the

internal points in Ω1.

u1 = g on ∂Ω1 ii) The values along the boundary ∂Ω1 are
given by g.

(2.5)

Γ :


u1 = u2 on Γ i) The values along the interface Γ have

to be the same.

∂u1

∂n1
= − ∂u2

∂n2
on Γ ii) The values of the derivatives over the

interface Γ have to be the same.

(2.6)

Ω2 :


∆u2 = 0 in Ω2 i) The Laplace equation is applied to the

internal points in Ω2.

u2 = g on ∂Ω2
ii) The values along the boundary ∂Ω2

are
given by g.

(2.7)

This is now done on the example problem of this thesis:

Figure 2.7: A schematic overview of the domain and the subdomains Ω1 and Ω2, with the interface Γ
inbetween.

2.3.2 Discretising the global case as two subdomains

Due to the shape of the room, it is easily split into two equal sized parts, where subdomain Ω1, Ω2

consists of n× n internal points and interface Γ having n points:

Figure 2.8: A schematic overview of the discretised subdomains.

The internal points are now arranged separately from each other as three vectors. Two vectors u1 and
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2.3. The Global case, formulated as two subdomains

u1 for the subdomains and uΓ for the common interface,

u1 =



u11
1

u12
1

u13
1
...
u21

1
...
...
un1

1
...

unn1



∈ Rn
2

, u2 =



u11
2

u12
2

u13
2
...
u21

2
...
...
un1

2
...

unn2



∈ Rn
2

, uΓ =



u1
Γ

u2
Γ

u3
Γ
...

unΓ


∈ Rn.

Partitioning the grid points for each subdomain and its interface, each set of grid points has its own
set of conditions which are handled separately from each other. These conditions are the ones found in
Equations (2.5), (2.6), and (2.7).

Conditions over Ω1

Ω1 :


∆u1 = 0 in Ω1 i) The Laplace equation is applied to the

internal points in Ω1.

u1 = g on ∂Ω1 ii) The values along the boundary ∂Ω1 are
given by g.

When employing each grid point as described in Equation (2.3), the process is similar to that explained
in detail earlier, in 2.2 Finding the Approximate Temperature Distribution, except for the last
point on each row, where a grid point from the interface enters:

b1w − 4u1,n
1 + u1

Γ + bnN + u2,n
1 = 0

The same is true for all grid points adjacent to the interface. By creating another block matrix A1Γ with
n blocks (one block for each row) of size n× n. Each block of A1Γ affects each row of grid points, each
row within the blocks affects each grid point within that row. The grid points at the end of each row
are adjacent to the interface, so in A1Γ all elements are zero except for the bottom row of each block,
where the coefficient is 1 for the grid point adjacent to the row in subdomain Ω1.

For all other grid points in each row of the subdomain, the equations remain the same as previously
mentioned, although the set of grid points in u1 is fewer, since only the grid points in the first half of the
room is expressed. The block matrix containing the coefficients for u1 — called A11 — then has to be
smaller. A11 is similar to A, also a block matrix, but with n2 blocks of size n× n. The values entering
from the boundary in a similar fashion (as they are known) moved to the right-hand side of the equality
sign, which gives the discretisation for Ω1 the following system of linear equations:
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2. The Global Problem Formulation



−4 1 0 1

1 −4
. . . 1

. . .
. . . 1

. . .

0 1 −4 0 1

1 0 −4 1
. . .

1 1 −4
. . .

. . .
. . .

. . . 1
1 1 −4

. . .
. . .


︸ ︷︷ ︸

A11



u11
1

u12
1

u13
1
...
u21

1
...

...
un1

1
...

unn1


︸ ︷︷ ︸

u1

+



...
0
1 0 . . .

...
0 1 0 . . .

. . .

...
. . . 0 1


︸ ︷︷ ︸

A1Γ



u1
Γ

u2
Γ

u3
Γ
...

unΓ


︸ ︷︷ ︸

uΓ

=



−b1N − b1W
−b2N
−b3N

...
−b2W

0
...
−b3W

0
...
...

−bnW − b1S
−b2S

...


︸ ︷︷ ︸

b1

which can neatly be summarised as

A11u1 + A1ΓuΓ = b1. (2.8)

Conditions over Ω2

Ω2 :


∆u2 = 0 in Ω2 i) The Laplace equation is applied to the

internal points in Ω2.

u2 = g on ∂Ω2 ii) The values along the boundary ∂Ω2 are
given by g.

The same approach is applied to the second subdomain. However, for this case, the interface is on the
left-hand side of the subdomain. For this, a matrix is needed to access the adjacent grid point in the
interface only for the points at the start of each row — A2Γ. It has the same size as A1Γ. Since the first
grid point in each row is adjacent to the interface, only these equations are influenced by the interface.
Therefore, in each block of A2Γ, all elements are zero except for the top row, where each coefficient is 1
for the respective interface grid point.



1 0 . . .
0
...
0 1 0 . . .
...

. . .

. . . 0 1
0
...


︸ ︷︷ ︸

A2Γ

uΓ +



−4 1 0 1

1 −4
. . . 1

. . .
. . . 1

. . .

0 1 −4 0 1

1 0 −4 1
. . .

1 1 −4
. . .

. . .
. . .

. . . 1
1 1 −4

. . .
. . .


︸ ︷︷ ︸

A22



u11
2

u12
2

u13
2
...
u21

2
...
...
un1

2
...

unn2


︸ ︷︷ ︸

u2

=



...
−b2n−1

N

−b2nN
−b2n+1

N − b1E
...
0
−b2E

...
0
−b2E

...

...
−b2nE

−b2n+1
E − bnE


︸ ︷︷ ︸

b2

which is summarised as
A2ΓuΓ + A22u2 = b2. (2.9)
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Conditions over Γ

Γ :



u1 = u2 on Γ i) The values along the interface Γ have
to be the same.

∂u1

∂n1
= − ∂u2

∂n2
on Γ ii) The derivative over the boundary Γ

have to be the same incoming as out-
going.

(2.10)

The second condition says that the inflow and outflow over the interface have to be equal. This is
done by imposing a Neumann condition along Γ. This is done by adding a set of unknowns, αi, and βi.
Applying the second order central difference discretisation for each grid point gives us a set of equations.
In this case there are two points from the walls that enter; bn+1

N and bn+1
S .

α1 − 4u1
Γ + β1 + bn+1

N + u2
Γ = 0

α2 − 4u2
Γ + β2 + u1

Γ + u3
Γ = 0

α3 − 4u3
Γ + β3 + u2

Γ + u4
Γ = 0

...

αn − 4unΓ + βn + un−1
Γ + bn+1

S = 0

(2.11)

The second condition in Equation (2.10) is implemented using a first-order forward difference scheme
[3] (p.4), the unknowns αi and βi can be expressed using the grid points from each subdomain.

The inflow to Ω1 is
∂u1

∂n1
,

the inflow to Ω2 is
∂u2

∂n2
.

Expressing these using the first order forward difference scheme, we have that the derivatives are

∂u1

∂n1
=
uiΓ − αi

∆x

and
∂u2

∂n2
=
βi − uiΓ

∆x
.

In order to highlight which values are where, some more detailed notation needs to be introduced. ui,n1

denotes all values from u1 with indices {(1,n), (2,n), (3,n), ..., (n,n) }, i.e the grid points in u1 adjacent
to the interface. Similarly for u2, the grid point adjacent to the interface have the indices {(1,1), (2,1),
(3,1), ..., (n,1 ) }

The inflow should be equal to the outflow, which can also be expressed using the first order first difference
scheme over the subdomains. The outflow from Ω2 is

−∂u2

∂n2
= −u

i,1
2 − uiΓ

∆x

and the outflow from Ω1 is

−∂u1

∂n1
= −u

i
Γ − u

i,n
1

∆x
.
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2. The Global Problem Formulation

As the condition states, the inflow and the outflow should be equal. So, we find that the inflow to Ω1

from Ω2 is

∂u1

∂n1
= −∂u2

∂n2⇒

uiΓ − αi
∆x

= −u
i,1
2 − uiΓ

∆x
⇒ αi = ui,12

and the inflow to Ω2 from Ω2 is

∂u2

∂n2
= −∂u1

∂n1⇒

βi − uiΓ
∆x

= −u
i
Γ − u

i,n
1

∆x
⇒ βi = ui,n1 .

In a similar way as A1Γ accesses the interface grid points next to the subdomains for their respective
equations, transposing the matrix does the opposite, instead accessing the grid poins from u1 which are
adjacent to the interface grid points. This matrix is called AΓ1.

In a similar fashion, for the grid points in u2 adjacent to the interface are the grid points with in-
dices {(1,1), (2,1), (3,1), ..., (n,1)}, expressed as ui,12 , they can be accessed from u2 by AΓ2 which also
is the transpose of A2Γ.

Using the in- and outflow equations above in substituting the unknowns αi and βi in the Laplace
equation, expressing each grid point in the interface yields a system of equations:

u1,n
2 − 4u1

Γ + u1,1
1 + bn+1

N + u2
Γ = 0

u2,n
2 − 4u2

Γ + u2,1
1 + u1

Γ + u3
Γ = 0

u3,n
2 − 4u3

Γ + u3,1
1 + u2

Γ + u4
Γ = 0

...

un,n2 − 4unΓ + un,11 + un−1
Γ + bn+1

S = 0

(2.12)

The coefficients acting on grid points in the interface can be expressed as a matrix in a similar fashion
as for the subdomains according to Equation (2.11). Since there is one column of interface grid points,
this is not a block matrix, but rather a sole matrix similar to the diagonal blocks in A11 and A22. This
matrix is called AΓΓ.

. . . 0 1 . . . 0

0 1
...

... 0
. . . 0

... . . . 0 1


︸ ︷︷ ︸

AΓ1

u1 +


−4 1 0

1 −4
. . .

. . .
. . . 1

0 1 −4


︸ ︷︷ ︸

AΓΓ

uΓ+

+


1 0 . . . 0 . . .

0 1
...

... 0
. . . 0

... 1 0 . . .


︸ ︷︷ ︸

AΓ2

u2 =


−bn+1

N

0
...
0

−bn+1
S


︸ ︷︷ ︸

bΓ

2.4 Summary of global problem formulation

The Laplace equation over each subdomains cannot be solved separately from each other, because the
systems of linear equations contain unknowns from the interface, and the interface cannot be solved
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2.4. Summary of global problem formulation

because it contains unknowns from both subdomains. However, by composing a large system of linear
equations with all three sets of equations from each subdomain and interface, that system can be solved.A11 A1Γ 0

AΓ1 AΓΓ AΓ2

0 A2Γ A22

u1

uΓ

u2

 =

b1

bΓ

b2

 . (2.13)

These block matrices are visualised in Figure 2.9 to illustrate their respective sizes.

Figure 2.9: A graphical schematic of the different block matrices.

These matrices can be used as tools to formulate both Dirichlet-, and Neumann conditions based on how
they are arranged.
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Chapter 3

Subdomains-solving Problem
Formulations

Instead of solving the Laplace equation over the entire room at once, it is possible to solve each subdo-
main separately. For this, it is necessary to formulate boundary conditions over each subdomain such
that they can be solved independently of each other. The most basic method to achieve this is with the
Dirichlet-Neumann algorithm, which works as follows:

By setting a Dirichlet boundary condition for the first subdomain, the system of linear equations for
that subdomain can be solved with the interface as the values along the boundary. By setting a Neu-
mann condition over the other subdomain, this will include the interface due to the discretisation of the
derivative. By using the newly calculated first subdomain, the derivative over the interface is known and
can be set as the boundary condition, and the system of linear equations for the second subdomain can
be solved. In doing so, the interface will be calculated anew.

3.1 Dirichlet-Neumann algorithm

Starting with Ω1, by setting a Dirichlet condition over the its boundary adjacent to the interface, the
system of linear equations that arise from the discretisation can be solved. The boundary condition is
that the values along the boundary should be the same as along the interface. These values are given by
∂Γ.

For Ω2 we impose a Neumann condition, that inflow and the outflow to be equal.

Figure 3.1: The domain with Dirichlet- and Neumann conditions over the interface.
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3.1. Dirichlet-Neumann algorithm

The conditions that are now imposed over each subdomain are the following:

Ω1 :



∆u1 = 0 in Ω1 i) The Laplace equation is applied to the
internal points in Ω1.

u1 = g on ∂Ω1 \ Γ ii) The values along the boundary ∂Ω1 \ Γ
are given by g.

u1 = ∂Γ on Γ iii) A Dirichlet condition is imposed along
the interface, specifying the values on
u1 along Γ to have values given by ∂Γ.

(3.1)

Ω2 :



∆u2 = 0 in Ω2 i) The Laplace equation is applied to the
internal points in Ω2.

u2 = g on ∂Ω2
\ Γ ii) The values along the boundary ∂Ω2

\ Γ
are given by g.

∂u1

∂n1
= − ∂u2

∂n2
on Γ iii) A Neumann condition is imposed, spec-

ifying the derivatives for Ω2 along the
interface to be equal to those from Ω1.

(3.2)

3.1.1 Imposing a Dirichlet condition on a subdomain

To impose a Dirichlet condition on Ω1, the discretisation process here is almost the same as the one
described in the previous chapter, but with a small difference. In order to solve the system of linear
equations alone for Ω1, the values for the Dirichlet condition along the boundary adjacent to the interface
must be known. Assuming that the values over the interface are known, the system of linear equations
can be solved. The asterisk indicates that the values are known.

A11u1 = b1 −A1ΓuΓ
∗. (3.3)

3.1.2 Imposing a Neumann condition on a subdomain

When imposing a Neumann condition on a subdomain, in this case Ω2, it is done in two parts as the
grid points along the interface now also are unknown. One condition is set up for the internal points,
and another for the interface.

For the internal points, the discretisation process is the same as previously explained in 2.2 Find-
ing the Approximate Temperature Distribution, with the difference that the grid points along
the interface remain unknown,

A2ΓuΓ + A22u2 = b2. (3.4)

For the grid points along the interface, the discretisation process is very similar to that when discretising
the interface, except only one side has unknown values.
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3. Subdomains-solving Problem Formulations

The inflow to Ω2 is given by

− ∂u2

∂n2
= −αi − u

i
Γ

∆x

which has to be equal to the outflow from Ω1 which is calculated from the known values from Ω1 according
to

∂u1

∂n1
=
ui ∗Γ − u

i,n ∗
1

∆x
,

ui ∗Γ signifies the previously known discrete values from the interface, and ui,n ∗1 are the values from Ω1

adjacent to the interface.

As the inflow and the outflow should be the same, αi can be expressed in terms of knowns and un-
knowns of the subdomains:

ui ∗Γ − u
i,n ∗
1

∆x
= −αi − u

i
Γ

∆x

which can be rearranged to

αi = uiΓ︸︷︷︸
unknown

−ui ∗Γ + ui,n ∗1︸ ︷︷ ︸
known

. (3.5)

Discretising the Laplace equation over the interface is done as detailed in (2.11). In this case, the
equations have the form

αi − 4uiΓ + ui12 + ui+1
Γ + ui−1

Γ = 0

Inserting αi as expressed in (3.5) for all the equations that arise from the discretisation over the interface,
the following system of linear equations is found

−3u1
Γ + u2

Γ + +u11
2 = −bn+1

N + u1 ∗
Γ − u1,n ∗

1

u1
Γ − 3u2

Γ + u3
Γ + +u21

2 = +u2 ∗
Γ − u2,n ∗

1

+u2
Γ − 3u3

Γ + u4
Γ + u31

2 = +u3 ∗
Γ − u3,n ∗

1

...

un−1
Γ − 3unΓ︸ ︷︷ ︸

A
(II)
ΓΓ uΓ

+un1
2︸ ︷︷ ︸

AΓ2u2

= −bn+1
S︸ ︷︷ ︸

bΓ

+un ∗Γ︸ ︷︷ ︸
u∗Γ

−un,n ∗1︸ ︷︷ ︸
AΓ1u1

.

(3.6)

As indicated by the brackets below the equations, this system of linear equations can be expressed by

using the earlier introduced block matrices and a new n× n matrix A
(II)
ΓΓ

A
(II)
ΓΓ =


−3 1 0

1 −3
. . .

. . .
. . . 1

0 1 −3


The index (II) indicates that this matrix adheres to the second subdomain, Ω2. With these matrices,

the system of linear equations can be summarised as

A
(II)
ΓΓ uΓ + AΓ2u2 = bΓ + u∗Γ −AΓ1u∗1 (3.7)

Summary of the Dirichlet-Neumann algorithm

Finding the temperature distribution over the room using the Dirichlet-Neumann algorithm entails solv-
ing each set of systems of linear equations

Ω1 :
{

A11u1 = b1 −A1ΓuΓ
∗ (3.8a)

Ω2 :

{
A

(II)
ΓΓ uΓ + AΓ2u2 = bΓ + uΓ

∗ −AΓ1u1
∗

A2ΓuΓ + A22u2 = b2

(3.8b)
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3.2. A proposition for a new approach

These systems of linear equations introduced so far can be viewed as constraining the sets of unknowns
to certain conditions. Solving the following systems of equations

A11u1 = b1 −A1ΓuΓ
∗

can in words be expressed as finding the temperature distribution within Ω1 with a Dirichlet condition
over the adjacent interface Γ. In essence, the unknowns have to fulfill a set of critera imposed by the
equations.

Having a set of unknowns fulfill the constraints imposed by the systems of linear equations in

A
(I)
ΓΓuΓ + AΓ1u1 = bΓ + uΓ

∗ −AΓ2u2
∗ (3.9)

can in words be put as imposing a Neumann condition for the interface and adjacent subdomain Ω1.
This only affects the interface and the sets of grid points immediately adjacent to the interface, and not
the entire set of internal points in Ω1. In order to solve the system of linear equations, the condition
to fulfill the Laplace Equation has to be imposed over the internal points also. In combination with
the interface grid points being unknown, uΓ remains unknown in the system of linear equations for the
internal points. This means that this set of equations in Equation (3.9) is not enough a constraint to
find a temperature distribution over Ω1 with a Neumann condition. These equations are the governing
equations touching the interface and subdomain where the Neumann condition acts.

Imposing a Dirichlet condition on a subdomain:

Ω1 : A11u1 = b1 −A1ΓuΓ
∗ (3.10)

Ω2 : A22u2 = b2 −A2ΓuΓ
∗ (3.11)

Imposing a Neumann condition on a subdomain:

Ω1 : A
(I)
ΓΓuΓ + AΓ1u1 = bΓ + uΓ

∗ −AΓ2u2
∗ (3.12)

Ω2 : A
(II)
ΓΓ uΓ + AΓ2u2 = bΓ + uΓ

∗ −AΓ1u1
∗ (3.13)

These systems of linear equations can in short be used as tools to impose constraints that act as Dirichlet-
and Neumann-conditions over a given subdomain.

3.2 A proposition for a new approach

As touched upon in the introduction, the main theme of this thesis is to investigate if it is possible to find
the temperature distribution when posing more than one boundary condition over each subdomain. This
is done by setting up a system of linear equations containing the conditions for imposing a Dirichlet-, and
a Neumann condition for each subdomain. The problem is then the following, as illustrated in Figure
3.2.
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3. Subdomains-solving Problem Formulations

Figure 3.2: The subdomains with both Dirichlet- and Neumann conditions along the interface for each
sudomain.

For each subdomain, there is a set of conditions that we want to impose:

For Ω1 : For Ω2 :
∆u1 = 0 in Ω1 ∆u2 = 0 in Ω2 i) Imposing the Laplace equation on the

internal points over each subdomain.

u1 = g on ∂Ω1
\ Γ u2 = g on ∂Ω2

\ Γ ii) Imposing the boundary values over each
subdomain, not including the interface
Γ.

u1 = u2 on Γ u2 = u1 on Γ iii) Imposing the condition that the values
on each subdomain must be continuous
over Γ.

∂u1

∂n1
= − ∂u2

∂n2
on Γ ∂u2

∂n2
= − ∂u1

∂n1
on Γ iv) Imposing the condition that the inflow

and outflow over Γ should be the same.
(3.14)

Setting up the conditions

By using the equations given in (3.10) - (3.13), it is possible to impose the conditions described in (3.14).
These conditions set up the following sets of linear equations,

Ω1 : A11u1 = b1 −A1ΓuΓ
∗

Ω2 : A22u2 = b2 −A2ΓuΓ
∗

Solving internal points with Dirichlet condition along
interface, Dirichlet data are the values from the as-
sumed to be known, uΓ

∗.

which fulfills conditions (3.14)i and (3.14)ii,

Ω1 and Ω2 : uΓ = uΓ
∗ Values on Γ should be equal to uΓ

∗.

which fulfills conditions (3.14)iii,

Ω1 : AΓ1u1 + A
(I)
ΓΓuΓ = bΓ + uΓ

∗ −AΓ2u2
∗

Ω2 : A
(II)
ΓΓ uΓ + AΓ2u2 = bΓ + uΓ

∗ −AΓ1u1
∗

Derivatives along Γ should equal derivatives calcu-
lated over uΓ from a known adjacent subdomain.

which fulfills conditions (3.14)iv.

For each subdomain, the unknowns will be u1, uΓ and u2, uΓ respectively. Solving each subdomain will
produce its own set of solutions for the unknowns along the interface. In order to keep the interface for
each subdomain separate, they will be referred to as uΓ(1) and uΓ(2). This also means that when solving
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3.3. From algorithm to method

the systems for each subdomain, the interface u∗Γ is different for each subdomain according to

u∗Γ =

{
u∗Γ(2) when solving over Ω1

u∗Γ(1) when solving over Ω2

.

When moving to an overdetermined formulation of the iteration matrices, there is need for a new notation.
This is done by adding the subindex Oi

, where i refers to the subdomain. Each set of unknowns per
subdomain can be grouped together in vectors as

uO1
=

(
u1

uΓ(1)

)
and uO2

=

(
uΓ(2)

u1

)
.

Taking the systems of linear equations that enforces the criteria in (3.14) and using the vectors uO1
and

uO2
the following system can be set up

Ω1 :

A11 0
0 I

AΓ1 A
(I)
ΓΓ

( u1

uΓ(1)

)
=

b1

0
bΓ

+

 −A1ΓuΓ(2)
∗

uΓ(2)
∗

uΓ(2)
∗ −AΓ2u2

∗

 (3.15a)

Ω2 :

A
(II)
ΓΓ AΓ2

I 0
0 A22

(uΓ(2)

u2

)
=

bΓ

0
b2

+

uΓ(1)
∗ −AΓ1u1

∗

uΓ(1)
∗

−A2ΓuΓ(1)
∗

 , (3.15b)

or,

AO1
uO1

= bO1
+ lO1

AO2
uO2

= bO2
+ lO2

where

AO1
=

A11 0
0 I

AΓ1 A
(I)
ΓΓ

 , bO1
=

b1

0
bΓ

 , lO1
=

 −A1ΓuΓ(2)
∗

uΓ(2)
∗

uΓ(2)
∗ −AΓ2u2

∗



AO2
=

A
(II)
ΓΓ AΓ2

I 0
0 A22

 , bO2
=

bΓ

0
b2

 , lO2
=

uΓ(1)
∗ −AΓ1u1

∗

uΓ(1)
∗

−A2ΓuΓ(1)
∗

 .

Because this approach is a new one, it has yet to be named. From this point onward it will be referred
to as the Dirichlet & Neumann - Dirichlet & Neumann algorithm, or the DNDN-algorithm for short.

3.3 From algorithm to method

Up to this point, both the Dirichlet-Neumann-algorithm, and the Dirichlet & Neumann - Dirichlet &
Neumann algorithm have been expressed as a set of systems of linear equations for each subdomain.
In practice, in order to find a good approximation for the temperature distribution of the entire room,
using a subdomain method involves iterations between the subdomains. Given an initial guess, each
subdomain is solved in turn, giving new information to the other subdomain. This new information
enters the new subdomain as those indices denoted by an asterisk. Moving to an iterative process, these
indices will be denoted by the iteration step instead.
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Chapter 4

Subdomain Methods

This chapter details how the Dirichlet-Neumann method and the DNDN-method finds the temperature
distribution for the room. The Dirichlet-Neumann method is included in detail since it will be used as a
benchmark to validate the efficacy of the newly proposed DNDN-method. The DNDN-method involves
solving an overdetermined system of linear equations. How this is done is described in detail in this
chapter as well.

An iterative process

These methods are iterative, in that an intermediate solution is found for each subdomain in turn, chang-
ing the values over the interface where information is sent between the subdomains. The practice is that
one iteration step involves solving two systems of linear equations for each subdomain.

When the iteration reaches termination, the two solutions produced for each subdomain will be an ade-
quate approximation of the temperature distribution for the entire the room, granted that the method
works. The termination criterion used is

||uΓ
k+1 − uΓ

k||2 < τ,

that is, when the change of the values over the interface is smaller than a certain tolerance τ , the iteration
is complete [2]

Between each iteration, there is a practice of using relaxation to speed up the methods since the use
of relaxation decreases the number of iterations needed to reach termination [3] [4] . For the DNDN-
method, this is not as straightforward as for the DN-method, so how the DNDN-method is relaxed will
be a topic for discussion in this chapter.

4.1 Dirichlet-Neumann Method

Given an initial guess, each system of linear equations for each subdomain is solved, updating the val-
ues of u1, uΓ, and u2. This is repeated, solving the system for each subdomain until the termination
criterion is met, and the solutions from each system can be combined to approximate the temperature
distribution of the room. The method is outlined as steps:
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4.2. Dirichlet & Neumann - Dirichlet & Neumann method

The Dirichlet-Neumann method:

Set an initial guess for u1
0, uΓ

0, u2
0

1. Solving over Ω1:
A11u1

k+1 = b1 −A1ΓuΓ
k

2. Solving over Ω2: (
A

(II)
ΓΓ AΓ2

A2Γ A22

)(
uΓ

u2

)k+1

=

(
bΓ

b1

)
+

(
uΓ

k −AΓ1u1
k+1

0

)

3. Relaxation: uΓ
k+1 := θuΓ

k+1 + (1− θ)uΓ
k

At termination, ||uk+1
Γ − uΓ

k||2 < τ , the iterated solution is given by uk+1
1 , uk+1

Γ , uk+1
2 .

Step 1-3 is repeated until termination criterion is met.

4.2 Dirichlet & Neumann - Dirichlet & Neumann method

For the proposed method, the iteration structure is similar to the DN-method. Each system of linear
equations for each subdomain is solved in turn, and betwee solving these systems, relaxation can be
performed. Relaxation has proved to increase the convergence rate of the DN-iteration [4, p.400], re-
laxation is included in the DNDN method also. Because this method provides a solution that includes
gridpoints from each subdomain and the interface, how relaxation should be carried out is not as clear
as in the DN-method. In the stencil detailing the DNDN method, steps 2 and 4 indicate where potential
relaxation can be carried out.

The Dirichlet & Neumann - Dirichlet & Neumann method:

Set an initial guess u1
0, uΓ

0, u2
0

1. Solving over Ω1: A11 0
0 I

AΓ1 A
(I)
ΓΓ

( u1

uΓ(1)

)k+1

=

b1

0
bΓ

+

 −A1ΓuΓ(2)
k

uΓ(2)
k

uΓ(2)
k −AΓ2u2

k

 (4.1)

2. Optional relaxation

3. Solving over Ω2:A
(II)
ΓΓ AΓ2

I 0
0 A22

(uΓ(2)

u2

)k+1

=

bΓ

0
b2

+

uΓ(1)
k+1 −AΓ1u1

k+1

uΓ(1)
k+1

−A2ΓuΓ(1)
k+1

 (4.2)

4. Optional relaxation

At termination, ||uΓ(2)
k+1 − uΓ(2)

k||2 < τ , the iterated solution is given by uk+1
1 , uk+1

Γ(2), uk+1
2

Step 1-4 is repeated until termination criterion is met.

4.3 Solving an overdetermined system

The systems of linear equations for each subdomain in the DNDN-method are overdetermined. An
overdetermined system has either no solution, one solution, or infinitely many solutions. Given that we
are looking to find the temperature distribution of the room, it is safe to say that there does exist one
solution since we know from the reference solution that there is one unique temperature distribution for
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4. Subdomain Methods

the given boundary conditions along the walls.

There are different ways of finding a solution to an overdetermined system. Most of them involve
finding an approximate solution. In order to make an informed choice as to what approximation method
to use, it is pertinent to ask the question: ”what does a solution to an overdetermined system mean?”.
The least squares method provides an answer to this — a solution is one that minimizes the residual
evenly to the overdetermined problem. This can be achieved by using the normal equation [1, p.386].

Definition 4.3.1. A solution x in a least squares sense for an overdetermined system satisfies

min
x
||Ax− b||2.

The solution x is found from the normal equations

x = (ATA)−1ATb (4.3)

4.3.1 The normal equations

The normal equations for the problem at hand involves large block matrices as introduced in the previous
chapters. Expanding the normal equations and restructuring them will be helpful in later parts, and
when implementing, fewer matrix calculations needs to be computed.

The systems of linear equations solved for each subdomain are

AO1
uk+1
O1

= bO1
+ lkO1

AO2
uk+1
O2

= bO2
+ lk+1
O2

Expanding the normal equations for Ω1

For Ω1, the normal equations are

(AT
O1

AO1
)−1AT

O1
(bO1

+ lkO2
).

There is not much to be done regarding (AT
O1

AO1
)−1, but AT

O1
(bO1

+ lkO2
) can be expanded and reor-

ganised. As a reminder, the matrices involved in solving the overdetermined cases are as follows,

AO1
=

A11 0
0 I

AΓ1 A
(I)
ΓΓ

 , bO1
=

b1

0
bΓ

 , lO1
=

 −A1ΓuΓ(2)
k

uΓ(2)
k

uΓ(2)
k −AΓ2u2

k

 .

Expanding AT
O1

(bO1 + lkO2
) gives us

AT
O1

(bO1
+ lkO1

) =

AT
11 0 AT

Γ1

0 I A
(I)
ΓΓ

T




b1 −A1ΓuΓ(2)
k

uΓ(2)
k

bΓ −AΓ2u2
k + uΓ(2)

k

 =

=

AT
11b1 −AT

11A1ΓuΓ(2)
k + AT

Γ1bΓ −AT
Γ1AΓ2u2

k + AT
Γ1uΓ(2)

k

uΓ(2)
k + A

(I)
ΓΓ

T
bΓ −A

(I)
ΓΓ

T
AΓ2u2

k + A
(I)
ΓΓ

T
uΓ(2)

k

 ,

which contains elements that are dependent on the iteration step k, and elements that are constant.
Separating these into two parts, c1 for the constant elements, and L1 for the elements that are dependent
on the step k, we have

AT
O1

(bO1
+ lkO2

) =

AT
11 AT

Γ1

0 A
(I)
ΓΓ

T

(b1

bΓ

)
︸ ︷︷ ︸

c1

+

−AT
11A1Γ + AT

Γ1 −AT
Γ1AΓ2

I + A
(I)
ΓΓ

T
−A

(I)
ΓΓ

T
AΓ2


︸ ︷︷ ︸

L1

(
uΓ(2)

k

u2
k

)

which when put into the normal equations gives the equation

(AT
O1

AO1
)uk+1
O1

= c1 + L1u
k
O2

(4.4)

— 25 —



4.4. Constraining the least squares method

Expanding the normal equations for Ω2

Similarly for Ω2 we expand AT
O2

(bO2
+ lk+1
O2

) where

AO2 =

A
(II)
ΓΓ AΓ2

I 0
0 A22

 , bO2 =

bΓ

0
b2

 , lO2 =

uΓ(1)
k+1 −AΓ1u1

k+1

uΓ(1)
k+1

−A2ΓuΓ(1)
k+1

 .

After cleaning up the right-hand side, the system takes the form

AT
O2

(bO2
+ lk+1
O2

) =

A
(II)
ΓΓ

T
0

AT
Γ2 AT

22

(bΓ

b2

)
︸ ︷︷ ︸

c2

+

−A
(II)
ΓΓ

T
AΓ1 A

(II)
ΓΓ

T
+ I

−AT
Γ2AΓ1 −AT

22A2Γ + AT
Γ2


︸ ︷︷ ︸

L2

(
u1

k+1

uΓ(1)
k+1

)

which can with the above-introduced notation be summarised for both systems

(AT
O1

AO1
)uk+1
O1

= c1 + L1u
k
O2

for Ω1

(4.5)

(AT
O2

AO2)uk+1
O2

= c2 + L2u
k+1
O1

for Ω2.

4.4 Constraining the least squares method

A solution given by using the least squares method is one where the method aims to minimize the residual
evenly over the system, with no regards to the underlying mathematical problem at hand. This can be
remedied however, using an extended version of the least squares method, constraining the unknowns
to completely fulfill one set of conditions, restricting the residuals to be zero. The question is whether
constraining the system makes the overdetermined method ”better”.

Definition 4.4.1. Constraining a least squares system is done by adding a set of constraints Cx = d
whilst minimising the residual,

Minimize ||Ax− b||2
subject to Cx = d

where C and d set up the constraints whose residual has to be zero.

The minimal solution x to the original problem is then given by

(
ATA CT

C 0

)(
x
z

)
=

(
ATb
d

)
, (4.6)

where z are the Lagrange multipliers.

4.4.1 Choice of constraints

The idea is to use the conditions already present in the problem formulation. These conditions were
introduced in the previous chapter, and is presented here also.
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4. Subdomain Methods

Equations (3.14):

For Ω1 : For Ω2 :
∆u1 = 0 in Ω1 ∆u2 = 0 in Ω2 i) Imposing the Laplace equation on the

internal points over each subdomain.

u1 = g on ∂Ω1
\ Γ u2 = g on ∂Ω2

\ Γ ii) Imposing the boundary values over each
subdomain, not including the interface
Γ.

u1 = u2 on Γ u2 = u1 on Γ iii) Imposing the condition that the values
on each subdomain must be continuous
over Γ.

∂u1

∂n1
= − ∂u2

∂n2
on Γ ∂u2

∂n2
= − ∂u1

∂n1
on Γ iv) Imposing the condition that the inflow

and outflow over Γ should be the same.

Not all these conditions will have any effect on the problem. For instance, setting a constraint over
(3.14)iii would mean that the interface cannot change, meaning it would remain the same as the initial
guess — u0

Γ, and the method would terminate immediately, not producing a correct approximation.
Condition (3.14)ii is only related to the outer boundary, which would not affect the solution. The
conditions that can be used to experiment with are conditions (3.14)i and (3.14)iv.

4.4.2 Constraining the internal points condition

The first approach is to constrain the condition that formulates the discretised Laplace equation over
the internal points. In practice, this means that the condition (3.14)i,

Ω1 : A11u1 = b1 −A1ΓuΓ
∗

Ω2 : A22u2 = b2 −A2ΓuΓ
∗,

must be fulfilled without producing a residual for the constrained unknowns. By setting the matrices C
and d in Equation (4.6) to the following,

Ω1 : C =
[
A11 0

]
d =

[
b1 −A1Γu∗Γ

] Ω2 : C =
[
0 A22

]
d =

[
b2 −A2Γu∗Γ

]
.

these constraints are imposed for the overdetermined system. The method is then changed to the fol-
lowing:
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4.4. Constraining the least squares method

The Constrained Internal Least Squares method:

Set an initial guess u1
0, uΓ

0, u2
0

1. Solving over Ω1: AT
O1

AO1

[
A11

T

0

]
[
A11 0

]
0

[ u1

uΓ(1)

]
z

k+1

=

 c1 + L1u
k
O2

b1 −A1ΓuΓ(2)
k

 (4.7)

2. Optional relaxation

3. Solving over Ω2:AT
O2

AO2

[
0

A22
T

]
[
0 A22

]
0

[uΓ(2)

u2

]
z

k+1

=

 c2 + L2u
k+1
O1

b2 −A2ΓuΓ(1)
k+1

 (4.8)

4. Optional relaxation

At termination, ||uΓ(2)
k+1 − uΓ(2)

k||2 < τ , the iterated solution is given by uk+1
1 , uk+1

Γ(2), uk+1
2

This approach is henceforth refered to as ”Constrained Internal Least Squares”, or ”CILQ”.

4.4.3 Constraining the derivatives condition

The second approach is to constrain the condition that formulates the inflow and outflow over the
interface to be the same. This is done by having the condition (3.14)iv,

Ω1 : AΓ1u1 + A
(I)
ΓΓuΓ = bΓ + uΓ

∗ −AΓ2u2
∗

Ω2 : A
(II)
ΓΓ uΓ + AΓ2u2 = bΓ + uΓ

∗ −AΓ1u1
∗
,

fulfilled without producing a residual for those unknowns in the condition. By setting the matrices C
and d in Equation (4.6) to the following,

Ω1 : C =
[
AΓ1 A

(I)
ΓΓ

]
d =

[
bΓ + u∗Γ −AΓ2u∗2

] Ω2 : C =
[
A

(II)
ΓΓ AΓ2

]
d =

[
bΓ + u∗Γ −AΓ1u∗1

]
.

these constraints are imposed for the overdetermined system. The method is then changed to the fol-
lowing:
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4. Subdomain Methods

The Constrained Derivatives Least Squares method:

Set an initial guess u1
0, uΓ

0, u2
0

1. Solving over Ω1: AT
O1

AO1

[
AΓ1

T

A
(I)
ΓΓ

T

]
[
AΓ1 A

(I)
ΓΓ

]
0


[ u1

uΓ(1)

]
z

k+1

=

 c1 + L1u
k
O2

bΓ + uΓ
k −AΓ2u2

k

 (4.9)

2. Optional relaxation

3. Solving over Ω2: AT
O2

AO2

[
A

(II)
ΓΓ

T

AΓ2
T

]
[
A

(II)
ΓΓ AΓ2

]
0


[uΓ(2)

u2

]
z

k+1

=

 c2 + L2u
k+1
O1

bΓ + uΓ
k+1 −AΓ1u1

k+1

 (4.10)

4. Optional relaxation

At termination, ||uΓ(2)
k+1 − uΓ(2)

k||2 < τ , the iterated solution is given by uk+1
1 , uk+1

Γ(2), uk+1
2

This approach is henceforth referred to as ”Constrained Derivatives Least Squares”, or ”CDLQ”.

4.5 Choice of relaxation

In the Dirichlet-Neumann method, information between the iterations is transferred by the interface
grid points, uΓ. For the DNDN-method, information is transfered by the interface and the subdomains.
Therefore, the approach to relax the information-carrying vectors can be done in different ways. In this
thesis, five approaches have been tested out.

For all DNDN-methods, the following scheme remains the same:

1. Solving over Ω1 :

{
in: u2

k, uΓ(2)
k

out: uΓ(1)
k+1, u1

k+1

2. Solving over Ω2 :

{
in: uΓ(1)

k+1, u1
k+1

out: u2
k+1, uΓ(2)

k+1

End relaxation

Relaxing interface after last step each iteration. This is the standard approach to relaxation. This type
of relaxation is henceforth referred to as ”end” relaxation.

End relaxation:

Set an initial guess

1. Solving over Ω1

2. Solving over Ω2

3. Relax interface: uΓ(2)
k+1 := θuΓ(2)

k+1 + (1− θ)uΓ(2)
k
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4.6. The spectral radius of the iteration matrix

Middle relaxation

Relaxing interface after intermediate and last step each iteration. This typ of relaxation is henceforth
referred to as ”middle” relaxation.

Middle relaxation:

Set an initial guess

1. Solving over Ω1

2. Relax interface: uΓ(1)
k+1 = θuΓ(1)

k+1 + (1− θ)uΓ(1)
k

3. Solving over Ω2

4. Relax interface: uΓ(2)
k+1 := θuΓ(2)

k+1 + (1− θ)uΓ(2)
k

Full relaxation

Relaxing interface and subdomain after last step each iteration. Since these overdetermined methods
send information between iterations by the interface and one of the subdomains, it might be a good idea
to relax this subdomain as well. This typ of relaxation will be referred to as ”full” relaxation later on.

Full relaxation:

Set an initial guess

1. Solving over Ω1

2. Solving over Ω2

3. Relax interface and subdomain: uk+1
O2

:= θuk+1
O2

+ (1− θ)ukO2

Remark 4.5.1. Information is transferred by uO2
between iterations because Ω1 is solved first. If Ω2

were to be solved first, naturally, information would be transferred by uO1
, and it would be relaxed instead.

Accelerating the flux

Similar to relaxation, it is also possible to accelerate the flux, meaning multiplying the flux part of lOi

with θ

lO1
=

 −A1ΓuΓ(2)
k

uΓ(2)
k

θ(uΓ(2)
k −AΓ2u2

k)

 , lO2
=

θ(uΓ(1)
k −AΓ1u1

k)
uΓ(1)

k

−A2ΓuΓ(1)
k


Accelerating the load

It is also possible to accelerate the entire interface load, lOi
by scaling it by θ, as in θlOi

.

4.6 The spectral radius of the iteration matrix

To further investigate the methods, here follows a deduction of the iteration matrices for each method.
This is done to compare the spectral radius and the convergence rate of the methods. The iteration ma-
trices differ based on how the method solves the overdetermined systems. The matrices for each system
are very large, and it is therefore very difficult to carry out an analytical deduction of the eigenvalues.
However, it is possible to find an approximation of the eigenvalues.

The largest eigenvalue of an iteration matrix forms the spectral radius [4] (p.394),

ρ(Σ) = max
λ∈σ(Σ)

|λ|
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4. Subdomain Methods

where Σ is the iteration matrix, the matrix that expresses the system of linear equations solving for both
subdomains as one system. When ρ(Σ) < 1, the method is convergent.

4.6.1 Iteration matrices for Dirichlet & Neumann - Dirichlet & Neumann
iteration

Standard least squares method

To find the iteration matrix for the overdetermined system, we begin by looking at the linear systems
for each subdomain

(AT
O1

AO1
)

(
u1

uΓ(1)

)k+1

=

c1︷ ︸︸ ︷AT
11 AT

Γ1

0 A
(I)
ΓΓ

T

(b1

bΓ

)
+

L1︷ ︸︸ ︷−AT
11A1Γ + AT

Γ1 −AT
Γ1AΓ2

I + A
(I)
ΓΓ

T
−A

(I)
ΓΓ

T
AΓ2

(uΓ(2)
k

u2
k

)

(AT
O2

AO2
)

(
uΓ(2)

u2

)k+1

=

A
(II)
ΓΓ

T
0

AT
Γ2 AT

22

(bΓ

b2

)
︸ ︷︷ ︸

c2

+

−A
(II)
ΓΓ

T
AΓ1 A

(II)
ΓΓ

T
+ I

−AT
Γ2AΓ1 −AT

22A2Γ + AT
Γ2


︸ ︷︷ ︸

L2

(
u1

k+1

uΓ(1)
k+1

)

By eliminating uO1
from (AT

O2
AO2

)uk+1
O2

, we can express uk+1
O2

as depending on ukO2
only. This system

contains the iteration matrix Σ;

(AT
O2

AO2
)uk+1
O2

= c2 + L2((AT
O1

AO1
)−1c1 + (AT

O1
AO1

)−1L1u
k
O2

).

Grouping together the constants as χ we have

(AT
O2

AO2)︸ ︷︷ ︸
Σ2

uk+1
O2

= χ+ L2(AT
O1

AO1)−1L1︸ ︷︷ ︸
Σ1

ukO2
.

After relaxation, uk+1
O2

:= θuk+1
O2

+ (1− θ)ukO2
, the system of linear equations is expressed as

uk+1
O2

= θ(Σ−1
2 χ+ Σ−1

2 Σ1u
k
O2

) + (1− θ)ukO2
.

Reorganising further, putting all constants in χ′, the spectral radius ρ(Σ) can be found from

uk+1
O2

= θχ′ + (I + θ(Σ−1
2 Σ1 − I))︸ ︷︷ ︸
Σ

ukO2
.

Constrained least squares methods

Finding the iteration matrix for a constrained least squares method involves finding the inverse of a very
large matrix, and as such requires some tricks. The constrained system has the form(

AT
Oi

AOi
CT
i

Ci 0

)(
uOi

z

)
=

(
AT
Oi

(bOi
+ lOi

)
di

)
,

where Ci and di depend on the constraint. Based on what method or which subdomain is used, the
matrices change. However, regardless of what method is used, the matrices AOi

is always the same.
Using the form for AT

Oi
(bOi

+ lOi
) given in (4.5), and taking advantage of the fact that di will in most

cases have one constant element c′i and one matrix di depending on which subdomain is evaluated. By
separating the constant terms, we find the following expression,(

AT
Oi

(bOi
+ lOi

)
di

)
=

(
c1

c′1

)
+

(
Li
di

)
ukOi−1

.

The constrained least squares methods can then be expressed as(
AT
Oi

AOi CT
i

Ci 0

)(
uk+1
Oi

z

)
=

(
c1

c′1

)
+

(
Li
di

)
ukOi−1

.
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4.6. The spectral radius of the iteration matrix

By identifying di for each constrained least squares method, it is possible to find the spectral radius,
since constants do not affect the eigenvalues of an iteration matrix.

AT
Oi

AOi
is always square and non-singular, which means that the inverse of the matrix can be found

using the formula for block matrix inversion. For simplicity, the following notation will be used(
A B
C D

)−1

=

(
A−1 + A−1B(D−CA−1B)−1CA−1 −A−1B(D−CA−1B)−1

−(D−CA−1B)−1CA−1 (D−CA−1B)−1

)
:=

(
A? B?

C? D?

)
Using the formula for block matrix inversion, we have that(

AT
Oi

AOi CT
i

Ci 0

)−1

=

(
A? B?

C? D?

)
, (4.11)

and with this inverse, it is possible to find the iteration matrix Σ for a constrained least squares method.

Since the constants do not affect the eigenvalues of the iteration matrix, they can be disregarded
throughout the process. Taking advantage of the block inversion, the systems of linear equations for
each subdomains can be expressed as

Ω1 :

(
u1

uΓ(1)

)k+1

= c′ +
(
A1

? B1
?
)(L1

d1

)
ukO2

Ω2 :

(
uΓ(2)

u2

)k+1

= c′ +
(
A2

? B2
?
)(L2

d2

)
uk+1
O1

Next, we want to eliminate uk+1
O1

from the second system of linear equations, to express the iteration in
terms of one system of linear equations, and therefore one iteration matrix. After grouping all constants
together as χ, gives us(

uΓ(2)

u2

)k+1

= χ+
(
A1

? B1
?
)(L1

d1

)(
A2

? B2
?
)(L2

d2

)
︸ ︷︷ ︸

Σ′

ukO2
(4.12)

When including relaxation, this becomes

uk+1
O2

= θχ+ (I + θ(Σ′ − I))︸ ︷︷ ︸
Σ

ukO2
(4.13)

where Σ is called the iteration matrix. The only thing that changes when employing different constraints
are the matrices A?

i , B?
i , and di.

Iteration matrix for Constrained Internal Least Squares

For this constraint, the C and d-matrix in Equation (4.6) are

Ω1 : C =
[
A11 0

]
d =

[
b1 −A1Γu∗Γ

] Ω2 : C =
[
0 A22

]
d =

[
b2 −A2Γu∗Γ

]
Now, since d only depends on uΓ, we need to add a matrix in order to have it work on the entire vector
uOi . This is simply done by adding a matrix of zeros, giving the di matrices the shape

dCILQ1 =
[
A1Γ 0

]
dCILQ2 =

[
0 A2Γ

]
Tt is now possible to deduce the matrices A?

i , B?
i which depend on C according to Equation (4.11), and

the iteration matrix Σ by using di according to Equations (4.12) and (4.13).
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Iteration matrix for Constrained Derivative Least Squares

For this constraint, the C and d-matrix in Equation (4.6) are

Ω1 : C =
[
AΓ1 A

(I)
ΓΓ

]
d =

[
bΓ − (AΓ2u∗2 − u∗Γ)

] Ω2 : C =
[
A

(II)
ΓΓ AΓ2

]
d =

[
bΓ + (u∗Γ −AΓ1u∗1)

]
The same trick is applied here, only now does di depend both on ui and uΓ. The di matrices are given
by

dCDLQ1 =
[
I −AΓ2

]
dCDLQ2 =

[
−AΓ1 I

]
Having this identified, it is possible to deduce the matrices A?

i , B?
i which depend on C according to

Equation (4.11), and the iteration matrix Σ by using di according to Equations (4.12) and (4.13).

4.6.2 Summary of the iteration matrices

The spectral radius of the iteration matrices for the overdetermined methods are found from the iteration
matrix Σ.

For the Standard Least Squares method, the iteration matrix Σ is given by

uk+1
O2

= θχ′ + (I + θ(Σ−1
2 Σ1 − I))︸ ︷︷ ︸
Σ

ukO2
where

Σ2 =(AT
O2

AO2
)

Σ1 =L2(AT
O1

AO1
)−1L1

(4.14)

For a constrained least squares method, the iteration matrix Σ is given by

uk+1
O2

= θχ+ (I + θ(Σ′ − I))︸ ︷︷ ︸
Σ

ukO2
where Σ′ =

(
A1

? B1
?
)(L1

d1

)(
A2

? B2
?
)(L2

d2

)
(4.15)

where Σ is given by C and di, depending on the constraints.
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Chapter 5

Results

Validating the methods

In order to validate the approximated solution produced by the iterative methods, the error ek at step
k is given by the difference between the intermediate solution uk and reference solution ur,

ek = ||uk − ur||2 where uk =

u1
k

uΓ
k

u2
k

 .

The reference solution ur is found by solving the Laplace Equation over the room as one domain with
the same number of internal points.

The speed of a method can be evaluated looking at the rate of convergence µ, given by

µ =
|ek+1|
|ek|

.

The Dirichlet-Neumann method is included as a comparison when evaluating the efficiency of the meth-
ods. It is chosen as it is both easy to understand and to implement, whilst also producing good results.

The same number of grid points have been used for the methods to avoid discrepancies when com-
paring methods, namely n = 18. The tolerance τ = 1e−12 has been used.

Firstly, all methods will be presented individually. This will be followed by a closer look at how the
choice of relaxation affects the methods. After that, the observed convergene rate and spectral radius
is presented. Lastly, a summary of the optimal cases for all methods is presented. Each method has its
own color, and the relaxation type is illustrated with different types of lines in the figures.

Method, colour representation
Dirichlet-Neumann method
Standard Least Squares
Constrained Internal Least Squares
Constrained Derivatives Least Squares

Relaxation, line representation
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5.1. Methods

5.1 Methods

The following figures show two plots where the error decreases per iteration, without relaxation. This is
done as to give a hint of the quality of the methods.
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Figure 5.1: Error plot for the different methods, using no relaxation scheme.

The figures above show that the fastest method is the overdetermined method constraining the internal
points condition. Next is presented how the relaxation modifies the performance of the methods.
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5. Results

5.2 Types of relaxation

As is evident from the figures, the type of relaxation plays a part in the rate of convergence. Here follows
the three types of relaxation attempted, where the methods at termination found a good approximation
of the temperature distribution.
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Figure 5.2: End relaxation
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Figure 5.3: Full relaxation
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Figure 5.4: Middle relaxation

Once the relaxation factor θ is larger than 1, the Dirichlet-Neumann method diverges. By looking
at the figures, it is apparent that Middle relaxation appears to be the best in terms of convergence rate.
However, when looking at the error, see Figures 5.5 and 5.6, it is evident that the methods behaves
strangely.
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5.2. Types of relaxation

A closer look at full- and middle relaxation

When attempting the different relaxation types, the middle relaxation shows an odd behaviour which
raises questions regarding if it is correct or not. The wavy way the error decreases over iterations hints
to something being incorrect.
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Figure 5.5: Error for all overdetermined meth-
ods using full relaxation.
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Figure 5.6: Error for all overdetermined meth-
ods using middle relaxation.
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Pushing the relaxation factor

At first glance, it seems that a relaxation factor of θ = 2 is the upper limit, but on closer inspection this
turns out to be wrong. Pushing the relaxation factor to a value of 2.1 leads to some interesting results.
For values higher than 2.1, all methods diverge. As can be seen in the figure below, both full- and middle
relaxation become unstable, but the end relaxation still yields a good approximation of the temperature
distribution, albeit very slowly compared to relaxation factors below 2.

Figure 5.7: All methods and relaxation types pushing the relaxation factor to µ = 2.1.
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Flux- and load acceleration

Accelerating the flux and load does not result in a valid solution to the problem, as is apparent in the
error plots in the figure below. These results are found using the CILQ method. Similar results are found
for the other overdetermined methods also. Only for one value does the method yield a good result, for
θ = 1, i.e when there is no relaxation.
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Figure 5.8: Constrained Internal Least Squares using flux acceleration relaxation.
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Figure 5.9: Constrained Internal Least Squares using load acceleration relaxation.
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5.3 Convergence rate and spectral radius

Adding more grounds on which to discuss the methods, a comparison between the spectral radii of their
respective iteration matrices and the observed convergence rate µ is shown in the figures below.

method

Figure 5.10: Convergence rate and spectral ra-
dius for the Dirichlet-Neumann method.
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Figure 5.11: Convergence rate and spectral ra-
dius for the standard least squares method.

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0 2.1
Relaxation factor 

0.7

0.8

0.9

1.0

1.1

Ra
te

 o
f C

on
ve

rg
en

ce
 

Constrained Internal Least Squares Rate of Convergence v Spectral radius
Convergence rate 
Spectral Radius 

Figure 5.12: Convergence rate and spectral ra-
dius for the constrained internal least squares
method.
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Figure 5.13: Convergence rate and spectral ra-
dius for the constrained derivative least squares
method.

— 41 —



5.4. Summary

5.4 Summary

In order to properly validate the efficiency of the different approaches, all methods with their optimal
relaxation and relaxation factor are presented. Values in parenthesis are the number of iterations required
to reach termination for θ = 1.

Table 5.1: A summary of the optimal conditions for each method.
Method Relaxation Type θ Iterations Convergence rate µ
Dirichlet-Neumann method End 0.6 23 (199) 0.283421
Standard Least Squares Full 1.9 180 (343) 0.842471
Constrained Internal Least Squares Full 1.7 70 (128) 0.638589
Constrained Derivative Least Square Full 2.0 1358 (2637) 0.983869
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Figure 5.14: Error over iterations for all methods using the optimal relaxation type and relaxation factor.

From the table above, it is obvious that when looking at the optimal conditions for each method, the
Dirichlet-Neumann method is the best in terms of number of iterations. This shows how much of a role
the relaxation factor plays, as for the case where no relaxation is used, the overdetermined, constrained
internal points method proved best.
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Chapter 6

Discussion

6.1 Overdetermined domain decomposition methods

In general, the results provided show that overdetermined domain decomposition methods work. Figure
5.1 shows a comparison of all the different methods, without relaxation. Here it is clearly shown that
there are significant differences in how well the different methods work. When not using relaxation, the
constrained internal least squares method works the best, beating not only the other overdetermined
methods, but also the standard Dirichlet Neumann method, by a few iterations.

6.2 Evaluation of methods

Looking at the different ways to constrain the least squares method, Figure 5.1 clearly shows that the
choice of constraints grealy affect the speed of the method.

When starting off, the initial hypothesis was that constraining the derivatives condition would yield
the best result. After some initial calculations, it became obvious that this is completely wrong. As
Figure 5.1 shows, without relaxation, the method which reaches termination the quickest is the one
where the internal points condition is constrained.

There has been no deeper research done as to why this is the case, though here follows a hypothe-
sis. What influences the subdomains is the interface, since it is the only boundary that changes between
iterations. If the interface is known, an adequate solution could be provided in one iteration. Since it is
unknown, an initial guess has to be made. Then, for each iteration, the interface gets closer and closer to
the ”true” values, the values along the interface provided by the reference solution in this case. There-
fore, what determines the amount of iterations required is how much the interface values can change for
each iteration.

In the case where the derivatives condition has to be fulfilled without residual, the change is small
between iterations, and therefore requires many iterations to reach termination. In the case where the
internal points condition produce no residual, the condition to fulfill the derivatives condition leaves
the residual there to be quite large, allowing larger changes in the interface for each iteration. For this
reason, that method requires fewer iterations. In the case where no constraints are made, the residual is
distributed evenly for all unknowns, which is why the standard least squares method is better than the
CDLQ method, and worse than the CILQ method.

6.3 Evaluation of relaxation type

Figures 5.2, 5.3 and 5.4 show that the relaxation type greatly affects the efficiency of the methods. For
the Dirichlet-Neumann method, the end relaxation is the only type that can be employed, and it greatly
affects the number of iterations required to reach termination. Looking at Table 5.1, the difference is
quire remarkable. The unrelaxed Dirichlet-Neumann method requires 199 iterations, whilst at the opti-
mal relaxation at θ = 0.6, only 23 iterations are required. The overdetermined methods work fairly well
with this scheme as well, but their best results are found using middle relaxation. However, because the
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strange behaviour exhibited in Figure 5.6, comparing it to the full relaxation shown in Figure 5.5 which
does not behave weirdly, there appears to be something wrong with the middle relaxation scheme.

After ruling out middle relaxation for the overdetermined methods, Figures 5.2 and 5.3 show that the
most efficient relaxation is the full relaxation. For CILQ, the optimal relaxation of θ = 1.7 reaches
termination after 70 iterations as compared to 128 when not relaxed. For CDLQ, with θ = 2.0, the
number of iterations required is 1358 as compared to 2637 when not relaxed. For SLQ, with θ = 1.9 the
number of iterations required is 180 compared to 343.

One interesting observation is that the overdetermined methods remain stable for relaxation values
over θ = 1, compared to the Dirichlet-Neumann method which only reaches termination for values θ ≤ 1.
For values larger than one, the relaxation factor acts as a form of accelerator for the overdetermined
methods, and it is within the range 1 < θ ≤ 2 the methods have their lowest convergence rate. θ > 2
produced wrong solutions, but after closer investigation it seems that the all overdetermined methods
with end relaxation eventually reaches termination with a value of 2 ≤ θ ≤ 2.1 as can be seen in Figure
5.7, albeit with many more iterations compared to values of θ ≤ 2.

The flux- and load relaxation appear not to work, in the sense that the solution at termination is
not a valid approximation of the temperature distribution, as can be viewed in Figures 5.8 and 5.9.

Whilst initally the constrained internal least squares seemed the ’best’ method, given the optimal value
on θ the convergence rate µ is lowered greatly for the Dirichlet-Neumann method, surpassing all other
methods in terms of number of iterations to termination.

6.4 Spectral radius

The spectral radii of the methods were investigated briefly. Figures 5.10, 5.11, 5.12, and 5.13 shows
that for values of 0 < θ < 1.6 the spectral radius and the convergence rate match well. There are slight
differences for lower values of θ for the Dirichlet-Neumann method, which is a result of the convergence
rate values being difficult to measure since the method reaches termination very quickly. For values
above θ = 1.6, the convergence rates and spectral radii for the overdetermined methods stop coinciding.
The CILQ method sees a difference for θ ≥ 1.6, SLQ for θ ≥ 1.8 and CDLQ for θ ≥ 1.9.

6.5 Conclusion

The goal was to answer the following questions;

— whether a domain decomposition method with more than one boundary condition over the interface
can find a good approximation to the temperature distribution,

— how to handle the overdetermined systems of linear equations that arises when employing more
than one boundary condition for each subdomain over the interface in a domain decomposition
method,

— whether modifying the least squares method by constraining it using conditions found in the prob-
lem formulation work worse, as good as, or better than a basic domain decomposition method,

— how these modifications affect the methods.

Figure 5.1 shows that a domain decomposition method can be formulated with two boundary conditions
over the interface, which will at termination have found a good approximation of the temperature distri-
bution. These overdetermined methods includes the use of the the least squares method, or a constrained
least squares method with different types of constraints. The choice of constraint greatly influence the
convergence rate of the overdetermined methods. Using the condition to fulfill the Laplace Equation for
the internal points proves to decrease the convergence rate, making it the best in terms of iterations,
when comparing it to the method without relaxation.

Relaxation also proves to affect the methods. Several varieties have been attempted, where some work
and some do not. Using the full relaxation scheme appears to be the best method, decreasing the number
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of iterations required to reach termination for all overdetermined methods. However, when comparing
the overtermined methods with the standard Dirichlet-Neumann method using each methods optimal
relaxation, the standard Dirichlet-Neumann method appears to be the best in terms of iterations required.

To summarise, the use of constrained least squares method seems to yield some interesting results,
and should be investigated further. For optimal values, the Dirichlet-Neumann method proves most
efficient.
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Chapter 7

Future Work

Overdetermined domain decomposition methods remain fairly uninvestigated, and there are a great deal
of topics to further research. What can be drawn from this thesis is that overdetermined methods does
indeed find a good approximation to the temperature distribution at termination. In this thesis, the
Laplace equation was investigated. The next step would be to investigate the Poisson equation.

For handling the overdetermined systems of linear equations, the use of a constrained least squares
method was used. A number of constraints have been tested, where some ’worked’ — meaning at ter-
mination, the solution produced is a good approximation to the problem, and some did not. There are
more ways to mix the conditions and potentially setting up other constraints. In addition to constrained
least squares methods, other approaches to solve the overdetermined systems of linear equations should
be investigated, such as the use of weighted least squares method.

For all methods, a central difference discretisation was used. The most standard approach when dealing
with domain decomposition methods is the use of the Finite Element method to solve for each subdo-
main. This could be an interesting topic to look into — both solving for the entire domain, and also
when solving for one subdomain with a Finite Element method, and the other subdomain with a central
difference scheme. Additionally, as touched upon in [2], large differences in material constants affects the
speed of the solvers. It would be intersting to see if the same is true when employing an overdetermined
subdomain formulation.

An initial step was taken in the investigation of the spectral radii, where the eigenvalues were approx-
imated. Both looking at finding the true eigenvalues instead of an approximation, and further looking
into what happens to the spectral radii for the methods when approaching θ = 2, would be interesting.

In short, there are many interesting topics regarding the use of overdetermined domain decomposition
methods, and the hope is that this thesis can be used as a stepping stone for these investigations.
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