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Abstract (English)

Heart disease is one of the worldwide leading causes of death, and facilitating the work of
physicians in this area is therefore of great importance. Imaging of the heart is one of many
fields that is used for diagnosis and analysis of cardiac disease. Within this field, Magnetic
Resonance Imaging (MRI) is a non-invasive technique that allows for acquisition of high quality
images.

Blood flow throughout the healthy human body seems to follow certain patterns. Changes in
the blood flow behaviour through the heart can be observed in the presence of cardiac disease.
For the cardiac system, blood flow and parameters related to blood flow are important markers
for such disease. This thesis aims to create a tool that uses blood flow data obtained from
four-dimensional Flow MRI (4D Flow MRI) to calculate and assess hemodynamic (blood flow
related) parameters that reflect such alterations in blood flow.

This hemodynamic assessment tool allows for easy visualisation and comparison of parameters
in different regions of the heart, including the four cardiac chambers, aorta and pulmonary
artery. Furthermore, the output of the tool allows for statistical analysis of hemodynamic
parameters.

The tool was applied to a cohort of 4D Flow data sets. Examples of parameter visualisations
are provided, and a statistical analysis of the parameters with regards to left ventricular
ejection fraction was performed. This analysis was performed using self-organising feature
maps, but did not show any significant results. This may be due to the heterogeneity of the
data however, and not due to the tool in itself.



Abstract (Svenska)

Hjärtsjukdomar är en av de vanligaste dödsorsakerna i världen, och att underlätta arbetet för
läkare inom detta omr̊ade är därför av stor vikt. Avbildning av hjärtat är ett av m̊anga sätt
som används som stöd för diagnostisering och analys av dessa sjukdomar. Inom detta omr̊ade
är magnetisk resonanstomografi (MRT) en icke-invasiv metod som möjliggör framtagning av
bilder av hög kvalité.

Blodflödet genom den friska kroppen verkar följa vissa mönster, men vid kardiovaskulära
sjukdomar kan fluktuationer i flödet genom hjärtat observeras. I det kardiovaskulära systemet
är blodflödet och parametrar relaterade till blodflöde viktiga markörer för sjukdom. Denna
avhandling har som syfte att skapa ett verktyg som använder flödesdata fr̊an fyrdimensionell
flödes MRT (4D flödes-MRT) för att räkna ut hemodynamiska (blodflödesrelaterade) parame-
trar som reflekterar s̊adana fluktuationer i blodflöde.

Verktyget möjliggör lättillgänglig visualisering och jämförelse av parametrar i olika omr̊aden
i hjärtat. Bland dessa finns hjärtats fyra rum, aorta samt lungartären. Resultaten fr̊an
verktyget kan även med fördel användas för statistisk analys av hemodynamiska parametrar.

Med verktyget i hand applicerades det p̊a en kohort av 4D flödes dataset. Exempel p̊a visualis-
ering av parametrar tillhandah̊alls, och en statistisk analys av parameterarna med avseende
p̊a ejektionsfraktion i vänster kammare utfördes. Denna analys utfördes med hjälp av self-
organising feature maps, men gav inga signifikanta resultat.
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1. INTRODUCTION

1 Introduction

Blood flow throughout the healthy human body seems to follow certain patterns [1]. In the
presence of cardiac disease, changes in the blood flow behaviour through the heart can be
observed. Such changes are seen early on in the development of the disease, which makes the
analysis of blood flow a potentially powerful tool when it comes to early treatment of cardiac
disease, as these alterations in flow have turned out to be quite difficult to predict based
on anatomy alone [2]. Blood flow velocity can be measured in the whole heart using four-
dimensional Flow Magnetic Resonance Imaging (4D Flow MRI) [3], but manual analysis of
this data has been shown to be extremely difficult and time-consuming. With this challenge in
mind, a technique to automatically segment the cardiac chambers and major thoracic vessels in
4D Flow MR images has been developed by the cardiovascular MR (CMR) group at Linköping
University. The proposed method results in segmentations suitable for the assessment of
hemodynamic markers such as kinetic energy, pressure, helicity, vorticity, flow connectivity,
among others [4], in a cohort of 4D Flow MRI datasets. These hemodynamic parameters could
indicate altered blood flow patterns in the heart and major cardiac vessels, and thus be used
as an early warning sign for cardiac disease [5, 6, 7].

1.1 Aims

The main goal of this project is to derive and analyse a number of hemodynamic parameters
from 4D Flow MRI data in a cohort of patients. The included parameters were chosen through
study of literature and articles related to the field, and their calculation will be implemented
in an easy to use tool. Furthermore, an extended aim is also to attempt to answer the question
of whether a correlation between these parameter values and cardiac disease can be found.
This question will be answered by calculating a group of hemodynamic parameters for a data
set consisting of 4D blood flow data from patients with different degrees of cardiac illness as
well as from healthy volunteers. The presence of correlation will be evaluated by performing a
statistical analysis of the hemodynamic parameters with regards to the illness of the patient.

2 Background

2.1 The human heart

The information presented in this section is largely based on Chapter 11 in the book “The
Mechanics of the Circulation” [8].
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2. BACKGROUND

2.1.1 Cardiac anatomy

The human heart can be described as the pump that enables blood circulation in the body.
The heart consists of four different chambers — the left and right atria and ventricles. These,
along with the other anatomical structures referred to in this section can be seen in fig.1.
The atria are low-pressure chambers where blood comes in from the body. From there the
blood passes on into the corresponding ventricles, which are high-pressure chambers. From
the ventricles, the blood is then pumped out to the body through a major thoracic blood
vessel — the aorta for the left side and the pulmonary artery for the right. Low-oxygen blood
comes into the right hand side, and is pumped to the lungs. It is then passed on to the left
hand side of the heart, and from there it is pumped out to the rest of the body.

Figure 1: Cross section of a human heart [9]

These six anatomical regions — the left atrium and ventricle, the right atrium and ventri-
cle, the aorta and the pulmonary artery are the regions of focus for this project. Other
anatomical structures of interest are the valves that exist between the cardiac chambers (the
atrio-ventricular valves) as well as between the ventricles and the two blood vessels of interest.
These valves open and close to enable forward flow and prevent blood regurgitation. Between
the right atrium and ventricle lies the triscupid valve. The corresponding valve on the left side
of the heart is called the mitral valve. The valves between the ventricles and out-flow blood
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2. BACKGROUND

vessels are called the pulmonary and aortic valves.

2.1.2 Blood flow through the heart

The process where blood enters the atria, flows through to the ventricles and gets pumped out
trough the aorta and pulmonary artery is called a cardiac cycle. The cardiac cycle consists of
two main phases: systole and diastole. These two phases occur cyclically. For the duration
of this report and project, systole will be said to occur before diastole (so that one cardiac
cycle is systole-diastole). Blood resides in the ventricles of the heart at the start of systole,
and the mitral and triscupid valves, as well as the aortic and pulmonary valves are closed. At
this stage, pressure is building up in the ventricles, and when the ventricular pressure exceeds
that of the aorta and pulmonary artery, the corresponding valves are opened, and blood flows
through. As blood leaves the ventricles, the pressure difference between the ventricles and
the arteries is reversed and the valves close. This marks the end of systole and the beginning
of diastole. As the ventricle relaxes, blood flows into the atria, causing the pressure there
to rise. When the pressure difference between the atria and the ventricles is large enough,
the mitral and triscupid valves open, and blood flows into the ventricles. This causes the
pressure difference to reverse, which closes the atrio-ventricular valves, and the cardiac cycle
is complete. Normally, systole constitutes about one third of the heart cycle, and diastole
about two thirds.

Understanding of these two phases — systole and diastole — and what events in the cardiac
cycle they correspond to, is important for the assessment and interpretation of many of the
calculations and results in this report.

2.1.3 Ejection fraction

Ejection fraction is a parameter describing how much of the blood is ejected from a cardiac
chamber with each stroke of the heart. Commonly the left ventricular ejection fraction (LVEF,
from here on referred to simply as EF) is used as one of several measures of the blood pumping
efficiency of the heart. It is used to manage and assess various cardiovascular diseases [10].

The EF is calculated as the volume of pumped blood divided by the total blood volume in the
ventricle. One way to assess this is to use volume measurements of the left ventricle at end
systole (ESV), when blood has been pumped through to the aorta, and end diastole (EDV),
when the ventricle has been filled. EF can then be calculated as

EF =
EDV − ESV

EDV
(1)

There is discussion among experts regarding the lower limit of EF that can be considered
healthy. Cases have been presented which supports the notion than an EF above 50% is

3



2. BACKGROUND

considered normal [11], whereas other studies have shown other numbers, such as 57% [12].

2.2 4D Flow MRI

Four-dimensional flow magnetic resonance imaging (4D Flow MRI) is a technique used to
enable analysis of blood flow throughout the body, for example in the heart and the major
thoracic vessels. It is based on phase-contrast magnetic resonance imaging (PC MRI), which
has been used for quantification and analysis of blood flow. In a 4D flow consensus document
published in 2015, the authors Dyverfeldt et al. [13] stated that “’4D Flow CMR’ refers to
phase-contrast CMR with flow-encoding in all three spatial directions that is resolved relative
to all three dimensions of space and to the dimension of time along the cardiac cycle (3D +
time = 4D)”. In other words, flow data from 4D Flow MRI is obtained as blood velocities in
three dimensions, over time (often one cardiac cycle).

The data this project is based on is velocity data obtained using the 4D Flow MRI acquisition
technique. As the technique itself is not used, it will not be explained further here. Instead,
the interested reader is directed to the consensus document by Dyverfeldt et al mentioned
above.

2.3 Atlas based segmentation

In general terms, segmentation is the process of dividing a large set of data into smaller pieces.
In the field of computer vision, segmentation is a commonly used tool. Segmentation of an
image, or volume, means dividing the image into several different segments of interest, by
assigning a semantic label to each pixel or voxel. How these segments are chosen depends
entirely of what interest one has in the image or volume. When it comes to 4D flow analysis
of the heart, natural regions of interest are the four cardiac chambers, as well as two of the
major thoracic blood vessels — the aorta and the pulmonary artery. There are several different
approaches to segmentation, with various methods having different uses for different purposes.

One method of segmentation is atlas based segmentation. The information conveyed on this
subject in this report is largely based on the report Quo vadis, Atlas-based segmentation? by
Rohlfing et al. [14], and for further understanding of this method, the reader is encouraged
to read that report. Rohlfing et al. tells us that in a mathematical sense, “an atlas A is a
mapping A : Rn → Λ from n-dimensional spatial coordinates to labels from a set of classes Λ.”
In a more general sense, an atlas can be described as a type of model image that represents
certain characteristics of an image population. Such an atlas can be generated for example by
manual segmentation of an image or volume. Given an image, one can use a corresponding
atlas in order to segment the image. This is often done through image registration, a process
where different sets of data (such as two different images or volumes) are transformed to fit
in a common coordinate system, often by identifying and associating similarities between the
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3. THEORY

two different sets. The atlas(es) is/are registered to an image of interest, and by identifying
regions with similar characteristics to the already labelled regions in the atlas(es), the image
itself can be labelled, or segmented. An example of an atlas used for segmentation of the
cardiac chambers and major blood vessels can be seen in fig.2.

The segmentations used in this project were obtained from an atlas-based segmentation tool
developed by Bustamante et al. [15]

Figure 2: Example of an atlas of the human heart with six labelled regions. Red: aorta, yellow:
left ventricle, orange: left atrium, blue: right ventricle, cyan: right atrium. The two images
represent different time points during the cardiac cycle. Images obtained from Bustamante et
al. [15, 16].

3 Theory

3.1 Hemodynamic parameters

In this section the hemodynamic parameters evaluated in this project will be introduced. This
introduction will convey information about why these parameters were chosen for evaluation,
and how they were calculated from the 4D Flow MRI data.

The parameters mentioned below are presented in different manners. Some are time dependant

5



3. THEORY

and thus presented as a curve over time, while others are single values. Some parameters are
evaluated only in certain regions of the heart, while others are calculated in all of the regions
available from the segmentation. The regions are: left ventricle (LV), right ventricle (RV), left
atrium (LA), right atrium (RA), aorta, and pulmonary artery.

Each parameter is in one way or another based on 4D blood flow velocity data included in
the 4D Flow MR images. The velocity data consists of three 4D matrices (3D + time), each
matrix containing information about the flow velocity in a certain direction. The number of
time frames in each matrix is 40 (however actual time varies between data sets, depending on
the heart rate of the person in question). The three directions of this coordinate system will be
denoted as (x, y, z) and the corresponding velocities as (u, v, w). Thus, the four-dimensional
blood flow can be described as a time-dependent vector field V :

V = V (x, y, z, t) = (u(x, y, z, t), v(x, y, z, t), w(x, y, z, t)).

3.1.1 Speed

Blood flow speed is one of the most straightforward of the possible hemodynamic parameters
to calculate and evaluate. This parameter is calculated as it is needed in order to obtain other
parameters of interest. Furthermore, it is very easy to obtain, and thus there is no real reason
not to include it. However, caution should be applied if considering blood speed in itself as
a hemodynamic parameter. Rather, blood speed should be used in conjunction with other
factors in order to obtain more meaningful information.

Given three 4D velocity matrices u, v, w the 4D Speed matrix, S, is calculated as

S =
√
u2 + v2 + w2 (2)

where the calculations are carried out entry-wise in the four dimensional matrix.

Blood speed was calculated in each of the six regions included, in two different manners;
average speed over time, and maximum speed over time. These speeds over time for a region
were calculated as the average and single maximum speed in the volume for every time frame,
respectively.

3.1.2 Kinetic energy

Kinetic energy (KE) has been listed as a possible indicator for LV dysfunction [17, 18]. A slight
alteration in end-diastolic LV KE for patients with mild LV remodelling has been observed,
despite the fact that the LV stroke volume (which is normally used for assessing cardiac
function) was unchanged [17]. This makes KE a potentially interesting parameter. Combined
with the fact that it is a simple parameter to calculate, it was chosen for evaluation.

6



3. THEORY

The kinetic energy for a region is calculated as

KE =
S2 ·m

2
, (3)

where S is the 4D speed matrix and m is the blood mass in each voxel. Blood mass is
calculated as the product between the voxel volume and the blood density, chosen to be 1060
kg/m3. The presentation of KE as a hemodynamic parameter will be done as the sum of the
KE over all N voxels for each time point, i.e.

KEtot(t) =
N∑

i

KEi(t), (4)

resulting in a curve depicting total KE over time. Total KE was evaluated in all six regions
of interest.

3.1.3 Turbulent kinetic energy

When blood flows through the heart and vessels in the body, part of the kinetic energy will
be lost due to conversion into heat. This conversion can happen due to viscous friction in the
vessels or cardiac chambers. As more kinetic energy is lost, the blood flow will slow down, and
the heart will have to work harder in order to provide normal cardiac function [19]. As such,
quantification of this loss of energy could be an indicator for certain diseases [20]. Turbulence
in blood flow can be defined as irregularities and fluctuations in blood flow velocity [19]. Such
turbulences in the aorta have been studied, and have been considered as a potential cause for
the energy loss described above [21].

A velocity vector field can be divided into a mean and a fluctuating part, where the mean ve-
locity field captures the average flow behaviour of the blood and the fluctuating field captures
the small-scale changes. Changes due to turbulence or other irregularities will be reflected by
the fluctuating field [22]. The fluctuating velocity field can then be used to calculate the Tur-
bulent kinetic energy (TKE), a direction-independent measure of the intensity of turbulence
in the blood flow. For further explanations regarding how these calculations are performed,
the reader is advised to (among others) two papers by Dyverfeldt et al. [22, 23]

TKE is an interesting parameter as it has been shown to coincide with altered blood flow
patterns in the aorta [24], ventricular remodelling in the right ventricle [25], as well as being
prevalent in the left ventricle of patients with dilated cardiomyopathy compared to normal
patients [26].

In this project, TKE was presented as total TKE over time (in the same manner as KE) and
max TKE over time, which shows the maximum TKE measured in the entire region, for each
time frame. TKE was evaluated for all six regions of interest.

7



3. THEORY

3.1.4 Helicity

Helicity is closely related to the presence of helical flow patterns in blood. It is represented
as a pseudoscalar value in each voxel, and can be said to describe the relation between blood
flow strength (given by the blood flow velocity field) and the local rotation of the flow (also
known as vorticity). The sign of the scalar indicates whether the flow is clockwise (posi-
tive) or counterclockwise (negative) (thus giving helicity a pseudoscalar representation). The
presence of vortices in pulmonary blood flow has been shown to coincide with manifest pul-
monary hypertension [27]. Furthermore, Schäfer et al. [28] states that “there seems to be
a strong correlation between helicity in the pulmonary arteries and ventricular-vascular cou-
pling”. Ventricular-vascular coupling is a term used to describe the efficiency of interaction
between the cardiac chambers and the arterial system [29]. However, the presence of helicity is
not necessarily a bad thing. Schäfer et al. [28] found that helicity was in fact lower for patients
with pulmonary hypertension compared to the control group. Furthermore, they found that
the ventricular-vascular coupling ratio and helicity had “a negative curvilinear relationship”.
Helicity was also found to correlate negatively with the main pulmonary arterial pressure, and
further positive correlation was found between helicity and right ventricle cardiac output [28].
All of this means that helicity is an interesting parameter to investigate, albeit a hard one to
interpret.

In order to obtain helicity measurements, one first has to calculate vorticity, another parameter
closely related to the behaviour of blood flow. Vorticity is calculated as the curl of the blood
velocity vector field [19], i.e

ω̄ = ∇× V =




∂w
∂y − ∂v

∂z
∂u
∂z − ∂w

∂x
∂v
∂x − ∂u

∂y


 (5)

Helicity density can then be calculated as [30]

Hd = ω̄ · V (6)

In order to get the complete Helicity one would have to integrate Eq. 6 over the entire volume;
however, this was not done in this project. Another helicity-related parameter is the relative
Helicity, which is a representation of the angle between the velocity and vorticity vectors [30]:

Hr =
Hd

‖ ω̄ ‖ · ‖ V ‖ = cos(α) (7)

Helicity was presented as the maximum/minimum helicity density over time, as well as mean
helicity density and relative helicity over time, in all six regions. Furthermore, some values
related to the max/min helicity density curves were calculated, such as the peaks of the curves,
areas under the curves, quota between areas, and quota between peaks and their corresponding
areas under the curves.
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3. THEORY

3.1.5 E-A wave related parameters

During the cardiac cycle, each chamber has a different blood flow pattern. For the left ventricle,
the filling pattern is often analysed by looking at the speed of the blood over time. Normally
this pattern contains three major blood flow speed peaks. The first one, during systole,
corresponds to the emptying of the left ventricle as blood flows through the aortic valve into
the aorta. The second two peaks, during diastole, are related to the filling of the ventricle,
as blood flows through the mitral valve from the left atrium. Analysis of the mitral inflow
pattern is a convenient way to assess cardiac function [31]. The early diastolic wave is called
the E-wave, and the late diastolic wave is called the A-wave. Looking at the ratio between the
E- and A-wave peak speeds, the E/A ratio, provides information about the cardiac function
of a patient. For a healthy patient the E/A ratio is normally inside the interval 0.8 − 2 [32].
However it should be noted that an E/A ratio within this interval does not rule out the
possibility of cardiac dysfunction, as the filling pattern may be altered in ways not reflected
by the E/A ratio.

Another parameter related to the E-A waves is the E-wave deceleration time (EDT), which is
a measurement of how quickly the blood flow velocity decreases towards 0 after the E-wave
peak. Normal EDT is around 140− 240 ms [32].

E-A wave related parameters have mostly been investigated for the mitral inflow of the left
ventricle, and therefore that is the only region where they were evaluated in this work. Fur-
thermore, the E/A ratio and EDT were presented as single scalar values.

3.1.6 Pressure

As the blood flow through the cardiac system is driven by differences in pressure (see sec-
tion 2.1.1), pressure makes for an interesting hemodynamic parameter. For example, altered
pressure during left ventricular filling at end diastole is an indicator for left ventricular dys-
function, and in the presence of stenosis (narrowing of a blood vessel), the pressure loss over
the stenosis can be used as a measure of how small the narrowing is [33]. When it comes to
the cardiovascular system, stenoses can occur in any of the four cardiac valves (see section
2.1.1) [34]. Pressure gradients (due to the pressure differences) are markers for cardiac dys-
function, as studies have shown a correlation between for example acute cardiac ischemia and
the pressure gradients in the left ventricle [35]. Furthermore, in a study presented by Ebbers
et al. [36], the pressure difference along the aortic centerline behaves differently for patients
with repaired aortas, and altered pressure difference patterns between the left atrium and
ventricle can be an indicator for patients with dilated cardiomyopathy.

A study performed by Eriksson et al. [33] investigated the pressure difference pattern between
the base and the apex of the left ventricle of a number of healthy volunteers, providing a
reference for healthy pressure behaviour in the left ventricle.
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3. THEORY

The relation between blood flow velocities and pressure gradients can be described by the
Navier-Stokes equation [37]:

∇p = µ∇2V + F− ρ∂V

∂t
− ρV · ∇V (8)

where V is the blood flow velocity field, and F are the body forces (caused by gravity).
The calculations regarding pressure gradients and pressure values were performed using the
work of a previous MSc student, Emre Kuş [38]. For further details on these calculations the
reader is encouraged to read his report. In his work, Kuş also investigated and compared
the pressure difference between the left atrium and the left ventricle base, as well as between
the left ventricle apex and base. This was done for one healthy volunteer and a patient with
dilated cardiomyopathy, and differences in the pressure pattern could be observed.

It is worth noting that the pressure fields obtained by the integration of Eq. 8 can only be
determined up to an integration constant [39], which makes it a relative pressure field. This
means that pressure gradients and pressure differences can be assessed using this method, but
not absolute pressure values.

For this project, the pressure difference measurements performed by Kuş in the left hand side
of the heart, as well as by Ebbers et al. [40] in the aorta were used as a foundation. For
pressure calculations in the left hand side of the heart, a custom mask had to be created in
order to simulate the opening of the mitral valves at the start of diastole. The mask was
created as a combination of the available left ventricle and atrium masks, with the atrium
part only being present during time frames corresponding to diastole. For the entirety of a
heart cycle, the pressure differences were measured between the base and the apex of the left
ventricle, and during diastole also between the center of the atrium and the ventricle base.
For the aorta, two points along the centerline were picked out — one in the ascending and
one in the descending aorta. The difference in pressure was then calculated between these two
points.

Altogether, the calculated parameters related to pressure for this project were: pressure differ-
ences over time between two points (as described above), maximum pressure over time, single
peak pressure value in the region over all time frames and time to single peak value in the
region. For the left atrial/ventricular region, the difference between the two expected pressure
difference peaks between ventricle base and apex was also calculated.

3.2 Data analysis techniques

This section will cover the theory behind the tools used to analyse the output from the
hemodynamic assessment tool, when applied to a number of data sets. The output for one
data set is represented as a vector, with each element describing a parameter, or an aspect of
a parameter.
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3.2.1 Self-organizing map

A self-organizing map (SOM), or Kohonen map as it is also called, is a type of neural network
designed to visualise and analyse high-dimensional data. It is a method that is used for
unsupervised clustering. This means that, unlike supervised clustering methods, it does not use
any error-minimising methods in order to group the data into clusters. Supervised clustering
methods compare clustering to a provided label after each training epoch. The accuracy of
the clustering compared to the ground truth labels is then used as a foundation for further
training. This is not the case for SOM clustering, and thus it can be performed on data
without the user having to provide any labelling or background information about the data
set. The SOM provides a mapping from e.g. a high-dimensional set of data onto a simpler,
two-dimensional grid. Based on the available data the SOM algorithm computes a number of
different models, and then associates each data set to the model best fit to describe it [41].
Each neuron of the SOM is associated with one model. Furthermore, neighbouring neurons in
the SOM describe models that are similar to one another, and thus the topology of the input
data is preserved.

A Kohonen map is used for the statistical analysis of parameters described in Section 1.1. In
the rest of the report, the abbreviations SOM and SOFM (self-organizing feature map) will
be used interchangeably.

3.2.2 Bayes’ theorem

Bayes’ theorem describes the probability of an event occurring, given some prior knowledge
about related events. The theorem states the following:

P (A|B) =
P (A) · P (B|A)

P (B)
. (9)

Here, A and B are two separate events. Bayes theorem answers the question “What is the
probability of the event A occurring, if I know that the event B is true?”. If the events A and
B are related, then Bayes’ theorem can be used to better assess the probability of the event A
given knowledge about B, compared to not using any prior information about B. This is useful
for this work, as it may provide us with information regarding the probability of a data set
having a certain medical condition given the characteristics of its corresponding hemodynamic
parameters.

3.2.3 Feature scaling

Feature scaling is used to standardise values in e.g. a data vector into a certain range. The
simplest version of this is to normalise the data into the range [0, 1]. This is done by subtracting
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the minimum value of a vector X from each element in X, and then dividing each element by
the difference between the largest and smallest elements. The formula for this is

X ′ =
X −Xmin

Xmax −Xmin
(10)

where X is the original data vector and X ′ is the data vector after scaling.

This is useful for us as the size range between parameters of the output we are dealing with
differ greatly.

4 Methods

4.1 Study population

The study population was composed of healthy volunteers as well as patients with different de-
grees of cardiac disease, including aortic and mitral regurgitation, left ventricular hypertrophy,
aortic stenosis, ischemic cardiomyopathy, dilated cardiomyopathy and diastolic dysfunction.
The tool was successfully applied to 117 different data sets, corresponding to subjects be-
tween the ages of 30 and 84. The mean age of the study population was 65 ±9 years. The
distribution of gender was 78 males and 39 females.

4.2 Acquisition settings

The MRI examinations were performed on a clinical 3T Philips Ingenia scanner (Philips
Healthcare, Best, the Netherlands). Prior to the acquisition all subjects were injected with a
Gadolinium contrast agent (Magnevist, Bayer Schering Pharma AG) for a late-enhancement
study. 4D Flow MRI examinations were performed during free-breathing, using a navigator
gated gradient-echo pulse sequence with interleaved three-directional flow-encoding and retro-
spective vector cardiogram controlled cardiac gating. Scan parameters included: Candy cane
view adjusted to cover both ventricles, velocity encoding (VENC) 120-150 cm/s, flip angle 10◦,
echo time 2.5-2.6 ms, repetition time 4.2-4.4 ms, parallel imaging (SENSE) speed up factor 3
(AP direction), k-space segmentation factor 3, acquired temporal resolution of 33.6-52.8 ms,
spatial resolution 2.7 × 2.7 × 2.8 mm3, and elliptical k-space acquisition. The 4D Flow MR
images were corrected for concomitant gradient fields on the MRI scanner. Offline processing
corrected for phase wraps using a temporal phase unwrapping method [43], and background
phase errors were corrected using a weighted 2nd order polynomial fit to the static tissue [44].
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4.3 Implementation details

This section contains information regarding the calculation of some of the parameters included
in the hemodynamic assessment tool. The tool was created using MATLAB (Release 2016a,
The MathWorks, Inc., Natick, Massachusetts, United States).

4.3.1 Finding systole/diastole

One of the challenges encountered was finding a robust way of determining which time frames
correspond to which phase in the cardiac cycle. We know that at the start of systole there is
a lot of blood in the ventricles which is then pumped out through the aorta. This makes the
blood speeds in the aorta suitable for determining the peak systolic time frame. Determining
exactly when systole ends and diastole begins is a more difficult task. However, for this project,
it was enough to estimate an approximate location of this phase. A reasonable assumption
is to mark the end of systole at a time frame slightly ahead of the peak systolic speeds in
the aorta. Information about the end of systole was used for the calculation of E/A related
parameters as the time points of interest occur during diastole (see Section 3.1.5), as well as
for creating the custom mask used for pressure difference calculations between the atria and
ventricles (see Section 3.1.6).

When analysing the data, knowing which time-frames correspond to peak systole and diastole
is useful, as explained in Section 4.4.1. The average blood speeds in the left ventricle (LV)
were used to calculate these. As described in Section 3.1.5, the LV flow pattern contains
three major blood flow speed peaks — one in systole and two in diastole. The two diastolic
peaks correspond to the early and late ventricular filling. As these time frames were to be
used for post analysis processing, it was important to ensure that they could be reliably said
to represent the same time points in the cardiac cycle in different data sets. LV average
speeds follow a quite established pattern, and were thus used for these calculations. Using
the previously determined time frame of the end of systole, the LV average speeds could be
divided in two. Then, the time frames corresponding to the two largest peaks in diastole and
the largest peak in systole were found.

Since the input data may contain abnormal patterns, measures were taken to ensure the ro-
bustness of the tool. These measures include the exclusion of peaks whose values are too small,
or peaks that are not wide enough. If any abnormalities are encountered during calculations,
the tool provides the user with a warning, so that the outcome may be verified manually. An
example showing the LV average speed for one data set and the corresponding time frames of
the calculated blood flow peaks can be seen in Fig. 3.
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Figure 3: The average speed in the left ventricle (LV) over time (blue) and the calculated
time frames corresponding to the systolic (first) and diastolic (second and third) peaks (red)
for one data set.

Using the information about systolic and diastolic peaks in conjunction with the time frame
corresponding to the end of systole also lets the tool deal with potential time shifts in the
data. Such a time shift might mean that for a data set, the time frames corresponding to
diastole occurs before systole. In such a case the time frames corresponding to the LV average
speed peaks will be located before the end of systole. The tool will capture this behaviour,
warn the user, and shift all of the original data in time, and redo the analysis.

4.3.2 Pressure difference

As explained in Section 3.1.6, the pressure difference parameters were obtained as the difference
between several sets of pairwise points. The location of these points needed to be determined
in a proper way, and the methodology behind that is explained in this section.

For the left and right side of the heart, there were three points of interest; one in the atrium
and two in the ventricle. The two ventricular points were to be located at the base and apex of
the ventricle. The main challenge regarding these points is the fact that over time the cardiac
chambers expand and deflate and thus the cardiac walls are subject to a lot of movement.
Thus, the tool needed to be able to adapt in case a point in space previously calculated as,
for example, the estimation for the base of the left ventricle, suddenly ended up outside of the
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heart due to ventricular movement.

The atrial points were obtained as the average centroids of the atria over time. As it is mostly
the chamber walls that are subject to movement, the average centroid should not differ much
from the centroid at each time frame. In order to obtain the ventricular apex and base
coordinates, the ventricular centroids were obtained in the same manner as for the atria. A
directional vector between the atrial and ventricular centroids was calculated. To determine
the base and apex coordiantes the tool “walks” through the atrial and ventricular masks for an
arbitrary time frame, along the vector between centroids. After each step it checks if it has yet
entered the ventricular mask. Once it has, it progresses a few more steps along the centroid
vector and and sets those coordinates to be the ventricular apex. For the points corresponding
to the ventricular base, the tool keeps walking along the directional vector between the two
centroids. After each step, the tool checks if it has left the ventricular mask. When the mask
has been left, the tool backtraces a couple of steps along the line, and picks that point as the
ventricular base. These points were then used for the calculations. Since the ventricular mask
moves over time, there is a risk that the calculated base and apex points may end up outside
of the mask. Should this happen at any point, the tool automatically recalculates the points
in the current time frame, and proceeds by using these new coordinates instead.

For the aorta, the locations of interest were in the ascending and descending aorta. In order
to find these points, a MATLAB function written by Kollmannsberger et al. [42] was used.
Provided a binary 3D aortic mask, the function skel2graph makes a conversion into a network
graph described by nodes and edges. By pruning the network graph to get rid of smaller
branches, the main centerline of the aorta could be found, and two points were chosen at the
edges of this centerline. In the same manner as for the atrial/ventricular pressure difference,
the tool recalculates the points and warns the user in case the points end up outside of the
mask at some point.

4.3.3 Obtaining and visualising results

Once applied to a 4D Flow MRI data set, the tool outputs a file with all of the calculated
parameters, as well as 4D-matrices describing the behaviour of some of the parameters in the
entire region. These parameters are helicity density, relative helicity, kinetic energy, and the
pressure fields. Used in conjunction with segmentations of the cardiac chambers, these 4D-
matrices can clearly illustrate the behaviour of one of the previously mentioned parameters
over the cardiac cycle. The custom masks created for pressure difference calculations in the
atria/ventricles are also saved. Any generated warnings or error messages displayed during
analysis are saved to a log file in order to facilitate troubleshooting.

If analysis has already been performed on a data set, the tool instead offers the possibility to
plot all of the time-dependent parameters. Furthermore, the tool provides means to calculate a
set of average parameters from a number of data sets, as well as the option to create meaningful
plots that clearly illustrate differences between an arbitrary data set and a group of data sets
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with similar characteristics.

4.4 Post-processing of results

The finished tool was used on a number of data sets. This section describes the data sets on
which the tool was applied, and how it was done.

4.4.1 Comparison between data sets

A large point of interest, and a potential main usage point for this tool is the ability to compare
parameters between data sets. However, the velocity data is evaluated over the course of one
heart beat, and this time scale is not necessarily exactly the same in different data sets due
to variations in heart rate. For example, for one arbitrary data set A, the peak systolic time
frame (as described in section 4.3.1) might be 10 (out of 40), whereas for another data set
B, the corresponding time frame might be number 13. When comparing data set A and B,
it then makes little sense to compare time frame 10 in A to time frame 10 in B, and vice
versa. Thus, a method to be able to perform automatic comparison between two data sets
with different time scales had to be developed.

As explained in section 4.3.1, the three major blood flow speed peaks in the left ventricle are
good indicators of different time points during the cardiac cycle. During the analysis of data,
along with all of the parameters, the hemodynamic assessment tool also saves the calculated
time frames of these three peaks. These peaks play a major part in the process of making
data sets comparable to each other.

It could be interesting to calculate a set of “average parameters”, for example from a group
of data sets corresponding to healthy volunteers. However, for the average parameter set to
make sense, we first have to make sure that the data sets included in the average are on the
same time scale. It makes little sense to take an average at a time frame if the time frame in
question does not represent the same time point in the cardiac cycle for different data sets.
This can clearly be seen by looking at Fig. 4. There, curves representing the LV average speeds
for a number of healthy volunteers are seen. The location of the average systolic and diastolic
peaks from all data sets corresponding to healthy volunteers are also marked. The number of
healthy volunteers included in this average is greater than three, but for illustrative purposes,
only three speed curves are shown.
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Figure 4: The average speeds in the left ventricle for three data sets corresponding to healthy
volunteers (blue, orange, yellow) with the average locations of the systolic and diastolic peaks
marked (red, dashed).

It is easily observed that the location of the systolic and diastolic peaks of the three data
sets do not coincide with the location of the average peaks. Thus, the parameters of each of
the data sets to be included in the average need to be shifted, so that the peaks do coincide
with the average set. This is done by first skewing all of the data points in each set before
the first peak so that the locations of the systolic peaks coincide. This is done by finding a
factor k equal to the quota between the average systolic time frame and the time frame of
the systolic peak of each data set. Each time frame before and including the systolic peak
is then multiplied by this factor k. Next, the data points after the second diastolic peak are
skewed in the same manner, with regards to the second diastolic peak. Finally, the points
between the first diastolic peak and the two other peaks are skewed linearly between peaks.
This does however make it so that the time frame scales of the data sets are no longer the
original [1, 2, . . . , 39, 40]. Thus, the data has to be interpolated onto any missing time frames
(using the MATLAB function interp1), and thereafter reevaluated onto the original time
frame scale.

In order to align every single parameter in the average parameter set, interpolation is per-
formed on all of the data sets, using the new time frame scale obtained from the LV average
speeds. With all of the parameters in all of the data sets aligned to the average systolic and
diastolic peaks, the mean and standard deviation of the parameter curves could be obtained
in each time frame. One example of such a plot is shown in Fig. 5.
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Figure 5: The average speeds in the left ventricle (LV) for the average parameter set consisting
of healthy volunteers. The blue line shows the mean, and the red bars the standard deviation.

The same principle as above is applied when comparing the parameters of an arbitrary data
set (denoted as Sarb) to the average parameter set (denoted as Savg). Savg is obtained by the
methodology described above, and is an average parameter set obtained from data sets which
we know correspond to healthy volunteers. It could be interesting to compare Sarb to Savg in
order to assess if there are any noteworthy differences between them.

However, to be able to compare Savg and Sarb time frame by time frame, the curves first have
to be on the same time scale. By plotting the LV average speeds for the single patient in
the same image as the group average, we can draw the conclusion that a direct comparison
between the two would make little sense (Fig. 6).
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Figure 6: The average speeds in the left ventricle for Savg (black, dashed), and the arbitrary
patient Sarb (blue), with the locations of the average systolic and diastolic peaks marked (red,
dashed).

In the same manner as for the creation of Savg described previously, the LV average speed
of Sarb was skewed so that the locations of the systolic and diastolic peaks between Sarb and
Savg coincide. The result can be seen in Fig. 7.

Figure 7: The average speeds in the left ventricle for Savg (black, dashed), and the arbitrary
patient Sarb (blue) after shifting its curve to coincide with Savg. The points on the lines show
the locations of the time frames where the data is evaluated. The locations of the systolic and
diastolic peaks are marked (red, dashed).

As can be seen in Fig. 7, the systolic and diastolic peaks of Savg and Sarb now coincide.
However, since the time points of Sarb have been shifted, its data points are rather evaluated
at slightly different locations, for example T2 = [1.1, 2.2, . . . , 37, 38.1] (with the total number
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of data points still remaining 40). Thus, the last step to make Sarb and Savg comparable is to
interpolate Sarb at the original time frame positions (T = [1, 2, . . . , 40]). The final result can
be seen in Fig. 8.

Figure 8: The average speeds in the left ventricle for Savg (black, dashed), the arbitrary patient
Sarb before (blue, dashed) and after (orange) interpolation. The points on the lines show the
locations of the time frames where the data is evaluated. The locations of the systolic and
diastolic peaks are marked (red, dashed).

As can be seen in the figure above, the blue and orange lines still have the same characteristics;
however, their peaks are now aligned. Furthermore, the location of the data evaluation points
(time frames) are the same between the orange and the black curve. Thus, the curves in data
sets Savg and Sarb can now be compared quantitatively in a way that makes sense.

4.4.2 Data analysis

With the finished tool in hand and applied to a number of data sets, the next point of interest
was to evaluate the parameter outputs to see if any correlation could be found between certain
parameters and some data set labelling not included in the tool. Such a labelling could be for
example the severity of disease of the data sets, age, gender etc.

Most of the parameters obtained are curves over time, and to make these easier to analyse
quantitatively, each curve was instead represented as three discrete values. These values were
obtained as the curve values at the systolic and two diastolic peaks (as described in section
4.3.1). After splitting up each time dependent parameter into three discrete values, the total
number of different parameter values per data set was 235. These parameter values were
arranged in a matrix where each row corresponded to one data set, and each column to a
parameter. The idea was to use an unsupervised learning method to divide the 117 data sets
into different clusters depending on their characteristics determined by the parameter values.
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Once such a clustering had been obtained, the inherence of each data set could be compared
to some external label. This would provide us with information regarding the viability of the
hemodynamic parameters used as a divider between different groups of data sets.

Clustering was performed using MATLAB’s implementation of self-organizing feature maps
(SOM) to divide the data into clusters. However, since the order of magnitude between the
parameters differ greatly and each parameter corresponds to a different unit, feature scaling
(eq. 10) was performed on each column (parameter) of the data matrix. This way, parameters
with different units could be compared to one another. The size of the SOM grid was set to
be 2 by 2, allowing for four different clusters. After clustering the data, the groups obtained
could be compared to some external label to investigate possible correlation between said
label and the clustering based on hemodynamic parameters. The chosen label for this was left
ventricular ejection fraction (EF, see 2.1.3). For the data sets in question, EF had already
been calculated from manual heart segmentations performed for a previous study. Data sets
were split into two groups depending on their EF. One group (labelled as group 1) had an EF
below 50%, and the other (group 2) had an EF above or equal to 50%. The number of data
sets in each labelled group was 30 and 87, respectively. The EF labelling of the data sets was
then compared to the cluster inherences. The ratio of cluster belongings for the group of data
sets corresponding to each of the two labels, enabled the calculation of posterior probabilities
regarding the labels. These calculations were performed using Bayes’ theorem (Eq. 9) as

P (Li|Cj) =
P (Li) · P (Cj |Li)

P (Cj)
.

This answers the question “what is the probability of an arbitrary data set having the label
Li (i.e. EF below or above 50%) if it belongs to the cluster Cj?”. Here, P (Li) is the fraction
of all data sets with the label Li. P (Cj) is the fraction of data sets belonging to the cluster
Cj . P (Cj |Li) is the fraction of data sets with the label Li belonging to cluster Cj .

5 Results

5.1 Parameter visualisations

5.1.1 A single data set

In this section, all of the plots obtained from the hemodynamic assessment tool when applied
to a single data set are presented. The data set in question belongs to a healthy volunteer.
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Figure 9: Average speed [m/s] over time [s] of a single data set for six different regions.

Figure 10: Maximum speed [m/s] over time [s] of a single data set for six different regions.
The red dashed line in the bottom left plot marks the end of systole.
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Figure 11: Total kinetic energy [mJ ] over time [s] of a single data set for six different regions.

Figure 12: Total turbulent kinetic energy [mJ ] over time [s] of a single data set for six different
regions.
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Figure 13: Maximum turbulent kinetic energy [J/m3] over time [s] of a single data set for six
different regions.

Figure 14: Average helicity density [m/s2] over all voxels over time [s] of a single data set for
six different regions.
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Figure 15: Average relative helicity over all voxels over time [s] of a single data set for six
different regions.

Figure 16: Maximum (green) and minimum (blue) helicity density [m/s2] over time [s] of a
single data set for six different regions.
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Figure 17: Pressure differences [mmHg] between atria and ventricles (bottom, left atrium/ven-
tricle to the left, right atrium/ventricle to the right) over time [s]. Blue lines show pressure
difference between ventricle base and ventricle apex, red dashed lines show pressure differences
between atrium centroid and ventricle base. The top two images show the max speeds in the
corresponding ventricles for reference. The vertical red dashed lines there mark the end of
systole.
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Figure 18: Pressure difference [mmHg] between the ascending and descending aorta over time
[s] of a single data set

The single parameter values obtained from the tool are presented in tables 1 and 2. For this
data set the E/A ratio was 1.1262, and the EDT 0.3110 s.

Parameter/Region LV LA RV RA Aorta Pulm

Maximum Hd peak 0.8526 0.1119 0.2126 0.2186 0.2730 0.2286

Maximum Hd curve area 5.8383 1.6216 2.9410 2.6636 2.3326 2.6557

Minimum Hd peak -0.8863 -0.1574 -0.1514 -0.1800 -0.8086 -0.2341

Minimum Hd curve area 7.2266 1.7397 2.0671 2.7463 3.8463 2.0054

Table 1: The single parameter values related to the maximum/minimum helicity density
curves.

Parameter/Region L A/V R A/V Aorta

Peak pressure [mmHg] 1.3599 1.1624 11.4343

Time to peak pressure [s] 0.4670 0.3370 0.1810

Difference between ∆p peaks [mmHg] 0.0710 - -

Table 2: The single parameter values related to the pressure in the left/right atrium/ventricle
and aorta.
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5.1.2 Volume renderings

In addition to the plots presented above, helicity density, turbulent kinetic energy, kinetic
energy and blood flow velocities can be presented as a volume render over all time frames. In
Figs. 19 and 20 these are presented at the time frames corresponding to peak systole, early
and late diastole.

Figure 19: Helicity Density, Turbulent Kinetic Energy and Kinetic energy visualised as volume
renders. The data set corresponds to a patient with aortic valve stenosis.
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Figure 20: Blood speed visualised as streamlines. The data set corresponds to a patient with
aortic valve stenosis.
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5.1.3 Average curves - example

Two examples are provided of how the average curves are presented. The principle is the same
for all the different parameters. The average curves presented below correspond to a group of
12 healthy volunteers.

Figure 21: Average speed [m/s] over time averaged from twelve data sets corresponding to
healthy volunteers. The blue curves show the mean for each region, and the red bars show
the standard deviation at each time frame.
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Figure 22: Total turbulent kinetic energy [mJ ] over time averaged from twelve data sets
corresponding to healthy volunteers. The blue curves show the mean for each region, and the
red bars show the standard deviation at each time frame.

5.1.4 Comparison between a patient and average healthy data sets

Here, the comparisons of the average speeds and total turbulent kinetic energy between a
patient with aortic valve stenosis and the average healthy parameter set are shown.
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Figure 23: Average speed [m/s] averaged from twelve data sets corresponding to healthy
volunteers (black, dashed), compared to the average speed of a patient with aortic valve
stenosis (blue and red). The blue parts of the curves represent time frames where the curve
value for the patient is within the standard deviation of the mean for the average curves, and
the red parts where the values are outside of this interval.
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Figure 24: Total turbulent kinetic energy [mJ ] over time averaged from twelve data sets
corresponding to healthy volunteers (black, dashed), compared to the total TKE of a patient
with aortic valve stenosis (blue and red). The blue parts of the curves represent time frames
where the curve value for the patient is within the standard deviation of the mean for the
average curves, and the red parts where the values are outside of this interval.

5.2 SOFM Clustering

In this section the clustering, and different pieces of information related to this, obtained from
MATLAB’s self-organizing map neural network tool is presented.
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Figure 25: The result of the self-organizing feature map clustering. The number indicates the
number of data sets assigned to each cluster.

Figure 26: The topological distance between the clusters. The blue blocks are the clusters. A
bright colour between clusters indicates small distance, dark colour indicates large distance.
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Figure 27: An example of the impact of one of the input parameters on the clustering. A bright
colour indicates that the parameter in question (maximum helicity density in the pulmonary
artery during early diastole) had a small impact on the cluster, a dark colour indicates a large
impact.

5.3 Posterior probabilities

The results from comparing the clustering obtained using the SOFM with the EF labelling
can be found in Table 3

Label/cluster belongings C1 C2 C3 C4

L1 (EF < 50%) 40.00% 3.33% 53.33% 3.33%

L2 (EF ≥ 50%) 75.86% 0.00% 24.14% 0.00%

Table 3: The relationship between labels and cluster belongings. Each element (i, j) of the
table describes the fraction of the elements labelled as i that were grouped into cluster j, e.g.
40% of the data sets with EF < 50% (L1) were grouped into cluster 1 (C1).

The resulting posterior probabilities for the labelling of a data set given its cluster belonging
can be seen in Table 4
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P (Li|Ci) C1 C2 C3 C4

L1 (EF < 50%) 15.38% 100.00% 43.23% 100.00%

L2 (EF ≥ 50%) 84.61% 0.00% 56.77% 0.00%

Table 4: The posterior probabilities. Every element describes the probability of a data set
having the label Li when assigned to the cluster Cj .

6 Discussion

A hemodynamic assessment tool was created to be able to create an automatic hemodynamic
overview of a data set. The expected run-time for the analysis of one data set is around 3-4
minutes on a 6-core processor with a speed of 3.5 GHz, and RAM memory of 64 GB. The tool
includes calculation of a variety of hemodynamic parameters that have previously shown to
be clinically useful. The results are then presented in a way that is easy to interpret.

6.1 The results

6.1.1 Parameter visualisation

Let us start by discussing the plots found in Figs. 14-24. These are the curves corresponding
to the parameters evaluated in a number of regions for one single data set (14-18) as well as
for an average of the parameters (22) and a single versus the average (24). They all quite
clearly depict how their respective parameter behaves over time.

The blood flow speeds seen in Figs. 9 and 10 correspond well to what we know of the behaviour
of blood flow through the heart (see Section 2.1.1). The total turbulent kinetic energy in the
left ventricle (Fig. 12, top left, Fig. 22, top left) behaves similarly to what has been previously
observed for healthy patients [26], both in curve characteristics and order of magnitude. The
comparison of average speeds between a patient with aortic stenosis and the average parameter
set can be seen in Fig. 23. The speeds behave quite similarly despite the cardiac illness of
the patient. However, other parameters behave differently. In Fig. 24 we see a clear increase
in total TKE for the patient with aortic stenosis compared to the total TKE of the average
healthy volunteers. This coincides well with what has been shown previously [45]. If we look
at the middle-left volume render in Fig. 19, this also becomes very evident. During peak
systole when the blood leaves the left ventricle and flows into the aorta, the narrowing of the
aortic valves associated with aortic valve stenosis causes a clearly visible increase in TKE.

One thing should be noted for all curves related to TKE. In the early time frames a clear spike
can be seen in almost all curves, regardless of region. This is due to an artefact from the MRI
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acquisition process. Thus, the initial time frames of these curves should be ignored.

When it comes to pressure differences in the left atrium/ventricle and the aorta, the calcula-
tions were based on two previous articles. When comparing the results in Figs. 17 and 18 to
the results presented in these articles ([38, 40]), they seem to be in accordance to one another.

In Fig. 22 we see the average total TKE for a number of healthy data sets, with the red bars
indicating the standard deviation. However, the standard deviation does not take into account
the distribution of the data points. For example, if most data points are very close to one
another, but one data point deviates greatly from the rest, the manner of deviation reflected
by the standard deviation will be affected. A possible improvement that could be made here
is to calculate two standard deviations for each time point, one from the data points above
the mean, and one from data points below the mean.

However, for many of the parameters and regions it is more difficult to find studies to compare
to. For example, the number of studies regarding the right side of the heart is smaller compared
to the left side, and thus the tools’ results are harder to evaluate.

6.1.2 Data analysis

There are a number of things that can be said with regards to the statistical analysis of the
parameters. The posterior probabilities in Table 4 tell us that if a data set ends up in cluster
1, there is a 84% probability that it also has an EF over 50%. While this might seem to be
a clear and useful result, there are a few things that need to be mentioned. The first thing
is that, as mentioned before (section 2.1.3), different articles and studies define healthy EF
differently. This could raise questions about the usefulness of the results. The second and
fourth column of table 4 should probably be ignored, as the clusters corresponding to these
columns only have one data set in them each. When it comes to the third cluster, we see
that the probability of a data set having a certain label when grouped to that cluster is close
to a coin flip. Thus, the only piece of possibly useful information comes from the posterior
probabilities related to the first cluster.

Could some other label have been used for comparison? While we have some information about
the condition of the patients, it is hard to use different diseases to infer a strict labelling. Many
of the data sets belong to a group of patients with varying degrees of chronic ischemic heart
disease, which means that we did not necessarily expect unsupervised classification to result
in a straightforward clustering. To achieve proper, interesting labelling, it would be beneficial
to have a (group of) physician(s) sit down and analyse the data sets and come up with a more
specific labelling that is not only accurate, but also more likely to be relevant.

Other points of uncertainty can be found by looking at the SOFM clustering. While the
used method is applicable for problems such as ours, the question of whether the clustering
obtained actually makes sense can still be asked. The SOFM neural network tool used for
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the analysis grouped the vast majority of data sets into one of two clusters (Fig. 25), but by
looking at the topological distance between the two major clusters, in Fig. 26, we see that
the two clusters are actually quite similar. This indicates that the used method for clustering
might not be optimal given our data, and that any conclusions drawn based on this clustering
should probably regarded with care. Another factor that one needs to keep in mind is the fact
that when applied several times to the same data set, the clustering will vary. The manual
selection of the number of clusters is also worth mentioning. A possible way to work around
this would be to allow the clustering tool to perform clustering several times, with a varying
number of clusters. Then, the desired data set labels could be compared to the different
available networks. Any clear and “true” correlation between labels and clusters would then
hopefully shine through for a large number of the different networks.

Yet another approach would be to find and implement several other statistical methods of
analysis suited for our problem. Potential models of interest could be an adaptive resonance
theory-based model, or a model that makes use of Gaussian mixture variational encoders.

The clustering is obviously impacted by the data used, and thus some comments need to be
made regarding this. Feature scaling is used to bring all of the parameters into the range [0, 1].
This does, however, not eliminate the impact of outlier data points. Any outliers will cause
the “real” range of the parameters to be skewed, potentially eliminating the impact of some
parameters. A solution to this could be to only use the 95 percentile of the data, however
that would risk eliminating potentially interesting information. It also has to be said that the
data used in the analysis is fairly heterogeneous. If one was to compare data from only two
very distinct patient groups, then the separation into clusters might have been clearer.

It would be interesting to evaluate which parameters have the largest impact when it comes
to separating the data into different groups. Such information is provided by the SOFM
NN tool that was used, however it was not very easily accessible when a large number of
parameters were used for classification. An example of one such piece of information can be
seen in Fig. 27. Quantitative information about parameter impact was not available. The
information we can extract visually from these plots however, tells us that for this particular
clustering, the parameters listed below are some of those that seem to have a relatively large
impact on the clustering. In this segment, the following abbreviations are used: s = systole,
ed = early diastole, ld = late diastole.

In the left ventricle: average speed (ed) and total TKE (ld).
In the right ventricle: minimum helicity density (ld) and maximum TKE (s).
In the left atrium: average helicity density (ed), maximum helicity density (ed), total KE (ed),
average speed (ed), and maximum speed (ed).
In the aorta: average relative helicity (ed + ld), and maximum helicity density (ld).
In the pulmonary artery: maximum helicity density (ed + ld), minimum helicity density (ed),
and maximum TKE (ld).
Other parameters that seem to have had an impact were the maximum pressure in the left
atrium/ventricle (ed), the pressure difference in the aorta (ed) and the time to peak pressure
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in the right atrium/ventricle.

This information should also be regarded with care however. Even though the impact these
parameters have on the two major clusters are very different compared to each other, one still
has to remember that the two major clusters are topologically quite close to one another. This
means that parameters that have a relatively large impact on one of the clusters, but not on
the other, might still be similar between data sets in the two clusters.

6.2 The hemodynamic assessment tool

When it comes to the tool itself, there are a number of things that can be said. The tool is
innately useful as it provides and makes information accessible - for physicians and researchers
alike. Many of the parameters calculated have not been studied extensively in all of the
different regions of the heart. One example is the fact that the left side of the heart and
the aorta had received more attention from the research community than the right side of
the heart. Searching for the keywords “left ventricular” on the web page of the Journal of
the American College of Cardiology (JACC) yields around 27700 results, while searching for
“right ventricular” only yields around 8000. While this is a very rough metric, it can still serve
as an indicator for where the focal point of most studies lie. The hemodynamic assessment
tool could possibly be a step in another direction, as it provides information about aspects of
blood flow behaviour in regions that might not have been widely regarded before. Another
advantage of the tool, which also plays into the fact that the need for information about certain
aspects of blood flow behaviour may change, is that it can easily be changed or modified to
include several more parameters.

Yet another advantage of the tool is the ability to display information about some parameters
not only using numbers or curves, but rather in three-dimensional volumes, over time. An ex-
ample of this in conjunction with a segmentation of the heart is seen in Fig. 19. Displaying the
parameters in this way enables easy assimilation of information for the viewer. In this image,
only three different time frame per parameters are displayed, but this type of visualisation is
also available as a continuous display of all time frames as a movie. These visualisations are
useful for visual assessment of the blood flow and parameters related to blood flow.

Before creating the tool, a discussion regarding which parameters to include was held. How-
ever, the choice to not include some parameters does not mean that they are of no interest.
Possible additions include both the evaluation of parameters already included, but in more
regions, and addition of new parameters altogether. One possible parameter extension that
could be made is to also include pressure difference calculations in the pulmonary artery.
Pressure in the pulmonary artery is a measurement used to define pulmonary arterial hyper-
tension [46], but the measurement used for definition is the mean of absolute pressure. Since
the pressure fields we calculate are relative (see Section 3.1.6), these cannot be used for this
type of assessment. All the same, this does not exclude that pressure differences between
e.g. the pulmonary trunk and points in the right and left main pulmonary arteries could be
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of interest. Pressure differences are already used for assessment of stenoses in the aorta and
ventricles (see Section 3.1.6), and should therefore also be of interest regarding stenoses in the
pulmonary artery.

Another hemodynamic parameter that could possibly be included is wall shear stress (WSS),
which has been studied in relation to patients with biscupid aortic valves (as opposed to the
normal triscupid) [47]. However, actual WSS is often underestimated by MRI [48]. Despite
this, the measurements obtained could still be interesting.

One of, if not the most commonly measured hemodynamic parameter is flow volume. Much
like blood speed, it can be used to quantify other aspects of blood flow, but blood flow volume
can in itself be an interesting parameter. Flow volume could be assessed as the flow volume
through one or several planes in the region of interest.

6.3 Future work

Are there any calculations that could have been done differently? One of the main improve-
ments that could be made to the tool is to try and add to the robustness of some of the
calculations. Some of the calculations that have to do with different points in time contain
elements that were arbitrarily selected by hand. For example, when finding the end of systole,
the time frame chosen was simply the location of the aortic speed peak plus an arbitrary
number. While the tool functions well despite this, it is something that could probably be
done in a more general sense to add to the robustness of the tool. As a small compensation
for this, the tool provides the user with information most of the time when a decision is made
due to one of these arbitrary conditions.

The two points that are used for pressure difference calculations in the aorta could also be
obtained in a better and more robust way. If the segmentation used for the aorta is flawed,
the tool can have a hard time identifying where to put the points. This mostly happens in the
descending aorta. There are more refined methods for calculating centerlines in vessels, and
to improve the tool further, one of these could be implemented. For example, a fast marching
and Runge-Kutta based method has been developed with the purpose of finding centerlines
in the coronary artery [49].

The pressure difference points in the right ventricle also need to be mentioned. The method
used to obtain these points is the same as for the left ventricle. However, the shape of the
right ventricle is quite different to the one of the left ventricle. Where the left ventricle is
cone-shaped, the right ventricle is crescent-shaped. Since the point calculation method walks
in a straight line between atrial and ventricular centroids, it does not take into account the
crescent shape of the right ventricle. This means that while the location of the base of the
right ventricle might be correct, the location of the “apex” might not. Instead of calculating a
point towards the end of the crescent shape, a point closer towards the middle will be chosen.
Once the ventricle starts “bending”, the line between the centroids of the atrium and ventricle
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will go through the ventricle wall instead of following through towards the end of the ventricle.
A possible solution to this could be to, again, use some kind of centerline approximation of
the right ventricle. This might be difficult due to the wider shape of the ventricle compared
to that of blood vessels, but could still be worth an attempt.

7 Conclusions

In this project, a tool for the automatic assessment of a number of hemodynamic parameters
has been created. The tool takes four-dimensional blood flow data as input, and outputs a
number of parameters. Through use of the hemodynamic assessment tool, characteristics of
blood flow can be easily visualised and analysed. Physicians and researchers alike can use this
tool in order to access information about the blood flow through the heart.

The addition of more information and knowledge with regards to cardiac blood flow could
possibly be a step towards finding new correlations between blood flow and cardiac disease.
Physicians could use this information in the treatment process of patients with heart disease.
Furthermore, the tool can help in finding new areas of research interest.

A small statistical analysis of the hemodynamic parameters obtained from applying the tool
on a number of data sets with regards to ejection fraction did not yield any significant results.
By refining the methods used, and by further investigation with regards to the labelling of
the data sets, a statistical analysis that shows correlation between blood flow parameters
and different cardiac related labels could possibly be obtained. Information about which
hemodynamic parameters provides the most information when it comes to different types of
heart disease is something that could be very useful.

In the future, the tool will hopefully be further developed and improved. More parameters
could be added, and the calculation of ones that are already present could be refined. The
hemodynamic assessment tool has great potential to enable and facilitate the work of doctors,
and by extension the treatment and quality of life of patients with cardiac disease.
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