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Abstract:

The observed distribution of giant exoplanet eccentricities and inclinations are signifi-
cantly larger than what is measured for their Solar system analogues, Jupiter and Saturn.
Since the first observations of exoplanets, planet-planet scattering has been proposed as
a possible mechanism for exciting the eccentricities and inclinations of giant exoplanets.
Many works have showed that indeed the observations can be reproduced fairly well by
unstable planetary systems undergoing planet-planet scattering, e.g. Marzari & Weiden-
schilling (2002); Jurić & Tremaine (2008); Chatterjee et al. (2008). Most of these works
disregard mean motion resonances in their simulations.

In the early stages of a planet system the planets are embedded in a protoplanetary
disk, consisting mostly of gas. Planet-disk interactions causes planets to migrate which
allows for capture into mean motion resonances. This significantly affects the dynamical
evolution of the system. In this work I investigate what effect mean motion resonances
has specifically on the planet-planet scattering phase of an unstable system. I numerically
simulate systems of three Jupiter-mass planets orbiting a solar mass star, including planet-
disk interactions to form resonant configurations. The systems are split into two sets: mmr
simulations, with all planets locked in mean motion resonance chains before the scattering
phase, and non-mmr simulations, with similar initial orbital elements but no mean motion
resonances before the scattering phase.

I find that eccentricity and inclination distributions of relaxed systems are not directly
correlated with initial mean motion resonances. Resonances seem to be broken in the first
few close encounters and have no further impact on the systems afterwards. However, mean
motion resonances have an impact on the initial eccentricity, inclination and semimajor axis
of the scattering phase, all of which affects the relaxed systems. Therefore mean motion
resonances do affect the scattering phase indirectly through the initial orbital elements. The
duration of the scattering phase seems to be uncorrelated with both initial resonance and
initial eccentricity and inclination. The onset time of the scattering phase is, in contrast,
very dependent on both initial mean motion resonance and initial orbital elements.
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Populärvetenskaplig beskrivning

Vetenskap inom planetformation är ett omr̊ade som har utvecklats mycket sedan de allra
första exoplaneterna upptäcktes. Där vi tidigare hade ett enda exemplar av planetsystem
att studera (v̊art egna Solsystem) har vi idag tusentals observationer av planetsystem runt
andra stjärnor. N̊agot som förbryllade forskare d̊a de första upptäckterna gjordes är att
exoplaneter, specifikt gasjättar, har betydligt högre excentricitet och inklination än gas
jättarna Jupiter och Saturnus i v̊art Solsystem. För att beskriva denna avvikelse föreslogs
teorin planet-planet spridning (planet-planet scattering). Teorin g̊ar ut p̊a att planeter
under ett tidigt stadie kommer tillräckligt nära varandra för att interagera kraftigt genom
gravitation. Med andra ord s̊a blir gravitationskraften mellan de tv̊a planeterna betydlig i
jämförelse med gravitationskraften fr̊an den centrala stjärnan. Under s̊adana interaktioner
kan de involverade planeterna avvika fr̊an sina ursprungliga banor runt stjärnan. Dessa
avvikelser involverar bland annat excitation av excentricitet och inklination vilket skulle
förklara observationerna.

Många tidigare studier har gjorts inom ämnet planet-planet spridning, ex. Marzari &
Weidenschilling (2002); Jurić & Tremaine (2008); Chatterjee et al. (2008). Studierna g̊ar
ut p̊a att ostabila planetsystem f̊ar interagera genom planet-planet spridning tills dess att
en eller flera planeter blir utstötta ur systemet. De kvarvarande planeterna bildar d̊a ett
stabilt system med förhöjd excentricitet och inclination. Dessa studier bortser fr̊an reso-
nanser mellan planetbanor, vilket har en stor effekt p̊a planetdynamik. Resonanser mellan
planetbanor uppkommer d̊a planeternas omloppsperioder närmar sig en enkel br̊akdel,
ex. 2:1 eller 3:2. Viktigt för det här projektet är att resonanser mellan planetbanor kan
stabilisera planetsystem som annars skulle varit ostabila.

I det här projektet undersöker jag hur stor effekt, om n̊agon alls, som resonanser mellan
planetbanor har p̊a planet-planet spridningen i ostabila planetsystem. Jag undersöker
särskillt hur excentricitet och inklination av planeter berörs.
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Chapter 1

Introduction

1.1 Exoplanets

For a long time our solar system was the only sample of planets and other sub-stellar
bodies available for study. Because of this, theories of planetary formation were limited
and suffered from extreme bias. Lately, observations of planetary systems orbiting other
stars have provided a larger sample of products of the planetary formation process.

The two most common observational techniques to detect exoplanets are the radial
velocity method (RV) and the transit method. In short, the radial velocity method detects
the small orbital motion of a star around the system center of mass due to a massive planet
companion. The transit method detects the dip in luminosity of a star that has a planet
passing in front of it.

There are three major groups of observed exoplanets: Super Earths (or small planets),
giant planets and hot Jupiters (Winn & Fabrycky 2015). Super Earths are small planets
with masses M < 0.1 MJ, mostly detected by the transit method. According to measured
occurrence rates (Winn & Fabrycky 2015), small planets with periods P < 1 yr exist around
∼ 50% of Sun-like stars, usually in groups of closely spaced orbits. Super Earths have high
density and are most likely terrestrial planets. Giant planets have masses M > 0.1 MJ
and are much less common than super Earths within the same period limit P < 1 yr. For
P ε[2, 2000] yr their occurrence rate is estimated at ∼ 10% for Sun-like stars. In contrast to
super Earths, giant planets have been observed at large distances of several AU. However,
most of these are detected by the radial velocity method which is not sensitive enough to
detect low-mass planets at such separations. Giant planets seems to be large and thus have
low densities, which indicates that they are gas planets. Hot Jupiters are giant planets
found extremely close to their host stars with periods of a couple of days. Despite being
very rare, many hot Jupiters have been detected, mostly due to a strong bias towards large
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1.1. EXOPLANETS CHAPTER 1. INTRODUCTION

planets at close separation in the transit detection method.

In the solar system, the planets are roughly coplanar and have nearly circular orbits
(Mercury is the only solar system planet with a significantly eccentric orbit). The planets
also have a geometric relation between their orbital separation described by the Titius-Bode
“law”, e.g. Winn & Fabrycky (2015). This motivates a theory where planetary systems
form from an ordered system. A popular planetary formation theory is planets forming
from small particles and gas in circumstellar accretion disks around young stars. Such
disks go by the name protoplanetary disks and the theory is to date the favored planetary
formation scenario.

1.1.1 Protoplanetary Disks

Protoplanetary disks are thought to exist around most protostars, e.g. Williams & Cieza
(2011). Asymmetries in the collapse of a molecular cloud, forming protostars, leads to a
net angular momentum of the system which results in a rotating disk around a rotating
protostar. Thus a protoplanetary disk initially has the same composition as the central
star, mostly in gas form due to the high temperature. Viscous friction in the disk leads
to angular momentum exchange between neighboring layers. Therefore the inner disk is
slowly accreted to the protostar as the outer disk spreads outwards.

1.1.2 Planet Formation

The accretion and expansion of the disk decreases temperature and density meaning gas
particles can condense into porous solid matter. Dust grains in the disk grow by gas
condensation as well as mergers with other grains to form pebbles. Johansen et al. (2014)
describes several processes by which pebbles can grow and form massive planetasimals, e.g.
streaming instability. Planetesimals continue to accrete pebbles and other planetesimals to
form protoplanets eg. Johansen & Lambrechts (2017). Should they grow massive enough
they can start accreting gas from the surrounding disk in a runaway process and form
gas giants (Johansen & Lambrechts 2017). If the protoplanet fails to get massive enough
to start accreting gas from the disk it instead forms a rocky terrestrial planet. Due to
lower temperature and therefore larger fraction of solids, gas giants are expected to form
at larger separations than small planets, e.g. Winn & Fabrycky (2015).

According to the formation theory described, planets are born from a circumstellar
disk with low eccentricity and inclination, with giant planets at larger separations than
small planets. One could therefore assume that all planets have low eccentricity and
inclination and rotate in prograde orbits. While the solar system is completely consistent
with this, exoplanet observations challenge the planet formation theory. Specifically, gas
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giants in other planet systems seem to have larger eccentricities and inclinations than seen
in our solar system. The exceptions are hot Jupiters which tend to have low eccentricity
and inclination, most likely due to strong tidal interactions with the host star at close
separation (Winn & Fabrycky 2015). Instead hot Jupiters are difficult to explain as a
product of formation close to the host star.

In order to explain these anomalies planetary scattering has been proposed, e.g. Marzari
& Weidenschilling (2002); Jurić & Tremaine (2008); Sotiriadis et al. (2017); Chatterjee et
al. (2008). Moreover, planetary migration, eccentricity- and inclination damping and mean
motion resonances contributes shaping planetary systems, see e.g. Kley (2000); Papaloizou
& Larwood (2000); Sotiriadis et al. (2017); Libert & Tsiganis (2011). In short, planetary
scattering redistributes semimajor axes and increases eccentricities and inclinations of the
involved planets. Planetary migration usually acts to move planets closer to the host
star and can lead to mean motion resonance captures and hot Jupiters. Mean motion
resonances can stabilize otherwise unstable systems. Furthermore migration of planets in
mean motion resonances increases their eccentricities and/or inclinations.

In this work we combine the effects of planetary scattering, planetary migration, ec-
centricity damping and inclination damping and mean motion resonances to simulations
of giant planet systems. The goal of the project is to investigate the effect of mean motion
resonances on the planetary scattering.

1.2 Scattering Phase

Consider two planets orbiting a central star. Each planet experiences a gravitational force
towards the central star and a disturbing force towards the other planet. Given that the
star is much more massive than the planets, the disturbing force is much smaller than
that towards the star. In most cases, the disturbing force can thus be neglected and each
planetary orbit can be treated as a Keplerian two-body orbit around the host star.

However, if the planets come close enough to each other during their orbits, their mutual
gravitational force becomes significant in comparison to that of the star. The Keplerian
orbits of the planets are perturbed by this interaction, and as a result orbital eccentricities
and inclinations are slightly excited. Subsequent perturbations lead to crossing of orbits
and particularly close interactions: close encounters. During a close encounter, the mutual
gravitational force between the planets becomes dominant and the planetary trajectories
scatter. The new trajectories of the involved planets create new Keplerian orbits. This
means that each planet scattering event redistributes the orbital elements of the involved
planets. Most importantly for this project: the semimajor axis, eccentricity and inclination
changes in each scattering event.
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1.3. PLANET-DISK INTERACTIONS CHAPTER 1. INTRODUCTION

One can imagine such a scattering event putting a planet on a trajectory directly away
from the central star. If its velocity during the scattering was large enough the planet
is ejected from the system. Ejecting a planet from a system might result in the system
becoming stable, given that the separations of the remaining planets are large enough.

For a planet system with sufficiently small separations between its orbits or with eccen-
tric orbits, the disturbing perturbations described above become significant with time. We
call this an unstable system. Eccentricities of the planets slowly increase until it reaches a
state where orbits are crossing and planetary scattering becomes frequent. During a phase
of planetary scattering and disturbing perturbations, the orbital eccentricities and inclina-
tions of the planets vary rapidly. Usually, the net result is a large increase in eccentricity
and inclination with time. Eventually one or more planets are ejected and the system
becomes stable (relaxed system). This chaotic phase of an unstable planetary system is
called the scattering phase.

1.3 Planet-Disk Interactions

1.3.1 Migration

Small orbital separations can be achieved by planetary migration. Gravitational inter-
actions between the protoplanetary disk and the planets results in exchange of angular
momentum. Planets that change their angular momentum change their orbital distance
to the star and thus migrate. The most important migration mechanism for gas giants is
called “Type II”

Type II Migration

A planet exchanges angular momentum with spiral wakes that are created by density waves
excited by Lindblad resonances between the planet and the disk, see e.g. Baruteau et al.
(2014). Effectively this results in the planet gaining angular momentum from the inner
disk and loosing angular momentum to the outer disk. For a sufficiently massive planet,
the angular momentum exchange due to planet-disk interactions is greater than the viscous
angular momentum exchange trying to replenish disk material, and the planet opens a gap
in the disk (Baruteau et al. 2014). When a gap is opened, the angular momentum exchange
with the outer and inner disk locks the planet orbit somewhere in the gap. The planet
then migrates at the viscous accretion rate of the disk. Type II is usually inward migration
unless the planet is at very large semimajor axis where the angular momentum transfer
spreads the disk outwards.
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Mean Motion Resonance Capture

During planetary migration, two planets can approach each other (or move apart) and the
relation between their orbital periods change. As the ratio of periods T2 : T1, approaches
some fractional number, e.g. 2 : 1, 3 : 2, etc, the planets encounter a mean motion
resonance (hereafter MMR) and have a probability of capturing into this configuration.
Planets that are captured in MMR experience a restoring force that keeps the system in
the resonant configuration, e.g. T2 : T1. Resonance captures therefore affect the dynamics
of planetary systems.

Examples of a stable MMR in the solar system are Neptune and Pluto, being locked
in a 3 : 2 configuration, the satellites Titan and Hyperion orbiting Saturn, in a 4 : 3
MMR with Hyperion being the outer body, and the three Galilean satellites Io, Europa
and Ganymede, in a 1 : 2 : 4 MMR chain (orbiting Jupiter).

1.3.2 Eccentricity- and inclination-damping

Works by e.g. Bitsch et al. (2013); Baruteau et al. (2014); Goldreich & Tremaine (1980)
show that the angular momentum exchange between planets and a protoplanetary disk
in most cases result in continuous damping of eccentricity and inclination of the plan-
ets. This means that eccentricity and inclination decreases with time for all planets in a
protoplanetary disk.

1.4 Aims of Project

In this project I am interested in multi-planet systems that are dynamically unstable on
short time scales. The aim of the project is to investigate the effect of MMR on the
scattering phase of unstable planet systems. To do this I simulate 3-planet systems with
a central solar mass star. All three planets are of Jupiter mass. The simulations are split
into two parts:

mmr: 3-planet systems that migrate and capture into MMR before the scattering phase
starts.

non-mmr: 3-planet systems that undergo a scattering phase without MMR as initial
condition.

At the end of each simulation, a set of parameters related to the scattering phase are
measured and mmr simulations are compared to non-mmr simulations.

9



1.4. AIMS OF PROJECT CHAPTER 1. INTRODUCTION

To date there exists several works showing that the observed giant exoplanet eccen-
tricity and inclination can be fairly well described by planetary scattering, e.g. Marzari
& Weidenschilling (2002); Jurić & Tremaine (2008); Chatterjee et al. (2008). These works
are only concerned with planet systems after dispersion of the protoplanetary disk and
generally initialize the planetary systems with arbitrary or small eccentricities and incli-
nations. However, the planet-disk interaction phase is important for the initial conditions
of the scattering phase. In particular, due to planetary migration, MMR is expected to be
a common feature of planetary systems in the protoplanetary disk phase. In this work I
tested the implications of ignoring MMR in planetary scattering simulations.
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Chapter 2

Theory

For this project we are interested in the dynamics of a planetary system containing three
planets and a star. There is no exact analytical solution to this dynamical problem and
thus numerical simulations are needed.

However, we can derive approximate analytical solutions for the system using Newton’s
laws. This is important, both for setting initial conditions and analyzing the results of
the simulations. Most of this chapter is based on the book on solar system dynamics by
Murray & Dermott (1999).

2.1 Two-Body Problem

The natural starting point is considering a system of only one planet orbiting a star, the
two-body problem. By only considering the gravitational accelerations of two bodies, of
masses m1 and m2, towards each other we can solve the equations of motion for the system
exactly, see e.g. Murray & Dermott (1999). This was done first by Newton who showed
that the orbit of each body forms an ellipse around the other body. The distance between
the two bodies, r, is given by

r = a(1− e2)
1 + e cos(θ −$) , (2.1)

which is called Kepler’s first law. a is the semimajor axis of the ellipse and e is the
eccentricity of the ellipse, given in the range e ∈ [0, 1]. θ is the angle of m2 with respect to
m1 and a reference direction, which is called the true longitude of m2. $ is the angle from
the reference angle to pericenter of m2, called longitude of pericenter. These two angles
are often combined into one, called the true anomaly,

f = θ −$. (2.2)

11



2.1. TWO-BODY PROBLEM CHAPTER 2. THEORY

Newton also showed that for each orbit, the orbital period T is determined simply by the
semimajor axis and the masses of the bodies involved

T 2 = 4π2

µ
a3, (2.3)

which is Kepler’s third law. µ = G(m1 + m2) with G as the gravitational constant. It is
important to note that in a general coordinate system with origin at center of mass, both
m1 and m2 also orbit in elliptical orbits around the origin.

2.1.1 Orbital elements

So far we have found some important quantities of the orbit of m2 around m1. These are
the semimajor axis a, the eccentricity e, the true anomaly f , the true longitude θ and the
longitude of pericenter $. This section introduces more orbital elements that are useful
for the project.

The average angular velocity of m2, the mean motion, is defined as

n = 2π
T
. (2.4)

The mean anomaly is the angle represented by n

M = n(t− τ), (2.5)

where τ is the time where m2 is found at pericenter. M is the angle of m2 with respect
to pericenter if the orbital velocity would be constant. If t is known for a certain orbit we
also know M . The mean longitude is defined as

λ = M +$ = nt+ ε, (2.6)

where ε is the mean longitude at t0 = 0. Since it is defined from M it cannot easily be
interpreted by a position.

As we later will consider the orbits of three bodies, it is important to define a reference
plane. The reference plane is usually taken to be the plane in which the most massive
body m1 orbits the center of mass. For the two-body problem, m1 and m2 automatically
orbit in the same plane. However, this is not the case for three or more bodies. If an orbit
is inclined with respect to the reference orbit it has inclination angle i. We then have to
introduce some more important angles, seen in figure 7.13. The angle from the reference
direction in the reference plane to the intersection between orbit and reference plane is
the ascending node Ω. The angle from the intersection to pericenter in the plane of the
orbit of m2 is the argument of pericenter ω. Thus, for inclined orbits $ becomes a more
abstract angle. Unless i = 0 it is measured in two planes. The inclination is in the range
i ∈ [0, 180]◦, with i ∈ [0, 90]◦ representing a prograde orbit.
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2.2. DISTURBING FUNCTION CHAPTER 2. THEORY

Figure 2.1: The position of the orbit of m2 relative the reference frame (X, Y, Z)
in a coordinate system centered on m1 (Sun). The inclination of the orbit is
given by i. The crossing of the orbital plane and the reference plane (the
ascending node) is given by Ω. Pericenter of the orbit measured from the
ascending node is given by ω. The figure is taken from Murray & Dermott
(1999)

2.2 Disturbing Function

2.2.1 Three-Body Problem

Consider now a system of three bodies mc, mi and mj. We take mc to be the primary
body in a coordinate system centered on mc. The distances to the other two bodies from
mc are given by the vectors ri and rj. As shown in Murray & Dermott (1999) the equation
of motion for mi can then be expressed as

r̈i = ∇i(Ui +Ri), (2.7)

where Ui is the gravitational potential due to two-body interactions between mi and mc.
Ri is the perturbing potential from the third body interaction, mi and mj, given by

Ri = Gmj

|rj − ri|
−Gmj

ri · rj

r3
j

. (2.8)

This is called the disturbing function. The first term on the right side is the direct term
due to interactions between mi and mj. The second term is called the indirect term. It is
due to the choice of origin of the coordinate system. It can be shown that if the origin is
taken as center of mass the indirect term of equation 2.8 vanishes. Equations 2.7 and 2.8
have similar expressions for the other body mj.

13
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2.2.2 Disturbing function

The distance vectors in the disturbing function can be rewritten as
|ri − rj|2 = r2

j + r2
i − 2rjri cos ψ, (2.9)

ri · rj = rirj cos ψ, (2.10)
where ψ is the angle between the two planets in the reference plane centered on mc.
Equation 2.9 comes from the cosine rule. Using these relations, the disturbing function
(equation 2.8) can be expanded into Fourier series in the orbital elements. The details on
how exactly to do this are rather lengthy and instead of describing it here I refer to chapter
6 of Murray & Dermott (1999). The result is that the disturbing function can be described
as

R = µ′
∑

S(a, a′, e, e′, i, i′) cos φ, (2.11)
where the planet on the exterior orbit (largest semimajor axis) is denoted by a prime on
all its orbital elements and parameters. A similar expression exists for R′. Here we take
µ = Gm and µ′ = Gm′. S is a function of the orbital elements of both planets. The angle
φ is described by a linear combination of the orbital angles

φ = j1λ
′ + j2λ+ j3$

′ + j4$ + j5Ω′ + j6Ω. (2.12)
j1, ..., j6 are all integers that follow

6∑
i=1

ji = 0, (2.13)

by Murray & Dermott (1999). The disturbing function, equation 2.11, is therefore a sum
of contributions of different functions S and different orbital angle combinations φ.

In order to see how the disturbing function affects the planetary motion we go back and
look at the equation of motion equation 2.8. If we treat each planetary orbit as a two-body
problem with the central star, the disturbing function determines the perturbation to the
two-body problem due to a second planet. The disturbing function is used to calculate the
changes in orbital elements due to a perturbing second planet. To do this we use Lagrange’s
planetary equations (Brouwer & Clemence 1961). These give the evolution of the orbital
elements in time ȧ, ė, i̇, Ω̇, $̇ and indirectly also λ̇, as functions of the disturbing function
R. Clearly, the disturbing function grows large when two planets come close to each other,
see equation 2.8. Another important property of the disturbing function is that it provides
a significant force in two more cases, called secular evolution and resonance evolution.

2.2.3 Cosine Argument & Secular Evolution

Each term contributing to R (equation 2.11) includes a specific cosine argument φ which
is a combination of orbital angles (equation 2.12). $, $′, Ω and Ω′ are slowly varying
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angles of the orbit. On the other hand λ and λ′ are rapidly varying since they describe
the periodic position of the planet, see equations 2.5 and 2.6. With rapidly periodically
varying φ, the cos φ term cancels out over each orbit of the planets,∫ 2π

0 cos φ dM = 0.

These orbital averaged disturbing function terms are zero and has no effect on R or R′.
However, there are terms R and R′ that have φ which does not contain λ or λ′. This means
arguments that have j1 = j2 = 0. φ is slowly varying for these terms and they provide
finite contributions to R and R′ each orbit. Such terms are called secular and give rise to
disturbing functions that can alter orbits even at large planetary separations.

2.3 Mean Motion Resonances

We have seen that a term of the disturbing function is important only if φ̇ ≈ 0. The time
derivative of φ is given by equations 2.6 and 2.12

φ̇ = j1(n′ + ε̇′) + j2(n+ ε̇) + j3$̇
′ + j4$̇ + j5Ω̇′ + j6Ω̇. (2.14)

We see that j1n
′ = −j2n results in φ̇ ≈ 0, since $′, $, Ω′, Ω, ε′ and ε are all slowly varying

angles. By equation 2.4 we get
j1T = −j2T

′. (2.15)

So there exist relations between the orbital periods that provide a nonzero averaged dis-
turbing function. The fact that j1 and j2 can only be integers means that this can only
occur for certain period relations, e.g. 2:1, 3:1, 3:2, etc. Equation 2.15 describes the nom-
inal (approximate) resonance configuration. Exact MMR is described by setting the full
equation 2.14 to zero (φ̇ = 0), and is therefore slightly shifted from the condition described
by 2.15.

As an example, for first order mean motion resonances, e.g. 2:1, 3:2 etc., we have
j1 = −j2 + 1. To satisfy the condition 2.13 we then need the other angle integers j3, j4, j5
and j6 to sum up to minus one.

More specifically, one can show that (see chapter 8 of Murray & Dermott (1999)) to
lowest order, each term in the disturbing function can be expressed as

〈R〉 ∝ µ′

a′
e|j4|e′|j3|s|j6|s′|j5|cos φ, (2.16)

with a similar expression for 〈R′〉. s is related to i by s = sin 1
2i. Since e < 1 and |s| ≤ 1

the strongest resonances are those with small integers j3, j4, j5 and j6.
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We call resonances either eccentricity- or inclination-resonances depending on which in-
tegers ji are used for the resonant angle φ. As an example, a first order internal eccentricity
resonance is given by:

φ = j1λ− (j1 − 1)λ−$. (2.17)

This is an eccentricity resonance because φ includes $ (j4 in equation 2.12 equals −1
while j3, j5 and j6 are all zero). According to equation 2.16 the disturbing function for
this resonance is proportional only to e. As we will see later in section 2.3.4 the type
of resonance determines whether eccentricity or inclination is excited during migration in
MMR. An important note here is that the sum of integers j5 and j6 can ONLY be even
integers e.g. j5 + j6 = 0, 2, 4, ...

2.3.1 Qualititive Description of Mean Motion Resonances

Mean motion resonances are repeated conjunctions at the same orbital location. Consider
two planets with the following nominal relation of periods

T ′

T
= |j1|
|j2|

. (2.18)

It can be shown (Murray & Dermott 1999) that the period between conjunctions is then
given by

Tcon = j1 − j2

j2
T ′ = j1

j2
T, (2.19)

where T and T ′ is the period of the inner planet and outer planet respectively. So for a 2:1
resonance, we see that a conjunction occurs once every period of the outer planet. This
can be seen in figure 2.2. For a 3:1 resonance a conjunction occurs every second orbit of
the outer planet etc. This means that conjunctions always occur at the same locations
in space. By taking into account exact resonances, e.g. precession rates $̇, Ω̇, ε̇ etc.
the conjunctions no longer occur at the same locations in space, but instead at the same
locations in a rotating reference frame.

Let’s now look more closely at what happens at these conjunctions. In figure 2.3 we
show again a 2:1 nominal resonance location. The outer planet is on a circular orbit
(e = 0) and has some finite mass. The inner planet has a slightly eccentric orbit and is for
simplicity considered massless. In this situation the conjunction is slightly offset from the
pericenter of the inner planet.
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(a) t1 (b) t2 (c) t3 (d) t4

Figure 2.2: Two planets in an exact 2:1 period relation. The outer planet has
e = 0 while the inner planet has some finite eccentricity. Conjunctions always
occur in the position at t1. t1 = n · T ′ for n = 0, 1, 2, ... and T ′ as the period of
the outer planet. t2 = t1 + 1/4 · T ′, t3 = t1 + 1/2T ′ and t4 = t1 + 3/4 · T ′.

(a) (b)

Figure 2.3: a) Forces before and after conjunctions near pericenter in 2:1 MMR.
b) The resulting movement of future conjunctions.

By comparing the situation right before the conjunction to right after the conjunction
we see that: due to the eccentric orbit of the inner planet, the distance between the two
planets is slightly smaller before the conjunction than after. This means that the force on
the inner planet towards the outer planet is larger before the conjunction than after. The
angular momentum of the inner planet is therefore increased which means that it migrates
slightly outwards. By equation 2.3 this increases T which means slower orbital velocity.
Future conjunctions will therefore occur slightly closer to the pericenter of the inner planet.
So successive conjunctions pushes the location of conjunction towards pericenter. This is
an example of a stable resonance. Similarly, in the model provided by figure 2.3 one can
show that conjunctions occurring close to apocenter of the inner planet leads to a repulsive
potential, pushing conjunctions away from apocenter.
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We can think of this mean motion resonance as a potential well for the orbits with
its bottom at pericenter of the inner planet. It provides a restoring force that pushes the
conjunctions of the orbits closer to pericenter. This leads to a typical pendulum motion of
conjunctions librating about pericenter.

2.3.2 Pendulum Model

Using equation 2.14 for φ̇ we can take the second derivative

φ̈ = j1(ṅ′ + ε̈′) + j2(ṅ+ ε̈) + j3$̈
′ + j4$̈ + j5Ω̈′ + j6Ω̈, (2.20)

of the resonant argument. Using Lagrange’s planetary equations that relates the variation
of orbital elements to the disturbing function (chapter 8 Murray & Dermott (1999) we can
express this in a simpler form

φ̈ = −ω2
0 sinφ. (2.21)

ω2
0 is a parameter that depends on the orbital elements, masses, the resonant argument φ

and the type of resonance considered (Murray & Dermott 1999). This is the equation of
pendulum motion. In a resonance, the restoring force acts to push the resonant argument
φ to a certain value.

The sign of ω2
0 changes depending on the type of resonance and whether the considered

planet is the exterior or interior in the resonance. For first order resonances (|j1|−|j2| = 1)
we have for the interior planet ω2

0 > 0. By looking at equation 2.21 we see that the stable
point then lies at φ = 0◦. Similarly, for exterior first order resonances we have ω2

0 < 0, thus
changing the stable point of the pendulum motion to φ = 180◦. The energy of the system
can be divided into kinetic and potential energy by

E = 1
2 φ̇

2 + 2ω2
0 sin2 1

2φ, (2.22)

where the first term is the kinetic energy and the second term is the potential energy.

2.3.3 Libration Width

In this section we outline a simple method of calculating the libration in semimajor axis of
two planets in a mean motion resonance. In this work I use the libration width to initialize
planets on orbits.

To simplify the problem we consider the restricted three-body problem, in which a test
particle on an eccentric orbit feels the disturbing force from a massive planet on a perfectly
circular orbit. Both objects have i = 0. In Murray & Dermott (1999) the libration width
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is calculated for an interior object in resonance in the restricted three-body problem. We
refer to chapter 8.7 in Murray & Dermott (1999) to see the details on how this is done.

In the interior restricted three body problem, since ṅ′ = 0, ε̈ ≈ 0, ε̇′ = 0, $̇′ = 0 and
Ω̇ = Ω̇′ = 0, the most important first order resonant argument and its derivatives becomes:

φ = j1λ
′ + j2λ−$, , (2.23)

φ̇ = j1n
′ + j2n− $̇, (2.24)
φ̈ = j2ṅ− $̈. (2.25)

We note in equation 2.22 that the oscillation amplitude is given by φ = 180◦ which yields
Emax = 2ω2

0. By equating equation 2.22 with Emax we obtain an expression for φ̇,

φ̇ ∝ cos 1
2φ. (2.26)

By Lagrange’s equations and an approximation of 〈R〉 we calculate ṅ, see Murray & Der-
mott (1999). We then relate ṅ to φ̇ by: ṅ = dn

dt
= dn

dφ
dφ
dt

= dn
dφ
φ̇. By combining with equation

2.26 and integrating we get an equation on the form

n = n0 ± k cos 1
2φ. (2.27)

By equations 2.3 and 2.4 we can convert this into semimajor axis by da = −2
3
a
n
dn. For

the exact details on doing this in the restricted three-body problem for an inner body, see
section 8.7 in Murray & Dermott (1999). The result is

∆a
a

= ±
(

16
3
|Cr|
n
e

)1/2 (
1 + 1

27j2
2e

3
|Cr|
n

)1/2

− 2
9j2e

|Cr|
n
, (2.28)

where Cr is a constant depending on the type of resonance, that is proportional to ω2
0. For

an inner resonance Cr < 0 which means ω2
0 > 0. The ± represents extension of libration

width on each side of the libration point.

For this work I modify this formula to work also for the outer body in MMR. This is
done by considering libration about φ = 180◦, calculating the new resonance constant C ′r
and using orbital elements of the outer body (denoted by ’). I can use the exact same
approach as outlined above by considering a new angle φ′ = φ + 180◦ and remembering
that C ′r > 0. This leads to libration of a′

∆a′
a′

= 2
9

1
j1

C ′r
n′

1
e′
± 2

3n′

(
4
9

1
j2

1

C ′2r
e′2
− 12C ′re′n′

)1/2

. (2.29)

.
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2.3.4 Resonance Capture

As planets migrate in the protoplanetary disk their semimajor axis a changes. By equation
2.3 this means that the orbital period changes. For multiplanet systems the period rela-
tions can then approach resonant configurations. This means that the conjunctions of the
planets approach a similar configuration to that shown in figure 2.3 and start experiencing
the restoring potential. It can be shown (Murray & Dermott 1999) that in the case of
convergent migration d

dt
|a2 − a1| < 0, there is a probability that the planets capture into a

mean motion resonance. The probability of capture is high for slow convergence of planets
as well as for low eccentricities. In fact for significantly low eccentricity and convergence
rate, capture is certain (Murray & Dermott 1999). For divergent migration d

dt
|a2 − a1| > 0

the probability of capture is zero. Instead, in the moment the resonant configuration is
crossed, eccentricity (and/or for some resonances inclination) is rapidly excited (Murray
& Dermott 1999).

After a successful capture into a mean motion resonance the restoring potential keeps
the periods of the planets in the given configuration. This effectively means that the plan-
ets migrate together in the resonant configuration and the resonant argument φ librates
about either φ = 0◦ or φ = 180◦ according to equation 2.21. As shown by many works e.g.
Bitsch & Kley (2010, 2011); Libert & Tsiganis (2011) planets migrating in a mean motion
resonance drives rapid eccentricity and/or inclination excitation. Whether eccentricity, in-
clination or both are excited depends on the type of resonance. From Lagrange’s equations
we have to first order approximation in e and i (Murray & Dermott 1999)

ė ∝ ∂R

∂$
, (2.30)

i̇ ∝ ∂R

∂Ω . (2.31)

If we consider an eccentricity resonance on the form φ = j1λ
′ + j2λ + j4$ we have from

equation 2.16
〈R〉 ∝ e|j4| cosφ. (2.32)

By equation 2.30 we then see a finite contribution to ė while i̇ = 0. Similarly for a pure
inclination resonance we have ė = 0 and finite contribution from i̇.

2.4 Planetary Scattering

As we saw already in sections 1.2 and 2.2 the disturbing force grows dominant when
two planets have a close encounter. The two-body Keplerian orbits of each planet is then
significantly perturbed and the orbital trajectories change. This is the underlying principle
for the scattering phase.
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How close do two planets need to be in order to undergo scattering? The boundary
is not simple to define since the gravitational potential gradients are smooth. However,
there exist a popular empirical measure for the sphere of influence of a planet: the Hill
radius RH . RH is the radius around a planet within which the gravitational force on a test
particle is significant compared to that of the central star. In Jurić & Tremaine (2008) it
is defined as

RH = r
(
M

3M∗

) 1
3
, (2.33)

where r is the distance between the planet and the central star. By assuming small e we
take r ≈ a (see equation 2.1). In line with Jurić & Tremaine (2008) we take the mutual
Hill radii between two planets as

RM = 1
2(RH,1 +RH,2). (2.34)
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Chapter 3

Method

In this work I simulate systems of three Jupiter-mass planets orbiting a solar mass star.
This is done numerically using the N -body integrator package Mercury6.2 (Chambers
1999). All of the planetary systems are unstable within the stopping time and feature a
phase of scattering. At this point it is useful to remind ourselves of the goal of the project:
I investigate what effect mean motion resonances has on the planetary scatter-
ing phase of a multi-planet system.
With this in mind, the simulations are split into two parts:

mmr: 3-planet systems that migrate and capture into MMR prior to the scattering
phase.

non-mmr: 3-planet systems that undergo a scattering phase without MMR as initial
condition.

The difference between mmr and non-mmr simulations, as we will see in this chapter,
is that the former includes planet-disk interactions. This allows the planets to migrate and
capture into MMR before the scattering starts. The non-mmr systems are unstable by
their initial conditions and feature no planet-disk interactions.

Before moving on to describe my simulations in detail I will briefly introduce the nu-
merical integration method.
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3.1 Numerical Approach

3.1.1 Mercury6.2

Mercury6.2 is a second order hybrid symplectic integrator. Most of the time it uses a
symplectic integrator as described in appendix B.

The Hamiltonian is split into three parts HA: total energy of each planet in a two-body
system with the star, HB: potential energy of each planet due to all other planets and HC :
kinetic energy of the sun due to all other planets,

HA =
∑
i

(
p2
i

2mi

−Gm�mi

ri�

)
, (3.1)

HB = G
∑
i

∑
j=i+1

mimj

rij
, (3.2)

HC = 1
2m�

(∑
i

pi

)2

, (3.3)

where the sums include all bodies except the star. Each of the split Hamiltonians are sep-
arately solvable analytically. These are called mixed-center variables because coordinates
are measured in central coordinates (origin is at the star coordinates) while velocities are
measured in barycentric coordinates. As shown in Chambers (1999), any quantity of the
system, q(t), can then be expressed as

q(t) = eτB/2eτC/2eτAeτC/2eτB/2q(t− τ), (3.4)

in accordance with notation and method in appendix B. When planets are widely separated
HA completely dominates over HB and HC . Having one of the splittings dominating over
the others significantly reduces the error ∆H as can be seen in appendix B and Chambers
(1999).

During close encounters, as a specific rij becomes small, HB grows dominant and thus
severely increases the energy error. Therefore, the term in HB that is responsible for the
small rij is moved temporarily into HA during the close encounter. This ensures that HA

stays dominant over both HB and HC and ∆H stays small. For details on how the specific
term with rij responsible for the close encounter is moved into HA, see Chambers (1999).
Basically the sum in HB is added also to HA but modified by a factor (1 −K(rij)). HB

itself is similarly multiplied by a factor K(rij). When rij is large K(rij) = 1. The moving
of terms is ensured by K(rij)→ 0 when rij becomes small.

With the addition of the extra term from HB, the term ij in HA becomes a three-
body problem that has to be integrated numerically using standard methods. This is
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done using a BS-integrator (Burlisch-Stoer). A variable time step is needed in the BS-
integrator to maintain accuracy during the close encounter. The time step decreases as the
objects approach each other. To control the energy error of the BS-integrator an accuracy
parameter ε is used. It determines the maximum allowed fractional energy error.

Input Parameters

The initial parameters of a planetary system can be expressed in orbital element coordi-
nates a, e, i, ω, Ω and M describing the instantaneous orbit of each planet fully. The
coordinates and their meaning were described in section 2.1. They are given relative to the
position of the central star and its reference plane. Planet orbits can also be described by
standard Cartesian coordinates x, y, z and vx, vy, vz, given in the reference plane of the cen-
tral star. They are used for various calculations within mercury6.2, such as the migration
implementation discussed in section 3.2.3.

Output Parameters

Mercury6.2 can output both orbital elements and Cartesian coordinates of each integrated
body. For the output parameters there is also a choice of reference frame. I mostly use
central coordinates, giving each coordinate with the origin at the central star. There is no
apparent reason for choosing central coordinates over for example barycentric coordinates.
As long as the analysis is consistent in using the same coordinate system, any coordi-
nate system is equally good. However, for investigating energy conservation and angular
momentum conservation, a barycentric reference frame must be used.

3.1.2 Energy conservation and optimization

The time step of the hybrid symplectic integrator is fixed for the whole system when there
are no close encounters. The error that the constructed Hamiltonian Hc makes compared
to the true Hamiltonian H is proportional to the time step τ , see Appendix B. Saha &
Tremaine (1992) describes that an n-th order symplectic integrator has

∆H ∝ τn. (3.5)

This means that our second order hybrid symplectic integrator should have an energy error
proportional to τ 2, given that there are no close encounters. In this section I analyze the
impact of τ on the energy- and angular momentum-error in a test integration. Clearly,
smaller τ should lead to smaller errors but at the cost of long run-time. The goal is to
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choose an optimal value of τ to get accurate results without too lengthy simulations. The
fractional energy error is measured by

∆E = |E0 − E(t)|
E0

. (3.6)

The fractional angular momentum error is similarly defined as

∆L = |L0 − L(t)|
L0

, (3.7)

where E0 and L0 are the initial energy and angular momentum of the system. E(t) and
L(t) are the current energy and angular momentum of the system.

The first constraint on τ is the period of the bodies in the simulation. If τ ∼ Tinner the
resolution of that orbit is insufficient and energy- and angular momentum errors become
large. As a guiding point we adopt τ ≤ 1

20Tinner similar to, but more strict than Jurić &
Tremaine (2008). It is important to test the energy and angular momentum conservation
for both stable and unstable systems especially since the BS integrator is partly used in
unstable systems. The accuracy and speed of this integrator is inherently different from
the purely symplectic integrator. The systems simulated in this section therefore differs
from main simulations (mmr and non-mmr), which are all unstable. In order to achieve
both very stable systems and very unstable systems for this section I modify the orbital
separations and masses of the planets. Both tests uses tstop = 107 yrs and a solar mass
central star.

Stable system

The stable system has the following configuration:

ai [AU] mp,i [M�]
planet 1 6.2205 3.9685 · 10−4

planet 2 23.0000 7.3233 · 10−4

planet 3 70.0000 2.8400 · 10−4

Table 3.1: Stable system configuration.

According to the stability analysis provided in section 3.2.2 this system should be stable
for longer than the age of the Universe.

First, I confirm that ∆E and ∆L are bounded during a simulation as predicted by a
symplectic integrator. An arbitrary time step τ = 7.54 d is used. As can be seen in figure
3.1, ∆E and ∆L are bounded during the simulation.
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(a) ∆E evolution with simulation time. (b) ∆L evolution with simulation time.

Figure 3.1: The fractional energy and angular momentum errors, ∆E and ∆L,
are plotted as functions of simulation time t. Using only the symplectic inte-
grator both are bounded quantities.

I proceed to analyze the impact of τ on ∆E, ∆L and the real time tr. Using the
condition τ ≤ 1

20Tinner ∼ 280 d I take a logarithmic scale in the time step τ ε [3, 300]. In
figure 3.2 we see that ∆E ∝ τ 2 as predicted by equation 3.5. The runtime tr decreases
with larger τ as expected. ∆L on the other hand seems to decrease with larger τ . This
could be due to round-off errors for small changes in ∆L in each time step.

(a) ∆E and tr as functions of τ . The dashed line
represents a fitted τ2 function.

(b) ∆L and tr as functions of τ .

Figure 3.2: ∆E, ∆L and tr as functions of the time step τ for a stable system
without close encounters. a) shows that ∆E ∝ τ 2 as was predicted.
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Unstable system

According to the stability criterion in section 3.1.4 the following system is unstable within
the integration time.

ai [AU] mp,i [M�]
planet 1 6.2205 3.9685 · 10−3

planet 2 8.0000 7.3233 · 10−4

planet 3 12.0000 2.8400 · 10−4

Table 3.2: Unstable system configuration.

In figure 3.3 we see that ∆E increases more steeply with τ for the unstable runs. In
fact, ∆E ∝ τ 3. This could be due to scattering of planets leading to eccentric orbits at
low semimajor axis. As τ approaches Tinner, ∆E increases rapidly due to bad resolution
at τ ∼ Tinner. The runtime tr is slightly shorter for unstable systems but follows roughly
the same trend with τ as for stable systems. This is due to planets getting ejected leading
to less data in the integration process. ∆L seems to oscillate between 10−12 and 10−13 for
different τ . Combined with the result for stable systems above it seems that the dependence
on τ is minor and in all cases ∆L is small.

(a) ∆E and tr as functions of τ . The dashed line
represents a fitted τ3 function.

(b) ∆L and tr as functions of τ .

Figure 3.3: ∆E, ∆L and tr as functions of the time step τ for an unstable
system with close encounters. a) shows that ∆E ∝ τ 3.

A good compromise between ∆E and tr is found for:

τ = 10 d. (3.8)
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This is a fairly typical time step which also satisfies the τ ≤ 1
20Tinner condition. Three

different values of the BS-integrator accuracy parameter was tested with a stopping time
of ts = 106 yr: ε1 = 10−10, ε2 = 10−12 and ε3 = 10−14. A smaller ε should result in better
energy- and angular momentum conservation in the BS integrations, at the cost of longer
run time. However, I do not see any trends in ∆E or ∆L and not in the run time tr
either. This can be explained by the relatively short time that the system spends in close
encounters. I conclude that the contribution of ε to ∆E and ∆L is negligible compared to
τ and take ε = 10−12.

3.2 Simulations

In this section I describe my simulations in detail. Remember, in order to investigate the
effect of MMR on the scattering phase I split my simulations into two parts: mmr and
non-mmr simulations, which are explained further below. The systems consist of three
Jupiter-mass planets and a solar mass star. Systems of three planets has been showed to
be more unstable and chaotic than systems of two planets, e.g. Chambers et al. (1996).
This is advantageous for this work since an extended planetary scattering phase is required.
The masses of the three planets are equal for simplicity. This similarly affects the stability
of the system. Works by e.g. Chambers et al. (1996) and Carrera et al. (2016) showed that
for three-planet systems the systems of equal mass planets are more prone to dynamical
instabilities. Furthermore, equal mass planets means that all should be affected equally
much by the scattering phase. For example, a scattering event between a massive planet
and a smaller planet with negligible mass would leave the massive planet with minor
changes to its orbit. At the same time the smaller planet would be heavily affected.

All systems must be unstable and undergo scattering and subsequent relaxation before
the analysis. I start by describing the stability analysis and which resonances are chosen
for investigation. Then the mmr and non-mmr simulations are explained.

3.2.1 General Parameters

tstop = 108 yr
τ = 10 d
ε = 10−12

mp = 9.5479 · 10−4 M� (Jupiter mass)
M∗ = M�
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3.2.2 Stability Criterion and Choice of Resonances

It is important that all the simulated systems undergo significant planetary scattering.
They shoud be gravitationally unstable well within the given tstop. The stability analysis is
based on the Hill radius RH , defined in equation 2.33. The distance between two planetary
orbits Dij can be measured in units of mutual Hill radii, see equation 2.34. The minimum
separation between two orbits Dij depends on ai, aj, ei, ej, ii, ij and the orientation
of the orbits in space ωi and ωj. For this work I consider only orbits with low initial
inclination. By neglecting also the eccentricity- and argument of pericenter dependence I
obtain approximate upper limits for Dij. I thus simplify Dij ≈ ai−aj

RM
, where RM is the

mutual Hill radius.

In Jurić & Tremaine (2008) and Chambers et al. (1996) predictions regarding the long
term stability of a planetary system are made based on statistics of numerous N -body
simulations. They find that the stability of a system depends on its shortest Dij, called
Dmin. In particular, the onset time of the scattering phase tonset is highly dependent on the
initial Dmin, as can be seen in figure 3.4a. A small initial Dmin results in early scattering
while large Dmin means late scattering or perhaps no scattering at all depending on tstop.

(a) (b)

Figure 3.4: a) The plot and associated simulations are taken from Chambers
et al. (1996). It shows the time of the first DH < 1RH close encounter plot-
ted against mutual initial Hill separation (∆ = Dmin). All the systems were
initialized with three mp = 10−7 M� planets equally spaced circular orbits. b)
shows DH as function of semimajor axis a measured from the innermost planet
at a0 = 6AU . In the plot are some important nominal resonant locations as
dashed vertical lines.
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Picking MMR

As seen in section 2.3 first order resonances (|j1 − j2| = 1) with simple fractions (|j1| &
|j2| small) are the strongest and will be used in this project. For two planets, on circular
orbits, at nominal resonance locations their separation measured in Hill radii DH does not
change with a. DH is thus a unique property of each resonance. This can be seen by taking

DH = a2 − a1

RM

. (3.9)

From equation 2.33 we see that RH ∝ r. For circular orbits we approximate RH ∝ a. By
equation 2.34 this means RM ∝ a1 + a2. Inserting this into equation 3.9 we obtain

DH ∝
a2 − a1

a1 + a2
. (3.10)

For objects in nominal resonance we have a2
a1

= C for some constant C, given by equation
2.3. Inserting this into equation 3.10 gives

DH ∝
C − 1
C + 1 , (3.11)

which is constant with a.

I require MMR with DH such that systems are unstable well within tstop. In figure
3.4b DH is plotted as a function of a2 given that a1 = 6AU . In the plot the vertical lines
represent the nominal resonance locations of some of the strongest MMR. Based on the
arguments above and remembering that the strength of a resonance is proportional to the
order of the resonance, I choose to focus on two first order resonances: 2:1 and 3:2. Since
the integers j5 and j6 has to be even numbers, this means that the strongest MMRs should
be eccentricity resonances on the form

φ = 2λ′ − λ−$, (3.12)
φ = 3λ′ − 2λ−$, (3.13)

with similar expressions for outer resonances with $′.

For the 2:1 nominal MMR we have DH = 6.6503.
For the 3:2 nominal MMR we have DH = 3.9352.

Unfortunately, figure 3.4a cannot be used to determine tonset since the Chambers et al.
(1996) simulations feature mp = 10−7 M� planets and the same paper also showed that the
tonset−DH relation depends on planetary masses. However, according to Jurić & Tremaine
(2008) both of these resonances are partially active meaning they will undergo planetary
scattering given enough time (more about this in section 5.4). Additionally, my simu-
lated planetary systems will obtain non-zero eccentricities during migration which further
decreases system stability.
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3.2.3 MMR Simulations

The MMR simulations includes planet-disk interactions. I implement a simple model of
planet-disk interactions in the simulations by applying migration, eccentricity damping
and inclination damping to the planets. This means that I do not explicitly simulate a
protoplanetary disk. Instead I model the interactions between the disk and the planets
directly through a set of accelerations, which are explained below. The goal is to migrate
the three planets to approach and capture into 3:2 and 2:1 MMR chains where each planet
is in MMR with its neighbor/neighbors. As the planets migrate in resonances, eccentricity
(and for some resonances inclination) is excited. Eccentricity damping allows the system to
stay stable in MMR until the disk is fully dissipated. The system then enters a scattering
phase due to its small DH . Therefore these simulations are with MMR as initial condition.

Implementation of Migration and Damping

To mimic the behavior of planets embedded in a gaseous disk I implement accelerations
into mercury6.2 that drive ȧ, ė and i̇. I follow the approach of Papaloizou & Larwood
(2000) and take the following accelerations into account

aa = − v
τa
, (3.14)

ae = −2(v · r) r
r2τe

, (3.15)

ai = −2(v · k) k
τi

. (3.16)

Here v = (vx, vy, vz) is the velocity vector of the considered body, r = (x, y, z) is the
positional vector and k is the vector perpendicular to the reference plane. The reference
plane and the orbital plane were defined in section 2.1.1 and they are separated by the
inclination angle i. The coordinates (x, y, z) and (vx, vy, vz) of mercury6.2 is written
in terms of the reference plane. Therefore we simply have k = ẑ = (0, 0, 1). Planets
interacting with a protoplanetary disk has been showed to drive migration, eccentricity
damping and inclination damping, e.g. Bitsch et al. (2013), Baruteau et al. (2014) and
Goldreich & Tremaine (1980). The accelerations in equations 3.14, 3.15 and 3.14 are
not directly connected to any real physical planet-disk interactions. They simply drive
migration, eccentricity damping and inclination damping. For example, aa provides an
acceleration against the orbital velocity v. This leads to decreased angular momentum
which forces the planet inwards. At the same time it also has an effect on the eccentricity
of the orbit.

All the accelerations above have dominant effects on their associated orbital element.
aa has dominant effect on the semimajor axis a. However, as seen above it also slightly
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affects e. ae has a dominant effect on e but it also slightly affects a. ai acts mostly to
change i but has small contributions to both a and e. Furthermore, all the accelerations
depend on the instantaneous a, e and i which adds further complexity.

aa →
da

dt
= fa(a, e, i, ...), (3.17)

ae →
de

dt
= fe(a, e, i, ...), (3.18)

ai →
di

dt
= fi(a, e, i, ...). (3.19)

I implemented equations 3.14, 3.15 and 3.16 into mercury6.2. The coordinate system is
given in terms of the reference orbit plane (x, y, z) and the accelerations are thus imple-
mented in Cartesian coordinates, using v = (vx, vy, vz), r = (x, y, z) and k = (0, 0, 1).

Evidently ȧ, ė and i̇ are controlled by the timescale parameters τa, τe and τi. For
example, a large τa leads to slow migration and vice versa. These values can be tuned and
even changed over time to imitate realistic migration and damping effects as well as disk
dissipation. This is not a simple task since neither migration nor damping effects are well
constrained. In this project I focus mainly on obtaining MMR configurations prior to a
scattering phase. τa, τe and τi can be used for this as explained in section 3.2.5 and 3.2.6.

Initial Conditions

In the MMR simulations both inclination and eccentricity of orbits should be small to start
with, considering planetary formation in a protoplanetary disk. Following the approach of
Jurić & Tremaine (2008) I use a Rayleigh distribution to draw the inclination from

S(x|σx) = x

σ2
x

e
1
2
x2
σ2
x , (3.20)

taking σi = 5.73 also from Jurić & Tremaine (2008). Only positive values of i are accepted.
The Rayleigh distribution of inclination is a result of Gaussian spreads with the same
variance and mean in the two dimensions: i cos Ω and i sin Ω. Ω is the ascending node
described in section 2.1.1. The two Gaussian distributions of i cos Ω and i sin Ω also results
in Ω ∼ U(0◦, 360◦). The Rayleigh distribution is successful in describing distributions
of e and i in for example the asteroid belt. For simplicity I take e = 0 initially for all
the planets. As the planets undergo secular evolution, resonant encounters, migration in
resonances and scattering the eccentricities increases for each of them.

The migration of planets is always inwards in my simulations. In order to ensure
reliable capture into MMR the migration and damping accelerations, equations 3.14, 3.15
and 3.16, are only applied to the two outer planets. This leaves the inner planet initially
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stationary. Therefore, by initializing the planets with slightly larger separations than the
nominal resonance locations, the planets can quickly migrate and capture into MMR.

The initial semimajor axis of the inner planet a1 is fixed. The resonance in considera-
tion, 2:1 or 3:2, is used to calculate the nominal resonance period relation by equation 2.15.
Equation 2.3 is used to calculate the nominal resonance location a2,nom. The middle planet
is then initialized such that a2 > a2,nom. Once a2 is obtained I repeat the same steps again
to obtain the semimajor axis of the outer planet a3 with respect to a2. The nominal 3:2
location lies close to the nominal 5:3 location, see figure 3.4b. By taking ai � ai,nom there
is a risk of initializing the planet exterior to the 5:3 resonance. Subsequent migration can
then potentially lead to capture into this resonance instead of 3:2, which I do not want.
Therefore I calculate the nominal resonance location for both the 3:2 and 5:3 resonance
and initialize ai somewhere between a3:2

nom and a5:3
nom, see figure 3.5. In order to start the

simulations far from both resonances I initialize ai exactly in the middle of the two.

Figure 3.5: For the 3:2 resonance, given a certain a1 I want to initialize a2 such
that a3:2

nom < a2 < a5:3
nom. Once the simulation has started, planet 2 will then

migrate into the 3:2 mean motion resonance while avoiding the 5:3.

To add another stochastic element to the simulations I initialize the semimajor axes
with a Gaussian spread around the set initial values. I take a1(t = 0), a2(t = 0) and
a3(t = 0) according to normal distributions N(a|µ, σ) with µi = ai. The variance is taken
as half the libration width, σi = ∆ ai/2, of the desired resonance. ∆ai is calculated at
the nominal resonance, a1, a2,nom and a3,nom, where I expect capture to occur. The theory
and the procedure of calculating the libration width is given in section 2.3.3. The 2:1
resonance is initialized such that, even with the largest possible spread in semimajor axis,
a2(t = 0) ≥ a2:1

2,nom is ensured.

The orbital angles ω, Ω and M (defined in section 2.1.1) describe orientation of orbits
and initial positions of planets in the orbits. They are generated randomly from a uniform
distribution U(0◦, 360◦). By using a Schwarzchild distribution, equation 3.20, to generate
i, Ω ∼ U(0◦, 360◦) is a natural choice.
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MMR Capture Procedure

The three planets are initialized on orbits as described above. Migration and damping
accelerations are applied only to the outer two planets. This means that first the middle
planet will encounter a MMR with the inner planet. Given that the migration rate is not
too large, the planets will capture in MMR. The restoring force tries to keep the planets
in MMR and therefore they will continue migration inwards, now at a slower rate since
the same migration acceleration now pushes two planets. This allows the outer planet to
catch up and capture into the same MMR with the middle planet. A resonance chain is
now complete and the three planets migrate together inwards.

3.2.4 Testing of Migration

In order to test the implementation of the migration recipes given in Papaloizou & Larwood
(2000) in mercury6.2, I perform a semi-analytical analysis. The goal is to check that the
output of mercury6.2 corresponds to the semi-analytical tests. From the section on
perturbed orbits in the two-body problem in Murray & Dermott (1999) the perturbing
acceleration is

apert = R∗r̂ + T ∗t̂ +N∗ẑo. (3.21)

Here r̂ is the radial unit vector of the orbit, t̂ is the tangential unit vector and ẑo is the
normal unit vector. The vectors are in the orbital plane, which differs from the reference
plane (x, y, z). R∗, T ∗ and N∗ are the magnitudes of the radial, tangential and normal
acceleration respectively.

The changes in the three considered orbital elements are given as follows (Murray &
Dermott 1999)(using µ = n2a3). They all depend in some way on the accelerations in
equation 3.21 and some combination of orbital elements.

da

dt
= 2
n
√

1− e2
[R∗e sin f + T ∗(1 + e cos f)] . (3.22)

de

dt
=
√

1− e2

na
[R∗sin f + T ∗(cos f + cosE)] . (3.23)

di

dt
=
√

1− e2

na

N∗cos(ω + f)
1 + e cos f

. (3.24)

E is the eccentric anomaly defined by the Kepler equation M = E − e sinE (see Murray
& Dermott 1999). I relate the implemented accelerations given in equations 3.14, 3.15 and
3.16 to the perturbing accelerations R∗, T ∗ and N∗. For the details on how this was done
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I refer to Appendix C. The resulting accelerations in the orbital plane are given by

R∗ = ṙ

(
1
τa

+ 2
τe

+ 2k2
r

τi

)
− rḟ

(
2krkt
τi

)
, (3.25)

T ∗ = −rḟ
(

1
τa

+ 2k2
t

τi

)
− ṙ

(
2krkt
τi

)
, (3.26)

N∗ = −2
(
ṙkr
τi

+ rḟkt
τi

)
kz, (3.27)

with kr, kt and kz according to equation 7.13 in Appendix C.

Comparing to Mercury6.2 Output

The equations for R∗, T ∗ and N∗ (3.25, 3.26 and 3.27) are used to calculate da
dt

, de
dt

and
di
dt

(3.22, 3.23 and 3.24). The resulting expressions are complex functions of the exact
positions in the orbit f and E, which are both proportional to M . To simplify the problem
I average the changes da

dt
, de
dt

and di
dt

over each orbit. For details on how this was done see
appendix C. The resulting averaged evolution of the orbital elements is

〈ȧ〉 = fa(a, e, i, ω, τa, τe, τi), (3.28)
〈ė〉 = fe(e, i, ω, τa, τe, τi), (3.29)
〈i̇〉 = fi(e, i, ω, τi), (3.30)

where fa, fe and fi are some complex functions of the variables stated in the respective
equation above. The evolution of a, e and i now depends on some orbital elements and
the planet-disk interaction parameters τa, τe and τi.

Equations 3.28, 3.29 and 3.30 form a system of differential equations that has to be
solved simultaneously for a(t), e(t) and i(t).ȧ(t)

ė(t)
i̇(t)

 =

〈ȧ〉〈ė〉
〈i̇〉

 (3.31)

This system is complex and no analytical solution exists. It is solved using the built-in
numerical differential equation solver ndsolver in mathematica. This routine utilizes
a variety of methods including “Adams”, “BDF” (implicit backwards differentiation for-
mulas) and “Runge Kutta”) depending on the type of differential equation. The resulting
solutions a(t), e(t) and i(t) are compared with the output of test simulations made in
mercury6.2, using the same damping rates τa, τe and τi.

Figures 3.6 and 3.7 show a comparison between the mercury6.2 migration output
and the semi-analytical orbital averaged evolution of a(t), e(t) and i(t). A system of one
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planet MJ around a star M� was considered for simplicity. For figure 3.6 the system was
initialized with i = 0 and no inclination damping. This means i(t) = 0 always. The
system of differential equations 3.31 is then simplified to only ȧ(t) and ė(t). For figure 3.7
the system was similarly initialized with e = 0, and no eccentricity damping. The system
of differential equations 3.31 is then simplified to only ȧ(t) and i̇(t).

(a) (b)

Figure 3.6: a) shows the evolution a(t) calculated by equation 3.31 for the sim-
plified system (with i = 0 and τi →∞) in red. The blue line is the mercury6.2
output for the same system. b) shows the evolution e(t) calculated by equation
3.31 for the simplified system (with i = 0 and τi →∞) in red. The blue line is
the mercury6.2 output for the same system.

Figures 3.6 and 3.7 shows that the migration implementation in mercury6.2 is very
accurate. Save for the orbit period oscillations that were removed by averaging in the
semi-analytic calculations, the mercury6.2 simulations follows the semi-analytic evolution
nearly perfectly.

3.2.5 Migration and Damping Decay

Protoplanetary disks around young stars are slowly accreted to the star and dissipated due
to radiation from the star. The density of disk material decreases with time and therefore
the migration, eccentricity- and inclination damping are all expected to fall off with time.
I achieve this by increasing τa, τe and τi exponentially with time. For τa I introduce

τa = C1e
C2t/r, (3.32)

where t is the time from simulation start, r is the distance from the planet to the central
star and C1 and C2 are constants. C1 gives the initial value of τa and thus the initial
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(a) (b)

Figure 3.7: a) shows the evolution a(t) calculated by equation 3.31 for the
simplified system (with e = 0 and τe → ∞) in red. The blue line is the
mercury6.2 output for the same system. b) shows the evolution i(t) calculated
by equation 3.31 for the simplified system (with e = 0 and τe → ∞) in red.
The blue line is the mercury6.2 output for the same system.

migration rate. C2 determines the rate at which τa increases with t, thus the rate at which
migration slows down. Through extensive testing I find that C2 = 10−6 d−1 results in
planetary migration becoming negligible roughly at t ∼ 105 yr. I take this as an estimate
of the disk dissipation time, tdisk. In Haisch et al. (2001) they find that disk lifetimes can
vary between 0.3 − 30 Myr. Given that, in these simulations the three giant planets are
already fully formed when the simulations start, my disk dissipation time tdisk is consistent
with their work. The factor 1

r
in equation 3.32 was introduced to make planets at larger

a have their migration rate decrease slower. This causes the outer planets to migrate for
longer times and distances which allows them to catch up to their inner neighbor more
reliably. In addition, equation 7.30 in the Appendix C shows that the migration rate is
proportional to the semimajor axis. Both of these effects causes the migration rate and
thus tdisk to increase toward larger semimajor axes.

For eccentricity damping I use the K-prescription, e.g. Libert & Tsiganis (2011) and
(Sotiriadis et al. 2017),

ė

e
= −Ke

∣∣∣∣ ȧa
∣∣∣∣ , (3.33)

with Ke ε [1, 100] (Sotiriadis et al. 2017). In a similar manner I also take

i̇

i
= −Ki

∣∣∣∣ ȧa
∣∣∣∣ . (3.34)

This means that the damping of eccentricity ė and inclination i̇ is proportional to the migra-
tion rate ȧ. For rapid migration (either inwards or outwards) the damping of eccentricity
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and inclination is also rapid. The rate of damping depends heavily on the parameters Ke

and Ki. From Papaloizou & Larwood (2000) I take the migration timescale to be defined
by

ȧ

a
= da/dt

a
= − 1

τa
, (3.35)

with corresponding results for ė
e

and i̇
i
. In Papaloizou & Larwood (2000) they used dJ/dt

J
=

− 1
τa

where J is the angular momentum of the orbit. For a Keplerian orbit this is equivalent
with equation 3.35. Using equations 3.33 and 3.34 with 3.35, the damping timescales of
eccentricity and inclination are described by the K-parameter:

τe = τa
Ke

, (3.36)

τi = τa
Ki

. (3.37)

We see that large K-values leads to small timescales τ which means rapid damping. For
first order resonances, inclination resonances and thus inclination excitation is relatively
weak. As seen in works by eg. Libert & Tsiganis (2011) inclination resonances and subse-
quent inclination excitation can be triggered in a resonant planetary system if eccentricity
damping is low enough that eccentricities reach large values (more on this in section 5.4).
However, for this work I focus on the eccentricity damping which is more important for
the stability of a system. Thus we take a fixed value Ki = 5 for the inclination damping.

3.2.6 Fine-Tuning of Migration

The migration and damping rate of planets in a protoplanetary disk is now characterized
by four parameters: C1 [d−1], C2 [d−1], Ke and Ki. I have already fixed C2 and Ki. In this
section I outline my method of picking values of C1 and Ke.

In section 2.3.4 we saw that eccentricity (and sometimes inclination) is excited during
migration in resonance. The amount of excitation depends on the migration rate which
is given by C1. The damping of eccentricity enforced by the protoplanetary disk counters
the excitation and keeps the eccentricity of involved planets at some equilibrium value.
According to Sotiriadis et al. (2017), I can take Ke ε [1, 100]. Since Ke is currently not well
determined, the eccentricity damping depends strongly on what value I choose.

If Ke is low the eccentricity of the planets can grow large during the disk phase, which
potentially leads to orbital crossing. As seen in section 1.2 this results in dynamical insta-
bilities and scattering. If a system begins scattering before the disk has fully dissipated,
the planet-disk interactions (ė , i̇ and ȧ) directly affects the scattering phase. For a robust
analysis this must be avoided. Similarly if Ke is too large it forces the eccentricity of
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the planets to zero. A system in a stable mean motion resonance coupled with very low
eccentricity can stay stable for very long times. However, as I want to test the effect of
MMR on the scattering phase, the systems must go unstable at some point before tstop.

C1 determines the initial rate of migration. If C1 is large then τa will be large and
migration will be slow, and vice versa. Through the K-prescription τa also has direct
effect on the eccentricity- and inclination damping, see equations 3.36 and 3.37. We saw
in section 2.3.4 that capture probability increases with slow migration. Therefore τa is
bounded from below where migration is so fast that probability of capture is zero. I can
estimate this boundary by making use of the libration width. In Murray & Dermott (1999)
they derive an approximate expression for the period of libration in the restricted three-
body problem. The relation is valid for small amplitude oscillations about the stable φ.
Without derivation we simply state the relation here

Tlib = 2π
ω0
, (3.38)

where ω0 is the same parameter as given in the pendulum equation 2.21. It depends on
the type of resonance, the orbital elements and φ. I define the crossing time tc as the time
it takes for the test particle in the restricted three-body problem to cross a resonance with
the massive body:

tc = |∆a+|+ |∆a−|
∆ȧ , (3.39)

where ∆a is given by equations 2.28 and 2.29. The + and − indicates what sign to use from
the ±. ∆ȧ is the relative migration rate between the two involved planets. For this work,
I assume that the inner body is not migrating ȧ = 0 and thus ∆ȧ = ȧ′. This approach
allows for quick and simple capture into MMR although its physical interpretation may be
unrealistic. By approximating e = i = 0 I have ȧ′ by equation 7.30 in Appendix C. For
simplicity and since these are all approximate relations we also take |∆a+|+|∆a−| ≈ 2|∆a|.
Combining these leads to

tc = τa|∆a|
a′

. (3.40)

For high probability of smooth capture into mean motion resonance I need tc ≤ Tlib. This
results in

τa ≤
2π
ω0

a′

|∆a| . (3.41)

I take this to be an approximate the lower limit of C1. Note that given an initial value
of C1, τa will increase due to C2 as the first resonance is approached. As can be seen
in equation 3.41 this limit grows larger with a′ and is thus not a constant property of a
resonance.
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Ke - C1 Pairs

For the mmr simulations I need the systems to undergo a planetary scattering phase within
tstop. At the same time I also require the systems to capture and stay in stable MMR until
the disk dispersion time tdisk. Systems that go unstable and scatter already during the
disk phase have their scattering phase affected by the migration and damping effects. This
means that ȧ, ė and i̇ will influence the relaxed system which must be avoided. I call
the fraction of systems meeting the mentioned requirements fsucc. So fsucc describes the
fraction of the total amount of systems that undergo scattering at some point between tdisk
and tstop. Below the parameters Ke and C1 are chosen such that fsucc is maximized. Based
on the limits for C1 and Ke I test the following logarithmic ranges:

2:1 3:2
C1 ∈ [106.4, 108.8] d−1 C1 ∈ [106.2, 108.6] d−1

Ke ∈ [100, 102] Ke ∈ [100, 102]

Table 3.3: Ke and C1 ranges tested.

For each value of Ke, C1 and each resonance, I perform ten simulations with the usual
stopping time tstop. The initial semimajor axes are as follows (including the gaussian spread
described in section 3.2.3):

a2:1
i [AU] a3:2

i [AU]
planet 1 7.0 7.0
planet 2 11.5 9.5
planet 3 19.0 13.0

Table 3.4: Initial semimajor axes for 2:1 and 3:2 MMR respectively.

To determine whether a system is in resonance or has started the scattering, the pe-
riod ratio T2/T1 is measured for each neighboring planet pair during the simulations. A
planet pair is considered in resonance if T2/T1 corresponds to the given nominal MMR
within some libration amplitude ∆Ti+1

Ti
. A system is successful if both planet pairs are in

resonance at tdisk but not at tstop. The limit of ∆Ti+1
Ti

can be calculated using the theory in
section 2.3.3 about libration width. However, these estimates proved to be too accepting
when applied to simulations. Instead, by analyzing many resonant simulations, I provide
approximate empirical limits for ∆Ti+1

Ti
. At the given initial separation a1, a2 and a3 and

the migration rates given by C1 and Ke above the following are enough to describe the
simulations:
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2:1 ∆Ti+1
Ti

= 0.15
3:2 ∆Ti+1

Ti
= 0.06,

The two nominal MMRs have different initial separations a1, a2 and a3 and thus the
migration decay is slightly different. Empirically, I find different disk dissipation times tdisk:

2:1: tdisk = 2 · 105 yr,
3:2: tdisk = 105 yr.

The Ke − C1 testing result can be seen in figure 3.8. The figures show the logarithmic
grid in Ke and C1 for the 2:1 and 3:2 MMR respectively. Each grid point corresponds
to ten simulations of planet systems. The underlying number grid shows the number of
systems that were in MMR at t = 105 yr for each Ke−C1 pair (Note that this corresponds
to tdisk only for the 3:2 MMR). The colour bar shows the fraction of these fscattered that
were unstable and underwent a planetary scattering phase within tstop.

(a) (b)

Figure 3.8: Grid of tested Ke − C1 pairs. Each grid point represents ten simu-
lations. The underlying numbers show the number of simulations that were in
MMR at t = 105 yr. The colour bar shows the fraction of these fscattered that
went unstable within tstop. Red circles represents the Ke − C1 pairs that were
picked for this project. a) 2:1 resonance b) 3:2 resonance

The fraction of successful systems fsucc is given by converting the grid numbers into
fractions of ten and multiplying by the colourbar fraction. So for as many successful
systems as possible I want large grid numbers and colours close to yellow. fsucc for the
2:1 MMR in figure 3.8a is slightly misleading since tdisk = 2 · 105 yr for 2:1. In figure 3.8
I find that low Ke leads to many systems going unstable within or even before tstop. This
confirms that low Ke leads to large τe (slow eccentricity damping) and large equilibrium
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eccentricity. τe is by definition proportional to τa which is dependent on C1. Small C1
implies small τe and thus rapid eccentricity damping and more stable systems. However,
small C1 also results in rapid migration which excites eccentricity effectively. The effect
of C1 is ambiguous where both large and small C1 leads to more systems going unstable
before tdisk. However, in general it seems that systems with small C1 that survive until
tdisk have enough eccentricity to go unstable relatively quickly after. Systems with large C1
that survive until tdisk have too low eccentricity and stay stable until tstop. Furthermore,
for very small C1 migration is too rapid for MMR capture, as discussed in both this section
and section 2.3.4. For very large C1 migration is too slow meaning that the planets never
reach the nominal MMR location. These two effects provide hard vertical boundaries in
figures 3.8a and 3.8b.

For the 2:1 MMR there are a few Ke−C1 pairs that have fairly high fsucc. I choose four
grid points, marked in figure 3.8a, that span a small region of fairly successful simulations.
The pairs are named after their simulation number and are showed in table 3.5.

2:1 Ke C1 [d−1] fsucc
K2C5 100.4 107.2 0.5
K2C7 100.4 107.6 0.63
K3C5 100.6 107.2 0.6
K3C6 100.6 107.4 0.72

Table 3.5: Chosen Ke − C1 pairs for the 2:1 MMR.

For the 3:2 MMR the success rates are generally much lower. Because of the initially
tight configuration, the 3:2 systems are pushed to very small semimajor axis during mi-
gration. The 3:2 planets thus have smaller orbital periods than the 2:1 planets and evolve
quicker with time. This effect combined with tight orbital spacing means systems tend to
go unstable before tdisk. I have identified two Ke − C1 pairs that provide reasonable fsucc,
marked in figure 3.8b and showed in table 3.6

3:2 Ke C1 [d−1] fsucc
K4C4 100.8 106.8 0.36
K4C7 100.8 107.4 0.5

Table 3.6: Chosen Ke − C1 pairs for the 3:2 MMR.

Number of Simulations

For reasons that will become clear in section 3.3.2, I require a number of simulated planets
comparable to the number of detected giant exoplanets. We create a subset of planets from
exoplanets.org using the following restrictions:
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In accordance with Winn & Fabrycky (2015) I take giant planets as M > 0.1MJ . Plan-
ets with very small semimajor axis also have small Hill spheres, see equation 2.33. If the
Hill sphere of a planet is comparable to its radius, close encounters in this region predom-
inately leads to collisions rather than scattering. Petrovich et al. (2014) argue that such
collisions most likely lead to a single merged planet with low eccentricity and low incli-
nation. Such interactions cannot be responsible for the high eccentricity high inclination
distribution of observed exoplanets. Therefore, if planetary scattering is responsible for
the observed eccentricity/inclination distribution then it must occur at larger semimajor
axis. In Petrovich et al. (2014) they take a > 0.45AU for scattering to be dominant over
collisions. I adopt this value as a minimum semimajor axis for giant planets. Furthermore
I require that the host star is a single star in the mass range M∗ ∈ [0.5, 2] M�.

Using these restrictions we find (February 2018) Np = 289 (number of exoplanets that
meets the above restrictions). It should be noted that a large majority of these exoplanets
were detected by the RV method and suffer from any corresponding bias effects. I aim to
create a simulated sample of Np ∼ 300 for both the 2:1 and 3:2 resonance. The fraction
of surviving planets per system after the scattering phase is, for my simulations, roughly
fsurviving ∼ 0.5. This means that for the systems that successfully stay in MMR until tdisk
and then scatter within tstop, roughly half of the planets remain in the system after the
scattering phase. Therefore that I need Ns ∼ 200 successful systems to produce Np ∼ 300.
Based on fsucc the number of simulations needed to create the sample of Np ∼ 300 is
roughly:

2:1 Ns ∼ 400,
3:2 Ns ∼ 560.

The initial semimajor axis of the mmr simulations are given in the same way as for the
Ke − C1 plots, table 3.4.

3.2.7 NON-MMR Simulations

non-mmr simulations are without planet-disk interactions. They feature no migration,
no eccentricity damping and no inclination damping. It is very unlikely that resonance
capture occurs without planetary migration and thus these simulations are without MMR
as initial condition. The most important consideration for these simulations is dynamical
instability within the simulation time, which has already been analyzed in section 3.2.2.
Another important consideration is making sure that the only difference between the mmr
and non-mmr simulations is whether systems are in MMR initially or not. In particular
I want to get rid of any bias due to initial orbital elements. The initial orbital elements
a(t = 0), e(t = 0) and i(t = 0) affect the scattering phase in some way. This is because the
total energy Etot and total angular momentum Ltot of a multi-planet system are functions
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of a, e and i (Etot of a multi-planet system is only weakly dependent on e and i). Etot
and Ltot are quantities that are conserved, even through the chaotic scattering phase, and
thus the initial a(t = 0), e(t = 0) and i(t = 0) leave imprints on the system even after
relaxation.

For this reason, I initialize the planetary orbits of non-mmr simulations with similar
orbital elements that were found in the mmr simulations at tdisk. I expect the successful
systems of the mmr simulations to be in their respective resonant configuration at tdisk.
At tdisk in the mmr simulations I create empirical cumulative distributions of a, e and i
for all three planets individually. The initial a(t = 0), e(t = 0) and i(t = 0) for non-
mmr simulations are drawn from these cumulative distributions individually for all three
planets. This provides ai(t = 0) close to the nominal 2:1 and 3:2 resonance for all planets
in the system. Also e(t = 0) and i(t = 0) are close to the values obtained for systems
in MMR. However, due to the rest of the orbital elements being randomized according to
U(0◦, 360◦), it is very unlikely that any of these systems are in MMR. The only difference
between the mmr and non-mmr systems is now initial MMR.

Provided enough eccentricity, the nominal resonance locations (without MMR) are
unstable for M∗ = M� and Mp = MJ as seen in section 3.2.2. Again I want the number of
planets to be Np ∼ 300. fsurviving ∼ 0.5 gives the number of systems Ns ∼ 200.

NON-MMR-CIRCULAR Simulations

As a subset of the non-mmr simulations I make a non-mmr-circular set of simulations,
using circular orbits and small inclinations. For these I draw semimajor axes in the same
way as for the regular non-mmr, from tdisk of the mmr simulations. For eccentricities I
take e(t = 0) = 0 and for inclinations i(t = 0) I draw small numbers from the Rayleigh
distribution, equation 3.20. The point of this is to compare to the standard non-mmr
simulations, both to test the effect of initial eccentricity and inclination, but also to compare
to other works as described later in section 3.3.3.

3.3 Analysis

For each Ke−C1 pair, successful systems of the mmr simulations are singled out and ana-
lyzed while unsuccessful systems are discarded. Each Ke−C1 pair of the mmr simulations
has a corresponding set of non-mmr simulations with appropriate initial conditions.
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3.3.1 Comparisons

The goal of this thesis is to investigate and compare the scattering phase between systems
initially in MMR and systems initially not in MMR. To do this, a few parameters of the
scattering phase were chosen for analysis and comparisons.

Eccentricity and Inclination

Eccentricity of exoplanets is relatively straightforward to measure from RV observations
to reasonable accuracy. Inclinations, while more difficult to obtain accurately, are also
observable. The excited eccentricity and inclination distributions of observed exoplanets,
compared to the solar system, is what the planet-planet scattering theory tries to explain.
It is therefore necessary to analyze eccentricity and inclination. As discussed in the in-
troduction, eccentricity and inclination are highly affected by planetary scattering. Jurić
& Tremaine (2008) showed that the final eccentricity distribution of a planetary system
reflects the amount of scattering it underwent. I analyze the cumulative distribution of
eccentricity and inclination of surviving planets at the end of simulations when systems
are relaxed.

Semimajor axis

Semimajor axes of surviving planets after a phase of planetary scattering is highly depen-
dent on their initial semimajor axes. Eccentricity- and inclination are much less dependent
on the initial eccentricity and inclination. Despite planetary migration, semimajor axes
of planetary systems just before a scattering phase varies heavily due to varying planet-
and stellar mass. For this reason, semimajor axis is rarely used when analyzing planetary
scattering. However, as a scale-independent parameter, the ratio of semimajor axes of
surviving planets is analyzed. Most unstable systems relax by ejecting one or two (in rare
cases zero or all three) planets. For two-planet survivor systems I compare the ratio of
semimajor axes between MMR- and non-MMR systems.

Minimum Pericenter

During the scattering phase planets rapidly vary their orbital elements. The pericenter of a
giant planet orbit rmin = a(1− e) thus scans a large range of semimajor axis. As discussed
in Carrera et al. (2016) this has a major effect on the allowed range of semimajor axes of
small planets. Systems of small planets that have giant planet excursions tend to scatter
and dissipate. I analyze the cumulative distribution of the smallest measured pericenter of
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any planet in all systems.

Scattering Phase Timescales

The onset time tonset of the scattering phase is non-trivial to measure. I test three different
methods. The first method uses excursions in semimajor axis, by the criterion ∆a

a
≥ 10 %. I

can only measure the orbital elements in each output time step ∆t and therefore each onset
time is rounded up to the nearest ∆t. Despite this drawback it is perhaps the most robust
method. The second method uses the built-in close encounter analysis tool close6.for in
mercury6.2. I take 3RH (Hill radii) as the limit for a close encounter and record every
time two planets come closer than this. As a third method I compute the first time during
simulation that the pericenter of an outer planet meets the apocenter of an inner planet,
rmax ≥ r′min. This is a rough estimation of the orbit crossing time.

Using the close encounter analysis tool close6.for the best precision in tonset is ob-
tained. This is because it utilizes the integration time step τ = 10 d while the other two
methods uses the output time step ∆t = 104 yr. However, for the mmr simulations some
systems can potentially stay in MMR even after having close encounters, due to the strong
restoring force. Therefore close6.for is inaccurate in determining tonset. For reasons
outlined in the Discussion, section 5.1.2, the orbital crossing condition does not accurately
predict tonset for the MMR simulations. For consistency ∆a

a
≥ 10 % is used to determine

tonset for both MMR and non-MMR simulations. I analyze the cumulative distribution
tonset for all systems.

The duration of the scattering phase is measured by tdur = tfinish − tonset. Since tonset
is measured by the ∆a

a
≥ 10 % method, I use the same method for tfinish.

Collisions

Closely separated systems have increased probabilities for collisions between planets, as
opposed to ejections. As can be seen in e.g. Petrovich et al. (2014) the rate of collisions
relative to ejections for a given planet increases for smaller semimajor axis and larger
planetary radius. Ford et al. (2001) showed that collisional evolution, in contrast to ejec-
tions, leads to low eccentricity daughter planets. I analyze differences in average number
of collisions per simulation between mmr and non-mmr simulations.
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3.3.2 Hypothesis testing

I perform hypothesis tests to investigate whether two cumulative distribution functions
(CDF) are consistent with being drawn from the same underlying distribution. A test
statistic D must be defined and sampled under the null hypothesis H0 that the two CDFs
belong to the same probability distribution function (PDF). With a defined distribution
of Ds under H0 we can measure the test statistic of our observed samples Dobs. The
probability p that a randomly drawn D from the distribution is equally or more extreme
than Dobs, under the assumption that H0 is true, should be as small as possible for us to
be able to reject H0. As a limit for whether H0 can be rejected or not a significance level
α is used. If p ≤ α H0 is rejected.

The p-value related to comparing two distributions can be dependent on the sample
size of the two distributions. The effect on p depends on how the sample size affects the
test statistic D and the distributions themselves. Generally, distributions get more well
defined with less spread as sample size increases. Any differences between the distributions
get more pronounced, which means that if H0 is true (the distributions are the same) p will
increase. However, ifH0 is false p decreases with sample size. This is the reason for choosing
a similar sample size of simulated planets as the observed sample of giant exoplanets, see
section 3.2.5. Without comparable sample sizes a p-value can be meaningless.

For this work I have used two hypothesis tests with different test statistic D for compar-
ing CDFs: Two-sample Kolmogorov-Smirnov (K-S test) and two-sample Anderson-Darling
(A-D test). Both of these utilize test statistics that measure differences between two CDFs.
For details on how they work I provide a short summary in Appendix D.

Bonferroni Correction

The more hypothesis tests with different observed test statistic Dobs we perform the more
likely it is to eventually reject an H0 even though H0 is true. To avoid this a Bonferroni
correction is used. Each individual hypothesis test performed is tested using a modified
significance level α∗ = α

m
, where α is the desired significance level of the whole experiment

and m is the number of individual tests. In order to be called individual tests they have to
be somewhat uncorrelated. For example the final e and minimum aper during a simulation
should have only very small correlation at most. On the other hand e and i are significantly
correlated.

For this work I compare mmr simulations with non-mmr simulations for all six Ke−C1
pairs. Furthermore, as can be seen in the next section, I compare non-mmr to non-mmr-
circular for K4C4 and K4C7. I perform hypothesis tests for e, i, aper, ai

aj
, tonset and

tdur. That makes a total of m = 48 different Dobs.
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3.3.3 Comparing to Other Works

There are several popular works on planetary scattering, most of which focus only on the
scattering phase whithout MMR, eg. Jurić & Tremaine (2008), Chambers et al. (1996)
and Chatterjee et al. (2008). Due to planet-disk interactions discussed in section 1.3,
planetary systems without MMR are believed to have low eccentricity and inclination early
on, before planets grow large enough or migrate close enough for scattering to start. Many
previous works on planetary scattering therefore have their planets initialized with low
eccentricity and inclination (Note that this is not the case in Jurić & Tremaine (2008)).
This is in contrast to my work. Since eccentricity and inclination are excited during
migration in MMR, the non-mmr simulations are initialized with significant eccentricity
and inclination.

In order to better make comparisons to existing work I test additional systems, with
e(t = 0) = 0 and i(t = 0) drawn from a Rayleigh distribution, equation 3.20, for all
three planets. The initial semimajor axes a(t = 0) are drawn from K4C4 and K4C7 mmr
simulations at tdisk in the same way as for the regular non-mmr simulations. Migration
parameters K4C4 and K4C7 are specifically chosen because of the 3:2 nominal MMR lo-
cations. The 3:2 nominal MMR locations tend to go unstable much earlier than 2:1, as we
saw in section 3.2.2. This is important since instabilities are countered by small eccentric-
ities. In fact, by testing I find that only a very small fraction of the 2:1 configuration goes
unstable within tstop when initialized with e(t = 0) = 0.

The comparisons to the standard non-mmr simulations are done in the same way as
described above in this section.
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Results

Each Ke−C1 pair provides a set of mmr simulations for a resonance configuration. Each set
of mmr simulations comes with a corresponding set of non-mmr simulations. I compare
mmr simulations with non-mmr simulations for each given Ke − C1 pair below. K-S
and A-D tests are performed to check the null hypothesis H0 that mmr- and non-mmr
simulation CDFs come from the same underlying distribution. The significance level that
determines whether two distributions are statistically different or not is set to α = 0.05 in
this project. This significance level is chosen since it is commonly used in other works. With
a Bonferroni correction each individual distribution comparison is tested using α∗ = α

m
.

See section 3.3.2 for details about this. The number of K-S and A-D tests I perform is
m = 48 (see section 3.3.2) which means α∗ = 1.04 · 10−3. This is the corrected significance
level I use to determine whether two distributions are statistically different or not.

I also compare non-mmr simulations to the non-mmr-circular simulations with
e(t = 0) = 0 and small i(t = 0). This is done in the exact same way. As explained
in section 3.3.3 above these comparisons were only made for K4C4 and K4C7 in the 3:2
simulations.

The resulting comparison plots turns out to be very similar for all Ke − C1 pairs.
Therefore, for each resonance, the CDFs of only one Ke − C1 pair is shown below. The
CDFs for all the simulated Ke−C1 pairs are explicitly found in appendix A. The important
p-values of the hypothesis testing are summarized in a table in the end of the result section.
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4.1 2:1 Nominal Resonance Configuration

4.1.1 K2C5

(a) (b)

(c) (d)

Figure 4.1: CDFs of surviving planets after the scattering phase, for K2C5.
The results of mmr- and non-mmr simulations are shown in the same plots for
comparisons. Red vertical lines represent the K-S test statistic. K-S and A-D
tests are performed to check the null hypothesis H0. a) Eccentricity CDF. b)
Inclination CDF. c) Minimum pericenter CDF. d) Ratios of semimajor axis in
two-planet survivor systems CDF.
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(a) (b)

Figure 4.2: CDFs of scattering phase timescales, for K2C5. The results of mmr-
and non-mmr simulations are shown in the same plots for comparisons. Red
vertical lines represent the K-S test statistic. K-S and A-D tests are performed
to check the null hypothesis H0. a) Onset time of scattering phase CDF. b)
Duration of scattering phase CDF.
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4.2 3:2 Nominal Resonance Configuration

4.2.1 K4C4

(a) (b)

(c) (d)

Figure 4.3: CDFs of surviving planets after the scattering phase, for K4C4. The
results of mmr-, non-mmr- and non-mmr-circular simulations are shown
in the same plots for comparisons. Red vertical lines represent the K-S test
statistic. K-S and A-D tests are performed to check the null hypothesis H0. a)
Eccentricity CDF. b) Inclination CDF. c) Minimum pericenter CDF. d) Ratios
of semimajor axis in two-planet survivor systems CDF.
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(a) (b)

Figure 4.4: CDFs of scattering phase timescales, for K4C4. The results of mmr-
, non-mmr- and non-mmr-circular simulations are shown in the same plots
for comparisons. Red vertical lines represent the K-S test statistic. K-S and
A-D tests are performed to check the null hypothesis H0. a) Onset time of
scattering phase CDF. b) Duration of scattering phase CDF.

4.3 Statistics and p-values

Kolmogorov-Smirnov test comparing mmr to non-mmr
K-S e i aper ai/aj tdur tonset
K2C5 1.97 · 10−1 1.89 · 10−1 6.27 · 10−3 3.17 · 10−1 6.23 · 10−2 3.76 · 10−99

K2C7 9.66 · 10−1 4.59 · 10−1 8.75 · 10−1 4.86 · 10−1 9.30 · 10−1 5.26 · 10−81

K3C5 4.82 · 10−1 3.85 · 10−3 4.96 · 10−1 7.21 · 10−1 8.80 · 10−1 9.08 · 10−110

K3C6 2.89 · 10−1 9.79 · 10−1 2.77 · 10−2 6.83 · 10−1 8.85 · 10−2 3.90 · 10−81

K4C4 3.06 · 10−2 8.18 · 10−3 1.15 · 10−1 8.88 · 10−1 5.78 · 10−1 6.56 · 10−87

K4C7 3.28 · 10−1 1.77 · 10−1 8.61 · 10−3 4.84 · 10−1 1.74 · 10−1 7.91 · 10−121

Table 4.1: p-values for the K-S hypothesis tests. Boldface numbers represent
rejected H0 at Bonferroni-corrected significance α∗.
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Anderson-Darling test comparing mmr to non-mmr
A-D e i aper ai/aj tdur tonset
K2C5 1.11 · 10−1 1.42 · 10−1 1.33 · 10−2 2.99 · 10−1 7.64 · 10−2 0
K2C7 6.87 · 10−1 4.47 · 10−1 7.31 · 10−1 4.41 · 10−1 6.40 · 10−1 0
K3C5 4.45 · 10−1 1.21 · 10−3 5.03 · 10−1 3.71 · 10−1 6.25 · 10−1 0
K3C6 1.66 · 10−1 6.29 · 10−1 2.17 · 10−1 5.07 · 10−1 6.64 · 10−2 0
K4C4 1.02 · 10−2 1.96 · 10−2 4.36 · 10−2 7.24 · 10−1 2.07 · 10−1 0
K4C7 3.47 · 10−1 6.80 · 10−2 2.82 · 10−3 6.13 · 10−1 1.58 · 10−1 0

Table 4.2: p-values for the A-D hypothesis tests. Boldface numbers represent
rejected H0 at Bonferroni-corrected significance α∗.

Kolmogorov-Smirnov test comparing non-mmr to non-mmr-circular
K-S e i aper ai/aj tdur tonset
K4C4 3.24 · 10−3 3.62 · 10−4 7.48 · 10−3 1.60 · 10−3 1.67 · 10−1 1
K4C7 1.34 · 10−3 5.73 · 10−3 7.31 · 10−2 4.30 · 10−3 1.23 · 10−1 9.84 · 10−1

Table 4.3: p-values for the K-S hypothesis tests. Boldface numbers represent
rejected H0 at Bonferroni-corrected significance α∗.

Anderson-Darling test comparing non-mmr to non-mmr-circular
A-D e i aper ai/aj tdur tonset
K4C4 5.42 · 10−3 4.01 · 10−4 1.05 · 10−3 4.39 · 10−4 4.91 · 10−2 7.11 · 10−1

K4C7 1.04 · 10−3 3.83 · 10−3 3.21 · 10−2 7.86 · 10−3 2.97 · 10−2 7.22 · 10−5

Table 4.4: p-values for the A-D hypothesis tests. Boldface numbers represent
rejected H0 at Bonferroni-corrected significance α∗.

Number of simulated systems and average number of collisions per simulation for each
Ke − C1 pair

Ke − C1 Ns fc
mmr non-mmr non-mmr-

circular
mmr non-mmr non-mmr-

circular
K2C5 267 200 - 0.0861 0.08 -
K2C7 181 200 - 0.0552 0.0500 -
K3C5 340 199 - 0.0706 0.0603 -
K3C6 212 200 - 0.0755 0.0750 -
K4C4 192 200 200 0.2656 0.3600 0.3950
K4C7 421 200 198 0.1496 0.2500 0.3030

Table 4.5: Statistics of each Ke − C1 pair. Ns is the number of successful
simulations. fc is the average number of collisions per simulation.
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Average number of 1-planet and 2-planet survivors per system for each Ke − C1 pair
Ke − C1 fsys, 1-planet fsys, 2-planet

mmr non-mmr non-mmr-
circular

mmr non-mmr non-mmr-
circular

K2C5 0.7416 0.6350 - 0.2584 0.3550 -
K2C7 0.5359 0.5500 - 0.4586 0.4400 -
K3C5 0.5941 0.6231 - 0.3941 0.3769 -
K3C6 0.4906 0.5700 - 0.5047 0.4300 -
K4C4 0.6302 0.7500 0.5100 0.3594 0.2500 0.4900
K4C7 0.6105 0.6050 0.4899 0.3895 0.3950 0.5101

Table 4.6: Average number of 1-planet and 2-planet survivors per system after
relaxation fsys. (The remaining few systems have either zero surviving planets
or three surviving planets.)

4.4 Initial MMR Comparisons

In this section I compare mmr simulations to non-mmr simulations.

4.4.1 Orbital Elements

Tables 4.1 and 4.2 show fairly large p-values for eccentricity and inclination comparisons.
We are likely to find more extreme test statistics and the null hypothesis cannot be ne-
glected for any of the Ke−C1 pairs at the given α∗ = 1.04 ·10−3. Therefore the eccentricity
and inclination of mmr simulations and non-mmr simulations are consistent with being
from the same underlying distribution. The eccentricity distributions are almost uniform
over the allowed range, with small deficits at both very large and very small eccentricities,
for all Ke − C1 pairs. The inclination distributions are highly clustered around 0 ◦ − 40 ◦.
These are good indications of planetary scattering, given that the systems started with
smaller eccentricity and inclination.

The p-values and CDFs showing the fraction of semimajor axes in two-planet survivor
systems, ai

aj
, similarly show large p-values and very similar distributions. There seems to

be a range of favoured fractions of semimajor axes after scattering since ai
aj

is clustered
around ∼ 1.5− 20 for all Ke − C1 pairs.

The minimum pericenter during integration is heavily clustered within aper < 0.25 AU
for all Ke−C1 pairs. The p-values for the pericenter hypothesis testing are generally large.
Even the smallest p-values, for K2C5 and K4C7, are larger than the Bonferroni corrected
significance level α∗, and thus H0 cannot be neglected.
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By looking at individual planets I find no statistical differences in the final distributions
of eccentricity, inclination and minimum pericenter.

4.4.2 Scattering Timescales

The p-values for tonset are very low indicating that the observed test statistics are extreme.
In the CDF plots, figures 4.2a and 4.4a, we see that the mmr simulations have significantly
larger tonset, meaning the scattering phase starts late. For mmr simulations, tonset seems to
be very dependent on the migration parameters Ke − C1. Most of the Ke − C1 pairs have
tonset clustered around ∼ 1− 2 · 106 yr, although both K2C7 and K3C6 show significantly
larger tonset ∼ 107 yr. For non-mmr simulations tonset occurs within the first output
timestep ∆t = 104 yr.

Among the unsuccessful mmr simulations for each Ke − C1 pair, I find that a large
fraction of the total number of simulations are stable for the full tstop.

The distributions of tdur for mmr- and non-mmr simulations are very similar. The
p-values are not low enough to reject H0 for any Ke − C1. tdur is highly clustered around
105−106 yr for both mmr and non-mmr simulations, meaning that this could be a typical
range of scattering phase durations.

4.5 Initial Orbital Elements Comparisons

In this section I compare the non-mmr simulations to non-mmr-circular simulations.

4.5.1 Orbital Elements

Given the significance level α∗ I find that the eccentricity distributions in figure 4.3a are
consistent with being from the same underlying distribution, despite non-mmr showing a
deficit in small e compared to non-mmr-circular. However, for K4C7, figure 7.11a, the
A-D test shows a statistical difference. For the inclination I find, similarly but reversed,
that the distributions for K4C4 in figure 4.3b are statistically different while the ones for
K4C7 in figure 7.11b are consistent with being from the same distribution. This is again
due to a deficit at small i for non-mmr simulations.

As can be seen in figures 4.3c, 4.3d, 7.11c and 7.11d, the minimum pericenter and
fraction of semimajor axes in 2-planet survivor systems show similar dependence on initial
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e and i. The minimum pericenter during simulations is systematically larger for non-mmr-
circular simulations, although the difference is not enough to be significant according to
α∗. The final fraction of semimajor axes is smaller for non-mmr-circular simulations,
which leads to a statistical difference for the K4C4 A-D test.

4.5.2 Scattering Timescales

As can be seen in figures 4.4a and 7.12a the onset time measured by the ∆a
a

is not precise
enough to properly compare non-mmr to non-mmr-circular. This is due to the output
time step ∆t = 104 yr being larger than most tonset. Therefore the p-values measured
for tonset between non-mmr and non-mmr-circular cannot be trusted. In absence of
MMR I can safely use the more precise close encounter routine method to compare the two.
Without performing extra hypothesis tests, figure 4.5 shows that tonset is systematically
larger for non-mmr-circular.

Figure 4.5: CDF of scattering phase onset time for K4C4. The results of non-
mmr and non-mmr-circular are shown in the same plot for comparisons.
Note the logarithmic scale on the x-axis.

The duration of scattering shows large p-values similar to those measured when com-
paring mmr to non-mmr. H0 cannot be neglected for tdur
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Chapter 5

Discussion

Is initial MMR important for the planetary scattering phase? My results indicate that
most of the analyzed parameters of the scattering phase are not directly correlated with
initial MMR. However, as migration in MMR significantly changes the orbital elements,
initial MMR has an indirect effect on the scattering phase. Initial MMR determines the
orbital elements prior to the scattering phase which then affects the scattering. The effect
seems to be systematic an in section 5.2 below I show the influence that initial e and i has
on the final orbital elements and scattering timescales.

5.1 MMR Correlations

5.1.1 Orbital Elements

Based on the results in chapter 4, I find that eccentricity, inclination, minimum pericenter
and fraction of semimajor axes in two-planet survivor systems are all uncorrelated with
initial MMR. It seems that the planetary scattering phase quickly removes any relics in
orbital elements from initial MMR. Based on the existance of short tdur it is likely that
any observable trace (e, i or ai

aj
) of initial MMR is erased early on during the scattering

phase, possibly even in the first couple of scattering events.

Following the discussion in Carrera et al. (2016) the minimum pericenter being uncor-
related with MMR implies that the survival rate of terrestrial planets at small separations
is the same for systems initially in MMR and systems that are not.
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5.1.2 Scattering Timescales

Onset Time of Scattering

The onset of scattering tonset is highly correlated with MMR. In fact, initial MMR causes
tonset to occur significantly later than for non-mmr simulations. This is not surprising
considering the restoring force and geometry of MMR systems. As described in the The-
ory section (2.2), the forces on a planet in a system with at least one more planet can be
treated as a two-body (star-planet) system with a perturbing force from the other plan-
ets. The perturbing force grows large as planets approach each other. In a non-resonant,
non-circular system, the perturbing force is not periodic and acts in a chaotic way which
increases eccentricity (and inclination) until orbits cross. The first close encounter starts
the scattering phase. In a system in MMR, most of the perturbing force is periodic and
acts to keep the system in the exact orbital configuration. This is the restoring force.
Without external forces, such as planet-disk interactions, the increase in eccentricity (and
inclination) is slow, even for tight orbital configurations. The restoring force can counter
weak close encounters and protect a system from scattering. As can be seen in figure 2.2,
a MMR configuration also naturally protects against close encounters due to the eccen-
tricities, alignments and periods of the orbits (geometry of MMR). This is mathematically
described by taking φ̇ ≈ 0 in equation 2.14. The orbital geometry of a non-resonant system
is random and close encounters can occur more frequently.

Onset Time Method Comparisons

Figures 5.1 and 5.2 show the onset time of the scattering phase as calculated by the three
methods described in section 3.3.1: The semimajor axis excursions (∆a

a
≥ 10%), the built-

in close encounter analysis tool in mercury6.2 (close6.for) and the orbital crossing
approximation. I show the onset time here for the same Ke − C1 pairs displayed in the
result section. For non-mmr simulations tonset occurs very early for all methods considered.
All three methods are consistent , see figures 5.1b and 5.2b. On the other hand, for the
mmr simulations, figures 5.1a and 5.2a, tonset determined by the simple orbital crossing
condition differs from the other methods. Below I explain why the ∆a

a
condition is the best

method for determining tonset and why the simple orbital crossing method does not work.

According to the simple treatment of comparing pericenter of the outer orbit to apoc-
enter of the inner orbit, all systems have orbital crossing already before the disk dispersion
tdisk (t0 for non-mmr). During migration in MMR eccentricity becomes excited enough to
fulfill the simplified orbital crossing condition. Due to the orbital geometry of MMR most
of these systems avoid close encounters and can stay stable for long times, even though
orbits cross. On the other hand, the non-mmr systems have the same distribution of
eccentricity and semimajor axes as the mmr systems at tdisk, but without ordered MMR
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orbital geometry (all orbital elements are drawn randomly from given distributions). For
this reason, close encounters start immediately at t0. This is most likely the main reason
for later tonset in my mmr simulations. It is also the reason why the simple orbital cross-
ing method is not good enough. The method can be significantly improved by taking the
orbital angles ω, Ω and i into account to find true orbit crossings. However, systems in
MMR can avoid close encounters even though orbits cross.

(a) (b)

Figure 5.1: Onset time of scattering phase CDF, for K2C5. Different colours
represent the various methods used for estimating tonset: The semimajor axis
excursions (∆a

a
), the built-in close encounter analysis tool in mercury6.2

(close6.for) and the orbital crossing time. For this project ∆a
a
≥ 10% is

considered most reliable. a) mmr simulations. b) non-mmr simulations.

Another important feature can be seen in figure 5.1a. Evidently, tonset measured by
close6.for is significantly earlier than for the ∆a

a
condition. This was predicted due to

the restoring force overcoming weak close encounters, keeping the system in MMR. In the
close6.for routine, a close encounter is defined as one of the planets having the other
planet at a distance r ≤ 3RH , where RH is the Hill radius of the considered planet, defined
in equation 2.33. I limit the search to stronger close encounters by instead imposing the
requirement r ≤ RH . This is shown by the purple dashed line in figures 5.1 and 5.2.
The stronger close encounters provide an almost identical distribution of tonset as the ∆a

a

method (yellow line), supporting both the validity of the ∆a
a

condition and the argument
of the restoring force overcoming weak close encounters.

The trend of weak close encounters being countered by the restoring force is only
visible for two Ke − C1 pairs: K2C5 and K3C5. By analysis of eccentricity at tdisk I find
that these two Ke − C1 pairs provide migration parameters that results in the largest
eccentricity at tdisk. Remember, small Ke values means low eccentricity damping and thus
high eccentricity. Small C1 values means rapid and long migration. The implication for
eccentricity is ambiguous: rapid migration means large eccentricity excitation but at the
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(a) (b)

Figure 5.2: Onset time of scattering phase CDF, for K4C4. Different colours
represent the various methods used for estimating tonset: The semimajor axis
excursions (∆a

a
), the built-in close encounter analysis tool in mercury6.2

(close6.for) and the orbital crossing time. For this project ∆a
a
≥ 10% is

considered the most reliable method. Note that for the K4C4 migration and
damping parameters, the ∆a

a
and the close6.for methods give the same tonset.

a) mmr simulations. b) non-mmr simulations.

same time large eccentricity damping. Visualized in figure 3.8, simulations on the lower left
side (low Ke and C1) result in large eccentricity while simulations on the lower right side
result in small eccentricity. Sufficiently high eccentricities means that orbits come close
to each other and have close encounters, even despite MMR geometry. At the same time,
large eccentricity also means that the orbital velocity is rapid at pericenter and slow at
apocenter. Thus close encounters are rapid and weak and can be overcome by the restoring
force.

Finally, for a given resonance, the distribution of tonset seems to vary heavily with
Ke−C1 for MMR simulations. This behaviour can be explained simply by the eccentricity
and inclination distribution at tdisk which depend on the migration parameters Ke − C1.
In general, small C1 and small Ke leads to the largest eccentricity at tdisk and thus also
the earliest tonset (see figure 3.8 and associated paragraphs).

Duration of Scattering

I find no correlation between tdur and initial MMR. This suggests that the three-planet
MMR chains are generally broken at the same time the scattering phase start, and any
initial trace of MMR is quickly removed. Even though the onset close encounter occurs
between two planets, the scatter seems to be enough to break the other resonant pair as
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well. Potentially this can be different for systems with more than three planets and/or
non-equal planetary mass.

5.2 Initial Orbital Element Correlations

I compare non-mmr simulations with non-mmr-circular. In tables 4.3 and 4.4 we see
that the hypothesis tests results in quite small p-values. This indicates that non-mmr and
non-mmr-circular parameters are less similar than comparing mmr to non-mmr. In
which cases is this significant enough to infer statistically differing distributions?

5.2.1 Orbital Elements

Both the final eccentricity- and inclination distributions are on the border of being statis-
tically different comparing non-mmr to non-mmr-circular. The non-mmr-circular
simulations feature smaller e and i of relaxed systems than non-mmr thus confirming
that initial values of e and i indeed affects the scattering phase and the relaxed systems.
It seems that starting systems with small e and i results in slightly smaller final e and i
after the scattering phase, compared to starting the simulations with significant e and i.
As mentioned already in section 3.2.7, the orbital elements a, e and i determine the total
energy Etot and angular momentum Ltot of a multi-planet system. Generally, these are the
only conserved quantities in a planetary system. Therefore it is not surprising that the
initial e and i just prior to the scattering phase affect the relaxed system. For this reason,
direct comparisons between distributions of orbital elements from this work to other works
are biased.

Although not quite enough to be statistically different according to α∗ the minimum
pericenter of non-mmr-circular simulations seems to be larger than for non-mmr simu-
lations. This is not surprising given that non-mmr-circular has lower eccentricity. The
smaller fraction of semimajoraxes in 2-planet survivor systems for non-mmr-circular is
also expected, given that small eccentricity systems can be stable at closer orbital separa-
tion.

5.2.2 Scattering Timescales

In the Result section (figure 4.5) we saw that tonset is systematically later for non-mmr-
circular simulations compared to non-mmr simulations. This is expected since low e
leads to more stability.
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My results show that the duration of scattering is not different given differing initial e
and i. Combined with the similarities of tdur between mmr and non-mmr it seems that
the duration of the scattering phase is independent of initial conditions, at least for systems
of three equally massive planets. It should be noted that the timescales of scattering, both
tonset and tdur, are expected to depend heavily on the semimajor axis which sets the orbital
time scale.

5.3 Collisions

The average number of collisions per simulation does not seem to be correlated with initial
MMR for the 2:1 configuration. However, for the 3:2 configuration I see two things: a)
The number of collisions increases drastically for 3:2 resonances compared to 2:1. This is
because of the tighter orbital separation of both individual planets and the planets and
the star, as discussed in section 3.3.1. b) The average number of collisions per simulation
seems to be lowest for MMR simulations and largest for non-mmr-circular simula-
tions. As seen in section 3.3.1 increased number of collisions should lead to lower final
eccentricity. Could this be one of the reasons behind the low final eccentricity in the non-
mmr-circular simulations? Because of the following two findings, collisions most likely
have a negligible effect on the final eccentricities in my simulations: I do not find any
statistical differences in the final eccentricities of mmr and non-mmr simulations, even
though the non-mmr simulations feature more collisions. Furthermore, K4C4 simulations
does not have lower eccentricities than K4C7 simulations, even though they feature more
collisions.

5.4 Implications and Recommendations

In this project I find that all but one of the chosen parameters, e, i, aper, ai/aj and tdur,
are uncorrelated with initial MMR for a system that has undergone a scattering phase. In
the light of this it is tempting to draw the conclusion that MMR need not be considered
in planetary scattering simulations where only these parameters are of interest. However,
as is evident from section 3.2.6 the initial semimajor axes, eccentricities and inclinations
affect the final relaxed distributions of e, i, aper and ai/aj. I have found that the orbital
elements a, e and i before the scattering phase (at tdisk) do depend heavily on the preceding
MMR evolution. For this reason, initial MMR indeed has an indirect effect on e, i and
ai/aj of a relaxed system, as well as on the minimum aper. Whether this effect is significant
enough to deduce initial MMR in a system that underwent scattering is a scope for future
work. For example one could compare systems that migrate directly into scattering without
capture in MMR to systems that migrate and capture in MMR before scattering. In such
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simulations, the systems that migrate directly into scattering without MMR would most
likely start the scattering phase with smaller e and i compared to MMR systems.

For future works on planetary scattering, MMR can safely be decoupled from the scat-
tering simulations as long as tonset is not of interest. By using a, e and i at tdisk from pre-
vious MMR simulations, a scattering simulation with these initial conditions (no MMR)
is equally good as the full initial MMR treatment presented in this work.

The duration of the scattering phase is independent of the system being in MMR
initially. It also seems to be independent of initial e and i. However, due to orbital
timescales, tdur is most likely dependent on a. Since MMR affects the initial semimajor
axes for the scattering phase, it could have a small indirect effect on tdur. The onset of
the scattering phase and similarly the long term stability of a system is, both directly and
indirectly, dependent on MMR. An mmr system is, due to the geometry of MMR orbits
and the restoring force, inherently more stable than a non-mmr system. For projects
where the onset of scattering is of interest MMR cannot be neglected.

5.5 Comparisons to Other Works

In accordance with Carrera et al. (2016) I find that systems of three equally massive giant
planets have pericenters that span the whole inner planetary system during the simulations.
Such a system would scatter large quantities of super Earth candidates found at small
orbital separations.

In Jurić & Tremaine (2008) they define different regions of scattering based on the
final eccentricity distribution, the amount of evolution from the initial eccentricity and
the smallest initial Hill separation Dmin. Systems with Dmin ≤ 1 are active systems that
undergo violent planetary scattering. The final eccentricity distribution of active systems
seems to converge towards a common distribution regardless of the initial conditions, the
end point of planetary scattering. This is in contrast to the inclination distribution which
is dependent on initial conditions, in particular on the initial number of planets (Jurić &
Tremaine 2008). Partially active systems Dmin ∈ [1, 10], while undergoing scattering, do
not reach the same final eccentricity distribution as active systems. The eccentricity dis-
tribution of partially active systems possibly retains some memory of the initial conditions
(Jurić & Tremaine 2008). Inactive systems are essentially stable for the full tstop. They
feature little or no planetary scattering and retain their initial eccentricity distribution.

According to the Dmin criterion, all of my systems are partially active. However, my
Dmin measure is defined for circular orbits. Due to the significant eccentricity right before
scattering, my mmr- and non-mmr systems would most likely be active. My non-mmr-
circular simulations are partially active. Therefore, the differences between non-mmr
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and non-mmr-circular are due to them being active and partially active systems re-
spectively, in accordance with Jurić & Tremaine (2008). Expanding upon this, according
to Jurić & Tremaine (2008), creating a new non-mmr-eccentric simulation set using
larger initial e and i than non-mmr simulations should mean no differences in the relaxed
eccentricity distribution since both systems are classified as active. It is important to
note that Jurić & Tremaine (2008) use a wider range of initial conditions, including large
numbers of initial planets and non-equal masses in the range mp ε [0.1, 10]MJ .

In Libert & Tsiganis (2011) they investigate various resonance captures for 3-planet
systems of masses similar to MJ . Migration forces and eccentricity- and inclination damp-
ing are applied to make the planets capture and migrate in MMR. They find that all
systems initially enter eccentricity resonances which excite eccentricity. For low enough
eccentricity damping (low Ke-value), eccentricity can grow large enough to trigger incli-
nation resonance. Migration in inclination resonances similarly excite inclination rapidly.
Inclination of the planets in the system can then grow up to i ∼ 35◦.

In this work I see the exact same behaviour. Specifically for low Ke coupled with
low C1 eccentricity is rapidly excited in MMR migration. At large enough equilibrium
eccentricity the systems enter inclination type resonances and inclinations are excited,
which can be seen in figure 5.3 for K2C5. This occurs for systems in K2C5 and K3C5
where the inclination at tdisk is significant. For K2C7 and K3C6 inclination resonances
occur as well but not as pronounced since C1 is bigger. For systems in K4C4 and K4C7
inclination resonances are never triggered, most likely because of large Ke.

(a) (b)

Figure 5.3: The evolution of eccentricity and inclination of the three planets
until tdisk in mmr simulations. The figure shows the result for K2C5 migration
parameters. The system enters inclination resonances after eccentricities have
been excited sufficiently. a) Eccentricity evolution. b) Inclination evolution.
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5.6 Limitations and Future Work

As a natural extension to this project it would be interesting to test more resonances than
2:1 and 3:2 to get more statistics. Libert & Tsiganis (2011) has shown that, for a range
of initial semimajor axes in three-giant planet systems mp ≤ 1.5MJ , the most common
resonance captures are 2:1 and 3:1. Furthermore they find that, for the considered planetary
masses, capture into the 3:2 resonance is very rare, due to its unstable configuration. Based
on this, it would be of interest to investigate the 3:1 resonance in the future.

To expand on the generality of the project it would be interesting to repeat the sim-
ulations using non-equal planetary masses and more planets than three. This would also
make the simulations more realistic. Non-equal planet masses leads to more stable sys-
tems (Chambers et al. 1996). Furthermore it means that the most massive planets are
less affected by the scattering phase while the less massive planets are more strongly af-
fected. Therefore the final orbital elements of relaxed systems would probably show a
wider spread. Adding more planets would most likely make the systems more unstable.
It might also increase the duration of the scattering phase since more planets needs to be
ejected in order to achieve stability. Inclusion of both unequal masses and more planets
would most likely affect the investigated parameters, in particular the stability of the sys-
tems, but would it affect mmr and non-mmr simulations differently? For example, the
tdur (and other parameters) of the mmr systems could be affected as parts of the system
potentially remains in MMR for some time when one two-planet resonance is broken (due
to the restoring force). However, resonance crossing and irregular perturbing forces that
ensues from planetary scattering might well destabilize the rest of the system quickly after
the first scattering anyway. In this work I have neglected to include unequal masses and
more planets due to the time constraint.

For the purpose of the science goal of this report, some physics have been greatly sim-
plified or even overlooked. I’m referring mainly to the planet-disk interactions (migration
eccentricity- and inclination damping), the growth of planets in a protoplanetary disk,
the disk dispersion and tidal interactions with the star. In the future these areas can
be expanded on. For example one might implement planetary growth and more realistic
migration as in e.g. Bitsch et al. (2015), and refined eccentricity- and inclination damp-
ing prescriptions from hydrodynamical code e.g. Sotiriadis et al. (2017) and Bitsch et al.
(2013). For an extensive treatment of the disk dispersion one could make use of Bitsch et
al. (2015).

In Correia et al. (2017) they argue that simply measuring T2/T1 for two planets is not
enough to determine MMR. For a robust MMR determination one needs to analyze the
time evolution of the resonance angle φ to see that it librates. For my work, determining
MMR by T2/T1 can be justified because I am actively trying to make systems capture into
MMR. In my simulations I expect systems to either capture into MMR during migration
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or go unstable and scatter due to a stationary inner planet. A system ending up with the
nominal MMR T2/T1 by chance in this case is extremely improbable.

In table 4.5 I find that, despite efforts to get a sample size comparable to the observed
sample Np ∼ 300 → Ns ∼ 200 (Np = number of surviving planets, Ns = number of
systems), some of the mmr simulations have many more successful systems, e.g. the K4C7
simulations has Ns = 421. For the non-mmr simulations I find that Ns ∼ 200 for all
migration and damping parameters. This means that I compare two distributions that can
have large differences in the number of data points. The two-sample hypothesis tests, both
K-S and A-D, might be affected by such differing distribution sizes. A limitation of this
work is therefore not investigating the effects of differing distribution sizes in two-sample
K-S and A-D tests.

By looking at tables 4.1, 4.2, 4.3, 4.4 there is a large difference between the p-values for
mmr to non-mmr comparisons and non-mmr to non-mmr-circular comparisons. This
indicates that non-mmr- and non-mmr-circular distributions might be different. On
the other hand there are only a few comparisons in tables 4.3 and 4.4 that can reject the
null hypothesis due to the very strict significance level α∗. This signals that the Bonferroni
correction might be too strict in this case. It might be more instructive to disregard the
significance level and look only at the p-values relative to each other.

Expanding upon this, by looking at tables 4.1, 4.2, 4.3 and 4.4 the differences in p-
values between the K-S and A-D tests for the same two-sample comparison are in some
cases quite large. This signals that one of the tests might not be good enough for this
purpose. Generally the A-D test is regarded as better than the K-S test for comparing
distributions. Instead of the K-S test it would have been interesting to perform some
multidimensional hypothesis test, taking into account correlations between the different
variables I analyzed.

Finally, due to lack of time I have omitted to make comparisons to observed giant
exoplanet eccentricity and inclination distributions. This would be interesting to do as an
expansion to this work.
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Chapter 6

Conclusions

In this work I have tested the importance of mean motion resonances for dynamically
unstable planetary systems that undergo a scattering phase. I have numerically simulated
planet systems of three Jupiter-mass planets around a solar mass star. The simulations are
split in two parts: mmr simulations, with the planets locked in specific resonance chains
before the scattering phase, and non-mmr simulations, with similar initial conditions but
no MMR before the scattering phase. All systems undergo significant planetary scattering
and subsequent relaxation after one or more planets were ejected.

I show by hypothesis testing, using K-S and A-D tests, that the distribution of ec-
centricity and inclination of the surviving planets is the same for mmr and non-mmr
simulations. I conclude that eccentricity and inclination of planets that underwent scat-
tering is not directly correlated with initial MMR. The final eccentricity and inclination
seems to be a product of the chaotic scattering phase only and show no relics from initial
resonance chains. In a similar manner, the minimum pericenter of any planet in the system
during the scattering phase and the ratio of final semimajor axes in two-planet survivor
systems is not directly correlated with initial MMR.

The starting time of the scatter phase is statistically different comparing mmr- to
non-mmr simulations. non-mmr systems enter the scattering phase much earlier than
the mmr systems, most likely due to the geometry and restoring force of MMR. In general
tonset is different for different planet-disk interaction parameters. Critically dependent on
Ke and C1, I find that a large fraction of mmr systems stay stable for the full tstop, while
corresponding non-mmr systems undergo scattering. Furthermore, it seems that very
eccentric mmr systems can have close encounters without going unstable due to the strong
restoring force.

The duration of the scattering phase is not directly correlated with initial MMR. In
this work we have worked exclusively with systems of three equally massive planets. For
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future works it would be interesting to test correlations between tdur and initial MMR for
systems of more planets and/or unequal masses.

I compared my significant initial eccentricity and inclination non-mmr simulations
to similar non-mmr-circular simulations using circular orbits with small inclinations.
I find that the distributions of orbital elements and onset time of scattering comparing
non-mmr and non-mmr-circular are border-lining the given significance level. In other
words, I see slight correlations between initial eccentricity/inclination values and the final
distributions of e, i, aper, ai/aj and tonset. However, these correlations are significant only
in a few cases. I conclude that when comparing this work to other works on scattering
using small initial e and i, there will be slight differences. Note that this does not affect
the duration of the scattering phase which seems to be independent of initial conditions
(except for initial semimajor axis).

For systems of three equally massive planets it seems that MMR-chains are broken in
the first, or first few, major close encounters (r ≤ RH). The time of the first major close
encounter is very different between mmr- and non-mmr systems. After MMR has been
broken, any trace of initial MMR is quickly removed during the scattering phase. After
relaxation there is no observable distinction between initial MMR and initial non-MMR.
However, as we have seen, MMR evolution significantly affects the initial conditions for
scattering. MMR keeps the system locked in specific orbital configurations and excites
eccentricity, and sometimes also inclination, to high levels. The initial orbital elements for
the scattering phase, comparing a system that captured into MMR during migration and
a system that failed to capture, will therefore be inherently different. This means that,
indirectly, MMR has an effect on the final orbital elements of a relaxed system. This can
be expanded upon in future work.
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7.1 A: Complete Set of Results

7.1.1 2:1 Nominal Resonance Configuration

K2C5

(a) (b)

(c) (d)

Figure 7.1: CDFs of surviving planets after the scattering phase, for K2C5.
The results of mmr- and non-mmr simulations are shown in the same plots for
comparisons. Red vertical lines represent the K-S test statistic. K-S and A-D
tests are performed to check the null hypothesis H0. a) Eccentricity CDF. b)
Inclination CDF. c) Minimum pericenter CDF. d) Ratios of semimajor axis in
two-planet survivor systems CDF.
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(a) (b)

Figure 7.2: CDFs of scattering phase timescales, for K2C5. The results of mmr-
and non-mmr simulations are shown in the same plots for comparisons. Red
vertical lines represent the K-S test statistic. K-S and A-D tests are performed
to check the null hypothesis H0. a) Onset time of scattering phase CDF. b)
Duration of scattering phase CDF.
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K2C7

(a) (b)

(c) (d)

Figure 7.3: CDFs of surviving planets after the scattering phase, for K2C7.
The results of mmr- and non-mmr simulations are shown in the same plots for
comparisons. Red vertical lines represent the K-S test statistic. K-S and A-D
tests are performed to check the null hypothesis H0. a) Eccentricity CDF. b)
Inclination CDF. c) Minimum pericenter CDF. d) Ratios of semimajor axis in
two-planet survivor systems CDF.
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(a) (b)

Figure 7.4: CDFs of scattering phase timescales, for K2C7. The results of mmr-
and non-mmr simulations are shown in the same plots for comparisons. Red
vertical lines represent the K-S test statistic. K-S and A-D tests are performed
to check the null hypothesis H0. a) Onset time of scattering phase CDF. b)
Duration of scattering phase CDF.
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K3C5

(a) (b)

(c) (d)

Figure 7.5: CDFs of surviving planets after the scattering phase, for K3C5.
The results of mmr- and non-mmr simulations are shown in the same plots for
comparisons. Red vertical lines represent the K-S test statistic. K-S and A-D
tests are performed to check the null hypothesis H0. a) Eccentricity CDF. b)
Inclination CDF. c) Minimum pericenter CDF. d) Ratios of semimajor axis in
two-planet survivor systems CDF.
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(a) (b)

Figure 7.6: CDFs of scattering phase timescales, for K3C5. The results of mmr-
and non-mmr simulations are shown in the same plots for comparisons. Red
vertical lines represent the K-S test statistic. K-S and A-D tests are performed
to check the null hypothesis H0. a) Onset time of scattering phase CDF. b)
Duration of scattering phase CDF.
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K3C6

(a) (b)

(c) (d)

Figure 7.7: CDFs of surviving planets after the scattering phase, for K3C6.
The results of mmr- and non-mmr simulations are shown in the same plots for
comparisons. Red vertical lines represent the K-S test statistic. K-S and A-D
tests are performed to check the null hypothesis H0. a) Eccentricity CDF. b)
Inclination CDF. c) Minimum pericenter CDF. d) Ratios of semimajor axis in
two-planet survivor systems CDF.
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(a) (b)

Figure 7.8: CDFs of scattering phase timescales, for K3C6. The results of mmr-
and non-mmr simulations are shown in the same plots for comparisons. Red
vertical lines represent the K-S test statistic. K-S and A-D tests are performed
to check the null hypothesis H0. a) Onset time of scattering phase CDF. b)
Duration of scattering phase CDF.
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7.1.2 3:2 Nominal Resonance Configuration

K4C4

(a) (b)

(c) (d)

Figure 7.9: CDFs of surviving planets after the scattering phase, for K4C4. The
results of mmr-, non-mmr- and non-mmr-circular simulations are shown
in the same plots for comparisons. Red vertical lines represent the K-S test
statistic. K-S and A-D tests are performed to check the null hypothesis H0. a)
Eccentricity CDF. b) Inclination CDF. c) Minimum pericenter CDF. d) Ratios
of semimajor axis in two-planet survivor systems CDF.
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(a) (b)

Figure 7.10: CDFs of scattering phase timescales, for K4C4. The results of
mmr-, non-mmr- and non-mmr-circular simulations are shown in the same
plots for comparisons. Red vertical lines represent the K-S test statistic. K-S
and A-D tests are performed to check the null hypothesis H0. a) Onset time of
scattering phase CDF. b) Duration of scattering phase CDF.
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K4C7

(a) (b)

(c) (d)

Figure 7.11: CDFs of surviving planets after the scattering phase, for K4C7.
The results of mmr-, non-mmr- and non-mmr-circular simulations are
shown in the same plots for comparisons. Red vertical lines represent the K-S
test statistic. K-S and A-D tests are performed to check the null hypothesis
H0. a) Eccentricity CDF. b) Inclination CDF. c) Minimum pericenter CDF. d)
Ratios of semimajor axis in two-planet survivor systems CDF.
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(a) (b)

Figure 7.12: CDFs of scattering phase timescales, for K4C7. The results of
mmr-, non-mmr- and non-mmr-circular simulations are shown in the same
plots for comparisons. Red vertical lines represent the K-S test statistic. K-S
and A-D tests are performed to check the null hypothesis H0. a) Onset time of
scattering phase CDF. b) Duration of scattering phase CDF.

7.2 B: Symplectic Integrators

Symplectic integrators solve the equations of motion of a constructed Hamiltonian Hc

rather than the real Hamiltonian H of the system. The advantage of this is that there is
no buildup of energy errors over time. Instead the system is solved for Hc exactly and the
only error is the difference between Hc and H.

The Hamiltonian of a planetary system is the sum of kinetic- and potential energy,

H =
∑
i

p2
i

2mi

−G
∑
i

mi

∑
j=i+1

mj

rij
, (7.1)

where pi is the momentum of body i, mi is the mass of body i and rij is the separation
between body i and j. We can express the position xi and momentum pi of a body using

dxi
dt

= ∂H

∂pi
, (7.2)

dpi
dt

= −∂H
∂xi

. (7.3)

Any quantity of the system, q, can then be expressed as

dq

dt
=
∑
i

(
∂q

∂xi

dxi
dt

+ ∂q

∂pi

dpi
dt

)
=
∑
i

(
∂q

∂xi

∂H

∂pi
+ ∂q

∂pi

∂H

∂xi

)
= Fq. (7.4)
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Integrating to solve for q gives (Chambers 1999)

q(t) = eτF q(t− τ) =
(

1 + τF + τ 2F 2

2 + ...

)
q(t− τ), (7.5)

where τ is the integration time step. This is still unsolvable analytically when we are
dealing with three or more bodies. However, the trick here is to split the Hamiltonian into
several parts, each one solvable separately. So F = A+B and

q(t) = eτ(A+B)q(t− τ). (7.6)

We now have H = HA + HB. Importantly, the operators A and B are generally not
commutative. Therefore we generally have eτAeτB 6= eτ(A+B). However, by splitting F
into appropriate parts A and B (most often A and B are separately analytically solvable)
q(t) = eτAeτBq(t − τ) can be solved for exactly. First, q is evolved through HA for one
time step, as seen in equation 7.5. Then the resulting q is evolved through HB for one
time step. This is a first order symplectic integrator. A second order symplectic integrator
would solve the system for

q(t) = eτB/2eτAeτB/2q(t− τ). (7.7)

This equivalent to solving the system for a constructed Hamiltonian Hc ≈ H.

The symplectic integrator conserves the constructed Hamiltonian exactly. This means
that the energy error does not grow with iterations. The error induced by the symplectic
integrator is the difference ∆H = Hc − H and it depends on τ and the splitting of F .
Therefore to prevent energy error build up, we keep τ constant. As shown in Saha &
Tremaine (1992) the hamiltonian error ∆H of a symplectic integrator is given by

∆H ∝ ετn, (7.8)

where ε is given by B ∼ εA. This means that ∆H decreases when HA is dominant over
HB. The constructed hamiltonian Hc more resembles the real H if the splitting is such
that HA � HB. n is the order of the integrator.

7.3 C: Testing of Migration

7.3.1 Change of Coordinate System

In this section I convert vectors from the reference coordinate system (x, y, z) used in equa-
tions 3.14, 3.15 and 3.16 to the orbital coordinate system (r, t, zo) used for the perturbing
acceleration in equation 3.21. The goal is to express R∗, T ∗ and N∗ in terms of τa, τe and
τi.
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I Start with k = (0, 0, 1) in equation 3.16. This is the vector perpendicular to the
reference plane. By using conversion formulae from reference plane to orbital plane (given
in section 2.8 of Murray & Dermott 1999), we havexy

z

 = P1P2P3

xorbyorb
zorb

 ⇒

xorbyorb
zorb

 = P−1
1 P−1

2 P−1
3

0
0
1

 (7.9)

where P1, P2 and P3 are conversion vectors between the reference plane and the orbital
plane given in Murray & Dermott (1999). Making use of these yields k in Cartesian orbital
coordinates xorb, yorb, zorb

k =

sin ω sin icos ω sin i
cos i

 (7.10)

I express this in therms of the radius vector r and the tangential vector t by rotating the
coordinate system along the orbital angle, the true anomaly f , in the orbital plane

r = xo cos f + yo sin f, (7.11)
t = −xo sin f + yo cos f, (7.12)

and finally we have

k =

 sin ω sin i cos f + cos ω sin i sin f
−sin ω sin i sin f + cos ω sin i cosf

cos i

 (7.13)

The position coordinate and the velocity coordinate expressed in terms of r, t and zo
are more straightforward

r = (r, 0, 0), (7.14)
v = (ṙ, rḟ , 0), (7.15)

where ṙ is the radial velocity and ḟ is the angular velocity. Since we are in the orbital
plane there cannot be any velocity in the zo-direction

From Murray & Dermott (1999) section 2.3 I make use of

ṙ = na√
1− e2

e sin f, (7.16)

rḟ = na√
1− e2

(1 + e cos f) , (7.17)

where r is given by equation 2.1. We are now in position to rewrite equations 3.14, 3.15
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and 3.16 using equations 7.13, 7.14 and 7.15

aa = −
(
ṙ

τa
r̂ + rḟ

τa
t̂
)
, (7.18)

ae = −2 ṙ
τe

r̂, (7.19)

ai = −2(krṙ + ktrḟ)k
τi

, (7.20)

with ṙ and rḟ given by equations 7.16 and 7.17. We see that aa contributes to R∗ and
T ∗, ae only contributes to R∗ and ai contributes to all three directions through k. Using,
equations 7.18, 7.19 and 7.20 the expressions for R∗, T ∗ and N∗ then becomes

R∗ = ṙ

(
1
τa

+ 2
τe

+ 2k2
r

τi

)
− rḟ

(
2krkt
τi

)
, (7.21)

T ∗ = −rḟ
(

1
τa

+ 2k2
t

τi

)
− ṙ

(
2krkt
τi

)
, (7.22)

N∗ = −2
(
ṙkr
τi

+ rḟkt
τi

)
kz, (7.23)

with kr, kt and kz according to equation 7.13.

7.3.2 Orbital Averaging

From Murray & Dermott (1999) chapter 2 we have the following useful relations between
f , E and M

cosE = cosM + e

2(cos 2M − 1) +O(e2), (7.24)

sin f = sinM + e sin 2M +O(e2), (7.25)
cos f = cosM + e (cos 2M − 1) +O(e2). (7.26)

Using first order in e, I substitute into equations 3.22, 3.23 and 3.24 and integrate over 0 to
2π in dM to obtain the orbital averaged evolution 〈ȧ〉, 〈ė〉 and 〈i̇〉. The integration of such
equations is non-trivial and thus a symbolic integrator, integrate in mathematica, was
used. The result is

〈ȧ〉 = fa(a, e, i, ω, τa, τe, τi), (7.27)
〈ė〉 = fe(e, i, ω, τa, τe, τi), (7.28)
〈i̇〉 = fi(e, i, ω, τi), (7.29)

where fa, fe and fi are some complex functions of the variables stated in the respective
equation above.
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7.3.3 Example of Migration Implementation

As an instructive example we show the effect of aa on a simple planetary orbit with e =
i = 0. Combining equations 3.22, 7.13, 7.17 and 7.22 we obtain

da

dt
= −2a

τa
. (7.30)

This single differential equation can be solved analytically to obtain

a(t) = a0 e
− 2t
τa . (7.31)

We can see here that the timescale τa sets the migration rate.

7.4 D: Hypothesis Tests

7.4.1 Two-sample Kolmogorov-Smirnov (K-S) test

In a two-sample K − S test the test statistic D is the greatest vertical distance between
the two CDFs for any given measurable quantity. For two CDFs Sn(x) and Rm(x) where
x are the measured quantities and n and m are the number of data points,

D = max|Sn(x)−Rm(x)|. (7.32)

The null hypothesis H0 is that the two CDFs belong to the same underlying distribution.

Figure 7.13: Two cumulative distribution functions of an arbitrary parameter
X are compared by a two-sample K-S test. The black arrow shows the observed
K-S test statistic Dobs (equation 7.32).

By randomly drawing two CDFs from a single underlying distribution we can measure the
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test statistic D. By repeating this multiple times we obtain a distribution of Ds given that
H0 is true. From the mmr and non-mmr simulations I then get two CDFs that I want to
compare. I measure the observed test statistic Dobs by equation 7.32 above. The p-value
is then the probability of randomly drawing a D from the true distribution of Ds that is
equal or more extreme (|D| ≥ |Dobs|). p is given by the following formula for the K-S test:

p = 2
∞∑
j=1

(−1)(j−1) exp

−2j2
(
Dobs

√
nm

n+m

)2 . (7.33)

7.4.2 Two-sample Anderson-Darling (A-D) test

A two-sample A-D test is similar to a K-S test but with a different test statistic that is
more sensitive to the wings of the CDFs. In Pettitt (1976) a simplified test statistic is
given for the two CDFs Sn(x) and Rm(x) by

A2
nm = 1

nm

N−1∑
i=1

(MiN − ni)2

i(N − i) , (7.34)

where Mi is the number of data points x less than or equal to the x in H(x). H(x) is
the combined CDF given by H(x) = nSn(x)+mRm(x)

N
. N is the total number of data points

N = n + m. By sampling two CDFs from a single underlying distribution A2
nm can be

calculated. Repeating this process leads to a distribution of A2
nm given that H0 is true.

From my mmr and non-mmr CDFs I can calculate an observed test statistic A2
nm,obs. The

p-value is the probability of randomly drawing an A2
nm from the distribution where H0 is

true that is equal or more extreme than A2
nm,obs. For details on the distribution of A2

nm

given that H0 is true and how to compute p I refer to Pettitt (1976).
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