
Using Self-Organizing Maps to Identify
Operational Risk

Jonatan Berggren, Lukas Ljungblom

June 12, 2018

Abstract

In recent years, the awareness and concern for operational risk in financial
institutions have increased, and several disastrous events in the last two
decades been caused by human error. With this, the regulatory demands
have increased on the financial institutions to control operational risk.

One operational risk that Svenska Handelsbanken AB (SHB) has detected
are the audit changes of trades which occur when a trade need some form of
altering from its original state, which can lead to losses for the bank. The
bank has looked into identifying and forecasting these losses with the use of
a neural network clustering method called Self-Organizing Map.

This thesis expands on a previous project initialized by SHB on the po-
tential of using this method to identify operational risk, and research the
robustness and effectiveness of the Self-Organizing Map and trying to ob-
tain an optimal solution by using quantifiable measurements like Matthew’s
Correlation Coefficient.

By evaluating the algorithm through visualizations of the generated maps
and evaluating its prediction ability through Cross-Validation, the results
obtained from this thesis indicate that the Self-Organizing Map has great
potential in this area and is able to identify these risks with a relatively high
accuracy.

Key Words: Self-organizing Map, Machine Learning, Neural Network,
Clustering, Operational Risk, Audit Change

Acknowledgements

This thesis was written during the spring of 2018 at the Department of Math-
ematical Statistics at Lund University, in cooperation with the Risk Control
Department at Svenska Handelsbanken AB, Stockholm.

We wish to thank various people for their contribution to the project; Erik
Lindström, our supervisor at LTH, for his guidance and support; Richard
Henricsson and Cecilia Pettersson, our supervisors at SHB, for their valuable
expertise and support; The rest of the staff at the Risk Control Department
at SHB, for letting us be part of the team; Markus Holmgren and Hampus
Pettersson, our fellow master’s students at SHB, for great companionship
and sharing of ideas.

This project has been of great enjoyment and has broaden our knowledge in
machine learning, programming, statistical analysis and risk management.

Contents

0.1 Abbreviations . 1

1 Introduction 3
1.1 Background . 3
1.2 Aim of the thesis . 4
1.3 Operational risk . 4
1.4 Outline . 5

2 Theory 7
2.1 Unsupervised Machine Learning 7
2.2 SOM . 7

2.2.1 The Decision Step . 8
2.2.2 The Update Step . 9
2.2.3 Distance Measures . 9
2.2.4 Neighborhood . 11

2.3 Model Evaluation . 13
2.3.1 U-matrix . 13
2.3.2 Cross-Validation . 14
2.3.3 Binary Classifier . 14
2.3.4 ROC and Youden’s J Statistic 15
2.3.5 Matthews Correlation Coefficient 17
2.3.6 K-means . 18
2.3.7 Bayes’ Theorem . 19

2.4 Imbalanced Data . 19
2.4.1 SMOTE . 19
2.4.2 Undersampling . 20

3 Data 21
3.1 One-hot Encoder . 21
3.2 Audit Changed Trades . 22

CONTENTS

4 Method 25
4.1 SOM Algorithm . 25
4.2 Clustering . 27
4.3 SMOTE Algorithm . 27
4.4 Visualization . 28
4.5 Convergence . 29
4.6 Model Evaluation . 30
4.7 Simulations . 31
4.8 K-means . 31

5 Results 33
5.1 Visual Results of the SOM Algorithm 33
5.2 Cross-Validation/Prediction 60

5.2.1 SOM . 60
5.2.2 K-means . 63

6 Discussion 67
6.1 Parameters . 67

6.1.1 Number of Iterations 67
6.1.2 Map Size . 67
6.1.3 SMOTE . 68

6.2 Cluster Identification . 68
6.3 Data Set . 70
6.4 Performance and Efficiency 71

7 Conclusion 73
7.1 Further Work . 74

i

0.1 Abbreviations

SHB Svenska Handelsbanken AB

SOM Self-organizing map

U-matrix . . . Unified distance matrix

BMU Best matching unit

ROC Receiver operating characteristic

AUC Area under the ROC-curve

P/N Positive/Negative

PP/PN Predicted Positive/Negative

TP/TN True Positive/Negative

FP/FN False Positive/Negative

MCC Matthews Correlation Coefficient

SMOTE Synthetic Minority Over-sampling Technique

1

2

Chapter 1

Introduction

1.1 Background

The risk management in financial institutions has in recent years, since the
global financial crisis, become more substantial and important for every ac-
tor in the financial market. The requirements on these institutions to handle
their risks has also increased with the expansion of the Basel Committee Reg-
ulation Framework. The risk management of a company includes managing
their credit risk, market risk, liquidity risk, and increasingly important, their
operational risk. The Basel Committee defines operational risk as "the risk of
loss resulting from inadequate or failed internal process, people and systems
or from external events" [9]. Over the years, many of the most severe and
disastrous losses related to financial institutions can be traced back to single
events caused by individuals. Some examples includes the Allied Irish Bank
in 2002, Soceite Generale in 2008 and perhaps most famously the collapse of
Barings Bank caused by the speculative trading of Nick Leeson in 1995 [6].
In 1997, the British Bankers Association and Coopers Lybrand performed a
research that showed the importance of surveiling a company’s operational
risk. They found that in 70% of the monitored banks, operational risk was
more or equally important as market or credit risk [10].

One component that is included in operational risk is the audit changes
of trades, which occurs when the information of a transaction is changed
from its original state by updating or correcting of the initial input, or by
cancellation of a transaction, i.e. an effect of human error.

As a result of the technological progress and the ability to store large amount

3

CHAPTER 1. INTRODUCTION

of data, the possibilities to model and draw conclusions from big data have
developed and opened new ways to analyze trades and to model and manage
operational risk [19]. This thesis revolves around the categorization, mea-
suring and forecasting of operational risk in the form of audit changes by
using big data-simulation.

1.2 Aim of the thesis

The aim of this thesis is to investigate the possibility of using a so-called Self-
Organizing Maps (SOM), which is an unsupervised machine learning method
that uses an artificial neural network, to capture operational risk. The idea
is to find clusters within data of multiple dimensions in a low-dimensional
output space, most commonly a two-dimensional grid, in order to categorize,
measure and forecast losses resulting from audit changes. The data in this
thesis is based on historical audit changed trades provided by SHB. The the-
sis expands on previous basic work done on the subject conducted by SHB
[20], that showed potential for using SOMs to identify operational risk. The
aim is to explore the method further and execute various performance tests
to get quantitative results.

This thesis is an initiative of the Risk Control Department at SHB. The
bank has a low tolerance when it comes to risks and SHB is a world leader in
credit rating and no bank has a higher credit rating from Moody’s, Standard
and Poor’s or Fitch [3] as of 2017. The risks identified by the bank are credit
risk, market risk, financial and liquidity risk, operational risk, compliance
risk, renumeration system risk and insurance department risk [4]. Further-
more, even tough SHB operates in a such cautious manner, the bank has
been able to obtain their company goal of having a higher profitability than
the average of their competitors in their home markets for 46 years in a row.

1.3 Operational risk

As mentioned above, operational risk has become increasingly more impor-
tant and the handling and control over this area have developed, and so has
the models to capture the risk.

The earliest works concerning operational risk were more qualitative than
quantitative, and most of the prior quantitative research has revolved around
capturing the outcome of the risks [22]. One early method to quantify oper-

4

CHAPTER 1. INTRODUCTION

ational risk was to apply Extreme Value Theory to approximate the losses,
and in 2003 the Federal Reserve Bank of Boston introduced the idea of us-
ing a Generalized Pareto Distribution on the matter, which showed some
promise [18]. The convergence of this model was however proved to be very
slow by Degen in 2007, which could lead to insufficient results [16]. An ap-
proach introduced by Martinez-Sanchez was to use a Markov Chain Monte
Carlo simulation method with a Bayesian Network approach to track the
risks where nodes represented different causes for operational losses, which
appeared to be a feasible method [12]. In recent years the possibilities offered
by Machine Learning have been increasingly explored.

1.4 Outline

In the second chapter, a description concerning the fundamental theory for
this thesis is provided. A short general description of machine learning
continuing with a thorough description of the theory on which the Self-
Organizing Map algorithm is based on, including its purpose, background
and different steps are covered. Further on, the chapter handles the theory
for different methods to test the robustness and effectiveness of the algo-
rithm’s ability to identify clusters with Cross-Validation, ROC and K-means,
and also a method to handle imbalanced data set with SMOTE.

In the third chapter, the data set provided by SHB is given an introduc-
tion and a way of processing categorical data in order for the algorithm to
handle the data called a One-hot encoder is described.

In the fourth chapter, the methods for running, visualizing and testing the
algorithm based on the theory is described, and in the fifth chapter, the re-
sults from these methods are presented.

In the sixth chapter, a discussion on the methods performance, parameters
and efficiency based the result is presented. In the seventh and final chap-
ter, a short summary on the thesis outcome is provided along with some
realizations and recommendations for future work within this field.

5

CHAPTER 1. INTRODUCTION

6

Chapter 2

Theory

2.1 Unsupervised Machine Learning

A machine learning algorithm can be defined as an algorithm that has the
ability to learn without being explicitly programmed, i.e. "hard coded". The
algorithm uses input data to generate a specific desired outcome by learning
from experience and adapting through training and repetition. Throughout
the training, the model configures itself so that it comes closer to the de-
sired outcome. The sought-after result is that when presented with data of
the same categorization, the outcome will be the desired one independent
of whether the input data is the training data or new data. This way, it
becomes possible to categorize data without the need of determining the
specific criteria that the data needs to have in order to end up in the desired
category, which can be a very difficult task especially when dealing with
very large data sets. Instead the algorithm generates the categorization by
itself. Unsupervised machine learning is used to draw conclusions and find
patterns in the underlying structure of the data when you do not have any
corresponding output data. The unsupervised learning approach is used to
look for similarities in the input data and organize it, and is a commonly
used method to find clusters in data [23].

2.2 SOM

In the 1980s, the Finnish professor Teuvo Kohonen from Helsinki Univer-
sity of Technology, nowadays Aalto University, proposed a new algorithm of
unsupervised machine learning using a neural network. The idea from Ko-
honen was to try to mimic and explain how the neurons in the brain ordered

7

CHAPTER 2. THEORY

sensory signals in the cerebral cortex. One application example of this is of
the neurons in the olfactory cortex, which are activated by smells, and those
neurons that becomes activated by similar smells lies nearby each other in
the cortex. The idea therefore became a grid, or a map, of neurons which
after training would hold input data points that are similar to those which lie
nearby, and input data where the underlying attributes differ substantially
would lie further away or at least with a clear barrier between them, hence
creating clusters in the map. The neurons can for example be organized in a
hexagonal or a rectangular grid. Each neuron in the map holds, additionally
to the coordinates of their position in the map, a vector of weights which
is updated throughout the training where the number of weights is equal to
the number of attributes in the input data space[15].

The algorithm that Kohonen proposed to accomplish this consists of three
essential steps:

1. The initialization of the map

2. The decision step

3. The update step

The initialization step consists of initializing all of the components that make
up the map before the training begins. The number of neurons in the map
and the dimensions of the map, the number of epochs or iterations that the
algorithm will do before completing the training of the map as well as the
initial neighborhood size and the initial learning rate of the neurons are the
design parameters set during the initialization of the map. The weight of
each neuron is initialized at random. The training of the map consists of an
iteration through the two latter steps, i.e. the decision and update step, and
will be described in more detail in the following sections.

2.2.1 The Decision Step

A SOM practice something called competitive learning. Let the vector x =
[x1, x2, . . . , xn] define a randomly selected data point from the input data,
where n is the number of attributes of the data, and let the weight vectorWi

= [Wi1,Wi2, . . . ,Win] define the weights of the ith neuron of the map. The
distance between the selected data point x andWi is defined by f(x,Wi) [15].
The competitiveness of the algorithm occur when selecting the best matching
vector with index b, which is the vector with the minimum distance to x,

f(x,Wb) = min
i
f(x,Wi). (2.1)

8

CHAPTER 2. THEORY

The index b is obtained by

b = arg(min
i
f(x,Wi)). (2.2)

The data point Wb that is chosen during the decision step is called the Best
Matching Unit (BMU).

2.2.2 The Update Step

When the BMU Wb has been selected, the weights belonging to that neuron
and neurons within its neighborhood are updated according to a gradient
update shown in Equation 2.3 [15]. The neighborhood is closer defined later
on.

Wi(t+ 1) = Wi(t) + ηi(t)
(
x(t)−Wi(t)

)
(2.3)

Here, ηi(t) is the adaption rate for the ith neuron within the neighborhood.
The idea of the algorithm is that the adaption rate and the neighborhood
around the BMU will decrease and shrink respectively over the training
period.

2.2.3 Distance Measures

Several times in the model the distance between two points is calculated,
both in the input and the output space. One example is when finding the
BMU in Equation 2.2. There are several different distance measurements,
which can be used for different purposes. In this thesis three different mea-
sures are used, the Manhattan distance (L1), the Euclidean distance (L2)
and the Chebyshev distance (L∞). They are all variants of the general
Minkowski distance (Lp). For two points (x1, x2, ..., xn) and (y1, y2, ..., yn)

9

CHAPTER 2. THEORY

those four measures are defined as

Minkowski distance =

(
n∑

i=1

|xi − yi|p
)1/p

(2.4)

Manhattan distance =
n∑

i=1

|xi − yi| (2.5)

Euclidean distance =

(
n∑

i=1

|xi − yi|2
)1/2

(2.6)

Chebyshev distance = lim
p→∞

(
n∑

i=1

|xi − yi|p
)1/p

= max (|x1 − y1|, |x2 − y2|, . . . , |xn − yn|) . (2.7)

In one dimension these distances are the same, which is simply the absolute
value of the difference between the points. In two dimensions, which the
output space of the SOM has, the distance between the points x = (x1, x2)
and y = (y1, y2) differ between the three measurements.

Manhattan distance: δ(x,y) = ||x− y||1
= |x1 − y1|+ |x2 − y2| (2.8)

Euclidean distance: δ(x,y) = ||x− y||2
=
√

(x1 − y1)2 + (x2 − y2)2 (2.9)
Chebyshev distance: δ(x,y) = ||x− y||∞

= max(|x1 − y1|, |x2 − y2|) (2.10)

A good example to illustrate the difference between the Euclidean and Man-
hattan distances is how to get from one place to another in a city with
perfectly square blocks. The Euclidean distance describes the shortest way,
the way that a bird can fly. The Manhattan distance describes the shortest
way a person can walk among the streets and make left and right turns in
order to reach the destination. The Chebyshev distance is also called the
"Chessboard Distance" since it can be illustrated by how many steps that a
king on a chessboard has to go in order to reach a certain place [8]. Figure
2.1 illustrates the three measurements in two dimensions.

10

CHAPTER 2. THEORY

(a) Manhattan L1 (b) Euclidean L2 (c) Chebyshev L∞

Figure 2.1: Illustration of the distance from a neuron in a two dimensional
grid with the three different distance measurements.

In Figure 2.1, the Manhattan distance is equal or greater than the Euclidean
distance, which in turn is equal or greater than the Chebyshev distance. That
is always the case, except in one dimension when they are all equal. These
methods can be used to calculate the distance of the BMU’s neighborhood,
as well as to identify clusters in the map. Both of these uses will be described
in closer detail later on.

2.2.4 Neighborhood

The idea of a SOM is to be able to identify clusters within the map, which
means that neurons that are close to each other in output space, should also
be close in input space. That is achieved by not only updating the BMU
for every iteration, but also the neurons that are in the neighborhood of the
BMU. The design of the neighborhood is determined by how the neurons
in the neighborhood are connected, the size of the neighborhood, and how
much the update step should influence the neurons in the neighborhood [15].

The connection of the neighborhood is determined by the choice of distance
measurement, usually Euclidean or Manhattan. The difference between these
two becomes that the neurons that does not lie directly above, below or to
one of the BMU’s sides will have shorter distances with the Euclidean mea-
surement than with the Manhattan measurement. For example, the closest
diagonal neuron will have the distance of 2 with Manhattan and

√
2 with

Euclidean.

Since the weights of the neurons are randomly generated initially, data points
that are similar could end up far apart on the map at the start of the sim-
ulation. It is therefore favorable to start off with a large neighborhood size
to make sure that some data points will not get stuck initially, and through
the training period reduce the size of the neighborhood in order to have

11

CHAPTER 2. THEORY

a better precision towards the end. One way of computing the size of the
neighborhood in a beneficial way is:

α(t) = α0 exp

(
−iteration(t)

λ

)
. (2.11)

Here α(t) is the neighborhood size at iteration t, α0 is the initial neigh-
borhood size, iteration(t) is the number of iterations at time t and λ is a
constant. In order to get a final neighborhood size of 1, λ should be set to:

λ =
iterations

ln(α0)
. (2.12)

In order to include the majority of the neurons in the initial neighborhood,
α0 is usually set to half of the longest side of the map, i.e

α0 =
max(length, width)

2
. (2.13)

The learning rate L(t), which is a part of determining how much the update
step will influence the weight of each neuron in the neighborhood, also needs
to be defined. The idea, similar to the definition of α(t), is that the learning
rate will decrease during the training period to make a general placement at
first, and then fine-tune the placement later on. L0 is a constant, usually set
to 0.1.

L(t) = L0 exp

(
−iteration(t)

iterations

)
(2.14)

To complete the adaption rate η(t) from Equation 2.3, a parameter con-
cerning the distance to the BMU is defined. The idea is that the BMU is
supposed to be influenced with the highest rate, and then the rate decreases
the further the distance between the BMU and each neuron in the neigh-
borhood is. To implement this, a version of the Gaussian distribution is
used and the decay factor for updating the weights in the ith neuron in the
neighborhood is defined as

θi(t) = exp

(
−distance2i

2α2(t)

)
. (2.15)

Here distance is the distance between the ith neuron and the BMU defined
in either Equation 2.5 or Equation 2.6, and α(t) is the neighborhood size
defined in Equation 2.11. This results in an adaption rate for the ith neuron
of:

ηi(t) = L(t)θi(t). (2.16)

12

CHAPTER 2. THEORY

2.3 Model Evaluation

2.3.1 U-matrix

The unified distance matrix, or short U-matrix, first introduced in [26] is a
widely used tool to inspect the performance of a SOM. The idea is to see
if the final map does indeed cluster the data, by measuring the distance
between the weights of neighboring neurons. For each pair of neighboring
neurons p1 and p2 with n attributes the euclidean distance between them is
measured as

δ(p1, p2) =

√√√√ n∑
i=1

(pi1 − pi2)2. (2.17)

The size of the dimensions of the U-matrix is twice those of the SOM minus
one, so that in between all neurons the distances can be displayed. The
points displaying the distances are what is interesting, but to get a better
visualization all other points are set to the average of the neighboring points.
Table 2.1 illustrates how the U-matrix for a 2x2 SOM is calculated. Note
that are there no distances for diagonally related neurons, instead point 5 in
Table 2.1 is the average of the neighboring distances.

Table 2.1: Calculation of the U-matrix for a 2x2 SOM

1. Neuron
Average of 2 & 4

2.
Distance between 1 & 3

3. Neuron
Average of 2 & 6

4.
Distance between 1 & 7

5.
Average of 2, 4, 6, 8

6.
Distance between 3 & 9

7. Neuron
Average of 4 & 8

8.
Distance between 7 & 9

9. Neuron
Average of 6 & 8

13

CHAPTER 2. THEORY

Figure 2.2: Illustration of a typical U-matrix for a 40x40 SOM

A typical U-matrix can be seen in figure 2.2. Typically the U-matrix is
visualized in gray-scale where light colors depict small distances and dark
colors large distances between neurons. If the SOM successfully clusters the
data, the U-matrix will show clusters of light colors separated by strings of
dark colors.

2.3.2 Cross-Validation

Cross-Validation is a traditional method used to estimate the error of a
prediction. The method consists of having a set of data which can be divided
into k numbers of smaller sets, s = [s1, s2, . . . , sk], with roughly the same
size, and having the learning algorithm train with the entire set except for
one subset at a time, and doing this training k times. After each training,
the excluded subset is tested against the trained data in order to examine
the performance of the learning algorithm [2].

2.3.3 Binary Classifier

One common basis for evaluating machine learning algorithm which has a
binary (two classes) classification application is the confusion matrix illus-

14

CHAPTER 2. THEORY

trated in Table 2.2.

Table 2.2: Confusion Matrix

Predicting Predicting
Positive Negative

Actual TP FN
Positive

Actual FP TN
Negative

The columns represent the classification of the data that is obtained from
running the machine learning algorithm, and the rows represent the actual
classification of the data. TP stands for True Positive which indicates the
number of actual positive samples labeled as positive through the algorithm.
FP stands for False Positive and indicates the number of actual negative
samples labeled as positive. FN stands for False Negative and indicates the
number of actual positive samples labeled as negative. TN stands for True
Negative and indicates the number of actual negative samples labeled as
negative [13].

2.3.4 ROC and Youden’s J Statistic

The receiver operating characteristic curve, or the ROC-curve, is a method
of visualizing the performance of the prediction ability of a binary classifier.
The curve visualizes the rate of true positive samples versus the rate of false
positive samples obtained by using different thresholds in the algorithm, see
Figure 2.3.

15

CHAPTER 2. THEORY

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

•

False Positive Rate

T
ru
e
P
os
it
iv
e
R
a
te

Figure 2.3: Hypothetical ROC-curve with the Youden’s J statistic featured.

In the bottom left corner in Figure 2.3, where both the true positive and the
false positive rates are equal to zero, is the result of when the threshold is set
so that no samples are labeled as positive. In the top right corner in Figure
2.3, where both the true positive and the false positive rates are equal to
one, is the result of when the threshold is set so that all samples are labeled
as positive. Of course, neither of those two extremes is of much use. The
space between the two extreme points represents the results when using other
thresholds. The blue line in Figure 2.3 represent a hypothetical classification
machine learning algorithm and the red dotted line represent the curve that
would be obtained from an algorithm that randomly guesses the label. Thus,
the curve of any useful classifier should definitely be above the red line. The
further the distance is from the red line to the blue line, with the condition
that the blue line is above the red line, the more efficient the classifier is.
For an optimal classification method the blue line would pass through the
point where the true positive rate is one and the false positive rate is zero [1].

By also selecting the point where the longest vertical distance from the red
line to the blue line is in the curve, the optimal threshold for a specific clas-
sifier can be obtained. In this point, a higher True Positive rate will be at
the cost of even higher False Positive rate, and a lower False Positive rate
will be at the cost of even lower True Positive rate. This measurement is
known as the Youden’s J statistic [24] and is illustrated in Figure 2.3.

16

CHAPTER 2. THEORY

Another way of measuring the performance of a classifier is to measure the
area under the ROC-curve, AUC. The further the distance is from the red
line to the blue line for every threshold point, the more accurate is the classi-
fication method as previously stated and the larger the area under the curve
becomes, thus making the value of the AUC a measurement of performance
[1].

2.3.5 Matthews Correlation Coefficient

While the confusion matrix in Table 2.2 show the most important qualities
of a binary classifier, there is often a need to transform that information into
a single score in order to more easily compare different classifiers. There
exists multiple metrics that try to do that and one of them is Matthews
Correlation Coefficient, or MCC, introduced by Brian W. Matthews in 1975
[17]. MCC is calculated as

MCC =
TP · TN − FP · FN√

(TP + FP)(TP + FN)(TN + FP)(TN + FN)
. (2.18)

The MCC can be seen as the correlation between predicted and actual val-
ues of a binary classifier. It takes a value between −1 and 1. A value of
1 represents perfect prediction, and −1 the opposite, a classifier that gets
every prediction wrong. Random prediction would give a MCC of 0, hence
any useful classifier needs to produce a positive MCC.

It is generally regarded as one of the best measures [21] and commonly used
in machine learning. One advantage of MCC over many other measures is
that it takes into account the balance ratios of the four metrics in the con-
fusion matrix, making it prevalence-independent and therefore applicable on
asymmetrical data. In "Ten quick tips for machine learning in computational
biology" Davide Chicco explains how other measures can be misleading and
concludes

"For these reasons, we strongly encourage to evaluate each
test performance through the Matthews correlation coefficient
(MCC), instead of the accuracy and the F1 score, for any binary
classification problem." [7].

17

CHAPTER 2. THEORY

2.3.6 K-means

Another commonly used machine learning method to identify clusters is the
K-means method. The essential idea of the method is to partition the input
data into K clusters such that the squared error between each clusters em-
pirical mean and the data point belonging to that cluster is minimized.

Consider a set of n data points X = [x1, x2, . . . , xn], each with the dimen-
sional d which are being clustered into a set of K clusters, C = [c1, c2, . . . , cK].
The empirical square error for every cluster ck is defined as

J(ck) =
∑
xi∈ck

‖xi − µk‖2. (2.19)

Here µk is defined as the mean of the data points in cluster ck. The objective
of the K-means method is to organize the data points into certain clusters
so that Equation 2.20 is minimized.

J(C) =
K∑
k=1

∑
xi∈ck

‖xi − µk‖2 (2.20)

The algorithm is divided into three steps:

1. Initial partition

2. Assigning each data point to the closest cluster center

3. Computation of new cluster centers

The first step randomly selects K data points of the input data which for the
first iteration serve as its own cluster’s center. In the second step, each data
point is assigned to a cluster by measuring the distance from the data point
to each cluster’s center, choosing the one with the shortest distance. This
distance measurement can be defined in various alternatives, but the most
common one is to use the Euclidean distance described in Equation 2.6. The
third step consists of calculating new cluster centers for each cluster ck based
on these new updated clusters, described in Equation 2.21.

µk =
1

N

N∑
i=1

xi, xi ∈ ck (2.21)

Here N is the number of data points assigned to cluster ck. The algorithm
iterates over the two latter steps until the clusters are stabilized. The most

18

CHAPTER 2. THEORY

critical choice when initializing the K-means algorithm is the choice of K.
One issue with K-means is the initial partition of the cluster when randomly
selecting data points which can result in different clusters for the same K.
An unfortunate initial partition can lead to a local minimum in the final
result. A way to overcome this issue is to run the method several times with
the same K and consolidating the total square error of the final cluster. This
can be readily done as the computational cost is low [11].

2.3.7 Bayes’ Theorem

Bayes’ theorem is used when calculating conditional probabilities and is es-
sential in probability theory [14]. It is stated as

P(A|B) =
P(B|A)P(A)

P(B)
. (2.22)

When using a binary classifier it is often of interest to know the conditional
probability - if an event is classified as predicted positive (PP), what is the
probability that the event is in fact positive (P). Using Bayes’ theorem that
probability is calculated as

P(P |PP) =
P(PP |P)P(P)

P(PP |P)P(P) + P(PP |N)P(N)
. (2.23)

2.4 Imbalanced Data

In machine learning it is often a problem if the data is highly imbalanced,
meaning the number of samples in each class is very different. Consider a
data set with a positive/negative ratio of 1:99. A classifier that labels all
samples as negative would then get an accuracy of 99%, but would probably
be of little use. To deal with this problem there exist different methods to
balance the data.

2.4.1 SMOTE

One way of addressing this problem is to use a bootstrapping method and
creating a new dataset based on the existing one where the labeled data has
been oversampled. Synthetic Minority Over-sampling Technique (SMOTE)
is a method used to create a new synthetic dataset where the minority class
has been oversampled to compensate for the imbalanced original data set.
The method uses, as implied by the name, new synthetic data instead of con-
ventional bootstrapping with replacement. The new data is generated from

19

CHAPTER 2. THEORY

the minority class by selecting a data point at random, finding its k nearest
neighbors in the data set, selecting one of its neighbors, and constructing the
new data point by multiplying the difference between these two data point
with a number between 0 and 1 and adding it to the first data point. This
new data point replaces an old data point of the majority class in the data
set, and creates a larger and more general decision region for the minority
class with the aim to improve the prediction accuracy when performing the
machine learning algorithm [13]. The number of new synthetic data points
generated is chosen to desired amount.

2.4.2 Undersampling

Another way of handling an imbalanced data set with the same objective
as in the previous section is by undersampling the majority class in the set.
One easy way of doing this is to simply not include all data points from the
majority class while including all data points from the minority class, before
having the algorithm train the data.

20

Chapter 3

Data

3.1 One-hot Encoder

As previously stated, the basis of machine learning is the ability to trans-
form and organize input data into output data, and the algorithm for the
SOM relies on the premise that the input data among itself is comparable
in some manner. When dealing with numerical data where the size of the
value is of importance, comparing data is quite intuitive since the smaller the
distance between two data points is, the more similar they are. However, a
predicament appears when the data points include categorical data since the
distance between that sort of data can not be measured in the same manner.

Consider that one of the features in the input data is Country and it has
different attributes, for example Sweden and Denmark. One way of dealing
with this problem is to assign a value to each country, Sweden is assigned 1
and Denmark is assigned 0. Two data points with the same country-attribute
according to this premise will have a distance of zero, and different country-
attributes will give a distance of one. In the case of two attributes for a
specific feature, this approach is sufficient, but a problem arises if a third
attribute is introduced. If Norway is introduced and assigned the value 2,
this results in a larger distance between Denmark and Norway than between
Denmark and Sweden, which there does not have to be a basis for and makes
the approach not as sufficient. When introducing more countries, this prob-
lem grows larger.

One solution to this problem which produces unbiased differences between
categorical data is to use one-hot encoding on the input data, also known

21

CHAPTER 3. DATA

as using dummy variables. When applying one-hot encoding on categorical
data, it can be seen as giving every unique attribute for a specific feature its
own dimension. If a feature consists of N different attributes, that feature
gets assigned a vector of length N, with a one placed in the vector to indicate
which unique attribute its representing. The rest of the vector is empty. In
the example with three different country-attributes, Sweden, Denmark and
Norway, Sweden is represented by [1 0 0], Denmark by [0 1 0] and Norway
by [0 0 1]. With this method, a feature of three dimensions has been cre-
ated which is linearly separable, allows all combinations of countries and the
Euclidean distances between all countries are equal. This method can be
applied to features with an arbitrary number of unique attributes [5].

3.2 Audit Changed Trades

The data used in this thesis is a sample from a large dataset of Audit changed
trades retrieved by SHB. Out of all the trades, 63 has been labeled as bad,
henceforth referred to as the labeled data. These labeled data points are
manually constructed by SHB to mimic high risk trades and the goal for
SHB is to be able to predict if a new trade falls into this category. The
number of total data points used is 9 258. Each trade has 15 features of
which most are categorical with a certain number of unique attributes, see
Table 3.1.

22

CHAPTER 3. DATA

Table 3.1: An overview of the features and attributes of the data

Features Sample Attributes Unique Attributes
Changes Pricing Issues, Fost Cancellation 59
Counterparty Counterparty, Intern Dept 2
Portfolio Internal names 110
Trader ID number 123
Update User ID number 111
Group AMBA, FX, IR TRADING 18
Hour Hour during the day 24
Instrument Name EUR, GBP, SEK 30
Instrument Type FXforward, FXspot, FXswap 3
Region SE, DE, EE 16
Weekday Monday, Tuesday, Wednesday 6
Delta Days between creation and update Numerical
Nominal The nominal value of a trade Numerical
Price The price of the asset Numerical
Seconds Seconds between creation and update Numerical

The One-hot encoding method described in the previous section applied to
the data set used in this thesis generates a data set with 506 attributes for
each of the 9,258 data points, arranged in the manner which can be seen in
Table 3.1. This means that the first 59 attributes for every data point is
attributed to Changes, consisting of 1 one and 58 zeros. The same principle
refers to all of the categorical data, and the numerical data is normalized
to get a value between one and zero attributed to it. The normalized value
is calculated by taking the difference between the lowest and the highest
number in one particular feature, subtracting the lowest number from each
trade in that feature and dividing it by this difference.

All of the trades in the data set are not complete, but the amount of miss-
ing attributes is small in relation to the whole data set. For the features
containing missing values, a new attribute Missing Value has been added.

23

CHAPTER 3. DATA

24

Chapter 4

Method

This chapter firstly describes the methodology to implement the algorithm
of a SOM, what the initial settings were and how it was customized for
this application. Then the methods used to cluster the trained SOM and
the methods used to balance the data set are described. It ends with the
different methods used to evaluate the performance of the algorithm, which
includes visualization of the SOMs and methods to get hard numbers on the
prediction ability of the algorithm, as well as comparison with well-known
methods.

4.1 SOM Algorithm

The initial settings for the algorithm used in every simulation were:

• The map was organized in a rectangular grid.

• The selection of the best matching unit was based on the Euclidean
distance measurement.

• The neighborhood distance used the Manhattan distance measure-
ment.

• The neighborhood settings described in detail in section 2.2.4.

• L0 from Equation 2.14 was set to 0.1.

In the previous work conducted by SHB [20] a rectangular grid was used. For
that reason the same choice was made here. This choice was not obvious and
it would be interesting to explore other choices, e.g. a hexagonal grid which

25

CHAPTER 4. METHOD

is used in many applications of SOMs. However, that was outside the scope
of this work. When using a rectangular grid it makes sense that each neuron
that is not at an edge has four neighbors, i.e. there are no diagonal relations
between neurons. That was achieved by using the Manhattan distance as
the neighborhood distance. For finding the BMU the Euclidean distance was
the more logical measure and what Kohonen used in his original paper [15].

The Gaussian neighboring function in Equation 2.15 is widely used and
proven to be the best option by P. Stefanovic and O. Kurasova in [25]. In
the same paper they showed that the choice of learning rate can improve the
results. Again, investing that was outside the scope of this work, hence the
choice of learning rate was based on the previous work done by SHB which
showed promising results.

The implementation of the SOM training algorithm is described in pseudo
code in Algorithm 1.

Algorithm 1 SOM training
1: Create Map
2: Initial Neurons
3: Initial Learning rate
4: Initial Neighborhood
5: for <Number of Iterations> do
6: Update Learning rate . Equation 2.14
7: Update Neighborhood . Equation 2.11
8: Choose Data point at random
9: for all Neurons do . The Decision Step

10: Calculate distance between Neuron and Data point
11: BMU← Neuron that gives smallest distance
12: for all Neurons in Neighborhood of BMU do . The Update Step
13: Update Neuron . Equation 2.3

After the training of the neurons’ weights depending on the input data, for
every data point the BMU in the map was determined and a final placement
for each data point was assigned. The amount of labeled and unlabeled data
points placed at each neuron was stored in two separate matrices.

26

CHAPTER 4. METHOD

4.2 Clustering

The idea was that the SOM algorithm would cluster the data and hopefully
in such a way that the labeled data would be contained in the same cluster,
referred to as the labeled cluster. Previous work by SHB supported this
hypothesis [20]. This put the question of how the labeled cluster should be
identified in the trained SOM. Below the methods used to do that are de-
scribed.

First a center point of the labeled cluster had to be determined. This was
done by calculating the weighted placement of the labeled data in accordance
with Equation 4.1,

x̄ =
1

N

N∑
i=1

xiπi, ȳ =
1

N

N∑
i=1

yiπi. (4.1)

N stands for the number of neurons that have at least one labeled data point
assigned to it, πi stands for the number of data points assigned to the ith

neuron in the set, and xi and yi are the coordinates for ith neuron.

When the center point had been determined, the labeled cluster was cho-
sen as all neurons within a certain distance of the center point that had at
least one labeled data point assigned to it. Three different distance measure-
ments were used for this, the Manhattan distance, the Euclidean distance
and the Chebyshev distance, all described in Section 2.2.3. To determine
the optimal distance for each cluster, the ROC-curve was used together with
Youden’s J Statistic, described in Section 2.3.4.

4.3 SMOTE Algorithm

The input data consisted of 63 labeled data points out of 9 258, which could
be too little to draw robust and trustworthy conclusions from. Therefore the
effect of applying the SMOTE-technique on the input data was explored.
Before applying the training algorithm on the input data, the data set was
run through the implemented SMOTE-algorithm described in Algorithm 2.

After the SMOTE-algorithm had been applied to the input data, the data
set consisted of numerous more synthetic labeled data point which was used
in the training of the SOM. The number of synthetic generated data points

27

CHAPTER 4. METHOD

for the simulations was provided with each result when the algorithm was
applied.

Algorithm 2 SMOTE
Input: Number of minority class samples T; Amount of oversampling N%;
Number of nearest neighbors k; Total data set Data.
Output: A data set with T*N/100 synthetic data points.
1: n = T*N/100
2: Sample[][]: Matrix of n random selected original minority class samples
3: narray [][]: Matrix to store k nearest neighbors
4: for i← 1:n do
5: Dist []: Distance between row i in Sample and every row in Data.
6: narray [i]: Store the indices of the k smallest values of Dist
7: Synthetic[][]: Matrix to store n synthetic samples
8: for i← 1:n do
9: Choose a random number between 1 and k, name it nn.

10: for attr←1:Number of attributes do
11: Compute: dif = Data[nn]][attr]-Sample[i][attr]
12: Compute: gap = random generated number between 0 and 1
13: Synthetic[i][attr]=Sample[i][attr] + gap+ dif

14: tempData: Copy of Data
15: while i less than n do
16: Choose a random number r between 1 and number of rows in Data
17: if Index r in Data is not of minority class then
18: tempData[r] = Synthetic[i]
19: i = i + 1
20: return tempData

4.4 Visualization

An attractive feature of SOMs is the ability to visualize high-dimensional
data in a low-dimensional space, which enables interpretation by the human
eye. There are two different ways of visualizing SOMs, either displaying the
output in input space or displaying the input in output space. In this ap-
plication the input space had 506 dimensions, which of course was too high
for any useful visualization. Instead the SOMs were visualized in the output
space consisting of a two-dimensional quadratic map of neurons.

28

CHAPTER 4. METHOD

To investigate the performance of the SOM, several plots were made. Figure
4.1 shows a plot of the final placement of all trades after the training. For
each neuron in the map a circle was plotted if that neuron was the BMU for
a data point, and the more data points for which that neuron was the BMU,
the bigger the circle was. This was done separately for labeled and unlabeled
trades and to distinguish them they were mapped in different colors. They
were also scaled differently because of the asymmetrical data. By plotting
the trades in this way it was possible to get an indication of how well the
SOM clustered the labeled data.

Figure 4.1: Visualization of a 10x10 SOM

In Figure 4.1 trades that had been placed near each other were likely to be
in the same cluster, but it was not necessarily the case. To determine if that
was the case an U-matrix was used, which shows clusters more clearly.

4.5 Convergence

The method used to see if the SOM converges was to visually inspect how
the map changed. With constant intervals during the training phase the map
was plotted as in Figure 4.1. If big transformations of the map was observed
towards the end of the training phase, that would indicate that the map was
not stable.

29

CHAPTER 4. METHOD

4.6 Model Evaluation

The main aim of the algorithm was to predict new trades, i.e. giving a label
to trades that have not been used in the training of the SOM. To evaluate
the prediction ability, the Cross-Validation approach described in Chapter
2 was used. The input data was initially divided into ten roughly equally
large samples. Each of these subsets were left out in the training of the
SOM algorithm at one occasion to be used as test data while the remain-
ing nine subsets were used as training data. In the simulations where the
SMOTE-algorithm was applied, only the training data was altered by the
oversampling on the account of not having any offspring of the test data in
the training data.

Two measurements generated by the Cross-Validation in order to capture
the performance of the algorithm were the probability that a trade inside
the labeled cluster actually was a labeled trade, P(P |PP), and the proba-
bility that a trade outside the identified cluster actually was an unlabeled
trade, P(N |PN), both according to Bayes’ Theorem described in Section
2.3.7. The components to calculate these probabilities were the following:

• P(PP |P) is the True Positive data points divided by the number of
labeled data points in the test set.

• P(P) is the number of labeled data points divided by the total number
of data points in the test set.

• P(PP |N) is the number of False Positive data points divided by the
number of unlabeled data points in the test set.

• P(N) is the number of unlabeled data points divided by the total num-
ber of data points in the test set.

• P(PN |N) is the number of True Negative data points divided by the
number of unlabeled data points in the test set.

• P(PN |P) is the number of False Negative data points divided by the
number of labeled data points in the test set.

The MCC described in Section 2.3.5 was the measurement used to compare
different models, because of the reasons mentioned in that section.

30

CHAPTER 4. METHOD

4.7 Simulations

Several simulations were run in order to test different sets of parameters and
to see which performed better. The parameters that were changed were the
number of iterations, the size of the map, the cluster method, and whether
or not SMOTE was used. First a simulation to get the visual results was
done for each set of parameters. Then the prediction ability of each set was
tested with Cross-Validation. Finally, some parameters, e.g. the map size,
were kept unchanged while some parameters as well as the robustness and
variance of the models were further investigated.

4.8 K-means

To test the effectiveness of the SOM algorithm and if there are any incen-
tives for using the method, the outcome of the algorithm was compared to
another clustering method which is commonly used in machine learning, the
K-means method which was discussed earlier in Chapter 2.

The only parameter which was of importance and could be initialized in
this method was the number of K:s, i.e. the number of clusters to identify.
The measurements derived from this method to determine its performance
in relation to the SOM was from the Cross-Validation approach and by mea-
suring the MCC-value and using Bayes’ Theorem the same way as in the
previous section. To identify a cluster in the best way, the ROC-curve was
applied once more. With the K-means method, the thresholds were repre-
sented by the number of clusters with the highest amount of labeled data
points which were included in a larger cluster. This means that the identified
cluster in which data points was considered as True Positives and False Pos-
itives might consist of several sub-clusters. The same sort of input data set
with categorical data altered by One-hot encoding, and both data applied
with and without the SMOTE-algorithm was tested. When the method had
been tested with several K:s, a K with a high-performing results was selected
to further test the method with that parameter and some further alterations,
just like with the SOM.

31

CHAPTER 4. METHOD

32

Chapter 5

Results

Before the hard numbers from the cross-validation are presented, the visual
results of the SOM algorithm is provided.

5.1 Visual Results of the SOM Algorithm

The SOMs presented are of sizes 10x10, 20x20, 30x30 and 40x40, and each
size is done with and without SMOTE. The SMOTE is done with an over-
sampling of 1000%. Thus there are eight different SOMs. All SOMs are
trained with 1 000 000 iterations. The number of iterations have shown to
have little impact on the visual results. For two different simulations with
the same parameters, the resulting figures can look very different. However,
the performance of the algorithm is stable when it comes to how it clusters
the data.

33

CHAPTER 5. RESULTS

10x10 SOM

(a) All trades (b) Unlabeled (c) Labeled

Figure 5.1: 10x10 SOM: Final map after training. The map is visualized
as described in 4.4. The labeled data has been somewhat ordered, but is
spread out and does not seem to form a cluster.

Figure 5.2: 10x10 SOM: U-matrix together with the data. The U-matrix
is the black-and-white background calculated as described in 2.3.1. On top
of the U-matrix is the same plot as in Figure 5.1a. A cluster of light colors
separated by dark colors can be seen in the lower left corner. There is no
cluster of labeled trades.

34

CHAPTER 5. RESULTS

Figure 5.3: 10x10 SOM: Plot of how the SOM changes during the training
phase. The upper left plot shows the SOM after the initialization, before the
training phase has begun. Going from left to right, up to down, the plots
show the SOM with constant intervals. The plot at the top, second from
the left shows the SOM after 1 000 000/15=66 667 iterations, the plot to the
right of that one shows the SOM after 133 333 iterations, and so on. The
lower right plot shows the final SOM after the training is completed, the
same as in 5.1a. As the training progresses the SOM changes less.

35

CHAPTER 5. RESULTS

(a) Euclidean (b) Manhattan

(c) Chebyshev (d) All

Figure 5.4: 10x10 SOM: ROC-curves of the three different cluster methods.
The asterisks show the points with the highest J-statistic.

(a) Euclidean (b) Manhattan (c) Chebyshev

Figure 5.5: 10x10 SOM: The optimal clusters according to the J-statistic.
The dark area shows which neurons each cluster includes. In this case the
Euclidean cluster and the Chebyshev cluster are the same.

36

CHAPTER 5. RESULTS

20x20 SOM

(a) All trades (b) Unlabeled (c) Labeled

Figure 5.6: 20x20 SOM: Final map after training. The labeled data has
been clustered in three neurons.

Figure 5.7: 20x20 SOM: U-matrix together with the data. The dark strings
around the three neurons with labeled data confirms the cluster.

37

CHAPTER 5. RESULTS

Figure 5.8: 20x20 SOM: Plot of how the SOM changes during the training
phase.

38

CHAPTER 5. RESULTS

(a) Euclidean (b) Manhattan

(c) Chebyshev (d) All

Figure 5.9: 20x20 SOM: ROC-curves of the three different cluster methods.
The asterisks show the points with the highest J-statistic. All three ROC-
curves are almost perfect.

(a) Euclidean (b) Manhattan (c) Chebyshev

Figure 5.10: 20x20 SOM: The optimal clusters according to the J-statistic.
The Chebyshev cluster differs from the other two.

39

CHAPTER 5. RESULTS

30x30 SOM

(a) All trades (b) Unlabeled (c) Labeled

Figure 5.11: 30x30 SOM: Final map after training. The map is visualized
as described in 4.4. The labeled data has been clustered to the left.

Figure 5.12: 30x30 SOM: U-matrix together with the data.

40

CHAPTER 5. RESULTS

Figure 5.13: 30x30 SOM: Plot of how the SOM changes during the training
phase.

41

CHAPTER 5. RESULTS

(a) Euclidean (b) Manhattan

(c) Chebyshev (d) All

Figure 5.14: 30x30 SOM: ROC-curves of the three different cluster meth-
ods. The asterisks show the points with the highest J-statistic.

(a) Euclidean (b) Manhattan (c) Chebyshev

Figure 5.15: 30x30 SOM: The optimal clusters according to the J-statistic.
All three clusters are the same.

42

CHAPTER 5. RESULTS

40x40 SOM

(a) All trades (b) Unlabeled (c) Labeled

Figure 5.16: 40x40 SOM: Final map after training. Outside the cluster at
the top, only one neuron contain labeled trades.

Figure 5.17: 40x40 SOM: U-matrix together with the data. The cluster of
labeled trades at the top is similar to its surrounding and not clearly defined.

43

CHAPTER 5. RESULTS

Figure 5.18: 40x40 SOM: Plot of how the SOM changes during the training
phase. Interesting to note is that the labeled data first forms a cluster in
lower right of the map before the cluster a the top is formed. That could
indicate a convergence issue.

44

CHAPTER 5. RESULTS

(a) Euclidean (b) Manhattan

(c) Chebyshev (d) All

Figure 5.19: 40x40 SOM: ROC-curves of the three different cluster meth-
ods. The asterisks show the points with the highest J-statistic.

(a) Euclidean (b) Manhattan (c) Chebyshev

Figure 5.20: 40x40 SOM: The optimal clusters according to the J-statistic.
All three clusters are the same.

45

CHAPTER 5. RESULTS

10x10 SOM with SMOTE

(a) All trades (b) Unlabeled (c) Labeled

Figure 5.21: 10x10 SOM with SMOTE: Final map after training. Com-
pared to the 10x10 SOM without SMOTE in Figure 5.1, the use of SMOTE
seems to lead to better exclusion of unlabeled trades in the area where the
labeled trades have been clustered.

Figure 5.22: 10x10 SOM with SMOTE: U-matrix together with the data.
The labeled trades does not form a clear cluster.

46

CHAPTER 5. RESULTS

Figure 5.23: 10x10 SOM with SMOTE: Plot of how the SOM changes
during the training phase.

47

CHAPTER 5. RESULTS

(a) Euclidean (b) Manhattan

(c) Chebyshev (d) All

Figure 5.24: 10x10 SOM with SMOTE: ROC-curves of the three different
cluster methods. The asterisks show the points with the highest J-statistic.

(a) Euclidean (b) Manhattan (c) Chebyshev

Figure 5.25: 10x10 SOM with SMOTE: The optimal clusters according
to the J-statistic. The Manhattan cluster differs from the other two.

48

CHAPTER 5. RESULTS

20x20 SOM with SMOTE

(a) All trades (b) Unlabeled (c) Labeled

Figure 5.26: 20x20 SOM with SMOTE: Final map after training. The
exclusion of unlabeled trades in the area with labeled trades is clear.

Figure 5.27: 20x20 SOM with SMOTE: U-matrix together with the data.
This U-matrix is very promising, the labeled trades at the top are all in a clear
cluster. It also reveals another interesting thing. In Figure 5.26c the neuron
at position (5, 8) with labeled trades seems to be an outlier. The U-matrix
shows that the neuron in fact should be considered to be a cluster, since it
is different from its surrounding. Also, that neuron only contains labeled
trades. Hence, there are two clusters of labeled trades. Unfortunately, the
method used in this report can not catch that.

49

CHAPTER 5. RESULTS

Figure 5.28: 20x20 SOM with SMOTE: Plot of how the SOM changes
during the training phase.

50

CHAPTER 5. RESULTS

(a) Euclidean (b) Manhattan

(c) Chebyshev (d) All

Figure 5.29: 20x20 SOM with SMOTE: ROC-curves of the three different
cluster methods. The asterisks show the points with the highest J-statistic.

51

CHAPTER 5. RESULTS

(a) Euclidean (b) Manhattan (c) Chebyshev

Figure 5.30: 20x20 SOM with SMOTE: The optimal clusters according
to the J-statistic. The U-matrix in Figure 5.27 shows that the neurons in
the top right corner are part of the cluster, but only the Chebyshev cluster
includes all of them.

30x30 SOM with SMOTE

(a) All trades (b) Unlabeled (c) Labeled

Figure 5.31: 30x30 SOM with SMOTE: Final map after training. The
exclusion of unlabeled trades in the area with labeled trades is clear.

52

CHAPTER 5. RESULTS

Figure 5.32: 30x30 SOM with SMOTE: U-matrix together with the data.
The U-matrix confirms the cluster at the top. The pattern revealed in Figure
5.27, that the 20x20 SOM with SMOTE contains a second cluster of labeled
trades, can be seen here as well. The two neurons in the lower left with
labeled trades clearly form a cluster.

53

CHAPTER 5. RESULTS

Figure 5.33: 30x30 SOM with SMOTE: Plot of how the SOM changes
during the training phase.

54

CHAPTER 5. RESULTS

(a) Euclidean (b) Manhattan

(c) Chebyshev (d) All

Figure 5.34: 30x30 SOM with SMOTE: ROC-curves of the three different
cluster methods. The asterisks show the points with the highest J-statistic.

55

CHAPTER 5. RESULTS

(a) Euclidean (b) Manhattan (c) Chebyshev

Figure 5.35: 30x30 SOM with SMOTE: The optimal clusters according
to the J-statistic. The U-matrix in Figure 5.32 clearly shows that the right
tail of the area of labeled trades is part of the cluster. Only the Manhattan
cluster includes the whole tail.

40x40 SOM with SMOTE

(a) All trades (b) Unlabeled (c) Labeled

Figure 5.36: 40x40 SOM with SMOTE: Final map after training. It is
apparent that there is a second cluster towards the bottom.

56

CHAPTER 5. RESULTS

Figure 5.37: 40x40 SOM with SMOTE: U-matrix together with the data.
The U-matrix confirms that the second cluster towards the bottom is clearly
defined. There is even an argument for a third cluster in the upper left.

57

CHAPTER 5. RESULTS

Figure 5.38: 40x40 SOM with SMOTE: Plot of how the SOM changes
during the training phase.

58

CHAPTER 5. RESULTS

(a) Euclidean (b) Manhattan

(c) Chebyshev (d) All

Figure 5.39: 40x40 SOM with SMOTE: ROC-curves of the three different
cluster methods. The asterisks show the points with the highest J-statistic.

59

CHAPTER 5. RESULTS

(a) Euclidean (b) Manhattan (c) Chebyshev

Figure 5.40: 40x40 SOM with SMOTE: The optimal clusters according
to the J-statistic. The Euclidean method catches all neuron that are part
of the cluster according to the U-matrix in Figure 5.37. The Manhattan
cluster misses the top right neuron, and the Chebyshev cluster misses many
neurons.

5.2 Cross-Validation/Prediction

5.2.1 SOM

The Cross-Validation approach was applied to the map with the map size
of 10x10, 20x20, 30x30 and 40x40, and with 1 000 000, 2 000 000, 3 000 000,
4 000 000 and 5 000 000 number of iterations. The results of the MCC-value
from these simulations with all combinations of these parameters are shown
in Figure 5.41 and Figure 5.42. The simulations were also performed with
and without the SMOTE-algorithm with an oversampling of 1000 %.

60

CHAPTER 5. RESULTS

Figure 5.41: Figure showing the MCC-results (vertical axis) for different map
sizes, iterations and clustering identifiers without the SMOTE-algorithm.

Figure 5.42: Figure showing the MCC-results (vertical axis) for different
map sizes, iterations and clustering identifiers with SMOTE of 1 000%.

61

CHAPTER 5. RESULTS

Some observations drawn from Figure 5.41 and Figure 5.42 are the following:

• Using a map size of 10x10 results in a significant lower MCC-value.

• The number of iterations for the simulation does not seem to be sig-
nificantly correlated with the MCC-value.

• The MCC-value seem to stagnate after using a map size of 20x20.

• The SMOTE-algorithm seems to have a negative effect on the MCC-
value, except for a map size of 10x10.

• With the map size of 20x20, the Chebyshev distance measurement seem
to not perform as well as the Euclidean and Manhattan distances.

• It does not seem to be a significant difference by using the Euclidean
or Manhattan distance.

The time it took to perform a simulation in order to do a Cross-Validation
on the data set varied a lot. For example, when using a map size of 40x40,
the simulation lasted for several days, but when using a map size of 10x10
or 20x20, the simulations lasted a few hours. Due to this, and the fact the
MCC-value when using a map size of 40x40 do not significantly outperform
that of a map size of 20x20, the performance of the SOM was further inves-
tigated using a map size of 20x20, and since a million iterations seems to
be sufficient to reach a high-performing result, that parameter was also used.

The data showed in Table 5.1 are the results from performing five simu-
lations for every category on the left in the table to get a thorough empirical
estimation of the performance measurement with an average and a standard
error.

62

CHAPTER 5. RESULTS

Table 5.1: Average results for Cross-Validated SOM with a map size of 20x20
and 1 000 000 iterations with the Manhattan distance as cluster identifier
performed 5 times. Original Data stands for an unaltered data set with 9 258
data points. The numbers after SMOTE indicates with how many percent
that the labeled data is oversampled. The numbers after Undersampled
indicates how many data points are used in the undersampled data set.
Standard error in parenthesis.

TP TN FP FN MCC P(P |PP) P(N |PN)
Original Data 5.75 (0.13) 916.20 (0.62) 3.30 (0.62) 0.55 (0.13) 0.76 (0.03) 0.65 (0.05) 0.99 (0)

SMOTE:
1000% 5.85 (0.37) 912.30 (0.29) 7.00 (0.29) 0.45 (0.37) 0.65 (0.03) 0.46 (0.02) 0.99 (0)
500% 5.92 (0.08) 912.50 (1.25) 6.96 (1.25) 0.38 (0.08) 0.67 (0.03) 0.49 (0.04) 0.99 (0)
200% 6.05 (0.21) 913.90 (0.79) 5.65 (0.79) 0.25 (0.21) 0.70 (0.01) 0.52 (0.17) 0.99 (0)

Undersampled:
5000 Data Points 5.82 (0.22) 490.20 (0.19) 3.50 (0.19) 0.48 (0.22) 0.76 (0.02) 0.62 (0.01) 0.99 (0)
2000 Data Points 5.70 (0.39) 191.66 (0.40) 2.04 (0.40) 0.60 (0.39) 0.81 (0.04) 0.74 (0.04) 0.99 (0)

The results from Table 5.1 indicates that when the SOM algorithm is used
without applying the SMOTE-algorithm and using the original data set with
9 258 data points and with the undersampled data set with 2 000 data points
produce the best outcome based on the MCC and probability measurements.
With the mentioned undersampling approach and parameters used to iden-
tify labeled trades, the probability that a trade inside the labeled cluster
is indeed a high risk trade is around 74%. Another interesting observation
from the results is that in all cases, one can be almost 100% certain that a
trade outside the labeled cluster is not a risky trade.

5.2.2 K-means

The results from performing the K-means clustering method is shown in
Figure 5.43.

63

CHAPTER 5. RESULTS

Figure 5.43: Figure showing the MCC-result (vertical axis) with the K-means
clustering method

From this figure, it is shown that for the K-means method the MCC-values
becomes significantly larger when applying the SMOTE-algorithm on the
data set. For the SOM, the MCC reaches a value of around 0.8 without the
SMOTE-algorithm, and the result with the SMOTE-algorithm applied for
the K-means method reaches up to around 0.4. With this result, the fact
that the K-means method produced this result in a few minutes and the fact
that the a SOM-algorithm with 1 000 000 iterations and a map size of 20x20
lasts for a few hours, needs to be taken into consideration when comparing
these two methods.

64

CHAPTER 5. RESULTS

Table 5.2: Average results for Cross-Validated K-means with 30 clusters
performed 5 times. Original Data stands for an unaltered data set with 9 258
data points. The numbers after SMOTE indicates with how many percent
that the labeled data is oversampled. The numbers after Undersampled
indicates how many data points are used in the undersampled data set.
Standard deviation in parenthesis.

TP TN FP FN MCC P(P |PP) P(N |PN)
Original Data 5.33 (0.22) 728.10 (6.09) 191.40 (6.09) 0.98 (0.22) 0.13 (0.01) 0.03 (0.001) 0.99 (0)

SMOTE:
1000% 6.03 (0.13) 894.20 (7.01) 25.30 (7.01) 0.28 (0.13) 0.43 (0.05) 0.20 (0.04) 0.99 (0)
500% 5.88 (0.10) 892.25 (3.81) 27.25 (3.81) 0.43 (0.10) 0.40 (0.02) 0.18 (0.02) 0.99 (0)
200% 5.78 (0.15) 892.93 (18.01) 26.58 (18.01) 0.53 (0.15) 0.43 (0.10) 0.22 (0.09) 0.99 (0)

Undersampled:
5000 Data Points 5.70 (0.27) 431.60 (11.27) 62.08 (11.27) 0.60 (0.27) 0.26 (0.03) 0.09 (0.02) 0.99 (0)
2000 Data Points 6.18 (0.05) 184.90 (1.20) 8.80 (1.20) 0.13 (0.05) 0.62 (0.03) 0.41 (0.03) 0.99 (0)

The results from Table 5.2 indicates that the algorithm has a high perfor-
mance when it comes to identifying the labeled data points with a high
number for True Positive and a low value for False Negatives. The weakness
with the K-means however is its capability when it comes to excluding un-
labeled data points from the cluster with a low number for True Negatives
and high number for False Positives, which reduce the MCC and probability
measurements. Nonetheless, when using a version of the K-means method,
one is able to say that with approximately a 41% certainty that a trade
within the identified cluster is in fact a risky trade that would need further
investigation according to these results. Just like the result for when the
SOM algorithm is used, the probability of a trade not being in the need of
further investigation when it is placed outside of the identified cluster, is
more or less with a 100% certainty.

65

CHAPTER 5. RESULTS

66

Chapter 6

Discussion

The results from running the numerous SOM simulations both answer and
raise questions about the method as a functional way of forecasting and
capturing operational risk related to audit change.

6.1 Parameters

Some parameters of the SOM algorithm, such as the initial learning rate and
neighborhood size, were not changed through the simulations and were set
to values relying on previous work and sources on SOM. The parameters
that has been investigated are the number of iterations, the size of the map,
different clustering methods, and the use of SMOTE.

6.1.1 Number of Iterations

It seems that the number of iterations that is used to train the map does not
have a significant impact on the results, presuming it is at least 1 000 000.

6.1.2 Map Size

The most obvious observation from the visual results is that a 10x10 SOM
behaves very differently from the larger SOMs, regardless of whether SMOTE
is used or not. The larger SOMs all display clear clusters of the labeled
trades, while the 10x10 SOMs do not. This indicates that the size 10x10
is too small, which is confirmed by the cross-validation that shows that
the MCC-values of the 10x10 SOMs are outperformed by the larger sizes.
By looking at the MCC-values from the different simulations with different
sizes, the conclusion can be drawn that it should be a clear threshold for

67

CHAPTER 6. DISCUSSION

the performance of the map somewhere between the map sizes of 10x10 and
20x20. An interesting observation from the MCC-values is that above the
size 20x20, the values stagnate and do not improve significantly for larger
sizes.

6.1.3 SMOTE

When using SMOTE the most obvious effect is that the labeled clusters are
larger, which in itself is neither positive nor negative. From the visual results
it might seem like the use of SMOTE increases the exclusion of unlabeled
trades in the labeled clusters, but that is actually disproved by Table 5.1
that shows that the number of False Positives increases when using SMOTE.

Another effect is the formation of a second and even third cluster of labeled
trades in the larger SOMs using SMOTE. Since the method used in this
report assumes the labeled data is contained in a single cluster, this effect is
potentially a big problem, depending on how big the secondary clusters are.

6.2 Cluster Identification

The visual results show some interesting features of the three different meth-
ods used to identify the labeled cluster. When not using SMOTE they pro-
duce the same or very similar results for the larger SOMs, while they always
differ when using SMOTE. That is not a surprise since the use of SMOTE
makes the clusters larger. The visual results that are presented do not give
any indication of which method is best, but the numbers in Figure 5.41
and Figure 5.42 that are based on more simulations show a better picture.
Overall, the Euclidean and Manhattan methods seem to outperform the
Chebyshev method, based on the MCC-value. The reason for this might be
the fact that the number of neurons in the Chebyshev cluster increases more
by each increase in the cluster radius, compared to the other two methods,
hence making it less calibrated. An interesting observation is that the strings
of dark colors separating different clusters in the U-matrices are often diago-
nal or close to diagonal, and rarely horizontal or vertical, which is probably
caused by the use of the Manhattan distance to compute the neighborhoods.
That might be another reason the Chebyshev method is inferior to the others.

For the SOMs using SMOTE, the visual results reveal that none of the meth-
ods works perfectly. It seems they often fail to find all neurons that should
be in the labeled cluster according to the U-matrix. For size 20x20 only

68

CHAPTER 6. DISCUSSION

the Chebyshev cluster includes all neurons, for 30x30 only the Manhattan
cluster, and for 40x40 only the Euclidean cluster. The reason this happens
is that the use of SMOTE makes the labeled cluster larger and less centered.
All three methods are based on choosing a center-point and then expanding
the cluster from that point, either in the form of a diamond (Manhattan),
a circle (Euclidean), or a square (Chebyshev). Thus, they all assume that
the labeled trades are centered around one point. When they are not and
the labeled cluster instead has a tail, the three methods have problems iden-
tifying the whole cluster. This is what happens in Figures 5.30, 5.35 and 5.40.

The cluster identification and the selection of the optimal radius or threshold
for the cluster differ in one manner in this thesis. In order to get a satisfac-
tory ROC-curve to base the choice of threshold for the cluster on, all neurons
within the threshold are accounted for, even in the cases where neurons only
has unlabeled data assigned to them. This is because when calculating the
ROC-curve, the total amount of data points is used, so the calculated value
may be misleading if those neurons were not accounted for. However, when
identifying the labeled cluster used to predict new data points, only the
neurons containing at least one labeled data point inside the threshold is
included. By observing the figures showing the selected neurons for the clus-
ter, the applied method seem to be able to identify the clear majority of the
neurons in the cluster.

The choice of method to determine which neuron should be considered as
the center of the cluster could have different implementations. One imple-
mentation example is to select the neuron which has the most labeled trades
assigned to it as the center of the cluster, since it is observed that the neuron
with the most labeled trades often is a part of the desired cluster and there-
fore base the threshold around that neuron. A problem arises when that
neuron is located in the outskirts of the visual cluster, see for example the
largest neuron in Figure 5.26. In those cases the threshold would early on
include a lot of neurons without any labeled trades and may not capture as
many neurons that visually should be included in the cluster. By using the
weighted average located neuron and using that as the center of the cluster,
the threshold has the ability to capture the entire cluster in a better way
when the neuron with the most labeled trades is not located in the center of
the cluster.

One issue with the approach of all three cluster methods is that they are
all based on the assumption that the SOM algorithm clusters the labeled

69

CHAPTER 6. DISCUSSION

data in a single cluster. As mentioned in Section 6.1.3 that is not always the
case when using SMOTE.

The clustering methods used in the report are implemented the way they are
in order to automate the process, but to handle the issues discussed above
a more manual method would probably improve the result. One method
would be to visually inspect the result of the training and then choosing the
labeled cluster/clusters by hand.

6.3 Data Set

The provided data set used to capture underlying indicators for operational
risk in the form of audit changes along with the selection of attributes leaves
a number of issues.

One issue is that of the sample of trades that has been labeled as high
risk consists of 63 trades constructed by SHB and the number of unlabeled
trades are 9 195. To get a general prediction of the operational risk, there
might be a need for a more balanced data set. The efforts to deal with this
issue are to undersample the unlabeled trades and to oversample the labeled
trades with the SMOTE-algorithm.

Another issue is the selection of features that are included in the data set.
The features are chosen based on which intuitive factors can have an impact
on the human error and possibly lead to a risky audit change, and a more
thorough investigation about the impact of each attribute might help the
performance of the method.

The data set is also implemented with the help of One-hot encoding, or
dummy variable, which can lead to some problems for the efficiency of the
method in the future. If a trade introduces a new category to the data set,
for example a trader that was not included in the original data set, then a
new data set must be constructed to match the dimension of the new data
point and a new map must be trained. This fact may not be an issue but
further work probably has to be done in order for the method to be auto-
mated.

The results for this thesis are based on the initial categorization of the trades
in the data set. One category is the 63 trades constructed by SHB that are

70

CHAPTER 6. DISCUSSION

labeled as bad, and all of the other trades in the data set fall into the other
unlabeled category. The first category is mimicking high risk and the other
category has in this thesis been assumed to be of low risk. That may cause
a problem with the performance measurements since it is reasonable to be-
lieve that the level of risk varies among the unlabeled trades, and a data
point identified as a False Positive may in fact be of relatively high risk, and
therefore not completely incorrectly labeled.

6.4 Performance and Efficiency

The results generated by the use of SOM show some promise for the method
to be used as a way to predict when an audit change is exposed to critical
risks. According to the findings, the probability of capturing a risky trade
when it is inside the identified cluster is roughly 74% with the use of a map
with a map size of 20x20 and has been train through 1 000 000 iterations
with an undersampled data set. Furthermore, when a trade is outside the
cluster, that trade is with almost a 100% certainty not a risky trade, which
is also a promising result. From looking at the results in Table 5.1, is seems
that the best method is to use a data set which has not been altered by
the SMOTE-algorithm. The weakness of the map with SMOTE is that the
cluster grows too large for it to not exclude enough unlabeled trades, which
also is observed in the figures depicting maps trained with a data set altered
with SMOTE in Section 5.1. To capture all of the labeled trades however,
the use of SMOTE shows some real strengths according the True Positive
values in Table 5.1.

In this thesis, a decision about which criteria is the most important between
the accuracy of the method and its efficiency, i.e. how fast the method is,
and a weighing between the two. As previously mentioned, the MCC-value
does not seem to significantly increase after training a map with a map size
of 20x20 and 1 000 000 iterations, and thus not compromising the accuracy
for efficiency in a severe way when going from a map size of 40x40 to 20x20.
However, the choice has to be made for which one of the two criteria is of
highest priority when deciding between using a SOM or the K-means method
for the task of forecasting operational risk. Compared to the SOM method,
the time spent to train the data set is minimal with the K-means method,
but loses in accuracy even though it still generates some relatively good val-
ues in that aspect as well. The performance of the K-means method seems
to improve with the SMOTE-algorithm, though the best results is gained

71

CHAPTER 6. DISCUSSION

through undersampling according to Table 5.2. If the time aspect was not
an issue, the use of a map with the map size of 40x40 and a more thorough
investigation with that parameter would of course be of interest, and would
probably produce slightly improved results according to Figure 5.41 and Fig-
ure 5.42.

From Table 5.1, the results also indicates that the best method to obtain
a high MCC-value is to undersample the original data set where the use
of 2 000 data points generates a map with an MCC-value of 0.81 and the
probability of correctly identifying a risky of 0.74%. Another observation
is that the results does not seems to improve when going from the original
data set with 9 258 data points to one with 5 000 data points. The problem
to use a smaller data set is the loss of information from the removed data
points which could lower the accuracy of the categorization in reality. This
also means that there does not seem to be an incentive to use a data set
with 5 000 data points instead of the original set, but a weighing between
the better results and the loss of information that comes with the data set
of 2 000 data points and the original has to be done when choosing which
one to use for this purpose.

The performance measurement of the Bayesian probability is a way of trying
to quantify the performance of the map in an understandable way, where
as the MCC-value is more used to rank the different simulations between
themselves. As previously mentioned, there is a problem with that the data
set only contains 63 labeled data points, and to get a more accurate and true
value of the Bayesian probability measurement when using the implemented
SOM, an extended data set with more labeled trades could help.

72

Chapter 7

Conclusion

The overall outcome of this thesis shows promising results for the possibil-
ity of using SOMs to identify and forecast operational risk in the form of
audit changes. With the use of a map size of 20x20 and training through
1 000 000 iterations, the method was able to correctly identify labeled data
points with a certainty of 74%, and unlabeled data points with a certainty
of almost 100%. Furthermore, it is observed in Figures 5.41 and 5.42 that
the use of a map size of 10x10 is clearly inferior to larger maps, and that
after the size of 20x20, the results stagnate. The use of different numbers of
iterations do not seem to have a large impact on the results, as long as the
iterations are at least 1 000 000.

When considering the visual figures in Chapter 5, the performance of the
three cluster-identifying methods varies, but overall the Manhattan and Eu-
clidean methods seems to work more efficiently than the Chebyshev method,
which is also supported by some of the results in Table 5.41 and 5.42. The
use of the ROC-curve and J-statistic also seem to be a good way, though
not a perfect way, to determine the optimal thresholds for the clusters when
observing the ROC-curve figures in Chapter 5 and the figures showing the
selected neurons for the clusters.

With the exception of when using a map size of 10x10, the results was
better without using SMOTE than with it. The main reason for this seems
to be due to the number of False Positive data points which can observed
in Table 5.1. However, an undersampling of the original data set produced
the best results, but the cost of loosing information needs to be taken into
consideration for that result.

73

CHAPTER 7. CONCLUSION

The SOM method also proved to be superior to the K-means method on the
same data set. Both methods seems to capture the underlying similarities
of the trades in the data set but the way that the clusters are organized and
identified with the SOM outperform K-means in the results. So, if accuracy
is considered to out-weigh the speed of the K-means, SOM is to prefer.

7.1 Further Work

Since the methods used to identify the labeled clusters in the trained SOMs
proved to have some flaws, further work on the subject would probably ben-
efit from investigating other methods. Probably a clustering method based
on the U-matrix would yield better results.

To optimize the method, the design parameters, e.g. the learning rate, the
initial neighborhood size and the methods by which these are updated, which
were kept unchanged throughout the project would have to be investigated.
In particular, the shape of the SOM. This thesis focused on a SOM where a
rectangular grid was used to map the data points. Using a hexagonal grid
is also common in many applications of SOMs, and would be interesting to
explore.

A big part of Machine Learning is data selection, which includes handling of
missing data, feature selection, normalization etc. It does not matter how
good a Machine Learning algorithm is if the data used has not been prepro-
cessed in a satisfactory way. This was not a big part of this thesis, but would
be needed in further work.

74

Bibliography

[1] S. Pongor A. Kocsor and P. Sonego. Roc analysis: applications to the
classification of biological sequences and 3d structures. Briefings in
Bioinformatics, 9:198–209, 2008.

[2] S. Fang A. Konate, H. Pan and S. Asim. Capability of self-organizing
map neural network in geophysical log data classification. Journal of
Applied Geophysics, 118:37–46, 2015.

[3] Svenska Handelsbanken AB. Annual report, 2017.

[4] Svenska Handelsbanken AB. Risk and capital management - information
according to pillar 3, 2017.

[5] J. Bainbridge and S. Furber. Chain: a delat-insensitive chip area inter-
connect. IEEE Micro, 22:16–23, 2002.

[6] Z. Bodur. Operational risk and operational risk related banking scan-
dals. Maliye Finans Yazilari, 97:64–84, 2012.

[7] D. Chicco. Ten quick tips for machine learning in computational biology.
BioData mining, 10(1):35, 2017.

[8] R. Coghetto. Chebyshev distance. Formalized Mathematics, 24(2):121–
141, 2016.

[9] Basel II Committee. Operational risk transfer across financial sectors,
2003.

[10] A. Hussain. 1997 operational risk management survey. Managing Op-
erational Risk in Financial Markets, pages 70–71, 2000.

[11] A.K. Jain. Data clustering: 50 years beyond k means. Pattern Recog-
nition Letter, 31:651–666, 2010.

75

BIBLIOGRAPHY

[12] M.T.V. Martinez-Palacios J.F. Martinez-Sanchez and F. Venegas-
Martinez. An analysis on operational risk in international banking:
A bayesian approach. Estudios Gerenciales, 32:208–220, 2016.

[13] L. Hall K. Bowyer, N. Chawla and P. Kegelmeyer. Smote: Synthetic
minority over-sampling technique. Journal of Artificial Intelligence Re-
search, 16:321–357, 2002.

[14] M. Kendall, A. Stuart, J.K. Ord, and A. O’Hagan. Kendall’s advanced
theory of statistics, volume 1: Distribution theory. Arnold, sixth edition
edition, 1994.

[15] T. Kohonen. The self-organizing map. Proceedings of the IEEE,
78:1464–1480, 1990.

[16] P. Embrechts M. Degen and D.D. Lambrigger. The quantitative model-
ing of operational risk: between g-and-h and evt. ASTIN Bulletin: The
Journal of the IAA, 37:265–291, 2007.

[17] B.W. Matthews. Comparison of the predicted and observed secondary
structure of t4 phage lysozyme. Biochimica et Biophysica Acta (BBA)-
Protein Structure, 405(2):442–451, 1975.

[18] J.S. Jordan P. De Fontnouvelle, D. Jesus-Rueff and E.S. Rosengren.
Using loss data to quantify operational risk. SSRN Electronic Journal,
pages 1–10, 2003.

[19] L. Rafferty P. Hung and W. Rafferty. Introduction to big data. Big
Data Applications and Use Cases, 1:1–15, 2016.

[20] T. Pettersson. Investigating the Potential of Using SOM on Audit
Changed Trades. Master’s thesis, KTH Royal Institute of Technology,
Sweden, 2017.

[21] D.M. Powers. Evaluation: from precision, recall and f-measure to roc,
informedness, markedness and correlation. 2011.

[22] M. Cruz R. Coleman and G. Salkin. Modeling and measuring opera-
tional risk. Journal of Risk, 1:63–72, 1998.

[23] I. El Naqa R. Li and M.J. Murphy. What is machine learning? Machine
Learning in Radiation Oncology, pages 3–11, 2015.

76

BIBLIOGRAPHY

[24] E.F. Schisterman, N.J. Perkins, A. Liu, and H. Bondell. Optimal cut-
point and its corresponding youden index to discriminate individuals
using pooled blood samples. Epidemiology, 16(1):73–81, 2005.

[25] P. Stefanovič and O. Kurasova. Influence of learning rates and neigh-
boring functions on self-organizing maps. In International Workshop on
Self-Organizing Maps, pages 141–150. Springer, 2011.

[26] A. Ultsch. Self-organizing feature maps for exploratory data analysis.
In Proc. of the International Neural Network Conference (INNC), 1990,
1990.

77

