
BACKGROUND FOREGROUND

SEGMENTATION METHODS IN

ANALYSIS OF LIVE SPORT

VIDEO RECORDINGS

JOHAN FLINKE, FREDRIK HAMMAR

Master’s thesis
2018:E40

Faculty of Engineering
Centre for Mathematical Sciences
Mathematics

C
E
N

T
R

U
M

S
C

IE
N

T
IA

R
U

M
M

A
T
H

E
M

A
T
IC

A
R

U
M

Master’s Theses in Mathematical Sciences 2018:E40

ISSN 1404-6342

LUTFMA-3358-2018

Mathematics

Centre for Mathematical Sciences

Lund University

Box 118, SE-221 00 Lund, Sweden

http://www.maths.lth.se/

Background Segmentation Methods
in Analysis of Live Sport Video

Recordings

Fredrik Hammar & Johan Flinke

Supervisors:
Karl Åström, Professor at Mathematics, Lund University.
Niels-Christian Overgaard, Senior Lecturer at Mathematics, Lund University.
Examiner:
Magnus Oskarsson, Senior Lecturer at Mathematics, Lund University.

All rights reserved.
© 2018 by Fredrik Hammar & Johan Flinke.
Mte13fha@student.lu.se & Mte13jfl@student.lu.se
Printed in Lund, Sweden. June 2018.

mailto:Mte13fha@student.lu.se
mailto:Mte13jfl@student.lu.se

Abstract

A sports video analysis application was developed by Spiideo for mobile
devices. It presents recordings from practices and competitive games for
game-play analysis. Available tools, such as on-screen drawings, require a ro-
bust background foreground segmentation. The currently used segmentation
method have difficulties to master the shifting conditions in weather, shadows
and shirt colors.

The purpose of this project was to improve the background foreground seg-
mentation in the application by evaluating alternative methods and examine
possible improvements of the currently used method.

A data-set with recordings from Spiideo clients was created and used to eval-
uate and compare different segmentation methods with the current method.
The evaluation included pixel classification scores, complexity measurements
and a visual evaluation.

A median background model frame difference approach showed better per-
formance with lower computational time compared to what is currently used.
A Mixture of Gaussians method gave the best pixel classification result, but
increased the calculation time. Suggested alterations of the currently used
method also showed minor improvements in performance.

KEYWORDS: Image Analysis, Background Foreground Segmentation, Segmen-
tation Evaluation, Live Sports Video Analysis

3

Acknowledgements

We would like to express our gratitude to our supervisors, Karl Åström (Pro-
fessor at Mathematics) and Niels-Christian Overgaard (Senior lecturer at
Mathematics) at the Faculty of Engineering, Lund University. We are very
grateful for all the engagement, help and support throughout the project.

Sincere thanks also go to Spiideo, for giving us the opportunity to com-
bine our two biggest interests, football and image analysis, in our master
thesis. We would like to thank all the co-workers for welcoming us to the
office and answering our questions along the way.

We would also like to acknowledge Håkan Ardö, thank you for taking time to
give valuable advice when most needed.

Thank you!

Fredrik & Johan, Malmö 2018.

5

Contents

1. Introduction 11
1.1 Background . 11
1.2 Related work . 15
1.3 Scope and Agenda . 19

2. Data 21
3. Method 24

3.1 Data-set . 24
3.2 Segmentation Methods . 29
3.3 Pixel Classification Evaluation 43
3.4 Complexity Evaluation . 46
3.5 Visual Evaluation . 47

4. Results 50
4.1 Data-set . 50
4.2 Segmentation Methods . 50
4.3 Pixel Classification Evaluation 50
4.4 Complexity . 51
4.5 Visual Evaluation . 51

5. Discussion 64
5.1 Results . 64
5.2 Limitations . 67
5.3 Further research . 70
5.4 Ethics . 74
5.5 Contributions . 74

6. Conclusion 76
Bibliography 78
Appendix A 83
Appendix B 95

7

Definitions

In this section concepts and abbreviations in need of clarification will be in-
troduced and defined.

• When segmentation is mentioned, a background foreground segmen-
tation of the entire frame is always intended.

• The currently used method refers to the ColorCube, the background
foreground segmentation method that Spiideo currently uses their ap-
plication.

• A binary mask is a binary matrix that holds the result of a segmen-
tation. The mask corresponds to a specific frame and are of the same
shape and size, every entry in the binary mask corresponds to specific
a pixel. If the entry is of value of 1, the corresponding pixel in the im-
age is classified as foreground and if the entry is of value 0, the pixel is
classified as background.

• A scene can be considered as a geographical place used for recording.
Each recording in the data-set are recorded at a specific scene. Some
recordings are from the same scene, but recorded at different times and
therefore have different characteristics.

• Each video recording is a series of frames. A frame is an image in the
recording that together with other frames constitutes the video.

9

Contents

• A key-frame is a frame that was used for evaluation. Background fore-
ground segmentation methods were applied to recordings in the data-
set and were thereafter evaluated at specific key-frames having a corre-
sponding ground-truth binary mask.

• HLS stands for HTTP Live Streaming. It is a media streaming protocol
that is used for delivering visual and audio media over the internet.

• FFMPEG is a complete cross-platform solution to record, convert and
stream audio and video. It was mainly used to download media from
HLS-streams and to add overlay masks to video recordings [27].

• OpenCV is an Open Source Computer Vision Library, see documen-
tation in [34]. It was used to handle videos and images in Python and
possess a library of tools used for image analysis and image processing.
OpenCV 3.4.0 was used in this project.

• All images, frames and recordings are by default defined with color.
Unless anything else is stated is the color in each pixel represented by
the three color channels red, R, green, G, and blue, B.

10

1
Introduction

1.1 Background

Background foreground segmentation is a popular topic in image analy-
sis today. Automatic applications for detection, classification and analysis
in images and videos are widely used in many different industries. These
applications often require a robust and appropriate background foreground
segmentation for optimal performance.

The Malmö-based company Spiideo provides a game-play video analysis
service for sport teams. High resolution cameras are mounted and installed
next to training grounds and arenas to record practices and competitive games.
A video feed from recorded events are presented, live or playback, in the Spi-
ideo mobile application. Coaches, analysts and players can use the application
to view and analyze game-play recordings. An example of what the applica-
tion looks like can be seen in Figure 1.1.

11

Chapter 1. Introduction

Figure 1.1: A screen-shot from the Spiideo mobile application. The user has the ability to play,
pause and use the time-line to navigate between game-play events. The user can also pan, tilt and
zoom, or use the drawing tools shown on the right side of the image.

A Spiideo camera set-up can differ from client to client, but (almost) always
include two high-resolution cameras at the center-line facing different direc-
tions to cover both halves of the field. This can be complemented with one
camera on each short-side above the goal line. The two camera feeds from the
center-line are stitched together and visualized as one recording, as shown in
Figure 1.1. It is possible to switch between the camera feed from the center-
line back and forth to the feeds from either goal-line. The user can play, pause
and navigate between events in the time-line. It is also possible to pan, tilt and
zoom, or use a selection of on-screen drawing tools.

An important feature for game-play analysis is the ability to make drawings,
such as arrows and areas, see Figure 1.2. To optimize the visual presentation
and thereby the viewer perception, importance lies in the fact that a drawing
is projected only onto the background of the frame. Parts considered to be
foreground, such as a player, should not be overdrawn and "disappear" behind
the drawing. Instead should these pixels be projected on top of the drawing.

12

1.1 Background

Figure 1.2: The Spiideo application enables on-screen drawings for game-play analysis. The
drawings should only be projected on top of the background, and players should not be over-
drawn.

To fulfill these demands is a good and applicable method for background
foreground segmentation needed. The segmentation method should for each
frame in the recording, be able to determine which pixels that belong to
the background and which that belong to the foreground. In the case of
sport recordings, the foreground consists of moving objects such as players,
referees and the ball, while the rest of the frame can be considered to be
background.

The currently used method for background foreground segmentation is based
upon finding the most dominant color(s) in the frame, and thereafter classify
all pixels with a similar color as background. The method is called ColorCube
and is further explained in chapter 3.2.

The method is computationally efficient and performs well in most basic
cases. Harder conditions, such as green player shirts on green grass or patches
of white snow on a green grass field, makes it difficult for the method to
perform. The green shirts are classified as background and the patches of
snow as foreground. Non-static weather conditions such as shifting sunlight,
or moving clouds, can also lead to incorrect segmentation results due to the
momentarily changes in brightness. Players can therefore disappear behind

13

Chapter 1. Introduction

on-screen drawings, while other parts of field are projected on top of the draw-
ings, as shown in Figure 1.3. By improving the segmentation performance,
Spiideo can enhance the visual perception for the users when watching or
analyzing game-play recordings.

Figure 1.3: Some conditions causes the current background foreground segmentation to fail.
This leads to that drawings are incorrectly presented on top of the foreground or behind the
background.

The video analysis service is a cloud based system. The camera recordings
are directly uploaded to the cloud and then visualized for the users in a mo-

14

1.2 Related work

bile application. The current segmentation is carried out directly in the user’s
mobile device. An option that requires a computationally efficient method as
it is run on low-spec hard-ware. A more advanced segmentation method may
not be able to be processed in real time on all devices. An alternative way
would be to carry out the segmentation in the cloud, where one have access
to more computational power.

Implementing the segmentation method in the cloud comes with the prob-
lem of transferring the resulting segmentation information from the cloud
to the mobile device. A process that is dependent upon internet connection
and an efficient transfer method. Many other processes are competing for
bandwidth to send and receive information, such as streaming the video feed.
Segmentation method complexity is therefore a good thing to have in mind
when considering ways to improve the segmentation results.

An important thing is that the segmentation method cannot take any user
input to simplify the segmentation. The service is widely used for many dif-
ferent clients and sports which makes it impossible to handle and process user
input regarding background and/or foreground information. This implies that
a background segmentation method must have the same initial parameters
and settings for all scenes.

1.2 Related work

Background foreground segmentation is a popular topic. There are much on-
going work and findings in the area, and many different methods have been
developed. In this section a review of background foreground segmentation
methods will be presented.

Basic Methods
A simple method to detect differences (such as movement) between two
images is to compute the euclidean distance between all pixels in the two
frames, as proposed in [18]. The same approach can be used for background
foreground segmentation by first creating a background model, and then de-
tect the foreground by calculating the absolute difference between the image
and the background model. There are several ways to produce a background

15

Chapter 1. Introduction

model by using past frames in a video recording. One can either create a static
background model, or create an adaptive background model that changes over
time due to changes in the video.

As mentioned in [19], is one basic approach to initialize and update a back-
ground model by taking the the average of past frames. A similar procedure
was proposed in [16] where the background model was initialized and main-
tained by calculating the median of past frames. A weighted median can also
be used, which enables the background model to put emphasis on more recent
frames.

Similar techniques were presented in [2] where color, edges and texture
were combined to create a background model, and in [10] where the back-
ground was modeled based on a sub-pixel edge map.

When a background model is initialized, the foreground can be segmented
out by detecting differences between the current frame and the background
model as showed in Figure 1.4.

Figure 1.4: A flow chart that describes how background foreground segmentation can be per-
formed by using a background model frame difference approach.

The difference between the model and the current frame can be calculated in
several ways. Most straightforward is to calculate the euclidian distance, D,

16

1.2 Related work

for each pixel as

D =
√
(FR −BR)2 +(FG −BG)2 +(FB −BB)2, (1.1)

where FR, FG and FB are the intensity in each color channel (R, G, B) in the
pixles of the frame, and BR, BG and BB are the intensity in the corresponding
color channels in the background model pixels.

Thereafter, a pixel can be classified as background or foreground depend-
ing on the size of D. Preferably by comparing the absolute difference to a
suitable threshold value. More advanced ways to discover other dissimilari-
ties, as proposed in [11], are to also consider differences in edges, texture and
gradients. It probably gives a more accurate result, but would require more
computational power.

Remember that the cameras used for recording Spiideo client videos are
fixed, and the background is not expected to contain any movement. Con-
sequently, there should be a high possibility to create a good and useful
background model.

Statistical Methods
A statistical approach for segmentation in a static scene without a priori infor-
mation was presented by Stauffer and Grimson in [20]. The method is called
Mixture of Gaussians (MOG). The recent history of values for each pixel in
the recording was modeled by multiple Gaussian distributions. The distribu-
tions were evaluated based on variance and change over time to automatically
select which distributions best represents the background. The probability that
the current pixel value belonged to a background distribution was calculated,
and decided whether the pixel should be classified as foreground or back-
ground. The distributions were continuously updated depending on a learning
rate.

There have been further research on developments to this method. Zivkovic
proposed an improvement in [21], where an adaptive algorithm more effi-
ciently and recursively updated model parameters and chose the appropriate

17

Chapter 1. Introduction

number distributions for each pixel. Another improvement was developed
in [12] by Kaewtrakulpong and Bowden to make the model learn and adapt
faster with more accuracy, to be able to handle changing environments better.
A third addition was implemented by Hayman and Eklundh in [8], where
the method was applied to carry out segmentation for a mobile observer in a
non-static scene.

These statistical approaches were of interest due to the static scenes from
outdoor cameras with varying weather conditions.

Segmentation by Motion Detection
The cameras are fixed and no movement in the background is expected. By
assumption, movement can only occur in the foreground. Therefore, it could
be expected that by detecting motion in a frame, one could also find the
foreground. One approach that further investigated this was proposed in [14],
where MOG was combined with optical flow.

Optical Flow is a field of image analysis that detects movement between
frames. An optical flow algorithm was implemented by Bouguet in [3]. By
taking a 3x3 patch around a tracking point, an assumption was made that
all pixels in the patch had the same intensity and were subject to the same
movement. A least square fit-method solveed the equations which constitutes
the movement. Interesting points to track can differ depending on purpose
and must be manually provided. A clear drawback when dealing with live
recordings for different clients and sports, which makes it hard to generalize
tracking points.

Another algorithm was implemented by Farnebäck in [6]. Instead of tracking
chosen points, the algorithm tracks the motion of all pixels in the image,
which is called dense optical flow. By approximating each neighborhood of
both frames by quadratic polynomials, a vector field is created by observ-
ing how an exact polynomial transforms under translation. The displacement
fields are estimated from the polynomial expansion coefficients. The resulting
vector field describes the movement for all pixels between two frames.

18

1.3 Scope and Agenda

Artificial Intelligence
There have been much recent work in the field of combining artificial intelli-
gence (AI) with segmentation in computer vision. How neural networks can
be used for semantic segmentation and classification were proposed in [4],
[17] and [9]. Networks were trained to detect, segment and classify objects in
both images and video. Classification were not relevant in this project, as there
was no interest to know what kind of object that is detected in the foreground.
It would also be at expense of unnecessary computational load.

1.3 Scope and Agenda

The scope of this project was to:

Improve the background foreground segmentation in the Spiideo applica-
tion.

The segmentation can be improved by either changing to an alternative, better
performing method, or by improving the current one. The agenda was to find
other relevant and suitable methods, and discover possible improvements of
the currently used method. It was also an aim to do so without significantly
increasing the computational complexity compared to what is currently used.

A data-set with representative recordings from current Spiideo clients, were
created. The methods were applied to the data-set and compared by using
scores for pixel classification, complexity measurements and by an visual
evaluation.

The rest of this report is organized as follows;

• Chapter 2 (Data) describes the data-set that was used.

• Chapter 3 (Method) describes how the data-set was created. It also ex-
plains the methods that have been evaluated on the data set, and how
they were evaluated.

• The results of the evaluation are presented in chapter 4 (Results), and
discussed in chapter 5 (Discussion).

19

Chapter 1. Introduction

• Conclusions based on the results and the following discussion are pre-
sented in chapter 6 (Conclusion).

20

2
Data

The data used for this project consist of 13 video recordings from 10 different
scenes. The recordings were recorded by Spiideo for their clients during foot-
ball, ice-hockey and lacrosse. Each recording have different conditions regarding
weather, present shadows and player shirt colors. The frame rate for each video is
25 frames per second. How the data-set was created are presented in chapter 3.1
on page 24.

The recordings have different resolutions due to their position relative the field that
they are recording. Recordings from cameras mounted on the goal line sides have a
2K resolution (1920x1080). Recordings from cameras mounted on the center line
consist of two camera feeds facing different directions and have a 4K resolution
(3840x2160). A visualization of the set-up is shown in Figure 2.1. Further details
about all recordings are presented in Table 2.1 on page 2.1.

Figure 2.1: Two possible camera positions for the recordings in the data-set. The left figure shows a
frame from a goal-line camera. The right figure shows a frame from a center-line camera.

21

Chapter 2. Data

Figure 2.2: A flow chart explaining how the recordings in the data-set were used. The first four
minutes allowed the methods to adapt, the last minute was used for evaluation.

Each recording in the data-set have a duration of 5 minutes. The four first
minutes were used to enable adaptive methods to update its parameters to
optimally fit the recording specific conditions. The fifth and last minute of
each recording was subject to method evaluation, see Figure 2.2. There are 60
frames during the last minute that have a corresponding ground truth repre-
sented as a binary mask. Zeros in the binary mask represent background and
ones represent foreground. An example of a ground truth binary mask can be
seen in Figure 2.3.

Figure 2.3: The left figure shows a frame from a recording. The right figure shows the corre-
sponding ground truth represented as a binary mask.

22

Chapter 2. Data

Table 2.1: Table describing the characteristics for each recording in the data-set. "Shifting" means that there are
variations in the color of the field. "Illuminated" means that the light comes from spotlights around the field, and
there is an absence of natural light.

Nr. Recording Set up Description Resolution
1 Gefle IP Football,

Game-play
Snow on green field. White and red
player clothes.

3840x2160

2 Jamkraft
Arena (1)

Football,
Game-play

Green field. Black, orange and
green clothes.

3840x2160

3 Jamkraft
Arena (2)

Football,
Game-play

Sun on green field. Large shadows.
Blue and orange clothes.

3840x2160

4 Kalmar Football,
Game-play

Shifting green field. White/red and
dark clothes.

3840x2160

5 Klockener Lacrosse,
Game-play

Green field. Sun on parts of the
field. Large Shadows. White and
red clothes.

3840x2160

6 La Manga Football,
Game-play

Sun on shifting green field. Large
shadows. White and red/blue
clothes.

3840x2160

7 La Manga
(North Side)

Football,
Game-play

Bright sun on shifting green field.
Large shadows and backlight.
White and red/blue clothes.

1920x1080

8 La Manga
(South Side)

Football,
Game-play

Sun on shifting green field. Large
shadows. Yellow, white and
red/blue clothes.

1920x1080

9 Malmö IP
(1)

Football,
Practice

Shifting green field. Dark. Black
clothes.

3840x2160

10 Malmö IP
(2)

Football,
Game-play

Sun on parts of green field. Large
shadows. White and black clothes.

3840x2160

11 Malmö IP
(3)

Football,
Game-play

Illuminated green field. Multiple
small shadows. White and blue
clothes.

3840x2160

12 Östgötaporten Football,
Practice

Snow on illuminated green field.
Tracks in the snow. Pink, blue and
green clothes.

3840x2160

13 Ice Hockey Ice Hockey,
Game-play

Illuminated white ice. Multiple
small shadows. White and blue
clothes.

1920x2160

23

3
Method

This chapter describes first how the data-set and the ground truth was created.
Thereafter are the evaluated segmentation methods further explained. How
the methods were evaluated are also accounted for. Unless anything else is
stated, has all computer work been implemented in the programming language
Python (Version 3.5.4) [36].

3.1 Data-set

To evaluate and compare segmentation methods on sports video recordings,
there was a need to create a purposeful and relevant data-set. Spiideo have a
data-base with recordings from many different scenes and clients. All record-
ings were stored in a HLS format online, and were downloaded using the
multi-media framework software FFMPEG. To create a diverse and useful
data-set, 13 recordings from 10 different scenes were chosen. The aim was to
create a data-set with recordings having with different conditions in weather,
presence of shadows and shirt colors.

To avoid bias, recordings known to be both easy and hard for the currently
used method to correctly segment, were chosen to the data-set. More details
about the chosen recordings are presented in Table 2.1 in Chapter 2 (Data).
Each recording has a duration of five minutes. These five minutes were man-
ually chosen to include actual game-play, as this represents when the analysis
tools are mostly used.

24

3.1 Data-set

As can be seen in the Figure 3.1 are the cameras recording more than the
playing field. For example, are the supporter stands and the sky also included.
The Spiideo application have a region of interest-function that automatically
distinguishes where the playing field is, and other parts of the recording
are thereby ignored. The currently used segmentation method thereby only
takes the field in consideration. To replicate this, the unwanted parts were
removed from the recordings in the data-set. An overlay mask was manually
created and added to each recording using the video converting software
FFMPEG [27], see Figure 3.1

Figure 3.1: The recordings were pre-processed with an overlay mask to remove unwanted parts.
The upper left figure shows the original frame. The upper right figure shows a manually created
overlay mask, note that the white parts are transparent. The lower figure shows the resulting
combination of the other two, where the unwanted parts were removed from the recording.

25

Chapter 3. Method

Ground Truth
A fundamental part of the data-set is the ground truth. It was created to enable
an objective evaluation of the different segmentation methods. All recordings
in the data-set have a duration of five minutes. The first four minutes enable
adaptive segmentation methods to adapt to recording specific conditions, e.g.
background color or weather. During the last minute, 60 key frames were
used for method evaluation. All key-frames have a ground truth represented
as a binary mask, explaining which pixels that are foreground or background
in reality.

Figure 3.2: The ground truth key-frames were created by using a consensus of minimum T meth-
ods of the 5 different segmentation methods. The masks were thereafter processed and manually
improved.

To create a robust ground truth for the data-set, a semi-automatic approach
that combined five different segmentation methods was developed and used.
A brief overview of the procedure can be seen in Figure 3.2. The ground truth
were created according to the following steps:

1. Five different segmentation methods (Mixture of Gaussians, Improved
Mixture of Gaussians, GMG, KNN and CouNT) were implemented in

26

3.1 Data-set

Python with OpenCV. All methods are further explained in section 3.2
on page 29. The five methods were applied, one at the time, to segment
each recording into background and foreground. During the last minute,
the resulting binary masks were saved. All recordings were segmented
in full resolution.

2. The binary masks from all five segmentation methods were summarized
for each frame. After this, each frame had a mask where each pixel
value was an integer between zero and five. The value indicated how
many methods that had classified the pixel as foreground. Pixels which
all methods had classified as background had a value of zero, while
pixels all methods had classified as foreground will had a value of five.

3. A binary mask was generated by using a threshold value, T , on the sum-
marized mask. This means that the binary mask was set to foreground
(pixel value = 1) if at least T number of methods had consensus over
segmenting that pixel as foreground. The value of T was chosen manu-
ally and differed from recording to recording. The threshold values are
shown in Table 3.1.

4. The resulting binary mask were processed. First were Opening (Erosion
followed by Dilation) applied to remove noise in the mask. Thereafter
were Closing (Dilation followed by Erosion) applied to fill holes in the
binary mask. These concepts are further explained below and shown in
Figure 3.3. The size of the kernels used for opening and closing differed
for each recording, and are presented in Table 3.1.

• Erosion is when a kernel1 slides over the binary mask and a pixel
in the mask is set to 1 only if all pixels under the kernel is 1,
otherwise eroded to 0.

• Dilation is the opposite of Erosion. It sets a pixel value to 1 if at
least one of the pixel under the kernel has value 1.

1A kernel is a small matrix used for processing the image by convolution.

27

Chapter 3. Method

Figure 3.3: The left figure shows the result of opening, a technique used to remove noise. The
right figure shows the result of closing, a technique used to fill holes in segments. The images
were taken from [32].

5. Binary masks existed for all frames of the last minute of each record-
ing. 60 binary masks were chosen from each recording to represent the
ground truth. The masks were manually chosen by visual evaluation to
use the masks that best represent the true foreground and background2.

6. For each recording were the 60 binary masks checked and manually
improved to better reflect the truth. Parts incorrectly classified as fore-
ground, such as shadows or noise, were removed from the foreground.
Parts that belong to the foreground but were incorrectly classified as
background, such as a player, were added to the foreground.

2This may have lead to that frames that are easier to segment, were being subject for evalua-
tion. This is further discussed in chapter 5 (Discussion).

28

3.2 Segmentation Methods

Table 3.1: The recording-specific parameters that were used to create the ground truth binary
masks.

Recording Threshold Opening Closing
Kernel Size Kernel Size

Gevle IP 2 (3,3) (5,5)
Jamkraft (1) 2 (5,5) (0,0)
Jamkraft (2) 2 (6,6) (15, 15)
Kalmar 2 (5,5) (5,5)
Klockener 2 (6,6) (6, 6)
La Manga 2 (5,5) (5, 5)
La Manga North 1 (5,5) (0, 0)
La Manga South 2 (5,5) (8, 8)
Malmo IP (1) 0 (9,9) (5, 5)
Malmo IP (2) 2 (4,4) (4, 4)
Malmo IP (3) 2 (5,5) (5, 5)
Östgötaporten 1 (3,3) (3, 3)
Ice Hockey 2 (5,5) (15, 15)

The ground truth for each recording was limited to 60 key-frames to sim-
plify the creation of the ground truth binary masks and the method evaluation.
It was also considered unnecessary to evaluate every frame, since the video
frame rate was 25 frames per second and the frames did not considerably
change from frame to frame.

3.2 Segmentation Methods

Relevant methods with different approaches were chosen for further evalu-
ation. In this section, the methods are presented and explained. The abbre-
viation presented in the method title are used as an identifier in chapter 4
(Results).

Median Background Model Frame Difference (Median)
There are multiple ways to initialize a median background model. One can
initialize the background model by sampling past frames and then calcu-
late the median for each pixel. Much variation in the foreground in the past

29

Chapter 3. Method

frames, often leads to a good background model, not required to be frequently
updated. However, without knowledge of past frames, the model can instead
be initialized by only taking the first frame in consideration. For example can
the most dominant color in the first frame be calculated, and thereafter are all
pixels in the background model set to this color. This approaches require that
the background model, in the beginning, are updated more frequently updated
to quickly resemble the true background.

When evaluating this method, a background model was created by using
50 past frames, sampled every 10:th frame. The median value for each pixel
was calculated. By skipping frames between the samples, the foreground was
allowed to change and thereby make less impact on the background model.

When the background model was initiated, it was updated recursively with
inspiration from the work by Ardö in [1]. Each pixel in the background model
PB, was updated every 10:th frame. The intensity in each color channel for
each pixel in the background model, PB, was updated as

PB =


PB +1, i f PF > PB

PB −1, i f PF < PB

PB, i f PF = PB

, (3.1)

where PF is the corresponding color channel for the pixel in the frame used
to update the background model. An example of an initialized background
model can be seen in Figure 3.4.

Figure 3.4: The left figure shows a frame from a recording. The right figure shows the initialized
background model from the same recording. It was created by calculating the median frame of
50 past frames sampled every 10:th frame.

30

3.2 Segmentation Methods

By recursively updating the background model, the calculation time was re-
duced as there was no need to save past frames. The segmentation was carried
out for every frame in the recording by using a threshold for the euclidean dis-
tance between the colors of the pixels in the background model and the pixels
in the current frame. The absolute difference D was calculated for each pixel
as

D =
√
(FR −BR)2 +(FG −BG)2 +(FB −BB)2 , (3.2)

where FR, FG and FB are the intensity in the three color channels in the frame
and BR, BG and BB are the color channel intensities in the background model.
Thereafter was each pixel in the binary mask PBM set to foreground or back-
ground by using a threshold T for the difference D, as explained by

PBM =

{
1, i f D ≥ T
0, i f D < T

. (3.3)

The threshold T decided how big the difference between the background
model and the frame was allowed to be before a pixel was classified as fore-
ground or background. An example of the impact of different threshold values
is shown in Figure 3.5.

31

Chapter 3. Method

T=20 T=60

Figure 3.5: A binary mask was calculated by using a threshold for the difference between a frame
and the background model. If the difference was bigger than the threshold value T, the pixel was
classified as foreground. The figure shows how two different values of T affects the resulting
segmentation.

Three different values (20,35 and 60) of T were used to segment the data-set.

Mixture of Gaussians (MOG)
An improvement of Mixture of Gaussians, first implemented by Stauffer and
Grimson in [20], was presented by Kaewtrakulpong and Bowden in [12].
Every pixel maintains a density function based on past frames. The density
function was viewed upon as a mixture of distributions. The distributions
were internally ordered, and a number of distributions were considered to
represent the background. The probability that a pixel intensity belong to a
background distribution were calculated, and used to classify the pixel as ei-
ther foreground or background. The algorithm has the ability to use different
equations at different phases to update parameters, which enabled the system
to learn faster. As a result, the system adapts more accurately and efficiently
to changing environments.

The method was implemented using the OpenCV background subtraction
library with default parameters. More method details are presented in [12]
and [33].

32

3.2 Segmentation Methods

Improved Mixture of Gaussians (MOG2)
Another improvement of the Mixture of Gaussians, was implemented by
Zivkovic in [21]. Recursive equations were used to enhance the efficiency
when updating the distribution parameters. An automatic selection of the
appropriate number of distributions for each pixel was added as it allowed the
system to be more adaptive to changes in the recording.

The method was implemented using the OpenCV background subtraction
library with default parameters. More method details are presented in [21]
and [30].

Mixture of Gaussians - KNN Improvement (KNN)
A K-Nearest-Neighbour improvement of the Gaussian Mixture Model was
presented in [22] by Zivkovic and Heijden. Recursive equations were used to
update model parameters and to simultaneously select the appropriate num-
ber of distributions for each pixel. A K-Nearest-Neighbour method for better
kernel density estimation was implemented.

The method was implemented using the OpenCV background subtraction
library with default parameters. More method details are presented in [22]
and [31]

Godbehere, Matsukawa, Goldberg (GMG)
The method presented in [7] combined statistical background image esti-
mation, per pixel Bayesian segmentation, and an approximate solution to
the multi-target tracking problem using a bank of Kalman filters and Gale-
Shapley matching. A heuristic confidence model enabled selective filtering of
tracks based on dynamic data.

The method was implemented using the OpenCV background subtraction
library with default parameters. More method details are presented in [7]
and [29]

CouNT
A background segmentation project called CouNT was created by Sagi Zeevi
in [23] and [24]. The method is computationally efficient and fast on low-spec

33

Chapter 3. Method

hardware compared to other similar methods. It uses the "stability" of a pixel
to determine whether it belongs to the foreground or the background. If a
pixel holds the same intensity over time, it is given credit for being stable,
and therefore considered to belong to the background. Changes in the pixel
intensity will decrease the stability counter. When a pixel is considered to be
"unstable", is it considered to belong to the foreground.

The method was implemented using the OpenCV background subtraction
library with default parameters. More details are presented in [23], [24]
and [25]

ColorCube (the currently used method)
The method currently used in the Spiideo’s application was based on the work
in [28]. The dominant color(s) in the frame are detected, and used to classify
all pixels with similar color as background.

Figure 3.6: The Colorcube, a 3D color space histogram. The dots in the right figure visualizes
how all the color of all pixels in a frame were projected into the ColorCube. The bin(s) with the
most hits represent the most dominant color(s) in the frame.

The dominant color(s) were determined by looking at the intensity in the
RGB color-channels for all pixels in the frame. A 3-dimensional histogram
was produced, where each axis corresponds to one of the RGB-channels. The
RGB-values for all pixels in the frame were projected into the 3-dimensional
color space, as shown Figure 3.6, where the dots represent hits from all the
pixels in the frame. The resolution of the histogram axes was set to 30, mean-

34

3.2 Segmentation Methods

ing that each axis was divided into 30 bins, leading to a grid of 303 (27 000)
bins in the 3-dimensional color space.

Objects far away from the cameras appear smaller, and are therefore rep-
resented by fewer pixels than objects closer to the camera. To compensate
for this, the hits in the 3D histogram were counted in relation to the pixel’s
position in the frame. The value of a hit from a pixel in the ColorCube
was weighted according to its position. The lower boundary, Lb, and upper
boundary, Ub of the region of interest were used to weight each hit, H, as

H = 0.1+(
Ub − y

Ub −Lb
)2 , (3.4)

where y is the height of the pixel’s position in the frame. How Lb and Ub are
defined in a frame, is explained in Figure 3.7.

Figure 3.7: Image showing how the boundaries were set to weigh each pixel hit relative its
position in the frame. See equation 3.4 to see how the boundaries were used.

The number of hits for each color bin was summarized, and the bins were
sorted by most number of hits first. Color(s), represented by the bins, were
chosen, by most hits first, to represent the background until 90% of the total
number of hits were covered.

The background color(s) were updated every 5:th second. In between, the

35

Chapter 3. Method

segmentation of each frame was done by calculating the euclidean distance,
D for each pixel’s color to the background color(s) in the 3D color space as

D =
√

(PR −BR)2 +(PG −BG)2 +(PB −BB)2 , (3.5)

where PR, PG and PB are the intensity in the three color channels for a pixel
and BR, BG and BB are the color channel intensities for the background col-
ors. The axes span from 0− 255 points and if the distance D, was smaller
than 44.625 points (17.5% of 255) to any background color, the pixel was
classified as background.

In the Spiideo application implementation were the number of possible back-
ground colors limited to 16 colors. It was discovered that 90% of the hits
were reached for all recordings with six, or less, background colors. In this
project, instead of choosing the amount of colors extracted to cover 90% of
the hits, the segmentation was carried out six times for each recording having
a fixed number of 1-6 background colors respectively. All six results were
evaluated, and the best result for each recording are presented. The reason
for this was to better understand the dynamics of the ColorCube for different
number of background colors. This approach may lead to that the behaviour
of ColorCube is not perfectly replicated, but it follows that the best possible
result for the ColorCube are presented, even though the number of chosen
background colors may differ from the original.

Color Cube Alterations
Five alterations of the ColorCube have been implemented and evaluated.
These alterations are further described in this section. For each proposed
alteration are only the changes that were made explained. The rest of each
alteration was implemented in the same way as the current method, described
in the previous section.

Alteration 1. Eight ColorCubes were initiated in eight different parts of the
frame, as shown in Figure 3.8.

36

3.2 Segmentation Methods

Figure 3.8: To better handle local variations in different parts of the frames, were the recordings
divided into eight parts and a ColorCube was applied to each part.

Since the areas were smaller, were no weighting of the hits performed when
extracting the dominant color(s) in each part. Instead gave each pixel’s color
a hit value of 1.0 in the 3-dimensional color space. This approach was devel-
oped to handle local variations in the background better. The eight different
ColorCubes were allowed to have different amounts of dominant colors when
segmenting. For each part, the extracted color(s) were determined by using
the color bins with hits corresponding to 90% of the total number of hits in
that part. The pixels in each part were classified as foreground or background
depending on the euclidean distance in 3-dimensional space, as previously
described.

Alteration 2. This alteration was developed to take advantage of the fact that
most recordings have a green playing field, and therefore a green background.
After the dominant colors had been extracted from the frame, the euclidean
distance D, from the pixel color P to each background color B was instead
calculated as

D =
√

w0(PR −BR)2 +w1(PG −BG)2 +w2(PB −BB)2 , (3.6)

where w0 = w2 =
2
5 and w1 =

1
5 , leading to that differences in the color chan-

nels were weighted differently. Differences in the red and blue channels were
taken into greater account, making the classification more sensitive for differ-

37

Chapter 3. Method

ences in these colors, and allowed more variations of green in the background.
This approach was based on the fact that most of the Spiideo customers are
football clubs. For a setup at a hockey arena or other sport where the playing
field is of another color, the weights must be adjusted.

Alteration 3. An approach that could handle local variations and use infor-
mation from the entire frame was developed. The dominant colors from the
entire frame were extracted as before, but a ColorCube was also applied to a
smaller area in the frame. Background colors from both areas were used to
classify the pixels in the area. This approach was developed to replicate ap-
plication usage as the recordings often are viewed in a zoomed in mode. The
same background colors as used by the original method were used for the en-
tire frame. The number of colors extracted from the smaller area was chosen
based on the what gave the best classification result. This gives a hint on how
many colors from the smaller area that are suitable to use. Note that only the
pixels in the smaller area were classified. This alteration was not evaluated in
full resolution, more information about the evaluation methods are presented
in Chapter 3.3 on page 45.

Alteration 4. The original ColorCube was used for segmentation. Post-
processing with opening and closing were applied to the resulting binary mask
to remove noise and to close holes in the segments. These post-processing
techniques are further described in Chapter 3.1 on Page 26.

Alteration 5. The euclidean distance threshold that decided whether a pixel
was classified as background or foreground was changed. As the ColorCube
often segmented parts of the background as foreground, a higher value of
63,75 points, 25% of 255, was tested to make the pixel classification more
restrictive.

Optical Flow
As the background in the recordings were narrowed down to only include
the playing field, movements were only expected to occur in the foreground.
A motion detection algorithm called dense optical flow was developed by
Farnebäck in [6]. A segmentation method based on this was implemented and
evaluated. By approximating each neighborhood of both frames by quadratic
polynomials, a vector field was created by observing how an exact polynomial
transforms under translation. The displacement fields were estimated from the

38

3.2 Segmentation Methods

polynomial expansion coefficients.

The movement between two consecutive frames in the recording were cal-
culated. As the algorithm required one channel images, all frames were con-
verted to gray-scale. A 2-dimensional vector field representing the magnitude
and direction for the movement of each pixel, was created. A visualization of
the process can be seen in Figure 3.9.

Figure 3.9: The two upper figures shows two following frames, on which the movement have
been detected. The lower left figure shows the dense optical flow vector field that describes the
movement between the two frames. Color represents vector direction and the intensity represents
the magnitude of the vector. The lower right figure shows the resulting segmentation after using
a threshold on the vector magnitudes.

A binary mask was created by classifying pixels containing considerable
movement to foreground. The vector fields were transformed into an RGB
image where color represented direction and intensity represented magnitude,
as shown in Figure 3.9. A pixel in the binary mask PBM was set to foreground
or background by using a threshold for color intensity in each pixel. If the
sum of the color intensity in all three channels was greater than a threshold T ,
the pixel was set to foreground or background as

39

Chapter 3. Method

PBM =

{
1, i f PR +PG +PB ≥ T
0, i f PR +PG +PB < T

, (3.7)

where PR, PG and PB were the color channel intensities for the pixel. The pa-
rameters used in the optical flow algorithm are presented in Table 3.2. They
were chosen to be computationally effective while producing a satisfying mo-
tion detection result.

Table 3.2: Parameters used in the optical flow algorithm. Further details about impact of the
parameters can be read in [26].

Pyramid Layers Layer Resize Window Size Iterations Polynomial Degree STD
5 0.5 40 5 5 1.2

Machine Learning Classifier
Segmentation based on color will struggle when the foreground have the same
color as the background, e.g. green player shirts on a green grass field. Motion
based segmentation will struggle when the foreground stops moving, e.g. a
player standing still. A novel machine learning classifier was developed to
segment by combining information of both color and movement. The Python
machine learning library scikit-learn [37] was used to implement the classifier.

Instead of classifying each pixel, was a hierarchical classification approach
used. The frame was first divided into 16 equal parts, where each part is hence
referred to as a patch. Each patch was classified as either background or
foreground, by using features based on both color and movement in the patch.
If a patch was classified as foreground, the patch was divided into 4 equal
parts. Each smaller patch was then classified as background or foreground
and the process was repeated. The recursive procedure is further explained in
the following steps:

1. Features were calculated on the patch.

2. The patch was classified as foreground or background.

• If background:

– All pixels in the patch were classified as background.

40

3.2 Segmentation Methods

• If foreground:

– If the patch size was greater than 1500 pixels:

* The part was divided into 4 equal smaller parts. Repeat
steps 1-2 for each part.

– If the patch size was smaller than 1500 pixels:

* All pixels in the patch were classified as foreground.

An example of the hierarchical structure is shown in Figure 3.10.

Figure 3.10: The hierarchical structure of the classifier. Red squares show patches classified
as background while green squares show patches classified as foreground. Note that this figure
shows a zoomed in area of the entire frame.

Two features were calculated for each patch. These features were designed to
give relevant information regarding color and movement in the patch.

• Feature 1. Based on motion in the patch:

– By applying the Dense Optical Flow algorithm (as previously de-
scribed) to the current frame, movement (from the last frame) was
measured and described by vector field. The sum of the magnitude
of all vectors inside a patch were calculated, SM. The first feature
F1 was then calculated as

F1 =
SM

5H
, (3.8)

where H was the height of the patch.

41

Chapter 3. Method

• Feature 2. Based on colors in the patch:

– By applying Improved Mixture of Gaussians (MOG2) (as previ-
ously described), a binary mask for the patch was created. The
sum of all foreground pixels in the patch were calculated, SP. The
second feature F2 was then calculated as

F2 =
SP

10H
, (3.9)

where H was the height of the patch.

The size of the patches varied and three different classifiers were used to clas-
sify the patches depending on their size. The three possible patch sized are
defined in Table 3.3.

Table 3.3: The definition of the three possible patch sizes.

Size Definition
Big patches Patch size > 500 000
Medium patches 100 000 < Patch size < 500 000
Small patches Patch size < 100 000

To classify the patches as background or foreground, five different classifica-
tion algorithms were considered (more information about the classifiers are
presented in [38]). A sub-set containing 10 key-frames from each recording
was used for a 10-fold cross validation to measure the accuracy and classifica-
tion time for the different classifiers on the sub-set. This means that the subset
was split into 10 sets. Each set was used for validation while the other 9 were
used for training. The sub-set was randomly divided into 10 sets, and the 10
sets were the same when testing all classifiers. The mean values of accuracy
and classification time are presented in Table 3.4, the most accurate methods
were chosen, and are presented in bold.

42

3.3 Pixel Classification Evaluation

Table 3.4: Mean values of accuracy and classification time for the considered classifiers on a
10-fold cross-validation on a sub-set of the data for the different patch sizes. The most accurate
methods for each patch size were chosen and are presented in bold.

Patch Size Classifier Accuracy Time

Big

Logistic Regression 0.75 0.014
Linear Discriminant Analysis 0.73 0.011

K Neighbors Classifier 0.91 0.009
Decision Tree Classifier 0.92 0.006

Random Forest Classifier 0.94 0.027
Gaussian Naive Bayes 0.72 0.005

Medium

Logistic Regression 0.80 0.009
Linear Discriminant Analysis 0.77 0.006

K Neighbors Classifier 0.91 0.118
Decision Tree Classifier 0.90 0.009

Random Forest Classifier 0.92 0.042
Gaussian Naive Bayes 0.73 0.004

Small

Logistic Regression 0.78 0.352
Linear Discriminant Analysis 0.76 0.120

K Neighbors Classifier 0.87 1.68
Decision Tree Classifier 0.83 0.899

Random Forest Classifier 0.85 4.046
Gaussian Naive Bayes 0.64 0.081

The segmentation of each recording was carried out in a similar way as the
cross-validation. When segmenting a recording, the classifiers were trained on
all key-frames from the other 12 recordings. Default settings and parameters
were used for the classifiers [37].

3.3 Pixel Classification Evaluation

All methods were evaluated and compared by calculating the precision, recall
and F1-score by comparing the segmentation results to the ground truth. The
three pixel classification scores are further explained in Section Metrics on
page 45.

43

Chapter 3. Method

Full Resolution.
The mean value of the three scores were calculated for all key-frames, for
each method and recording, in full resolution. The mean value of the three
scores were also calculated for all recordings.

Zoomed area.
A user seldom view the recordings in full resolution, but rather in a zoomed
in mode. To perform a more user experience related pixel classification eval-
uation, the same three scores were also calculated on two zoomed in areas.
The ten high-resolution center-line recordings were chosen for the "zoomed
area" evaluation. The two areas were the same for all recordings, and are
shown in Figure 3.11. Note that the areas were only evaluated when there was
foreground present in the area. The mean value for each of the three scores
were calculated for all key-frames, for each method and recording. The mean
value of the three scores for all recordings were also calculated.

Figure 3.11: A user often watches a recording in a zoomed in mode. As a compliment to the
full resolution evaluation, the two areas in the frame were also evaluated for all methods and
recordings. The upper right area spans from (x1,y1) = (2083,244) to (x2,y2) = (2917,712). The
lower left area spans from (x3,y3) = (948,1367) to (x4,y4) = (1800,1804).

44

3.3 Pixel Classification Evaluation

Metrics
When evaluating the segmentation methods, the resulting binary mask was
compared to the ground truth for all key-frames. The three metrics used for
evaluation were based on the four possible cases for a classified pixel:

• True Positive (TP): A foreground pixel classified as foreground.

• False Positive (FP): A background pixel classified as foreground.

• True Negative (TN): A background pixel classified as background.

• False Negative (FN): A foreground pixel classified as background.

A visualization of these cases can be seen in Figure 3.12 where a binary mask
is compared with the ground truth.

Figure 3.12: Segmented pixels were classified as True Positive, False Positive and False Negative
when compared with the ground truth. Note that True negative pixels are shown as transparent.

45

Chapter 3. Method

The recordings contain considerably more background than foreground, lead-
ing to the number of pixels classified as True Negative would be at a great
majority, regardless of segmentation performance. Measures including True
Negative pixels was therefore excluded. The three scores used to evaluate the
background segmentation methods were Precision, Recall and F1-score [15].

Precision, P, is the fraction of correctly segmented foreground pixels of
all pixels classified as foreground, and was calculated as

P =
TP

TP +FP
. (3.10)

Recall, R, is the fraction of correctly segmented foreground pixels of all true
foreground pixels, and was calculated as

R =
TP

TP +FN
. (3.11)

F1-score is the harmonic mean of precision and recall, and was calculated as

F1 =
2PR

P+R
. (3.12)

3.4 Complexity Evaluation

The complexity for each method was estimated by measuring the computa-
tional time and the average CPU utilization.

All methods were applied to the same recording, with a length of 8000
frames. Each method was timed ten times, and the mean computational time
was calculated. The time ratio relative the currently used method, the Color-
Cube, was also calculated.

The average system-wide CPU utilization percentage during performed
segmentation was measured for each method by using the psutil-library in
Python [35]. The function psutil.cpu_percent was used to extract the values
for CPU utilization. The CPU utilization ratio relative the currently used
method was also calculated.

46

3.5 Visual Evaluation

The time and CPU-utilization was measured using an Intel Core i7-6700HQ
2.6 GHz processor with 16 GB DDR3 RAM and Windows 10 Home x64.

3.5 Visual Evaluation

When evaluating methods by pixel classification scores, high values in pre-
cision and recall does not necessarily imply better visual perception. What
a human viewer perceives when watching a recording can be difficult for a
computer to measure and quantify.

The pixel classification scores treats all correctly or incorrectly classified
pixels the same way, regardless of relevance for user perception. For example,
one method may have missed an entire player while another method have
some Gaussian noise all over the frame. These two methods may end up with
a similar classification score, but are perceived very differently by the viewer.

To evaluate the segmentation methods by user perception, a visual evalu-
ation was performed. Four methods that proved their relevance according
to classification and complexity performance, were chosen for the visual
evaluation:

• ColorCube: The currently used method.

• ColorCube Alteration 3: One of the proposed improvements to the
currently used method.

• MOG2: Relevant due to its good overall segmentation performance and
low complexity.

• Median T=35: Relevant due to its computational speed and robust seg-
mentation performance.

Four different recordings with different conditions3 were chosen:

• Gefle IP: Snow on a green field.

3More details about the recordings can be seen in chapter 2 (Data).

47

Chapter 3. Method

• Kalmar: Regular green field. No shadows.

• Malmo IP (2): Sun on a green field and large shadows.

• Ice Hockey: Ice with artificial lights and small shadows.

Five seconds of each recording were sampled and segmented with the four
methods. A zoomed in area with active game-play were chosen. An on-screen
drawing was applied to the area according to the resulting binary mask. The
drawing was shown "on top" of the pixels classified as background, while
pixels classified as foreground were shown as normally, see Figure 3.13.

Figure 3.13: An on-screen drawing was applied to a zoomed in area according to the segmenta-
tion results of the different methods. It was designed to look like one of the actual analysis tools
present in the Spiideo application.

For each recording were the four video sequences, segmented with different
methods, presented next to each other as shown in Figure 3.14. The video
sequences were looped until the viewer had internally ranked the four videos
due to their segmentation performance by looking at the on-screen drawings.
The viewer was asked to rank the four methods internally from 1 to 4, where 1
was the best and 4 was the worst. Two methods could not have the same rank.
The viewer had no prior knowledge about which methods that were evaluated
or where they were placed. The placing of each method was changed for each
recording to avoid bias.

48

3.5 Visual Evaluation

Figure 3.14: The visual evaluation was performed by presenting the same video sequence with
on-screen drawings based on the result from four different segmentation methods. The viewer
was asked to internally rank the four videos without prior knowledge about the methods or their
position.

Six employees at Spiideo were chosen to participate in the visual evalua-
tion. They have relevant knowledge of image analysis and the user needs of
the Spiideo application. An example of the evaluation score sheet are shown
in Appendix B.

49

4
Results

4.1 Data-set

A key-frame from each recording in the data-set can be seen in Figure 4.1 on
page 52. The corresponding ground-truth binary masks can be seen in Figure
4.2 on page 53.

4.2 Segmentation Methods

Examples of segmentation results from recording Kalmar can be seen in Fig-
ure 4.3 on page 54. Examples of segmentation results from recording Gefle
can be seen in Figure 4.4 on page 55. Examples from all recordings are pre-
sented in Appendix A.

4.3 Pixel Classification Evaluation

The metrics for all segmentation methods for the full resolution pixel classi-
fication evaluation can be seen in Table 4.1 on page 56. The metrics for all
segmentation methods for the zoomed area pixel classification evaluation can
be seen in Table 4.2 on page 58.

50

4.4 Complexity

4.4 Complexity

The results of the complexity measurements are shown in Table 4.3 on page
60.

The pixel classification scores are plotted in relation to the complexity mea-
surements in Figure 4.5 and Figure 4.6 on page 61 for the full resolution
evaluation, and in Figure 4.7 and Figure 4.8 on page 62 for the "zoomed area"
evaluation.

4.5 Visual Evaluation

The results of the visual evaluation are shown in Table 4.4 on page 63.

51

Chapter 4. Results

Examples of Frames
Gefle IP Jamkraft Arena 1 Jamkraft Arena 2

Kalmar Klockener La Manga

La Manga North La Manga South Malmo IP (1)

Malmo IP (2) Malmo IP (3) Östgötaporten

Ice Hockey

Figure 4.1: A frame from each recording in the data-set.

52

4.5 Visual Evaluation

Example of Ground Truth Binary Masks
Gefle IP Jamkraft Arena (1) Jamkraft Arena (2)

Kalmar Klockener La Manga

La Manga North La Manga South Malmo IP (1)

Malmo IP (2) Malmo IP (3) Östgötaporten

Ice Hockey

Figure 4.2: A ground truth binary mask from each recording in the data-set.

53

Segmentation Masks from Recording: Kalmar
Original Frame Ground Truth MOG MOG2 CNT

KNN GMG Color Cube (Original) Color Cube Alteration 1 Color Cube Alteration 2

Color Cube Alteration 4 Color Cube Alteration 5 Median T=20 Median T=35 Median T=60

Optical Flow Machine Learning

Figure 4.3: A binary mask from each method for recording Kalmar. The most upper left image is the frame which is segmented.

Segmentation Masks from Recording: Gefle IP
Original Frame Ground Truth MOG MOG2 CNT

KNN GMG Color Cube (Original) Color Cube Alteration 1 Color Cube Alteration 2

Color Cube Alteration 4 Color Cube Alteration 5 Median T=20 Median T=35 Median T=60

Optical Flow Machine Learning

Figure 4.4: A binary mask from each method for recording Gefle IP. The most upper left image is the frame which is segmented.

Full Resolution: Pixel Classification Scores
Table 4.1: Results of the pixel classification scores calculated in full resolution. The most right column shows the mean value and standard deviation for all recordings. The best
F1-score mean values are marked out in bold. Note that: P = Precision, R = Recall and F = F1-score. The table continues on the next page.

Method Gefle IP
Jamkraft

Arena
(1)

Jamkraft
Arena

(2)
Kalmar Klockener La Manga La Manga

North
La Manga

South
Malmo
IP (1)

Malmo
IP (2)

Malmo
IP (3) Östgötaporten Ice

Hockey Mean (STD)

Median T=20
P 0.25 0.66 0.45 0.81 0.30 0.34 0.05 0.09 0.51 0.22 0.44 0.26 0.23 0.35
R 0.91 0.97 0.75 0.90 0.75 0.93 0.83 0.94 0.89 0.86 0.93 0.89 0.89 0.88
F 0.39 0.79 0.56 0.85 0.43 0.50 0.10 0.16 0.65 0.35 0.60 0.41 0.36 0.47 (0.22)

Median T=35
P 0.67 0.78 0.55 0.90 0.44 0.67 0.07 0.13 0.68 0.61 0.63 0.51 0.59 0.56
R 0.84 0.88 0.60 0.78 0.64 0.82 0.62 0.85 0.77 0.71 0.83 0.79 0.75 0.76
F 0.74 0.83 0.57 0.84 0.52 0.73 0.12 0.22 0.73 0.66 0.72 0.62 0.66 0.61 (0.22)

Median T=60
P 0.85 0.84 0.60 0.94 0.61 0.93 0.07 0.20 0.73 0.52 0.74 0.56 0.65 0.63
R 0.70 0.65 0.36 0.61 0.48 0.66 0.34 0.73 0.67 0.56 0.67 0.68 0.62 0.59
F 0.77 0.74 0.45 0.74 0.54 0.77 0.12 0.31 0.70 0.54 0.70 0.61 0.63 0.59 (0.20)

MOG
P 0.91 0.88 0.64 0.96 0.66 0.97 0.53 0.72 0.79 0.73 0.60 0.89 0.95 0.79
R 0.64 0.54 0.29 0.53 0.41 0.60 0.29 0.66 0.32 0.49 0.64 0.52 0.55 0.50
F 0.75 0.67 0.39 0.69 0.51 0.74 0.38 0.69 0.46 0.58 0.62 0.62 0.70 0.60 (0.13)

MOG2
P 0.82 0.65 0.57 0.78 0.60 0.77 0.52 0.54 0.80 0.58 0.17 0.83 0.90 0.66
R 0.78 0.91 0.75 0.86 0.70 0.90 0.86 0.92 0.44 0.80 0.85 0.66 0.54 0.77
F 0.80 0.76 0.65 0.82 0.65 0.83 0.65 0.68 0.57 0.67 0.28 0.74 0.67 0.67 (0.14)

KNN
P 0.81 0.84 0.71 0.92 0.65 0.92 0.36 0.47 0.80 0.64 0.38 0.87 0.92 0.71
R 0.83 0.90 0.67 0.80 0.68 0.88 0.72 0.90 0.42 0.77 0.87 0.68 0.58 0.75
F 0.82 0.87 0.69 0.86 0.66 0.90 0.48 0.62 0.55 0.70 0.53 0.76 0.71 0.70 (0.14)

GMG
P 0.43 0.41 0.34 0.55 0.33 0.29 0.17 0.22 0.22 0.44 0.04 0.58 0.42 0.34
R 0.86 0.77 0.72 0.88 0.75 0.85 0.91 0.91 0.50 0.74 0.84 0.68 0.89 0.79
F 0.57 0.53 0.47 0.68 0.46 0.43 0.29 0.36 0.31 0.55 0.08 0.62 0.57 0.46 (0.16)

CouNT
P 0.75 0.80 0.36 0.91 0.21 0.60 0.05 0.12 0.71 0.49 0.44 0.64 0.65 0.52
R 0.65 0.69 0.30 0.55 0.43 0.55 0.31 0.63 0.70 0.59 0.77 0.71 0.67 0.58
F 0.69 0.74 0.33 0.68 0.28 0.57 0.09 0.21 0.71 0.53 0.56 0.67 0.66 0.52 (0.22)

Optical Flow
P 0.45 0.31 0.32 0.43 0.28 0.27 0.23 0.31 0.10 0.24 0.20 0.43 0.41 0.31
R 0.53 0.41 0.42 0.52 0.50 0.41 0.79 0.58 0.17 0.37 0.51 0.36 0.74 0.49
F 0.48 0.35 0.37 0.47 0.36 0.32 0.35 0.40 0.13 0.29 0.29 0.39 0.53 0.36 (0.10)

ML Classifier
P 0.41 0.37 0.15 0.46 0.36 0.40 0.16 0.22 0.41 0.30 0.05 0.51 0.57 0.34
R 0.87 0.85 0.72 0.90 0.89 0.90 0.90 0.92 0.63 0.84 0.94 0.8 0.88 0.85
F 0.56 0.52 0.25 0.61 0.51 0.55 0.27 0.36 0.49 0.44 0.09 0.62 0.69 0.47 (0.18)

P = Precision, R = Recall, F = F1-score and C = Number of dominant colors.

Method Gefle IP
Jamkraft

Arena
(1)

Jamkraft
Arena

(2)
Kalmar Klockener La Manga La Manga

North
La Manga

South
Malmo
IP (1)

Malmo
IP (2)

Malmo
IP (3) Östgötaporten Ice

Hockey Mean (STD)

ColorCube
(Current)

C 1 3 4 2 3 3 2 3 3 3 3 4 4 -
P 0.01 0.04 0.08 0.03 0.03 0.04 0.02 0.04 0.04 0.04 0.04 0.08 0.05 0.04
R 0.89 0.83 0.43 0.77 0.68 0.74 0.59 0.85 0.72 0.69 0.71 0.69 0.63 0.71
F 0.02 0.08 0.13 0.06 0.06 0.08 0.04 0.08 0.08 0.08 0.08 0.14 0.09 0.08 (0.03)

ColorCube
(Alteration 1)

P 0.01 0.05 0.04 0.06 0.05 0.04 0.02 0.04 0.04 0.05 0.04 0.09 0.06 0.05
R 0.66 0.80 0.51 0.85 0.70 0.87 0.64 0.86 0.82 0.64 0.76 0.73 0.63 0.73
F 0.02 0.09 0.07 0.11 0.09 0.08 0.04 0.08 0.08 0.09 0.08 0.16 0.11 0.08 (0.03)

ColorCube
(Alteration 2)1

P 0.01 0.04 0.03 0.10 0.06 0.06 0.01 0.05 0.02 0.08 0.06 0.15 0.07 0.06
R 0.77 0.22 0.11 0.58 0.41 0.53 0.38 0.75 0.20 0.52 0.63 0.28 0.43 0.45
F 0.02 0.07 0.05 0.17 0.10 0.11 0.02 0.09 0.04 0.14 0.11 0.20 0.12 0.10 (0.06)

ColorCube
(Alteration 3) Not evaluated in full resolution

ColorCube
(Alteration 4)1

P 0.02 0.05 0.08 0.03 0.04 0.07 0.02 0.07 0.07 0.04 0.08 0.11 0.05 0.06
R 0.87 0.75 0.33 0.72 0.61 0.66 0.48 0.84 0.63 0.62 0.59 0.59 0.42 0.62
F 0.04 0.09 0.13 0.06 0.08 0.13 0.04 0.13 0.13 0.08 0.14 0.19 0.09 0.10 (0.04)

ColorCube
(Alteration 5)1

P 0.01 0.09 0.06 0.06 0.05 0.06 0.01 0.05 0.04 0.07 0.05 0.15 0.07 0.06
R 0.82 0.67 0.21 0.66 0.57 0.62 0.44 0.78 0.50 0.57 0.72 0.42 0.53 0.58
F 0.02 0.16 0.09 0.11 0.09 0.11 0.02 0.09 0.07 0.12 0.09 0.22 0.12 0.10 (0.05)

1 Same background color(s) used as in the currently used ColorCube.

Zoomed Area: Pixel Classification Scores
Table 4.2: Results of the pixel classification scores calculated on the zoomed in area. The most right column shows the mean and standard deviation for all recordings.
The best F1-score mean values are marked out in bold. Note that: P = Precision, R = Recall and F = F1-score. The table continues on the next page.

Method Gefle IP Jamkraft
Arena (1)

Jamkraft
Arena (2) Kalmar Klockener La Manga Malmo

IP (1)
Malmo
IP (2)

Malmo
IP (3) Östgötaporten Mean (STD)

Median T=20
P 0.09 0.60 0.34 0.73 0.22 0.27 0.47 0.23 0.33 0.18 0.35
R 0.88 0.91 0.88 0.86 0.69 0.84 0.90 0.81 0.89 0.88 0.85
F 0.16 0.72 0.49 0.79 0.33 0.41 0.62 0.36 0.48 0.30 0.47 (0.20)

Median T=35
P 0.39 0.70 0.45 0.84 0.44 0.44 0.68 0.45 0.49 0.53 0.54
R 0.80 0.83 0.76 0.78 0.62 0.75 0.84 0.74 0.82 0.80 0.77
F 0.52 0.76 0.57 0.81 0.51 0.55 0.75 0.56 0.61 0.64 0.63 (0.11)

Median T=60
P 0.63 0.74 0.47 0.86 0.56 0.74 0.72 0.36 0.71 0.55 0.63
R 0.69 0.73 0.54 0.68 0.53 0.65 0.78 0.66 0.71 0.73 0.67
F 0.66 0.73 0.50 0.76 0.54 0.69 0.75 0.47 0.71 0.63 0.64 (0.11)

MOG
P 0.82 0.78 0.47 0.87 0.61 0.83 0.58 0.49 0.76 0.82 0.70
R 0.66 0.66 0.48 0.65 0.48 0.61 0.27 0.63 0.70 0.58 0.57
F 0.73 0.72 0.47 0.74 0.54 0.70 0.37 0.55 0.73 0.68 0.62 (0.13)

MOG2
P 0.74 0.60 0.47 0.65 0.52 0.67 0.58 0.43 0.15 0.80 0.56
R 0.78 0.85 0.89 0.86 0.70 0.83 0.37 0.83 0.93 0.70 0.77
F 0.76 0.70 0.62 0.74 0.60 0.74 0.45 0.57 0.26 0.75 0.62 (0.16)

KNN
P 0.72 0.73 0.56 0.83 0.57 0.82 0.62 0.47 0.77 0.82 0.69
R 0.78 0.86 0.82 0.80 0.66 0.83 0.48 0.78 0.83 0.72 0.76
F 0.75 0.79 0.67 0.81 0.61 0.82 0.54 0.59 0.80 0.77 0.72 (0.10)

GMG
P 0.33 0.29 0.26 0.36 0.16 0.16 0.09 0.26 0.05 0.49 0.25
R 0.88 0.79 0.91 0.90 0.75 0.82 0.43 0.87 0.90 0.78 0.80
F 0.48 0.42 0.40 0.51 0.26 0.27 0.15 0.40 0.09 0.60 0.36 (0.16)

CouNT
P 0.54 0.73 0.25 0.84 0.25 0.43 0.72 0.36 0.61 0.58 0.53
R 0.65 0.72 0.48 0.63 0.49 0.60 0.83 0.67 0.73 0.74 0.65
F 0.59 0.72 0.33 0.72 0.33 0.50 0.77 0.47 0.66 0.65 0.57 (0.16)

Optical Flow
P 0.50 0.37 0.35 0.44 0.27 0.31 0.41 0.30 0.29 0.51 0.38
R 0.58 0.41 0.67 0.74 0.52 0.72 0.21 0.77 0.82 0.38 0.58
F 0.54 0.39 0.46 0.55 0.36 0.43 0.28 0.43 0.43 0.44 0.43 (0.08)

ML Classifier
P 0.55 0.43 0.31 0.51 0.39 0.48 0.51 0.31 0.04 0.57 0.41
R 0.81 0.87 0.9 0.92 0.88 0.9 0.55 0.95 1 0.78 0.86
F 0.66 0.58 0.46 0.66 0.54 0.63 0.53 0.47 0.08 0.66 0.53 (0.17)

P = Precision, R = Recall, F = F1-score, C = Number of dominant colors for the entire frame, and C2 = Number of dominant colors for the zoomed in area.

Method Gefle IP Jamkraft
Arena (1)

Jamkraft
Arena (2) Kalmar Klockener La Manga Malmo

IP (1)
Malmo
IP (2)

Malmo
IP (3) Östgötaporten Total

ColorCube
(Current)

C 1 3 4 2 3 3 3 3 3 4 -
P 0.03 0.55 0.54 0.21 0.04 0.34 0.70 0.08 0.58 0.14 0.32
R 0.81 0.70 0.48 0.66 0.58 0.66 0.82 0.68 0.70 0.62 0.67
F 0.06 0.62 0.51 0.32 0.07 0.45 0.76 0.14 0.63 0.23 0.38 (0.25)

ColorCube
(Alteration 1)

P 0.02 0.11 0.12 0.39 0.06 0.05 0.60 0.08 0.24 0.16 0.18
R 0.61 0.67 0.57 0.73 0.63 0.72 0.81 0.66 0.65 0.66 0.67
F 0.04 0.19 0.20 0.51 0.11 0.09 0.69 0.14 0.35 0.26 0.26 (0.20)

ColorCube
(Alteration 2)1

P 0.03 0.32 0.40 0.54 0.09 0.14 0.61 0.20 0.87 0.13 0.33
R 0.76 0.22 0.19 0.65 0.46 0.54 0.20 0.56 0.56 0.28 0.44
F 0.06 0.26 0.26 0.59 0.15 0.22 0.30 0.29 0.68 0.18 0.30 (0.19)

ColorCube
(Alteration 3)

C2/C 4 /1 2 /3 3 /4 5 /2 5 /3 5 /3 2 /3 4/3 2 /3 2/4 -
P 0.11 0.50 0.30 0.49 0.15 0.55 0.46 0.59 0.56 0.29 0.40
R 0.60 0.60 0.46 0.54 0.33 0.49 0.34 0.45 0.63 0.68 0.51
F 0.19 0.55 0.36 0.51 0.21 0.52 0.39 0.51 0.59 0.41 0.42 (0.14)

ColorCube
(Alteration 4)1

P 0.05 0.65 0.64 0.46 0.05 0.38 0.75 0.09 0.67 0.18 0.39
R 0.76 0.61 0.39 0.61 0.54 0.60 0.81 0.57 0.69 0.50 0.61
F 0.09 0.63 0.48 0.52 0.09 0.47 0.78 0.16 0.68 0.26 0.42 (0.25)

ColorCube
(Alteration 5)1

P 0.03 0.58 0.57 0.79 0.07 0.37 0.74 0.18 0.83 0.24 0.44
R 0.73 0.56 0.27 0.58 0.45 0.55 0.71 0.59 0.62 0.35 0.54
F 0.06 0.57 0.37 0.67 0.12 0.44 0.72 0.28 0.71 0.28 0.42 (0.24)

1 Same background color(s) used as in the currently used ColorCube.

Chapter 4. Results

Complexity Evaluation
Table 4.3: Results of the complexity measurements. The ratios for time and CPU usage are
calculated relative the ColorCube (bold), as it is the currently used method.

Method Time Time CPU CPU
Used (s) Ratio Usage (%) Ratio

Median 235.87 0.81 3.00 1
MOG 1947.46 6.66 12.00 4
MOG2 817.24 2.79 9.00 3
KNN 2519.55 8.62 8.00 2.67
GMG 3681.68 12.59 27.00 9
CouNT 509.46 1.74 4.00 1.33
ColorCube 292.40 1.00 3.00 1
ColorCube (Alteration 1) 384.07 1.31 4.00 1.33
ColorCube (Alteration 2)1 - - - -
ColorCube (Alteration 3) 376.34 1.29 4 1.33
ColorCube (Alteration 4) 699.20 2.39 4 1.33
ColorCube (Alteration 5)1 - - - -
Optical Flow 34403.22 117.66 8.00 2.67
ML Classifier2 - - - -

1 Alteration 2 and 5 were not measured. The difference lies in the rendering of the frame, which
leads to the same complexity as the original ColorCube.
2 The Machine Learning-classifier was not measured. It used both MOG and Optical Flow for
feature extraction, using the complexity for both of these should give a pointer about the com-
plexity.

60

4.5 Visual Evaluation

Full Resolution: F1-score vs Computational Time

Median
(0.8)

CC
(1.0)

CC2
(1.0)

CC5
(1.0)

CC1
(1.3)

CouNT
(1.7)

CC4
(2.4)

MOG2
(2.8)

MOG
(6.7)

KNN
(8.6)

GMG
(12.6)

Optical
Flow(118)

0

0.2

0.4

0.6

0.8

Computational Time Ratio

F 1
-s

co
re

Mean value
Standard Deviation

Figure 4.5: The y-axis shows the mean value and standard deviation for the F1-score calculated in full resolution on the
entire data-set. The x-axis shows the evaluated methods and their relative computational time. Note that the x-axis is not
scaled. The machine learning classifier is not included due to that its complexity was not measured.

Full Resolution: F1-score vs CPU Utilization

Median
(1.0)

CC
(1.0)

CC2
(1.0)

CC5
(1.0)

CC1
(1.3)

CouNT
(1.3)

CC4
(1.3)

KNN
(2.7)

Optical
Flow(2.7)

MOG2
(3.0)

MOG
(4.0)

GMG
(9.0)

0

0.2

0.4

0.6

0.8

Average CPU Utilization Ratio

F 1
-s

co
re

Mean value
Standard Deviation

Figure 4.6: The y-axis shows the mean value and standard deviation for the F1-score calculated in full resolution on the
entire data-set. The x-axis shows the evaluated methods and their relative average CPU utilization. Note that the x-axis
is not scaled. The machine learning classifier is not included due to that its complexity was not measured.

61

Chapter 4. Results

Zoomed in: F1-score vs Computational Time

Median
(0.8)

CC
(1.0)

CC2
(1.0)

CC5
(1.0)

CC1
(1.3)

CC3
(1.3)

CouNT
(1.7)

CC4
(2.4)

MOG2
(2.8)

MOG
(6.7)

KNN
(8.6)

GMG
(12.6)

Optical
Flow(118)

0

0.2

0.4

0.6

0.8

Computational Time Ratio

F 1
-s

co
re

Mean value
Standard Deviation

Figure 4.7: The y-axis shows the mean value and standard deviation for the F1-score calculated in the zoomed in areas
on the entire data-set. The x-axis shows the evaluated methods and their relative computational time. Note that the x-axis
is not scaled. The machine learning classifier is not included due to that its complexity was not measured.

Zoomed In: F1-score vs CPU Utilization

Median
(1.0)

CC
(1.0)

CC2
(1.0)

CC5
(1.0)

CC1
(1.3)

CC3
(1.3)

CouNT
(1.3)

CC4
(1.3)

KNN
(2.7)

Optical
Flow(2.7)

MOG2
(3.0)

MOG
(4.0)

GMG
(9.0)

0

0.2

0.4

0.6

0.8

Average CPU Utilization Ratio

F 1
-s

co
re

Mean value
Standard Deviation

Figure 4.8: The y-axis shows the mean value and standard deviation for the F1-score calculated in the zoomed in areas
on the entire data-set. The x-axis shows the evaluated methods and their relative average CPU utilization. Note that the
x-axis is not scaled. The machine learning classifier is not included due to that its complexity was not measured.

62

4.5 Visual Evaluation

Visual Evaluation
Table 4.4: Results of the visual evaluation. The segmentation results of the four methods were
ranked from 1 (best) to 4 (worst) for four different recordings. The best mean values are marked
out.

Method Gefle Kalmar Hockey Malmö IP (2) Mean
CC 4.00 3.00 4.00 3.67 3.67
CC3 2.50 3.67 3.00 2.70 2.95
Median 1.00 1.67 1.50 2.00 1.54
MOG2 2.50 1.67 1.50 1.67 1.83

63

5
Discussion

The aim of this project was to improve the current background foreground
segmentation used in Spiideo’s application, by evaluating the two following
options:

• Find an alternative method with better classification performance with
similar complexity.

• Find improvements to the currently used segmentation method.

5.1 Results

The two methods that showed the best overall classification results were
MOG2 and KNN. However, looking at the computational time, MOG2 tripled
it, and KNN gave almost a tenfold increase, compared to the ColorCube. The
runner up to these two methods was the median background model approach,
it gave superior results compared to the ColorCube and reduced computa-
tional time. It was also chosen as the best method in the visual evaluation.

Our findings show that there were much room for improvement of the cur-
rently used method. It struggled to correctly segment the recordings in the
data-set due to the diverse and changing conditions in the outdoor environ-
ments. Alternative methods with similar complexity proved to perform better
on the data-set that was created to represent Spiideo recordings. Methods us-
ing the history for each pixel (e.g. Median and MOG2) performed better than
methods that instead used information from other parts of the same frame.

64

5.1 Results

This comes however with the need to sample past frames.

The suggested alterations of the ColorCube (especially alteration 3,4 and 5)
showed minor improvements in the zoomed area pixel classification scores,
without extensive increase in complexity. The project gives Spiideo more
knowledge of when the ColorCube fail, some possible ideas for further im-
provements, potential alternative methods and what to discard in future work.
A better segmentation leads to increased user experience, as the analysis
drawings becomes easier to understand.

The good result of the median method implies that the created background
model was a good representation of the true background. This can be taken
advantage of in other aspects of the application. For example, if one added the
feature to move parts of the foreground, e.g. a player, to another position on
the screen in a freeze frame. Information from the background model could
be used to fill the resulting gap when moving a player. A drawback is its
need to initialize a model before a good segmentation can be carried out. The
approach used in this project sampled 50 frames every 10:th frame, which
corresponded to 20 seconds in the recording. Even if this time probably can
be reduced, the segmentation should preferably be good already during the
first frame as a user is jumping back and forth in the recording time-line to
watch different events. A more direct initialization starting with only the first
frame reduces the calculation time and memory usage, but will also decrease
the performance until a representative background model have been created.

All statistical methods showed a good overall performance but none showed
reduced complexity. The best scores, in both classification and complexity,
was given by MOG2. This method, and the other ones, could probably be
optimized to perform even better regarding both classification scores and
complexity, by testing different parameters. The adeptness of the methods
enables them to cope with most recordings, but this is also a drawback as they
require time to adapt and learn each pixel’s distributions over time.

This project shows the shortcomings of the ColorCube. It was very sensitive
to recordings where different parts of each frame had different characteristics,
as it treated all parts of the image in the same way. A shadow or a patch of

65

Chapter 5. Discussion

snow could heavily influence the segmentation result, as they often were clas-
sified as foreground. This often lead to "over-classification" where to many
pixels were classified as foreground, which can be seen in the high values in
recall and low values in precision. Consequently, the F1-score was more or
less inapplicable to use in a comparison. An attempt to compensate for this
was the development of the zoomed area evaluation, but it showed a similar
result, where the ColorCube struggled compared to the other methods.

One can imagine that football recordings often have a completely green
background, but the reality is different. Different parts of the field have dif-
ferent nuances of green and there are many possible disturbances due to the
outdoor conditions. The fact that the cameras are mounted in different direc-
tions also make the brightness vary in different parts of the frame, and thereby
more difficult to correctly segment at the same time.

It can be seen that by applying opening and closing, or by increasing the back-
ground classification threshold, the scores improved for almost all recordings
in the data-set. Other alterations improved the result for some recordings but
worsened the result in other recordings leading to a lower total score than the
currently implemented method. It was discovered that when applying Col-
orCubes on smaller patches, instead of adapt to that specific patch, it would
rather miss the dominant colors of the entire frame. For example, if a shadow
covered a big part of the playing field, but only a part of a smaller patch, it
would rather be classified as foreground in the smaller patch. Alteration 3,
where one ColorCube was applied to the entire frame and one was applied
the smaller patch, was an attempt to master this problem. It showed minor im-
provements and achieved the same scores as applying a kernel or increasing
the background classification threshold.

All proposed ColorCube improvements showed similar complexity as the
currently used method. The aim was to come up with easy alterations which
would improve the results without increasing the computational time, and that
could be implemented by the company right away. It is probably easier to add
improvements to the current method, as it already is integrated in the system,
than implementing an unknown and more complicated segmentation method,
and make it synchronize with other functions in the current application.

66

5.2 Limitations

A useful outcome of the project for Spiideo, is the data-set created by the
authors. Much effort and time were put into the work to create a diverse
data-set with a corresponding ground truth-set. This could be used in further
research for evaluation purposes. Another possible future utilization of the
data-set lies in appliances of AI in computer vision. The data could be used
for training and validation in segmentation, detection or classification.

The optical flow algorithm was very slow and computational heavy. The
machine learning approach did not beat the other methods based on only
color or motion detection. The classifier also turned out to be very complex.
A drawback of the hierarchical approach was when a big patch was incor-
rectly classified as background, leading to all foreground pixel in the patch
was classified as background and thereby wrongly classified. Due to the high
complexity and bad performance, more work were put into investigating other
methods.

5.2 Limitations

The Spiideo application, and thereby the ColorCube, is implemented in the
programming language Swift. In this report the methods have been im-
plemented and evaluated using Python. By looking at the source code of
the Spiideo application, the ColorCube were thoroughly disassembled and
replicated to greatest extent. However, some differences might occur due to
programming language differences or definitions, as for example, how the
area of interest on the playing field was chosen. The implemented ColorCube
in Python should still give a very good hint on how Spiideo’s method act and
performs. To speed up the computational time in Python when iterating over
all pixels in a high resolution frame, Numba was used [13]. Numba generates
optimized machine code from the python code which significantly decreased
the computational time. How this relate to code written in Swift was not inves-
tigated in this report. However, since all methods have been implemented and
compared using the same programming language and hardware, the complex-
ity evaluation should still give a good hint on the complexity ratio between

67

Chapter 5. Discussion

the methods.

There are multiple ways to create a ground truth. The most basic approach,
and probably most time consuming, would be to manually annotate each
frame into background and foreground. Due to the allocated time, this ap-
proach was considered unreasonable and instead, the ground truth was cre-
ated by the semi-automatic procedure further described in chapter 3.1. This
approach came with some bias as some of the evaluated methods were used
to create the ground truth. Naturally, this could imply that these methods
perform better in the pixel classification scores than methods not used for
creating the ground truth. It should also be noted that the manual selection of
key-frames could lead to bias, as the most easy frames for the used methods
were chosen to be used in the evaluation. To prevent the influence from this,
all key-frames manually edited and improved to resemble manually annotated
frames as much as possible.

Another limitation was the pixel classification scores. There are several ways
a method can fail. A method may randomly classify incorrect pixels all over
the frame, but still be considered as a good method from a viewer perspec-
tive. Another method may have no random "noise-pixels", but have missed
to segment an entire player as foreground. The two methods may share pixel
classification scores despite the difference in performance and viewer percep-
tion. An attempt to compensate for this was to perform the visual evaluation
on the most relevant methods.

The foreground in the ground truth-images does not include any side-lines,
goal-lines or parts of the goal. Some segmentation methods, e.g. the Col-
orCube, will often classify these parts as foreground. Due to the few true
foreground pixels, goal/side-line pixels classified as foreground may become
a majority of all foreground pixels. The pixel classification scores will be
greatly influenced by this, even though the viewer perception are not harmed,
as the sidelines, or the goal posts, could be accepted as foreground. A simi-
lar phenomena occur when a method correctly segments a majority of each
frame, but fails on lesser relevant parts, as shown in Figure 5.1, and thereby
receive very bad scores.

68

5.2 Limitations

Figure 5.1: A segmentation can sometimes be sufficient where the game-play takes place, but
have incorrectly classified pixels in other parts of the frame. It results in a bad score that may be
somewhat misleading when having viewer perception in mind.

An attempt to compensate for this was made by performing the zoomed area
evaluation. One can directly see the differences by comparing the full reso-
lution scores with the zoomed scores. The ColorCube receives significantly
better scores when zoomed, but when the zoomed area also contained snow,
shadows or different nuances of green, the scores were still very bad. One can
argue that the used scores did not manage to explain the good features of the
ColorCube as it was effective at finding the true foreground pixels but often
also included other parts.

An obvious drawback of the adaptive methods were the initialization time
that prevents an optimal segmentation until the methods have adapted to the
recording. As previously mentioned, the game-play is often viewed in short
sequences, for example a corner or the build-up to a goal. This way of usage
prevents adaptive method to perform optimally. It should be noted that all
segmentation methods were allowed to fully adapt before being evaluated.
A possible solution to this problem could be to have some kind of data-base
with frames sampled from recordings, recorded at the same scene. These
frames would represent past recordings, and could therefore be used to build
a background model or set method parameters.

One should also have in mind the differences between the visual evalua-
tion and the drawings in the Spiideo application. The drawing tools in the
application uses a smoothing function to avoid sharp edges between the
foreground and the background. This was not implemented in the visual eval-
uation. Smoothing the edges leads to a more forgiving environment were

69

Chapter 5. Discussion

incorrectly classified pixels are harder to detect.

5.3 Further research

Further research could include to implement the evaluated methods in Spi-
ideo’s system to see how they perform in the actual application. This would
give a better understanding for the method performance and enable a more
user like visual evaluation. The more complex methods could be implemented
back-end instead of in the mobile device due to hard-ware restrictions. This
leads to further research regarding how to transfer the resulting segmentation
to the device for each frame. Should one send over a binary mask as it is? As
the majority of each frame are background, represented by zeros in the binary
mask, one could further investigate if the masks could compressed without
crucial loss of information. Should the binary masks be represented in some
other way that are more efficient? Perhaps could the transferred information
be reduced by only sending over the coordinates for a given part of each
segmented player to the device. A "standard player shape" could be used to
avoid drawings on top of the player. An efficient information transfer allows
the usage of a more complex segmentation method back-end, not depending
on the mobile device hard-ware.

As previously mentioned, there were some limitations to the classification
scores used for the evaluation. By better understanding how the user experi-
ence is affected by the characteristics of the segmentation one could develop
evaluation scores more specific to the project. One idea was to use the dis-
tance for a false positive pixel to the closest true positive pixel as a penalty
function, penalizing false positive pixels far way from true positive ones.
Another idea was to weight the pixels differently depending on where in the
frame they were, and thereby penalize incorrectly classified pixels in areas
more likely to contain game-play. One could also argue that recall may be
of more importance than the precision or vice verse, depending on what one
are looking for. The two measures could thereafter be weighted together in
different ways regarding what is of greater importance.

There are also numerous of other method variations, and completely dif-
ferent methods, that would be interesting to test in order to fully investigate

70

5.3 Further research

all aspects to improve the current segmentation. This project gives a hint on
which kind of method one could focus more on. To optimize method perfor-
mance one could further investigate the result of varying method parameters.
There were many different parameters, e.g. method learning-rates, number
of pixel distributions or pixel classification thresholds, that could improve
method performance regarding both scores and complexity. However, one
should meanwhile have in mind that the data-set is not a true representation
reality, and optimizing methods on the data-set could lead to over-fitting.

Another interesting field to investigate is the possibility to resize the frames
before segmentation, an approach that leads to fewer pixels to classify and
thereby reduced calculation time. The trade-off is the image quality and what
artifacts that will appear as the frame is first down-sampled before segmenta-
tion, and the resulting binary mask is then up-sampled to fit the current frame
in the recording.

Another parameter that could be changed, that the motion detection based
segmentation could benefit from, is calculating movements between every
second or third frame, instead of every frame. This allows more changes to
take place and parts of the foreground would not be missed due to small
movements. The specificity of this algorithm could also be increased to detect
smaller movements, at the cost of being more complex. Another possibility
that can improve the motion detection is to run the algorithm for all three
color channels, instead of only on the gray-scale conversions of each frame.
This would however triple the already large calculation time.

One could also evaluate pre-processing techniques of the image that could
"fix" the frames of the recording instead of using a more complex segmenta-
tion method. To compensate for differences in different parts of the field, e.g.
sunshine causing large shadows, or varying brightness due to camera posi-
tions, image processing techniques could be used to even out these differences
before segmentation takes place. This is however a different field of image
analysis, but solving this could also lead to enhanced user perception and
experience, as it will become easier to watch and distinguish what happens in
the recording when all parts have the same characteristics.

71

Chapter 5. Discussion

There are many ways to create a background model, and the median back-
ground model initialization could be further developed to better fit Spiideo
needs. The usage of the application often includes jumping in the recording
time-line between specific sequences, and the segmentation needs to be car-
ried out already during the first few frames. More work could be put in how
to initialize a good background model that enables satisfying segmentation
directly. One advantage of the ColorCube is the one frame initialization. One
solution could be to use the ColorCube during the initializing time for another
better method that needs time to sample past frames to learn and adapt. One
could also further investigate how to build a data-base with sampled frames
from past recordings that could be used. Another solution is to create a back-
ground model for every scene that is updated every time a recording is started.
One could also start start with the lastly used background model.

In this project, when looking at differences between two frames, only the
euclidean distance between the colors were used as a difference measure. One
could also consider and test the possibility to detect differences in texture,
edges or gradients in the frame. However, this will increase method complex-
ity.

Further research on improvements of the ColorCube could include testing
different resolutions in 3D color space and thereby changing the number
of color bins. Higher resolution enables the possibility to detect more spe-
cific background colors. By adding background colors, it would probably
be required to change the pixel classification distance thresholds. A higher
resolution would also lead to an increased complexity. One could also classify
background pixels with other characteristics than using the three color chan-
nels. For example, one could add dimensions to the ColorCube that describes
texture, edges or gradients that dominate the image, and thereby represent the
background.

Another interesting approach would be to make the ColorCube more adaptive.
By using the segmentation result of past frames could parts with abnormal
values of foreground pixels be applied with a better and more specific method,
or with multiple ColorCubes. These parts probably contain snow, shadows or
game-play, and could therefore be better segmented. Another possibility is

72

5.3 Further research

when dividing the field into smaller parts with individual ColorCubes, these
could be given access to information from the other ColorCubes in order to
use knowledge from the entire frame.

Another adaptive approach is to include a memory of past frames and/or
past background color(s). The detected background color(s), used for pixel
classification, are sampled every fifth second without any remembrance of
the past, and are only based on the current frame. Slight changes in the frame
can lead to that the background colors are significantly changed, and the seg-
mentation result from frame to frame considerable differs, as shown in Figure
5.2. One could argue that this harms the perception more than a method with
lower performance but consistent over time.

Figure 5.2: Due to changes in the recording, the background colors determined by the ColorCube
can change significantly. The two binary masks in the figure are two consecutive frames with very
different binary masks due to a "bad" ColorCube background color update.

One could also improve the results by combining methods that are good in
different ways, either by alternating the methods due to video characteristics
or by combining them. This work could be based on further research on when
methods are successful, and what parts of the foreground they manage to
correctly classify. If two completely different methods both have a accuracy
of 50%, one could investigate whether they succeeded with the same 50% or
if they together could complement each other and score 100%. This was the
original thought behind the development of the machine learning classifier.
There are endless possibilities to improve the classifier by adding more, better
and less complex features which better describes the differences between
foreground and background. Artificial Intelligence in computer vision is a
popular topic, and gives more possibilities than only background foreground

73

Chapter 5. Discussion

segmentation, as one also could consider object detection, tracking and clas-
sification.

5.4 Ethics

Better and automatic segmentation algorithms that are used to segment human
beings can be used in surveillance cameras that automatically can detect and
classify objects. A better segmentation enables better object recognition. One
can argue that by improving computer vision techniques, one also takes a step
towards a surveillance society with cameras that can recognize citizens and is
a threat to integrity and privacy.

Another ethical aspect of video cameras are the audience that may end up
in the recordings without their knowledge and consent. The recordings are
privately used by the clubs and can not be accessed by the public. But one
interesting question is what happens if e.g. a crime is committed and was
caught on tape. Who has the rights to access what recordings, and when?

The General Data Protection Regulation (GDPR) will take action in May
2018. GDPR regulates how companies, organizations and similar stores and
collect data. Spiideo’s system is an analysis tool, where statistics and data
about the players can be presented in the application on top of the recordings.
How this data is stored and accessed is of ethical importance. It could be
personal information about the players, or medical information such as heart
rate which would be affected by the GDPR if stored. [5]

5.5 Contributions

The report was written in equal parts by the authors. The creation of the
data-set and the statistical segmentation methods were also implemented and
performed in equal parts by the authors.

74

5.5 Contributions

The median background model method, the motion detection method and
the machine learning classifier was implemented by Fredrik Hammar. The
ColorCube, the proposed alterations and the evaluation-scripts was imple-
mented by Johan Flinke.

75

6
Conclusion

The aim was to find a way to improve the current background foreground
segmentation in Spiideo’s sports analysis mobile application. A data-set with
13 recordings and a corresponding ground truth was created. Relevant seg-
mentation methods and possible improvements to the current method were
applied to the recordings in the data set. The outcome was evaluated and
compared in terms of pixel classification scores, complexity measurements
and by a visual evaluation.

Segmentation methods that significantly improved the segmentation re-
sults were found. The Median Background Model Frame Difference method
showed a robust performance on all recordings in the data-set with a reduced
computational time compared to the current method. It was also chosen as
the best method in the visual evaluation. The Improved Mixture of Gaussians
(MOG2) method also showed a good performance in both classification scores
and complexity. These methods take each pixels history in consideration and
therefore have a need to sample past frames.

Suggested alterations to the current method, the ColorCube, have been devel-
oped and evaluated. The resulting scores showed some minor improvements
but did not manage to compete with the two previously mentioned methods
(Median and MOG2). The ColorCube struggles with the outdoor weather
conditions as it takes the entire frame into consideration when extracting
background colors. As the background often had different colors in different
parts of each frame, it was hard to cover all variations. The results show

76

Chapter 6. Conclusion

that the current method and the suggested alterations, struggled to correctly
segment the recordings in the data-set.

A method based on motion detection was developed without great success
due to its high complexity. A novel machine learning classifier, taking both
color and motion into account, was implemented and evaluated. It did not
beat the methods based on only color or motion.

Future work could include to implement the best and most relevant meth-
ods in Spiideo’s system for a more reality-based evaluation. Better and more
purposeful classification scores and evaluations could be used to better com-
pare the methods relevance. More research can be put in how the median
background could be initiated during the first few frames for better perfor-
mance. To further improve the segmentation one could also find and evaluate
other methods, or try to combine methods that can complement each other.

77

Bibliography

Articles

[1] H. Ardö. (2009). Multi-target Tracking Using on-line Viterbi Optimisa-
tion and Stochastic Modelling. Centre for Mathematical Sciences, Lund
University.

[2] M. M. Azab, H. A. Shedeed and A. S. Hussein, "A new technique
for background modeling and subtraction for motion detection in real-
time videos," 2010 IEEE International Conference on Image Processing,
Hong Kong, 2010, pp. 3453-3456. doi: 10.1109/ICIP.2010.5653748

[3] J. Bouguet, "Pyramidal Implementation of the Lucas Kanade Feature
Tracker Description of the algorithm", Intel Corporation, Microproces-
sor Research Labs, 2000

[4] V. Badrinarayanan, A. Kendall and R. Cipolla, "SegNet: A Deep Convo-
lutional Encoder-Decoder Architecture for Image Segmentation," IEEE
Transactions on Pattern Analysis and Machine Intelligence, vol. 39, no.
12, pp. 2481-2495, Dec. 1 2017. doi: 10.1109/TPAMI.2016.2644615

[5] European Parliament and Council Directive on Citizens’ on the protec-
tion of natural persons with regard to the processing of personal data and
on the free movement of such data, and repealing Directive 95/46/EC.
General Data Protection Regulation. OJ L 119, 4.5.2016. 1–88. 2016.

[6] G. Farnebäck, "Two-Frame Motion Estimation Based on Polynomial
Expansion," Computer Vision Laboratory, Linköping University, 2003.

78

Bibliography

[7] A. B. Godbehere, A. Matsukawa and K. Goldberg, "Visual tracking of
human visitors under variable-lighting conditions for a responsive audio
art installation," 2012 American Control Conference (ACC), Montreal,
QC, 2012, pp. 4305-4312. doi: 10.1109/ACC.2012.6315174

[8] E. Hayman and J. O. Eklundh, "Statistical background subtraction for
a mobile observer," Proceedings Ninth IEEE International Confer-
ence on Computer Vision, Nice, France, 2003, pp. 67-74 vol.1. doi:
10.1109/ICCV.2003.1238315

[9] K. He, G. Gkioxari, P. Dollár and R. Girshick, "Mask R-CNN," 2017
IEEE International Conference on Computer Vision (ICCV), Venice,
2017, pp. 2980-2988. doi: 10.1109/ICCV.2017.322

[10] V. Jain, B. B. Kimia and J. L. Mundy, "Background Modeling Based
on Subpixel Edges," 2007 IEEE International Conference on Image
Processing, San Antonio, TX, 2007, pp. VI - 321-VI - 324. doi:
10.1109/ICIP.2007.4379586

[11] Xu Jian, Ding Xiao-qing, Wang Sheng-jin and Wu You-shou, "Back-
ground subtraction based on a combination of texture, color and inten-
sity," 2008 9th International Conference on Signal Processing, Beijing,
2008, pp. 1400-1405. doi: 10.1109/ICOSP.2008.4697394

[12] P. Kaewtrakulpong, R. Bowden, "An Improved Adaptive Background
Mixture Model for Realtime Tracking with Shadow Detection," Pro-
ceedings of 2nd European Workshop on Advanced Video-Based Surveil-
lance Systems, London, U.K, 2001, doi: 10.1007/978-1-4615-0913-
4_11.

[13] S. K. Lam, A. Pitrou, S. Seibert, "Numba: a LLVM-based Python JIT
compiler," Proceedings of the Second Workshop on the LLVM Compiler
Infrastructure. HPC, 2015, pp. 1-6, doi: 10.1145/2833157.2833162.

[14] A. Lepisk, "The use of Optic Flow within Background Subtraction,"
Master Thesis, KTH, Stockholm. 2005.

[15] J. Makhoul, F. Kubala, R. Schwartz, R. Weischedel, "Performance Mea-
sures For Information Extraction," In Proceedings of DARPA Broadcast
News Workshop, 1999, p. 249-252.

79

Bibliography

[16] N.J.B. McFarlane and C.P. Schofield, "Segmentation and tracking of
piglets in images," Machine Vision and Applications 8, 1995, pp. 187-
193, doi: 10.1007/BF01215814

[17] G. Nanfack, A. Elhassouny, R. O. H. Thami, "Squeeze-SegNet: A new
fast Deep Convolutional Neural Network for Semantic Segmentation,"
10th International Conference on Machine Vision, (ICMV), 2017.

[18] N. Singla. Motion Detection Based on Frame Difference Method. Inter-
national Journal of Information & Computation Technology, Volume 4,
Number 15, , 2014, pp.1559-1565.

[19] A. Sobral, A. Vacavant, "A comprehensive review of background sub-
traction algorithms evaluated with synthetic and real videos," Computer
Vision and Image Understanding, Volume 122, 2014, Pages 4-21, ISSN
1077-3142, https://doi.org/10.1016/

[20] C. Stauffer and W. E. L. Grimson, "Adaptive background mix-
ture models for real-time tracking," Proceedings. 1999 IEEE Com-
puter Society Conference on Computer Vision and Pattern Recogni-
tion (Cat. No PR00149), Fort Collins, CO, 1999, pp. 252 Vol. 2. doi:
10.1109/CVPR.1999.784637

[21] Z. Zivkovic, "Improved adaptive Gaussian mixture model for back-
ground subtraction," Proceedings of the 17th International Confer-
ence on Pattern Recognition, 2004. ICPR 2004, pp. 28-31 Vol.2. doi:
10.1109/ICPR.2004.1333992

[22] Z. Zivkovic and F. Heijden. "Efficient adaptive density estimation per
image pixel for the task of background subtraction," Pattern Recogni-
tion Letters, Volume 27, Issue 7, 2006, Pages 773-780, ISSN 0167-8655,
https://doi.org/10.1016/

Web-pages

[23] CouNT GitHub Documentation and source files. https://sagi-z.
github.io/BackgroundSubtractorCNT/, retrieved [2018-05-17]

[24] CouNT GitHub Documentation and source files. https://github.
com/sagi-z/BackgroundSubtractorCNT, retrieved [2018-05-17]

80

https://sagi-z.github.io/BackgroundSubtractorCNT/
https://sagi-z.github.io/BackgroundSubtractorCNT/
https://github.com/sagi-z/BackgroundSubtractorCNT
https://github.com/sagi-z/BackgroundSubtractorCNT

Bibliography

[25] CouNT Segmentation Method OpenCV Class Reference.
https://docs.opencv.org/3.3.0/de/dca/classcv_1_
1bgsegm_1_1BackgroundSubtractorCNT.html, retrieved [2018-05-
17]

[26] Farneback Optical Flow Method Matlab Documenta-
tion. https://www.mathworks.com/help/vision/ref/
opticalflowfarneback-class.html, retrieved [2018-05-17]

[27] FFMPEG Webpage, Software Documentation. https://www.ffmpeg.
org/documentation.html, retrieved [2018-05-17]

[28] Github ColorCube Documentation https://github.com/
pixelogik/ColorCube , retrieved [2018-05-17]

[29] Godbehere, Matsukawa, Goldberg (GMG) Segmentation Method
OpenCV Class Reference. https://docs.opencv.org/3.3.0/d1/
d5c/classcv_1_1bgsegm_1_1BackgroundSubtractorGMG.html,
retrieved [2018-05-17]

[30] Improved Mixture of Gaussian Segmentation Method OpenCV Class
Reference. https://docs.opencv.org/3.3.0/d7/d7b/classcv_
1_1BackgroundSubtractorMOG2.html, retrieved [2018-05-17]

[31] KNN Mixture of Gaussian Segmentation Method OpenCV Class
Reference. https://docs.opencv.org/3.3.0/db/d88/classcv_
1_1BackgroundSubtractorKNN.html, retrieved [2018-05-17]

[32] Morphological Transformations in OpenCV. https://docs.
opencv.org/3.0-beta/doc/py_tutorials/py_imgproc/py_
morphological_ops/py_morphological_ops.html, retrieved
[2018-05-17]

[33] Mixture of Gaussian Segmentation OpenCV Class Reference.
https://docs.opencv.org/3.3.0/d6/da7/classcv_1_
1bgsegm_1_1BackgroundSubtractorMOG.html, retrieved [2018-05-
17]

[34] OpenCV, Official Webpage and Documentation. https://opencv.
org/about.html, retrieved [2018-05-17]

[35] PSUTIL Documentation. https://psutil.readthedocs.io/en/
latest/, retrieved [2018-05-17]

81

https://docs.opencv.org/3.3.0/de/dca/classcv_1_1bgsegm_1_1BackgroundSubtractorCNT.html
https://docs.opencv.org/3.3.0/de/dca/classcv_1_1bgsegm_1_1BackgroundSubtractorCNT.html
https://www.mathworks.com/help/vision/ref/opticalflowfarneback-class.html
https://www.mathworks.com/help/vision/ref/opticalflowfarneback-class.html
https://www.ffmpeg.org/documentation.html
https://www.ffmpeg.org/documentation.html
https://github.com/pixelogik/ColorCube
https://github.com/pixelogik/ColorCube
https://docs.opencv.org/3.3.0/d1/d5c/classcv_1_1bgsegm_1_1BackgroundSubtractorGMG.html
https://docs.opencv.org/3.3.0/d1/d5c/classcv_1_1bgsegm_1_1BackgroundSubtractorGMG.html
https://docs.opencv.org/3.3.0/d7/d7b/classcv_1_1BackgroundSubtractorMOG2.html
https://docs.opencv.org/3.3.0/d7/d7b/classcv_1_1BackgroundSubtractorMOG2.html
https://docs.opencv.org/3.3.0/db/d88/classcv_1_1BackgroundSubtractorKNN.html
https://docs.opencv.org/3.3.0/db/d88/classcv_1_1BackgroundSubtractorKNN.html
https://docs.opencv.org/3.0-beta/doc/py_tutorials/py_imgproc/py_morphological_ops/py_morphological_ops.html
https://docs.opencv.org/3.0-beta/doc/py_tutorials/py_imgproc/py_morphological_ops/py_morphological_ops.html
https://docs.opencv.org/3.0-beta/doc/py_tutorials/py_imgproc/py_morphological_ops/py_morphological_ops.html
https://docs.opencv.org/3.3.0/d6/da7/classcv_1_1bgsegm_1_1BackgroundSubtractorMOG.html
https://docs.opencv.org/3.3.0/d6/da7/classcv_1_1bgsegm_1_1BackgroundSubtractorMOG.html
https://opencv.org/about.html
https://opencv.org/about.html
https://psutil.readthedocs.io/en/latest/
https://psutil.readthedocs.io/en/latest/

Bibliography

[36] Python Webpage, Software Documentation. https://www.python.
org/, retrieved [2018-05-17]

[37] Scikit-Learn Python Documentation. http://scikit-learn.org/
stable/index.html, retrieved [2018-05-17]

[38] Scikit-Learn Python Documentation for different classifiers. http:
//scikit-learn.org/stable/supervised_learning.html,
retrieved [2018-05-17]

82

https://www.python.org/
https://www.python.org/
http://scikit-learn.org/stable/index.html
http://scikit-learn.org/stable/index.html
http://scikit-learn.org/stable/supervised_learning.html
http://scikit-learn.org/stable/supervised_learning.html

Appendix A

Appendix A contains examples of a frame from each recording, and the result-
ing binary masks produced by all evaluated segmentation methods. Examples
from recordings Gefle and Kalmar are shown in chapter 4.

83

Segmentation Masks from Recording: Jamkraft Arena (1)
Original Frame Ground Truth MOG MOG2 CNT

KNN GMG Color Cube (Original) Color Cube Alteration 1 Color Cube Alteration 2

Color Cube Alteration 4 Color Cube Alteration 5 Median T=20 Median T=35 Median T=60

Optical Flow Machine Learning

Figure 6.1: A binary mask from each method from recording Jamkraft Arena (1). The most upper left image is the frame which is segmented.

Segmentation Masks from Recording: Jamkraft Arena (2)
Original Frame Ground Truth MOG MOG2 CNT

KNN GMG Color Cube (Original) Color Cube Alteration 1 Color Cube Alteration 2

Color Cube Alteration 4 Color Cube Alteration 5 Median T=20 Median T=35 Median T=60

Optical Flow Machine Learning

Figure 6.2: A binary mask from each method from recording Jamkraft Arena (2). The most upper left image is the frame which is segmented.

Segmentation Masks from Recording: Klockener
Original Frame Ground Truth MOG MOG2 CNT

KNN GMG Color Cube (Original) Color Cube Alteration 1 Color Cube Alteration 2

Color Cube Alteration 4 Color Cube Alteration 5 Median T=20 Median T=35 Median T=60

Optical Flow Machine Learning

Figure 6.3: A binary mask from each method from recording Klockener. The most upper left image is the frame which is segmented.

Segmentation Masks from Recording: La Manga
Original Frame Ground Truth MOG MOG2 CNT

KNN GMG Color Cube (Original) Color Cube Alteration 1 Color Cube Alteration 2

Color Cube Alteration 4 Color Cube Alteration 5 Median T=20 Median T=35 Median T=60

Optical Flow Machine Learning

Figure 6.4: A binary mask from each method from recording La Manga. The most upper left image is the frame which is segmented.

Segmentation Masks from Recording: La Manga (North Side)
Original Frame Ground Truth MOG MOG2 CNT

KNN GMG Color Cube (Original) Color Cube Alteration 1 Color Cube Alteration 2

Color Cube Alteration 4 Color Cube Alteration 5 Median T=20 Median T=35 Median T=60

Optical Flow Machine Learning

Figure 6.5: A binary mask from each method from recording La Manga (North Side). The most upper left image is the frame which is segmented.

Segmentation Masks from Recording: La Manga (South Side)
Original Frame Ground Truth MOG MOG2 CNT

KNN GMG Color Cube (Original) Color Cube Alteration 1 Color Cube Alteration 2

Color Cube Alteration 4 Color Cube Alteration 5 Median T=20 Median T=35 Median T=60

Optical Flow Machine Learning

Figure 6.6: A binary mask from each method from recording La Manga (South Side). The most upper left image is the frame which is segmented.

Segmentation Masks from Recording: Malmö IP (1)
Original Frame Ground Truth MOG MOG2 CNT

KNN GMG Color Cube (Original) Color Cube Alteration 1 Color Cube Alteration 2

Color Cube Alteration 4 Color Cube Alteration 5 Median T=20 Median T=35 Median T=60

Optical Flow Machine Learning

Figure 6.7: A binary mask from each method from recording Malmö IP (1). The most upper left image is the frame which is segmented.

Segmentation Masks from Recording: Malmö IP (2)
Original Frame Ground Truth MOG MOG2 CNT

KNN GMG Color Cube (Original) Color Cube Alteration 1 Color Cube Alteration 2

Color Cube Alteration 4 Color Cube Alteration 5 Median T=20 Median T=35 Median T=60

Optical Flow Machine Learning

Figure 6.8: A binary mask from each method from recording Malmö IP (2). The most upper left image is the frame which is segmented.

Segmentation Masks from Recording: Malmö IP (3)
Original Frame Ground Truth MOG MOG2 CNT

KNN GMG Color Cube (Original) Color Cube Alteration 1 Color Cube Alteration 2

Color Cube Alteration 4 Color Cube Alteration 5 Median T=20 Median T=35 Median T=60

Optical Flow Machine Learning

Figure 6.9: A binary mask from each method from recording Malmö IP (3). The most upper left image is the frame which is segmented.

Segmentation Masks from Recording: Östgötaporten
Original Frame Ground Truth MOG MOG2 CNT

KNN GMG Color Cube (Original) Color Cube Alteration 1 Color Cube Alteration 2

Color Cube Alteration 4 Color Cube Alteration 5 Median T=20 Median T=35 Median T=60

Optical Flow Machine Learning

Figure 6.10: A binary mask from each method from recording Östgötaporten. The most upper left image is the frame which is segmented.

Segmentation Masks from Recording: Ice Hockey
Original Frame Ground Truth MOG MOG2 CNT

KNN GMG Color Cube (Original) Color Cube Alteration 1 Color Cube Alteration 2

Color Cube Alteration 4 Color Cube Alteration 5 Median T=20 Median T=35 Median T=60

Optical Flow Machine Learning

Figure 6.11: A binary mask from each method from recording Ice Hockey. The most upper left image is the frame which
is segmented.

Appendix B

An example of the score sheet used in the visual evaluation are shown on the
next page.

95

Bibliography

96

