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Abstract

This paper introduces machine learning to automate the coarsening choices in coarsened

exact matching (CEM) as a monotonic imbalance bounding matching class. I suggest to

replace the otherwise arbitrary multivariate stratification process with a binary classification

tree. This way, I can minimise potential bias caused by subjective preferences. By using

the LaLonde (1986) dataset, I systematically compare this novel approach with competing

matching specifications, in particular arbitrary CEM and propensity score matching (PSM).

While the automated CEM returns more accurate results than PSM, coarsening arbi-

trarily performs best in terms of reducing imbalance as well as in the post-matching causal

estimation.

Keywords: Matching, Machine learning, Coarsened exact matching, Causal inference
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1 Introduction

Matching is a common method to preprocess observational data (Ho et al., 2007; Morgan and

Winship, 2014; King and Nielsen, 2016). The aim of matching is to reduce model dependence

by creating covariate balance between the treated and the control group (Diamond and

Sekhon, 2013; King and Nielsen, 2016). Covariate balance implies to equalise the empirical

distributions between both of these groups, which is accomplished by discarding ill-suited

observations from the data (Diamond and Sekhon, 2013). If matching is successful, it can

reduce inefficiencies and bias (King and Nielsen, 2016). Thus, matching helps to make the

assumptions needed to make causal inference more credible.

In its basic form, the matching algorithm assigns each treated unit one observation from

the control group with identical characteristics. On the one hand, using more covariates

increases the accuracy of a match. On the other hand, it also becomes increasingly difficult

to find identical – or exact – matches. This trade-off is called the “curse of dimensionality”

(Bellman, 1961) and represents the fundamental problem of matching. A number of differ-

ent matching methods have been proposed that aim to reduce dimensionality while trying to

keep the variance increase under control (Rosenbaum and Rubin, 1983; Iacus et al., 2011; Dia-

mond and Sekhon, 2013). Among the different matching methods, propensity score matching

(PSM) is by far the most commonly applied (Pearl, 2010). PSM effectively reduces dimen-

sionality by collapsing a hyper-dimensional space of conditioning variables and projecting it

on a one-dimensional propensity score. An alternative matching method is coarsened exact

matching (CEM), which first stratifies the dataset into (more) balanced subsets before finding

matches (Iacus et al., 2011, 2012). Despite their popularity in applied research, matching

methods are frequently criticised as not being suitable to effectively reduce the imbalance in

observational data. King and Nielsen (2016) argue that the propensity score methodology is

unsuitable for matching as it fails to accurately measure the multi-dimensional distance be-

tween observations from the treatment and the control group. Yet, CEM relies on manually

or arbitrarily stratifying each covariate. Therefore the results may suffer from bias caused by

the personal preferences of the researcher.

This paper proposes to integrate machine learning with non-parametric monotonic im-

balance bounding matching methods such as CEM. I develop a data-driven method that

automatically stratifies the data before applying CEM. This way, I offer a numeric solution

to the problem of arbitrary coarsening, as the machine learning algorithm makes the strat-

ification choice that has previously been made by the researcher. I systematically test and

1



compare this novel approach with the standard applications of PSM as well as CEM by us-

ing the seminal dataset of LaLonde (1986). In addition, I also test whether estimating the

propensity scores non-parametrically, can improve the performance in PSM.

Machine learning are non-parametric methods for model prediction that have become

increasingly popular to research in econometrics and applied economics (Varian, 2014; Athey

and Imbens, 2017; Mullainathan and Spiess, 2017). In PSM, machine learning algorithms rep-

resent a non-parametric alternative to estimate the propensity score (McCaffrey et al., 2004;

Setoguchi et al., 2008; Lee et al., 2010; Wyss et al., 2014). Indeed, estimating the propensity

score parametrically – usually with a logistic regression – is a major point of critique to the

PSM methodology. Since the true propensity score usually remains unknown, the results of

a parametric approach may be subject to misspecification (Diamond and Sekhon, 2013; Imai

and Ratkovic, 2014). Diamond and Sekhon (2013) use machine learning as an automation

process for finding the optimal covariate balance before estimating the propensity score. This

way, the researcher can circumvent the problem of having to know the actual propensity score.

King and Nielsen (2016) criticise PSM to perform badly in particular once the data is bal-

anced, because PSM can no longer differentiate between good and bad matches. Instead, the

authors propose CEM as an alternative and more accurate methodology. CEM first stratifies

the dataset into (more) balanced subsets. Next, the method matches the data within these

subsets with exact matching or a statistical model. The latter now has to estimate much

shorter distances than in the unstratified data (Iacus et al., 2011, 2012). I build on CEM

and implement recursive binary classification trees as a data-driven method to automate the

selection of the hyper-dimensional histograms on which the stratification is grounded.

Overall, I find that both CEM specifications outperform PSM. However, the automated

CEM cannot reduce imbalance as effectively as matching arbitrarily with CEM. Moreover,

the arbitrarily matched data returns the most accurate results in the post-matching causal

estimations. I also find, that using classification trees to estimate the propensity score does

not improve the performance in PSM.

The remainder of this thesis is organised as follows. Section 2 provides a brief overview

on matching and introduces the two matching methods of PSM as well as CEM. Further-

more, I explain why propensity scores are unsuitable for matching and highlight potential

shortcomings of the current coarsened exact matching methodology. In section 3, I develop

a strategy how classification trees might be able to overcome the problem of coarsening ar-
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bitrarily. Following this, section 4 introduces a multivariate imbalance measure that enables

a comparison of the different methods. In section 5, I present the results and measure the

performance of the methods by applying them to a real dataset. Section 6 summarises the

findings, outlines the limitations and gives some ideas for future research.
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2 Matching Methods

Matching may be defined as “simultaneously seeking to maximize covariate balance between

the treated and control groups and the matched sample size” (King et al., 2011, p. 1). Match-

ing is a popular method in many quantitative fields, including statistics (Rosenbaum, 2002;

Rubin and Stuart, 2006), economics (Dehejia and Wahba, 1999; Imbens, 2004; Smith and

Todd, 2005; Abadie and Imbens, 2006; VanderWeele and Hernan, 2013), sociology (Morgan

and Harding, 2006) and political science (Ho et al., 2007).

In this section, I give a brief introduction to the notations and properties of matching. I

introduce the two main classes of matching methods: Equal Percent Bias Reducing (EPBR)

and Monotonic Imbalance Bounding (MIB) matching. Thereafter, I explain propensity score

matching as an EPBR class method and why propensity scores are ineffective for matching.

Next, I introduce coarsened exact matching as a MIB class method followed by possible

shortcomings in the current CEM methodology.

2.1 The Properties of Matching

The goal of matching is to establish the same covariate balance that would otherwise be

created by random assignment. This way, model dependence can be reduced by matching.

Model dependence implies that the difference between the treatment and the control group

cannot be isolated to the treatment effect alone (King and Nielsen, 2016). Instead, the control

variables, which are included in the model, also have some effect on the outcome.

Assume a population N in which each unit i = 1, ..., N is assigned into two groups by

a treatment variable Ti ∈ 0, 1, where 1 denotes treatment and 0 control (VanderWeele and

Hernan, 2013). Further assume a k-dimensional set of covariates Xi as well as some outcome

Yi. For each unit there are two potential outcomes, Y1,i for being treated and Y0,i for being

assigned into the control group.

The resulting true causal effect is denoted as the difference τ = Y1,i− Y0,i. Yet, the effect

remains unobservable at the unit level as only one of the two outcomes is observed, such

that Yi = TiY1,i + (1 − Ti)Y0,i (Holland, 1986; Iacus et al., 2011). Estimating the causal

effects essentially implies to predict or approximate the unobserved potential outcomes (Ru-

bin, 1976a; Stuart, 2010). Typically, we approximate the unobserved potential outcome Y0

of a population with that of the untreated (control) population. If treatment is randomly

assigned, for example in a natural experiment, the treatment assignment is known by the

researcher. Then, the covariance between treatment and control group is balanced and any
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difference between both groups is random (Stuart, 2010). In observational data, however,

treatment assignment is non-random and not controlled or known by the researcher (King

and Nielsen, 2016). Here, matching can help to balance the covariates between the treatment

and control group before estimating the causal effect.

Formally, matching algorithms try to find for every treated unit with covariates Xi some

control unit with covariates Xj such that Xi and Xj are as similar as possible, d(Xi, Xj) ' 0

(Iacus et al., 2011). Three assumptions must hold in order to estimate an unbiased causal

effect with matched data: conditional independence, the overlap assumption and the stable

unit treatment value assumption.

Conditional independence or unconfoundedness is defined as some outcome Yi to be inde-

pendent of being assigned treatment Y1,i (or control Y0,i) in Ti conditional on the covariates

included in X, such that (Y1,i, Y0,i) ⊥ Ti|X (Rosenbaum and Rubin, 1983; Stuart, 2010).

The conditional independence assumption is an identifying assumption and thus, cannot be

tested. It is satisfied when Xi includes all variables that affect – or in practice are known

to affect – the outcome Yi (VanderWeele and Hernan, 2013; King and Nielsen, 2016). If the

conditional independence assumption is violated, the result suffers from the omitted variable

bias and it becomes infeasible to make causal inference with the matched data (Ho et al.,

2007). Yet, it is impossible to be ultimately certain that all relevant covariates are included

for sure (Rubin, 2008). Therefore, the researcher has to rely on economic reasoning as well

as previous research. The overlap assumption, 0 < Pr(Ti = 1|X) < 1, ensures that all obser-

vations i have a positive probability of being assigned a treatment (Smith and Todd, 2005).

Finally, the stable unit treatment value assumption implies that the values of potential out-

comes are fixed and do not change if treatment Ti changes from one to zero (VanderWeele

and Hernan, 2013).

Assuming that these three assumptions hold, it is possible to overcome the counterfactual

problem and to estimate the causal effect with the matched data using the average treatment

effect on the treated (ATET) (Imbens, 2004; Angrist and Pischke, 2009). ATET is defined

as

τ̂ATET = E[Y1,i|Ti = 1]− E[Y0,i|Ti = 1] (1)

and if the data is successfully balanced, it is an unbiased estimator for the true causal effect

such that E[τ̂ATET ] = τ (Imbens, 2004; Angrist and Pischke, 2009; King and Nielsen, 2016).

In exact matching the potential outcomes of the control group are estimated at the unit
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level, such that both, treatment and control group, have an identical set of covariates and

d(Xi, Xj) = 0 (Iacus et al., 2011). Then τ̂ reduces to a simple difference in mean

τ̂ =
1

N

∑
i∈T

Y T
i −

1

N

∑
j∈C

ωjY
C
j , (2)

where ω is a weight that compares a treated individual with one from the control group

(Smith and Todd, 2005; Iacus et al., 2012).

The accuracy of finding good matches increases with the number of covariates. Yet, the

number of dimensions increases as well and local matching becomes infeasible. When exact

matching is no longer possible, some form of model m` has to be applied in order to estimate

the distance between Xi and Xj such that Ŷ0 = m`(X̃j), where X̃j denotes those values in

the control group that are approximately similar to the treated units (Iacus et al., 2011).

This estimation process increases imbalance and causes some model dependence. Therefore,

the researcher faces a trade-off between reducing dimensionality in order to maintain the pre-

dictive power of the matched data and an increasing imbalance, since no existing matching

method is able to optimally reduce both (King et al., 2011).

All matching methods address this trade-off by trying to reduce dimensionality without

increasing variance too much. The literature defines two groups of matching methods: Equal

Percent Bias Reducing (EPBR) and Monotonic Imbalance Bounding (MIB) (Iacus et al., 2011,

2012). PSM belongs the the first class and CEM to the latter. The fundamental difference

between both is that EPBR fixes the number of matched control units before matching,

while MIB fixes the maximum level of imbalance (Iacus et al., 2011). In EPBR all treated

observations have to be matched, which implies that the number of treated observations that

are matched is equal to the total number of treated units in the dataset, i.e. mT = nT .

However, the number of controls can be mC ≤ nC . Furthermore, denote X̄ the sample mean

of the relevant subgroup of the dataset. EPBR then solves the following equation

E[X̄mT − X̄mC ] = γE[X̄nT − X̄nC ], (3)

where 0 < γ < 1 is a scalar that indicates the level of imbalance between the total dataset

and the feasible matches (Rubin, 1976b; Iacus et al., 2011).
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MIB on the contrary solves the inequality

|X̄mT j − X̄mCj | ≤ γ|X̄nT j − X̄nCj |, (4)

where X̄nT j , X̄nCj , X̄mT j and X̄mCj are the sample means before and after matching for

treated and control units respectively (Iacus et al., 2011). Rewrite the right hand side of

equation 4 as δj = γ|X̄nT j − X̄nCj | to obtain

|X̄mT j − X̄mCj | ≤ δj , for j = 1, ..., k. (5)

Since δj is chosen before matching, mT and mc are defined through the matching process

Iacus et al. (2011).

Recall, that the goal of matching was to minimise the distance between both sets of

covariates Xi and Xj . Equation 5 can then be rewritten such that a matching method can

be called monotonic imbalance bounding, MIB(f,d), if for some monotonically increasing

function γf,d(π) it holds that

d(f(χmT (π)), f(χmC(π))) ≤ γf,d(π). (6)

Here, π denotes a predefined vector of tuning parameters, that has the same number of rows

as there are covariates in X (i.e. k) while χmT and χmc are subsets created by the matching

process (Iacus et al., 2011). From equation 6 two essential properties follow for MIB class

matching methods: firstly the function γf,d(π) only depends on π, as d and f are predefined

by design; and secondly changing one tuning parameter in π for its assigned covariate in X

does not alter the defined maximum imbalance for the other covariates (Iacus et al., 2011).

2.2 Propensity Score Matching

Propensity score matching (PSM) seeks to achieve covariance balance such that

(Y1,i, Y0,i) ⊥ p(Ti|X) (Rosenbaum and Rubin, 1983; Dehejia and Wahba, 1999). Hereby,

PSM addresses the problem of dimensionality by collapsing the k-dimensional matching pro-

cess into a one-dimensional propensity score (King and Nielsen, 2016). Given the conditional

independence assumption (potential outcomes are independent on treatment status condi-

tional on X), potential outcomes are also independent on a scalar function of covariates

defined as

p(x) = E[Ti|X] = Pr[Ti = 1|X] (7)
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which is the propensity score (Dehejia and Wahba, 2002; Angrist and Pischke, 2009). In

other words, propensity score matching implies that it is enough to estimate the probability

of being assigned to a treatment, given the characteristics in X for τ̂ to be an unbiased

estimator for the true causal effect.

2.3 The Inefficiency of PSM and the PSM Paradox

In its attempt to reduce dimensionality, PSM assumes a fully randomised experiment within

the observational dataset. Fully randomised means that PSM – as an EPBR matching class

method – finds matches for all observations from the treatment group such that mT = nT .

The propensity score methodology is therefore unsuitable in three ways for matching: first,

PSM is inefficient. Second, PSM estimates the propensity score with a logistic regression

model in its standard application. The logit specification, however, makes PSM sensitive

to statistical bias as estimating the propensity score now relies on parametric assumptions.

Third, collapsing a multi-dimensional problem into a one-dimensional propensity score may

cause random pruning if the covariates are already balanced in the dataset. In fact, PSM

begins earlier to prune randomly if the unmatched data is more balanced from the beginning.

Since this phenomenon fundamentally contradicts with the idea of matching, it is called the

“Propensity Score Paradox” in the literature (King et al., 2011; King and Nielsen, 2016).

To understand the inefficiency argument recall that under exact matching the matched

subset is defined such that d(Xi −Xj) = 0. Therefore, imbalance is equal to zero by design.

However, as the number of covariates in X grows in k, finding exact matches becomes an

increasingly difficult task. PSM tries to circumvent this problem by reducing the dimension-

ality from a k × n matrix to an one-dimensional propensity score. Now, only the condition

that d(p̂(xi)− p̂(xj)) = 0 must hold. This solution seems sensible, since it is computationally

much more efficient to match two one-dimensional propensity scores, than two k × n matri-

ces. However, this simplification is misleading and d(Xi −Xj) 6= d(p̂(xi) − p̂(xj)). In PSM,

the treatment assignment only depends on the probability of actually being treated. Recall

equation 7, where equality is achieved by conditioning on the propensity score such that

p(x) = Pr(Ti|X). This equalisation implies that p(x) is in turn conditional on the covariates

such that p(x)|X. While PSM may indeed estimate two balanced one-dimensional propensity

scores, p̂(xi) = p̂(xj), it does not necessarily imply that the underlying k × n-dimensional

covariate matrix is matched exactly as well and Xi 6= Xj . Consequently, the imbalance is not

equal to zero and the assumption that d(p̂(xi) − p̂(xj)) = 0 does no longer hold true (King

8



and Nielsen, 2016).

Full randomisation as in the case for PSM requires some statistical model to estimate

the propensity score. Usually p(x) is estimated by a logit specification of the form p(x)i =

(1 + eXiβ̂)−1 before computing the distance (King and Nielsen, 2016). In practice, however,

the true propensity score remains unknown to the researcher. Therefore, using a logistic

regression makes PSM sensitive to misspecification and thus, a possible source of bias (Dia-

mond and Sekhon, 2013). Furthermore, making parametric assumptions contradicts with the

fundamental goal of matching to actually find the true data generating process (King and

Nielsen, 2016).

The propensity score paradox implies that if PSM is applied to a randomised and balanced

dataset, PSM leads to random pruning. Recall, that the aim of matching is to find the

experimental data within an observational dataset. Therefore, unnecessary observations are

pruned away in order to isolate the “experiment” and to achieve covariate balance. However,

once PSM has established covariate balance, the one-dimensional propensity score can no

longer differentiate between good and bad matches. This is because a one-dimensional vector

does not depict the true multi-dimensional distance of two points. Consequently, PSM starts

to match randomly which leads to random pruning. The imbalance increases again and

eventually trends towards maximal imbalance. In real datasets the paradox causes random

pruning as soon as PSM has established covariate balance. In an extreme case – i.e. when

using data from a natural experiment – the propensity score paradox sets in immediately

(King and Nielsen, 2016).

2.4 Coarsened Exact Matching

Coarsened exact matching (CEM) temporarily creates s ∈ S strata or bins to place similar

values in a single stratum. T s denotes the treated units in stratum s and ms
T = #T s the

number of treated units in s as well as Cs and ms
C = #Cs for the control units respectively.

Let nT = ∪s∈Sms
T denote the total number of all treated units in the dataset and the total

number controls as nC = ∪s∈Sms
C respectively (Iacus et al., 2012). Next, CEM computes

weights as

wi =


1, i ∈ T s

mC
mT

ms
T

ms
C
, i ∈ Cs

which implies that the number of control units equals the number of treated units (which are

assigned a weight of wi = 1). Bins that do not contain at least one treated and control unit

9



are discarded (wi = 0) (King et al., 2011; Iacus et al., 2011, 2012).

Recall equations 5 and 6 from the previous section. CEM as an MIB method fixes the level

maximum of imbalance before the matching process. All bad matches that would cause a

higher imbalance than the predefined threshold are automatically excluded from the matching

process. Now, the remaining imbalance should be small enough to match at unit level or to

apply some statistical model within each stratum in order to efficiently estimate the distance

without causing too much model dependence (Iacus et al., 2012).

2.5 The Choice of Coarsening

CEM, as a MIB class matching method, chooses the number of included treated units ac-

cording to the ex ante defined maximum level of imbalance such that mT ⊆ nT . Moreover,

CEM only has to find matches within the predefined number of s subsets or strata. This

way, the distances are short enough that CEM can apply exact matching and therefore it is a

non-parametric matching method. Finally, the researcher has full control over the maximum

imbalance of the matching process, as he or she chooses the coarsening level for every variable

independently. Yet, these convenient properties of CEM come at a cost.

First, by fixing the maximum level of imbalance, CEM may prune away too many obser-

vations such that the matching process threatens the explanatory power of the post-matching

causal estimations (Iacus et al., 2012). This threat is particularly present in large and high-

dimensional datasets with many covariates. Already very few cut-points may result in large

numbers of bins. Note that the number of strata increases in k with sk. Yet, CEM only

allows at most n strata, that is when each observation is placed in its own bin (Iacus et al.,

2011; Abadie and Imbens, 2012).

Secondly, CEM relies in its standard application on economic reasoning or arbitrarily

choosing the coarsening level for every variable.1 However, human interference in any kind of

estimation should be avoided as it is one of the prime sources of bias (Banaji and Greenwald,

2016). Indeed, replacing as much as possible of the human decision making process by non-

parametric numerical approaches is the ultimate goal of statistical science (King and Nielsen,

2016).

1Although Iacus et al. (2009) and Iacus et al. (2012) offer some automating mechanisms. Ultimately, the
final choice on coarsening (and the recommended best practice) requires the researcher to take an active role
in the coarsening decision.
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3 Proposing Classification Trees to Automate the Coarsening

Choices in CEM

There are different types of tree based methods that are applicable to regression as well as

classification problems (see Hastie et al., 2009, for details). Since treatment assignment is

binary, I choose to use a recursive binary tree from the CART (Classification and Regression

Tree) family. First, I introduce the method of classification trees. Second, I develop an

approach how trees can be applied to automate the coarsening choices in CEM.

3.1 Classification Trees

Classification trees predict the likelihood that some observation belongs to a certain class of

an event by stratifying the feature space, Xi (i.e. the n × k covariate matrix), into hyper-

dimensional rectangles. In region R1, ..., Rm, the tree fits a simple model or a constant

denoted as cm (Hastie et al., 2009; James et al., 2013). The tree predicts the outcome – here

treatment – with the model

f̂(X) =
M∑
m=1

cmIRm(X), (8)

where m = 1, ...,M denotes the number of nodes for regions R1, ..., Rm (Hastie et al., 2009).

In order to optimally split the nodes, it is desired to place each unit in a region according

to the most likely class (James et al., 2013). Let p̂mk denote the proportion of observations

that belong to class k in node m such that

p̂mk =
1

Nm

∑
xi∈Rm

I(yi = k). (9)

The researcher can choose from several criteria that are used to define the splits in re-

cursive binary classification trees. Here, I define splits according to the standard practice,

by maximising the Gini index computed on the observed outcomes across m nodes (Hastie

et al., 2009). The Gini index is defined as

G =

K∑
k=1

p̂mk(1− p̂mk). (10)

The algorithm thus minimises the variance of observed outcomes within nodes while max-

imising the variance across K classes. Clearly, if many values of p̂mk are either close to one

or zero, the Gini index is low, indicating that a node m contains many values from one class

11



only (James et al., 2013).

Tree based methods tend to overfit the data. Overfitting, implies that the model loses

prediction power by extracting information from the error or the noise and falsely follows

that information too closely (James et al., 2013). Therefore, after having grown an extensive

or “greedy” tree T0, some complexity criterion Cα(T ) is applied to prune it in order to

improve its predictive power (Breiman et al., 1984). In classification problems, trees are

pruned according to minimising the misclassification rate over all splits (James et al., 2013).

The optimal misclassification rate that minimises α is given as

Cα(T ) = 1−max
k

(p̂mk). (11)

3.2 Using Classification Trees in Matching

The original purpose of decision trees as a form of supervised machine learning is to train

the algorithm with the help of a teacher on a training dataset, in order to predict some

outcome out of sample (Varian, 2014; Athey and Imbens, 2017). Here, I propose a binary

tree because of its binning properties and not primarily for its predictive power. In fact, tree

based methods work similarly to CEM as they also stratify the data into hyper-dimensional

regions (Hastie et al., 2009). Therefore, I implement recursive binary trees as a data-driven

method to automatise the stratification process in CEM. This way, human interference in the

decision making process is reduced to a minimum.

|
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Figure 1: Visualisation of a recursive binary classification tree with four levels and 14
terminal nodes
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I grow an extensive tree T0, where the number of terminal nodes is equal to the number

of strata |T0| = s. Then, the usual CEM algorithm is applied in these |T | strata. Figure

1 presents an example of a tree with four levels and 14 terminal nodes estimated from the

LaLonde (1986) data, which I present in section 5.

Automatising the multivariate stratification process with a classification tree is efficient

but does not violate the properties of MIB class matching methods. The binary tree optimises

the coarsening of each covariate in X according to equations 9 and 10. Thus, machine

learning algorithms replace the manual and cumbersome process of coarsening every variable

independently. Yet, the researcher remains in full control of the absolute imbalance level by

defining the total depth of the tree or the maximum number of nodes since |T0| = s. In

essence, this approach implies that one only has to control a single variable: the number of

terminal nodes.

However, the matching process remains monotonic imbalance bounding. The decision

tree stratifies the k × x covariate matrix – or feature space in statistical terms – into hyper-

dimensional subregions. Therefore, applying machine learning algorithms in CEM does not

violated the properties of equation 6.

As a result, binary trees represent a data-driven solution to automate the process of

creating covariate balance and reducing model dependence.
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4 Measuring Imbalance

To measure the performance of a particular matching technique in the context of reducing

model dependence, a multivariate imbalance measure is needed, that incorporates as much of

the distribution as possible and is able to capture discrete splitting (Iacus et al., 2012). Iacus

et al. (2011) introduce a multivariate imbalance measure based on the L1 norm regularisation.

I follow the authors’ advise and introduce the L1 imbalance measure because it normalises

the measurement of imbalance and thus allows to compare the different methods on a single

scale.

H(x1) denotes the values resulting from binning the covariate x1. The multidimensional

histogram is the Cartesian product of all k covariates H(X) = H(x1) × ... × H(xk). The

relative frequency distributions for the units that are placed in the bin with coordinates

`1, ..., `k of the multivariate cross-tabulation for the treated and control group are denoted as

f`1,...,`k and g`1,...,`k respectively (Iacus et al., 2011, 2012). The L1 distance is then defined as

L1(f, g,H) =
1

2

∑
`1...`k∈H(X)

|f`1...`k − g`1...`k |, (12)

where L1 ∈ [0, 1]. In principle, the L1 norm compares two multi-dimensional histograms, one

with the distribution of the treatment group, the other one from the control group. If both

groups are perfectly balanced, the two histograms are identical and the imbalance is equal

to zero. If both histograms are perfectly different L1 is equal to one. For all other cases

the L1 imbalance returns the relative imbalance. If for example, L1 = 0.7, 30 percent of the

distributions overlap (Iacus et al., 2012). The L1 distance has a number of useful properties:

first, it can measure discrete variables. Second, the measurement is not affected by large

numbers of strata that are weighted down to zero in case they only contain units from the

control group. Third, the sum in equation 12 has at most as many non-zero terms as there

are units from the treated group. That is when only one observation from the treated group

is placed in each stratum (Iacus et al., 2012).
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5 Evaluating the Matching Methods

In this section, I test the performance of the method that I have developed in section 3 by

applying it to a real dataset. First, I evaluate the ability to reduce imbalance for a given

level of pruning. Second, I estimate the causal effect using the matched data. According

to the matching methodology, estimating the ATET with the difference-in-mean estimator

from equation 2 returns an unbiased estimator for the true causal effect in case the data is

successfully balanced through the matching process. This way, I can evaluate if a matching

method is suitable for making causal inference.

Table 1: Summary statistics: NSW male subsample

N Mean SD Min Max

1978 real Earnings 722.00 5454.64 6252.94 0.00 60307.93

Treated 722.00 0.41 0.49 0.00 1.00

Age 722.00 24.52 6.63 17.00 55.00

Education 722.00 10.27 1.70 3.00 16.00

1974 real earnings 722.00 3630.74 6220.64 0.00 39570.68

1975 real earnings 722.00 3042.90 5066.14 0.00 37431.66

Married 722.00 0.16 0.37 0.00 1.00

High school dropout 722.00 0.78 0.41 0.00 1.00

Black 722.00 0.80 0.40 0.00 1.00

Hispanic 722.00 0.11 0.31 0.00 1.00

Unemployed in 1974 722.00 0.45 0.50 0.00 1.00

Unemployed in 1975 722.00 0.40 0.49 0.00 1.00

I use the seminal dataset from LaLonde (1986). The dataset is used regularly in the liter-

ature to evaluate matching methods (Dehejia and Wahba, 1999, 2002; Smith and Todd, 2005;

Iacus et al., 2012). The data includes in total 722 observations of which 297 were assigned

a treatment and the rest belongs to the control group. Originally, the data represents the

male subgroup from the National Supported Work Demonstration (NSW) and evaluated the

success of a randomly assigned job training programme for low qualified and disadvantaged

workers based on the salary after the programme had ended (re78) (LaLonde, 1986). The

unit is 1982 USD. The variable “treated” is equal to one if the person participated in the job

training programme and zero otherwise. The dataset includes the following control variables:

age, years of education (education), 1974 real earnings (re74) and 1975 real earnings (re75).

Moreover, a set of dummy variables assigns whether the participants were unemployed in

1974 (u74) or in 1975 (u75), are married (married), dropped out of high school (nodegree)

and are of Afro-American or Hispanic descent. Table 1 presents the summary statistics.
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5.1 Evaluating the Matching Performance

I match the LaLonde dataset four times. Firstly, I apply PSM with nearest neighbour match-

ing, where the propensity score is estimated using a logistic regression. Secondly, I run PSM

again, but estimate the propensity score with the pruned classification tree Tα. Thirdly, I

apply CEM, where the coarsening is chosen arbitrarily. Finally, I match the data a fourth

time with CEM. This time, the leafs of the classification tree decide the coarsening of each

variable such that s = |T |.

For both PSM specifications, I match the data and then exclude the two observations

that were the worst match, i.e. the matched data pair, which lay the furthest apart on the

propensity score, maxd |p̂(xi)− p̂(xj)|. I measure the L1 imbalance and repeat until all data

is pruned away.

In the second PSM specification I replace the logistic regression with the same classifica-

tion tree that I propose in CEM. Since trees are non-parametric it is no longer necessary to

know the true propensity score and thus misspecification represents no threat to the validity

of the PSM result. Estimating the propensity score is a prediction problem, therefore I use a

subtree of the original tree, Tα ⊂ T0, that was pruned according to equation 11. This way, the

binary tree minimises the misclassification rate Cα(T ) and optimises the prediction accuracy.

When matching with CEM arbitrarily, I begin by the highest coarsening possible, which

means that all data is placed in a single stratum. This initial point shows the same imbalance

as if the data was not matched at all. Then, I randomly choose one covariate and add one

cut-point such that the distance is split in equal shares (i.e. for the first cut-point in the

ratio 1/2, 1/2 for the second cut-point of that variable 1/3, 1/3, 1/3 and so on). I measure

the imbalance and repeat. As the number of cut-points rises, the data is divided into more

and smaller bins. Thus, the likelihood increases that a certain bin only contains observations

from the control group which is weighted to zero and discarded.

Finally, I automate the coarsening process by binning the data with the help of the clas-

sification tree. I grow an excessive tree T0 and leave it unpruned. As for the arbitrary CEM,

I begin by sorting all data into a single stratum, such that both methods start at the same

initial point. For the tree, this means that it collapses to a single root. Now instead of adding

cut-points arbitrarily, I increase the depth of the binary tree by one level such that the tree

has two terminal nodes which divide the data into two strata. I measure the imbalance and

increase the depth of the tree to two levels. Now, the data is stratified into at least three but
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at most four terminal nodes (for the third level, the number of strata lies between five and

eight). Again, I measure the imbalance and continue adding levels until I reach the maximum

depth of the estimated tree. This way, the number of terminal nodes (or strata) increases

non-linearly. With an increasing number of leafs the likelihood that a leaf only contains

observations from the control group rises as well. As for the arbitrary case, these strata are

weighted to zero and pruned by the CEM algorithm.

Figure 2 plots the performance of all four methods tested. The vertical axis denotes the

L1 imbalance, while the horizontal axis shows the number of pruned observations. The green

line represents the result for PSM with nearest neighbour matching using a logistic regres-

sion, while the red line depicts the PSM outcome when using the binary classification tree

for estimating the propensity score. The blue line shows the result of CEM with stratifying

arbitrarily and the black line visualises the performance of CEM if the stratification is au-

tomatised by the classification tree. The black points indicate the levels of the tree and the

figures above the line denote the number of strata at that level of tree depth.
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Figure 2: Imbalance-Matched Sample Size Graph, using data from LaLonde (1986)

Overall, both CEM specifications outperform the two PSM variations. The graphs for

both CEM specifications are downwards sloping, indicating that the two methods reduce
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imbalance as data is pruned. Although the arbitrary CEM performs best, the automated

CEM is able to follow closely until more than half of the data (ca. 400 observations) is

pruned. Thereafter, the blue line of the arbitrary CEM moves all the way down to complete

balance. At this point, however, the prediction accuracy of the tree is already very low,

considering that tree has grown to 12 levels with 148 terminal nodes, while the data includes

only 722 observations in total. Note, that T0 has a maximal depth of 17 levels with 196

leafs. In addition, both graphs follow a relatively straight line which is a sign that both

specification match the data well, considering that the data is experimental and treatment

randomly assigned. Therefore, pruning data should not cause drastic movements in the

imbalance.

The graphs of both PSM specifications begin after pruning the 128 excessive observations

from the control group, such that the number of control units equals the number of treated

units, mT = nT . Recall that there have to be at least as many treated units as there

are control units for EPBR class matching methods. When matching the data with PSM,

imbalance does not decline as continuously for either specification compared to CEM. Unlike

identified by previous research, however, both methods manage to temporarily reduce some

imbalance after 500 observations are pruned. Towards the end of the simulation the imbalance

of both PSM specifications increases again and eventually reaches the maximum level of L1 =

1. In addition, the logit specification temporarily reduces imbalance very drastically, but the

graph does not stabilise. Both factors indicate that PSM matches and prunes randomly and

the results confirm the findings from King and Nielsen (2016). Indeed, the one-dimensional

projection of the hyper-dimensional distance estimated with a propensity score is unsuitable

for matching. However, random matching and pruning does not begin immediately as it

should for experimental data.2 In addition, replacing the estimation of the propensity score

with a non-parametric method does not improve the performance of PSM. On the contrary,

applying a classification tree causes even higher levels of imbalance. Based on the evidence,

I can confirm that it is the propensity score theory and not just misspecification alone which

threatens the validity of PSM.

2When running the simulation multiple times, the results for both PSM methods are subject to extreme
volatility especially towards the end. Indeed, applying the simulation in the framework of a Monte Carlo
simulation would reduce the volatility, but this was not possible due to lack of computational power.
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5.2 Comparing Post-Matching Results

Table 2 presents the post-matching estimations of the causal effect. Overall, the results from

the matching simulation in figure 2 are confirmed. Both CEM specifications produce a better

covariate balance than PSM.

I perform post-matching estimations at four different pruning stages which are sum-

marised in panels B to E, while panel A shows the coefficient of the difference in mean

estimator for the unmatched data as a baseline. Here, column three denotes the true causal

effect of 886 USD that was originally estimated by LaLonde (1986). It states that male par-

ticipants earned on average 886 USD more after completing the NSW training programme.

When including the controls in the regression, the effect reduces to 824 USD as presented in

column 4. Panel B presents a very low pruning stage. Yet, it is the coarsening level suggested

by the pruned classification tree Tα with |T | = s = 3. Panel C shows the estimations after

128 observations are pruned, which is also the initial point for both PSM specifications. In

panel D, I present the estimates after roughly pruning half of the data (361) and panel E

shows the pruning stage close to the maximum depth of the tree.

Column one shows the L1 measure of the matched data and column two depicts the num-

ber of pruned observations. Recall, that the exact number varies for both CEM variations

in MIB class methods. Here, pruning is a result of the coarsening process and cannot be

controlled. Therefore, I choose the value closest to the threshold. In column three, I present

the results by only regressing the outcome (real earnings in 1978) on the treated variable,

while in column four, I also include the controls in the regression. According to matching

theory, the matching process was successful if the results between including and excluding

the covariates in the regression do not vary.

The trade-off between variance and bias is observable for all matched subsets that were

brought forward to the causal estimation. As more observations are pruned, the data becomes

more balanced, however at the cost of higher standard errors. Yet again, the data matched

with CEM returns the more accurate results than PSM also in the post-matching stage.

In panel B, the arbitrarily matched data returns coefficients very close to the true effect of

the unmatched data from panel A. At this stage, the CEM has only pruned two observations.

The coefficients for the automated CEM are also very close to panel A, with 838 (without

controls) and 834 (including controls) respectively. Yet, the pruned tree underestimates the

true causal effect. In fact, stratifying on the base of the pruned tree achieves this balance
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Table 2: Post-matching estimation results

(1) (2) (3) (4)
Outcomes

L1 obs.pruned no controls including controls

Panel A: Pre-matching baseline

diff. in mean 0.779 0 886.304 823.655
(472.086) (468.462)

Panel B: Low pruning

arbitrary CEM 0.736 2 890.512 820.488
(471.666) (468.945)

CEM & Tree 0.733 0 837.771 833.669
(477.43) (472.041)

Panel C: Mid-low pruning

arbitrary CEM 0.667 135 1217.289* 1209.339*
(509.069) (508.267)

CEM & Tree 0.695 133 1708.463* 1663.539*
(493.403) (488.431)

PSM 0.684 128 956.92 822.68
(524.679) (519.614)

PSM & Tree 0.731 128 774.05 723.419
(531.332) (528.702)

Panel D: Mid-high pruning

arbitrary CEM 0.444 363 1014.54 1033.955
(593.236) (591.98)

CEM & Tree 0.543 375 2226.156* 2265.272*
(583.046) (588.098)

PSM 0.674 360 1063.655 1001.091
(674.522) (670.335)

PSM & Tree 0.635 360 574.259 659.284
(688.925) (696.505)

Panel E: High pruning

arbitrary CEM 0.153 500 1202.711 1200.673
(687.082) (691.577)

CEM & Tree 0.412 489 2738.138* 2433.632*
(754.916) (758.758)

PSM 0.559 500 985.305 753.352
(742.926) (742.227)

PSM & Tree 0.595 500 1357.251 1160.862
(780.802) (786.88)

Controls NO YES

Notes: Bootstrap standard errors in parentheses. * p < 0.05. L1 denotes the value of the L1 imbalance.
Panel B, denotes the pruning level, suggested by the pruned tree. Included controls in column 4 are: age,
education, re74, re75, married, nodegree, black, hispanic, u74 and u75.
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by simply reweighting the data as no units are discarded. For panels C to D the coefficients

remain quite equal, indicating that the coarsening choices made by the classification tree

balanced the treatment and control group well. However, when the tree depth increases

to 16 levels in panel E, the coefficients become more unequal again, which agrees with the

methodology of decision trees. The predictive power is very low so close to the maximum

tree depth (17 levels) that would indicate a perfect fit. Despite these positive results in

terms of balancing the data, the causal effect is strongly over-estimated in panels D and

onwards, reaching nearly 3,000 USD in panel E. An explanation could be, that the binary

tree sorts the data such that low values are discarded first. Likewise, the arbitrary CEM

balances the data well throughout panels C to E. Moreover, covariate balance increases with

the number of observations pruned. Yet, the arbitrary CEM also increasingly overestimates

the causal effect, although not as extremely as the classification tree. Despite these obvious

shortcomings of the automated CEM, the standard errors are lower (except for panel E)

compared to coarsening arbitrarily.

The two PSM specifications, on the contrary, are not able to successfully match the data.

While the logit specification, with an estimated effect of 957 (without control variables) and

923 (including controls variables), is still close to the true causal effect, the propensity score

estimated with the classification tree underestimates the effect. Thereafter, the effects –

although relatively balanced for the logit model – vary from panel to panel, once underes-

timating the causal effect and then again overestimating it in the next panel. Both PSM

methods can reduce the imbalance, again with the logit model better than the tree. Yet,

the imbalance returned by PSM is always higher than for both CEM specifications except in

panel C. The fluctuations as well as the high levels of imbalance are an indicator for random-

ness in the pruning and matching process.

Overall, table 2 confirms what the graphs in figure 2 have indicated before: CEM reduces

imbalance more effectively than PSM and also returns the better matching results. Thus, I

can confirm the findings by King et al. (2011) and King and Nielsen (2016), that CEM is the

more efficient method and that propensity scores are ineffective for matching. Estimating the

propensity score with a binary tree instead of a logit model does not improve the performance

of PSM, unlike claimed in previous research (McCaffrey et al., 2004; Setoguchi et al., 2008;

Wyss et al., 2014). Finally, the arbitrary CEM specification creates the lowest levels of

imbalance. The causal effects estimated on the basis of the arbitrarily matched data deviate
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the least from the baseline. Using a binary classification tree for the stratification does

balance the data well. However, the returned values in panels C to E question the binning

properties of the tree after going beyond its optimally pruned size.
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6 Conclusion

The thesis proposes a data-driven and automated method for selecting the hyper-dimensional

histogram in coarsened exact matching. I systematically compare this novel approach with

competing matching specifications. Overall, I show that the arbitrary as well as the auto-

mated CEM clearly outperform all tested PSM specifications, replicating on the LaLonde

dataset the results by King and Nielsen (2016). Propensity scores in practice fail to reduce

imbalance and cause model dependence. In conclusion therefore, I cannot recommend PSM,

at least in medium-sized samples and with high-dimensional datasets.

Despite these encouraging results, the post-matching estimations question the suitability

of the recursive binary classification trees for stratifying the data. In fact, classification trees

have a number of shortcomings which is why they are not the first hand choice in modern

statistical analysis any more. Trees have weak small sample properties which can be seen in

the present case with less than 1000 observations. Moreover, binary trees are not very robust

and small divergences in the data can cause large changes in the appearance of the predicted

tree (James et al., 2013). Hence, the prediction power of trees is limited compared to more

advanced machine learning methods such as bagging, boosting, random forests, or clustering.

Yet, classification trees represent a starting point for automating the stratification process

in CEM. Therefore, this paper should be seen as an encouragement to test other and more

powerful machine learning methods as well. These methods can be easily implemented in

CEM as I have demonstrated for recursive binary classification trees.
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