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Abstract

Understanding events’ impact on financial instruments are crucial for the
participants in the financial markets. Here we propose an approach to model
an anticipated event’s impact on the prices of FX options, represented in
implied volatility. The model is implemented for anticipated event’s with
both Black and Scholes and SABR as the assumed underlying dynamic. The
model generates an implied volatility frown, for both dynamics. Hence it
contributes to the area regarding concave implied volatility functions, which
at the time of writing has little published literature related to it.
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1 Introduction

Events impact on financial markets has increased, and it is now essential to
be able to understand the consequences an event may bring to the markets.
This thesis model future events, taking place at a known time but with a
stochastic outcome, and look further into how such events impact foreign
exchange options with maturities after said event. A mixture model based
on Black and Scholes dynamics is introduced, as well is a model with SABR
dynamic. The behaviour of these models for different assumptions of the
jump is then examined and discussed.

1.1 A Brief Introduction to the Foreign Exchange Mar-
ket

1.1.1 Market Overview

The foreign exchange (FX) market started as an over-the-counter (OTC)
market for banks, financial institutions and large international companies
to hedge themselves against currency exposure [15]. The FX market is the
most liquid and largest market which had an average daily volume in 2016
of about 5 trillion USD, where USD is the most traded currency with almost
90% of total turnover [1]. Similar to the FX spot market the FX options
market has been considered as an interbank market, but at recent years this
has changed and now individuals can participate in speculation or hedge
positions in currencies [15].

1.1.2 FX Contracts and Terminology

Contracts There are several contracts that can be bought and sold in the
FX market, a few examples are presented below.

A spot transaction is an agreement between two parties to exchange Ny
units of domestic currency for Ny units of foreign currency, connected by the
spot rate Sp. Often the transaction take place two business days after the
spot exchange has been agreed [10, p. 5-7].

A forward is a transaction taking place in the future, the rate and volume
are set when the parties enter the forward agreement at ¢ = 0. At the
maturity date the transaction will occur and both parties are obliged to
follow through [6]. The relationship between the forward price, Fy, and the



spot price, Sy, is given by the well-known interest parity relationship
FO = Soe(rd_rf)T.

Here T' denotes time to maturity and 7¢ and 7/ the domestic and foreign
risk-free rate respectively [18, p. 121].

An option gives the owner the right, but not the obligation to buy or sell
the underlying asset, the writer of the option need to provide the underlying
asset for the predetermined price. There are numerous variations of options,
the simplest one is the European option where it has a definitive expiration
structure, payout structure and pay amount. In the American option the
expiration is set in beforehand but the buyer can exercise the option at any
time up until the maturity date. There are also options that are called exotic
i.e. they do not have an definitive structure where the contracts may have a
change in one or all of the above features of a vanilla option. A few examples
of exotic options are Asian-, Chooser-, Barrier- and Digital options [6].

FX Terminology The exchange rate is the ratio between a currency pair,
for example GBPUSD (Great Britain Pound/US Dollar). The notation for
currency pair is the following: the first three letters is the foreign currency
and the three following letters is the domestic currency. Generally we say
how many parts of the domestic currency one need to buy one part of the
foreign currency. To clarify, if the GBPUSD spot is at 1.414 [14], that means
that one need to pay 1.414 USD to buy one GBP.

Depreciation of a currency is a fall in value of the currency in a floating
exchange system. If the GBP were to depreciate, the GBPUSD exchange
rate would decrease, whereas if the USD were to depreciation the exchange
rate would increase.

Currency appreciation is the opposite of depreciation, i.e. an increase in
the value of one currency in terms of another. If the GBP would appreciate
the GBPUSD exchange rate would increase, and vice versa if the USD would
appreciate.

Option Terminology Below are some typical option terminologies that
are frequently used.

The premium of an option is the price of buying the option.

The maturity is the date at which the option expires.



The strike price K is the predetermined price of the underlying asset,
hence the option will not be exercised if the spot at maturity is below the
strike price.

A call option is said to be in-the-money (ITM) at time ¢ if S; > K,
and out-the-money (OTM) if S; < K. For put options the inequalities are
reversed. If S; = K the option is said to be at-the-money (ATM). ITM,
OTM and ATM is referred to as the moneyness of the option. [6]. When K
is close to S; an option is said to be near-the-money (NTM) [2].

1.2 Our Contribution

There are a limited amount of academic papers modelling anticipated events
in the strike space. We contribute to the field by defining and implementing
such models. Further the models generates a frown which is an interesting
behaviour, and there is a scarce amount of research on models with said
behaviour, as can be seen in Section 2.2.

1.3 Structure of the Thesis

The following Section goes through some of the previous work regarding
volatility frown and event modelling. Section 3 gives a thorough introduction
to the theory used in Section 4 where the methods and models are explained.
Section 5 goes through the results obtained and the final conclusions are
discussed in Section 6.



2 Literature Review

This section provides an overview of previous work and articles related to
the thesis.

2.1 Event Modelling

The article 'Implied Distributions from GBPUSD Risk-Reversals and Impli-
cation for Brexit Scenarios’ written by Ian J. Clark and Saeed Amen [11]
relates to known events and looks at option prices and the implied volatility.
In the paper they focus on understanding the market expectations for price
action around the Brexit referendum date, i.e. an anticipated event with an
unknown outcome. The constructed model has a specific probability Py, of a
Brexit leave event. They model the exchange rate in the leave scenario with
drift and variance p;, and o respectively, and similarly with pur and og in
the case of a remain. The price of a European option is then obtained by
two, weighted, Black and Scholes prices, one for each scenario. Conclusions
were drawn (from poll data and market data) that leaving EU would have a
devaluation effect on the GBP currency rate and bring higher volatility than
remaining in EU. The market implied volatility is used in order to predict
the probability P, and the possible exchange rate intervals for the different
outcomes. A single point estimate for leave was made between 24 Feb 2016
- 22 June 2016 which had a mean of 1.3705 with a minimum of 1.2900 and a
maximum of 1.4536. The post-referendum spot was 1.3622, well within the
confidence interval and remarkably close to the estimate [11].

Poulsen, Hanke and Weissensteiner combines risk-neutral event probabil-
ities implied from betting quotes with risk-neutral exchange rate densities
extracted from currency option prices in [20]. The model’s application is
to predict exchange rates around events like referendums and elections. The
authors use data around the Brexit referendum and the U.S. presidential elec-
tions to test the model. The betting quotes can be interpreted and translated
to risk-neutral event probabilities, these are used as weights for risk-neutral
densities implied by FX option prices, which are modelled as linear combi-
nations of conditional densities; one for each possible outcome. The authors
find that even though the probability of a Brexit fluctuates a lot, the ex-
change rate in the case of Brexit is relatively stable. The authors interpret
this as that the markets were able to correctly separate the probability of
Brexit from its potential consequences.



In [3] the authors propose a currency option model (E-model) that handle
unscheduled and scheduled announcements. Their approach is to use a mixed
jump-diffusion model and adding an indicator function that sets announce-
ments dates in advance. The E-model is compared against MBS (Merton
Black and Scholes) and BSAV (Black and Scholes Average event Variance).
Where the E-model outperforms MBS significantly is in the pricing of short-
term out-of-the-money options where MBS typically underprice. However
this model is in time-space and not the strike-space. Hence they do not look
further into the smile structure nor the implied volatility surface. In [4] the
authors extends the above currency price model to hold for general options
in other asset classes aswell.

2.2 Volatility Frowns

There are relatively little published on the topic of implied volatility frowns,
i.e. implied volatility curves with a concave curvature. We have found three
sources touching upon the subject.

In [16] the authors note that volatility frowns may arise in tranquil peri-
ods in the FX market. This is due to the fact that the return distribution
has relatively thinner tails than the assumed normal distribution. Black and
Scholes will then miss-price the option, giving deep in-the-money and out-
of-the-money options relatively higher prices and options at-the-money rela-
tively lower prices. This miss-pricing manifest itself in the implied volatility,
causing a volatility frown. The authors use a model based on a generalised
Student’s t-distribution coupled with time-varying volatility to correct for
the effects causing the volatility frown.

Hull mentions in [18, p. 440-441] that a volatility frown may arise when
a single large jump is anticipated. For example in the extreme case when
there are only two possible outcomes, this can be modelled as a mixture of
two log-normal distributions. This will cause a bimodal distribution and the
implied volatility will form a frown.

Matthias Thul looks further into binary events in [24] and [25]. The au-
thor’s model adds a random jump at a specific time point to a stochastic
process, to model for example quarterly earnings announcements, monetary
policy or elections. He use a specific example, using a Brownian motion as
the stochastic process and let the jump follow a normal mixture model, the
resulting distribution and implied volatility becomes similar to the one in
Hull [18, p. 440-441]. When the jump is symmetric, the implied volatility



becomes concave near-the-money which indicates that the corresponding im-
plied density is platykurtic i.e. negative excess kurtosis. The example used
by the author illustrates that such a situation is not necessarily a violation
of static no-arbitrage conditions.

2.3 Volatility Smiles and Skews

Brigo and Mercurio propose two asset-price models in [7], one log-normal
mixture model and an extension of it with an affine transformation. The
option prices indicated by these models are derived as linear combinations of
Black and Scholes prices. The authors calibrate the model to the plain vanilla
market and are then able to price exotic path-dependent claims through
Monte Carlo simulation. The calibrated volatilities in the paper have the
more common smile shape.



3 Theory

This section presents the theoretical background needed to understand the
modelling approach taken in this thesis.

3.1 Present Value

When a future cost or benefit, II, that occurs at time 7T is calculated as
cash today (t), it is referred to as the present value of II. This is done by
discounting the cash-flow with a the relevant discount rate r,

PV(IT) = e~ "T=011

[5, p. 65].

3.2 Risk Neutral Valuation

The arbitrage free price, I1(¢, g (St)), of the claim g (Sr) at time ¢ is given
by
[(t,g (7)) = e E? [g(S7)], (1)

where () is the risk neutral measure. Hence it is given by taking the expec-
tation of the final payment occurring at 7" and then discounting it to present
value using the discount factor e "= [6, p. 102-104].

3.3 Black and Scholes Formula

Black and Scholes model consist of two processes, the bank account B; and
the underlying price process S;

dBt = TBtdt
dSt = OZStdt + O'Stth.

The risk neutral Q-dynamics of S is given by

ds, = rS,du + oS, dW,

S; = s. 2)

As seen in (1), the solution to above differential equation (2) is needed in
order to calculate the expected value of the payoff. This is done by integrating
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(2) over [t,T] to receive

Sy = se (r—é)(T—t)—i—a(WT—Wt)

where

r = risk-free rate
o = volatility of returns
W = Brownian motion
s = spot price of underlying asset
t = time of pricing
T = time of maturity

Using equation (1), the value at time ¢ of a European call option is
V¢ = S,N (dy) — Ke " TN (dy)
and for a put option

VP = Ke "IN (—dy) — SN (—dy)

where
1 St 0'2
d = ———=|In| = — | (T —t
o= () (- 5) -]
d2:d1_0\/T_t
K = strike price
N = cumulative normal distribution function
(6, p.103-105].

3.4 Garman and Kohlhagen’s Extension

The Garman and Kohlhagen’s formula is an extension of the Black and Sc-
holes model to handle currency options where there are a domestic- and
foreign interest rate, denoted r¢ and r/ respectively. With this extension,
the value of a European currency call option becomes

Ve =S TN (dy) — Ke ™ TN (dy)

8



and for a put option

VP = Ke " TIN (=dy) — S, TN (—dy)

where
. 1 St d f 0'2
dl_g\/T__t{ln(K>+(r rt (T —1t)
d2:d1—0'\/T—t
[10, p- 25].

3.5 Implied Volatility

The one parameter in Black and Scholes formula that cannot be observed
is the volatility, o, of the underlying asset, this can be estimated from the
historical volatility. But in practice it is the implied volatility that is being
used. By definition it is the value of ¢ that matches the value of an option
observed in the market, II;, with the one obtained by the Black and Scholes
formula

g (St,K,t,T) = BSil (Ht7 St; K, t, T)
18, p. 339].

3.6 Delta

The delta of an option denotes how much the value of the option change as
an effect of a change in the spot price of the underlying asset. In other words,
the delta is the instantaneous derivative of price with respect to changes in
the asset price. Because there are many different ways to quote a price in
the FX market, there are also different deltas, and it is important to know
which one should be used in each scenario. Since the price used in this thesis
is the so called domestic pips price, the delta that will be used is the pips
spot delta, presented below.

Agpips = we TN (wdy)

Here w takes the value 1 for a call option and -1 for a put option.
An interesting note is that a call option can be quoted in both domestic
and foreign units. For example the V,° in Section 3.4 is the domestic/foreign

9



price valued in domestic currency, this can be transformed into foreign/do-
mestic price valued in foreign currency by the formula

‘/;C

S K’

which will effect the delta calculations. Hence depending on how the investor
manages and measures risk, the amount of currency needed to delta hedge
can be in units of either foreign or domestic currency [10, p. 43-49].

3.7 Risk Reversal

The risk reversal is the difference between the volatilities of a call and put
option with the same delta (with opposite signs), defined in (3). It can be
interpret as a market parameter corresponding to the smiles skew

Od-RR = 04-C — O4—p- (3)

One has to specify which delta should be used before the analysis. Then it
is possible to derive strike-volatility pairs by solving the following equations,
where d corresponds to the relevant delta level (e.g. 0.25)

A (Kd_c, O'(Kd_c, 1)) = d

A (Kd_p7 O'(Kd_p, —1)) = —d.

A market consistent smile function, & (K'), has to match the information
implied in the risk reversal

0 (Kq-c) — 0(Kq_p) = 0a—Rr-

The value of the instrument is the value of a portfolio consisting of being
long a call and short a put option, denoted Vig

Ver =V* (dec, g (deo)) - Vp(dep, o (dep))

23].

10



3.8 Market Strangle

The strangle adds a third restriction to the function o(K’), mapping the
strike to the corresponding implied volatility. In the market, one can find the
quoted strangle volatility, o4_g_g. The market strangle volatility is defined
as

Od—S—M = OATM + 0d—5—-Q-

Given the volatility, one can extract a call strike K;_¢_s_ps and a put strike
K4 _p_s_n, which using the market strangle volatility gives a delta of d and
—d respectively. With this information the value of a portfolio consisting of
a long call option with strike Ky ¢_g_j and volatility o4 s and a long
put option with strike K;_x_s_ and the same volatility can be calculated.
The resulting price Vy_g_p is

Vics—m =V (Ki—c—s-m,04-5-m) + V (Ka—p—s—r, 0a—5—m1)

which is the final variable of interest. This information must be regarded
by a market consistent volatility function. The function can have different
volatilities at the strikes, but the sum of the option prices must add up to
Va-s—m

Vics—m =V (Ki—c—s-m,0 (Ka—c—s-m))
+ VP (Kg—p-s—a,0 (Ka—p_s—m)) -

Hence, the quoted strangle and the at-the-money volatility is used to convey
information about a price of a strangle with certain strikes. A correct con-
structed smile must be built so that the volatilities at these strikes make the
price of the corresponding strangle match the one calculated with a single
volatility [23].

3.9 Butterfly

Instead of the market strangle, one can calculate the butterfly value, accord-
ing to
Od—C + 0d—p

0d—BF = # — 0ATM

This is an option position corresponding to being long an out-of-the-money
call and a out-of-the-money put with the same delta, d, and short two at-
the-money options. It is, like the risk reversal and market strangle, denoted

11



in volatility, hence o475, denote the at-the-money volatility for put and call,
o4—c the volatility for the out-of-the-money call and o4_p the volatility for
the out-of-the-money put [27, p.42]. Figure 1 illustrates the risk reversal,
market strangle and butterfly and is taken from [27, p.43].

Vol

RR

- 4

e

Put delta —25% ATM +25% Call delta

Figure 1: Schematic illustration of risk reversal, market strangle and butterfly.
Figure taken from [27, p.43].

3.10 Implied Risk-Neutral Distributions from Volatil-
ity Smiles

Breeden and Litzenberger showed that risk-neutral probability distributions
may be derived from volatility smiles and option prices. The value of a
European call option on an asset with strike K and maturity 7T is given by

c= eTT/ (St — K) g(St)dSr,
s

=K

differentiating once with respect to K gives

oc o [T
8_K = —€ /S qg (ST) dST

=K

12



If the expression is differentiated once again with respect to K this results in

0%c
0K?

:e—rTg<K)’

this expression gives the density function, with the strike price as variable,

as o2

rT_C' ( 4)
’K

If ¢1, co and c3 are prices of European call options with maturity 7" and strikes

of K — 0, K and K + 0 respectively [18, p. 446-448], and as § goes to zero,

the partial derivative in (4) can be approximated as

g(K) =e

T +c3 — 209

g(K) ~ 5

For very small values of 6 round-off error will affect the calculation [26, p.
246-247]. Since the prices are assumed to be arbitrage free, ¢ must be a
monotonic and convex function in K. Also, since ¢, ¢o and c3 are equidistant
the implied risk-neutral probability density function will always be positive.
However, since the second derivative is approximated numerically, the sum
of the integrated density function may not be exactly one [13].

3.11 SABR Volatility Model

The SABR model is a stochastic volatility model which propose a stochastic
evolution of the forward process, defined below
dFt = O‘tﬁtﬁth(l),
do; = aoatth(z),
awMaw® = pat
[22]. The parameter  can be used to tune the model between normal,

£ =0, and log-normal, g = 1. For FX, § = 1 is a common choice and in this
case, one can obtain the following formula for Black’s implied volatility

o5(K) = o [1 + (}lpao& ;2 ;jpzag) (T — t)] ﬁ

13



where

[0 1 F07T
Z = —10 —
(oy) & K

1-2pz+2242—0p
x(z) = log -

[10, p. 60-61]. This implied volatility can be plugged into the Black and
Scholes model to generate prices that are the result of the asset following
SABR instead of a generalized Brownian motion [22]. The o (o > 0) param-
eter is the volatility of volatility and p ( —1 < p < 1) the correlation between
spot and volatility [10, p. 60].

3.12 Shift in Implied Volatility

Anyone that is interested in an option’s value would probably like to know
how the implied volatility of the option is affected when the underlying as-
set price moves to another level S. There are a few ways to shift the im-
plied volatility and the behaviour of the implied volatility depends on which
method that is chosen. There are generally two ways of doing this, sticky
strike rule and sticky delta/moneyness rule where the latter is the convention
used. These rules make it convenient to quote and trade options written on
different assets, and are not intended to model the evolution of the volatility
smile. A drawback with shift in implied volatility is that it produced non-
arbitrage free prices for models that are not the Black and Scholes model
with a flat implied volatility [9, p. 93].

Sticky Strike This is the simplest rule and is a poor man’s attempt to
preserve Black and Scholes Model since it allows an independent existence
of each option. In this rule the implied volatility curve is shifted sideways
and each option keeps the exact same instantaneous volatility one could for
example express it as

o (S, K,t) =09 — b(K — S,) (5)

where b is a constant. [12, p. 5-6]. A drawback of this rule is that it cannot be
active in a very long time period. An example is explained to illustrate the
problematic with this rule; when the index market rises, the implied volatility

14



falls and leads to lower implied volatility for options traded at the money.
Market makers lowers the implied volatility as the market rises which means
that the higher the markets gets, the probability of a future catastrophe
decrease [12, p. 5-6].

Sticky Moneyness This rule is usually used in over-the-counter markets
(e.g., FX options) and is an approach where the option’s volatility only de-
pends on its moneyness, similar to (5) one can express it as

o(S,K,t)=00—b(K/S—1)5

where b is a constant. The effect of this is that the current level of at-the-
money volatility, the volatility of the most liquid options, stays constant as
the underlying moves. But at the same time the implied volatility (apart
from at-the-money) will increase as the underlying asset increase. This rule
assumes that the market mean reverts to definitive at-the-money volatility.
In the Black and Scholes model, sticky moneyness equals sticky Delta, where
sticky Delta is a rule where the delta moves according to the underlying asset
movement. This rule should in general be used in a Stochastic Volatility,
Jump Diffusion Model [12, p. 6-8].

15



4 Method

4.1 General Approach to Model an Expected Jump in
Spot

At time T); a large jump in the spot rate is expected. The spot rate at
the time just after the event, 77, is ST+ = STJ—X where X is a binomial
variable and ST— the spot rate right before the évent. The binomial variable
X corresponds fo the two possible outcomes, up and down, and is defined as

v e™r with pI‘Obablllty Pup
o erdown Wlth pl"Obablhty (]' - puP) = Pdown

this implies that there are two possible spot rates at T},

Sp-elw
ST+ = J r
J ST7 e down .

J

T is the right limit of T and T; the left limit. Since the time is a continuous
function these will be equal to each other (T'; =T, = T). However, Sy Is
not necessarily equal to ST+, and will not be in the model described above.
The anticipated jump model introduced in this section is based on previous
work from [17].

4.1.1 Risk Neutral Probabilities

Since the spot rate is a martingale and due to the fact that the market is
assumed to be free of arbitrage, the expected jump of the underlying must
net to zero. In other words, the expected future spot rate should be equal
to the spot rate today, discounted with the risk-free rate. This leads to the
following risk neutral probabilities

1 _ erdown e"'up _ 1
y  Pdown = ——————— (6>

eTup — eTldown

Pup =

eTup — eldown

where pgown and p,, are the probabilities of down and up respectively, and
must sum to one. This impose the following relation between e™» and e’down

erown S 1 < erup or erdown < 1 S erup
Note that if e"@ow» = 1, this implies that p,, = 0, and this means that there

is no event occurring. Similarly for the case in which e™» = 1.

16



Fixation of e™#, e"%vn and p,, From (6) it is clear that by fixating two of
e, e'down and p,,, the third will also be predetermined by the no-arbitrage
condition. So the martingale argument reduce the number of parameters
from three to two. Hence when the model is to be calibrated to market
data, the fact that there are only two parameters to be calibrated makes it
relatively cheap. While being cheap, it is still a flexible model since the two
parameters may generate a wide range of implied volatility forms.

4.1.2 General Pricing Formula for Options with Maturity at 7

From Section 3.2 we know that the arbitrage free call option price at time ¢
before the event is

Ve = py <ST;, K) _ -0 0 {(sTJ - K) T .

Assume that Sy = Sp—e™» with probability py, and Sy = Sp-e"vn with
probability paown, these are the key assumptions for pricing the event. They
describe the behaviour at T; and how S..- and ST+ are connected. Also,
it shows that the jump is linearly dependent on the start value S, which is
important for the replication argument to hold. Given this, we can condition
the expectation as

Ve =e IR {(% - K H
—e T @ [E? [(ST;X — K>+ S J—H
— e (Ts-) (pup E® [(STJemp — K) *} + Paown B {(STJerdown _ K> +}>

+
Tdown _Td(TJ_t) Q —Tdown *
+ Paowne e EZ | (Sy, — Ke i)

As long as X is independent from the spot process and the jump is linear
in S;, this formula holds regardless of which process is driving the spot rate.
This will also allow for pricing maturities longer than 7.
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4.1.3 Option Prices via Replication are Arbitrage Free

_ +
According to Section 3.2 PV, (T}, K) = e (77 =1) E? {(STJ - K) } can be

assumed to be arbitrage free, hence the prices are a monotonic and convex
function in strike K. Via a replication argument the formula

PV (ST:,h K) = puperupPV <STJ_7 Kefrup) +pdown€”"w"PV (STJ—’ Keirdown)

is obtained in Section 4.1.2. Hence PV <ST;F, K ) is a linear combination of

two convex and monotonic functions, and as such, it is also a convex and
monotonic function. According to this argument, the model will generate
prices that are free of arbitrage.

4.2 Model the Jump with Black and Scholes Dynamic

If the exchange rate pre-event follows a standard Black and Scholes process
extended according to Garman-Kohlhagen for FX options, the spot at time
T, given spot at time ¢ and a jump free model, is

(rd_rf_ é) (T—t)+o1 (WT_Wi).

ST = Ste
To allow for options with maturities after the jump at T); we impose a new

variable o,
O2,up
024 = 7
{ 02, down

which is assumed to take the value o ), in the up scenario and o2 4oun in case
of a down event. Further, after the jump in the scenario of X = e"™» we expect
the spot to continue with a Black and Scholes distribution with the volatility
Og,up- Similarly, if X = e"@w~ the Black and Scholes volatility is assumed to
be 03 down. Combining these assumptions the future spot rate process can
be separated into different parts as in equation (7). It has the current spot
rate, S;, and the jump in the spot, X. Additionally it is separated into the
return before the event, Y7, and after , Y5. Since the process is assumed to
follow Black and Scholes dynamic and hence is a general Brownian motion,
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this yields (8)

S~ S
ST:StX TJ T (7>
St STj
Y1 Yy
pd_pf TR0 Wi )+02,4(Wr—W
:Sth( : )( t)t,l( P TJ),’ (8)
Yq

where #; denotes the proportion of the time to maturity spent in the state

before the jump,
Tyt

T—t
and 6, the proportion spent after the jump

0,

T-T;
T—t°

0y =
Y, depends on the outcome of the event according to

29 + 2 0
(T‘d—’l‘f—w%ﬂ> (T—t)+a’1 (WTJ—Wt>+O'2,up(WT_WTJ)

e ,if up

Y =

q 0'291+o'2 0o
(Td—rf—lzg’down (T—t)+01 (WTJ—Wt)+02,down(WT—WTJ)

,if down.

(9)
Important to note is that the process W; is assumed to be unaffected by
the event. So the Brownian motion is the same process in both scenarios,
however the increments Wy, — W, and W — Wy, are two independent normal
variables.

e

Illustration with Monte Carlo Simulation Figure 2 illustrates one
Monte Carlo simulated path of the spot process with a jump. The simu-
lation assumes that the jump will occur at day 100 and we simulate a total
of 365 days. The jump is symmetric with e™» = 1.05 and e"down = (.95, and
an initial spot rate S; = 1.0. The initial volatility is set to 0.12 and jumps
to 0.08 in the up scenario and 0.2 in the down scenario.
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Figure 2: Monte Carlo simulation of the jump model with Sy = 1.0, e™» = 1.05,
eldown = 0.95, o1 = 0.12, 02 down = 0.2, 024 = 0.08, t =0, T; = 100/365 and
T = 365/365.

Freedom of Parameters and Calibration e"», e¢"#w» and p,, are still
connected and determined by the no arbitrage condition in (6). In addition
we now also have a stochastic variable o9 4, which offers the model two ad-
ditional parameters. The extended model with four parameters offers more
flexibility, since with four parameters the range of possible implied volatility
forms widens. However, the increased flexibility comes with a cost and the
model is now more difficult to calibrate to market data. One need to keep
this in mind since it is important from a practical point of view. Since if the
model is to be used on a frequent basis by market practitioners it must be
flexible, but even more important is the cost and complexity of the model.

4.2.1 Pricing the Expected Jump with Black and Scholes Assump-
tions

To obtain the option pricing formula, the expectation of the future pay-off
is used as in Section 4.1.2. Furthermore we condition on the jump and the
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calculations is outlined below,

E [(Sr— K)'] =E[(S;:XY — K)"]
={taking expectation over the up and down event,

keeping all other random variables fixed }
=E [pup (Sterquup - K)+ + Pdown (Sterdownydown - K)+ ’St]

~ +
~ +
+ pdownerdow" E |:(ST,down - Keirdown) |St:| .

We will then use the definition of implied volatility, see Subsection 3.5 for
details, to extend the pricing formula one step further. The definition gives
us that

PVy(S7,K) = BS(S;, K,0 (K,T))

and in the up scenario
PV, (ST, Ke_r’”’) = BS (St, Ke™ "™ o (Ke_””’, T)) (10)

and similarly for the down scenario.

To be able to use BS (Sy, Ke "», 0 (Ke ™, T)), o (Ke ") must be de-
rived, i.e. we have to find an effective volatility including the information of
the assumed implied volatility both before and after the jump. Recall the
use of the subscript ¢, denoting either up or down, which will be used here.
According to (8) St in the calculations above may be written as S;Y,, which
in turn can be expressed as

St}/;] = Stez

where

020 + o2 0
z = (rd—rf—%) (T —t)+ 01 (Wp, = Wy) + 02y (Wp —Wrp,).

Due to properties of the normal distribution and Brownian motion, it can be
shown that (see Appendix A for details) z has the following distribution

20, + 02 0
2~ N ((rd—rf _ %) (T —1t),,/0%6, +o§7q62\/T—t> )
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Introducing a new variable

Gefpq =1/ 0101 + 03 402

this can be expressed as
’&2
2 NN((rd—rf— %) (T—t)ﬁeff,qVT_t> :

Now according to [6, p.104-105] and using the notation in Section 3.3, §T7q
follows Black and Scholes dynamics with

a=rt—pf

and

T =0cffyq
Hence (10) can be priced as BS (Sy, Ke ™, 0cffup), and the final pricing
formula

—_—

BS (Si, K,0 (K, T)) =puye™* BS (St, Ke_T“P,EEfﬁup)
+ pdownerdownBS (St7 Ke_rdowna &eff,down)

is obtained.

4.2.2 Obtaining the Implied Volatility

Once the option prices are obtained, the implied volatility o(K,T') for the
mixture prices is extracted with the bisection method. The bisection method
is a root finding method that repeatedly bisects an interval and then selects a
subinterval in which the root must lie. It is a very simple and robust method
but a drawback is that it converges at a slow rate. The bisection method is
also called interval halving-, binary search- and dichomoty -method. In the
reference, Dichotomous search is used [8, p. 25].

4.3 Model the Jump with SABR Dynamic for Matu-
rity at T/

We now want to use SABR dynamic to model option prices for options with
maturity at T} and extract the implied volatility curve. As mentioned in
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Section 3.11, 8 = 1 is a reasonable choice when it comes to FX options. The
general SABR process is simplified to

dF, = o, F,dw Y
doy = oo dW® (11)
awMaw? = pde.

The solution to (11) is needed in order to derive the SABR prices further
down, following the procedure in [21, p. 935] results in

2
Fr = Fe J G dut L (or—on)+y/1-p7 [[f udWs!)
= F,e”.

where

T 52 0 T
z:—/ %du+—(JT—0t)+\/1—p2/ o, dW D,
t Ot t

A jump is added in accordance with Section 4.1, and results in the following
formula
Fr = XF,e*.

4.3.1 Pricing the Expected Jump with SABR Dynamic

The jump is linear in the start value of the spot process also for the SABR
model and by conditioning the procedure in Section 4.2.1 can be followed

E° [(X Fie* — K)"] =pyye"» EQ |:(FTez _ Kefrupﬂ
+pdownemown ]EQ |:(FT6z - K€_Tdown)+i| .

This is then chosen to be expressed in terms of SABR prices

SABR (t,T,S;, K) = €™ p,, SABR (t, T, S;, Ke_””’)
+ e piownSABR (t, T,S;, Ke_”‘“”") .

In order to calculate the SABR prices, volatilities are generated from the
approximative formula in Section 3.11 and inserted in the Black and Scholes
formula to price options in the up and down scenarios. These are then
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weighted to obtain the price of an option before the event with maturity at
T, see (12),

BS (St,K,o (K, Tjr)) = pupe? BS (St, Ke ™ ™P 05aBR (Ke_T“P,T]))

(12)
+pdownerdownBS (Sta Ke_Tdown7 OSABR (Ke_Tdownv T])) .
As proved in Section 4.1.2 the replication is agnostic to the dynamics of the
underlying asset, as long as the jump is linear in the start value. Hence the
replication argument holds whatever smile is generated or valid in the model.
What is interesting to note, however, is that the shift in o51pr becomes the
sticky strike method, see Section 3.12 for details. In order to extract the
implied volatility from (12), the procedure in Subsection 3.5 is used.
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5 Results

In the following section, the results from implementing the models explained
in Section 4 are presented. In Section 5.1 the Black and Scholes dynamic is
used to price options with maturity 7'}, and is extended for longer maturities
in Section 5.2. Finally the results from implementing the SABR dynamic is
presented in Section 5.3.

The results includes the consequences different changes of the parameter
values have on the implied volatility curve as well as the probability density
function. Hence this section also shows the flexibility and behaviour of the
models presented in Section 4 and one can study the difference between the
different dynamics.

Options with maturity after 7Ty have different assumed implied volatility
in the scenarios of up and down, as mentioned in Section 4.2. As a base
case, the volatility in the down scenario is higher than before the jump, and
the opposite for the volatility in the up scenario. To summarize, in the up
scenario we have a higher spot rate and lower volatility, and in the down
scenario we have a lower spot rate and a higher volatility.

S—i—

TJ,down

Recalling Brexit and the GBPUSD spot rate, this is a likely relation between
spot and volatility. Once the market understood that the referendum was in
favour of a Brexit, there was a depreciation of the GBP, hence the GBPUSD
spot rate dropped, while the volatility in the market increased. If on the
other hand the outcome of the referendum had been a remain, the authors
in [11] suggest that the spot rate would move in the other direction, and since
this outcome would had meant less uncertainty, it is likely that the volatility
would had decreased. This was the case for Brexit, however, after big news
releases the volatility usually increase, regardless of the outcome.

+
< ST; < STJW and O2.up < 01 < 02 down

5.1 Black and Scholes Model with Jump in Spot Rate
with Maturity at 7'/

In Figure 3 the standard Black and Scholes is plotted together with the
corresponding implied volatility. As can be seen the implied volatility is
constant which is in line with the theory.

When observing Figure 4 the peaks of the probability density function
are at different heights even though the jump in spot is symmetric, i.e. the
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same percentage change in both the up and down scenario. This is due to the
asymmetry that occurs within the Black and Scholes model, and the scaling
factor affecting the derivative when deriving the approximation of the density
function. The implied volatility gets a concave curvature, which we refer to
as a volatility frown.

In Figure 5 and 6 the impact of an asymmetric jump can be observed.
When the jump is asymmetric the volatility get skewed towards the more
extreme outcome, at which the probability density mass is smaller. It is
also visually clear that the support of the probability density function now
includes lower strikes. The support is also slightly reduced on the higher end.

As discussed in Section 4.1 the calibration capacity of this model is lim-
ited, since 77 = T. But it is clear that one can skew the probability density
function and the implied volatility curve by assuming different outcomes of
the event. Different assumptions regarding the initial implied volatility will
also affect the curves.
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Figure 3: Graphic visualization of the effects of €"» and e"down on the implied
probability density function and the implied volatility. e"down  spot and e™» can
be seen as a red, blue and green dot respectively. The probability density function
is the red curve and the implied volatility the blue curve where Sy = 1, o = 12%,
T =14/365.
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Figure 4: Graphic visualization of the effects of €™ and e"down on the implied
probability density function and the implied volatility. e"down  spot and e™» can be
seen as a red, blue and green dot respectively. The probability density function is
the red curve and the implied volatility the blue curve where Sy = 1, e™» = 1.05,
erdown = 0.95, 0 = 12%, T = 14/365.
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Figure 5: Graphic visualization of the effects of €™ and e"dovn on the implied
probability density function and the implied volatility. e"down  spot and €™ can be
seen as a red, blue and green dot respectively. The probability density function is
the red curve and the implied volatility the blue curve where Sy = 1, e™» = 1.10,
erdovn = (0.98, 0 = 12%, T = 14/365.
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Figure 6: Graphic visualization of the effects of €"» and e"down on the implied

probability density function and the implied volatility. e"down  spot and e™» can be

seen as a red, blue and green dot respectively. The probability density function is

the red curve and the implied volatility the blue curve where Sy = 1, e™» = 1.02,

erdown = 0.90, 0 = 12%, T = 14/365.

5.2 Black and Scholes Model with Jump in Spot and
Volatility, with Maturity at 7' > T/

In this section we implement different scenarios for options with maturities
longer than T, and observe the behaviour of the implied volatility and
implied probability density function. To make this relevant we assume a
jump in the volatility in all scenarios as well, but of different magnitude. We
start by letting the time to maturity increase and then move on to review
variations in the volatility jump. Lastly we let the jump in the spot rate
vary.

Since 09, and o3 gowy, are assumed in this implementation, the flexibility
of the model is increased compared to Section 5.1.

5.2.1 Increasing Time to Maturity

Here we present the result of letting the maturity stepwise increase. The
result is presented with a symmetric jump in the spot rate and the result
from a skewed jump can be found in Appendix B.1. What is interesting
to see here is how time alter the option prices, and hence also the implied
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volatility curve. As can be seen in (8) this gives the volatility in terms of
o1 and og 4 as well as the Brownian motion W longer time to affect the spot
process.

Symmetric Jump in Spot The parameter values for the symmetric jump
in spot are presented in Table 1. The timing of the jump is kept constant
(T; = 7/365) while the time to maturity goes from 8 to 14 days. The result
is presented in Figure 7. As the time to maturity increase the peak of the
implied volatility curve decrease and the support of the implied probability
distribution increase. The reason for this is that with a longer time to ma-
turity the volatilities oy, 09, and o2 gow, gets a longer time to impact the
process, and the probability that the process hits values further out in the
tails increase.

Property Notation Value

Initial spot-rate Sy 1.0

Up jump elur 1.05

Down jump gl down 0.95

Time for pricing t 0

Time for jump T, 7 days (7/365 year)
Time to maturity T 8 days < T < 14 days
Domestic risk-free rate rd 0

Foreign risk-free rate r! 0

Volatility before jump o1 12%

Volatility after jump in up scenario O2.up 8%

Volatility after jump in down scenario o3 gown 20%

Table 1: Parameter values for increasing maturity.
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Figure 7: Implied volatility and implied probability density function when Sy = 1.0,
er = 1.05, e'down = 0.95, Ogoun = 20%, oup = 8%, t = 0, Ty = 7/365 and
T = {8,11,14}/365. e"down  spot and e"™» can be seen as a red, grey and a blue
dot respectively. The shading of the implied volatility and the implied probability
density function corresponds to different time to maturity T which is the only
changing parameter. The darker shade corresponds to longer maturities.

Risk Reversal and Butterfly The risk reversal and butterfly is a way
to quantify the structure of the implied volatility curve, and measures the
skewness and kurtosis, respectively. The results are presented in Table 2.

As the time to maturity increase the 0.25 delta risk reversal decreases
and becomes more and more negative. Hence the volatility curve gets more
skewed with longer maturities. It implies that when the volatility is larger
in the down scenario, as is the case here, the difference between the implied
volatility for a 0.25 delta put and a 0.25 delta call increase, and that the
implied volatility for the put is larger than the one for the call.

The 0.25 delta butterfly moves in the opposite direction, although also
negative. Hence the peak decrease with longer maturities, which is visually
clear from Figure 7.
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Variable ‘ Values

T 8/365 11/365 14/365
Risk Reversal 0.25 delta | -2.08% -3.27% -3.88%
Butterfly 0.25 delta 5.97%  -4.28%  -3.21%

Table 2: Risk Reversal and Butterfly values for increasing maturity and symmetric
Jump.

5.2.2 Changes in Volatility

We now look deeper into how changes in the jump of the volatility modifies
the implied volatility and the implied probability density function. This may
be interesting as part of a sensitivity analysis before a data release or election.
The result from an increasing o4 ,, can be found below, whereas the result
from an increasing o gown is in Appendix B.2.

Increasing o03,, Values of the parameters used in the implementation of
the increasing o4 ,, can be found in Table 3. o0, increase from 8% to 16%
while the time aspect is constant with 7Ty being 7 days and T' equal to 14
days.

Property Notation Value

Initial spot-rate Sy 1.0

Up jump e'up 1.02

Down jump gldown 0.95

Time for pricing t 0

Time for jump Ty 7 days (7/365 year)
Time to maturity T 14 days (14/365 year)
Domestic risk-free rate rd 0

Foreign risk-free rate r/ 0

Volatility before jump o1 12%

Volatility after jump in up scenario O2.up 8% < o9up < 16%
Volatility after jump in down scenario 2 gown 20%

Table 3: Parameter values for increasing o2 yp.

Below the result of increasing the o3 ,, is presented. As o3, increase the
probability density function gets a heavier tail on the upside and the bi-
modal attribute becomes less apparent. The peak gets lower as the volatility
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increase the support of the density function. The implied volatility increases
as the probability density function gets wider on the up side, due to the in-
creased volatility in the up scenario. The effects on the down side is not as
obvious.
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Figure 8: Implied volatility and implied probability density function when Sy =
1.0, e™r = 1.02, e"own = 0.95, 02 down = 20%, o2up = {8%,11%,14%}, t = 0,
Ty = 7/365 and T = 14/365. e"down  spot and e™» can be seen as a red, grey
and a blue dot respectively. The shading of the implied volatility and the implied
probability density function corresponds to different oa .y, which is the only changing
parameter and can be seen in the top left corner. The darker shade corresponds to
higher volatility in the up scenarto.

Risk Reversal and Butterfly The risk reversal and butterfly quanti-
fies the changes once more, and are presented in Table 4.

The risk reversal is negative, but increasing. Hence the implied volatility
curve is skewed and the 0.25 delta put option is more expensive than the
corresponding call. However, as o09,, increase, the difference between the
call and the put do so as well. Which is reasonable since the probability
density function’s support expand and includes higher strikes.

The butterfly is positive and decreasing, hence it moves in the opposite
direction as the risk reversal. Again, this can be interpreted as the implied
volatility being slightly convex in the interval of the butterfly, but decreas-
ingly so.
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Variable ‘ Values

aran 008 01l 0.4
Risk Reversal 0.25 delta | -7.02% -6.09% -5.02%
Butterfly 0.25 delta 0.29% 0.21% 0.10%

Table 4: Risk Reversal and Butterfly values for increasing o2 yp.

5.2.3 Changes in the Spot Jump

This section presents the result in the case with variation in the jump in the
spot rate, keeping both the time aspect as well as 0, and 0 gou, constant.
This is interesting as a sensitivity analysis within risk management to see
how the option prices change as the assumption for the jump is altered. The
result from an increasing jump in the up scenario is found here, and for an
increasing jump in the down scenario the reader is referred to Appendix B.3.

Increasing the Jump in Up Scenario As the jump size increase in the
up scenario, the implied volatility gets skewed to the right. The upper peak
of the probability density function decrease while the lower increase. Hence,
option prices for higher strikes increase due to the fact that the density
function gets more support for higher strikes, implicating that it becomes
more likely that the option for these strikes actually will be exercised.

Property Notation Value

Initial spot-rate Sy 1.0

Up jump e’up 1.02 <e™r < 1.08
Down jump gldown 0.95

Time for pricing t 0

Time for jump T, 7 days (7/365 year)
Time to maturity T 14 days (14/365 year)
Domestic risk-free rate rd 0

Foreign risk-free rate r! 0

Volatility before jump o1 12%

Volatility after jump in up scenario O2.up 8%

Volatility after jump in down scenario o2 gown 20%

Table 5: Parameter values for increasing e"».
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Figure 9: Implied volatility and implied probability density function when Sy = 1.0,
e’ = {1.02,1.05,1.08}, e"down = 0.95, 09 gouwn = 20%, 02.4p = 8%, t =0, Ty =
7/365 and T = 14/365. e"down  spot can be seen as a red and a gray dot. The only
changing parameter is €™ which is presented as shaded blue dots, the darker the
colour the higher the jump This grading scale is used in the implied volatility and
the tmplied probability density function as well.

Risk Reversal and Butterfly As e increase, the risk reversal starts
at a negative value and moves to a positive, as can be seen in Table 6. Thus,
the order of magnitude between the 0.25 delta call and put shifts, and the
00.25—c surpasses the og.o5_p.

Also the butterfly is switching sign, but from positive to negative. This is
a consequence of that the peak of the implied volatility curve moves towards
higher strikes. So the curvature in the interval for which the butterfly is
calculated switches notably.

Variable ‘ Values

e’up 1.02 1.05 1.08
Risk Reversal 0.25 delta | -7.02% -3.88% 3.49%
Butterfly 0.25 delta 0.29% -3.22% -4.18%

Table 6: Risk Reversal and Butterfly values for increasing e™».
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5.3 SABR Dynamic and Jump in Spot Rate for Ma-
turity at 7

In this section, different scenarios are implemented when the maturity is at
T and the jump sizes varies. The results below has a fixed time to maturity
of 30 days, for results when time to maturity is 7 days, see Appendix C.1.

5.3.1 SABR Dynamic - 30 Days to Maturity

Here we present the result of letting time to maturity be 30 days and il-
lustrating the outcome symmetric and skewed jumps have on the implied
volatility. The SABR volatility is generated with the parameter values taken
from [19] and presented in Table 7.

Property Notation Value
Initial spot-rate So 1.0
Up jump elup varies
Down jump g down varies
Domestic risk-free rate ¢ 0
Foreign risk-free rate r/ 0
Time to maturity T 30 days (30/365 year)
Volatility at time t =0 oq 10%
Alpha « 0.4
Beta 15} 1
Rho p -0.1

Table 7: Specification for jump, option and SABR data.

Symmetric Jump Figure 10 below illustrates the effect a symmetric jump
has on the implied volatility. What is observed is a frown on the implied
volatility when at the same time the SABR volatility has the typical smile
shape. As seen in Figure 10 the jump affects the implied volatility. If the
strike space were to widen, we would see that the implied volatility is not
in fact a frown in itself, it experience a local frown and converges to the
osaBr as strike price gets further away from S;. Which is due to the smile
curvature in SABR where prices are increasing quicker in the wings due to
the smile. These result are a key difference between implied volatility with
SABR dynamic and Black and Scholes dynamic.
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Figure 10: SABR Volatility generated by the SABR model with parameters in
accordance with Table 7, and the implied volatility and implied probability density
function after a jump with S; = 1.0, e = 1.02 and e"down = (0.98. e"down  spot
and e™? can be seen as a red, blue and a green dot respectively.

Skewed Jumps Instead of a symmetric jump we now look further into the
behaviour of the implied volatility when the up and down jump varies in size.
The effect of asymmetric jumps is illustrated in Figure 11a and 11b. The
direction of the asymmetric jump has a direct impact on the implied volatility,
we see that the skewness is drawn towards the side of the biggest jump size.
These result follows the behaviour implied volatility with Black and Scholes
dynamic has, even though, as explained in Section 5.3.1, it exhibits a local
frown. The implied volatility forms a peak at the most extreme jump and
at the same time the tail in the jumps direction gets fatter. This is due to
the increased probability of reaching prices further away from at-the-money
in that specific direction.
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volatility.
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An observations that has been made throughout Section 5.3 is that csagr
seems to be the lower limit that the implied volatility with SABR dynamic
can exhibit. This seems natural because when an uncertainty is added to
the process, the price should increase, and this follows from convexity. But
also that implied volatilities far away from at-the-money seems to converge
to osaBr, the effect on the implied volatility when a jump occurs near at-
the-money does not effect implied volatility far away from that point.
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6 Conclusions and Summary

Plain SABR Compared to a SABR process with Jump The SABR
model can not fit a SABR process with jump, i.e. the parameters a, § and
p can not be selected so that the SABR smile produce a local frown. A
single SABR process might be a good model for option prices during normal
market conditions, but as this thesis indicates, it might not be a good choice
for options with maturities that extend over an anticipated event. In other
words, SABR seems not to be enough when marking implied volatility smiles
near important news announcements.

Frown and Option Prices The frown implies that options with strikes
within an interval, starting at a point somewhat below the jump in the down
scenario up to strikes somewhat above the jump in the up scenario, becomes
more expensive relative options that does not include the event in its pricing.
This is due to the fact that the probability of these options being in-the-
money at maturity increase when the jump is considered. Since with no
jump, the most likely spot at maturity is centred around the starting spot
because there are no drift, and includes an area around it due to the variance
of the process. With a jump, there are instead two areas, one for the up case
and one for the down case, centred around the jump in each direction. They
are also overlapping and therefore including also the area between them.
Even though the jump may be highly skewed, the interval in which the
prices shows a significant, absolute, increase is relatively symmetric. The
reason for this is the risk-neutral probabilities that weights the two outcomes,
and gives the more extreme scenario less weight. This is in opposite of the
frown, that may be highly skewed towards the more extreme scenario. The
reason that the prices do not differ much in absolute values for extreme
strikes even though the frown indicates a higher implied volatility is that
if an option is deep in(out)-the-money, slight changes in the volatility does
not have large impact on the price, since it is still very likely(unlikely) that
the option will end up in(out)-the-money. In percentage terms the model
increase the prices of options deep out-of-the-money a lot. A large jump on
the downside increase the value of deep out-of-the-money put options more
and a large jump on the upside has the same effect on deep out-of-the-money
call options. This is since the likelihood that these will end up in the money
increases drastically, and hence so does the tail risk for an option seller around
these types of events. However one should remember that these options are
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very illiquid in the real market. Also, since the prices are very low, they may
also be more sensitive to small numerical errors. Furthermore the larger the
jump the higher the peak of the frown and hence also the absolute increase
in option prices does increase with the jump.

An increased assumed implied volatility in one of the scenarios for options
with maturity 7' > T} does increase the implied volatility in the same tail.
This is due to the fact that an increased assumed implied volatility does
increase option prices.

Also the SABR mixture model can generate a frown as the Black and
Scholes mixture model. For a symmetric and quite large jump the frown is
centred around the spot price observed at t. The frown generated by the
SABR dynamics has similarities with the ones that has Black and Scholes
dynamics, both skewness and the absolute value of the implied volatility
increase in the same direction as the jump and also in the same way as Black
and Scholes, see Figure 11a and 9. This behaviour is interesting because
locally SABR and Black and Scholes have similar structure but globally, as
mentioned, the implied volatility with SABR dynamics seems to converge
toward the volatility smile generated by SABR.

Numerical Instability The implied volatility deep in the tails becomes
numerically unstable in the Black and Scholes dynamic. The main reason
for this is most likely that the implied volatility has no effect on the price of
the option. This behaviour was seen both in the lower and upper tail of the
implied volatility, but mainly in the lower side at put prices and just on a
few places. However, this model is not intended to model the tails but rather
the behaviour of the jump. A 40% decrease in a period of a week is highly
unlikely and is therefore no big concern. For illustrative purposes and with
above argument the implied volatility and the implied probability density
function is only calculated with an interval of S; 4= 40%. Also these bounds
are extreme, SABR is plotted within a tighter interval which is approximately
S; &+ 10%, which still is very generous.

Numerical Approximation Since the implementation is made numeri-
cally some degree of error will arise. Problems with the implied probability
density function was seen at a few places deep in(out)-the-money where they
became negative with a factor < 107!, this is again not that important since
it is of that magnitude and deep in(out)-the-money where we do not intend
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to model prices and implied volatilities.

The Model’s Usefulness The model may be used as a risk management
tool to understand the risks in options before an anticipated event. The
research department may have a view of the outcome of such event, and then
this model can price the positions given the input from the research team.
Similarly it can be used in a sensitivity analysis to see how different outcomes
impact the value of the firm’s positions. Furthermore it may be used to seize
investment opportunities if one can find options that does not price in the
event.

Another area in which the model may be useful is to understand the
markets view of an event, both the impact and the probability the market
assign to different outcomes. Since if the model may be calibrated to market
data with satisfying precision, one can estimate p,,, €7, ™" gy, and

02, down -

Suggested Further Research A suggested point for further research
would be to calibrate the models to market data, to see if the model may
capture the behaviour of FX options around events that fits the model in this
thesis. One can also adjust the models slightly to match other asset classes
and try to calibrate these to market data as well.

This thesis is focused solely on events with binary outcomes. There are
events in which one may have a view that the market will react in a third
way on a third option, a fourth on a fourth outcome etcetera. As an example
one can think of a macroeconomic data release e.g. NonFarm Payrolls in the
United States and have a view that if the number is in a certain interval that
will have a certain effect on the markets.

Another extension of the model can be to make it compatible with more
exotic options and not just European options. Further it could be interesting
to implement it for other dynamics e.g. Heston and the Stein and Stein
model.
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Appendices

A Distribution of z in Section 4.2.1

Here the distribution of z is derived to be

0?6, + o3 0
N((rd—rf - 202q 2) —t) /0701 + 03 0T )

First we note that W has Gaussian increments and that all other parameters
are constant, hence z is a sum of Gaussian variables and is therefore also
Gaussian.

Expectation of z W, is a standard Brownian motion, hence it has an
expectation of 0 and variance of ¢, i.e.

E[W,] =
Var(Wy)

t.

Also, since W has Gaussian increments it follows that Wy, — W,, ~ N (0, to —
t1), where ty > t; and all other parameters are constants. Therefore the
expectation of z can be calculated as

d_ .f i U§q92
r—r _T_T (T—t)+01(WTJ—Wt)+027q(WT—WTJ)

E
_ <rd e % _ @) (T'—t)+ o1 E[Wr, = W] + 09, E[Wr — Wy,]
_ <7“d o % _ @) (T —t) + o1 (E[Wyp,] — E[W)]) + 09,4 (B[Wr] — E[Wp,])
_ (rd_rf_#—@) (T'—t)+01(0—0)4 024 (0—0)
= <rd—rf—%—@> (T_t)‘

Variance of z To be able to derive the variance we first have to state that
the covariance of W at two different points in time is

Cov(ty, ty) = min(ty, ts).
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Now we may calculate the variance

29 2 0
Var(z) =Var ((rd . % — %) (T —t)+ o1 Wy, —Wi) + 02 (Wr — WTJ)>

=Var (oy Wy, = Wy) 4+ 09y (Wr — Wr,))

=Var (—oyWy + (01 — 02,)Wr, + 02.,Wr)

:JfVar(Wt) + (01 — 0'27q)2VCLT(WTJ) + a;anr(WT)
—201(01 — 09,4)Cov(Wy, Wrp,) — 20109 ,Cov(W,, Wr)
+ 209 (01 — 02,9)Cov(Wp, Wr,)

=0t + (o1 — O'Q’q)2TJ + Ug’qT — 201(01 — O9,4)t — 20109 4t
+ 209 4(01 — 024)T

=0{(Ty —t) + 03 (T —Ty)

= (0761 + 03 02) (T —1).

B Result Black and Scholes Dynamics

B.1 Increasing Time to Maturity with Skewed Jump
in Spot

The jump in spot is now skewed towards the downside by decreasing e"»
to 1.01 (previously 1.05), all else being equal in accordance with Table 1.
This is interesting since it is, for example, a possible scenario in case of
an unexpected and unwelcome election outcome. A similar behavior as for
the symmetric jump is observed. With a more skewed implied volatility
with lower values in the center and higher in the outer regions. The implied
probability density function gets a broader support and the bimodal behavior
becomes less pronounced as T increase.
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Figure 12: Implied volatility and implied probability density function when Sy =
1.0, e™r = 1.01, e"downr = 0.95, 09 down = 20%, 02up = 8%, t =0, T = 7/365 and
T = {8,11,14}/365. e"down  spot and e"™» can be seen as a red, gray and a blue
dot respectively. The shading of the implied volatility and the implied probability
density function corresponds to different time to maturity T which is the only
changing parameter. The darker shade corresponds to longer maturities.

Risk Reversal and Butterfly When the jump is skewed on the down-
side, the risk reversal increase as 1" increase. This is due to the fact that the
implied volatility curve is skewed towards the downside, hence the curve is
declining, but gets flatter and flatter in the area of the risk reversal calcula-
tions.

The butterfly is positive, which means that the curve is convex in the
interval of the 25 delta call and put option. The butterfly is also decreasing
with time, indicating that the curvature changes in the interval and flattens.

Variable ‘ Values

T 8/365 11/365 14/365
Risk Reversal 0.25 delta | -6.28% -5.24% -4.62%
Butterfly 0.25 delta 0.87% 0.79%  0.73%

Table 8: Risk Reversal and Butterfly values for increasing maturity and asymmet-
TiC Jump.
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B.2 Changes in Volatility - Increasing o3 goun

Below the result of increasing the 09 jgoun is presented. The affect is in the
opposite direction as for the case with an increasing 02 ;. AS 03 gown iNCreases
the lower peak gets wider and the density function gets support from lower
strikes. The implied volatility increase for lower strikes as o9 goun increase,
and it does make sense that the prices of options surge as the expected
volatility in the market increase.
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Figure 13: Implied volatility and implied probability density function when S; =
1.0, e™r = 1.02, e'dovn = 0.95, 02 gown = {8%,13%,18%}, 024p = 8%, t =
0, Ty = 7/365 and T = 14/365. e"down  spot and e"™» can be seen as a red,
gray and a blue dot respectively. The shading of the implied volatility and the
implied probability density function corresponds to different o2 qown which is the
only changing parameter. The darker shade corresponds to higher volatility in the
Uup Scenario.

Risk Reversal and Butterfly How the risk reversal and butterfly is
effected by an increase in 03 gow, can be seen in Table 9. The direction in
which they move is the opposite to the previous case, with an increase in
02.up- The butterfly switch sign in, from negative to positive as the volatility
increase. Hence, the curve goes from first being concave to being convex as
092.down Changes.
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Variable ‘ Values

2. down 008 013 0.8
Risk Reversal 0.25 delta | -5.49% -5.96% -6.66%
Butterfly 0.25 delta -0.27% -0.08% 0.17%

Table 9: Risk Reversal and Butterfly values for increasing o2 douwn -

B.3 Changes in Spot Jump - Decreasing down Scenario

As the jump size increase in the down scenario, the downside risk increase for
an option seller. Since it is now more likely that an option with a lower strike
will be exercised. This is clear from examine the probability density function,
that gets an increasing mass for lower strikes. The implied volatility gets
skewed to the left and a heavier tail occurs in this direction, which indicates
that an option seller wants a higher premium for an option with lower strike,
since the risk has increased.
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Figure 14: Implied volatility and implied probability density function when Sy =
1.0, e™r = 1.02, e"dovn = {0.92,0.95,0.98}, 02 down = 20%, 02.4p = 8%, t = 0,
T; =7/365 and T = 14/365. spot and e, can be seen as a gray and a blue dot.
The only changing parameter is e"down which is presented as shaded red dots, as
the magnitude of the jump increases the colour gets darker. This grading scale is
used in the implied volatility and the implied probability density function as well.

Risk Reversal and Butterfly The risk reversal is increasingly nega-
tive in this scenario. Indicating that the implied volatility gets more skewed,
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as the jump in the down scenario gets more drastic. In other words, the
difference between implied volatility for the 0.25 delta put and call does in-
crease.

The butterfly starts at a low, negative, value and becomes positive as the
jump increase. One can see the steepening in the volatility curve, causing
this, in Figure 14.

Variable ‘ Values

gldown 0.98 0.95 0.92
Risk Reversal 0.25 delta | -2.87% -7.02% -11.93%
Butterfly 0.25 delta -0.08% 0.29%  1.40%

Table 10: Risk Reversal and Butterfly values for increasing e’dewn,

C Result SABR Dynamic

C.1 SABR Dynamic - 7 Days to Maturity

In this section time to maturity 7T is decreased from 30 to 7 days, all else
being equal to Table 7. In comparison with section 5.3.1 the difference is
that the local frown becomes more pronounced and because of that the tails
gets thinner, otherwise the behavior is similar. This effect occurs since the
probability of reaching a price deeper in-the-money or deeper out-the-money
decrease as time to maturity decrease. This follow the same behaviour on
the local implied volatility as the implied volatility with Black and Scholes
dynamic has, compare Figure 10 and 15 with Figure 7, where these similar-
ities are illustrated. The skewed jumps affect the implied volatility in the
same way as in Skewed Jumps, Section 5.3.1, but with a more pronounced
peak that follows from the shorter time to maturity as explained earlier.
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Figure 15: Volatility generated by the SABR model with parameters in accordance
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Figure 16: Several implied volatility curves generated by the SABR model with
parameters in accordance with Table 7 except for T which now is 7/365, and
the implied volatility after a jump. eTdown  spot and e™» can be seen as red,
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Figure 17: Several implied volatility curves generated by the SABR model with
parameters in accordance with Table 7 except for T which now is 7/365, and the
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