
Application of convolutional neural networks
for fingerprint recognition

Tuong Lam & Simon Nilsson

June 14, 2018



Abstract

Fingerprint recognition is a well-known problem in pattern recognition and
widely used in contemporary authentication technology such as access de-
vices in mobile phones. The subject of this thesis is to investigate the appli-
cability of convolutional neural networks for fingerprint recognition. This is
accomplished by designing various network architectures for this task. Our
starting-point is an architecture known as a siamese network, from which
we build upon by including additional components as well as network ar-
chitectures based on the siamese architecture. The networks are realized by
implementation. Data for training and evaluating the networks is provided
as gray-scale images of fingerprints and we implement a simple algorithm
for generating ground truth labels. To evaluate our work, we measure the
performance of all implemented models with common metrics for fingerprint
recognition algorithms. Lastly problems with our approach are listed and
potential future improvements are given.
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1 Introduction

1.1 Overview of Biometrics

Biometrics refers to the science of determining the identity of an individual
based on her physical, behavioural or chemical characteristics [1]. Examples
of attributes include fingerprints, face, voice and odor, where the first two
are physical traits, voice is a behavioural characteristic and odor a chemical
attribute.

A biometric system establishes the identity of an individual by performing a
series of operations. On a global level a system utilizing biometrics consti-
tutes four components [1]:

1 Sensor - a physical device used for acquisition of input data to the
biometric system. Depending on the application the functionality of the
device may differ, for instance images of fingerprints can be obtained
using optical sensors while a sample of voice is acquired by an audio-
based device.

2 Feature extraction - pertinent features of the input data are ex-
tracted by some algorithm(s).

3 Database - a database contains data of templates of similar type to the
input data e.g. a fingerprint database consists of data from fingerprints
of several individuals. Raw data is often not stored in a database for
security reasons, instead the data is stored in another format.

4 Decision making - features of input templates are compared to rel-
evant stored data in the database component to produce a score for
decision making.

Depending on the application a biometric system can be utilized for verifica-
tion or identification [1]. A verification system associates each individual
with a unique identifier, such as PIN or user name and verifies the identity
of an individual by comparing data of input template with templates in the
database associated with the identifier of that person. In contrast to veri-
fication, identification systems compare data of acquired templates with all
templates stored in the database to confirm the identity of a person.
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Since there are many human characteristics the selection of useful attributes
is crucial for the implementation of successful biometric systems. In order
for a trait to be considered useful for biometric applications, it is reasonable
to assume that it satisfies some pertinent conditions. In [2] several such
conditions are presented, we list a subset of these:

1 Universality - Every individual should possess the trait.

2 Uniqueness - There should exist sufficient variation in the trait be-
tween individuals.

3 Permanence - The trait should be invariant over a long period of time,
in the sense that the features extracted in a biometric system remains
similar during that period.

4 Measurability - This refers to the possibility of acquiring and pro-
cessing the trait. It should be simple and convenient to obtain samples
of the trait. In cases of poor quality samples it should be possible to
improve quality with various preprocessing techniques.

One characteristic that satisfies the above conditions to some degree is finger-
prints, which will be discussed further in the coming introductory sections.

1.2 Fingerprint Recognition

1.2.1 Brief history

Scientific study of fingerprints began in late sixteenth century [3],[4]. In
1788 the anatomic formation of fingerprints was described in detail, where
various fingerprint ridge attributes were identified and characterized [5]. The
first fingerprint classification scheme was introduced in 1823, where fingers
were classified in nine different categories depending on ridge configuration
[5]. Uniqueness of fingerprints was proposed by Henry Fauld in 1880 based
on empirical observations [6]. This fact is one of the main reasons that
fingerprints are suitable traits in biometrics. Minutiae features for fingerprint
matching were introduced in late nineteenth century [4]. By the start of
the twentieth century fingerprint recognition was acknowledged as a valid
personal identification method and well established in the area of forensics
[7]. Since then emphasis have been put on developing automatic fingerprint
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recognition technology and the field of application have expanded to civilian
applications such as authentication on PC or mobile phones.

1.2.2 Methods

In this section we introduce terminology related to fingerprints and briefly
summarize common methods used in fingerprint recognition systems. We
will use the term recognition in cases where it is not specified if a biometric
system is designed for verification or identification.

A fingerprint consists of ridges and valleys as illustrated in Figure 1, where
the ridges correspond to dark areas and valleys are bright.

Figure 1: Illustration of ridges and valleys in a fingerprint. Ridge lines are
black while valleys are white.

Minutiae are points where discontinuities occur in ridges [8]. These points
constitute important features for some fingerprint recognition methods. Fig-
ure 2 illustrates two types of minutiae termination and bifurcation, the former
is marked with white dots in the figure. Termination points are classified as
points where ridges end and bifurcations are identified as points where ridges
diverge in two parts [8]. There are other minutiae points but termination and
bifurcation are the two most common minutiae points used for fingerprint
matching.
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Figure 2: Illustration of two types of minutiae, termination and bifurcation.
Termination points are marked with white dots and bifurcation points with
gray dots.

When it comes to common algorithms utilized for fingerprint matching, they
can be categorized in three groups: correlation-based matching, minutiae-
based matching and ridge feature-based matching [8].

Correlation-based algorithms use cross-correlation as a measure of similarity
between two image pairs [8]. These algorithms use global and/or local cross-
correlation techniques. Ridge feature-based techniques refers to methods
utilizing features belonging to ridge patterns [6]. Both correlation-based and
minutiae-based algorithms can be considered subsets of ridge feature-based
algorithms, since they are based on information from ridges.

Some frequently used algorithms for matching are minutiae-based [6]. Such
methods take sets of minutiae points from two images as input and deter-
mines the alignment between the sets that maximizes the number of minutiae
pairings [6]. This is often referred to as the minutiae matching problem. A
mathematical formulation of the problem and various solution methods are
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summarized in [6]. Since minutiae-based matching algorithms have sets of
minutiae points as input it relies on an efficient minutiae extractor. Minutiae
extraction can be performed in various ways, most methods uses a binariza-
tion process to convert input images to a gray-scale images [6]. The output
is then passed through a thinning stage, where the thickness of ridge lines is
converted to 1 pixel [6]. This results in a representation in which minutiae
points are easy to identify.

1.2.3 Difficulties

Fingerprint recognition has been extensively studied and many high-performing
algorithms for fingerprint matching exist. In the FVC (fingerprint verifica-
tion competition) website there are published algorithms achieving under 1%
false reject rate for false acceptance rate of 10−4 on their benchmark tests [9].
Despite the presence of algorithms providing good performance, fingerprint
recognition is in general a difficult problem due to high intra-class variations
and occurrence of fingerprints with small inter-class variations [6]. Factors
contributing to large intra-class variations include [6]:

1 Translation - Fingers placed at different locations in a sensor result
in translated images.

2 Rotation - Orientation of fingers may differ between acquisitions of
fingerprints.

3 Partial overlap - This is an implication of translation and rotation
differences between images of fingerprints.

4 Pressure - Captured ridge structures in a fingerprint depend on the
pressure on the acquisition device. Non-uniform pressure results in
noisy images.

5 Skin condition - Despite empirical observations supporting unique-
ness of fingerprints [6] changes in skin condition can occur when fingers
are subjected to damage, environmental causes such as temperature
etc.
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1.3 Why Convolutional Neural Networks?

One of the first convolutional neural networks (CNN) was the LeNet5 in
1998 [10]. They realized that image features can be located across the entire
image and that convolutional filters are great at extracting similar feature
at multiple locations with a low number of parameters. But it was not until
2012 that the field really picked up speed when a CNN called AlexNet won
by a large margin in the ImageNet Large-Scale Visual Recognition Challenge
[11]. At this point the computational power had increased greatly since 1998
and computations could be parallelized to a wide extent on graphics cards
(GPU). As the training of CNNs are very computationally heavy the use
of CNNs has been able to increase as with the growth in computer power.
Nowadays our smartphones have enough computing power to make good use
of CNNs, though they only run an already trained network so they don’t need
to go through the cumbersome training. For instance Google’s smartphone
Pixel uses a CNN to do background/foreground segmentation to artificially
create blurred background to mimic photos taken with expensive cameras
such as DSLRs [12].

The advantage of using CNNs is that they erase the need of manually hand-
crafted feature extraction tools. A CNN will instead find the optimal feature
extraction by only looking at the data. This way it’s possible to find new
features that would have been hard to find using handcrafted methods. This
also poses a few problems as the data fed to the network has to be of great
quality. Neither does the network get to use previous knowledge of the prob-
lem which could have been found during an attempt to design handcrafted
feature extraction.

A difficult part of doing fingerprint matching using a CNN are the intra-class
variation mentioned above, Section 1.2.3. By design convolutions are made
on a grid structure which creates problem when images rotate as then the
content of each cell changes, see Figure 3. This is a common problem with
CNNs and significantly degrades the accuracy of models as documented in
[13].
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Figure 3: Example of changes in grid content when a rotation is applied to
an image. Here it is possible to see that different parts of the fingerprint end
up in different orientations as well as different cells in the two cases. The
pink/black area is completely encapsulated in a cell in the left image but
when rotated 45 degrees clockwise this part ends up partially included in six
cells.

7



2 Problem formulation

The subject of this thesis is to investigate the potential of applying convo-
lutional neural networks to solve a fingerprint matching problem, which can
be formulated as:

P Given a set consisting of pairs of fingerprint images, determine for all
elements of the set whether they correspond to similar fingerprints or
not.

Note that the word ”similar” is not defined in the formulation of problem
P. Similar fingerprints could for instance be images of the same finger from
a single person or perhaps one has to impose additional conditions in order
to classify the images as similar. Consider e.g. the case of two images of the
same finger from a specific person, but the images depict different parts of
the finger. Then it might be more suitable to define this as a dissimilar pair
of images. Our definition of similarity between fingerprint images will be
given later (see definition 9.1 in Section 9.2).
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3 Convolutional Neural Networks

This section describes the various components and their roles in a convo-
lutional neural network, since these will be used frequently in our network
architectures. For those already familiar with the building blocks of a CNN
this section can be used for repetition or skipped entirely.

A general CNN consist of several layers, starting with an input layer fol-
lowed by hidden layers and ending with an output layer. The input layer
is simply where the input enters the network and serves as an input to the
following layer. Each hidden layer consists of different components, which
will be described further below, that operates on the input of the previ-
ous layer and produces an output to the next layer. The final output of a
convolutional neural network varies depending on the application. In e.g.
classification tasks the output is class labels, but for other problems it could
for instance be feature vectors.

3.1 Convolutional layer

A convolutional layer consists of convolutional filters (a.k.a. kernels) that
operate on the input to produce an output, often referred to as feature maps
[14]. For simplicity we will consider a convolutional layer with one filter and
one channel The crucial point is to understand the concept of convolutional
filters, extending it to an arbitrary number of filters and channels will then
be trivial. Consider an input I of dimensions m×n and a convolutional filter
W of size k × l. The output O of this convolutional layer is given by a two
dimensional convolution (actually cross-correlation [14]):

O(x, y) =
∑
i,j

I(i, j)W(i− x, j − y). (1)

To gain intuition on the convolution described by (1) we consider a small
example illustrated in Figures 4 and 5. The input to the convolutional layer
is in this case a 5 × 5 matrix and the convolutional filter is a 3 × 3 matrix.
The convolution process can be described as sliding the filter across the
image from left to right and top to bottom. In between the slides the filter
is multiplied with the input matrix elementwise and then all elements are
summed to produce a scalar output. Note that only elements of the input
and filter that overlap are multiplied, in Figure 4 the overlap is indicated by
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the green cells. The area of the input that overlaps with the filter is called
receptive field. Figure 4 illustrates the first convolution step and Figure 5
the second step. In this example the stride used is 1 in both dimensions of
the input. This implies that during the convolution the filter will slide across
the image with one step in horizontal direction as long as the receptive field
is not outside the input. Once it reaches the right edge of the input it starts
at the left edge of the input but one step down in vertical direction. The
total output will be a 3× 3 matrix.

Figure 4: Example of two dimensional convolution where the input is the
5×5 matrix and the convolutional filter has the dimensions 3×3. The figure
illustrates the first step in the convolution. The receptive field is indicated
by the green area. Integers in the cells are elements of the input.
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Figure 5: Example of two dimensional convolution where the input is the
5×5 matrix and the convolutional filter has the dimensions 3×3. The figure
illustrates the second step in the convolution. The receptive field is indicated
by the green area. Integers in the cells are elements of the input.

Notice that after the convolution step in the above example the output di-
mensions are smaller than the original input dimensions. In order to be able
to maintain the dimensions of the input, padding is often utilized. One way
of padding is to fill the original input with zeros outside its boundary. For
example if one was to add a layer of zeros surrounding the matrix in Figure
4 the result would be the matrix illustrated in Figure 6. Convolving this
matrix with the same filter yields an output with the same dimensions as the
input. When one adds a layer of zeros we say that the padding is 1 in both
input dimensions.
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Figure 6: Padded version of the input matrix in Figure 4 with a padding of
1 in both input dimensions.

In general given an input I of dimensions m × n, a filter W of size k × l,
a stride S = [S1, S2] and padding P = [P1, P2] the output O will have the
dimensions

O1 =
m− k + 2P1

S1

+ 1, (2)

O2 =
n− l + 2P2

S2

+ 1. (3)

If the inputs and convolutional filters are square matrices and furthermore
the stride and padding are the same in both dimensions the output will be a
square matrix with size given by

Odim =
m− k + 2P

S
+ 1. (4)

where S1, S2 are the strides in horizontal and vertical direction respectively,
same applies for the elements of P. For simplicity we assume that (4) holds
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for the remainder of this report, when it does not hold it will be explicitly
specified. The formulas that hold for the square case have analogues for the
non-square case.

Now that we are familiar with the convolution process in a convolutional
layer, generalizing it to inputs with an arbitrary amount of channels and
convolutional filters is simple. Assume that the input, I, to a convolutional
layer has the dimensions m × m × c. Then each filter in a convolutional
layer must have c channels. The convolution process remains the same, a
filter, now with several channels, slides across the input and between each
slide elementwise multiplication followed by summation is performed. If the
convolutional layer contains f convolutional filters the convolution process is
repeated for all f filters. The output will therefore have f channels and first
and second dimensions given by (4).

When constructing our networks we will use different padding in convolu-
tional layers and we will therefore introduce some terminology related to
padding. Assuming a stride S = 1, a padding P that satisfies (4) with l.h.s
equal to m will be called same padding. If P = 0 and the output size is
given by

Odim =

⌊
m− k
S

⌋
+ 1, (5)

we call the corresponding padding valid padding.

The idea behind convolutional filters is that they should function as local
feature identifiers. Kernels that represent e.g. edges should detect areas of
the input where edges are present when convolved with the input, i.e. the
corresponding output should be large for such areas of the input. Conversely
the output should be small when convolving the filter with an area of the
input where no edge is present. For a practical example consider the input in
Figure 4. Let us assume that it represents an edge and that the convolutional
filter is given by the matrix in Figure 7. The convolution step illustrated in
Figure 4 would produce an output equal to 280. If the filter is placed at
the center of the input the convolution output will be 700. This indicates a
stronger presence of the edge represented by the filter at the center of the
input than in the upper left corner. By sliding the filter across the image,
features will be identified over the entire input.
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Figure 7: Elements of the convolutional filter used in Figures 4 and 5.

3.2 Non-linear activation functions

Convolution is a linear operation, thus convolutional layers can only model
linear dependence. The main purpose of non-linear activation functions is to
introduce non-linearity in neural networks. An activation function operates
on each element of its input. There are many such functions and we will list
the ones that were utilized in this project.

One activation function that has proved to be successful in training deep
neural networks for supervised tasks [15] is the rectified linear unit (relu)
given by

y(x) = max(0, x). (6)

The relu activation functions introduces sparsity in the network which is a
desirable characteristics since it implies computational advantages, such as
accelerated training. Another advantage of relu is that it is unbounded for
positive arguments, which mitigates the vanishing gradients problem that
often occurs for saturated activation functions. However there are also draw-
backs with this activation function. A common problem is that of dying
relus which implies that the function will output zeros for most inputs, thus
introducing the vanishing gradients problem [16].

In order to deal with the potential problem of dying relus a commonly used
activation function is the leaky rectified linear unit (leaky relu) [16] which is
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defined by

y(x) =

{
x , if x > 0,

ax , otherwise,
(7)

where a is a small positive number.

3.3 Pooling layer

A pooling layer reduces the dimensions of its input by performing various
operations on the elements of its input. The operations performed varies
depending on the type of pooling used. Pooling works similar to convolutional
filters. A window slides across each channel of the input and between each
slide it operates on the elements of the receptive field. However there are
some key differences between a pooling layer and a convolutional layer. In
a pooling layer one can think of the window that slides across the input as
an imaginary matrix, in the sense that it does not exist in memory, it only
operates on the elements within the receptive field.

Max pooling is a type of pooling used widely in neural networks. It simply
selects the largest element within the receptive field of the input [14]. As
an example consider the matrix in Figure 8. Applying max pooling with a
window of size 2 and a stride of 2 will produce the output in Figure 9. Figure
8 also illustrates all receptive fields as cells of a specific color during the max
pooling operation. Figure 9 illustrates the corresponding output, which has
the same color coding. The width and height of the output from a max pool
layer can be computed according to (4) or (5), while the number of channels
is the same as the input.
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Figure 8: Input for max pool-
ing with window size 2 and
stride 2

Figure 9: Max pooling out-
put with input given in Figure
8 using window of size 2 and
stride 2

Pooling layers serve many purposes. One of them is to reduce the total
number of parameters in a network. This is trivial to see since a max pooling
layer decreases the spatial resolution of its input, thus subsequent layers will
use less parameters compared to the case where the pooling layer is absent.
A consequence of this is that pooling decreases the likelihood of overfitting
the trained model by reducing the model complexity.

Moreover pooling also introduces local translation and positional invariance
[14]. To see this one could imagine a translated version of the input to a max
pooling layer such that the receptive field in e.g. the upper left corner still
contains the same largest element as the corresponding receptive field in the
original input. The max pooling operation will output the same element in
these cases. It follows that the degree of invariance depends on the size of
the pooling window used. Local translation invariance is a desired property
for a network since it implies that the model will generalize well for small
translation of the input.

Including a max pooling layer in a network does have disadvantages. One
crucial fact to note is the decrease of spatial resolution when applying a max
pooling operation. A network consisting of many max pooling layers with
large strides might lose too much spatial information regarding features in
the input. One approach to solving this issue is simply reducing the strides of
pooling layers and/or decreasing the number of such layers. It is also possible
to skip the pooling layers entirely, but the network then loses the advantages
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of pooling layers. One of the network architectures used in this project does
not utilize any pooling (see Section 7).

3.4 Fully connected layer

A fully connected layer (a.k.a. dense layer) takes a vector x as input and
outputs another vector y, mathematically it is defined by a matrix-vector
multiplication:

y = Ax (8)

where x ∈ Rn and A ∈ Rm×n is a trainable weight matrix. The name
”fully connected” comes from the fact that each component of the output is
a weighted sum of all components of the input.

The fully connected layer is used to aggregate all information in the input, in
a CNN the input can be interpreted as a vector of features. For a classification
task a fully connected layer will then combine features into objects/classes.
The weighted sum corresponds to determining what features correlates the
most to a particular object/class.
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4 Siamese networks

4.1 Architecture

When solving matching tasks with convolutional neural networks, a com-
monly used architecture is the siamese network architecture. Figures 10 and
11 illustrate two general siamese networks for training and inference respec-
tively. The two left-most blocks are input layers. Blocks labelled with CNN
are convolutional neural networks, for siamese networks the output of CNN
blocks are feature vectors. Determining whether two inputs correspond to
a match is done in the decision layer, which outputs an answer ”match” or
”no match”. In a siamese network the convolutional neural networks have
the same architecture, hence the name siamese network. The convolutional
networks can even share weights, which is indicated by the bidirectional ar-
row in Figures 10 and 11. A siamese network is intended to function as a
feature descriptor, features for both inputs are computed and then compared
to determine whether there is a match or not. One benefit of having such
an architecture from a computational perspective is that the convolutional
blocks can be run in parallel.

Figure 10: General siamese network architecture for training. The blocks
with label CNN are convolutional neural networks. Black arrows indicate
direction of flow of the output from each block. Potential weight sharing
between the CNN blocks is indicated by the bidirectional arrow.
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Figure 11: General siamese network architecture. The blocks with label
CNN are convolutional neural networks. Black arrows indicate direction of
flow of the output from each block. Potential weight sharing between the
CNN blocks is indicated by the bidirectional arrow.

4.2 Contrastive loss

In order to train a model to match inputs one has to minimize a suitable loss
function. The loss function we will be using is the margin based contrastive
loss function [17]. Before we give the definition of this function some notation
have to be introduced. Let I be the finite set of training pair samples of
cardinality N given by

I = {(i1, i2)1, (i1, i2)2 . . . , (i1, i2)N}, (9)

where N is a positive integer, (i1, i2)k is sample pair k and i1, i2 ∈ RD.
Moreover let fΩ : RD → Rd be a parametric function. Introduce the label lk
defined by

lk :=

{
1 , if (i1, i2)k correspond to a similar pair,

0 , otherwise.
(10)

Define Dk
Ω := ‖fΩ(i1)− fΩ(i2)‖2 where i1, i2 ∈ (i1, i2)k. The contrastive loss

function is then given by

L(Ω, I,m) =
1

N

N∑
k=1

1

2
lk(D

k
Ω)2 +

1

2
(1− lk)

[
max(0, m−Dk

Ω)
]2
, (11)
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where m > 0 is the margin.

The idea behind (11) is to learn a function fΩ such that Dk
Ω is small for all

k where lk = 1 and larger for all k such that lk = 0 [17]. In other words
we want to learn a function that maps similar inputs to points close to each
other and dissimilar inputs to points distant from each other. This can also
be seen directly in (11). The first term in the sum will be larger for similar
pairs that are far from each other in output space. We also observe that if
the second term is non-zero for dissimilar pairs it contributes less to the loss
function if the euclidean distance between the pairs in output space is large.
Another important observation is that dissimilar pairs will only contribute to
the loss if the euclidean distance between them in output space is less than
the margin m. The importance of this fact will be highlighted in the training
of our siamese networks.

20



5 Triplet networks

5.1 Architecture

An alternative to using siamese networks is the so called Triplet network.
In Schroff, Kalenichenko and Philbin’s paper on face recognition the Triplet
network approach exceeded state of art performance in 2015 [18]. As with a
siamese network, triplet networks reuses the weights of a single CNN for all
three image batches involved in the network, see Figure 12.

Figure 12: Triplet network architecture. The bidirectional arrows signify
shared weights between CNN blocks. This architecture is used during train-
ing. At testing and validation time a siamese network is used with the same
weights and the triplet loss block is exchanged with a decision layer. This
layer typically consist of a Euclidean distance measure between the outputs
and a threshold determining match/no match.

When training a triplet network the input to the network is divided into the
three categories (anchor, positive and negative) which are all fed simultane-
ously to the network. Each anchor image has a positive and negative list of
images associated with it, where the positive contains images matching to
the anchor and the negative contains images dissimilar to the anchor.
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5.2 Triplet loss

To achieve a good separation between matching and non matching images
the so called Triplet Loss [18] is used

L =
N∑
k=1

max
(

0, ‖fΩ(iak)− fΩ(ipk)‖
2
2 − ‖fΩ(iak)− fΩ(ink)‖2

2 + α
)
, (12)

where ik is the k:th image in a batch, the superscripts p, a, n denote positive,
anchor and negative categories respectively. The function fΩ is the normal-
ized output from the network fΩ(i) ∈ Rd with ‖fΩ(i)‖2 = 1, hence the images
are mapped to the d-dimensional hypersphere. N is the total number of
triplets in a training batch. The α parameter is a hyperparameter function-
ing as a margin between the positive sample and the easy negatives in Figure
14. In this figure the semi hard and hard negatives will have a distance close
enough to the anchor to produce a positive loss. Due to the max term in (12)
easy negatives will not contribute to the loss function. During training the
semi-hard and hard negatives will be ”pushed away” from the anchor whilst
the distance to the positive is minimized, see illustration in Figure 13.

Figure 13: Illustrates how the network learns to separate the negative and
positive images during training. The triplet loss will enforce the network to
minimize the distance between anchors and positive images, in a Euclidean
space, while maximizing the distance between the anchor and the negative
images.
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Figure 14: Interpretation of how the margin α effects the loss. The ’A’
represent the anchor and ’P’ the positive image. The margin defines a buffer
zone between the positive image and the easy negative area. If a negative
image ends up in the easy area the contribution to the triplet loss will be
0, hence the margin becomes essential to repel negative images further away
from the anchor than the positive ones. It’s worth noting that the boundary
between the easy negative zone and the semi-hard negative is dependent
upon the distance between the current positive image and the anchor. Thus
the contribution to the loss function is highly dependent on how the whole
triplet of images is chosen.

5.3 Triplet selection

As discussed in the caption of Figure 14 the choice of triplets greatly impacts
the loss function and thus also the training, hence it’s important how the
data is selected during training to achieve faster convergence. To speed up
convergence it’s desired to select hard positives ipk such that

argmax
ipk

‖fΩ(iak)− fΩ(ipk)‖
2
2
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and hard negatives ink such that

argmin
ink

‖fΩ(iak)− fΩ(ink)‖2
2 .

As the data sets used in deep learning usually are very big it’s impractical to
compute argmax and argmin over the whole data set. To tackle this problem
there are two obvious choices discussed in [18]:

• Sample a subset of the data set every n steps and calculate the argmax
and argmin using the current network.

• Generate triplets online by calculating argmax and argmin in a mini-
batch and use the hard positives and hard negatives from this mini-
batch for training.

In this thesis a variation of the former approach has been used. Where the
five hardest positives and three hardest negatives for each anchor have been
used to increase the difficulty of the training set. A visualization of the hard
negative and positives is given in Figure 15. In the paper [18] they used online
triplet generation and used all positive data and only semi-hard negatives,
defined as ink such that

‖fΩ(iak)− fΩ(ipk)‖
2
2 < ‖fΩ(iak)− fΩ(ink)‖2

2 .

These ink are mapped to the semi-hard region defined by the margin, depicted
in Figure 14.
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Figure 15: Illustration of which images to select when increasing the diffi-
culty. Using hard positives and negatives for training will repel the hard
negatives away and attract the hard positives. In the ideal case also the
already close positives and distant negatives will remain well clustered but
since the training advances on these hard cases chances are that some of the
easy samples will move in an undesirable direction. Hence a new evaluation
of hard negatives and positives is needed and new images will be selected for
training.
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6 Inception networks

The inception network architecture was first introduced in 2014 where it
achieved new state of the art performance for classification and detection in
that years ImageNet Large-Scale Visual Recognition Challenge [19]. Incep-
tion networks were designed with the purpose of optimizing utilization of
computational resources within the network by approximating sparse struc-
tures within a network with dense components [19], since numerical compu-
tations with dense data structures are better optimized than computations
with non-uniform sparse data structures [19].

6.1 Architecture

Inception networks contain components called inception modules, the mod-
ules in turn consist of basic building blocks in a regular convolutional neural
network, which are described in Section 3. In Section 13.1 some inception
modules are illustrated. Unlike a regular CNN, which consist of a series of
convolutional components stacked on top of each other, an inception mod-
ule can have convolutional components next to each other i.e. it can contain
branches. One detail that is not specified directly in Figures 40 - 42 in Sec-
tion 13.1 is that the input to the concatenation block should have the same
width and height, however the number of channels may differ. The addition
of branches allows an inception module to consider features of various scales
by including convolutional layers with different filter sizes in a layer of an
inception module. By design an inception module component is easily inte-
grated into a conventional CNN simply by stacking it on top of the network.
Another important observation is that the convolutional layers in the first
layer of an inception module usually have 1× 1 convolutional filters (see e.g.
Figure 41). The reason for this is that larger filters in the first layer of an
inception module adds more parameters to the network. Thus if the inputs
to inception modules have many channels the number of parameters will in-
crease quickly. Adding 1 × 1 filters in the first layer of a module adds less
parameters than larger filters and therefore works as a reduction [19].
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7 Capsule Networks

Capsule networks, or popularly referred to as CapsNet, are a new variation
to the well established convolutional neural networks discussed in Section 3.
CapsNet was first introduced in Geoffrey Hinton, Sara Sabour and Nicholas
Frosst’s paper Dynamic Routing Between Capsules [20]. This novel approach
tries to mimic the human vision system by putting parts of an image in rela-
tion to each other to form an opinion on the whole picture [21]. For example
in Figure 16 when a human tries to answer if the letter ’B’ is mirrored or
not we impose an upright coordinate system and apply a rotation to the ’B’
on the left in Figure 16 to also get it upright [22]. This is a linear trans-
formation. Capsule networks tries to learn linear transformations through
backpropagation in the routing step, see Section 7.1.

In computer graphics objects are placed in space through a linear transfor-
mation matrix which applies scaling, translation and rotation [23]. Capsule
networks intend to perform the inverse process where the object’s location in
the image is known but the transformation matrix is not. By learning suit-
able transformation matrices the objects detected in an image (which the
transformation is applied to) can be pieced together to form the whole pic-
ture. By the routing procedure parts that fit well together will be propagated
forward in the network.

Figure 16: An easy example of how humans solves orientation; to find out
whether the left ’B’ is mirrored or not a human turns the ’B’ to its upright
position. Once there we conclude that it’s mirrored.
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When using an ordinary CNN it’s common to use max pooling layers (see
Section 3.3) to reduce dimensionality of the problem and still retain the
most important information in the network. The issue with max pooling
is that the precise location and orientation of objects in a picture get lost
through the pooling layers, see Figure 17. Placing many max pooling layers
in the architecture of a CNN causes an invariance in both orientation and
translation. When considering matching of fingerprints the position and
orientation between features are very important to get a reliable method for
matching. Instead of invariance, equivariance is desired, that is if an image
would be translated and rotated all features would change in the same way.
Formally this can be expressed as

f(g(I)) = g(f(I)) (13)

where I is an input image, f is a feature function and g is a distorting function.
If g exist such that equation (13) is satisfied the feature function f is said to
be equivariant to g [14]. The difference between CNN and CapsNet is in the
output, ordinary CNNs output scalar values while CapsNet output vectors.
The length of a CapsNet vector is interpreted as probability of existence
of the feature represented by the vector and the orientation of the vector
codes for the orientation of the feature. Hence CapsNet has an inherent
way of handling orientation shifts. Thus a change of orientation in the input
image as g(I), see equation (13), will cause a change in the orientation vector
outputs of the CapsNet and ideally there exists a g such that equation (13)
is satisfied. If that’s the case the capsule network can handle orientational
variance in an equivariant way.

28



Figure 17: Example of max pooling with window size 3x3 and a stride of 3;
pooling windows cover each colored patch. Even tough it’s noticeable that
there is a diagonal line consisting of 5s in the picture the output from the
max pooling layer only consist of a homogeneous picture with 5s. Hence the
orientation and separation between the 5 in the green patch and the 5s on
the line is lost.

7.1 Dynamic routing

Dynamic routing is an iterative method for computing vector outputs in a
capsule network. The capsule network builds initially on a regular CNN
structure to extract useful features. After a few convolutional layers the
output is sent into a Convolutional Capsule layer. This layer is an ordi-
nary convolutional layer where the convolved output is reshaped into capsule
modules each consisting of capsules on a grid structure, see Figure 18 and
19. A capsule is essentially a rebranding of a feature vector. The squashing
function in equation (15) is applied to all capsules in this first Convolutional
Capsule layer. It is all of these capsules in a layer that will be voting in the
routing procedure to determine which entities in the next layer that should
be activated.
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Figure 18: Illustration of a capsule element. The grid structure is corre-
sponding to the original input image (parsed through convolutional layers)
and the green rectangular parallelepiped represents a feature vector, i.e. a
capsule, at one position in an image.

Figure 19: A simple capsule network where there is one convolutional layer
before the first convolutional capsule layer here referred to as Primary Cap-
sule. The Primary Capsule consists of an ordinary convolutional part whose
output is reshaped into capsule modules. The network terminates with an
Output Capsule layer which contains the predicted output vectors of the
routing procedure.
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The routing algorithm in this section can be found in paper [20]. Routing is
an alternative to max pooling that forward output based on agreement. The
agreement is found through clustering of transformed features using k-means
algorithm [24]. Assume the layer l is a convolutional capsule layer. Denote its
capsules by ui and let vj denote the outputs from layer l (which are capsules
as well). Routing starts off by applying a trainable linear transformation
matrix Wij to a capsule ui

ûj|i = Wijui, (14)

where ûj|i is referred to as a prediction vector.

To make the output vectors from a convolutional capsule layer more discrim-
inant to existence of entities a non-linear ”squashing” function is used

squash(x) =
‖x‖2

2

1 + ‖x‖2
2

· x

‖x‖2

. (15)

This function squashes short vectors to have lengths closer to zero and long
vectors slightly below unit length. The outputs vj from a convolutional
capsule layer are then given by

vj = squash(sj). (16)

Here sj is the weighted sum of prediction vectors given by

sj =
∑
i

cijûj|i, (17)

where cij is a coupling coefficient between capsule i and capsule j in the
next layer. The coupling coefficient is calculated using the softmax function

cij =
exp(bij)∑
k exp(bik)

, (18)

with initial routing weights, bij, which are set to zero at the beginning
of every new routing procedure. Setting all bij:s to zero will result in a
scaling of the prediction vectors with one over the number of capsules in
layer l+ 1. To update the routing weights, i.e. moving the cluster means in a
k-means algorithm, the scalar product between a prediction vector and the
corresponding squashed output is computed according to

bij = bij + vj · ûj|i. (19)
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With the updated routing weights the outputs from layer l, vj, can be com-
puted iteratively through (18) and (17). This iterative process constitutes
the dynamic routing algorithm. The routing algorithm in its entirety is sum-
marized in pseudo code in algorithm 1.

Algorithm 1: Dynamic Routing

Input: Capsules ui, routing iterations r, layer number l,
transformation matrices Wij

Output: vj
1 Procedure: Routing(ui, r, l,Wij)
2 for all capsules i and j: ûj|i ←Wijui // prediction vectors

3 for all capsules i in layer l and capsules j in layer (l + 1): bij ← 0
4 for r iterations do
5 for all capsules i in layer l and capsules j in layer (l + 1)

compute cij using eq. (18) // coupling coefficients

6 for all capsules j in layer (l + 1): sj ←
∑

i cijûj|i
// weighted sum

7 for all capsules j in layer (l + 1) : vj ← squash(sj)
8 for all capsules i in layer l and capsules j in layer

(l + 1) : bij ← bij + vj · ûj|i // update routing weights

9 end
10 return vj

7.1.1 Routing illustration

In this section a simple illustration of the dynamic routing procedure is pre-
sented. Blue arrows within the squares are capsules, ui, from layer l. The
red arrows are prediction vectors from the capsules in the layer l. The row
table numbered 1 through 6 are indices for output capsules and contains the
predicted vectors illustrated with green arrows.
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Figure 20: Computes a prediction
vector for the first output capsule,
û1|1, by applying the transforma-
tion matrix W11 to the first cap-
sule from the current layer, u1, see
eq. (14).

Figure 21: Continue to produce
prediction vectors from the vec-
tor u1 to all different capsules in
the next layer. When all predic-
tion vectors have been computed
for u1, advance to the next vector
u2 and so on, see Figure 22.
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Figure 22: Once all prediction
vectors have been computed we
weight the batch of prediction vec-
tors from u1 in the current layer
using the coupling coefficients, see
eq. (18). In the figure this is illus-
trated by the ellipse enclosing the
first row of red prediction vectors.
This is repeated for all prediction
vectors and all capsules ui.

Figure 23: The prediction vectors
have now been rescaled with the
coupling coefficients, eq. (18). By
taking the sum along all weighted
predictions for each capsule in the
next layer, weighted predictions
are produced for all capsules in the
next layer.
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Figure 24: The squash function
(15) is applied. These final pre-
dictions will then be used to up-
date the routing weights used in
the next iteration, see eq. (19).

Figure 25: To update the rout-
ing weights, bij, the agreement be-
tween prediction vector ûj|i and
the predicted vector for capsule j,
vj, is calculated, see eq. (19). In
this case it seems like the third
capsule gives the longest vector
and thus there is with high proba-
bility an entity encoded by capsule
3 in the image.

7.2 Loss function

Since capsule networks have not been used for matching tasks before, new loss
functions are needed. Taking inspiration from the loss function, in equation
(11), used in our implemented siamese networks a modified contrastive loss
function is introduced in the following section.
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7.2.1 Contrastive loss for capsules

When going from the regular contrastive loss (11) to contrastive loss for cap-
sules the only difference is that in the capsule case the outputs are vectors
instead of scalars. This is handled by measuring distance between corre-
sponding capsules in the two branches of a siamese network. Let I be the set
(9) and f(i) be a function that maps input image i to outputs in a capsule
network. Moreover let fj(i) = vj(i) denote the j:th capsule output from im-
age i. Define the Euclidean distance between the j:th capsule outputs from
image pair (i1, i2)k as

Dk
j := ‖vj(i1)− vj(i2)‖2 , i1, i2 ∈ (i1, i2)k. (20)

Then the contrastive loss function is defined as

L =
1

2N

N∑
k=1

C∑
j=1

lk(D
k
j )

2 + (1− lk) ·max
(
0,m−Dk

j

)2
, (21)

where lk is given by (10), N is the number of image pairs, C the number of
capsule outputs from the network and m the margin hyperparameter, similar
as in (11).

In the matching case the first term within the double sum contributes to the
loss function. This contribution will be small if both vj(i1) and vj(i2) are
similarly oriented or if both vectors are very short. The maximum loss is
achieved if two vectors with high probability are orientated opposite of one
another and a high loss is assigned if one vector is long while the other is
short. Thus the loss function will push the network to produce either short
vectors in both images or long vectors with similar orientation.

In the non matching case a margin is imposed to punish outputs that have
small distances between each other. If the network produces outputs such
that Dk

j ≥ m the loss contribution will even be zero.
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8 Training Neural Networks

Training a constructed network is not always trivial since there are numerous
factors to take into account in order to train a successful network. This
section summarizes common factors to consider when training a network,
most of which we utilized in our implemented networks.

8.1 Regularization

One sign that a trained network is overfitted to its training data is that
the trained parameters are very large in absolute value. To reduce the de-
gree of overfitting regularization is often incorporated into the loss function.
Regularization penalizes large parameters and thus constrains the trained
model to adopt parameters that are not too large in absolute value. There
are various methods for introducing regularization, one of them is the so
called l2-regularization. It is done by simply adding a weighted sum of
the 2-norms of all network parameters to the loss function to be minimized
[14]. The weights are regularization parameters that determine the degree of
penalty for network parameters.

8.2 Batch normalization

Batch normalization (BN) was introduced 2015 in [25] with the intention of
facilitating training of deep neural networks. The authors of [25] list sev-
eral benefits of incorporating batch normalization in neural networks, most
notably are:

i BN enables higher learning rates when training a network

ii Network parameters are less dependent on careful initialization

iii BN works as a partial regularizer

To accomplish this the idea of batch normalization is to reduce internal co-
variance shift [25], which is defined as change in distribution of node values
in a network due to changes in network parameters. Internal covariance shift
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obstructs training of networks since they have to account for changes in the
distributions of node values. Batch normalization reduces internal covariance
shift by constraining all node values to have standard normal distribution
with zero mean and unit variance.

We start by formulating the batch normalization algorithm for nodes in a reg-
ular neural network (e.g. an activation in a fully connected layer). Consider
a node value, which we denote by x, then the batch normalization algorithm
can be formulated according to Algorithm 2. Note that Algorithm 2 returns
a linear transformation of the normalized node value. The reason for this
transform is that simply normalizing a node’s value changes the features it
is able to represent, thus the transformation is added in order to compensate
for this. When performing the normalization step the denominator contains
an ε > 0 for numerical stability.

Algorithm 2: Batch normalization transform

Input: Batch B = {x1, x2, . . . xn} of values of x,
trainable parameters γ , β
Output: y

1 µβ ← 1
n

∑n
k=1 xk // batch mean

2 σ2
β ← 1

n

∑n
k=1(xk − µβ)2 // batch variance

3 x̂← xi−µβ√
σ2
β+ε

; for some 1 ≤ i ≤ n and ε > 0 // normalize

4 y ← γx̂+ β // scale and shift

5 return y

For convolutional layers the node values in a feature map are jointly normal-
ized across both the elements of a batch and spatial dimension. Thus the
input to Algorithm 2 now consists of all node values in a feature map for all
elements of a batch. For example if we have a feature map of size m×n and
use a batch of size b then the input to the batch normalization algorithm will
have the size m ·n · b. The parameters γ anf β are now common for an entire
feature map instead of a single node.

When training a batch normalized network the values of the nodes for which
batch normalization is applied to are replaced with their corresponding batch
normalized transforms. The set of parameters to optimize is then the union
of all original network parameters and the parameters introduced by batch
normalization. During testing of a network it is not desirable to normalize
w.r.t. a batch, the normalization step is instead done using moving aver-
ages of the batch means and variances from training. More details of batch
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normalization during inference is found in [25].

8.3 Dropout

The idea of dropout was published in 2014 in the Journal of Machine Learn-
ing Research 15 as a means of reducing overfitting in neural networks [26].
One method of reducing overfitting is model combination, i.e. to train sev-
eral different networks to accomplish the same task and then averaging their
outputs to compute the final output. However this approach of reducing
overfitting also comes with various practical limitations. If the trained net-
works have large depths it will require a considerable amount of time to train
the networks. Moreover inference with several deep networks can become im-
practical for applications requiring low response time.

Dropout resembles model combination but achieves this through a different
method. Applying dropout to a neural network involves temporarily exclud-
ing neurons contained in the network during training. A node is excluded
from the network with probability 0 ≤ p ≤ 1, independent of other nodes.
Excluding a neuron is done simply by setting its value and all weights con-
nected to it to zero. This is of course applicable for all neurons in a network,
thus all neurons for which dropout is applied to are Bernoulli distributed with
probability 0 ≤ p ≤ 1. Applying dropout to a network can be interpreted
as selecting a sub-network consisting of a subset of nodes from the original
network. From this interpretation it is trivial to conclude that training a net-
work with dropout is equivalent to training numerous of its sub-networks. As
mentioned at the beginning of this section the output from several trained
networks can be combined by averaging to produce the inference output.
Even in the case of dropout, where sub-networks of a network are sampled,
averaging over trained models can turn out to be impractical since there are
exponentially many sub-networks. Given a network consisting of n nodes
there are 2n sub-networks. Therefore in a network with dropout, the averag-
ing is approximated by weight scaling, which implies that given a node with
dropout probability p the outgoing weights from this node are scaled with p
during inference. Thus during inference the original network is used and its
trained parameters are scaled in accordance with the dropout probabilities of
its nodes. It should be emphasized that the exclusion of nodes is only done
during training, not during inference.

To gain some intuition on how dropout reduces overfitting one can consider
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a particular node in a regular neural network and all neurons connected to
it. Assume that there is a large amount of neurons connected to our node
of interest and suppose that this node has a poor representation of some
feature of the input to the whole network. Then during training without
dropout, the neurons connected to our node of interest might compensate
for their lack of performance by adapting their weight connections. This can
occur for numerous nodes in a network, which results in many co-adaptations
between elements in a network. Such a network will in turn generalize poorly
to unseen data. Ideally each node of a network should be able to represent
features of an input without relying heavily on the presence of other neurons
to adjust for its inability to represent some features. Dropout achieves this by
temporarily removing neurons from a network, forcing the remaining neurons
to learn to work with each other. Since nodes are randomly removed during
training each neuron learns to work with random subsets of other nodes.
This implies that each node will not become dependent on a particular set of
nodes and above all they will strive towards representing useful features by
themselves. The result is a network with increased robustness towards new
data.

Since our neural network architectures will have a siamese design we would
also like to point out an important detail when training siamese networks
with dropout. In Section 4.1 we mentioned that siamese networks have the
same convolutional architecture in both of its branches (for a triplet network
all three branches have the same convolutional architecture). This puts a
constraint on using dropout on siamese networks. After the dropout oper-
ation a siamese network must still have the same convolutional structure in
both branches. In other words the same neurons must be dropped from each
branch of a siamese network. This can be accomplished in practice by fixing
a seed when applying dropout.
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9 Method

In the first subsection of this section the training methodology used for train-
ing our networks is discussed, which includes among other things: parame-
ter initialization, optimization algorithms and hyperparameter tuning. The
second subsection will discuss the data utilized to train our implemented
networks and introduce a definition of the term similar that appeared in
the formulation of problem P in Section 2. Following two subsections will
describe decision making in trained networks and common metrics used to
evaluate fingerprint recognition algorithms respectively.

9.1 Training methodology

All network architectures are implemented using Python with TensorFlow
API. The models are trained on a computer with Intel Core i7-8700K 3.70GHz,
2x Geforce GTX 1080 Ti and 32 Gb RAM. We did not utilize multi-GPU
for training one model, instead we trained two models simultaneously using
single GPUs.

Most network parameters are initialized using an uniform Xavier initializer,

U(−x, x), where x =
√

6
in+out

and in and out are the number of input and

output neurons respectively. Consider for example an input with dimensions
5 × 5 × 1 to a convolutional layer with same padding, stride of one and 8
convolutional filters, then in = 5 ·5 ·1 and out = 5 ·5 ·8. All biases are initial-
ized as zero. Our networks will also use batch normalization and leaky-relu
activations, where the hyperparameters to these methods are TensorFlow’s
default settings [27],[28]. To minimize the loss functions for our networks we
varied between two optimizers: stochastic gradient descent with momentum
[29] and Adam optimizer [30].

The contrastive loss function (11) contains a margin parameter that deter-
mines if dissimilar pairs of images should contribute to the loss function.
As the network trains ideally it should learn to separate matching and non-
matching pairs. The distance between similar pairs should be lower than
for dissimilar pairs. With this in mind we decided to increase the margin
during training, since if the network has trained for a long period and the
distance between dissimilar pairs is still low then one should penalize such
a pair. Our implemented siamese network will output normalized feature
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vectors to the decision layer,see Figure 11. The maximum distance between
such feature vectors is 2, which follows from the triangle inequality. This
provides a natural upper bound for the margin parameter in the contrastive
loss function, having a margin larger than two implies that all dissimilar pairs
will contribute to the loss function regardless of the distance between them.

9.2 Data

To train our networks we used a dataset provided by Precise Biometrics. The
data consists of 192 × 192 grayscale images of fingerprints. Each image is
also associated with the following additional information:

1 person id - integer indexing the person that the current image originates
from

2 finger id - integer indexing which finger the current image depicts

3 translation - a pair of real numbers representing the two dimensional
translation of the image relative a determined origin

4 rotation - scalar representing the rotation of the current image relative
a determined origin

The translation data was converted to pixel coordinates before use, since it
was originally given in another format. Similarly the rotation data was trans-
formed to degrees. Also note that the translation and rotation are relative
to some determined origin, where the origin is unique for each fingerprint
from a specific person. However we will only be interested in the difference
in translation and rotation between images so the location of the origins are
not important.

Having presented the data utilized in this project we now define the notion
of similarity used in problem P:

Definition 9.1. Let t(i) = (tx(i), ty(i)) be the two dimensional translation
in pixel coordinates for image i and let r(i) denote the rotation of image i
in degrees. Two images i1 and i2 are similar if they originate from the same
person, depict the same finger and the following conditions are satisfied:
‖tx(i1)− tx(i2)‖2 < ∆t, ‖ty(i1)− ty(i2)‖2 < ∆t and ‖r(i1)− r(i2)‖2 < ∆r.
Here ∆t and ∆r are small positive scalars.
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In definition 9.1 there are two adjustable parameters, namely ∆t and ∆r.
Intuitively the parameters should be set to small numbers, since images with
small rotation and translation differences have high overlap and thus are more
likely to be similar. Images that do not satisfy definition 9.1 are considered
dissimilar.

Since our networks will solve a matching task using siamese-based architec-
tures the inputs to some networks will be pairs of images. We use definition
9.1 to generate ground truth labels for pairs of fingerprint images. Similar
images are labelled with 1 and dissimilar images with 0. Given a set of fin-
gerprint images with cardinality n there are

(
n
2

)
pairs, if one disregards the

ordering of elements within a pair. The fraction of similar and dissimilar im-
ages will depend on the parameters ∆t and ∆r in definition 9.1. In practice
we found that setting ∆t and ∆r to small numbers yielded significantly more
dissimilar images than similar. Thus we could remove some non-matching
pairs. Table 1 summarizes the various datasets of pairs used in this project.
Before generating datasets of pairs the original database from Precise Bio-
metrics is partitioned into training, validation and test sets. The training
set constitutes 80% of the original dataset and the validation and test set
consist of 10% each. From these partitions the corresponding partitions for
image pairs are generated. During training the training and validation sets
are shuffled before use and reshuffled for each epoch.

Datasets of pairs
Name ∆t ∆r number

of similar
pairs

number of
dissimilar
pairs

total num-
ber of im-
age pairs

data1 10 5 7178 1172430 1179608
data2 30 5 57799 1172430 1230229

Table 1: List of datasets utilized to train networks with two image inputs.
The parameters ∆t and ∆r are part of definition 9.1

When working with triplet networks the data set has to be divided into
three categories: anchors, positives and negatives. As described in Section
5.1 positive images are matching to the anchor and negative images are non
matching. To define whether images are matching the same definition as
for the siamese network was used, Def. 9.1. The two datasets, data3 and
data4, were partitioned into training, validation and test sets with the same
distribution and sensitivity to rotation and translation as above in table 1.
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Datasets of triplets
Name ∆t ∆r number

of similar
pairs

number of
dissimilar
pairs

total num-
ber of im-
age pairs

data3 10 5 7178 1172430 1179608
data4 30 5 57799 1172430 1230229

Table 2: List of datasets utilized to train and evaluate triplet networks. The
parameters ∆t and ∆r are a part of definition 9.1. These datasets have the
same translation and rotational difference as data1 and data2 in table 1 but
due to implementational reasons they have different dissimilar image pairs.

9.3 Inference for trained models

To evaluate our trained siamese/inception/triplet network models we use a
decision layer (see e.g. Figure 11) inspired by the intuition of the contrastive
loss function (11) and triplet loss function (12). Similar images should be
close to each other in output space and dissimilar images distant from each
other. The decision layer discriminate between similar and dissimilar pairs
of images by using a threshold ε > 0 such that all pairs (i1, i2) that satisfies
‖fΩ(i1)− fΩ(i2)‖2 < ε are considered similar, otherwise they are dissimilar.
Here fΩ is some parametric function mapping input to some output space.
For instance in a siamese network fΩ maps input to a vector space (normalized
in our implemented siamese networks).

We use a similar decision layer for capsule networks, the difference is that
a capsule network outputs capsules (which are vectors). Thus we compute
euclidean distance between corresponding capsules in an image pair followed
by taking mean over the number of capsules. More specifically two images
i1, i2 are considered similar if 1

C

∑C
j=1 ‖vj(i1)− vj(i2)‖2 < ε, where C is the

number of output capsules, vj(i1) is capsule j from image i1 and ε > 0 is a
decision threshold.

9.4 Evaluation metrics

In this section we summarize metrics commonly used to benchmark finger-
print recognition algorithms. Assume that we have a trained model and
want to evaluate it using a test set of image pairs. Moreover introduce the
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following terms:

• P - number of positive examples (examples corresponding to a match)

• N - number of negative examples

• TP - number of true positives predicted by a model

• TN - number of true negatives predicted by a model

• FP - number of false positives

• FN - number of false negatives

then we can define the metrics described by the equations (22) - (25):

recall =
TP

P
(22)

accuracy =
TP + TN

P +N
(23)

FPR =
FP

N
(24)

FNR =
FN

P
(25)

where FPR, FNR are short for false positive rate (a.k.a. false acceptance
rate) and false negative rate (a.k.a. false reject rate) respectively.

Depending on application the emphasis on false accepts and false rejects may
vary. In security critical applications it is desirable to have a low false positive
rate. Therefore it might be of interest to consider the performance of a model
for small false positive rates. We will measure recall for small values of FPR to
benchmark our networks for this special case. In general the relation between
recall and FPR is given by a receiver operating characteristic (ROC) curve.
A ROC curve illustrates recall as a function of false positive rate for varying
decision thresholds, however the threshold values are suppressed in the plot.
When evaluating fingerprint recognition systems one is particularly interested
in the behaviour of the model for small FPR, thus we put a log-scale (base
10) on the independent variable axis (FPR) in the ROC curves.
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Using the decision layer for siamese networks described in Section 9.3 allows
for a model that is flexible, in the sense that the decision threshold can be
adjusted to suit different applications. This of course requires the model to
perform reasonably well for various thresholds. We will therefore compute
recall, false positive rate and false negative rate as functions of threshold to
evaluate our implemented models for various decision thresholds.
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10 Results

10.1 Siamese network

Table 3 summarizes the siamese network architecture that we implemented
for dataset data1 in table 1. The model uses the contrastive loss function (11)
and was trained using stochastic gradient descent with momentum. During
training the margin in (11) is changed dynamically in accordance with the
discussion in Section 9.1. In table 5 the hyperparameters for the implemented
siamese network are summarized along with their values. The network uses
the decision layer from Section 9.3 to determine whether two fingerprints
match. Total time spent training the model was 35 minutes. The test set
consists of 582 similar pairs and 116804 non-matching pairs.

The architecture used for data2 in table 1 is found in table 4 and this net-
work is trained using SGD with momentum for 20 minutes. We used the
same hyperparameter configuration as the siamese network for data1 during
training (see table 5). As listed in table 1 the matching pairs in data2 are
allowed to have larger translation differences. Just as for data1 we report
the corresponding results for this dataset. In this case the test set consists
of 5777 similar images and 116804 dissimilar image pairs.
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layer input dims output dims kernel/window params

bn1 192× 192× 1 192× 192× 1 2
conv1 192× 192× 1 93× 93× 16 7× 7, S = 2 800
bn2 93× 93× 16 93× 93× 16 32
leaky-relu 93× 93× 16 93× 93× 16 0
max pool 1 93× 93× 16 46× 46× 16 2× 2 , S = 2 0
conv2 46× 46× 16 21× 21× 16 5× 5, S = 2 6416
bn3 21× 21× 16 21× 21× 16 32
leaky-relu 21× 21× 16 21× 21× 16 0
max pool 2 21× 21× 16 10× 10× 16 2× 2 , S = 2 0
conv3 10× 10× 16 10× 10× 32 3× 3, S = 1 4640
bn4 10× 10× 32 10× 10× 32 64
leaky-relu 10× 10× 32 10× 10× 32 0
conv4 10× 10× 32 10× 10× 64 3× 3, S = 1 18496
bn5 10× 10× 64 10× 10× 64 128
leaky-relu 10× 10× 64 10× 10× 64 0
flat 10× 10× 64 6400× 1 0
fc1 6400× 1 1024× 1 6.55M
bn6 1024× 1 1024× 1 2048
leaky-relu 1024× 1 1024× 1 0
l2-norm 1024× 1 1024× 1 0

total 6.58M

Table 3: Siamese network architecture for dataset data1 (see table 1). S is the
stride (given as one integer if the stride is the same in both spatial dimensions)
and the column params lists the number of trainable parameters in each layer,
where M stands for million. l2-regularization is used for all convolutional and
fully connected components. The loss function used to train the network is
given by (11) with addition of regularization terms. Dropout layers are used
after all leaky-relu layers, the dropout rate is specified in table 5.
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layer input dims output dims kernel/window params

bn1 192× 192× 1 192× 192× 1 2
conv1 192× 192× 1 93× 93× 64 7× 7, S = 2 3200
bn2 93× 93× 64 93× 93× 64 128
leaky-relu 93× 93× 64 93× 93× 64 0
max pool 1 93× 93× 64 46× 46× 64 2× 2 , S = 2 0
conv2 46× 46× 64 21× 21× 64 5× 5, S = 2 102K
bn3 21× 21× 64 21× 21× 64 128
leaky-relu 21× 21× 64 21× 21× 64 0
max pool 2 21× 21× 64 10× 10× 64 2× 2 , S = 2 0
conv3 10× 10× 64 10× 10× 64 3× 3, S = 1 36928
bn4 10× 10× 64 10× 10× 64 128
leaky-relu 10× 10× 64 10× 10× 64 0
conv4 10× 10× 64 10× 10× 128 3× 3, S = 1 73856
bn5 10× 10× 128 10× 10× 128 256
leaky-relu 10× 10× 128 10× 10× 128 0
flat 10× 10× 128 12800× 1 0
fc1 12800× 1 1024× 1 13.1M
bn6 1024× 1 1024× 1 2048
leaky-relu 1024× 1 1024× 1 0
l2-norm 1024× 1 1024× 1 0

total 13.3M

Table 4: Siamese network architecture for dataset data2 (see table 1). S
is the stride (given as one integer if the stride is the same in both spatial
dimensions) and the column params lists the number of trainable parameters
in each layer, where M stands for million and K thousand. l2-regularization is
used for all convolutional and fully connected components. The loss function
used to train the network is given by (11) with addition of regularization
terms. Dropout layers are used after all leaky-relu layers, the dropout rate
is specified in table 5.
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Hyperparameters

learning rate 10−4

m0 0.5
mmax 1.3
mfactor 1.1
mitr 400

batch size 250
momentum 0.99

dropout rate 0.5
λ 0.3

Table 5: Hyperparameters used to train the networks in table 3 and 4. m0

is the initial margin in (11) which is multiplied by mfactor every mitr iter-
ations during training. We also put an upper bound mmax on the margin.
Momentum is the value used for the stochastic gradient descent optimizer,
dropout rate is the rate used for all dropout layers and λ is the regularization
parameter.

Figure 26 illustrates histograms over Euclidean distances between image pairs
(in output space) in a subset of the test set of data1 (left figure) and data2
(right figure). To compute the histograms we used all similar pairs and an
equal amount of dissimilar pairs from the corresponding test sets. The green
histogram depicts the distance distribution for similar pairs and the red part
shows the corresponding for dissimilar pairs. One can observe an overlap
between the histograms, which corresponds to the brown area. This implies
that the decision layer will make errors when trying to discriminate between
similar and dissimilar pairs regardless of the choice of threshold. We obtain
an imperfect discrimination between similar and dissimilar images in both
figures.

In Figure 27 several metrics to measure the performance of the trained net-
works are plotted as functions of the decision threshold. For vectors that are
normalized in output space an upper bound for the distance between any
two pairs of images is 2, thus it is sufficient to consider thresholds in the
interval [0, 2]. The equal error rate (EER, the threshold value where FPR is
equal to FNR) is approximately 0.16 according to the left figure in Figure 27.
According to the right figure in Figure 27 the EER is approximately 0.18. A
lower EER indicates better performance.
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Figure 26: Histograms over Euclidean distances in output space between all
image pairs in a subset of the corresponding test sets consisting of all similar
pairs and an equal amount of dissimilar pairs from the test sets. The green
histogram illustrates distances between similar images and the red histogram
depicts distances between dissimilar images. In the left figure the results for
data1 is illustrated and to the right the histograms for data2 are depicted.

Figure 27: Plot of evaluation metrics as functions of the decision threshold
for the models in table 3 and 4 using a subset of the test set of data1 (left
figure) and data2 (right figure) respectively. The subset consists of all similar
pairs and twenty times as many dissimilar image pairs for data1. In the case
of data2 all similar examples are used and the number of negative examples
is a factor 3 larger.
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10.2 Triplet network

Table 6 contains the architecture of the triplet network used for datasets
data3 and data4, see table 2. The model was trained using Adam optimiza-
tion [30] on the triplet loss function defined in equation (12). Hyperparame-
ters used for training the model are summarized in table 7. The network used
for data3 and data4 was trained for 3 minutes (300 steps) and 25 minutes
(1267 steps) respectively and both adopted an early stopping technique. To
increase difficulty during training the network used an offline method. Ev-
ery Iitr, see table 7, the dataset was sampled and evaluated using the latest
model. The 3 hardest negative and the 5 hardest positive images per anchor
where selected as the current training set.
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layer input dims output dims kernel/window params

conv1 192× 192× 1 186×186×16 7× 7, S = 1 800
relu 186×186×16 186×186×16 0
max pool 1 186×186×16 93× 93× 16 2× 2 , S = 2 0
conv2 93× 93× 16 93× 93× 16 5× 5, S = 1 6416
relu 93× 93× 16 93× 93× 16 0
max pool 2 93× 93× 16 46× 46× 16 2× 2 , S = 2 0
conv3 46× 46× 16 44× 44× 32 3× 3, S = 1 4640
relu 44× 44× 32 44× 44× 32 0
max pool 3 44× 44× 32 22× 22× 32 2× 2 , S = 2 0
conv4 22× 22× 32 20× 20× 64 3× 3, S = 1 18496
relu 20× 20× 64 20× 20× 64 0
max pool 4 20× 20× 64 10× 10× 64 2× 2 , S = 2 0
flat 10× 10× 64 6400× 1 0
fc1 6400× 1 1000× 1 6.4M
relu 1000× 1 1000× 1 0

total 6.43M

Table 6: Triplet network architecture for both datasets data3 and data4 (see
table 2). S is the stride (given as one integer if the stride is the same in both
spatial dimensions) and the column params lists the number of trainable
parameters in each layer, where M stands for million. l2-regularization is
used for all convolutional and fully connected layers. The loss function used
to train the network is given by (12) with addition of regularization terms.
Training set difficulty was increased twice during training and an early stop
technique was adopted. The first two convolutional layers were initialized
using an uniform distribution between −1 and 1, the rest of the parameters
were initialized using the standard Tensorflow initialization stated in Section
9.1.
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Hyperparameters

learning rate 10−3

β1 0.9
β2 0.999
Iitr 100/500

batch size 300
λ 1.0
α 4.0

Table 7: Hyperparameters used to train the network in table 6. Iitr indicates
the number of iterations until the difficulty of the training set is increased as
described in Section 5.3. For data3 Iitr = 100 and Iitr = 500 for data4. The
β1 and β2 parameters are the forget rates of the gradients and the second
moments of gradients [30]. λ is the regularization parameter used in all
regularizers in the network in table 6. α is the margin discussed in Section
5.2.

Figure 28 shows the same metric as Figure 26 but for the triplet network.
One can note that the distances approximately are in the range [0, 8] which
is a much wider span than that of the siamese network. This is due to
no normalization of the output of the triplet network. It’s is also apparent
that there is no overlap between the matching and non matching images for
very small distance. This is eminent in fingerprint matching where a low
false positive rate is demanded. However there is still a considerable overlap
between the distribution, hence the model will make faulty predictions. The
equal error rate is approximately 0.15 in both plots in Figure 29. One can
take notice of that the FPR in the left plot in Figure 29 stays close to zero
for slightly higher threshold values than in the plot to the right. Hence the
model will perform better on dataset data3 as shown in table 12.
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Figure 28: Histograms over Euclidean distances in output space between all
image pairs in a subset of the corresponding test set consisting of all similar
pairs and an equal amount of dissimilar pairs from the test set. The green
histogram illustrates distances between similar images and the red histogram
depicts distances between dissimilar images. In the left figure the results for
data3 is illustrated and to the right the histograms for data4 are depicted.

Figure 29: Plot of evaluation metrics as functions of the decision threshold
for the model in table 6 using a subset of the test set of data3 (left figure)
and data4 (right figure) respectively. The subset consists of all similar pairs
and three times as many dissimilar image pairs.
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10.3 Inception network

Implemented inception architectures will be represented in the same linear
table format as for previous networks (see e.g. table 3), where inception
modules are included as rows in a table. For details regarding the structure
of inception modules we refer to the appendix Section 13.1.

We used the same inception architecture, training methodology and hyper-
parameter configuration for both data1 and data2 (see table 1). In table 8
the inception network is illustrated. The loss function for the model is given
by (11) and it is trained with SGD with momentum for 45 minutes. Hy-
perparameter configuration is listed in table 9. We compute the evaluation
metrics as in Section 10.1 using the same subsets of test sets of data1 and
data2.
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layer input dims output dims kernel/window params

bn1 192× 192× 1 192× 192× 1 2
conv1 192× 192× 1 186×186×16 7× 7, S = 1 800
bn2 186×186×16 186×186×16 32
leaky-relu 186×186×16 186×186×16 0
max pool 1 186×186×16 93× 93× 16 2× 2 , S = 2 0
conv2 93× 93× 16 89× 89× 16 5× 5, S = 1 6416
bn3 89× 89× 16 89× 89× 16 32
leaky-relu 89× 89× 16 89× 89× 16 0
max pool 2 89× 89× 16 44× 44× 16 2× 2 , S = 2 0
inception a 44× 44× 16 44× 44× 128 30368
inception a 44× 44× 128 44× 44× 128 44704
inception a 44× 44× 128 44× 44× 128 44704
reduction 44× 44× 128 21× 21× 256 156K
inception b 21× 21× 256 21× 21× 192 80736
max pool 3 21× 21× 192 10× 10× 192 2× 2, S = 2 0
flat 10× 10× 192 19200× 1 0
fc1 19200× 1 512× 1 9.8M
leaky-relu 512× 1 512× 1 0
l2-norm 512× 1 512× 1 0

total 10.1M

Table 8: Inception network architecture for dataset data1 and data2 (see
table 1). S is the stride (given as one integer if the stride is the same in both
spatial dimensions) and the column params lists the number of trainable
parameters in each layer, where M stands for million and K thousand. l2-
regularization is used for all convolutional and fully connected components
as well as inception modules. The loss function used to train the network is
given by (11) with addition of regularization terms. Dropout layers are used
after the two first leaky-relu layers, the dropout rate is specified in table 9.
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Hyperparameters

learning rate 10−4

m0 0.5
mmax 1.3
mfactor 1.1
mitr 400

batch size 75
momentum 0.99

dropout rate 0.5
λ 0.3

Table 9: Hyperparameters used to train the network in table 8 on data1
and data2. m0 is the initial margin in (11) which is multiplied by mfactor

every mitr iterations during training. We also put an upper bound mmax on
the margin. Momentum is the value used for the stochastic gradient descent
optimizer, dropout rate is the rate used for all dropout layers and λ is the
regularization parameter.

Inspection of the left figure in Figure 30 shows that the distance distribution
between image pairs is spread over the interval [0, 0.8], which is approximately
a factor 2 less than the corresponding interval for the siamese network (see
left figure in Figure 26). Moreover the means of the distributions are smaller.
This might be slightly contradictory since the contrastive loss function (11)
is designed to separate similar and dissimilar examples by mapping the latter
to larger distances. But as we shall see later, this inception network actually
performs better than the corresponding siamese network in table 3 w.r.t. our
evaluation metrics. The equal error rate is approximately 0.10 according to
the left figure in Figure 31. According to the right figure in Figure 31 the
EER is approximately 0.13.
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Figure 30: Histograms over euclidean distances in output space between all
image pairs in a subset of the corresponding test set consisting of all similar
pairs and an equal amount of dissimilar pairs from the test set. The green
histogram illustrates distances between similar images and the red histogram
depicts distances between dissimilar images. In the left figure the results for
data1 is illustrated and to the right the histograms for data2 are depicted.

Figure 31: Plot of evaluation metrics as functions of the decision threshold
for the model in table 8 using a subset of the test set of data1 (left figure)
and data2 (right figure) respectively. The subset consists of all similar pairs
and twenty times as many dissimilar image pairs for data1. In the case of
data2 all similar examples are used and the number of negative examples is
a factor 3 larger.
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10.4 Capsule network

In table 10 the capsule network architecture for both data1 and data2 (see
table 1) is summarized. The model uses the contrastive loss function (21) and
was trained using Adam optimizer for 40 minutes for data1 and 20 minutes
for data2. All convolutional filters and biases were initialized using kernels
and biases from a pretrained siamese network, transformation matrices (14)
are initialized as N (0, 0.12). The pretrained network was a siamese network
trained with contrastive loss with almost the same configuration as the cap-
sule network in table 10. The distinguishing part was that the siamese net-
work terminated with a fully connected layer after the relu following conv3.
The pretraining was performed to speed up the convergence of network and
to focus the learning to the transformation matrix.

layer input dims output dims kernel/window params

conv1 192× 192× 1 92× 92× 32 9× 9, S = 2 2624
relu 92× 92× 32 92× 92× 32 0
conv2 92× 92× 32 42× 42× 32 9× 9, S = 2 82976
relu 42× 42× 32 42× 42× 32 0
conv3 42× 42× 32 17× 17× 128 9× 9, S = 2 332K
relu 17× 17× 128 17× 17× 128 0
reshape 17× 17× 128 17×17×8×16 0
squash 17×17×8×16 17×17×8×16 0
routing 17×17×8×16 8× 100 29.6M

total 30M

Table 10: Capsule network architecture for dataset data1 and data2 (see
table 1). S is the stride (given as one integer if the stride is the same in both
spatial dimensions) and the column params lists the number of trainable
parameters in each layer, where M stands for million and K thousand. The
loss function used to train the network is given by (21). The layer components
marked in bold constitutes the first (and only) convolutional capsule layer.
In the routing layer a learnable 8 × 8 transformation matrix, found in (14),
is applied to each capsule in the previous layer.

60



Hyperparameters

learning rate 10−3

β1 0.9
β2 0.999

routing iterations 2
batch size 20/10

m 4.0

Table 11: Hyperparameters used to train the network in table 10 on data1
and data2. The β1 and β2 parameters are the forget rates of the gradients
and the second moments of gradients [30]. Routing iterations is the number
of iterations used in the routing procedure (algorithm 1). Batch sizes of 20
and 10 were utilized for data1 and data2 respectively. The margin in (21) is
denoted by m.

Histograms over distances between similar and dissimilar examples can be
seen in Figure 32 for image pairs from data1 (left figure) and data2 (right
figure). A comparison of the left figure in Figure 32 with the corresponding
plots for a siamese and inception network (left figures of Figures 26 and 30)
shows that the distances between similar and dissimilar pairs are significantly
less in our capsule network. The same can be said for the right figure in Figure
32. In Figure 33 the metrics (22), (24) and (25) as plotted as functions of the
decision threshold for data1 (left figure) and data2 (right figure). The EER
is approximately 0.22 for data1 and 0.37 for data2, as illustrated in Figure
33.
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Figure 32: Histograms over euclidean distances in output space between all
image pairs in a subset of the corresponding test set consisting of all similar
pairs and an equal amount of dissimilar pairs from the test set. The green
histogram illustrates distances between similar images and the red histogram
depicts distances between dissimilar images. In the left figure the results for
data1 is illustrated and to the right the histograms for data2 are depicted.

Figure 33: Plot of evaluation metrics as functions of the decision threshold
for the model in table 10 using a subset of the test set of data1 (left figure)
and data2 (right figure) respectively. The subset consists of all similar pairs
and twenty times as many dissimilar image pairs for data1. In the case of
data2 all similar examples are used and the number of negative examples is
a factor 3 larger.
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10.5 Model comparison

Figures 34 and 35 illustrate ROC-curves for implemented models on the
various datasets in table 1 and 2. For models using data1 and data3 the
results are computed using all similar test image pairs and 20 times more
dissimilar pairs. In the case of data2 and data4 all similar test image pairs
were used and 3 times as many dissimilar examples. Table 12 summarizes
the recall for various small false acceptance rates.

As indicated by Figure 34 and table 12 the triplet network for data3 has
the highest recall for small false positive rates roughly around 10−4 to 10−3.
For larger false positive rates the inception network has a higher recall than
the triplet network. Moreover one can also observe that the ROC-curve
belonging to the siamese network lies below the ROC-curve of the inception
network (with some small exceptions close to 10−3), thus we can conclude
that the inception network has a better overall performance. The capsule
network has higher recall than the siamese network for FPR close to 10−4,
but in general the performance of the capsule network is below that of the
other models.

Inspection of Figure 35 shows that training on data with higher allowed
translation difference between matching pairs reduces the performance of
all models, compared to the corresponding results for smaller translation
difference (see Figure 34). In this case there is a finer distinction between
the performance of the triplet and inception networks. The triplet network
performs better for most FPR values. Furthermore the performance of the
siamese network is similar to the inception network for small FPR, while the
capsule network still has the lowest performance.
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Figure 34: Illustration of ROC-curves for models in table 3, 6, 8 and 10 on
subsets of test sets of data1 and data3. The subsets contain all matching
test examples and 20 times as many non-matching test examples.

Figure 35: Illustration of ROC-curves for models in table 4, 6, 8 and 10 on
subsets of test sets of data2 and data4. The subsets contain all matching
test examples and 3 times as many non-matching test examples.
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Model, data set FPR = 10−1 FPR = 10−2 FPR = 10−3 FPR = 10−4

siamese, data1 0.847 0.571 0.331 0.050
triplet, data3 0.809 0.555 0.421 0.299

inception, data1 0.883 0.657 0.367 0.188
capsule, data1 0.607 0.295 0.133 0.067
siamese, data2 0.810 0.472 0.209 0.034
triplet, data4 0.837 0.555 0.371 0.171

inception, data2 0.865 0.508 0.184 0.046
capsule, data2 0.401 0.133 0.035 0.015

Table 12: Recall for various small false acceptance rates for all implemented
models on their corresponding test sets.
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11 Discussion

11.1 Decision errors - examples

This section discusses some test results from one of our implemented models,
more specifically the inception model in table 8 using data1.

A difficult positive example is illustrated in Figure 36. The bounding boxes
contain minutiae, which can be used to justify that the fingerprints are simi-
lar. The distance between the corresponding output vectors of our inception
network is 0.246, which is larger than most matching pairs according to the
left histogram in Figure 30. Even at the EER of 0.10 (see left figure in Figure
31) the decision layer would produce a false negative in this case.

Figure 36: Illustration of a hard positive example. The distance between the
feature vectors corresponding to the image pair is 0.246, for the inception
model in table 8 using data1.

In Figure 37 two images are illustrated. Ignoring the scars in the right figure
the images look similar, but the ground truth states that they are dissimilar.
In fact these fingerprints originate from two individuals. However the dis-
tance between the corresponding output vectors is 0.099, thus according to
the left histogram in Figure 30 this example is more likely to be interpreted
as a matching pair by the inception network.
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Figure 37: Illustration of a hard negative example. The distance between
the feature vectors corresponding to the image pair is 0.099, for the inception
model in table 8 using data1. If one disregards the scars the images look quite
similar, but the ground truth label states that they are dissimilar.

Inspecting Figure 38 one can easily observe that the images correspond to a
match. However the distance between the output vectors is 0.153, which is
larger than most similar pairs according to the left histogram in Figure 30.
The larger distance might be due to the partial absence of fingerprint data
in the white area of the left image in Figure 38.
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Figure 38: Example of a simple positive example with small translation.
Distance between the feature vectors is 0.153, for the inception model in
table 8 using data1.

Figure 39 depicts a case where an error occurs in the generation of ground
truth labels. According to definition 9.1 the images in this figure are similar,
by manual inspection it seems reasonable to assume that they do not match.
Moreover the inception network gives a distance of 0.472 between the output
vectors, which is more likely to correspond to a negative example (see left
histogram in Figure 30). The reason for such errors in the ground truth
labelling might be due to incorrect alignment data used in definition 9.1.
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Figure 39: Illustration of wrong ground truth labelling. According to defini-
tion 9.1 these fingerprints correspond to a matching pair, however by inspec-
tion one can easily conclude that they are dissimilar. The distance between
corresponding feature vectors is 0.472, for the inception model in table 8
using data1.

11.2 Potential issues with CNN

CNNs are exceptional at identifying and extracting useful features in an im-
age, but in the context of fingerprint recognition there are potential issues
which were not/partially addressed in this thesis. Features in fingerprints
(e.g. minutiae points) can exist at various locations on the finger, have dif-
ferent orientations and are common across individuals. Thus simply identi-
fying the existence of such features is not sufficient to discriminate between
fingerprints originating from different persons. The motivation for investi-
gating capsule networks for fingerprint recognition was to solve the problem
of varying orientations of features, which is encoded by capsule entities in
a capsule network. However the first and last aforementioned problems still
remain in a capsule network. One possible solution to these issues is to
encode relative positions of features. A reasonable constraint for identified
features originating from the same finger is that they should be positioned
in the same area of the finger. With knowledge about relative positions it
is possible to differentiate fingerprints of various persons containing roughly
the same features, since they are not likely to be located in the same areas
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of the finger.

11.3 Features on different scales

According to Figure 34 the inception network performs better than the
siamese network. The networks are trained using the same loss function
given by (11) and both are built from the same components described in
Section 3. Consequently it might seem peculiar that the inception network
has higher performance. The only difference between these architectures is
the addition of inception modules. This suggests that features of fingerprints
exist on different scales, since inception modules are designed to identify and
extract features on various scales.

11.4 Triplet network

In Figure 34 it’s noticeable that the triplet network performs better than
both the siamese and inception models for low FPRs but is superseded by
the latter as the FPR increases. Our hypothesis for why the triplet network
achieves better results at low FPRs is related to the increase in difficulty
during training. As the training data sets get sampled after a fix amount of
steps only the hardest positives and the hardest negatives are used in further
training. Training on the hard negative images will lead to an increase in
distances between these pairs. As we concentrate the learning to the hardest
examples we expect to see fewer cases where negative images have very small
distance between one another. This holds true as the triplet network performs
the best at low FPR. It’s made even more apparent on the harder data set
where the triplet network is almost always better than it’s competitors, see
Figure 35. Since a low FPR is desirable for fingerprint authentication, where
security is of essence, this behaviour of the model is highly appreciated.

11.5 Problems with capsule networks

From Sections 10.4 and 10.5 we can conclude that the performance of the
capsule network were inferior compared to that of the other networks. In this
section we highlight potential problems with our implementation of capsule
networks for matching tasks.
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The contrastive loss function given by (21) has several drawbacks, which
contribute to the poor performance of our capsule network. By inspecting
the definition of the loss function (21) one can observe that it does not
incorporate the length of individual vectors, which codes for the probability
of existence of a particular feature. Another drawback which is partly due
to the loss function but is also affected by the non-linear squashing function
(15) and initialization of network parameters, is that the network tends to
train towards only recognizing dissimilar examples. This can occur when
the first term in the double sum in (21) is close to zero. The implication
of this is that matching image will only contribute with small loss values,
while dissimilar examples tend to give larger loss values. Consequently the
network will become better at distinguishing non-matching images. Most
of the trainable parameters in all our networks were initialized from uniform
distributions with small supports or normal distributions with zero mean and
small standard deviations. In practice we observed that in most cases the
resulting trained parameters were small in absolute value, this includes the
pretrained siamese network used to initialize the convolutional components in
our capsule networks. Propagating values close to zero through a network will
yield small activations. In a capsule network this effect is further amplified by
the squash function (15). Thus the first term in (21) becomes small for similar
images and the second term is large for dissimilar images. By inspecting the
length of each capsule output of our capsule models we observed that the
majority of the output capsules have a length close to 1.

The aforementioned issues with the contrastive loss function give rise to
additional problems related to the decision making component (see Section
9.3) of our capsule networks. If all output capsules have lengths close to 1
and are similarly oriented, which was empirically observed, then the distance
metric used in our decision layer will become very small. Distance between
dissimilar images will therefore be small. This contradicts the functionality of
our decision layer for capsule network in the sense that the distance between
dissimilar images should be large.

11.6 Future work

Due to lack of time we didn’t have time to pursue all of our ideas. In this
section we outline some possible paths for future work within this field.
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11.6.1 Improvements on Capsules

As discussed above there are issues with how we do matching with our cap-
sule network. To solve these problems there are some promising solutions.
The first one is the use of other loss functions that makes better use of the
individual length of each output capsule, i.e. the probability of entities, as
well as orientation. In Section 13.2 in appendix there are a few suggestions
of potentially useful loss functions.

Another improvement that could be made to the capsule network that we
believe is bound to make the greatest progress of this model, is to do routing
between images. The routing algorithm is designed to piece together features
and put them in relation to each other, which is exactly what we think
would make a great fingerprint matcher. As it’s very important to know how
features are related to one another both within and between fingerprints
when doing matching we suggest stacking the output from two branches of a
siamese network before doing the final routing step to the output capsule. In
this step the routing should not be done within output from the same image
but only between the two images output. This way the network would learn
linear transformations between images and features and thus be able to put
the location of features in different images in relation to each other.

Above we mentioned problems with the decision making process when using
capsules. Alternative similarity metrics could turn out to increase the sepa-
ration between matching and non matching images. We propose a decision
process that focus more on the orientation combined with the agreement of
length between corresponding capsules. An implementation closely related
to the loss function in Section 13.2.3 in appendix could be a good starting
point in designing a new decision process.

One possible improvement to our current capsule network is addition of sev-
eral convolutional capsule layers. This allows for local routing procedures,
whereas the present implementation only considers global routing of cap-
sules. Local dynamic routing between consecutive convolutional capsule lay-
ers should work similar to algorithm 1 but only consider a subset of capsules
within some local receptive field. Moreover the presence of multiple convo-
lutional capsule layers will add more non-linearity to the network.

72



11.6.2 Triplet network - improvement

Our results for inception models in Figures 34 and 35 indicate that the inclu-
sion of inception modules is favourable in terms of increasing the evaluation
performance. The implemented triplet network (see table 6) does not utilize
any inception modules. One improvement to this network might be achieved
by incorporating inception modules into the triplet network architecture.

11.6.3 Patch based matching

Instead of trying to match whole fingerprint images a patched based match-
ing problem could be interesting to investigate. We suggest dividing the
fingerprint images into a grid structure and do exhaustive matching between
all patches. By doing this we will be able to find patches that match between
images. As we know the location in the image of the patches we can find the
best transformation between the images such that matching patches overlap
the most. The fitting problem would then output a score on how well patches
overlap and with a threshold value it would possible to make inference on
matching fingerprints.
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12 Conclusion

The subject of this thesis was to investigate the applicability of convolutional
neural networks for fingerprint recognition. With our implemented networks
and the corresponding results (found in Section 10), we conclude that most
of our CNNs provide sufficient performance for larger FPRs (approximately
10−2 and upwards), while we noticed a significant decrease in performance
for small FPRs. In Section 11 potential problems with CNNs and capsule
networks are brought up. Suggestions for improvements and new ideas are
given, which can serve as a starting-point for future work.
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13 Appendix

13.1 Inception modules

Figure 40: Illustration of inception a module. All convolutional blocks are
followed by batch normalization and leaky-relu. If stride and padding are not
specified within pertinent blocks we assume a stride of 1 and same padding.
The concatenation block (concat) aggregates its inputs along the last dimen-
sion, which corresponds to concatenating all channels.
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Figure 41: Illustration of inception b module. All convolutional blocks are
followed by batch normalization and leaky-relu. If stride and padding are not
specified within pertinent blocks we assume a stride of 1 and same padding.
The concatenation block (concat) aggregates its inputs along the last dimen-
sion, which corresponds to concatenating all channels.
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Figure 42: Illustration of reduction module. All convolutional blocks are fol-
lowed by batch normalization and leaky-relu. If stride and padding are not
specified within pertinent blocks we assume a stride of 1 and same padding.
Valid padding is indicated by P=V and strides different from one with S=n,
where n is an integer larger than 1. The concatenation block (concat) aggre-
gates its inputs along the last dimension, which corresponds to concatenating
all channels.
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13.2 Loss functions for capsule networks

13.2.1 Triplet loss for capsules

As the triplet network had the best performance it could be interesting to
use a triplet loss function tailored to capsules when trying to increase per-
formance of the capsule network. The difference between the regular triplet
loss, equation (12), is that the output from a capsule network are vectors
instead of scalars which introduces an extra summation over all capsules in
the output layer. The loss function is given as

L =
1

N

N∑
i

C∑
j

max

(
0,
∥∥∥v(a)

j − v
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j
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2
+ α

)
, (26)

where N is the number of image triplets in a batch, vj is output capsule j,
(a), (p), and (n) denote anchor, positive and negative images respectively in
the triplet. C is the total number of capsules in the output layer and α is a
margin hyperparameter.

13.2.2 Scaled Contrastive loss for capsules

To make the contrastive loss more sensitive to lengths of the output capsule,
i.e. the probability of entities, we suggest the use of a scaled contrastive loss
where the loss contribution from matching images is scaled with the inverse
of the sum of lengths of output capsules. The contribution to the loss for
the non matching images is also scaled with the sum of the lengths of the
output capsules. By doing this we will discourage the network to have high
probability in output capsules when the inputs are non matching, while on
the other hand enforce long vectors for matching cases. Using the notation
in (20) and the original contrastive loss for capsules, equation (21), we define
the scaled constrastive loss

L =
1

2n
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)
,

(27)

where all notations are explained in Section 7.2.1. This loss function has the
advantage of utilizing the inherent orientational loss contribution of the con-
trastive loss for capsules while the scaling will push the network to produce
outputs that have a good mix of active and non active capsules.

81



13.2.3 Agreement loss

In order to take full advantage of the capsules ability to encode both orien-
tation and existence of features we propose a different approach than those
suggested above. This loss function will take into account how the orienta-
tion of the output capsule between images change by letting the variance of
change in orientation of the most active features contribute to the loss. The
variance measure will then be scaled by the agreement of existence of features
between the images. To make matching and non matching pairs contribute
differently a contrastive loss type approach with a margin and use of ground
truth labels is adopted.

Let active capsules be those whose length exceeds a hyperparameter threshold
value, denoted by α. Moreover let w∗1 be the vector from the first branch of
a siamese network, whose elements are defined by

w∗1j = max(0, ‖vj(i1)‖2 − α). (28)

This vector contains non-zero positive elements for active capsules and zero
otherwise. vj(i1) denotes output capsule j from the first branch. The same
calculation is made for the second branch and is denoted w∗2. To find out
which active capsules from the first branch that have a corresponding active
capsule in the second branch elementwise multiplication between the two
vectors is calculated

w = w∗1 �w∗2. (29)

The angle between capsules in the two branches of the siamese capsule net-
work is computed as the dot product between normalized capsules, resulting
in the cosine of the angle between corresponding capsules in the two branches

cj =
vj(i1)

‖vj(i1)‖2

· vj(i2)

‖vj(i2)‖2

.

In order to get the angle variance between corresponding output capsules a
weighted variance is used, where the weights are the activity vector w. As we
want the capsule network to be equivariant, changes in orientation of images
should produce low variance. To get the weighted variance we first need to
calculate the weighted mean

µ∗ =

∑
j wjcj∑
j wj

,
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where wj is element j in w. Now the weighted variance [31] is given by

V ∗ =

∑
j wj(cj − µ∗)2

(N ′−1)
∑
j wj

N ′

,where N ′ is the number of non zeros weights in w.

To make use of the length of capsules we will scale the weighted variance with
the agreement on active/inactive capsules. In order to do this we need to
find inactive capsules in both branches, z∗1 and z∗2. The same procedure as in
equation (28) is used but with a different hyperparameter, β, that regulates
the threshold for when capsules are considered inactive

z∗1j = max(0, β − ‖vj(i1)‖2).

The corresponding inactive capsules are found through an elementwise mul-
tiplication, as in equation (29)

z = z∗1 � z∗2.

To get the final agreement vector

a = w + z,

that contains both agreement for active and inactive capsules.

Now we are ready to define the loss for matching image pairs

LM =
V ∗∑
j aj

By dividing the weighted variance with the sum of agreement we reduce the
loss contribution from the variance if the image pair has a lot of agreement
and amplifies it in the other case.

In the non matching case the same approach as with all contrastive loss
functions is used. Hence we introduce a margin, m, and use the labels lk,
in equation (10), together with the loss LM to end up with the final loss
function

L =
1

n

n∑
k=1

lkL
(k)
M + (1− lk) max
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0, m− L(k)

M

)
, (30)

where n is the number of images pairs in a batch and L
(k)
M is the loss associated

with k-th image pair in a batch.
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