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Abstract

In this Master thesis, different multitaper methods are implemented to estimate the spec-
tra of respiratory signals and HRV data, and further to estimate the correlation between the
respiratory center frequency and the narrow-banded high frequency band of HRV power.
The methods are applied first on ARMA-process data, then on the integrated pulse frequency
modulation (IPFM) data simulations, where the evaluation is performed by calculating the
bias and standard deviation of the narrow-banded HRV power and its correlation with res-
piratory frequency. The results show that the Thomson multipaper and the peak-matched
multitaper has each own pros and cons on different type of signals and that the Thomson
multitapers are the best giving the strongest negative correlation. The second aim is to check
whether the correlation deviates between subjects with different level of stress. A total num-
ber of 47 individuals, divided into 3 groups had their respirations and heart rates recorded. A
clear difference is found indicating that the more stressed the stronger the correlation.

Keywords: Multitaper (multiple windows); Heart rate variability (HRV); Spectrum anal-
ysis; Integrated pulse frequency modulation (IPFM); High frequency band (HF); Thomson
multitaper (TH MW); Peak-matched multitaper (PM MW); Correlation.
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1 Introduction

As mental states and stress conditions are suggested to have diverse impacts on heart rate vari-
ability (HRV) [1], it is of great interest to investigate how HRV reflects differently the modulation
to the rhythm of heart by the control of the sympathetic and parasympathetic nervous systems
under different stress states [2]. In order to analyze the difference of HRV under different stress
states, a good estimation of spectrum of HRV is necessary. Therefore the very first thing to do in
this thesis is to evaluate the performances of several multitaper spectral estimation methods. As
heart rate is regulated by body’s automatic nervous system (ANS), which also controls how peo-
ple breath, the influence of the respiration on HRV is well known as respiratory sinus arrhythmia
(RSA) [3]. The power spectrum of HRV is divided into three main frequency ranges, i.e., high-,
low- and very-low-frequency (HF, LF and VLF) band. A negative correlation has been found be-
tween the respiratory center frequency and the high-frequency band of the HRV power [4]. It is
also interesting to see whether the correlation deviates between subjects with different levels of
stress, which is kind of an extension of [4] since more participants and samples are available this
time.

1.1 Background

Before analyzing the signals it is always better to know what the signal means biologically and
how it is collected, together with the mathematical methods (introduced in the following sec-
tion) which are going to be applied on the signal data. However this thesis is not going deep into
explaining how human body nervous system functions. Only a brief introduction of some physi-
ological terminologies will be presented in this section.

Heart rate variability (HRV)

Heart rate variability (HRV) measures the time changes between successive heart beats. The time
between beats is measured in milliseconds (ms) and is called an “R-R interval” or “inter-beat in-
terval (IBI)”. Electrocardiography (ECG) is the most commonly used method of recording and
visualizing the electrical activity of the heart over a period of time (see figure 1). HRV analysis
is now widely used as probably the easiest and most useful non-invasive method to track health
and fitness especially assessing overall cardiac health and the state of the ANS responsible for
regulating cardiac activity [2].

Figure 1: An example of ECG with time changes between successive heart beats.

As mentioned above, the frequency components of HRV could be broken down into three ranges
(see figure 2). High-frequency (HF) band (usually 0.15− 0.4Hz), which has been shown to corre-
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late almost exclusively to parasympathetic nervous system activity, is associated with a physio-
logical phenomenon known as respiratory sinus arrhythmia (RSA).

Figure 2: An example of the PSD to illustrate the HRV frequency range.

Respiratory sinus arrhythmia (RSA)

Respiratory sinus arrhythmia (RSA) refers to activity of the vagus nerve, an important com-
ponent of the parasympathetic branch of the ANS. It is typically a benign, naturally occurring
variation in heart rate that occurs during the breathing cycle, i.e., during inhalation (exhalation)
heart rate increases (decreases) (see figure 3). This is mostly found particularly among young
and healthy individuals and decreases with age [5].

Figure 3: An example of RSA during a breathing cycle.

Respiratory and HRV signals

There are many ways to extract respiration signals, mostly from ECG signals. Three ECG-derived
methods have been introduced and implemented in [6]. In this thesis the measurement of the
respiration was done by using a strain gauge over the chest. The HRV measurement was done
by using ECG as mentioned above. Figure 4 shows what a typical respiratory and HRV signal
looks like in this thesis with sampling frequency fs = 4Hz.
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Figure 4: An example of respiratory and HRV signals. As one would notice that the amplitude of
HRV decreases as the frequency of respiration increases.

1.2 Aim of the thesis

The aim of this thesis is to first evaluate the performance of different multitaper methods. In or-
der to do so, the maximum of respiratory frequency is taken from multitaper spectral estimation
of respiration, which is then used to calculate the narrow-banded HRV spectral power. The eval-
uation is made not by computing the averaged normalized mean squared error around the peak
value [7] but by comparing the bias and standard deviation of the band power estimation. When
true value of the band power is unknown, the correlation between the maximum of respiratory
frequency and the band power of the HRV spectrum is estimated and used as another evaluation
method. Secondly, as previously found that stress has negative impact on HRV power [8, 9], this
thesis also aims to find what impact stress has on the correlation mentioned above, i.e., whether
the correlation deviates between subjects with different level of stress.
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2 Mathematical methods

2.1 Spectral analysis

Spectral analysis, also known as frequency domain analysis, was first used as a method to find out
the periodicity of a time series data [10]. Such analysis has been found to be especially useful
in many fields like communications engineering, management science, medical science, and
biomedical science. In medical ultrasonography long ago for example, spectral analysis of ul-
trasonic reflections from biological tissues can be used to determine basic tissue parameters for
use in differential diagnosis [11]. In this thesis, the spectral analysis is used mainly to extract in-
formation from HRV for further cardiac or neural diagnosis [12].

Power spectral density (PSD)

Power Spectral Density (PSD) is the frequency response of a random or periodic signal. It tells
us where the average power is distributed as a function of frequency. The PSD of a random time
signal x(n) can be expressed in one of two ways that are equivalent to each other.

• The PSD is the average of the Fourier transform magnitude squared, over a large time in-
terval

S( f ) = lim
N→∞

E{ 1
N
|

N−1

∑
n=0

x(n)e−i2π f n|2}. (1)

• The PSD is the Fourier transform of the auto-correlation function

S( f ) =
∞

∑
τ=−∞

r(τ)e−i2π f τ. (2)

Spectrum estimation

There are mainly two different ways to estimate a spectrum, parametric and non-parametric
spectrum estimation. The parametric spectrum estimation techniques are based on the use of
models for the data, assuming the data is generated in a certain way. For instance, one could
assume that the data is the output y(n) of a linear time-invariant (LTI) system in response to a
white noise input sequence x(n) (see figure 5).

Figure 5: A simple LTI system with an impulse response h(n).

The PSD of y(n) is then obtained by doing the following computation

Sy( f ) = |H( f )|2Sx( f ) = |H( f )|2σ2
x , (3)

where H( f ) is called the frequency function of the filter with impulse response h(n) and σ2
x is

the variance of the input white noise (for review see [13] chapter 6). There are several different

8 of 36



Zite He 2 MATHEMATICAL METHODS

classes of systems that are typically used with this kind of approach to spectrum estimation such
as auto-regressive (AR), moving average (MA) and auto-regressive moving average (ARMA). In
this situation the problem is then to estimate the parameters in the model. A higher resolution
might be achieved if a good model is assumed, however there is little one can say about most of
the signals and the estimation might be useless if a wrong model is assumed.
In this thesis, only the non-parametric approaches are applied on the data, which make no as-
sumption on the model but only rely on the direct use of the available data. Such methods might
produce a less precise result, but could be widely applied for different cases.

Periodogram

In eq.(1), an infinite number of samples are needed to compute the PSD, however one would
never have infinite number of samples in reality, which leads to an expression based on N sam-
ples collected

Ŝ( f ) =
1
N
|

N−1

∑
n=0

x(n)e−i2π f n|2. (4)

Eq.(4) is the definition of the periodogram, an estimate of the spectral density of a signal, which
is the basic idea of non-parametric spectral estimation.
The periodogram is a very useful tool for describing a time series data set and is easy to com-
pute. However as known, the periodogram is not a good estimate for its bias and especially its
large variance. It can be rewritten as

Ŝ( f ) =
N−1

∑
τ=−N+1

1
N

N−1−|τ|

∑
n=0

x(n)x(n + |τ|)e−i2π f τ =
N−1

∑
τ=−N+1

r̂(τ)e−i2π f τ. (5)

The expected value of the periodogram is obtained by direct calculation as

E[Ŝ( f )] =
N−1

∑
τ=−N+1

E[r̂(τ)]e−i2π f τ =
N−1

∑
τ=−N+1

(1− |τ|
N

)r(τ)e−i2π f τ, (6)

which tends to
∞

∑
τ=−∞

r(τ)e−i2π f τ = S( f ) as N → ∞, (7)

showing that the periodogram is an asymptotically unbiased estimate of the spectral density.
The variance of the periodogram is asymptotically tending to

V[Ŝ( f )] ≈
{

S2( f ), for 0 < | f | < 1/2
2S2( f ), for f = 0 and ± 1/2

as N → ∞. (8)

Therefore, the variance does not decrease as more samples are used in computation (for more de-
tailed proof and derivations see [13] chapter 9). Based on the idea of periodogram, a lot of meth-
ods have been developed to reduce the variance. The idea of using multiple windows will be
introduced later in this section.
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Windows

For small values of N, eq.(6) can be rewritten as

E[Ŝ( f )] =
∞

∑
τ=−∞

kN(τ)r(τ)e−i2π f τ, (9)

where kN(τ) = max(0, 1− |τ|/N) is called a lag or triangular window. Denote KN( f ), also known
as the Fejer kernel, as the Fourier transform of the window kN(τ) by

KN( f ) =
sin2(Nπ f )
N sin2(π f )

, (10)

which has a shape as shown in figure 6.

Figure 6: The Fourier transformed triangular window, also known as Fejer kernel.

The high sidelobes of the kernel cause severe power leakage in spectral estimation, leading to
large bias, especially when the dynamical range of the spectrum is large. Windows other than
triangular window are created and used to reduce the bias caused by leakage as well as the vari-
ance. However, estimations given by such windows will have a decreased resolution.
Hanning window is one of the mostly common used windows, it has lower sidelobes and a wider
mainlobe compared to the triangular window. The Hanning window is defined as

kN(τ) =
1
2
− 1

2
cos(

2πτ

N − 1
), τ = 0, . . . , N − 1, (11)

which is often normalized as

w(τ) =
kN(τ)√

1
n ∑N−1

τ=0 k2
N(τ)

, τ = 0, . . . , N − 1. (12)
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Eq.(4) is then modified as

Ŝ( f ) =
1
N
|

N−1

∑
n=0

x(n)w(n)e−i2π f n|2. (13)

The Fourier transformed Hanning window KN( f ) is shown in figure 7.

Figure 7: The Fourier transformed Hanning window.

Using windowing or tapering of the data is an essential part in non-parametric spectrum estima-
tion. Different windows are chosen under different situations depending on the shape of the
spectrum (large dynamics or not, peaks close or apart) or the need of researchers (resolution or
smoothness).

2.2 Multitaper (Multiple window)

Other than using only one window, the multitaper spectral estimator uses several different data
tapers which are orthogonal to each other, producing uncorrelated spectral estimates to obtain
an averaged windowed periodogram with reduced variance.

2.2.1 Welch’s method (Welch)

Welch’s method is an approach to spectral density estimation, which is an improvement on the
standard periodogram spectrum estimation in reducing noise in the estimated power spectra in
exchange for reducing the frequency resolution.
The given signal data is first split up into possibly overlapping segments (usually 50% overlap).
For each segment a windowed periodogram is formed (an example of overlapped Hanning win-
dows is shown in figure 8). The Welch’s estimation of the PSD is then obtained by averaging all
the periodograms.
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Figure 8: 3 Hanning windows with 50% overlap, window length L = 64 and data length N = 128.

2.2.2 The Thomson multitapers (TH MW)

A new method based on a “local” eigen-expansion to estimate the spectrum was first presented
by Thomson in 1982 [14]. Given a real valued stationary discrete-time random process x(n), the
Thomson multitaper (TH MW) provides K orthogonal windows over N samples of the process
to create K spectral estimates Ŝk( f ) which are then used to compute an averaged Ŝ( f ) with re-
duced variance

Ŝ( f ) =
1
K

K

∑
k=1

Ŝk( f ), (14)

where

Ŝk( f ) = |
N−1

∑
n=0

x(n)hk(n)e−i2π f n|2. (15)

Eq.(12) is the multitaper spectral estimate by using orthogonal and normalized tapers hk =
[hk(0) . . . hk(N − 1)]T, where

N−1

∑
n=0

hk(n)hl(n) = δkl for k 6= l, (16)

and
N−1

∑
n=0

h2
k(n) = 1 for 1 ≤ k ≤ K. (17)

The Thomson multitapers are designed to give small correlation between subspectra for a rather
smooth spectrum, especially for a white noise spectrum. The tapers hk are given by the solution
of the eigenvalue problem

RBqk = λkqk, k = 1 . . . N, (18)
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where hk = qk is the eigenvector and λk is the corresponding eigenvalue, ordered in decreasing
magnitude. The covariance matrix RB has a Toeplitz structure with elements

rB(τ) = B sinc(Bτ), 0 ≤ |τ| ≤ N − 1, (19)

where sinc(x) = sin(πx)/(πx) and B is the predetermined band-width.
The solution is found as the Discrete Prolate Spheroidal Sequences (DPSS). An example of how
the tapers look like is shown in figure 9.

Figure 9: 4 Thomson windows (DPSS) with window length N = 128.

The tapers have low amplitude close to 0 at the edges to minimize the power leakage. Such ta-
pers are chosen by looking at the eigenvalues. If the eigenvalues are close to 1 then their corre-
sponding eigenvectors are good to use as tapers.

2.2.3 The peak-matched multitapers (PM MW)

For varying spectra, i.e., spectra with large dynamics, the peak-matched multitapers will be used
to find the peaks and notches [15]. The tapers hk are given by the solution of the generalized
eigenvalue problem

RBqk = λkRZqk, k = 1 . . . N, (20)

where hk = qk corresponding to the K largest eigenvalues. The covariance matrix RB has a
Toeplitz structure with elements

rB(τ) = rw(τ) ∗ B sinc(Bτ), 0 ≤ |τ| ≤ N − 1, (21)

where sinc(x) = sin(πx)/(πx) and ∗ denotes the convolution operator. Here rw(τ) is the co-
variance function of a given zero-mean real-valued stationary random process w(t) with peak
located at f = 0. In this paper the chosen peaked spectrum is Sw( f ) = e(−2C| f |)/(10B log10(e)),
| f | ≤ 1/2 with C = 20 and B = (K + 2)/N.
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The suppression matrix RZ also has a Toeplitz structure which corresponds to a penalty fre-
quency function used to suppress the sidelobes of the windows. The function is as following

SG( f ) =

{
G, B/2 < | f | < 1/2,
1, | f | ≤ B/2,

(22)

where G = 30 is chosen in this paper. An exampled of PM MW is shown in figure 10.

Figure 10: A number of 4 Peak-matched windows with window length N = 128.
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3 Data simulation

Before the methods are applied to real data, it is necessary to evaluate the performance of each
methods on the simulated data.

3.1 ARMA-process

Two kinds of ARMA-models are used to simulate a spectrum with either large dynamics (with
a clear peak) or small dynamics (varying smoothly) in dB-scale. The reason why the ARMA-
process is chosen is that it provides large dynamics in the PSD and the true PSD is also known
through the parameters of the model which makes evaluation easy.
Two models together with plots of poles and zeros and PSD are given as following

• ARMA(2,2) with a clear peak in the PSD: xt − 1.2xt−1 + 0.85xt−2 = et + 0.5et−1 + 0.75et−2.

Figure 11: Left: poles and zeros. Right: the PSD in dB-scale.

• ARMA(2,2) which varies smoothly in the PSD: xt − 0.6xt−1 + 0.5xt−2 = et + 0.9et−1 +
0.5et−2.

Figure 12: Left: poles and zeros. Right: the PSD in dB-scale.

The {et} is a sequence of uncorrelated Gaussian noise with mean 0 and variance 1 in both cases.
For each case, 400 samples are simulated and the simulation is iterated 100 times.
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3.2 Integrated pulse frequency modulation (IPFM)

There are quite many ways to simulate an ECG-signal. The integrated pulse frequency modula-
tion (IPFM) is one of such techniques used to generate a heart-beat event series. The IPFM model
used in this paper is the one introduced in [4].
First the respiratory signal is simulated as a sinusoid signal with a time-varying frequency

x(n) = sin(2π(
fr(n)
1000

)n + φ) (23)

where fr(n) is the increasing respiratory frequency and φ is a random phase which is equally
distributed in the interval 0 to π.
The heart-beat signals are generated using an IPFM model based on respiratory frequency but is
jittering in time. The jittering signal is simulated as a sinusoid signal as well without a random
phase φ but with a time-varying amplitude A(n) and disturbed by a LF noise v(n),

y(n) = A(n) sin(2π(
fr(n)
1000

)n) + v(n) (24)

where the amplitude A(n) decreases as the respiratory frequency fr(n) increases. The LF white
noise v(n) of standard deviation σv is filtered with a FIR-filter of order 200 which is cut off at fre-
quency 0.12Hz.
The heart-beat event series is then formed as

z(kP + y(kP)) =

{
1, k = 0, 1, 2, 3 . . .
0, otherwise

(25)

where the constant P = 1000(60/heartrate). An illustration plot is shown in figure 13

Figure 13: An illustration of how a jittering signal is simulated.

where the heart beat which was once counted as the maximum points of the blue curve without
phase modulation, for example, now is counted as the maximum points of the red dash-dotted
curve. The resulting signal is finally down sampled as in real experiments from 1000Hz to 4Hz.
1200 samples are generated from each simulation with respiratory frequency increasing from
0.12Hz to 0.3Hz both linearly and quadratically. The standard deviation of the noise is the only
parameter that changes in each simulation, increasing from v(n) = 1 to v(n) = 10 with step 0.01.
The simulation is iterated 100 times for each value of v(n).
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4 Method evaluation

It is necessary to know how different methods work with different kinds of signals and noise. In
this section all the methods will be applied on the simulated data generated using models intro-
duced previously, from ARMA-process, where the true PSD is known, to the IPFM model where
the spectrum is unknown, and finally tested on the recorded data in next section.
As mentioned in the introduction, the evaluation of the performance of different methods is
based on the bias and standard deviation of the narrow-banded HRV spectral power within
fr ± 0.05Hz, where fr = max f S( f ) being the maximum of respiratory frequency and S( f ) being
the PSD of respiration. When the true PSD is unknown, the standardized bias and standardized
deviation is calculated and compared. Correlations between respiratory frequency and narrow-
banded power of HRV are also calculated, used as a further evaluation approach.

4.1 ARMA-process evaluation

Two kinds of ARMA(2,2) processes are created from last section - one with a clear peak in spec-
tral density and the other one rather smooth (both in dB-scale).

ARMA-process 1

The first ARMA(2,2)-process is built as following

xt − 1.2xt−1 + 0.85xt−2 = et + 0.5et−1 + 0.75et−2. (26)

The spectral estimation of 100 simulations of this process is produced using the Welch, TH MW
and PM MW with number of windows K = 2 and predetermined band-width B = 0.01. The
mean value and standard deviation of the averaged band power is calculated and is then com-
pared to the true averaged band power, plotted in box-plots, together with the plots of the aver-
aged spectral estimation and bias in figure 14.

Figure 14: Box-plot of estimated band power, averaged PSD estimation and bias.

The Welch gives the smallest variation and averaged estimation most close to the true value as
one can see from the box-pot and the bias. The PM MW seems to produce the largest variation
shown in the last plot, while the TH MW produces a relatively small variance as expected. The
reason why the PM MW does not perform well might due to that there only one peak in the
spectrum and the dynamics of the spectrum is relatively small.
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ARMA-process 2

The second ARMA(2,2)-process is built as following

xt − 0.6xt−1 + 0.5xt−2 = et + 0.9et−1 + 0.5et−2. (27)

Same methods are performed on 100 simulations generated from this model and similar plots are
shown in the figure 15.

Figure 15: Box-plot of estimated band power, averaged PSD estimation and bias.

Almost the same conclusion is drawn here, however, as this is now more smooth than the first
one, the performance of the TH MW is now very close to the Welch. The PM MW still performs
’worst’ here for it does not show any advantage in a less dynamic case.

4.2 IPFM evaluation

Now the methods are applied on the simulated respiratory and HRV data. The data is gener-
ated with given respiratory frequency which increases over time (both linearly and quadrati-
cally). The spectrogram (with high resolution in time) is returned by Matlab (see figure 16 and
25), however, it is of more interest in this thesis to estimate the spectrum within a time period
where signal is roughly treated as stationary. With the IPFM model, no true spectral density is
available. Therefore in this section, each method will produce a so-called ’true’ spectrum, i.e., an
averaged estimation without LF white noise (v(n) = 0). The standardized bias and deviation of
the band power will then be computed considering the scaling problem.
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Linear case

Figure 16: The spectrogram with different time-resolutions.

First the signal is generated with linearly increasing frequency. A number of 1200 samples with
final sampling frequency 4 Hz of HRV and respiratory signals are simulated each time and seg-
mented into 6 consecutive parts with 200 samples each. An averaged spectral estimation of each
time period is produced. Figure 17 and 19 show an example of spectral estimations of both respi-
ratory and HRV signal with the standard deviation of the LF noise v(n) = 3.

Figure 17: The PSD estimations of the respiratory signal. A linear growing trend is seen and the
central frequency band is still a bit wide since the frequency changes quite much within each
segment.

For the respiratory signal, the main aim is to locate the center frequency, i.e., to find out fr =
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max f S( f ), so the power leakage is not the problem that one needs to consider here. However,
when it comes to HRV power estimation, one has to consider the choice of predetermined band-
width B and the number of windows K to use.
Taking the TH MW for an example, figure 18 shows how estimation changes with different B
and K. More power leakage is introduced when using more windows and it would become more
difficult to locate the center frequency with more windows if applied on respiratory signal as
one can see from the left plot. One obtains a wider range of HF power when increasing B as seen
from the right plot.

Figure 18: Different sets of K and B tested on one of the data segments.

After testing several sets of both parameters, K is set to 2 in all three methods and the predeter-
mined band-width is set to B = 0.02 for the TH MW and PM MW, considering the width of the
peak in the PSD.
As a conclusion of above all, a too wide band-width will result in a over smooth estimation around
the peak, making it difficult to obtain an estimated band power close to what it should be (espe-
cially for the TH MW). If one only looks at the estimation around the peak, both the Welch and
PM MW finds the peak frequency almost equally well. The TH MW would have a little trouble
here to locate the maximum value considering the shape of its window spectrum with 2 or more
windows. However the method does not go to trash bin since it has some other desirable fea-
tures and still locates the HF part in HRV estimation quite well.
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Figure 19: The PSD estimations of HRV. The standard deviation of the LF noise is chosen to be
v(n) = 3, which results in quite high power in LF part. Band power estimations in the first time
period are strongly affected.

The Welch gives the smallest variance over the whole spectral estimation, however it reduces
the frequency resolution as stated in section 2, especially in time period 1 when the main respi-
ratory frequency is close to the low-frequency range. The estimations get worse with increasing
standard deviation of the noise form v(n) = 0 to v(n) = 10. Figure 20 is an example of how
estimations get worse with larger deviation of the noise for time period 2.

Figure 20: The LF part gets nasty when one increases the noise (one simulation using PM MW).

It is then to check how the estimations change with different noise, i.e., the robustness of each

21 of 36



Zite He 4 METHOD EVALUATION

method to noise (see figure 21).

Figure 21: How the mean value of HRV band power estimation varies with increasing noise.

The mean value of the band power is computed and compared to each other, with increasing
standard deviation of the noise. The noise has quite big effect on the estimation of the band power
at first as one would expect since the PSD estimation for HRV looks a bit messy at low frequency
part. One could see a clear increasing trend in mean value estimation. As the main respiratory
frequency increases, the increasing trend with v(n) gets weaker (note the different scale in figure
21).
Since there is no underlying truth for the band power, an averaged estimation without noise is
taken as the ’true’ spectral density for each method, and the bias of each method is calculated.
However, as seen above, the estimated mean value of each method differs quite a lot as the respi-
ratory frequency increases, so the bias might be compared under different scale. Thus it is better
if one looks at the standardized bias (StdBias) instead, which is calculated as

StdBiasv =
Bias

Mean value
=

P̂v − P̂0

P̂0
, (28)

where v is the deviation of the noise from 1 to 10 and P̂0 here represents the estimated band power
with no noise in the signal. The StdBias for each time period is shown in figure 22.
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Figure 22: The standardized bias shows relatively how far the estimation is from the ’true’ value.

Actually the StdBias does not really differ from the bias. Three methods reach similar results as
the respiratory frequency increases (HRV HF power decreases). They follow the same curve at
first since it is when the estimation is strongly influenced by the noise. Then as center frequency
moves a bit away from LF part, the PM MW gives the smallest StdBias, while the TH MW gives
the largest one as noise gets bigger which might due to that the TH MW introduces more power
leakage.
The standard deviation of the band power estimation for each time period is also calculated
against different level of LF noise to see how spread out the estimation is for each method. Again,
to avoid scaling problems, standardized standard deviation (SSD) is calculated by doing

SSDv =
Standard deviation

Mean value
=

STD(P̂v)

P̂0
, (29)

where v and P̂0 is the same as above. The SSD for each time period is shown in figure 23.
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Figure 23: The standardized standard deviation.

None of the three methods is robust to noise as the deviation of the band power estimation in-
creases with increasing deviation of the noise. The TH MW performs the worst in time period
2 and 3. It is hard to draw a conclusion here which method outperforms by only looking at the
mean value, bias and the deviation, since no ’true’ value is known here. However it is mentioned
in previously cited paper that a stronger correlation between the respiratory center frequency
and the HF band of the heart rate variability (HRV) power indicates a more robust estimate of
the power [4]. The correlation is defined as

ρ̂ =
C( f̂r, P̂h)√

C( f̂r, f̂r)C(P̂h, P̂h)
, (30)

where f̂r is the estimated respiratory center frequency, P̂h is the band power of HRV within f̂r ±
0.05Hz and C(, ) denotes the covariance which is calculated as

C( f̂r, f̂r) =
K

∑
k=1

(max
f

(Sr
k( f ))− ¯̂fr)

2,

C(P̂h, P̂h) =
K

∑
k=1

(
∫ f̂ k

r +δ f

f̂ k
r −δ f

Sh
k ( f )d f − ¯̂Ph)

2,

C( f̂r, P̂h) =
K

∑
k=1

(max
f

(Sr
k( f ))− ¯̂fr)(

∫ f̂ k
r +δ f

f̂ k
r −δ f

Sh
k ( f )d f − ¯̂Ph), (31)

where f̂ k
r is the center frequency of respiration given from max f (Sr

k( f )), δ f = 0.05 which gives

a frequency interval of ±0.05Hz around f̂ k
r for the power estimate of HRV and ¯̂fr, ¯̂Ph denote the

mean value of respiratory frequency and HRV power respectively.
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The correlation with increasing noise for three methods is plotted in figure 24. As one can tell
from the figure, The Welch and PM MW have similar correlation estimations while the TH MW
gives the strongest results for all values of v(n).

Figure 24: The performance of all the methods plotted in one figure showing that the TH MW
gives the best result.

Quadratic case

Then 1200 samples of HRV and respiratory signals are simulated with quadratic increasing fre-
quency starting at 0.12Hz and ending at 0.3Hz. This nonlinear frequency change is more close to
what is shown in real data (as one can see from the third spectrogram plot in figure 25).

Figure 25: The spectrogram with different time-resolutions and the spectrogram on one of the
real samples.

Figure 26 and 27 show an example of spectral estimations of both respiratory and HRV signal
with the standard deviation of the LF noise v(n) = 3. Same methods are applied on these sam-
ples and the mean value, StdBias and SSD of the estimated band power of HRV are calculated
and plotted in figure 28, 29 and 30 respectively.
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Figure 26: The PSD estimations of respiratory signal. A quadratic growing trend is seen and the
central frequency band gets wider since frequency changes more rapidly as time goes by.

Figure 27: The PSD estimations of HRV. The standard deviation of the LF noise is chosen to be
v(n) = 3, which results in quite high power in LF part.

If compared to what is obtained from the linear case, one could see that in figure 28 and 29 for
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the first 3 time periods, the TH MW now gives the smallest mean value estimation which is due
to the reason of slowly increasing frequency at first. After the respiratory frequency band moves
away from the LF range (time period 6), the estimation becomes similar to linear case.

Figure 28: How the mean value of band power estimation varies over increasing noise.

The SSD in figure 30 looks quite the same as what is found in linear case, but this time the diver-
gence appears in time period 4 while in linear case the divergence is seen clearly in time period
2 and 3. The respiratory frequency in these time periods being similar to each other is the reason
here. Again, no method is robust to noise.
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Figure 29: The standardized bias shows relatively how far the estimation is from the ’true’ value.

Figure 30: The standardized standard deviation.

The correlation between respiratory center frequency and HRV power is again used as an evalu-
ation approach for the quadratic case. This time the correlation looks less tidy, but still one could
tell that the TH MW gives slightly stronger correlation (figure 31).
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Figure 31: The performance of all the methods plotted in one figure showing that the TH MW
still gives the best result.

From the above evaluations, one would conclude that at the beginning, when the center fre-
quency is next to the LF range, all three methods produce results that are strongly affected by
the noise, and such effects get larger with increasing level of noise. Then as respiratory frequency
increases but still close to LF range, the TH MW seems to most sensitive to the noise for it pro-
duces the largest StdBias and SSD in time period 2 and 3 for linear case and time period 4 for
quadratic case. The PM MW performs the best in these periods as it captures the shape better
when there is a peak in the PSD estimation. As the frequency center moves away from LF range,
the TH MW reaches the same level as the other two and there is no big difference spotted be-
tween them. However from the view of the correlation estimation, the TH MW seems to be the
most robust method in HRV band power estimation producing the strongest negative correla-
tions for all values of v(n).
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5 Real data

5.1 Data description

The data was collected from 21 women and 26 men, aging from 20 to 65 years old, with different
levels of working related stress or burnout. Participants were told not to take any food, caffeine
or tobacco during 2 hours of before the experiment, nor alcohol the day before. No participant
has disease that affects cardiovascular system.
Participants were asked to breath following a metronome starting at 0.12Hz and slowly increas-
ing to 0.3Hz. Additional information on general health and stress level has been collected in-
cluding age, gender, height, weight, BMI, STAI (State Anxiety and Trait Anxiety) and SMBQ (Shi-
rom–Melamed Burnout Questionnaire) [17].

5.2 Classification

Before applying multitaper methods on the real samples, it is necessary to classify them into dif-
ferent clusters. Since part of the aim of this thesis is to study the difference in coherence between
groups with different level of anxiety and stress, only the anxiety related indices are used to con-
duct an unsupervised classification (K-means clustering used in this thesis). According to infor-
mation presented in [16, 17], where SMBQ score is used as a categorical variable to classify indi-
viduals who has previously experienced stress, it is reasonable to set 3 groups based on SMBQ,
together with State Anxiety and Trait Anxiety. Age could also be taken as a stress-related vari-
able but since there are too few samples in each age range given only 47 participants aging from
20 to 65, it is not included in the classification.
K-means clustering with 100 replicates is performed and figure 32 shows the pairwise plots and
a 3D plot is shown in figure 33.

Figure 32: Pairwise scatter plots, where green, yellow and blue dots indicate low, median and
high stress group relatively.

A positive linear relationship between each pair of variables is found, making the classification
easy to understand - more stressed person, higher the anxiety level. Different from using only
SMBQ to categorize, State and Trait Anxiety are helping set a more clear boundary between each
groups.
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Figure 33: A 3D scatter plot where green, yellow and blue dots indicate low, median and high
stressed group relatively.

5.3 Results

It is hard to make comparison between each individual and also meaningless to interpret the
difference between them since difference does exist between individuals, let alone noise exists
when recording data. However, persons in the same group have something in common, and the
information could be extracted by calculating the values within each group.
Similar to what is done with simulated data, the comparison will be made mainly by present-
ing figures. No true value is available now, so bias could no longer be the criteria to evaluate the
goodness of the methods. The standard deviation is available here, however, since there might
be a scaling problem as mentioned when evaluating the simulation data and also the difference
does exist between individuals as said, the deviation of the band power estimation is not con-
sidered as an approach for evaluation. Problem also exists when one wants to compute the SSD
which could be used to match the values in simulation part to measure the noise level in real
data. Again since there is no true value or even the so-called ’true’ value introduced on real data,
it is impossible to compute the SSD.
However checking the correlation between respiratory frequency and HRV power could reduce
the deviation brought by individual diversity. It is then to check how strong the correlation is
between frequency and power and whether it deviates between groups, which is stated in the
introduction part as part of the aim. Different segments, either with or without sample overlap,
and different number of windows K from 2 to 6 is evaluated. The correlations are calculated ac-
cording to eq.(30) and eq.(31) for all combinations and are plotted in figure 34.
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Figure 34: How each method performs when estimating the correlation between respiratory fre-
quency and HRV power. In each subplot, different methods are compared on the same group of
individuals. Row: different segmentations. Column: different groups.

The TH MW seems to be most sensitive to the K, as under most cases the correlation given by
the TH MW decreases (weaker coherence) as K increases. This also explains why only 2 win-
dows are used on simulation data especially for the TH MW. The values of the correlation differ
quite much when the data is segmented into 10 non-overlap parts, with the window length rel-
atively short. The reason for this could be that for a short data segment, signals have almost the
same frequency within each window. The Welch and PM MW give quite the same result with the
Welch outperforms a little bit. Both methods show a stronger correlation with more windows.
When data is partitioned into 6 non-overlap parts or 10 segments with 50% overlap, the win-
dows have similar length, resulting in similar plots though the values are no longer uncorrelated
when there is overlap between segments. The Welch seems to be the most robust method since it
indicates the most strongest correlation between respiratory frequency and HRV band power.
Of course it is of more interest here to see how different the correlation might be between differ-
ent groups, so the correlations are replotted in another way to see the influence of stress level in
figure 35.
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Figure 35: Another way to present the estimated correlation to see if there is difference between
groups with different levels of stress using same method. Row: different segmentations. Col-
umn: different methods.

Stress is found to have a negative impact on HRV, i.e., high stress resulting in a reduced HRV
power (in HF range) [8, 9]. However, strongest negative correlation is seen in high stressed group
in most plots in figure 35 (except the second plot when data is segmented into 6 parts using the
TH MW). The Welch still seems to be the best one to differentiate different stress groups if data
is segmented into 10 segments with 50% overlap. The TH MW could distinguish the difference
between groups as well under same segmentation but less windows is preferred as it might pro-
duce incorrect estimation of HRV power using too many windows. The PM MW is quite ro-
bust to different segmentations, also indicating that the strongest correlation is found for high
stressed group. It is hard to make a choice of the number of windows to use on real data since
different correlation estimations are obtained with different methods and segmentations, how-
ever, less windows are preferred (for example using 2 or 3 windows). Also it is better to cut the
signal data into 10 parts with 50% overlap since under this segmentation a more clear difference
is found between groups.
The correlations between respiration frequency and HRV band power could possibly be further
used as a way for classification of individuals with unknown stress levels if given only the res-
piration and HRV data. This could be a more reliable way to diagnose the stress or anxiety con-
dition of a patient since physiological signals don’t lie while people might hide true information
when filling a questionnaire. However, more data is needed to support this idea since the clus-
tering of participants is done also by using assessment data.
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6 Conclusion

In the process of completion of this thesis, most time was spent on reading and studying multi-
taper methods and learning how to implement these methods onto data. The simulation of the
IPFM signal and the evaluation on the IPFM signal consists most part of the thesis. The signal is
modified to be as close to real respiratory and HRV data as possible. Three methods (Welch, TH
MW and PM MW) are chosen to be implemented for estimating the spectrum of respiratory sig-
nal and HRV signal to obtain the center frequency of respiration fr and narrow-banded power of
HRV within fr ± 0.05Hz.
Two ARMA-processes were first created to obtain a quick look at the performance of three meth-
ods. Since it is a simple model with known PSD and without much structure in it, the Welch
gives the best spectral estimation by its smoothness and low variance. The TH MW and PM MW
would have captured more information from the signal, however here, both methods seem to
overestimate, leading to higher bias and variance.
When it comes to evaluate methods on the IPFM signal simulations, the ’standardized’ bias (Std-
Bias) and deviation (SSD) is calculated, i.e., bias and deviation divided by mean power of each
method when no noise is introduced in the signal to avoid scaling problems. It is hard to con-
clude which method gives the closest band power estimation for no ’true’ value could be taken
as criterion, but the PM MW seems to be the best method for spectrum estimation giving the
least deviation. However the TH MW gives a slightly stronger correlation between respiratory
frequency and HRV band power (especially in quadratic case which is more close to real data),
indicating a more robust estimation. The robustness to noise of each method is also checked,
which might not be what is needed. None of the three methods is robust to noise, and it is hard
to draw a conclusion.
Finally the methods were applied to real data. The TH MW is most sensitive to the number of
windows K, varying a lot and the more windows the weaker correlation one gets, while the Welch
and PM MW show a growing trend of correlation (decrease in value). A number of 10 segments
with 50% overlap seems to be the best way to cut signals, a clear difference of correlation is found
between groups of different level of stress. It is interesting to find that under most cases, strongest
negative correlation is found in high stressed group as one might think the other way round
given that stress is found to have a negative impact on HRV power. The correlation could be fur-
ther used as an approach of classification for individuals with unknown stress or anxiety state.
Further discussion and research of what it means and its applications in physiology could be
done, however, it is not the aim of this thesis.
At last, this thesis was based entirely on non-parametric methods. Though they are most useful
and efficient approaches with these signals, there could be some parametric model families that
perform well or even better. Moreover, the data is non-stationary that is cut into sections and
then treated as stationary. It is not a good assumption, so alternative approaches could be stud-
ied to handle this kind of chirp signal better.
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