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by Ahmed DAADOOCH

Machine learning and its application within finance have gained popularity the last
decade. The traditional trading roles are changing rapidly and are being increas-
ingly automated with algorithmic trading strategies, by proprietary trading firms,
market makers, and other financial institutions. FX trading often involves strategies
in the form of technical analysis – suggesting that the efficient market hypothesis
might not always hold. Different machine learning techniques are often used in
trading activities by Quant fund and other algorithmic and high-frequency trading
firms.

In this thesis, I investigate if the Gaussian Process Regression (GPR) can predict
prices on a EUR/USD FX Future from CME Globex[5]. The GPR approach has its
advantages, being a non-parametric and probabilistic method, and often being much
simpler to implement, in contrast to other machine learning techniques like neural
networks, which might not always be easy to apply in practice. The last decades of
developments within GPR has made it a solid competitor for real supervised learn-
ing applications. In this thesis the ARIMA model is used as a benchmark model for
prediction.
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1 Introduction

1.1 Background

Financial markets and trading activities have gone through major changes the last
decades as technology has become more sophisticated and electronic trading evolved
[27]. Market transactions used to exclusively happen directly on the exchange floors
in physical form. Today, trading is mainly done electronically with the help of com-
puters [9]. In addition, developments in machine learning and easy access to data
has led to new applications of these methods within finance.

This change has led to many new forms of trading strategies, including various
forms of automated algorithmic trading. Today, in addition to traditional funds and
asset managers, there are many Quant- and trading firms dealing with various ma-
chine learning and algorithmic trading learning techniques. Machine learning is
also being used more by global investment banks in their market making and risk
management activities [27].

In this paper, Gaussian Processes for machine learning is used to predict the EUR/USD
future price, and an algorithmic trading strategy is built based on the predictions.
The GPR method has its advantages; it is a non-parametric and probabilistic method
that is easy to implement, and requires fewer assumptions compared to other ma-
chine learning methods.

1.2 Purpose

This paper look into the Gaussian Process Regression for machine learning, and how
it can be used to implement trading strategies on the EUR/USD CME Globex Fu-
tures. Further, the thesis compare the Gaussian Process Regression to the benchmark
ARIMA base model for predicting FX Futures prices. The purpose of this thesis is to
investigate the GPR, a supervisied machine learning method. The GPR has it’s ad-
vantages, being a probalistic and a non-paramteric model. The ARIMA model, for
instance, assumes a linear model. The GPR can fit a smooth function to any data set,
without assuimg a dimention of the function. This makes it a good method for time
series modelling. The GPR model is relatively easy to implement, where the main



2 Chapter 1. Introduction

model selection lies in choosing a suitable covariance function. However, a draw-
back with the GPR is the computational time for large data sets. While this might be
an issue for some applications, it is not necessarily the case here - as the number of
data points to train does noes necessarily need to be very large.

1.3 Limitations

The trading is not performed live, all results are based on simulations of futures
trading, more specifically the March 2018 EUR/USD CME Globex FX Future. The
paper include two trading models, a simplified model, and a realistic model. The
simplified strategy assumes that the Bid-Ask spread is always zero, and that there
do not exist any transaction fees. To simulate a realistic trading model, transaction
fees and the Bid-Ask spread have been approximated and added to the simulation
in the realistic model.

1.4 Thesis Summary

In this thesis, I investigate if the Gaussian Process Regression (GPR) can be used to
predict prices on a EUR/USD FX Future from CME Globex [5]. A data set consisting
of around 30,000 trading minutes is used for training, validation and testing.

It seems that there are better alternatives to the linear ARIMA model. Swastanto,
2016, used the GPR model to forecast long-term time series and were able to achieve
satisfactory results [26]. Many others have tried to exploit the fact that markets are
not always efficient, and thus not always follow a random walk process. Gradojevic
and Yang, 2006, used non-parametric artificial neural networks (ANN) to predict
exchange rates and showed that their result could outperform a random walk [12].
While some have been successful in using machine learning methods such as the
Gaussian Processes in predicting time series, it is not obvious if this can be applied
to FX futures prices, even if FX time series are not random walk processes.

Gaussian Process Regression is a supervised machine learning method. It’s a non-
parametric and probabilistic method, allowing for a function to be fitted for any
kind of data. Gaussian processes can be thought of as a collection of functions with
infinite dimension. The idea is to condition the probability function on the training
data to find a function that can map inputs to outputs. This is achieved by choosing
a covariance function, and optimizing its parameters by maximizing the likelihood
function.

The main part of the model selection is choosing a covariance function, also known
as a kernel, which describes the correlation between data points. In this thesis, two
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popular kernels, the Rational Quadratic and the Ornstein-Uhlenbeck kernels are
used. The GPR models are trained by maximizing a likelihood function. Once the
GPR model is trained, a validation set it used to validate the model and avoid over-
fitting issues. The model is then used to forecast the next trading minute price in a
test set, and the foretasted price acts as the underlying decision maker of a trading
strategy.

Different sizes of training sets are tested, having 70, 100, 300, 1000, and 2000 data
points. The validation set is chosen to be the same size as the training set. The test
set consists of 25,000 data points.

Two trading models were built. The first one is a very simple model with no trans-
action fees and zero bid-ask spread. The second model is more sophisticated and
realistic, it include both transaction fees and a bid-ask spread to reflect real market
conditions.

The GPR model is benchmarked against the ARIMA model, compared by metrics
such as the mean squared error, and mean absolute error. We show that the GPR
model is slightly better than the ARIMA model, however the difference is small.

In order to predict time series, such as the FX future prices, the series must not be
a random walk. We conclude that the future prices does not follow a random walk
by testing the random walk hypothesis by a Ljung-Box test. While it was possible
to prove that the time series is not a random walk, the GPR was not a good enough
model for predicting future prices. The trading results were unsatisfactory yielding
low or negative returns.

It is not very surprising that the trading simulation were not profitable. The EUR/USD
futures are very liquid and are traded actively. It is, therefore, reasonable to assume
that many trading firms already have implemented sophisticated algorithmic strate-
gies, so that it is increasingly harder to find profitable algorithms.

The choice of implementing a GPR model, rather than other machine learning meth-
ods, were based on the potential strengths of the GPR model. The main strengths
being that the model in non-parametric, and could therefore fit a smooth function
to any type of data. In addition, it’s a probabilistic method, giving a degree of cer-
tainty in the predictions. The GPR implementation requires few assumptions, where
the main part of the implementation is choosing a kernel function. One drawback
with the model, is the computational time, which becomes very slow with large data
sets.

The GPR model proved to be in line, or slightly better, than our implemented ARIMA
model, measured by our specified metrics. However, it also proved not to be a good
predictor to be used for future FX trading models implemented in this paper. It’s
possible that the model might be improved by introducing more inputs, and/or find
better suited kernels.
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1.5 Thesis Outline

Section 2 provides an overview of previous literature on forecasting exchange rates.
In Section 3 a brief explanation and overview of the foreign exchange market is
given, along with factors affecting exchange rates. In Section 4 the theory behind the
models used is explained. Section 5 is about the data used and the data characteris-
tics. In section 6 the methodology and implementation of the models are explained.
Section 7 provides a summary of the results. Finally, Section 8 provides a discussion
of the results obtained.
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2 Previous Literature

Many studies on forecasting foreign exchange rates have been conducted in the past.
The ARIMA model has been used frequently to predict time series and has been one
of the most popular methods in the past [16]. However, the ARIMA model has its
flaws in assuming a linear model and therefore there might be better suited models
to use [16].

Many have tried to find a better prediction model for exchange rates. There have
been varied results in successfully predicting exchange rates. In 2005, Cheung,
Chinn, and Pascual drew the conclusion that many of the theoretical methods such
as the Purchasing Power Parity, and Interest Rate Parity are not able to consistently
outperform a random walk process, but are only sometimes superior [3]. However,
there are some contradicting results. Zorzi, Muck, and Rubaszek, 2015, showed in
their research that PPP can be used to predict exchange rate movements better than
the random walk [36]. In addition, Simpson and Grossman also used PPP to predict
currencies, and according to their research they were able to correctly predict the
direction of exchange rates indexes of an accuracy of up to 70%, and were able to
predict better than a random walk on four out of six observed indexes [25].

Many others have tried to exploit the fact that markets are not always efficient,
and thus not always follow a random walk process. Gradojevic and Yang, 2006,
used non-parametric artificial neural networks (ANN) to predict exchange rates and
showed that their result could outperform a random walk [12]. Dunis and Huang,
2002, used non-parametric neural network regression and recurrent neural networks
(RNN) to predict GBP and YEN against the USD and achieved highest prediction ac-
curacy with RNNs [8]. Zafari et al. showed in their paper that an evolving recurrent
neural network using Cartesian genetic programming can be used to predict trends
in exchange rates, and achieved a prediction accuracy of up to 98% [34].

Some have studied methods benchmarked against the ARIMA model. Kamruzza-
man, 2003, used an ANN model to predict FX rates, and found that their model out-
performs the ARIMA model [15]. Work by Villa and Stella, 2013, where a Bayesian
network classifier was studied, showed that their model outperformed the ARIMA
model on multiple performance metrics [31].

In the high-frequency area, Zeman and Maršík, 2013, showed that the random walk
for EUR/USD spot rate can be rejected in 5min frequency data, but not at hourly
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and 4 hours frequency [35]. Choudhry et al., 2012, used an ANN model to form a
trading strategy based on second spot FX observations, and achieved a profitable
result even when accounting for transaction costs [4].

Gaussian Processes has been used to predict time series in various studies. Swastanto,
2016, used the GPR model to forecast long-term time series and were able to achieve
satisfactory results [26]. Mojaddady, Nabi, and Khadivi, 2011, used Twin Gaussian
Processes to predict stock market prices [21]. Farrell and Correa, 2007, used Gaus-
sian Process Regression to predict stock prices but concluded that the method were
not good enough to make money in the market and pointed to issues such as com-
putation time [10]. GRP has also been used to predict stock market volatility, Ou and
Wang, 2011, used GPR and concluded that the model yields better results than the
GARCH model, which is usually used when modelling volatility [22].

In summary, it seems that there are better alternatives to the linear ARIMA model.
While some have been successful in using Gaussian Processes in predicting time
series, it is not obvious if this can be applied to FX futures prices, even if FX time
series are not random walk processes.

In this paper, I look at the machine learning method of Gaussian Process Regression
(GPR) to forecast minute FX prices for the EUR/USD future.
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3 The Foreign Exchange market

In this section, the theory behind the foreign exchange market and FX futures is pre-
sented to give the reader an understanding of how FX rates are decided. In section
3.1 an introduction on currencies is given. It is followed by a brief overview of the
spot and futures markets in section 3.2. In section 3.3, 3.4 and 3.5, the theory behind
the bid-ask spread, the Efficient Market Hypothesis, and the fundamental relation-
ships of exchange rates is explained.

3.1 Introduction

Today currencies float freely and their values depend on multiple macro-economical
factors as well as influence from central banks [24]. The Foreign Exchange market
is today the largest and most liquid financial market, with around USD 5tn trading
each day, of which around 95% is traded interbank [6] [2]. The value of currencies is
expressed relative to another currency, e.g. EUR/USD, which states the amount of
USD one EUR is worth.

The value of a freely floated currencies depends on the supply and demand, which
is affected by many factors. The most important ones are interest rates, inflation
rates, unemployment numbers, GDP growth, wage growth, and monetary and fiscal
policy [24]. These statistics are usually measured and released quarterly or monthly.
In addition, currencies’ values also depend on other countries’ inflation and interest
rates.

3.2 The Spot and Futures Markets

In the Spot market currencies are traded both Over The Counter (OTC) or on certain
exchanges. The Spot market represents the current exchange rates of currencies and
the market is open 24 hours a day.

In addition to the spot market, there are many exchange-traded derivatives on most
currencies, such as futures and options. A futures contract is a commitment to buy
a currency on a future date for a predetermined price. The contract does not have to
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be held until expiry, it can be sold before the expiry date. These contracts are traded
on an exchange and can be used for speculative or hedging purposes.

The relationship between the spot price and futures price is given by equation 3.1.
It can be seen that when the forward interest rate in the domestic currency is higher
than the forward interest rate in the foreign currency, then the futures price is higher
than the spot price [30].

F = S
(1 + Rdomestic

d
360 )

(1 + R f oreign
d

360 )
(3.1)

Where F is the future price, S is the spot price, R is the forward interest rate, and d is
days to maturity. This relationship should hold if there is no arbitrage in the market.
If for example, the futures price would be above the value given by equation 3.1, then
a trader can make a profit by selling the future price and buying the spot price.

3.3 Market Makers and the Bid-Ask Spread

Market makers are banks and other financial institutions that maintain market liq-
uidity by taking orders from investor clients. Market makers buy (sell) when clients
want to sell (buy). To be compensated for their market making role, they profit from
the spread between the bid and asking price, meaning that they buy at a slightly
lower price than what they sell for. The Market Maker buys at the bid price Pb and
sells at the asking price Pa. The Bid-Ask spread can be seen as a compensation for the
market maker, it covers order processing costs, inventory holding costs, and adverse
selection costs [1].

3.4 The Efficient Market Hypothesis

The Efficient Market Hypothesis (EMH) states that asset prices incorporate all avail-
able information, and that price movements are completely random [1]. The EMH
occurs in three forms, the strong form, semi-strong or the weak form. The strong
form is when the market is most efficient, where assets prices incorporate all infor-
mation, including insider information, and all price movements are completely ran-
dom, where investors can’t achieve above average returns from fundamental or tech-
nical analysis. The semi-strong form is when prices incorporate all publicly available
information, but not insider information. The weak form states that prices cannot be
predicted based on historical prices, e.g. by technical analysis. However, in the weak
form, fundamental analysis can still provide above average return [1].
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However, there is some doubt on whether the EMH actually holds [17]. The EMH
assumes that people act in a rational way, which is not always the case, because of
emotions and other behavioral biases. To test if the EMH holds for an asset, various
tests can be performed. One of these is a Variance Ratio test, described in the Theory
section below.

There are typically two types of analysis that can be performed on traded financial
assets, one is Fundamental Analysis and the other is Technical Analysis. In Funda-
mental Analysis, the asset is priced by trying to calculate its actual value, for exam-
ple by estimating future cash flows for a company, and discounting them to present
value. In terms of currencies, the equivalent fundamental analysis approach would
be valuations based on e.g. the Interest Rate Parity.

In contrast, Technical Analysis only considers the historical data of the traded asset,
and through mathematics, statistics, game theory and/or decision theory predict
the future price. There exist many different technical indicators, e.g. momentum
indicators, that could be helpful in these types of analysis. This means that Technical
Analysis contradicts the EMH, stating that the EMH does not hold and that there
might be correlations and trends in asset price movements, making it possible to
predict future prices.

3.5 Fundamental Relationships of Exchange Rates

The Purchase Power Parity (PPP) states the relationship between the price of the
same product in two countries is equal to the currency exchange. The idea is that
a product purchased directly in e.g. the US with currency USD, should cost the
same when converting the USD amount to EUR and buying the product in amounts
of EUR. There are multiple versions of the equation, in 3.2 one version of the PPP
is presented, assuming no transaction fees [2]. A well known example of the use
of PPP is the Big Mac Index introduced by the The economist in 1986. The index
measures the price ratio of a Big Mac (a hamburger from McDonald’s) in different
countries [7].

P1
i = SP2

i , (3.2)

where P1 is the price in country 1, P2 is the price in country 2, and S is the exchange
rate of the two countries’ currencies.

In theory, higher interest rates should lead to a stronger currency. This is because
higher interest rates attract more foreign investments, which leads to a greater de-
mand for the domestic currency. The theoretical relationship between two countries’
currencies and forward interest rates is given by the Interest Rate Parity [2].
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(1 + i1) =
Et(St+k)

St
(1 + i2) (3.3)

Et(St+k) is the expected spot price in k periods. St is the current exchange rate. i1 and
i2 are the interest rates in country 1 and country 2 respectively. In order for the parity
to hold, there are some assumptions that must be true. The most important ones
are capital mobility and perfect substitutability between the two countries’ assets
[2].

Inflation is the increase in general price levels, meaning that the value of a currency
declines in real terms when inflation increases. Typically, inflation rates and interest
rates are linked. For instance, low interest rates lead to more borrowing and thus
more consumption. The increase in consumption leads to higher prices, thus higher
inflation. In contrast, when interest rates are high, more people save their money
and less borrow, which leads to lower inflation. There are several indices measuring
inflation, one example is the Consumer Price Index (CPI) [33].

Most countries have a goal to keep the inflation rate at a steady level. Typically
this level is around 2% p.a. for developed countries [13]. To achieve that goal, cen-
tral banks can control the quantity of money in circulation and increase/decrease
interest rates, known as Monetary Policy. In addition, the government can affect in-
flation with fiscal stimulus, e.g. by spending on infrastructure projects or adjusting
tax rates, this is known as Fiscal Policy [14].

The theory behind the relationship between interest rates and unemployment is that
higher unemployment rate leads to less consumption and thus the inflation rate de-
crease, while low unemployment leads to higher consumption and higher inflation
rates. And like mentioned before, inflation is connected to interest rates, and thus
affects the price of currencies. Trivially, higher wage growth leads to higher con-
sumption and thus higher inflation [32].

3.6 Summary

Exchange rates depend on a number of factors, including macro economical data as
well as theoretical price relationships to prevent arbitrage. The EMH states that all
available information should be reflected in the prices if it holds. There are three
different forms of the EMH, the strong, the semi-strong, and the weak.
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4 Theory

This chapter starts with an introduction to time series and the theory behind them in
section 4.1. In section 4.2 the theory to test for a random walk process is explained.
Finally in sections 4.3, 4.4 and 4.5, the theory behind the ARIMA model, Bayesian
model, and the Gaussian Process Regression is explained.

4.1 Time Series

A time series is data points collected in time-order and at the same time interval,
e.g. every one minute [16]. Below are brief definitions of how some properties of
observed time series are defined.

4.1.1 Mean and Variance

The sample mean x̄, variance s2, and covariance of a data series X(t) is defined in
equations 4.1, 4.2, and 4.3 [16].

x̄ =
n

∑
i=1

xi

n
(4.1)

s2 =
1

n− 1

n

∑
i=1

(xi − x̄)2 (4.2)

qj,k =
1

n− 1

n

∑
i=1

(xij − x̄j)(xik − x̄k) (4.3)

4.1.2 Weakly Stationary

A time series is said to be weakly stationary if the mean, variance, and covariance
is time indifferent, meaning that a shift in time won’t affect the mean, variance, and
covariance values [16].
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4.1.3 Testing for Stationarity

Testing for stationarity can be done by the Augmented Dickey Fuller (ADF) test, or
by visually looking at the data. The ADF looks at an AR model to test for stationarity
[18]. For an AR(1) model, seen in equation 4.4, we can test for stationarity by testing
if θ equals one. If θ equals one, then the autocorrelation is dependent on time and
therefore the process is not stationary, see equation 4.5. This can be extended to AR
processes of higher order, by testing if δ is equal to zero in equation 4.6.

∆yt = α + θyt−1 + εt (4.4)

cov[∆yt, ∆yt−k] = (t− k)σ2

ρ[∆yt, ∆yt−1] =

√
t− k

t

(4.5)

∆yt = α + δyt−1 +
h

∑
i=1

Bi∆yt−i + εt (4.6)

An alternative way to check for stationarity is to plot the data, the autocorrelation
function, and the sample autocorrelation function. Like mentioned earlier, a weakly
stationary process should have constant mean and variance, and the autocorrelation
function should decay to zero [16].

4.1.4 White Noise

A data series of uncorrelated random variables with zero mean and variance σ2 is
defined as white noise. Often, data samples of observations are assumed to include
white noise [16].

4.2 Random Walk Test

To test the Efficient Market Hypothesis a Random Walk (RW) test can be performed
by using a Ljung-Box Q-test. The Ljung-Box tests if the autocorrelation for a specified
lag m is zero. Under the null-hypothesis of zero autocorrelation, the equation in 4.7
is χ2 distributed with m degree of freedom [1].

Q′m = T(T + 2)
m

∑
k=1

ρ2
k

(T − k)
(4.7)
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4.3 ARIMA

The ARIMA model is often used when predicting time-series, such as FX prices.
ARIMA stands for Autoregressive Integrated Moving Average. It comprises of two
components, an AR and MA component. In an Autoregressive (AR) process, future
values depend on previous values. A model of order p is given by 4.8.

yt = θ1yt−1 + . . . + θpyt−p + εt (4.8)

In a Moving Average (MA) process the future values depend on the past random
error terms, et. An MA(q) process is given by 4.9 below. εt is a white noise process
with mean zero εt ∼ N(0, σ2).

yt = εt + θ1εt−1 + . . . + θqεt−q (4.9)

The mixed ARMA(p,q) model is given by 4.10

yt = θ1yt−1 + . . . + θpyt−p + εt + θ1εt−1 + . . . + θqεt−q. (4.10)

One condition of the ARIMA model is stationarity. If the data is not stationary, it can
be differentiated until it becomes stationary.

4.3.1 Box-Jenkins Model Selection

The Box-Jenkins methodology is an approach to finding an appropriate ARIMA
model. It consists of the following steps [19].

1. Check stationarity. If the process is not stationary, differentiate it until it be-
comes stationary.

2. Plot the autocorrelation function ACF and the partial autocorrelation function
PACF to identify the number of lags p.

3. Identify if it is an AR, MA or ARMA model according to the table 4.1 below.

4. Estimate the model. It is also a good idea to try different models and choose
the one with the lowest AIC/BIC.

5. Plot residuals of ACF.
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TABLE 4.1: Identifying an appropriate ARMA process.

ACF PACF
AR(p) Spikes decay to zero Spikes cutoff to zero
MA(q) Spikes cutoff to zero Spikes decay to zero

ARMA(p,q) Spikes decay to zero Spikes decay to zero

4.4 Bayesian Linear Model

Before explaining the GPR, a Bayesian linear model is first explained. Consider the
linear model given by equation 4.11.Let x be an input vector and y be the output
(target). Define D = {xi, yi|i = 1, ..., n}, where n is the number of observations.
Call x1, ..., xn the training set, which are values already observed. Define the design
matrix X as the D x n matrix of the vector inputs x. Now D can be rewritten as
D = {X, y}, where y is the vector of targets.

y = xTw + ε (4.11)

w is the weights, x is the input variables, y is the target variable, and ε is Gaussian
noise.

The idea is to give a prior distribution over the weights, with higher probability
given to functions that are considered more likely. Usually, the prior is chosen as a
Gaussian with zero mean. The prior is the probability distribution before seeing the
observed data p(w). We can condition the probability on the observed data. This
is done by combining the prior with a likelihood function, the likelihood function
is the probability of the observations conditioned on the inputs and the parameters,
in this case X and the weights w. The likelihood function is p(y|X, w), according to
equation 4.12 [23].

p(y|X, w) =
n

∏
i=1

p(yi|xi, w) = ∏
1√

2πσn
exp(−

(yi − xT
i w)2

2σ2
n

) =

1
(2πσ2

n)
n/2 exp(− 1

2σ2
n
|y− XTw|2) = N(XTw, σ2

n I)
(4.12)

The prior over the weights is Gaussian with zero mean and matrix covariance Σp,
see equation 4.13 [23].

w ∼ N(0, Σp) (4.13)

This leads to the posterior, which is the combination of the prior and the likelihood
function according to Bayes rule, see equation 4.20.
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p(w|X, y) =
p(y|X, w)p(w)

p(y|X)
=

p(y|X, w)p(w)∫
p(y|X, w)p(w)dw

∝ exp(− 1
2σ2

n
(y− XTw)T(y− XTw)) exp(−1

2
wTΣ−1

p w)

∝ exp(−1
2
(w− w̄T)(

1
σ2

n
XXT + Σ−1

p )(w− w̄))

(4.14)

w = σ−2
n (σ−2

n XXT + Σ−1
p )−1Xy

The expression can be expressed as a Gaussian with mean w̄ and covariance ma-
trix A−1, where A is defined as A = σ−2

n XXT + Σ−1
p , according to equation 4.15

[23].

p(w|X, y) ∼ N(w̄ =
1
σ2

n
A−1Xy, A−1) (4.15)

Finally, the predictive distribution is the average, weighted over how likely they are,
of all possible linear combinations of the outputs, given in equation 4.16 [23].

p( f?|x?, y) =
∫

p( f?|x?, w)p(w|X, y)dw = N(
1
σ2

n
XT
? A−1Xy, xT

? A−1x?). (4.16)

4.5 Gaussian Process Regression

Gaussian Processes Regression is one of many machine learning methods. It is a
supervised learning method, mapping inputs to outputs. GPR is a non-parametric
method, so the model can fit any type of function, and produces a random value
when invoked. The main part of the GPR model selection is choosing a covariance
function, also known as a kernel. The kernel describes the relationship between the
observations. Generally, points that are very close together should have similar val-
ues. Different Kernels and their role are described in more detail below [23].

The learning process is done by giving the model a data set with observations of
which we already know the values. From these observations, the model can learn
how to map inputs to outputs so that when a new input is given, the model can
predict the unobserved value for that input. GRP is a probabilistic method, so the
prediction is given with a level of certainty. If the prediction is far away from the
observed values, the uncertainty of the prediction will be large. Predictions close to
the observed values will have greater certainty.

Let x be an input vector and y be the output (target). Define D = {xi, yi|i = 1, ..., n},
where n is the number of observations. Call x1, ..., xn the training set, which are
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values already observed. Define the design matrix X as the D x n matrix of the
vector inputs x. Now D can be rewritten as D = {X, y}, where y is the vector of
targets. The goal is to train the GPR model using the training set, so that the model
will be able to predict the output of new inputs x?. The set of new inputs is called
the test set and is denoted X?. To be able to predict new inputs, a suitable function f
that can map the inputs to outputs must be found.

Rasmussen and Williams, defines the Gaussian process as a collection of random
variables, any finite number of which have a joint Gaussian distribution. In figure
4.1 two examples of the Gaussian distribution is plotted in the one dimensional and
two dimensional space.
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FIGURE 4.1: Example of Gaussian distributions in 1d and 2d
.

A Gaussian process can be thought of as a multivariate Gaussian distribution with
infinite dimension [23]. This might be hard to imagine, and the reader might think
that this would mean it is a difficult process to handle. However, because of the
marginalization property in Gaussian distributions, p(x) =

∫
p(x, y)dy, it turns out

that the Gaussian Process is very practical to use [23]. To demonstrate the marginal-
ization property, imagine a two dimensional Gaussian distribution P(x, y), as shown
in figure 4.2. If we condition the probability on a certain point Y = y, we get the
conditional probability P(x|y). As can be seen, the distribution of P(x|y) is also
Gaussian.

A Gaussian Process is a distribution over functions. The process consists of a mean
function m(x), and a covariance function k(x, x’) often referred to as a kernel func-
tion. These are defines below in equation 4.17 and 4.18 [23].

m(x) = E[ f (x)] (4.17)

k(x, x’) = E[( f (x)−m(x))( f (x’)−m(x’))] (4.18)

So that a Gaussian Process is expressed as GP(m(x), k(x, x′)).
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FIGURE 4.2: Marginalization property of Gaussian distributions.

To find a function that describes the data, first, a prior distribution is assumed. The
prior is the best guess of the function before seeing the observations. Assuming the
observations are noisy, so that y = f (x) + ε, where ε is IID Gaussian noise with
variance σ2

n . The prior of the observations is then given by equation 4.19 [23].

f ∼ GP(0, K(X, X) + σ2
nI) (4.19)

So that, [
y
f?

]
∼ N

(
0,

[
K(X, X) + σ2

nI K(X, X?)

K(X?, X) K(X?, X?)

])
(4.20)

Here f is the latent variable, which equals y but without the noise, so that y = f + ε,
where ε ∼ N(0, σ2

n).

Once the observations have been seen, a conditional distribution on the observations
can be obtained. The posterior distribution is obtained by conditioning the prior
Gaussian distribution on the observations so that only functions that describe the
observations are considered. It is obtained by Bayes rule, by combining the prior
with the likelihood function.

The posterior for a Gaussian Process Regression with noisy observations is given
by 4.21. The posterior is the conditional probability over functions given the ob-
servations. It gives a higher probability to functions that describe the observations
well.

f|X, y ∼ GP(k(x, x)[k(x, x) + σ2
n ]
−1y, k(x, x′)− k(x, x)[k(x, x) + σ2

nI]−1k(x, x′))
(4.21)



18 Chapter 4. Theory

The likelihood function is the probability of the observations, given the functions,
expressed in equation 4.22 [23].

y|X, f ∼ N(f, σ2
n I) (4.22)

Finally, the predictive distribution is given by 4.23

f?|X, y, X? ∼ N(f̄?, cov(f?)) (4.23)

f̄? , E[f?|X, y, X?] = K(X?, X)[K(X, X) + σ2
nI]−1y (4.24)

cov(f?) = K(X?, X?)− K(X?, X)[K(X, X) + σ2
nI]−1K(X, X?) (4.25)

It should be noted that the mean value in equation 4.24 is a linear smoother, a term
multiplied by y. It can be expressed as in equation 4.26 below.

E[f?|X, y, X?] = K(X?, X)[K(X, X) + σ2
nI]−1y =

n

∑
i=1

αck(x?, xi) (4.26)

The covariance in equation 4.25 has two terms, the first is the prior variance between
the test case and the second term is a positive definite matrix. The second term is
subtracted from the prior variance, based on how much the training data explained
about the test case [23].

The inverse of [K(X, X) + σ2
nI]] can be computed by Cholesky decomposition.

The main advantages of the Gaussian Process Regression (GPR) are that it is rela-
tively easy to implement in terms of model selection, and requires fewer assump-
tions in comparison to e.g. Neural Networks. It is a probalistic and non-parametric
model, allowing for a function to fit any type of data without any assumpitons of
the dimetionality of the data. Like mentioned earlier, the most important aspect of
the model selection is the choise of a kernel function.

The main drawback of the GPR method is the increase in computation time when
the trainingset becomes larger. The GPR has a time complexity of O(n3), meaning
that for large training sets with n data points, the computation time will increase
with a rate of n3. This leads to very slow learning when using large training sets,
which possibly could be an issue if large training data is needed [23].

4.5.1 Kernels

The choice of a covariance function is an important component of the Gaussian Pro-
cess Regression. The covariance function, or kernel, describes how the data behaves,
especially the covariance between pairs of data points. Every kernel has a number
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FIGURE 4.3: How different kernels fit the same data.
.

of hyperparameters that needs to be adjusted. See figure 4.3 on how different ker-
nels fit the same data. Below the Squared Exponential, Rational Quadraric, and the
Ornstein-Uhlenbeck covariance functions are described. There exist many other co-
variance functions, and it is also possible to combine multiple covariance functions
into a new kernel. However, it should be noted that a valid covariance function
must be symmetric and positive semi-definite, meaning that vTKv ≥ 0 for all values
of v, where K is the kernel matrix containing all the pair covariances of the inputs
[23].

Squared Exponential: The Squared Exponential kernel is given by equation 4.27
below.

kSE = σ2
f exp(− r2

2l2 ) (4.27)

l is the hyperparameter for the Squared Exponential kernel, and σ2
f is the variance

of the signal. In this case, l represents the characteristic length-scale, which can be
thought of as the distance interval where the function value does not change [23].
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This kernel describes the covariance between two points, decreasing with larger dis-
tance. Meaning that for long-term prediction, the covariance will go towards zero,
and the prediction will go towards the mean of the training set. This kernel is there-
fore appropriate for short term forecasting. The Squared Exponential is stationary
and a smooth function, in fact, it is infinitely differentiable [23].

Rational Quadratic: The Rational Quadratic kernel is given by equation 4.28 be-
low.

k(x, x′) = σ2(1 +
(x− x′)2

2αl
)−α (4.28)

The Rational Quadratic kernel is a sum of inifitely many Squared Exponentials, with
different lenght scales. As α → inf, the covariance function becomes a Squared
Exponential. It’s differentiable and a smooth fucntion [23].

Ornstein-Uhlenbeck: The Ornstein-Uhlenbeck kernel is given by equation 4.29 be-
low.

k0(x, z) =
1

2α
e−α|t| (4.29)

The Ornstein-Uhlenbeck is a mathematical model describing the motion of a particle
in fluid and was derived from the Brownian motion [23]. It is a mean reverting mo-
tion that has been found to describe some financial assets such as options in a good
way [29]. In contrast to the Rational Quadratic and Squared Exponential kernel, the
Ornstein-Uhlenbeck kernel is not differentiable.

Hyperparameters

Each kernel has a number of hyperparameters that have to be chosen. These hy-
perparameters affect the fit of the data [23]. To demonstrate how hyperparameters
affect the data fit, an example is shown with the Squared Exponential kernel. In
figure 4.4 two different lengths of hyperparameter l is chosen. One is the optimal
length according to the marginal likelihood maximation, and the other is one that is
to be too long in this case. When the length scale is too short, the model suffers from
overfitting, when it’s too long, it fits the observations poorly as shown in the figure.
Therefore, a value in between is the most suitable. This value of the hyperparameter
is chosen by maximizing the likelihood function, as explained in the section 4.5.2
below.
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4.5.2 Marginal Likelihood

The marginal likelihood describes the probability of the model given the observa-
tions. The optimal hyperparameters can be found by optimizing the Marginal like-
lihood function. The Marginal likelihood, defined as the integral of the prior mul-
tiplied by the likelihood, is given by equation 4.30. The marginal likelihood is a
trade-off between data fitness and model complexity. The function penalizes com-
plex models. The first term in in equation is the data fit term, here when K + σ2

n I
increases, the first term increases, but the second term decreases. This means that
when maximizing the likelihood function over the parameters, the model is robust
to overfitting [23]. However, this does not mean that overfitting can’t occur. There
could still be problems with overfitting a GPR model, therefore model selection
should still be done with care, and by using a validation set. Mohammed and Caw-
ley explores the model GPR selection in more depth, including avoiding overfitting
[20].

p(y|X) =
∫

p(y|f, X)p(f|X)df

log p(y|X) = −1
2

yT(K + σ2
n I)−1y− 1

2
log |K + σ2

n I| − n
2

log 2π

(4.30)

The optimal hyperparameters is found by the partial derivatives w.r.t the hyper-
parameters, see equation 4.31. To maximize the function, an inverse of the matrix
K + σ2

n I have to be computed, which takes time O(n3).

∂ log p(y|X, θ)

∂θ
=

1
2

yTK−1 ∂K
∂θ

K−1y− 1
2

trace(K−1 ∂K
∂θ

) (4.31)
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4.5.3 Occam’s Razor

The reader might wonder why too complex models lead to overfitting problems.
Occam’s Razor explains the situation [23]. In figure 4.5 the marginal likelihood is
on the y-axis, and "all sets of observations" on the x-axis. Imagine three types of
models according to the figure, a too simple model, a good model, and a too complex
model.

Choosing a too simple model to describe our data D is not a good choice, as the
probability of the observations is zero for the data. An example is choosing a linear
model to describe a non-linear process, it would, however, have a high probability if
the process were linear. The too complex model, on the other hand, can describe our
data D, but also a wide range of other sets of observations. However, the probability
of the observations from the too complex model is low, and therefore not a good
choice as it can describe almost any type of observations. The good model, is the
"just right" model, describing our observations with a high probability. To avoid
overfitting when choosing a GPR model, a validation set is used after training to
asses the model, before applying it to the test set.

FIGURE 4.5: Graphic illustration of Occam’s Razor. Figure is from
Ghahramani [11].

.

4.5.4 Other Likelihood Functions

The likelihood function does not have to be a Gaussian. There are multiple other
options when choosing Likelihood function. However, if a non-Gaussian likelihood
function is chosen, exact inference is not possible. Instead, approximation methods
for inference must be used.

In this thesis, in addition to the Gaussian likelihood, the use of student’s t likelihood
is evaluated, presented in equation 4.32.
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p(y|f) =
Γ( υ+1

2 )

Γ υ
2

√
υπε2

n
· (1 + (f− y)2

υ
)−

υ+1
2 (4.32)

To perform inference, there exist multiple approximation methods. Below the Laplace’s
approximation for inference with a student’s t likelihood is presented 4.33. Laplace’s
approximation requires calculations of up to the third derivative, given in equation
4.33.

r = y− f

ln p(y|f) = ln Γ(
υ + 1

2
)− ln Γ(

υ

2
)− 1

2
ln υπσ2

n −
υ + 1

2
ln(1 +

r2

υσ2
n
)

∂ ln p
∂ f

= (υ + 1)
r

r2 + υσ2
n

∂2 ln p
(∂ f )2 = (υ + 1)

r2 − υσ2
n

(r2 + υσ2
n)

2

∂3 ln p
(∂ f )3 = 2(∂ + 1)

r3 − 3rυσ2
n

(r2 + υσ2
n)

3

∂ ln p
∂υ
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υ
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(4.33)

4.6 Definitions of Performance Metrics

To assess and compare the results of the predictions from different models, a number
of performance metrics are used. These are defined in table 4.2 below.

TABLE 4.2: Performance metrics

Name Definition

Mean Squared Error (MSE) 1
n ∑n

i=1(y? − f̄ (x?))2

Standardized Mean Squared Error (SMSE)
1
n ∑n

i=1(y?− f̄ (x?))2

1
n ∑n

i=1 var( f̄ (x?))

Mean Absolute Error (MAE) 1
n ∑n

i=1 |y? − f̄ (x?)|

It can be seen from table 4.2 that a good model would strive towards a low MSE, an
SMSE close to 1, and a small MAE.
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4.7 Summary

A time seris can be predictible if it can be concluded that the series is not a random
walk. To test for a random walk process, a Ljung-Box test can be conducted, where
the null hypothesis is that the autocorrelation for a specified lag is zero.

The GPR model is a non-parametric and probabilistic supervised machine learning
method. Gaussian processes can be thought of as a collection of function with infi-
nite dimension. The idea is to condition the function on the data to be able to map
inputs to outputs. The GRP model selection consists of choosing an appropriate ker-
nel function to describe the data. It is then used to train the model over a training
set, by maximizing the likelihood function. In order to avoid over-fitting, the model
is tested on a validation set, before being applied on the test set for prediction. The
main drawback of the GPR model is it’s computational time, which increases by an
order of n3 for a training set with n data points.
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5 Data

This chapter presents the data that were used in the thesis, together with an overview
of its characteristics.

5.1 Data Set

The data contains information on trading prices between Dec 2017 and Jan 2018 of
the March 2018 EUR/USD FX Future from CME Globex [5]. Each contract is worth
EUR 125,000. Trading hours are Sunday - Friday 6pm to 5pm ETC New York Time.
The pip size is 0.0001, meaning that the smallest possible move in price is 0.0001.
All data is obtained from the Bloomberg Terminal. The pair EUR/USD is chosen
because it is one of the most liquid currency pair in the foreign exchange market
[28].
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FIGURE 5.1: EUR/USD CME future price data.

The Data consists of around 30,000 trading minutes, see figure 5.1. Each minute con-
tains information on closing price. The training and test data are pairs of (t0, y0), . . . , (tn, yn),
where t is the time and y is the future price at that time. How the data is divided
into training and test sets is explained in Section 6.

5.2 Data Characteristics

When looking at the autocorrelation function of the sample data, we see that the
functions decay towards zero, therefore we here assume that the data set is station-
ary. The data is distributed similarly to a student t distribution because of the fat
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tails seen in figure 5.2. This is expected due to periods of excessive price movements,
leading to excess kurtosis with fatter tails than a normal distribution. Therefore the
Student t distribution is often used when modelling financial data. See figure 5.2
below for an overview of the data characteristics.
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FIGURE 5.2: Data characteristics of the first 400 observations

5.3 Training Set and Test Set

Different data points are used for training, validation, and testing. Typically, a train-
ing set is defined, which is used to train the model, and a validation set of the same
size is used to validate the model, and later a test set containing new data points
is passed through the model to predict the outputs. More details on the choice of
training, validation, and test sets are provided in section 6.
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6 Methodology and Model
Implementations

6.1 Trading Strategies

Two trading models have been developed. The first model assumes no transaction
fees, while the second incorporate transaction fees and the Bid-Ask spread in a real-
istic way. Both models are described in more detail below.

6.1.1 Model 1: Simplified Trading Model

This strategy is very simple. If the next predicted minute price is higher than the
current, the future is bought and a long position is taken, if it’s lower, the future is
sold and a short position is taken. A net position of long or short is always held
throughout the trading period so that when a position is exited, a position in the
opposite direction is entered.

It is assumed that transaction fees are nonexistent and that the Bid-Ask spread is
zero. The results here are not very realistic due to transaction fees and the Bid-
Ask spread in real trading. This strategy is used as a first indication of how well
different models perform, by looking at the cumulative return. The trading strategy
is described in figure 6.1.

FIGURE 6.1: Flow chart of Trading Model 1
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6.1.2 Model 2: Realistic Trading Model

In this strategy, a more realistic approach is used by including transaction fees and
an additional fee representing the Bid-Ask spread.

In this strategy, the Bid-Ask spread is assumed to be 1 pip, and an additional transac-
tion fee of 0.0012% every time a position is entered or exited. For every trade (entry
and exit) the following fees occur:

1. Enter trade: 0.0001 (1 pip) due to Bid-Ask spread and 0.0012% transaction fee
to the broker

2. Exit trade: 0.0001 (1 pip) due to Bid-Ask spread and 0.0012% transaction fee to
the broker

3. Total for one trade: 0.0024% + 0.0002 (2x1 pips)

A trade is only entered if the next foretasted price equals a higher return than the
total transaction fees. If a trade is already entered, and the next predicted price is
in the same direction, the position is held. In addition, if a trade is already entered,
and the next predicted price is in the opposite direction, then the trade is exited if
the return between current price and the next predicted price is less than the total
transaction fees. However, if the next predicted return from the next predicted price
in higher than the total transaction fees, then in addition to the exit trade, a short
position is taken. The trading strategy is described in figure 6.2.

6.2 GPR Model Selection

6.2.1 Different Kernels

When choosing a kernel, the most popular kernels were investigated. It is reasonable
to think that kernels such as the Rational Quadratic could describe the data, this is
because of its ability to describe different lengths with multiple hyperparameters
so that different trends are captured [23]. In addition to the Rational Quadratic,
the Ornstein-Uhlenbeck were also tested because of its popularity within finance
[29].

After trying the Rational Quadratic and Ornstein-Uhlenbeck kernels, it was found
that the Ornstein-Uhlenbeck gave the best result when fitted to the data. See figure
6.3 for a comparison between different kernels with a training set of 200 observa-
tions. When performing the trading simulation, both the Rational Quadratic and
Ornstein-Uhlenbeck are tested with different training points.
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FIGURE 6.2: Flow chart of Trading Model 2

6.2.2 Choosing Number of Training Points

Different lengths of training, validation, and test sets were tested. The number of
training points tested were 70, 100, 200, 300, 1000, and 2000, along with a validation
test of the same length. The test set contained 25,000 data points. Figure 6.4 gives a
visual description of the division of the data.

When different number of training points were tested, a trade-off between compu-
tation time and data fit was considered. After trying different training sets sizes, it
was found that a cieling of 2000 training points gave a good result for a reasonable
computation time. This choice is somewhat arbitrary. To assess whether larger train-
ing sets give better result, separate tests with 70, 100, 200, 300, and 1000, and 2000
training points was conducted when running the trading simulations. The results
are presented in the Result section below.
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FIGURE 6.3: Data fit with different kernels and 200 training points.

See figure 6.5 of how the data is fitted with 100, 1000, and 2000 training points and
an Ornstein-Uhlenbeck kernel.

6.2.3 Student t Compared To Gaussian Likelihood

So far, the Gaussian Likelihood function has been used. However, because our data
has fat tails, a student t distribution might be a better fit for the observations. When
comparing forecasting from student t with Laplace inference, and the Gaussian like-
lihood with Gaussian inference, it was found that the student’s t gave a worse result
when measured by the performance metrics, see table 7.3 below. In addition, be-
cause the student t likelihood can’t use exact inference, and has to be approximated,
it is more time consuming. Therefore, the Gaussian likelihood was preferred in our
model.
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FIGURE 6.4: Overview of how the data set is divided

6.2.4 Final GPR Model

The final model is a Gaussian Process Regression model with a Gaussian likelihood
function and a Rational Quadratic or Ornstein-Uhlenbeck. The number of observa-
tions in the training that are applied are 70, 100, 200, 300, 1000, and 2000. The size of
the trainingset and validation sets are the same, while the test set consists of 25,000
data points. The model uses the observed closing minutes prices of the same size
as the trainingset as inputs, to predict the next minute’s closing price, once the next
minute’s real price is observed it is used as an input when the following minute price
is predicted. This is illustrated in figure 6.6.

6.3 ARIMA

The ARIMA model based on 1000 observations is presented in table 6.1. According
to the Box-Jenkins model selection, because the ACF spikes decay to zero, and the
SACF cut off to zero after 1 lags, the model that was chosen was an AR(1).

TABLE 6.1: ARIMA statistics

Parameter Value Standard Error t statistics
Constant 0.000102467 0.000144139 0.71089
AR(1) 0.999914 0.000120882 8271.84
Variance 1.81169e-08 8.2952e-09 2.18402
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FIGURE 6.6: An illustration of the iterative prediction model.
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7 Results

7.1 Random Walk Test

Below the Box-Ljung test has been performed on different lags to test for a random
walk process, see table 7.1. The result shows that the random walk can be rejected at
a 5% significance level for lags up to 150. This suggests that the price movements are
not random, and therefore might be able to be predicted. The results are expected,
due to the fact that Zeman and Maršík were also able to reject the random walk
process when evaluating spot EUR/USD with 5min frequency [35].

TABLE 7.1: Random walk test for different periods at 5% significance
level

Lag Reject RW? p-value
2 Yes 0.0021e-07
3 Yes 0.0096e-07
4 Yes 0.0330e-07
5 Yes 0.1183 e-07
10 Yes 0.1259e-07
50 Yes 0.1799e-07

100 Yes 0.0021e-07
150 Yes 0.0002e-07

7.2 GPR Compared ARIMA

The GPR with Gaussian likelihood performed slightly better the ARIMA(1,0,0) model
measured by MAE and SMSE, and MSE, see table 7.3. A graphical representation of
the two models’ predictions are given in figure 7.1. The GPR with a student t likeli-
hood gave worse result compared to the Gaussian likelihood.
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TABLE 7.2: Comparison between Gaussian Process Regression and
an ARIMA(1,0,0) model with 300 training points (observations) and

200 predicted minutes (forecast)

GPR GPR GPR ARIMA(1,0,0)
Kernel Orns.Uhlen. Orns.-Uhlen. Rational Quad. -
Likelihood Gaussian Student t Gaussian -
MSE 8.5088e-08 5.1409e-07 8.5660e-08 8.5992e-08
SMSE 0.0286 0.2368 0.0300 0.0294
MAE 1.7170e-04 5.4795e-04 1.8013e-04 1.7813e-04

TABLE 7.3: Comparison between Gaussian Process Regression and
an ARIMA(1,0,0) model with 1000 training points (observations) and

200 predicted minutes (forecast)

GPR GPR GPR ARIMA(1,0,0)
Kernel Orns.Uhlen. Orns.-Uhlen. Rational Quad. -
Likelihood Gaussian Student t Gaussian -
MSE 3.0465e-08 1.8394e-07 3.1877e-08 3.0494e-08
SMSE 0.0429 0.4809 1.0200 0.0471
MAE 1.2648e-04 3.4687e-04 1.3143e-04 1.2682e-04
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FIGURE 7.1: Comparison between GPR and ARIMA with 300 training
points and 200 predicted minutes
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7.3 Trading Results

7.3.1 Trading Model 1

The trading models were run for 25,000 trading minutes. The results showed that
the trading model where barely profitable on the EUR/USD Future chosen. The
model resulted in poor results of returns around -0.5% − 2.1%. The results of the
trading simulations are presented in table 7.4 and 7.5 below. All results showed that
the trading model performed poorly.

TABLE 7.4: Results of Trading Model 1 during 25,000 trading minutes

# training points kernel return # trades return/trade variance
70 Orns.Uhlen. -0.1006% 5600 -1.7971e-07% 1.4663e-08
100 Orns.Uhlen. 1.5537% 4870 3.1904e-06% 1.2052e-08
200 Orns.Uhlen. 0.5878% 2265 2.5953e-06% 1.1673e-08
300 Orns.Uhlen. 2.1040% 9493 2.2164e-06% 1.1720e-08
1000 Orns.Uhlen. -0.5074% 5938 -8.5454e-07% 1.0381e-08

TABLE 7.5: Results of Trading Model 1 during 25,000 trading minutes

# training points kernel return # trades return/trade variance
70 Rational Quad. 1.2624% 5400 2.3377e-06% 1.1834e-08
100 Rational Quad. 1.5706% 5151 3.0492e-06% 1.1778e-08
200 Rational Quad. -0.1728% 4992 -3.4612e-07% 1.1932e-08
300 Rational Quad. 0.1425% 1896 7.5177e-07% 1.1143e-08
1000 Rational Quad. 1.6626% 2219 7.4925e-06% 9.3240e-09

7.3.2 Trading Model 2

Naturally, trading model 2 also gave poor results. Below only two examplse of our
simulations are presented, see table 7.6.

TABLE 7.6: Result of trading model 2 during 25,000 minutes

# training points kernel return # trades return/trade variance
1000 Rational Quad. -2.1823% 191 -1.1426e-04% 1.3444e-09
1000 Orns.Uhlen. 0% 0 0% 0
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FIGURE 7.2: Result of trading model 1 with a Rational Quadratic Ker-
nel and a training set of 1000 data points, during 25000 minutes
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FIGURE 7.3: Result of trading model 1 with a Ornstein-Uhlenbeck
Kernel and a training set of 1000 data points, during 25000 minutes
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FIGURE 7.4: Result of trading model 2 with a Rational Quadratic Ker-
nel and a training set of 1000 data points, during 25000 minutes
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8 Discussion

The results showed that a real live implementation of the trading models, together
with the GPR prediction model, would not be profitable. While it was possible to
show that the futures price is not a random walk process, the implemented GPR
model is not predicting the time series good enough. One important aspect is the
direction of the predictions. Since the implemented trading models in this paper,
rely on whether the next predicted price is higher or lower than the current, it is
essential that the direction predicted is correct. Even if the mean squared error is
very low, but the direction of the price is wrongly predicted, that would lead to a
non-profitable trading result.

It is not very surprising that the trading simulation were not profitable. The EUR/USD
futures are very liquid and are traded actively. It is, therefore, reasonable to assume
that many quant funds and other trading firms, already have implemented sophis-
ticated algorithmic strategies, so that it is increasingly harder to find profitable al-
gorithms. The models implemented in this paper is rather simple, and it would
therefore make sense to expect models implemented by established quant funds to
already have exploited potentially profitable simple models.

The GPR model with a student t likelihood performed even worse than the Gaussian
GPR model. This could be due to the fact that the training set fits a Gaussian better
than a student t distribution, even though there were signs of excess kurtosis, it
does not necessarily mean the student t is a better fit for the data. In addition, the
student t likelihood leads to Laplace approximations in the inference, which also
could contribute to a poor result.

The implemented models in this paper could be further developed by trying to find a
better kernel describing the data and potentially by using more training points with
or without some approximation methods. Other potential areas of improvements
is multiple input observations. In this paper we only use historic prices, which is
a rather simple model, only relying on autocorrelations of the prices. Inputs from
other data series could be useful in predicting the future price. These could, for
example, be different technical indicators such as moving averages of the prices and
volume size of the trades.

There might also be possibilities to combine several prediction models so that one
predicts longer than one minute. This becomes especially important in the second
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trading model, where only the next minute is predicted, and the model enters a trade
only if the return for the price difference is higher than the total transaction fees. If
longer periods can be predicted accurately, that would lead to better trades and pos-
sibly a higher return. Both implemented models also assume that the time of buying
and selling can be done at the end of every trading minute. This might not always
be the case in live trading, for example issues with latency can be problematic. In ad-
dition, the Bid-Ask spread is assumed to be constant at one pip, this is considered to
be a realistic representation of the real Bid-Ask spread, at least during liquid hours.
However, the Bid-Ask spread could increase in less active trading hours.

The choice of implementing a GPR model, rather than other machine learning meth-
ods, were based on the potential strengths of the GPR model. The main strengths
being that the model in non-parametric, and could therefore fit a smooth function to
any type of data. In addition, it’s a probabilistic method, giving a degree of certainty
in the predictions. Furthermore, the GPR implementation requires few assumptions,
where the main part of the implementation is choosing a kernel function. The GPR
model proved to be in line, or slightly better, than our implemented ARIMA model,
measured by our specified metrics. However, it also proved not to be a good predic-
tor to be used for future FX trading models implemented in this paper.

8.1 Conclusion

While it was possible to show that the random walk could be rejected at the 1min
frequency for the EUR/USD futures, this does not necessarily mean that the GPR is
good enough to predict future movements. In fact, the GPR barely performed better
than the ARIMA model implemented. This resulted in a poor performance in trad-
ing simulations. It’s possible that the model might be improved by introducing more
inputs, and/or find better suited kernels. However, the GPR model implemented in
this paper was not good enough to obtain a profitable trading strategy.
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