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Abstract

The real space behavior of the GW self-energy in the electron gas model was investigated
in this thesis work. The self-energy is naturally decomposed into the screened-exchange
and the Coulomb-hole components. The self-energy calculated with different electron den-
sities as function of frequency and position was compared with the static approximation.
At low frequency, the screened-exchange self-energy is highly localized and can be well ap-
proximated by the static approximation. It can also be well approximated by an exchange
potential with a Yukawa interaction characterized in range by the Fermi momentum. The
Coulomb-hole self-energy shows a strong dependence on frequency and can be repulsive
over a certain region of space at low density. The total self-energy is localized within
the Wigner-Seitz radius and the degree of localization increases with decreasing density.
The results of the present work may serve as a guidance for constructing an approximate
self-energy in real materials.
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1 Introduction

Many physical properties in condensed matter physics arise from the Coulomb interaction
among the electrons. Were it not for this interaction we would not observe fascinating
phenomena such as colossal magneto resistance, which has been utilized in our computer
hard disks, superconductivity, magnetism in general, and numerous other phenomena.
These phenomena are not only interesting from the point of view of scientific endeavor but
also from technological point of view. Technological advances based on basic science have
changed people’s life in a fundamental fashion.

An important ingredient in determining physical properties of a material is its electronic
structure, which in turn is governed by the Coulomb interaction among the electrons
and the external potential in which the electrons move. The electronic structure can in
principle be calculated by solving the Schrödinger equation. However, due to the presence
of electron-electron interaction in the many-electron Hamiltonian it is in practice impossible
to solve the exact Schrödinger equation directly, except for small systems containing a few
electrons.

Therefore, various approximate methods have been developed to get the essential knowl-
edge of the electronic structure. One of the first general methods for approximating the
many-electron Hamiltonian is the mean-field method, in which the electrons are assumed
to move independently in an average field arising from the external field and the field from
the electrons themselves. The Hartree approximation (HA) is perhaps one of the earliest
mean-field approximations [1]. This approximation, however, does not take into account
fully the fermionic nature of the electrons. The Hartree-Fock approximation (HFA) incor-
porates the Fermi statistics of the electrons resulting in the additional exchange interaction
on top of the Hartree potential [2]. Ironically, the HFA, which at first sight should be a
better approximation than the HA, turns out to be a rather poor approximation for solids.
The reason for this is due to the neglect of electron correlations, which tend to cancel the
effects of exchange. On the other hand, the HFA is quite reasonable for small molecules
in which electron correlations manifested in the screening phenomenon are relatively small
compared to the exchange interaction. To remedy the problem with the HFA in solids,
Slater introduced the Xα method [3], which replaces the nonlocal exchange interaction
by a local one and mimics the effects of correlations by adjusting the coefficient of the
exchange potential . Although it is not apriori clear why this should improve the HFA, it
did give a much more accurate electronic structure.

The early 1960’s witnessed the arrival of density functional theory (DFT) [4, 5], a new
theory that eventually revolutionized the field of electronic structure [6]. In this theory,
as the name suggests, it is the electron density that plays the main role instead of the
wave function. The ground-state electron density determines the external potential and
hence the many-electron Hamiltonian so that all physical properties obtainable from the
Hamiltonian are functionals of the electron density. This finding, interesting as it may
be, gives no clue as to how to compute any physical quantity. The practical realization
of DFT was achieved by the construction of the Kohn-Sham (KS) scheme [5] in which an
auxiliary system of noninteracting electrons with the same ground-state density as that of
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the true interacting system was introduced as a means to compute the electron density and
subsequently the total energy of the interacting system [5]. Using the variational property
of the total energy, a noninteracting Schrödinger equation, known as the KS equation, was
derived from which the ground-state electron density and total energy could be calculated.
While the KS scheme furnishes a practical way of computing the ground-state total energy,
it does not strictly speaking yield the electronic structure as measured in photoemission
experiments. The electronic structure is not a ground-state property but rather an excited-
state property that lies beyond the realm of the KS scheme. Nevertheless it is common
practice to interpret the KS eigenvalues as the electronic structure of the system under
study.

A theoretically proper way of computing the electronic structure is provided by the
Green function technique, which is tailored to describe physical processes involving re-
moval and addition of a single electron or particle, the type of processes occurring in
photoemission and inverse photoemission experiments designed to measure one-particle
binding and excitation energies in crystals.

A key quantity in Green’s function theory is the self-energy, which may be regarded
as a nonlocal and energy-dependent potential. It seems physically sensible indeed that
each electron should experience a different potential depending on its position and energy.
Needless to say, it is not feasible to calculate the exact self-energy for a real crystal and a
resort to approximation is unavoidable. A very successful approximation to the self-energy
developed in the early 1960’s (about the same time as DFT) is the GW method [7, 8]. It
is derived from many-body perturbation theory and has been proven to give remarkably
accurate results in real materials. One of its achievements is remedying the systematic
underestimation of band gaps in semiconductors and insulators within the local density
approximation (LDA) of DFT.

Despite its success, a serious computational hinder is faced when applying the GW
approximation (GWA) to complex systems due to the large scale of the computations as
the systems become increasingly large. One approach to overcome this hinder is to simplify
the GW calculations without significantly reducing the quantitative predictive power of
the method. The present thesis work is aimed in that direction. While the goal is not to
develop a simplified scheme per se, it is meant to provide insights and clues for simplifying
the GW calculations. With this in mind, we will investigate the behavior of the GW
self-energy in the electron gas model in real space as a function of position and energy.
In particular, the self-energy can be decomposed naturally into the so-called screened
exchange and Coulomb-hole terms. Questions we would like to address are, for example:
What is the range of the self-energy at low-energy relevant to physical applications? What
kind of generic shape does the self-energy have? Answers to such questions can provide
useful information for designing an approximate self-energy for real systems.
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1.1 Many-Electron Systems

For many-electron systems, the Hamiltonian is given by,

Ĥ =
∑
i

[−1

2
∇2

i + V (ri)] +
1

2

∑
i 6=j

1

|ri − rj|

= T̂ + V̂ext + v̂,

(1.1)

where we used atomic units (h̄ = m = e = 1). They are used throughout the thesis and
the subscript i refers to the ith electron. The kinetic term, the external potential term
and the Coulomb interaction term are represented by T̂ , V̂ext and v̂, respectively. The
electrons are correlated with each other by the Coulomb interactions, which results in the
complexity of the Hamiltonian. As mentioned before, it is this last term that gives rise to
many fascinating phenomena in condensed matter physics and at the same time it is this
term that makes the many-electron problem extremely difficult to solve. It is safe to say
that solving the problem directly by diagonalizing the Hamiltonian is out of the question
for a system consisting a large number of electrons such as solids. The goal of many-body
theory is then to find an approximate method which allows us to extract relevant physical
quantities of interest with sufficient accuracy that permits quantitative predictions. In
the following a brief overview is given of the various approximate methods to solve the
many-electron problem starting from the mean-field theory.

1.2 Mean field theory

1.2.1 The Hartree approximation

A straightforward way to solve the time-independent many-body Schrödinger equation is
to replace the Coulomb interaction felt by each electron with an average static field, which
is called the Hartree potential:

V̂H(r) =

∫
dr′v(r − r′)ρ(r′), (1.2)

where ρ(r) is the electron density.
Under the Hartree approximation, the many-body Hamiltonian is simplified to the

single-particle Hamiltonian,
ĤHartree = T̂ + V̂ext + V̂H , (1.3)

which can be solved self-consistently,

ĤHartreeφi = εiφi

ρ =
occ∑
i

|φi|2.
(1.4)
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The new density is then used to generate a new Hartree potential and so on. The many-
electron wave function in the Hartree approximation is approximated by a product of the
N lowest occupied orbitals:

Ψ(r1, ..., rN) = φ1(r1)...φN(rN), (1.5)

where N is the number of electrons for each spin channel (since the Hartree Hamiltonian
does not depend on spin, the two spin channels are the same). The Hartree approxima-
tion is far from accurate and it is not normally used in band structure calculations. For
solids, however, it is better than the Hartree-Fock approximation described below, due to
a cancellation between exchange and correlations.

1.2.2 The Hatree-Fock approximation

In the Hartree theory, the fermionic property of electrons is not included automatically
since the wave function obtained by solving (1.4) is not required to be anti-symmetric
as can be seen in (1.5). The Hartree-Fock approximation takes into account the Fermi
statistics of the electrons, fulfilling the Pauli exclusion principle. The many-electron wave
function is approximated by a single Slater determinant:

Ψ(r1, r2, · · · , rN) =

∣∣∣∣∣∣∣∣∣
φ1(r1) φ1(r2) · · · φ1(rN)
φ2(r1) φ2(r2) · · · φ2(rN)

...
...

. . .
...

φN(r1) φN(r2) · · · φN(rN)

∣∣∣∣∣∣∣∣∣ , (1.6)

where r = (r, σ).
The Hartree-Fock approximation (HFA) is an extension of the Hartree approximation

by adding a spin-dependent non-local exchange potential term. The Hartree-Fock equation
is then

[h0(r) + VH(r)]φk(r) +

∫
d3r′VX(r, r′)φk(r

′) = εkφk(r), (1.7)

where h0 = T̂ + V̂ext and VX(r, r′) is the exchange potential,

VX(r, r′) = −v(r − r′)ρX(r, r′), (1.8)

and ρX(r, r′) is the density matrix,

ρX(r, r′) =
occ∑
k

φk(r)φ
∗
k(r
′). (1.9)

The HF equation is derived by minimizing the total energy (the expectation value of the
many-electron Hamiltonian) with respect to the orbitals in the single Slater determinant
defining the HF many-electron wave function. It is to be noted that the exchange potential
is spin dependent, implying that exchange interaction is only operative between electrons
of the same spin.
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The free electron gas can be used as an illustration. The set of free electron wave
functions,

φk(r) =
1√
V
eik·r, (1.10)

is inserted into the Hartree-Fock equation 1.7, and the corresponding Hartree-Fock energy
eigenvalue is compared with the free-electron energy dispersion, as shown in figure 1.
The HF dispersion is depressed from the free-electron dispersion, due to the negative
exchange term so that the occupied bandwidth is enlarged by approximately a factor of
2. However, photoemission experiments on the alkalis (e.g., sodium, aluminium, etc.),
whose valence electrons can be modeled by the uniform electron gas, indicate that the
occupied band width is narrowed rather than widened, contrary to the HF prediction.
Moreover, the dispersion has a logarithmic singularity at the Fermi momentum leading
to an unphysical zero density of states at the Fermi level. The electron gas HF results
illustrate the important role of electron correlations, which tend to compensate the effects of
exchange and remove the unphysical logarithmic singularity in the dispersion at the Fermi
momentum. For the electron gas, exchange is canceled to a large extent by correlations but
for real materials the degree of cancellation is material dependent. It is therefore necessary
to have a theoretical scheme which can take into account electron correlations reliably.

Figure 1: The Hartree-Fock energy dispersion (red line with dot mark) compared with
the free electron dispersion (blue line), from [9]. The energy is in the unit of free-electron
Fermi energy ε0F = 1

2
k2
F . The HF occupied band width is approximately twice that of the

corresponding free-electron value.
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1.3 Density functional theory

1.3.1 The Hohenberg-Kohn theorem

The Hohenberg-Kohn theorem, put forward in 1964 [4], proves that the ground-state elec-
tron density determines the external potential uniquely. This theorem may be summarized
by the following corollaries

• The first corollary: For a many-electron system, the expectation value of a ground
state observable (such as the total energy of the system) is a functional of the ground-
state electron density.

• The second corollary: the energy functional is minimal at the ground state density,
and the minimum is equal to the ground state energy.

The total energy may be conventionally decomposed into the following components:

E[ρ] = T [ρ] + EH [ρ] + Eext[ρ] + Exc[ρ], (1.11)

where T is the kinetic energy, EH is the Hartree energy, Eext is the interaction energy with
the external field, and Exc is the exchange-correlation energy. Both Eext and EH are already
known as functionals of the density but the kinetic energy T and the exchange correlation
energy Exc are not known as functionals of the density. There is a good approximation
for the exchange-correlation energy, the LDA, but there is no reliable approximation for
the kinetic energy functional. The Hohenberg-Kohn theorem is conceptually appealing but
from practical point of view it does not provide any prescription as to how to compute any
physical quantities.

1.3.2 The Kohn-Sham scheme

A practical scheme for computing the ground-state energy of interacting electrons is pro-
vided by the Kohn-Sham scheme. A key concept in this scheme is the introduction of an
auxiliary noninteracting system with the same ground-state density as the true interact-
ing electron system [5]. The problem of finding a good kinetic energy functional is now
circumvented by replacing it by the kinetic energy of the auxiliary noninteracting system:

T0[ρ] = −1

2

N∑
i

∫
d3rφ∗i (r)∇2φi(r). (1.12)

The total energy is now written as,

E[ρ] = T0[ρ] + EH [ρ] + Eext[ρ] + Exc[ρ]. (1.13)

The exchange-correlation now contains the difference between the interacting and nonin-
teracting kinetic energy.
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Pivotal to the scheme is the variational property of the total energy with respect to the
ground-state density. Variation of equation (1.13) with respect to the density with a fixed
number of electrons gives the Kohn-Sham equation:

−1

2
∇2φi(r) + VKSφi(r) = εiφi(r), (1.14)

where the Kohn-Sham potential is given by,

VKS(r) =
δEH [ρ]

δρ(r)
+
δEext[ρ]

δρ(r)
+
δEXC[ρ]

δρ(r)

= VH(r) + Vext(r) + VXC(r).

(1.15)

Thus, in the Kohn-Sham scheme the central quantity is the exchange-correlation en-
ergy functional. The exact functional is not known but fortunately there is a well known
approximation that has been found to be very successful, namely, the Local Density Ap-
proximation, (LDA).

The exchange-correlation energy can be calculated exactly for the uniform electron
gas model. In the LDA the exchange-correlation energy of the inhomogeneous system is
calculated as follows:

ELDA[ρ] =

∫
d3rρ(r)εLDA

(
ρ(r)

)
, (1.16)

where εLDA(ρ) is the exchange-correlation energy derived for the homogeneous electron gas
system as a function of the density.

2 The GW method

2.1 Motivation

DFT within the LDA has achieved tremendous success in the field of electronic structure
of materials. With the exception of strongly correlated materials (materials whose valence
bands are dominated by the 3d or 4f electrons), physical properties which are intrinsically
ground-state properties are generally well accounted for by the LDA. Even band structure,
which is strictly speaking beyond the scope of DFT since DFT is derived from the ground-
state, is in many cases reasonably well described. There are, however, well known problems
which are systematic in character. One of these is the underestimation of band gaps in
semiconductors and insulators as illustrated in figure 2.

The GW method, derived from many-body perturbation theory, can fix some of the
problems in DFT. In particular, the problem of band-gap underestimation in the LDA is
solved in most cases by the GW method as illustrated in figure 2. The theory, describing
the system with the Green function, the dynamically screened Coulomb interaction and
the nonlocal and energy-dependent self-energy, has proved to work successfully with a wide
variety of materials, with the exception of strongly correlated materials.
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Figure 2: A comparison between calculated energy gap (LDA, square and GW, circle) and
measured energy gap (dotted line), from [10]

2.2 The Green function

The Green function is useful tool for studying the electronic structure of an interacting
many-particle system. It is a quantity which describes the system’s response to a testing
probe. The definition is given[11], by

G(rt, r′t′) = −i
〈

Ψ0

∣∣T [ψ̂(rt)ψ̂†(r′t′)]
∣∣Ψ0

〉
=

{
− i

〈
Ψ0|ψ̂(rt)ψ̂†(r′t′)|Ψ0

〉
, t > t′

i
〈
Ψ0|ψ̂†(r′t′)ψ̂(rt)|Ψ0

〉
, t < t′,

(2.1)

where Ψ0 is the many-particle ground state and the field operator is defined in the Heisen-
berg picture as,

ψ̂(rt) = eiĤtψ̂(r)e−iĤt, (2.2)

where Ĥ is the Hamiltonian of the many-particle system. The Green function is the
probability amplitude of creating a particle at position r′ and time t′ and finding it at
position r at a later time t. Or the probability amplitude of creating a hole at position r
and time t and finding it at position r′ at a later time t′. With the Green function, the
expectation value of a single-particle operator in the ground state and the total ground-
state energy can be calculated. More importantly, the one-particle excitation energies
determining the band structure can be extracted from the Green function.

When the Hamiltonian is time-independent, the Green function depends only on the
difference of t and t′:
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G(rt, r′t′) = G(r, r′; τ = t− t′)

=

{
− i

∑
n

〈
Ψ0|ψ̂(r)|ΨN+1

n

〉〈
ΨN+1
n |ψ̂†(r′)|Ψ0

〉
e−i(E

N+1
n −E0)(t−t′), t > t′

i
∑

n

〈
Ψ0|ψ̂†(r′)|ΨN−1

n

〉〈
ΨN−1
n |ψ̂(r)|Ψ0

〉
ei(E

N−1
n −E0)(t−t′), t < t′,

(2.3)
where complete sets of N ± 1 eigenstates of Ĥ have been inserted in between the field
operators. From the Heisenberg equation of motion, the equation of motion of the Green
function is given by(

i
∂

∂t
− h0(r)

)
G(rt, r′t′) + i

∫
dr′′v(r − r′′)G(2)(rt, r′t′, r′′t, r′′t+)

= δ(t− t′)δ(r − r′),

(2.4)

where h0 is the one-particle part of Ĥ and G(2) is the two-particle Green function

G(2)(1, 2, 3, 4) = (−i)2

〈
Ψ0

∣∣T [ψ̂(1)ψ̂(3)ψ̂†(4)ψ̂†(2)]
∣∣Ψ0

〉
. (2.5)

We have used a notation where 1 = (r1, t1), etc. The equation of motion of the one-particle
Green function is coupled to the two-particle Green function. Similarly, the equation of
motion of the two-particle Green will be coupled to the three-particle Green function and
so forth. To break the hierarchy, the mass operator M is introduced, requiring

i

∫
dr′′v(r − r′′)G(2)(rt, r′t′, r′′t, r′′t+) = −

∫
dr′′dt′′M(rt, r′′t′′)G(r′′t′′, r′t′). (2.6)

When the mass operator is equal to the Hartree potential

M(rt, r′t′) = VH(rt)δ(r − r′)δ(t− t′), (2.7)

the solution to (2.4) is defined to be the non-interacting Green function(
i
∂

∂t
− h(r)

)
G0(rt, r′t′) = δ(t− t′)δ(r − r′), (2.8)

where h = h0 + VH .
The Fourier transform

G(r, r′;ω) =

∫ ∞
−∞

dτeiωτG(r, r′; τ) (2.9)

gives the spectral representation:

G(r, r′;ω)

= lim
δ→0

∑
n

[〈
Ψ0|ψ̂†(r′)|ΨN−1

n

〉〈
ΨN−1
n |ψ̂(r)|Ψ0

〉
ω + EN−1

n − E0 − iδ
+

〈
Ψ0|ψ̂(r)|ΨN+1

n

〉〈
ΨN+1
n |ψ̂†(r′)|Ψ0

〉
ω − EN+1

n + E0 + iδ

]
.

(2.10)
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The imaginary part of the Green function represents the one-particle excitation spectrum
measurable in photoemission and inverse photoemission experiments. Peaks in Im G(ω)
reveal quasiparticle excitations and other collective excitations in the many-particle sys-
tem. The width of a peak is a measure of the life-time of the excitation. The spectral
representation of the non-interacting Green function is

G0(r, r′;ω) =
occ∑
n

φn(r)φ∗n(r′)

ω − εn − iδ
+

unocc∑
n

φn(r)φ∗n(r′)

ω − εn + iδ
. (2.11)

Here, Im G(ω) comprises a series of δ-functions reflecting the infinite life-time of the exci-
tations, since the system is noninteracting.

2.3 The screened interaction

When an electron is excited from the originally occupied location and leaves a vacancy,
the remaining system can be regarded as electrons in the electric field created by the hole
which carries a positive charge. The hole induces a screening charge around it so that
averaged over a long period of time the interaction between the hole at r and an electron
at r′ is a screened Coulomb interaction, described by the screened interaction

W (r, r′) =

∫
d3r′′ε−1(r, r′′)v(r′′ − r′), (2.12)

where ε−1 is the inverse dielectric function. In general, the screened interaction depends
on the frequency.

The screened interaction W plays a crucial role in determining the electronic structure
of a solid. For example, the too wide occupied band width of the electron gas in the
HFA is reduced back to approximately its free-electron value when screening is taken into
account. It is also known that the band gaps in semiconductors and insulators are usually
overestimated in the HFA and they are reduced significantly by the screened interaction.

2.4 The self energy

In density functional theory, the potential felt by each electron is approximated by the
Kohn-Sham potential consisting of the external field Vext, the Hartree potential VH and
the exchange-correlation potential Vxc, which is local and independent of the energy of the
electron. However, the interaction between the electron and the surrounding background
is affected by the state of the electron itself. We then expect from physical ground that
the exchange-correlation potential is nonlocal and energy dependent. The nonlocal and
energy-dependent potential that accounts for exchange and correlations is called the self
energy Σ(r, r′;E).

Replacing the energy-independent exchange-correlation term in DFT (1.14) with the
self energy, we get the quasiparticle equation,[

− 1

2
∇2 + VH(r) + Vext(r)

]
Ψi(r) +

∫
d3r′Σ(r, r′;Ei)Ψi(r

′) = EiΨi(r). (2.13)
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The self energy is defined as the mass operator without the Hartree potential.

Σ(rt, r′t′) = M(rt, r′t′)− VH(rt)δ(r − r′)δ(t− t′). (2.14)

Similar to the analysis in 2.2, it is useful to perform a Fourier transform on the self
energy,

Σ(r, r′;ω) =

∫ ∞
−∞

dτeiωτΣ(r, r′; τ), (2.15)

where τ = t− t′.

2.5 The Hedin equations

The Hedin equations, derived in 1965 [7], are a set of self-consistent equations that relates
the Green function G, the screened interaction W , the vertex function Λ, the polarization
function P and the self energy Σ together.

Σ(1, 2) = i

∫
d4d5W (5, 1)G(1, 4)Λ(4, 2, 5), (2.16)

Λ(1, 2, 3) = δ(1− 2)δ(1− 3)

+

∫
d4d5d6d7

δΣ(1, 2)

δG(4, 5)
G(4, 6)G(7, 5)Λ(6, 7, 3),

(2.17)

W (1, 2) = v(1− 2) +

∫
d3d4v(1− 3)P (3, 4)W (4, 2), (2.18)

P (1, 2) = −i
∫
d3d4G(1, 3)Λ(3, 4, 2)G(4, 1+), (2.19)

G(1, 2) = G0(1, 2) +

∫
d3d4G0(1, 3)Σ(3, 4)G(4, 2), (2.20)

where the number 1 stands for (r1, t1), etc.
With the Hedin equations, the electronic structure of a many-electron system can be

investigated in an ab initio way.

2.6 The GW approximation

To obtain the GWA, the Hedin equations are solved iteratively, starting with setting the
self energy to be zero. The first iteration gives,

G = G0, (2.21)

Λ(1, 2, 3) = δ(1− 2)δ(1− 3), (2.22)

P 0(1, 2) = −iG0(1, 2)G0(2, 1+), (2.23)

W 0(1, 2) = v(1− 2) +

∫
d3d4v(1− 3)P 0(3, 4)W 0(4, 2), (2.24)

Σ(1, 2) = iG0(1, 2)W 0(2, 1), (2.25)
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3 Calculating the GW self energy of the uniform elec-

tron gas

The self energy Σ(r, r′;ω) in the GW approximation is given by,

Σ(r, r′;ω) = i

∫
dω′

2π
G0(r, r′;ω + ω′)W 0(r, r′;ω′). (3.1)

For uniform electron gas model, the system is isotropic, so the spatial dependence of
observables is determined by the magnitude of the difference of r and r′. Therefore, (3.1)
simplifies to

Σ(R;ω) = i

∫
dω′

2π
G0(R;ω + ω′)W 0(R;ω′), (3.2)

where R = |r − r′|.
In order to obtain the self-energy Σ, we need to compute the screened interaction

W 0. We must therefore first investigate and compute the polarization function P 0 since it
determines W 0.

3.1 Polarization function

According to equation (2.23), the polarization function is constructed with the non-interacting
Green function (2.11),

P 0(1, 2;ω) = −i
∫
dω′

2π
G0(1, 2;ω + ω′)G0(2, 1;ω′). (3.3)

Performing a Fourier transform to the wave vector space,

P 0(q, ω) = 2

∫
d3k

(2π)3

[
1

ω + ωk − ωk+q + iη
− 1

ω − ωk + ωk+q − iη

]
× θ(kF − k)θ(|k + q| − kF ),

(3.4)

where θ is the Heaviside step function standing for,

k < kF , occupied states

|k + q| > kF , unoccupied states.
(3.5)

The calculation of P 0 (eq. (3.4)) can be done analytically[11], but the form of P 0

contains a singularity, which poses numerical difficulties in calculating the self energy.
Therefore, P 0 was calculated using numerical methods.
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3.1.1 Imaginary part of P 0

The imaginary part of P 0 is given by,

Im P 0(q, ω) = 2

∫
d3k

(2π)3

[
− πδ

(
ω + ωk − ωk+q

)
− πδ

(
ω − ωk + ωk+q

)]
× θ(kF − k)θ(|k + q| − kF )

= 2

∫
d3k

(2π)3

[
− πδ

(
ω − 1

2
q2 − kqy

)
− πδ

(
ω +

1

2
q2 + kqy

)]
× θ(kF − k)θ(|k + q| − kF ),

(3.6)

where y = q̂ · k̂. The factor of 2 accounts for the two spin channels.
The polarization function has the symmetry P (q, ω) = P (q,−ω). The numerical in-

tegration is done with the positive frequency part of equation (3.6). The delta function
represents the energy conservation relation,

ω = ωk+q − ωk

=
1

2
q2 + kqy,

(3.7)

which can be approximated by a Gaussian function,

δ
(
ω − 1

2
q2 − kqy

)
→ 1√

πσ
e−(ω− 1

2
q2−kqy)2/σ2

=

√
α

π
e−α(ω− 1

2
q2−kqy)2 , (3.8)

where σ = 1/
√
α is a parameter determining the width of the Gaussian.

The Heaviside step function in equation (3.6) is included in the integrating interval of
k. (3.6) simplifies to,

Im P 0(q, ω) =
2

(2π)2

∫ kF

|k+q|>kF
dkk2

∫ 1

−1

dy
√
απ

[
e−α(ω− 1

2
q2−kqy)2

]
. (3.9)

The integral of y in (3.9) can be expressed with the error function,∫ 1

−1

dy
√
απe−α(ω− 1

2
q2−kqy)2 =

1

kq

∫ −ω+ 1
2
q2+kq

−ω+ 1
2
q2−kq

dx
√
απe−αx

2

=
π

2kq

[
Erf[
√
α(−ω +

1

2
q2 + kq)]− Erf[

√
α(−ω +

1

2
q2 − kq)]

]
,

(3.10)

where the error function is defined as,

Erf(x) =
2√
π

∫ x

0

exp (−t2)dt. (3.11)

For the integral of k in (3.9), the integrating interval of k, equivalent to k < kF , |k+q| >
kF , varies with q. In the following analysis, kF is set to be unity.
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For large q (q > 2), the relation between k, q and the Fermi sphere is illustrated in figure
3. Eq. (3.5) requires that the ending point of k + q is outside the first Fermi sphere, and
k is inside the second Fermi sphere. Eq. (3.7) requires that the frequency ω falls in an
interval such that k + q and k end at the same point. The minimum of k is taken when k
is parallel to q.

Figure 3: Illustration of the integration region for (3.9) when q > 2kF
.

Then the restriction conditions of k and ω are,

q2/2− q ≤ω ≤ q2/2 + q

ω/q − q/2 ≤k ≤ 1.
(3.12)

Equation (3.9) becomes,

Im P 0(q, ω) =
kF
4πq

∫ 1

ω/q−q/2
dk

× k
[
Erf[
√
α(−ω +

1

2
q2 + kq)]− Erf[

√
α(−ω +

1

2
q2 − kq)]

]
.

(3.13)

For small q (q < 2), when q− q2/2 ≤ ω ≤ q2/2 + q (as shown in figure 4(a)), the analysis is
similar to the case of q > 2. The imaginary part of the polarization function has the form
of equation (3.13).

However, when ω ≤ q−q2/2 (as shown in figure 4(b)), the minimum of k is taken when
k ends on the surface of the first Fermi sphere,
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(a) q − q2/2 ≤ ω ≤ q + q2/2 (b) ω ≤ q − q2/2

Figure 4: Illustration of the integration region for (3.9) when q < 2kF

k2
min = 1− (q/2 + ω/q)2 + (q/2− ω/q)2 = 1− 2ω. (3.14)

In this case, equation (3.9) becomes,

Im P 0(q, ω) =
kF
4πq

∫ 1

(1−2ω)1/2
dk

× k
[
Erf[
√
α(−ω +

1

2
q2 + kq)]− Erf[

√
α(−ω +

1

2
q2 − kq)]

]
.

(3.15)
The result of the numerical calculation is shown in figure 5. For large q (the case of fig.

3), the dependence of ImP 0 on the frequency is quadratic. The maximum value is q−1. For
small q, the ImP 0− ω plot can be divided into two parts, a quadratic part (corresponding
to fig. 4(a)) and a linear part (corresponding to fig. 4(b)). The maximum value is 2 − q.
The numerical result is consistent with the analytical result in [11].

3.1.2 Real part

The real part of P 0 can be calculated from the Hilbert transform,

Re P 0(ω) = − 1

π

∫ ∞
−∞

dω′
Im P 0(ω′)sgn(ω′)

ω − ω′

= − 1

π

∫ ∞
−∞

dω′FH(ω′).

(3.16)
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(a) q = 4 (b) q = 1

Figure 5: Imaginary part of the polarization function, multiplied by a factor of 4π. The
calculation was done with the parameter α = 200.

The integrand FH(ω′) has a singularity at ω′ = ω, as shown in figure 6. The integral
can be done, in principle, by the Cauchy principal value method. However, the method is

Figure 6: Stretch of a function having the same structure as the integrating function in
(3.16). For an infinitesimal δ, the sum of the integral of the shadowed zones is finite, so
that the integral converges to the principal value.

not convenient. When the numerical integration is repeated many times, numerical errors
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will accumulate due to the limited mesh size. It is desirable to remove the singularity
automatically. With the even property of P 0(ω), (3.16) can be written as,

−πRe P 0(ω) =

∫ 0

−∞
dω′′

Im P 0(ω − ω′′)
ω′′

+

∫ ∞
0

dω′′
Im P 0(ω − ω′′)sgn(ω − ω′′)

ω′′

= −
∫ ∞

0

dω′′
Im P 0(ω + ω′′)

ω′′
+

∫ ∞
0

dω′′
Im P 0(ω − ω′′)sgn(ω − ω′′)

ω′′

=

∫ ∞
0

dω′′
Im P 0(ω − ω′′)sgn(ω − ω′′)− Im P 0(ω + ω′′)

ω′′

=

∫ ∞
0

dω′′F ∗H(ω′′),

(3.17)

where the function F ∗H(ω′′) has no singularities, as shown in figure 7. When ω′′ → 0,

F ∗H(0) = lim
ω′′→0

Im P 0(ω − ω′′)− Im P 0(ω + ω′′)

ω′′

= −2
d

dω′′
Im P 0

∣∣
ω′′=ω

.

(3.18)

Figure 7: The change from FH(ω′) to F ∗H(ω′′) removes the singularity spontaneously.
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3.2 Screened interaction

To simplify writing we set W = W 0. The screened interaction in real space W (R;ω) is
needed to calculate the self energy according to (3.1). It can be acquired by the Fourier
transform from momentum space.

W (R,ω) =

∫
d3q

(2π)3
eiq·RW (q, ω)

=
1

2π2

∫ ∞
0

dq
q sin qR

R
W (q, ω),

(3.19)

where the screened interaction in the momentum space is given by,

W (q, ω) =
v(q)

1− v(q)P 0(q, ω)
=

4π

q2 − 4πP 0(q, ω)
. (3.20)

The polarization function, as well as the screened interaction, is complex, and the real part
and the imaginary part carry different physical meanings. Therefore, the two parts need
to be discussed separately.

Re W (q, ω) =
q2/4π − Re P 0(q, ω)(

q2/4π − ReP 0(q, ω)
)2

+
(
Im P 0(q, ω)

)2 ,

Im W (q, ω) =
Im P 0(q, ω)(

q2/4π − Re P 0(q, ω)
)2

+
(
Im P 0(q, ω)

)2 .

(3.21)

The integral in equation (3.19) has a term sin qR, which oscillates rapidly as a function
of q when R is large. Therefore, the integral is done with Filon’s integration formula [12].

Ifilon =

∫ Λ

∆

W (q) sin (Rq)dq

= h

{
α(Rh)

[
W (∆) cos (R∆)−W (Λ) cos (RΛ)

]
+ β(Rh)Se + γ(Rh)So

}
α(θ) =

1

θ
+

sin 2θ

2θ2
− 2 sin2 θ

θ3

β(θ) =
1

θ2
+

cos2 θ

θ2
− sin 2θ

θ3

γ(θ) =
4 sin θ

θ3
− 4 cos θ

θ2

Se = W (∆) sin (R∆)−W (Λ) sin (RΛ) + 2
N∑
i=1

W (∆ + 2ih) sin (R∆ + 2iRh)

So =
N∑
i=1

W [∆ + (2i− 1)h] sin [R∆ + (2i− 1)Rh],

(3.22)
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where ∆ and Λ are the lower limit and the upper limit, respectively. h is the mesh size.
With the number of meshes to be 2N , the parameters fulfill that,

h =
Λ−∆

2N
. (3.23)

The upper limit can be determined from the condition,

W (q > Λ, ω) = 0. (3.24)

W (q, ω) diverges as q → 0, which means the lower limit can not be set to zero. To get
the complete screened function, a part Ic needs to be added and treated analytically,

W (R,ω) = Ifilon + Ic

= Ifilon +
1

2π2

∫ ∆

0

dq
q sin qR

R
W (q, ω).

(3.25)

For ∆ small enough, W (q) ∼ q−2, so the compensation part can be calculated as,

Ic =
1

2π2

∫ ∆

0

dq
q sin qR

R

W (∆)∆2

q2

=
W (∆)∆2

2π2R

∫ R∆

0

sinx

x
dx

≈ W (∆)∆2

2π2R

∫ R∆

0

x− x3/6

x
dx

=
W (∆)∆2

2π2R

[
R∆− (R∆)3/18

]
.

(3.26)

3.2.1 A benchmark test at large frequency

When the frequency of the perturbation is large enough, the system cannot react immedi-
atel so that the polarization function tends to zero. Therefore, the screening effect is not
present, and the screened interaction goes over to the bare Coulomb interaction,

W (q, ω � k2
F ) = v(q) =

4π

q2
,

W (R,ω � k2
F ) =

2

π

∫ ∞
0

dq
sin qR

qR
=

1

R
.

(3.27)

The result is shown in figure 8
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Figure 8: Plot of 1/Re W (R) vs. R, computed with the frequency ω = 10k2
F . The linear

behavior shows that at high frequency, the screened interaction goes over to the bare
Coulomb interaction.

3.3 Self energy

From (3.2), the self energy can be calculated, and the detailed derivation is in the appendix.
For the real part, we have

Re Σ(R,ω) =−
occ∑
k

ψk(r)ψ∗k(r
′)Re W (R,ω − εk)

+
∑
k

ψk(r)ψ∗k(r
′)P

∫ ∞
0

dω′
D(R,ω′)

ω − εk − ω′
,

(3.28)

where

D(R,ω′) = − 1

π
Im W (R,ω′)sgn(ω′). (3.29)

The self energy in the GWA can be naturally decomposed into the sum of two parts:
screened exchange part (SEX) and Coulomb-hole part (COH).

3.3.1 Screened exchange part

The first term in the right hand side of (3.28) has the same form as the bare exchange
potential,

ΣX(R) = −v(R)
occ∑
k

ψk(r)ψ∗k(r
′), (3.30)

except that the dynamical screened potential W is used instead of the bare Coulomb
potential v. Therefore, this term represents the screened exchange:
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Re ΣSEX(R,ω) = −
occ∑
k

ψk(r)ψ∗k(r
′)Re W (R,ω − εk)

= − 1

2π2

∫ kF

0

dk
k sin kR

R
Re W (R,ω − εk),

(3.31)

where for the homogeneous electron gas the last line has been obtained by replacing the
wave functions by plane waves.

The validity of the result can be verified by comparing with the static approximation,
which corresponds to ω − εk → 0 in (3.31). Then W (R,ω − εk) can be approximated with
W (R,ω = 0),

Re Σstatic
SEX (R) = −Re W (R, 0)

2π2

∫ kF

0

dk
k sin kR

R
(3.32)

where the integral in the right hand side can be calculated analytically

I =

∫ kF

0

dk
k sin kR

R

=
1

R2

[sin (kFR)

R
− kF cos (kFR)

]
.

(3.33)

When only the states close to the Fermi level (ω ≈ k2
F/2) are of interest, the result of

(3.31) should go over to the static approximation (3.32), as shown in figure 9. On the other
hand, in the low frequency limit, the screened interaction W (R,ω) can be approximated
by the Yukawa potential,

V Yukawa =
e−kFR

R
. (3.34)

In such limit, the static approximation (3.32) becomes,

ΣYukawa
SEX = − 1

2π2

e−kFR

R3

[sin (kFR)

R
− kF cos (kFR)

]
. (3.35)

This result is also compared in figure 9. The Wigner-Seitz radius RWS is used as the unit
of distance in the figures below, defined by,

RWS = (
3

4πn
)1/3 =

1.92

kF
, (3.36)

where n is the electron density. The energy is in the unit of the Fermi energy. In such
scale, the real space behavior of the self-energy is generic.
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Figure 9: The numerical result of (3.31) at ω = 1
2
k2
F is consistent with the static ap-

proximation, which supports the validity of the calculations. Calculated with kF = 1,
corresponding to RWS = 1.92.

3.3.2 Coulomb hole part

The physical meaning of the second term in the right hand side of (3.28) can be understood
under the static COHSEX approximation in which ω − εk → 0, which gives,

Re Σstatic
COH (R) =

1

2
δ(R)

[
W (R,ω = 0)− v(R)

]
=

1

2
δ(R)Wc(R, 0).

(3.37)

The result has the form of Coulomb interaction, thus can be interpreted as the inter-
action between an electron and the potential created by its screening hole. The factor of
1/2 represents an adiabatic process that the interaction increases from zero to Wc(R, 0).
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The numerical calculation of the Coulomb hole term goes as follows:

Re ΣCOH(R,ω) =
∑
k

ψk(r)ψ∗k(r
′)P

∫ ∞
0

dω′
D(R,ω′)

ω − εk − ω′

=
1

2π2

∫ ∞
0

dk
k sin kR

R
P

∫ ∞
0

dω′
D(R,ω′)

ω − εk − ω′

=
1

2π2

∫ ∞
0

dk
k sin kR

R
F (R,ω − εk),

(3.38)

where

D(R,ω′) = − 1

π
Im W (R,ω′)sgn(ω′)

F (R,ω − εk) ≡ P

∫ ∞
0

dω′
D(R,ω′)

ω − εk − ω′
.

(3.39)

The calculation of Re ΣCOH (3.38) contains two parts: a Hilbert transform (3.39) and an
integral over k of a rapidly-oscillating function. The same methods employed in Sections
3.1.2 and 3.2 can be used here.

A plot of the F function at some characteristic frequencies is shown in figure 10. The
magnitude of F (R,ω) decreases with R, due to the decrease of Im W with R. D(ω′) is
negative until ω′ is large enough, then it remains zero. Therefore, F is mainly negative at
high frequency and positive at low frequency.

Figure 10: A plot of the F function in (3.39) at different frequencies, calculated with
kF = 1 corresponding to RWS = 1.92
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4 Results

In the following, the results are presented for the case of kF = 1 corresponding to RWS =
1.92. The real space behavior of the screened-exchange term is shown in figure 11(a).
The screened-exchange self-energy shows a weak dependence on frequency. At certain
frequencies, part of Re ΣSEX becomes positive. At the large frequency limit, as expected
the screened-exchange term approaches the bare exchange potential, given by

ΣX = −v(R)

2π2

∫ kF

0

dk
k sin kR

R

= − 1

2π2R4

[
sin (kFR)− kFR cos (kFR)

]
.

(4.1)

The screened-exchange self-energy is for the most part localized within the Wigner-Seitz
radius, which means the localized static approximation works well. However, the change
of sign at intermediate frequencies (≈ 2EF ) is not captured by the static approximation.

(a) Screened-exchange term (b) Coulomb-hole term

Figure 11: (a) The real part of the screened-exchange term. At high frequency, Re ΣSEX

approaches the bare exchange potential, as it should. (b) The real part of the Coulomb-hole
term. Both calculated with kF = 1 corresponding to RWS = 1.92.
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The real space behavior of the Coulomb-hole term is shown in figure 11(b). Contrary
to the static COHSEX approximation, Re ΣCOH does not resemble a delta function. In
fact, it is more broadened compared with the screened-exchange term. Indeed, calculations
on real materials based on the static COHSEX approximation are not generally in good
agreement with the full GW calculations. The present study reveals that the discrepancy
most likely originates from the approximation on the Coulomb-hole term. As the frequency
decreases and is comparable to the Fermi energy, the degree of localization decreases. As
the frequency increases the Coulomb-hole term displays more pronounced oscillations in
space. This can be understood by considering the high-frequency limit as the short-time
limit within which the creation of a hole or the addition of a particle takes place that
causes a sudden perturbation to the system resulting in an oscillatory behavior. It may also
explain why the self-energy is more localized at high frequency since the screening charge
density does not have sufficient time to relax and rearrange itself into a more optimal
distribution. In comparison to the screened-exchange term, the Coulomb-hole term shows
a stronger dependence on the frequency but it is mainly localized within the Wigner-Seitz
radius.

All the discussions above are based on setting kF = 1, which refers to a fixed electron
density. However, the density of the electron gas affects the degree of screening, thus the
self-energy. To investigate the effects of the density, calculations under different kF values
were conducted. For real materials, the density of electrons typically corresponds to the
Wigner-Seitz radius between 3-5, therefore RWS was set to be 2, 4 and 6. For example, the
average valence electron density in sodium and transition metals approximately correspond
to RWS ≈ 4 and RWS ≈ 2, respectively. The results of ΣSEX and ΣCOH at the Fermi energy
are shown in figure 12.

It is very interesting to observe that the screened-exchange term at the Fermi energy
is essentially negative for all distance and can be very well approximated by an exchange
potential with a Yukawa interaction characterized in range by the Fermi momentum. This
opens up a possibility of using the Yukawa interaction for the screened exchange term for
real materials but with a varying Fermi momentum depending on the local density. The
Coulomb-hole term, on the other hand, shows a more complex behavior. The Coulomb-
hole term in the static COHSEX approximation sometimes used in GW calculations does
not appear to be a good approximation since the true Coulomb-hole potential does not
resemble a delta function. At low density, the Coulomb-hole term tends to be repulsive
between R = 0.25 − 0.50 RWS, reminiscence of the physics of electron localization as
correlation becomes stronger in the low-density limit. Electrons tend to repel each other
causing localization as in the Wigner lattice.

The SEX term is more localized than the COH term, since ΣSEX tends to zero rapidly.
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(a) Screened-exchange term (b) Coulomb-hole term

Figure 12: The frequency is fixed to be the Fermi energy. ΣY refers to the SEX term
calculated with the screening interaction equal to the Yukawa potential. Calculated with
RWS = 2, 4 and 6.

The behavior of ΣSEX and ΣCOH at different frequencies for RWS = 2 and 4 is shown
in figure 13 and 14. The degree of localization increases as the density decreases. At the
same electron density, the Coulomb-hole term turns positive within a shorter distance with
higher frequency. ΣCOH of lower density shows relatively stronger repulsive behavior.

At R ≈ 0.25 RWS, the screened-exchange term of lower density is close to zero, while
for the high density case, ΣSEX is still remarkably negative, owing to the stronger exchange
effect of the higher density. It is noteworthy that at high density the screened exchange term
is dominant for small distance whereas at low density the Coulomb hole term dominates
almost completely.
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(a) RWS = 2 (b) RWS = 4

Figure 13: The frequency dependence of SEX term with RWS = 2 and 4.

(a) RWS = 2 (b) RWS = 4

Figure 14: The frequency dependence of COH term with RWS = 2 and 4.

The total self-energy is shown in figure 15. It shows a dependence on the frequency,
which is largely brought about by the Coulomb-hole part. The results can be compared
with Hedin’s calculation for Σ(R,ω = EF ) [13]. The self-energy increases with R and
reaches a peak at Rpeak. Then Σ decreases and tends to zero from Rzero. The peak is
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positive except for the high density high frequency case. The positive part is mainly
caused by the repulsive correlation interaction from the Coulomb term, which is essentially
small for the high density case. The stronger exchange effect of the high density case
contributes to the negative SEX term. These two effects lead to the negative peak. Rpeak

and Rzero are smaller for the low density case, indicating a higher degree of localization,
which is consistent with Hedin’s analysis.

(a) RWS = 2 (b) RWS = 4

Figure 15: The frequency dependence of the total self-energy with RWS = 2 and 4.
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5 Conclusions

In this thesis work, the real space behavior of the self energy was investigated with the
uniform electron gas model. The model was constructed with two typical electron density
values. The self energy as a function of position was calculated with original codes under
different frequencies and system densities. The results ware compared with the static
COHSEX approximation. It can be concluded that

• ΣSEX has a weak dependence on frequency whereas ΣCOH has a stronger dependence
on frequency.

• ΣSEX can surprisingly change sign and become positive.

• ΣSEX is more localized than ΣCOH.

• ΣSEX can be well approximated by a static screened exchange potential as well as
an exchange potential with a Yukawa interaction characterized by the Fermi wave
vector.

• ΣCOH is not as localized as the static COHSEX approximation would suggest, espe-
cially for high densities. However, both ΣSEX and ΣCOH are still localized within the
Wigner-Seitz radius even at high energy. The higher the energy the more localized
the self-energy.

• ΣCOH shows more repulsive behavior at low density as a result of stronger correlation
and displays a more pronounced oscillatory behaviour at high frequency.

• Σ is more localized the lower the density.

6 Outlook

As discussed in the previous sections, the static approximation for the screened-exchange
term can simplify GW calculations and give rather accurate results. However, the Coulomb-
hole term exhibits a more complex behavior and a simple approximation is still lacking. It
is not surprising that even in the simplest uniform electron gas model, there are noticeable
differences between the approximate values based on the static approximation and the
exact ones. However, the localized behavior of the self-energy indicates the feasibility of
finding a simple approximation for the Coulomb-hole term.

The same investigation can be carried out for real materials (metals, transition metal
oxides, etc.) and the corresponding results can be compared with the electron gas results.
A simple proposal to simplify the screened interaction is to adopt the local density approach
as follows:

W (r, r′;ω = 0) =
1

2

[
W 0
(
r − r′, ρ(r)

)
+W 0

(
r − r′, ρ(r′)

)]
, (6.1)
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where W 0 is the electron gas screened interaction calculated in 3.2. If this approximation
works well, it will reduce the computational effort greatly since computing the screened
interaction is one of the bottle necks in GW calculations.

At present, when Σ(ω = EF ) of a certain material is of interest, the SEX part can be
approximated with ΣY. The COH part, however, needs to be calculated directly. It would
be ideal if ΣSEX and ΣCOH could be modeled using the electron gas results. In the spirit
of the local density approximation a simple model for the self-energy could be as follows:

Σ(r, r′;ω = 0) =
1

2

[
Σ0
(
r − r′, ρ(r)

)
+ Σ0

(
r − r′, ρ(r′)

)]
, (6.2)

where Σ0 is the self-energy of the homogeneous electron gas.
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A The calculation of the self-energy under the GWA

In the frequency space, the GWA self-energy is given by,

Σ(r, r′;ω) = i

∫
dω′

2π
G(r, r′;ω + ω′)W (r, r′;ω′). (A.1)

The exchange part of the self-energy is,

ΣX(r, r′;ω) = i

∫
dω′

2π
G(r, r′;ω + ω′)v(r − r′)eiηω

′
, (A.2)

where the converging factor eiηω
′

represents that the equal time Green’s function should
be taken as G(rt, r′t+). With the spectral representation of the Green’s function,

G(r, r′;ω) =

∫ µ

−∞
dω′

A(r, r′;ω′)

ω − ω′ − iδ
+

∫ ∞
µ

dω′
A(r, r′;ω′)

ω − ω′ + iδ
, (A.3)

we have,

ΣX(r, r′;ω) = iv(r − r′)

∫
dω′

2π

×
{∫ µ

−∞
dω1

A(r, r′;ω1)

ω + ω′ − ω1 − iδ
+

∫ ∞
µ

dω1
A(r, r′;ω1)

ω + ω′ − ω1 + iδ

}
eiηω

′

= −v(r − r′)

∫ µ

−∞
dω1A(r, r′;ω1),

(A.4)
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where A is the spectral function. If the non-interacting spectral function is used,

A0(r, r′;ω) =
∑
k

ψk(r)ψ∗k(r
′)δ(ω − εk), (A.5)

the exchange self-energy returns to the Fock exchange,

ΣX(r, r′) = −v(r − r′)
occ∑
k

ψk(r)ψ∗k(r
′). (A.6)

The correlation part of the screened interaction is defined as,

Wc = W − v, (A.7)

and it can be written in terms of its spectral representation,

Wc(r, r
′;ω) =

∫ 0

−∞
dω2

D(r, r′;ω2)

ω − ω2 − iη
+

∫ ∞
0

dω2
D(r, r′;ω2)

ω − ω2 + iη
, (A.8)

where

D(r, r′;ω) = − 1

π
sgn(ω)Im W c(r, r′;ω)

= − 1

π
sgn(ω)Im W (r, r′;ω).

(A.9)

Combined with (A.3), the correlation part of the self-energy is,

Σc(r, r
′;ω) = i

∫
dω′

2π

∫ µ

−∞
dω1

∫ 0

−∞
dω2

A(r, r′;ω1)

ω + ω′ − ω1 − iδ
× D(r, r′;ω2)

ω′ − ω2 − iη

+ i

∫
dω′

2π

∫ µ

−∞
dω1

∫ ∞
0

dω2
A(r, r′;ω1)

ω + ω′ − ω1 − iδ
× D(r, r′;ω2)

ω′ − ω2 + iη

+ i

∫
dω′

2π

∫ ∞
µ

dω1

∫ 0

−∞
dω2

A(r, r′;ω1)

ω + ω′ − ω1 + iδ
× D(r, r′;ω2)

ω′ − ω2 − iη

+ i

∫
dω′

2π

∫ ∞
µ

dω1

∫ ∞
0

dω2
A(r, r′;ω1)

ω + ω′ − ω1 + iδ
× D(r, r′;ω2)

ω′ − ω2 + iη
,

(A.10)

where only the second and third terms in the right hand side are non-zero. With the
symmetry,

D(r, r′;−ω) = −D(r, r′;ω), (A.11)

(A.10) can be written as,
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Σc(r, r
′;ω) = i

∫
dω′

2π

∫ µ

−∞
dω1

∫ ∞
0

dω2
A(r, r′;ω1)

ω + ω′ − ω1 − iδ
× D(r, r′;ω2)

ω′ − ω2 + iη

− i
∫
dω′

2π

∫ ∞
µ

dω1

∫ ∞
0

dω2
A(r, r′;ω1)

ω + ω′ − ω1 + iδ
× D(r, r′;ω2)

ω′ + ω2 − iη

=

∫ µ

−∞
dω1

∫ ∞
0

dω2
A(r, r′;ω1)D(r, r′;ω2)

ω + ω2 − ω1 − iδ

+

∫ ∞
µ

dω1

∫ ∞
0

dω2
A(r, r′;ω1)D(r, r′;ω2)

ω − ω2 − ω1 + iδ

=

∫ ∞
−∞

dω1θ(µ− ω1)

∫ ∞
−∞

dω2θ(ω2)
A(r, r′;ω1)D(r, r′;ω2)

ω + ω2 − ω1 − iδ

+

∫ ∞
−∞

dω1θ(ω1 − µ)

∫ ∞
−∞

dω2θ(ω2)
A(r, r′;ω1)D(r, r′;ω2)

ω − ω2 − ω1 + iδ
.

(A.12)

With (A.5), we obtain,

Σc(r, r
′;ω) =

∑
k

θ(µ− εk)
∫ ∞
−∞

dω2θ(ω2)
ψk(r)ψ∗k(r

′)D(r, r′;ω2)

ω + ω2 − εk − iδ

+
∑
k

θ(εk − µ)

∫ ∞
−∞

dω2θ(ω2)
ψk(r)ψ∗k(r

′)D(r, r′;ω2)

ω − ω2 − εk + iδ
.

(A.13)

The real part of the correlation self-energy is then,

Re Σc(r, r
′;ω) =

∑
k

θ(µ− εk)
∫ ∞
−∞

dω2θ(ω2)
ψk(r)ψ∗k(r

′)D(r, r′;ω2)

ω + ω2 − εk

+
∑
k

θ(εk − µ)

∫ ∞
−∞

dω2θ(ω2)
ψk(r)ψ∗k(r

′)D(r, r′;ω2)

ω − ω2 − εk

=
occ∑
k

ψk(r)ψ∗k(r
′)

∫ ∞
−∞

dω2
D(r, r′;ω2)

ω + ω2 − εk

−
occ∑
k

ψk(r)ψ∗k(r
′)

∫ 0

−∞
dω2

D(r, r′;ω2)

ω + ω2 − εk

+
unocc∑
k

ψk(r)ψ∗k(r
′)

∫ ∞
0

dω2
D(r, r′;ω2)

ω − ω2 − εk

= −
occ∑
k

ψk(r)ψ∗k(r
′)Wc(r, r

′; εk − ω)

+
∑
k

ψk(r)ψ∗k(r
′)

∫ ∞
0

dω2
D(r, r′;ω2)

ω − ω2 − εk
.

(A.14)

35



Combining with the exchange part (A.6),

Re Σ(r, r′;ω) = −
occ∑
k

ψk(r)ψ∗k(r
′)W (r, r′; εk − ω)

+
∑
k

ψk(r)ψ∗k(r
′)

∫ ∞
0

dω2
D(r, r′;ω2)

ω − ω2 − εk
.

(A.15)

Under the static approximation ω − εk ≈ 0, the first term in the right hand side of
(A.15) becomes,

Re Σstatic
SEX (r, r′) = −

occ∑
k

ψk(r)ψ∗k(r
′)W (r, r′; 0), (A.16)

and the second term in the right hand side of (A.15) becomes,

Re Σstatic
COH (r, r′) =

1

π

∑
k

ψk(r)ψ∗k(r
′)

∫ ∞
0

dω2
Im Wc(r, r

′;ω2)

ω2

=
1

2
δ(r − r′)

∫ ∞
−∞

dω2
D(r, r′; 0)

0− ω2

=
1

2
δ(r − r′)Wc(r, r

′; 0).

(A.17)
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