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Abstract

In this thesis some results for a model that is a merge between the random coefficient autoregressive
model of order one and a stochastic process with local interaction in time and space are presented. The
first part of the thesis deals with some result from the random coefficient model. The second part of
this thesis deals with the random coefficient model with local interaction. Results such as expectation,
variance bounds and some covariance results are presented.

Keyword: Stochastic processes, Local interaction, autoregressive random coefficients, probability the-
ory.

2



Contents

1 Introduction 4

2 Random coefficient model 5
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.3 Closing remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

3 Markov process with local interaction 8
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
3.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
3.3 Closing remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

4 Conclusion 13
4.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
4.2 Open problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

5 Proofs 14
5.1 Proofs for part 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
5.2 Proofs for part 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3



1 Introduction

This thesis will cover two main topics, the first is the random coefficient autoregressive process which
is a generalisation of the simpler autoregressive process that is studied in most introductory courses in
stochastic process and time series analysis. The second topic is an extension for this model to both
time and space and allowing local spatial interaction. This interaction takes the form of first scaling the
process neighbour to the right by some small constant ε and then adding it. This extension moves the
problem out of classical work done on scalar or vector valued random coefficient autoregressive processes
to a discrete time, discrete space interacting particle system with a markovian property in time.

One of the reasons the autoregressive class of models has seen so much focus is its wide range of ap-
plication, many things are modelled using some form of autoregressive structure. The random coefficient
class of models has seen uses in problems in widely diffrent fields such as economics as mentioned by
Nicholls and Quinn [1982] and in hydrology, biology and meteorology as noted by Andel [1976]. This use-
fulness has lead to significant attention from academics. Several key results such as stationarity [Andel,
1976], stability (regarding similar type of regression models) [Conlisk, 1974], general moments [Feigin and
Tweedie, 1985] and several results regarding inference [Nicholls and Quinn, 1982] have been worked out
further aiding the usefulness of this class of models. This usefulness comes from that the rigid coefficient
regime is lifted and the very nature of the dependency is allowed to change over time which might be a
more natural and intuitive way to study the complex systems generating what is possible to observe.

This allowing of interacting in space moves this construction into the realm of interacting particle
systems. Interacting particle system models have found use in both in both social science, for example
the voter model, and the natural sciences in statistical mechanics as mentioned by Liggett [1985]. In
social sciences if two processes can observe the action of each other it is a rather unnatural assumption
that they will not be affected by each other. If more processes are added the local interaction will spread
trough out the space with sufficient time. This implies that a different type of interactions need to be
studied compared to the limited amount of interaction a vector type model can provide. Thus it is rather
interesting to join these notion of random coefficient and spatial dependency and study such a model.
This is the primary reason for the construction and process in definition two, even if it is done under the
harshest of assumptions.

The thesis is composed of two parts. The first part presents a simpler case without dependency and
some results regarding its expectation, covariance and some question common for stochastic processes.
This is a special case of ε = 0 leading of the second case. The second case examins the object with right
side dependency in one spatial dimension. This part will contain expectation, variances bounds, and
some covariance results under restrictions. The thesis ends with a short conclusion and open problems
that have been identified during the work. To keep the thesis concise a section containing all the proofs is
provided at the end of the thesis. In general the reader is expected to have a solid grasp of basic probability
theory and stochastic processes. For the interested reader Nicholls and Quinn [1982] monograph gives
a oversight over the random coefficient autoregressive process. A corresponding overview for interacting
particle systems is provided by Liggett [1985].
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2 Random coefficient model

2.1 Introduction

Here we consider the random coefficient model of order 1. This model is mostly serves as primer for
the results presented in part 2, since most of the results are previously known. The statements in this
section is done under no assumption of distribution, but only on assumptions regarding moments. Since
the problem of distribution is hard due to the heavy use of summation and multiplication of dependent
random variables this will not be discussed or treated in detail. A formal definition is now in order.

Definition 1 Let X(t) be a discrete time stochastic process defined by the following equation

X(t) = η(t)X(t− 1) + ξ(t)

where t ∈ N. η(t), ξ(t) and X(0) are independent random variables for all t.
The following assumptions are made as a part of the definition.

1. Eη(t) <∞, Eξ(t) <∞ and EX(0) <∞ ∀t ∈ N
2. η(t) are independent and identically distributed ∀t ∈ N.

3. ξ(t) are independent and identically distributed ∀t ∈ N.

This construction is very similar to the construction of the AR(1) process, with the main difference that
η is a random variable compared to a constant in the AR(1) case. The stochastic nature of this process
can be seen as if a recursive operator is applied to a driving sequence of (η(t), ξ(t)) and some starting
value X(0). Observe that according to construction the process X(t) has a Markovian property since all
information about the process history will be contained in X(t− 1).

Some motivation of the assumption is clearly needed due to the quite hash restriction they impose.
The first assumption is essentially made to avoid uninstresting cases. The identical distribution on ξ(t)
and η(t) might not be necessary but without them asymptotic invariance for shifts in time might not be
obtainable. The independence assumption in time for the coefficient η is done to reduce the complexity of
the problem. Some work by Tjøstheim [1986] have been done under but have been proved to be difficult
under anything other than the most basic of dependency structure in time imposed on the coefficients.
The independence between the noise random variable ξ and parameter random variable η is a natural
one and is commonly made.

We study fundamental properties of X(t) such as E(X(t)), V (X(t)) and Cov(X(t), X(s)). Exact
formula for EX(t) is derived and in particular exponential decay of Cov(X(t), X(s)) is shown when
|t− s| → ∞. This part will also contain some statements regarding common questions such as stationarity,
martingale properties and convergence. These results are chosen since they will give the reader a basic
understanding of the process. Since many of the results are rather elementary they will not be commented
in detail. Some concluding comments and comparison with the classical autoregressive process of order
will however be made at the end of this first part.
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2.2 Results

In this section the results are presented. Beginning with elementary result such as expectation, variance
and covariance. Then limiting results are presented and the section ends with a convergence result for
X(t).

Theorem 1 (Full and partial recurrence in time)
Let X(t) be a stochastic process defined in Definition 1. Then X(t) can be expressed in the following way:

X(t) =
( t∏
j=1

η(j)
)
X(0) + ξ(t) +

t−1∑
i=1

( t∏
j=i+1

η(j)
)
ξ(i). (1)

Furthermore, for any s 0 6 s < t, the following partial recursion in time for X(t) takes place:

X(t) =
( t∏
j=s+1

η(j)
)
X(s) + ξ(t) +

t−1∑
i=s+1

( t∏
j=i+1

η(j)
)
ξ(i). (2)

Theorem 2 (Expectation of X(t))
Let X(t) be a stochastic process defined by Definition 1. Assume that Eη 6= 1. Then the expectation of
the process X(t) is given by:

EX(t) =
1− (Eη)t

1− Eη Eξ + (Eη)tEX(0). (3)

Remark 1 Under the assumptions Eη = 1 and Eξ = 0 the expectation of X(t) follows straight from
taking the expectation of equation (2) in Theorem 1 and is:

EX(t) = EX(0), ∀t > 0

Theorem 3 (Second moment of X(t))
Let X(t) be a stochastic process defined by Definition 1. Assume Eη2 <∞, Eξ2 <∞ and Eη 6= 1. Then:

EX(t)2 = (Eη2)tEX(0)2 + 2

t∑
i=1

(Eη2)i−1EηEξEX(t− i) + E(ξ2)
1− (Eη2)t

1− Eη2

Then where EX(t) is defined by equation (3).

Corollary 1 (Variance of X(t))
Under stated assumptions of Definition 2, Theorem 2 and Theorem 3 we have:

V (X(t)) = (Eη2)tEX(0)2 + 2

t∑
i=1

(Eη2)i−1EηEξEX(t− i) + E(ξ2)
1− (Eη2)t

1− Eη2 −
(1− (Eη)t−1

1− Eη Eξ + (Eη)tEX(0))
)2
,

Where EX(t) is defined by equation (3).

Remark 2
Usually it is assumed that Eξ = 0. If Eξ 6= 0, the variable ξ can be substituted by ξ := ξ

′
+ Eξ where

Eξ
′

= 0. If Eξ = 0 the following simplifications are obtained from the statement of Corollary 1.

V X(t) = (Eη2)tEX(0)2 + σ2
ξ

1− (Eη2)t−1

1− Eη2 − (Eη)2t(EX(0))2.

Theorem 4 (Covariance of X(t))
Let X(t) be a stochastic process defined by Definition 1. Assume that, Eη2 < 1. Then the covariance of
X(t) and X(s), ∀t, s ∈ N is given by:

Cov(X(t), X(s)) = (Eη)|t−s|V (X(s)).
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Corollary 2 (Decay of covariance)
Under assumptions of Theorem 4, X(t) has exponentially fast decay of covariance as |t− s| → ∞.

Corollary 3 (Asymptotic expectation, variance and covariance)
Let X(t) be a stochastic process defined by Definition 1 and assume that Eξ = 0.

1. If |Eη| < 1 then EX(t) <∞ and lim
t→∞

EX(t) = 0.

2. If Eη2 < 1 then V X(t) <∞ and lim
t→∞

V X(t) =
σ2
ξ

1− Eη2 .

3. If Eη2 < 1 then lim
t→∞

Cov(X(t+ l), X(t+ s)) = (Eη)|l−s|
σ2
ξ

1− Eη2 , ∀l, s ∈ N.

4. If Eη = 1 and Eη2 > 0 then lim
t→∞

V X(t) =∞.

Theorem 5 (Conditions for asymptotic stationarity)
Let X(t) be a stochastic process defined by Definition 1. Assume further that Eη2 < 1, then:
X(t) is asymptotically stationary in a wide sense,
i.e, lim

t→∞
Cov(X(t+ l), X(t+ s)) and lim

t→∞
EX(t) is not dependent on t.

Remark 3 (Martingale property)
Let X(t) be a stochastic process defined by Definition 1, assume Eξ(t) = 0, Eη = 1 ∀t ∈ N. Then:
X(t) is a discrete time martingale.

Theorem 6 (On convergence of X(t))
Let X(t) be a stochastic process defined by Definition 1.
Further let Eη2 < 1. Then: ∣∣∣∣∣∣X(t)−

(
ξ(t) +

t−1∑
i=1

(

t∏
j=i+1

η(j))ξ(i)
)∣∣∣∣∣∣→ 0 a.s

when t→∞.

Remark 4
Theorem 6 implies in particular that the limiting distribution of X(t) do not depend on X(0) if Eη2 < 1

2.3 Closing remarks

Many of the presented results in the previous section are similar the known and well understood results
from the autoregressive model. The expectation, variance and covariance are the most obvious. The
results can loosely be described by substituting the constant for the random variables expectation and
second moment, in the case for the variance expression. The properties that follows also follows intuitively
by substituting the constant with the expectation. A bold statement regarding the relationship between
the autoregressive process and the random coefficient model is that the first is simply a special case of
the latter with a one-point distribution. Since the variance is zero for the one-point distribution the n
moment is the same as the first moment to the power n. With this stated comments the results should
appearer more intuitive.

A comment should be done regarding the difference in distribution between the two processes. For
most applications it is assumed that ξ ∈ N(0, σ2

ξ) for the autoregressive process, which gives the result
that the process is in itself normal. Given the result in Theorem 1 and Theorem 6 the process can not
be normal, even if both η, ξ ∈ N(µ, σ2), since the normal distribution only is invariant under addition
but not multiplication. The problem of deriving explicit formulas for product distribution is in general
hard. Which is one of the main reason the distributional aspects of the process following Definition 1 is
not very well understood or atleast difficult hard to obtain. With these priming results the main results
of this thesis will now follow in the next section, when neighbourhood dependency is introduced.
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3 Markov process with local interaction

3.1 Introduction

The random coefficient model has seen prevalent use in social and natural sciences, and thus have been
extensively studied, with generalisation to vector random coefficient models [Nicholls and Quinn, 1982].
The main differences between the vector valued random coefficient model and the object presented below
in Definition 2 is that the dependency in space will grow as time increases, making this problem infinite
dimensional in both time and space when t → ∞. This heightens the complexity of the problem. We
study one sided spatial interaction in one dimension. General case of a fixed interacting neighbourhood
and dimension can be treated in a similar way.

Definition 2 Let X(t, k) be a discrete time, discrete space stochastic process defined by the following
equation

X(t, k) = η(t, k)X(t− 1, k) + εX(t− 1, k + 1) + ξ(t, k) (4)

where η(t, k), ξ(t, k) and X(0, k) are random variables for all t ∈ N, k ∈ Z.
The following assumptions are made as a part of the definition.

1.
∣∣Eη(t, k)

∣∣ <∞,
∣∣EX(0, k)

∣∣ <∞ and Eξ(t, k) = 0 ∀t ∈ N ∀k ∈ Z.

2. η(t, k), ξ(t, k) and X(0, k) are independent of each other ∀t ∈ N, ∀k ∈ Z.

3. η(t, k) are identically distributed random variables and independent in both time and space. ∀t ∈ N,
∀k ∈ Z

4. ξ(t, k) are identically distributed random variables and independent in both time and space. ∀t ∈ N,
∀k ∈ Z

5. X(0, k) are independent random variable ∀k ∈ Z

Many of the assumptions follows from the same reasoning as for the non dependency model. If also
X(0, k), ∀k ∈ Z are identically distributed. X(t, k) will be invariant under shifts in space. It should
be noted that if the process is invariant to shifts in space properties such as expectation, variance and
covariance for process following Definition 2 will be the same for all k at a given t. Even if X(0, k) are
not identically distributed, this process will also has a Markovian property since all the information in
X(t, k) will be contained in the previous time step, if the X(t− 1, k) is considered for all k.

A good visualisation of the dependency induced by adding the right neighbour is to visualize a triangle.
Since X(t, k) will be dependent on X(t − 1, k + 1) and X(t − 1, k + 1) will then intern be dependent
on X(t − 2, k + 2), and so forth. A dependency triangle is formed with its corners at (t, k), (0, k) and
(0, k + t). This is more clearly shown in the figure 1, below.

X(t,k)

X(0,k) X(0,k+t)

Figure 1.
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If there is no overlap of between dependency triangles for two points, then they are independent by
assumptions in Definition 2. If a overlap is present, as shown in the figure 2, the points will be dependent
due to this overlap.

X(t,k)

X(0,k) X(0,k+t)

X(s,k+q)

X(0,k+q) X(0,k+q+s)

X(t-q,k+q)

Figure 2.

When t becomes large this triangle will become larger and the number of points that a given point (t, k)
is dependent on will increase. It should also be mentioned the covariance function for two points will
change depending if one of the points is on, in or outside the other points dependency triangle. Even if
X(t, k) is assumed to be invariant under shifts in time. This leads to an added level of complexity when
a recursion is to be obtained for the covariance function.

3.2 Results

In this section the results are presented. Beginning with result such as expectation, bounds for the
variance and covariance. Then some more precise results under some restrictions are presented.

Theorem 7 (Full and partial recursions for a given k)
Let X(t, k) be a stochastic process defined by Definition 2. Then the following recurrence takes place:

X(t, k) =

t∏
i=1

η(i, k)X(0, k) + ξ(t, k) +

t−1∑
i=1

t∏
j=i+1

η(j, k)ξ(i, k)

+ εX(t− 1, k + 1) + ε

t−1∑
i=1

t∏
j=i+1

η(j, k)X(i− 1, k + 1)

Furthermore for any 0 6 s < t, we have the following partial recursion in time:

X(t, k) =

t∏
i=s+1

η(i, k)X(s, k) + ξ(t, k) +

t−1∑
i=s+1

t∏
j=i+1

η(j, k)ξ(i, k)+

εX(t− 1, k + 1) + ε

t−1∑
i=s+1

t∏
j=i+1

η(j, k)X(i− 1, k + 1)

Theorem 8 (Expectation of X(t, k))
Let X(t, k) be a stochastic process defined by Definition 2. Then for all t, k the expectation is:

EX(t, k) =
t∑

j=0

(
t

j

)
(Eη)t−jεjµ(0, k + j)

Remark 5
If X(0, k) are identically distributed the following follows from Theorem 8, denote EX(0, k) = µX :

EX(t, k) = µX(η + ε)t

9



Remark 6
If EX(0, k) can be written on the form cαk where c, α are constants and |α| < 1 then:

EX(t, k) = cαk(Eη + εα)t

Theorem 9 (A bound for the variance of X(t,k))
Let X(t, k) be a stochastic process defined by definition 2. Assume
E(η + ε)2 < 1, E(η − ε)2 < 1, V X(0, k) <∞, σ2

ξ <∞, and X(0, k) are identically distributed. Then the
following bounds holds for all t, k

1. Case, εEη > 0:

(E(η − ε)2)tV (X(0, k)) +

t−1∑
i=0

E((η − ε)2)iσ2
ξ +

t−1∑
i=0

E((η − ε)2)t−1−i(EX(0, k))2(Eη + ε)2iσ2
η

6V (t, k) 6

(E(η + ε)2)tV (X(0, k)) +

t−1∑
i=0

E((η + ε)2)iσ2
ξ +

t−1∑
i=0

E((η + ε)2)t−1−i(EX(0, k))2(Eη + ε)2iσ2
η

2. Case, εEη < 0:

(E(η + ε)2)tV (X(0, k)) +

t−1∑
i=0

E((η + ε)2)iσ2
ξ +

t−1∑
i=0

E((η + ε)2)t−1−i(EX(0, k))2(Eη + ε)2iσ2
η

6V (t, k) 6

(E(η − ε)2)tV (X(0, k)) +

t−1∑
i=0

E((η − ε)2)iσ2
ξ +

t−1∑
i=0

E((η − ε)2)t−1−i(EX(0, k))2(Eη + ε)2iσ2
η

Corollary 4 (Bound of Variance)
Under the assumptions of Theorem 9 the following variance bounds holds when t→∞:

1. Case εEη > 0:

σ2
ξ

1− E(η − ε)2 6 lim inf
t→∞

V X(t, k) 6 lim sup
t→∞

V X(t, k) 6
σ2
ξ

1− E(η + ε)2

2. Case εEη < 0:

σ2
ξ

1− E(η + ε)2
6 lim inf

t→∞
V X(t, k) 6 lim sup

t→∞
V X(t, k) 6

σ2
ξ

1− E(η − ε)2

A uniform upper bound of V X(t, k) can also be obtained. Let εEη > 0, denote V X(0, k) = σ2
X(0) and

EX(0, k) = µX(0) for all k. Then for all k, t:

0 6 V X(t, k) 6 σ2
X(0) +

σ2
ξ + µ2

X(0)σ
2
η

1− E(η + ε)2

If εEη < 0, E(η + ε)2 is replaced by E(η − ε)2 in the expression above.

Proposition 1 (Covariance in time for a given position k)
Let X(t, k) be a stochastic process defined by Definition 2. Further let E(η + ε)2 < 1. Then for a given
pair of points (t, k) and (s, k), 0 < t < s the covariance can be expressed as follows:

Cov(X(t, k), X(s, k)) = (Eη)t−sV X(s, k) + εCov(X(t− 1, k + 1), X(s, k)) + ε

t−1∑
i=s+1

(Eη)t−iCov(X(i− 1, k + 1), X(s, k))

10



Conjecture 1 (Decay of Covariance in time for a given position k)
A more precise expression of the statement of proposition 1 can be obtained by further expanding the
covariances, with this more coeficents will emerge. This leads to the following Conjecture:
Co(X(t, k), X(s, k)) has exponential decay when |t− s| → ∞

Proposition 2 (Explicit expression of variance when Eη = 0)
Let X(t, k) be a stochastic process defined by Definition 2, further let Eη = 0, E(η+ ε)2 < 1 and X(0, k)
be i.i.d. Then the following result is obtained:

V X(t, k) = (E(η + ε)2)tV X(0, k) + σ2
ξ

1− (E(η + ε)2)t

1− E(η + ε)2
+ (EX(0, k))2

t−1∑
i=0

ε2(t−1−i)(E(η + ε)2)i

Proposition 3 (Covariance in time, when Eη = 0)
Let X(t, k) be a stochastic process defined by Definition 2 but without the independence assumption placed
on X(0, k). Further let Eη = 0 and s < t. Then this result is obtained:

Cov(X(t, k), X(s, k)) = εt+sCov(X(0, k + t), X(0, k + s)).

Proposition 4 (Covariance in space, when Eη = 0)
Let X(t, k) be a stochastic process defined by Definition 2 but without the independence assumption placed
on X(0, k). Further let Eη = 0 for all, t, k. Then following expression can be derived:

Cov(X(t, k), X(t, k + q)) = ε2tCov(X(0, k + t), X(0, k + q + t))).

Conjecture 2 (Covariance without parameter restriction)
A bound for Cov(X(t, k), X(t, k + q)) even for the case Eη 6= 0 will again be in the form∣∣Cov(X(t, k), X(t, k + q))

∣∣ 6 V X(t− q, k)(Eη + ε)2q + C(t, q),

where C is some constant dependent on (t, q). This can be obtained with the help of Fourier transform.
However, this will be detailed in future work.

Proposition 5 (Diagonal covariance when Eη = 0)
Let X(t, k) be a stochastic process defined by Definition 2, Eη = 0 and V X(t, k) be well defined and
finite. Then the covariance along the right diagonal can be expressed as the following:

Cov(X(t, k), X(t− s, k + s)) = εsV X(s, k + s)

11



3.3 Closing remarks

Some results have been presented regarding expectation, variance and covariance under some restrictions.
The results are in some ways similar to the results presented in the first part of the thesis. This local
interaction increases leads to more interesting results even under some restrictions. Even if the interaction
is local in the sense that the right neighbour at the previous time step is added. If the process, for a given
space point, increases considerably due to the random nature of ξ this shock will propagate throughout
the space to the left of the point as the process moves forwards in time. This shock will decrease when
time moves on since ε is some small constant and the more distant a point is form the shock the more
times it will be weighted by ε. Therefore the choice of both ε and the statistical properties of η are crucial
for the overall stability of the system. This is an interesting insight into this infinite dimensional linear
system that is studied in this thesis.

This problem will also have some interesting combinatorial properties. The initial values of the process
will be weighted when time moves on either by a random η or some fixed ε. Since the neighbouring point
is added at every point in time and for all points. Some initial points will be added more times while
some less. This is perhaps more clearly seen when figure 3 is examined in detail, and how many paths
for example X(0, 2) can take and still being a part of X(3, 0).

X(0,0) X(0,1) X(0,2) X(0,3)

X(3,0)

Figure 3.

The figure is a schematic over these paths the initial values can take for the point X(3, 0) and what they
will be weighted with. If this complexity can be shown for t = 3, it should be noted that the number of
paths will grow very rapidly when time increases. The more precise nature of the combinatorial side of
this problem will however not be explored deeper in this thesis.
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4 Conclusion

4.1 Conclusion

The problem of interacting particles and random coefficient models have generated a wide interest from
a select group of mathematicians and statistician since it first inception in the seventies. This attention
has lead to significant progress during the past decades. However the study of stochastic models that
might capture the slowly changing dynamics of dependency structure is still an ongoing area of research.
The results form this thesis are with most certainty not trivial, but limited in scope. The stated object in
Definition 2 is simple in its construction but leads to many interesting structures and results even under
the harshest assumptions of independence and identical distribution, as presented in the second part.

Further generalisations and reduction of assumption would be interesting to pursue since a lot of the
underlying characteristics of this problem is yet to be solved. Due to the limited scoop of a master thesis
a larger or deeper collection of results will not be presented. The results presented are quite fundamental
to its nature, and such only a few comments will be needed for the results. They are provided in the
closing remarks section of each part. In general most of the results are to be expected. In a wider logical
sense and a lot of previous results regarding general autoregressive processes seems to carry over to the
objects studied in this thesis. One of the primary example of this is for a result not presented in thesis
but is a part of the work done, and that is the conditions on ε and Eη under symmetric dependency
in d dimensions. Then the expectation exist when |Eη + 2dε| < 1, this is intuitive since an increasing
the number of spatial dimensions, under symmetric dependency, will lead to more neighbours being
interacted with. This implies that either Eη or ε needs to become smaller. This is both an inserting and
intuitive result.

In general this type on simple construction that gives rise to an interesting structure is a multifaceted
problem in stochastic processes. Only elementary results are presented here. It should be noted that, as
with many open questions in academia the process of answering one have created many more. This is
certainly the case in this thesis too.

4.2 Open problems

This problem is in most aspects an interesting one and many more hours is needed to grasp the fun-
damental nature of the problem, in which space it belongs, convergence results and more. Due to the
short time this type of thesis is supposed to be written many problems are left open or solved with rough
approximation that might be removed if more time is spent on this problem. Since continued work will
be done by the author on this project not many open problems will be posed. There is manly three open
problems that might be stated:

1. What is the distribution of both the random coefficient model and the Markov process with local
interaction, for a given distribution of η, ξ and X(0, k)?

2. Is there a distribution that is invariant or asymptomatic invariant under the operation of multipli-
cation and addition?

3. What are corresponding results when the type of interaction is changed, for example if the neigh-
bours at time t are added instead of t− 1 or if the two nearest neighbours are added to the left and
right?

These are interesting questions that will require dedicated work and deep insight of the field of mathe-
matics and probability theory. They are however left to the reader.

13



5 Proofs

In each proof section, the proofs are in the same order as presented in the corresponding result sections.

5.1 Proofs for part 1

Proof of Theorem 1 (Solution of difference equation)
Let X(t) be a stochastic process defined by Definition 1. Then the proof is done using induction. Let
Pn denote the proposition that X(n) can be written in the form stated in the theorem.
Proof of P1

X(1) = η(1)X(0) + ξ(1) =

1∏
j=1

η(j)X(0) + ξ(1) +

1−1∑
i=1

1∏
j=i+1

η(j)ξ(i).

Where the summation is an empty sum and is thus defined to 0, whereby P1 is proven.
Proof of Pn ⇒ Pn+1, suppose that Pn is true.

X(n+ 1) = η(n+ 1)[X(n)] + ξ(n+ 1)

= η(n+ 1)
[ n∏
j=1

η(j)X(0) + ξ(n) +

n−1∑
i=1

n∏
j=i+1

η(j)ξ(i)
]

+ ξ(n+ 1)

=

n+1∏
j=1

η(j)X(0) + η(n+ 1)ξ(n) +

n−1∑
i=1

η(n+ 1)

n∏
j=i+1

η(j)ξ(i) + ξ(n+ 1).

Note that the added terms now comprise the (n+ 1):st term in the sum and the following expression is
obtained.

X(t) =

n+1∏
j=1

η(j)X(0) + ξ(n+ 1) +

n+1−1∑
i=1

n+1∏
j=i+1

η(j)ξ(i)

Thus it is shown Pn ⇒ Pn+1 and by the principle of mathematical induction the proposition Pn is true
∀n ∈ N.

Furthermore the result of the partial recurrence is obtained by writing out the process in the following
way.:

X(t) = η(t)
[
X(t− 1)] + ξ(t) = η(t)η(t− 1)

[
X(t− 2)] + η(t)ξ(t− 1) + ξ(t)

A clear structure appears and this can be done recursively to X(s) whereby a formal induction proof
as the one above can be obtained for arbitrary t and s. A formal proof will not be provide due to its
similarity to the one above.

Q.E.D.
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Proof of Theorem 2 (Expectation of X(t))
Let X(t) be a stochastic process defined by Definition 1, under the assumptions of Theorem 2. Using
the results form equation (2) of Theorem 1 we derive:

EX(t) = E

t−1∑
i=1

( t∏
j=i+1

η(j)
)
ξ(i) + Eξ(t) + E

(( t∏
j=1

η(j)
)
X(0)

)
Independence assumption is used to split E(ξη) = (Eξ)(Eη) and constant expectation for all t.

EX(t) =

t−1∑
i=1

( t∏
j=i+1

Eη(j)
)
Eξ(i) + Eξ(t) +

( t∏
j=1

Eη(j)
)
EX(0)

=

t−1∑
i=1

(Eη)t−iEξ + Eξ + (Eη)tEX(0)

=

t−1∑
i=0

(Eη)iEξ + (Eη)tEX(0)

=
1− Eηt

1− Eη Eξ + EηtEX(0).

Which corresponds to the statement in the theorem.

Q.E.D.

Proof of Theorem 3 (Second moment of X(t))
The theorem is proved by proving that for all t that EX(t)2 can be written in the form presented in the
theorem, this is done by induction.
Let X(t) be a stochastic process defined by Definition 1 and further let the assumptions of the theorem
be fulfilled. Further let Pn be the proposition that EX(n)2 can be written in the form presented in the
theorem.
Proof of P1

EX(1)2 = E(η(1)X(0) + ξ(1))2 = Eη2EX(0)2 + 2EηEξEX(0) + Eξ2

= (Eη2)1EX(0)2 + 2

1∑
i=1

(Eη2)i−1EηEξEX(1− i) +

1∑
i=1

(Eη2)i−1E(ξ2).

P1 is thereby shown.
Assume that Pn holds, now Pn ⇒ Pn+1 will be shown.

EX(n+ 1)2 = E(η(n+ 1)X(n) + ξ(n+ 1))2 = Eη2EX(n)2 + 2EηEξEX(n) + Eξ2

= Eη2
[
(Eη2)nEX(0)2 + 2

n∑
i=1

(Eη2)i−1EηEξEX(n− i) +

n∑
i=1

(Eη2)i−1Eξ2
]

+ 2EηEξEX((n+ 1)− 1) + Eξ2

= (Eη2)n+1EX(0)2 + 2EηEξEX((n+ 1)− 1) + 2Eη2
n∑
i=1

(Eη2)i−1EηEξEX(n− i)

+ Eη2
n∑
i=1

(Eη2)i−1E(ξ2) + Eξ2.

The second terms in the last equality now corresponds to i = 1 in the n + 1 sum and can be moved in
to the summation. The same argument is done to the last sum in the expression but for i = 1.

EX(n+ 1)2 = (Eη2)n+1EX(0)2 + 2

n+1∑
i=1

(Eη2)i−1EηEξEX(n+ 1− i) +

n+1∑
i=1

(Eη2)i−1E(ξ2).

Then it is shown that Pn ⇒ Pn+1 and by the principle of induction that Pn is true ∀n ∈ N.

Q.E.D
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Proof of Corollary 1 (Variance of X(t)) This result follows clearly from the result of Theorem 2 and
Theorem 3, and V X(t) = EX(t)2 − (EX(t))2.

Proof of Theorem 4 (Covariance of X(t), X(s))
Let X(t) be a stochastic process defined by Definition 1, and let the assumptions of the theorem be
fulfilled. Consider the equation (2) form Theorem 1. Suppose that s 6 t. We have:

E(X(t)X(s)) = E
( t∏
j=s+1

η(j)X(s)2
)

+ E
(
X(s)

t−1∑
i=s+1

t∏
j=i+1

η(j)ξ(i)
)

+ Eξ(t)X(s).

and

(EX(t))(EX(s)) = E

t∏
j=s+1

η(j)(EX(s))2 + EX(s)E

t−1∑
i=s+1

t∏
j=i+1

η(j)ξ(i) + Eξ(t)EX(s).

Then the following is derived.

Cov(X(t), X(s)) = E

t∏
j=s+1

η(j)X(s)2 − E
t∏

j=s+1

η(j)(EX(s))2

= (Eη)t−s(EX(s)2 − (EX(s))2)

= (Eη)t−sV X(s).

Q.E.D

Proof of Corollary 2 (Decay of covariance)
Under the assumption from Theorem 4, mainly that Eη2 < 1 it follows that |Eη| < 1. With this remark
the proof is trivial.

Proof of Corollary 3 (Asymptotic results)
The proof follows simply from convergence criterion of a geometric sum. The variance statements follows
from a corollary of Jensen’s inequality; that for a arbitrary random variable with well defined moments
V χ <∞⇔ Eχ2 <∞. With these two comments the formal proof will not be provided.

Proof of Theorem 5 (Conditions for asymptotic stationarity of X(t))
For a stochastic process to be stationary in wide sense its sufficient that the expectation and covari-
ance are time invariant. From 1 and 3 in Lemma 2 it follows clearly that asymptotically EX(t) and
Cov(X(t), X(s)) are invariant under shifts in time.

Proof of Theorem 6 (On convergence of X(t))
We will show that

∏t
j=1 η(j)X(0)→ 0 (a.s) when t→∞. A sufficient criterion for almost sure conver-

gence [Shiryaev, 1996] is
∞∑
k=0

P
(( k∏

j=1

∣∣η(j)
∣∣ )∣∣X(0)

∣∣ > δ
)
<∞

For any δ > 0. Using Markov’s inequality P (|χ| > ε) < E|χ|
ε

a bound of the sum is obtained as follows:

∞∑
k=1

P (

k∏
j=1

∣∣η(j)X(0)
∣∣ > δ) 6

∞∑
k=1

E
(∏k

j=1

∣∣η(j)
∣∣ )E∣∣X(0)

∣∣
δ

=
1

δ

∞∑
k=1

(
E|η|

)k
E
∣∣X(0)

∣∣
=
E
∣∣X(0)

∣∣
δ

∞∑
k=1

(E|η|)k <∞

By assumption, Eη2 < 1 hence the last sum converges, for all δ > 0 which implies the statement of the
Theorem.

Q.E.D
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5.2 Proofs for part 2

Proof of Theorem 7 (Solution of difference equation) Let X(t, k) be a stochastic process defined by
Definition 2. Then the proof is done using induction. Let Pn denote the proposition that X(n) can be
written in the form stated in the theorem.
Proof of P1

X(1, k) = η(1, k)X(0, k) + εX(0, k + 1) + ξ(1)

X(1, k) =

1∏
i=1

η(i, k)X(0, k) + ξ(1, k) +

1−1∑
i=1

1∏
j=i+1

η(j, k)ξ(i, k)

+ εX(1− 1, k + 1) + ε

1−1∑
i=1

1∏
j=i+1

η(j, k)X(i− 1, k).

One should note that the summations are empty sums and is thus 0, whereby P1 is proven.
Proof of Pn ⇒ Pn+1, suppose that Pn is true.

X(n+ 1, k) = η(n+ 1, k)[X(n, k)] + εX(n, k + 1) + ξ(n+ 1, k)

= η(n+ 1, k)
[ n∏
i=1

η(i, k)X(0, k) + ξ(n, k) +

n−1∑
i=1

n∏
j=i+1

η(j, k)ξ(i, k)

+ εX(n− 1, k + 1) + ε

n−1∑
i=1

n∏
j=i+1

η(j, k)X(i− 1, k)
]

+ εX(n, k + 1) + ξ(n+ 1, k)

= η(n+ 1, k)

n∏
i=1

η(i, k)X(0, k) + η(n+ 1, k)ξ(n, k) + η(n+ 1, k)

n−1∑
i=1

n∏
j=i+1

η(j, k)ξ(i, k)

+ η(n+ 1, k)εX(n− 1, k + 1) + η(n+ 1, k)ε

n−1∑
i=1

n∏
j=i+1

η(j, k)X(i− 1, k) + εX(n, k + 1) + ξ(n+ 1, k).

Note that the added terms now comprise the n+1 term in the sum and the following expression is
obtained:

X(n+ 1, k) =

n+1∏
i=1

η(i, k)X(0, k) + ξ(n+ 1, k) +

n+1−1∑
i=1

n+1∏
j=i+1

η(j, k)ξ(i, k) + εX((n+ 1)− 1, k + 1)

+ ε

n+1−1∑
i=1

n+1∏
j=i+1

η(j, k)X(i− 1, k).

Thus it is shown Pn ⇒ Pn+1 and by the principal of mathematical induction the proposition Pk is true
∀k ∈ N.

This partial recurrence result is obtained by writing out:

X(t, k) = η(t, k)
[
X(t− 1, k)] + εX(t− 1, k + 1) + ξ(t, k)

= η(t, k)[η(t− 1, k)X(t− 2, k) + εX(t− 2, k + 1) + ξ(t− 1, k)] + εX(t− 1, k + 1) + ξ(t, k)

= η(t, k)η(t− 1, k)X(t− 2, k) + η(t, k)εX(t− 2, k + 1) + η(t, k)ξ(t− 1, k) + εX(t− 1, k + 1) + ξ(t, k).

A clear structure appears and this can be done recursively to X(s, k) whereby a formal induction proof
as the one above can be obtained for arbitrary t and s. As with the non interacting result, a formal proof
will not be provide due to its similarity to the one above.

Q.E.D
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Proof of Theorem 8( Expectation of X(t, k))
Let X(t, k) be a stochastic process defined by definition 2. Then this result can either be obtained
straight from taking the expectation of the result from Theorem 7 if X(0, k) are identically distributed.
However the proof provided below do not rely on using that X(t, k) is invariant under shifts in space.
Consider that n := k + 1 in this transformation to deal with the neighbouring point.

EX(t, k) = µ(t, k) = Eη(t, k)EX(t− 1, k) + εEX(t− 1, k + 1) (5)

The discrete time Fourier transform is defined by:

g̃(λ) =

∞∑
n=−∞

g(n)eλin,

The inverse discrete time Fourier transform is given by:

g(n) =
1

2π

∫ 2π

0

g̃(λ)e−iλndλ.

Apply the transform, w.r.t k, to the expected value function (5):

µ̃(t, λ) =

∞∑
k=−∞

Eηµ(t− 1, k)eλik + ε

∞∑
k=−∞

Eηµ(t− 1, k + 1)eλik+λi−λi

=

∞∑
k=−∞

Eηµ(t− 1, k)eλik + ε

∞∑
n=−∞

Eηµ(t− 1, n)eλin−λi

= µ̃(t− 1, λ)Eη + µ̃(t− 1, λ)εe−λi

= µ̃(t− 1, λ)(Eη + εe−λi)

= [µ̃(t− 2, λ)(Eη + εe−λi)](Eη + εe−λi),

A recursion can now be observed for the Fourier transformed expected value function.

µ̃(t, λ) = µ̃(0, λ)(Eη + εe−λi)t

= µ̃(0, λ)

t∑
j=0

(
t

j

)
(Eη)t−jεje−iλj .

The inverse Fourier transform is preformed on the recursion. Since EX(0, k) <∞, the integral will not
diverge.

µ(t, k) =
1

2π

∫ 2π

0

µ̃(0, λ)

t∑
j=0

(
t

j

)
(Eη)t−jεje−iλje−λikdλ

=

t∑
j=0

(
t

j

)
(Eη)t−jεj

1

2π

∫ 2π

0

µ̃(0, λ)e−iλ(k+j)dλ

=

t∑
j=0

(
t

j

)
(Eη)t−jεjµ(0, k + j).

Which is the expression presented in the theorem.

Q.E.D
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Proof of Theorem 9 (A bound of V (t, k))
Here a proof for the bound in Case 1 will be presented, the proof for case 2 follows in a similar way.
Consider

V X(t, k) = Cov(X(t, k), X(t, k))

= Cov(η(t, k)X(t− 1, k) + εX(t− 1, k + 1) + ξ(t, k), η(t, k)X(t− 1, k) + εX(t− 1, k + 1) + ξ(t, k)

= Cov(η(t, k)X(t− 1, k), η(t, k)X(t− 1, k))

+ 2εEηCov(X(t− 1, k), X(t− 1, k + 1)) + ε2Cov(X(t− 1, k + 1), X(t− 1, k + 1)) + σ2
ξ

Under independence V (ζ1ζ2) = Eζ22V ζ1 + (Eζ1)2V ζ2 which leads to:

V X(t, k) = Eη(t, k)2V X(t− 1, k) + (EX(t− 1, k)2σ2
η + 2εEηCov(X(t− 1, k), X(t− 1, k + 1)) + ε2V X(t− 1, k + 1) + σ2

ξ .

Using that if X(t, k) is invariant under shifts in space, the variance is the same for all k, assuming that
Eηε > 0 (Case 1). However if Eηε < 0 the inequalities are reversed (Case 2). The following bounding
can be made:

−2εEηV X(t− 1, k) 6 2εEηCov(X(t− 1, k), X(t− 1, k + 1)) 6 2εEηV X(t− 1, k)

Using this bound the following is derived:

Eη(t, k)2V X(t− 1, k) + (EX(t− 1, k))2σ2
η − 2εEηV X(t− 1, k) + ε2V X(t− 1, k) + σ2

ξ

6V X(t, k) 6

Eη(t, k)2V X(t− 1, k) + (EX(t− 1, k))2σ2
η + 2εEηV X(t− 1, k) + ε2V X(t− 1, k) + σ2

ξ ,

Which is equivalent to,

E(η(t, k)2 − 2εη(t, k) + ε2)V X(t− 1, k) + (EX(t− 1, k))2σ2
η + σ2

ξ

6V X(t, k) 6

E(η(t, k)2 + 2εη(t, k) + ε2)V X(t− 1, k) + (EX(t− 1, k))2σ2
η + σ2

ξ .

Hence

E((η − ε)2)V X(t− 1, k)+(EX(t− 1, k))2σ2
η + σ2

ξ

6 V X(t, k) 6

E((η + ε)2)V X(t− 1, k)+(EX(t− 1, k))2σ2
η + σ2

ξ .

A recursion in time can now be obtained for the bounds. The upper bound will be shown but the lower
follows the same structure.

E((η + ε)2)
[
E((η + ε)2)V X(t− 2, k) + (EX(t− 2, k))2σ2

η + σ2
ξ

]
+ (EX(t− 1, k))2σ2

η + σ2
ξ .

= (E(η + ε)2)2V X(t− 2, k) + E((η + ε)2)(EX(t− 2, k))2σ2
η + E((η + ε)2)σ2

ξ + (EX(t− 1, k))2σ2
η + σ2

ξ .

The recursion will become:

(E(η + ε)2)tV (X(0, k)) +

t−1∑
i=0

E((η + ε)2)iσ2
ξ +

t−1∑
i=0

E((η + ε)2)t−1−i(EX(i, k))2σ2
η

The result presented is derived from this recursion and expectation is substituted with the result from
Theorem 8 under invariance of shifts in space, leading to:

(E(η − ε)2)tV (X(0, k)) +

t−1∑
i=0

E((η − ε)2)iσ2
ξ +

t−1∑
i=0

E((η − ε)2)t−1−i(EX(0, k))2(Eη + ε)2iσ2
η

6V (t, k) 6

(E(η + ε)2)tV (X(0, k)) +

t−1∑
i=0

E((η + ε)2)iσ2
ξ +

t−1∑
i=0

E((η + ε)2)t−1−i(EX(0, k))2(Eη + ε)2iσ2
η

Q.E.D
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Proof of Corollary 4 (Bound of Variance for large t)
This results follows form the bounds in Theorem 9. The first case is shown here but the proof for case
2 follows the same structure. Consider the upper variance bound presented in Theorem 9:

(E(η + ε)2)tV (X(0, k)) +

t−1∑
i=0

E((η + ε)2)iσ2
ξ +

t−1∑
i=0

E((η + ε)2)t−1−i(EX(0, k))2(Eη + ε)2iσ2
η

Then the following observations can be made when t→∞
1. If E(η + ε)2 < 1 the first term in the upper bound converges to 0.

2. The second term is a geometric sum and converges if E(η + ε)2 < 1 to
σ2
ξ

1−E(η+ε)2

3. Using that
∑n−1
i=0 a

ibn−i = an−bn
a−b , if a, b > 0 and a 6= b.

Since E(η + ε)2 < 1 ⇒ (E(η + ε))2 < 1 both are positive, not equal and less then 1 the last term
converges to 0.

With these three observations the upper bound presented is derived. The lower bound is obtained in the
same manor since E(η − ε)2 < 1 by assumption.
The uniform bound is obtained from the upper bound in Theorem 9 for case 1. By bounding the first
term with V X(0, k) and the last term with EX(0, k) since EX(t, k)2 6 EX(0, k)2 if Eη+ ε < 1, making
the last term a geometric sum. Then the following is obtained:

V (X(0, k)) +

t∑
i=0

E((η + ε)2)iσ2
ξ + (EX(0, k))2

t∑
i=0

E((η + ε)2)iσ2
η 6 σ2

X(0) +
σ2
ξ + µ2

X(0)σ
2
η

1− E(η + ε)2

This is the result presented.

Proof of Proposition 1 (Covariance of X(t, k) and X(s, k))
Let X(t, k) be a stochastic process defined by Definition 2, by using the partial recursion expression and
independence of η and ξ this result is obtained. Suppose further that 0 < s < t then we derive the
following using the partial recursion form Theorem 7:

Cov(X(t, k), X(s, k)) = Cov
(( t∏

i=s+1

η(i, k)
)
X(s, k) + ξ(t, k) +

t−1∑
i=s+1

( t∏
j=i+1

η(j, k)
)
ξ(i, k)

+ εX(t− 1, k + 1) + ε

t−1∑
i=s+1

( t∏
j=i+1

η(j, k)
)
X(i− 1, k + 1) , X(s, k)

)
= (Eη)t−sV X(s, k) + εCov(X(t− 1, k + 1), X(s, k))

+ ε

t−1∑
i=s+1

(Eη)t−iCov(X(i− 1, k + 1), X(s, k)).

This is the expression presented in the theorem and thus the proof is complete.

Q.E.D

Proof of Proposition 2 (Explicit expression of variance when Eη = 0)
This proof follows from the following recursion and the results from Theorem 8.

V X(t, k) = E(η + ε)2V X(t− 1, k) + σ2
ξ + EX(t− 1, k)

= (E(η + ε)2)2V X(t− 2, k) + E(η + ε)2(σ2
ξ + EX(t− 2, k)) + σ2

ξ + EX(t− 1, k).

By substituting in V X(t− 2, k) the recursion now becomes clear and the proof is concluded.
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Proof of Proposition 3 (Covariance in time, when Eη = 0)
This result is obtained form the following recursion, suppose that s < t and Eη = 0:

Cov(X(t, k), X(s, k)) = Cov(η(t, k)X(t− 1, k) + ξ(t, k) + εX(t− 1, k + 1), X(s, k))

= εCov(X(t− 1, k + 1), X(s, k)) = ε2Cov(X(t− 2, k + 2), X(s, k))

The recursion can be preformed until the point (s, k + s). Then the result from Proposition 4 can be
used to obtain the following:

Cov(X(t, k), X(s, k)) = εt−sCov(X(t− (t− s), k + (t− s)), X(s, k))

= εt−sε2sCov(X(t− (t− s)− s, k + (t− s) + s), X(s− s, k + s))

= εt+sCov(X(0, k + t), X(0, k + s)).

This is what is expressed in the proposition and thus the proof is conclude.

Q.E.D

Proof of Proposition 4 (Covariance in space, when Eη = 0)
Suppose the conditions of the proposition is fulfilled, then the following recursion can be made:

Cov(X(t, k), X(t, k + q)) = Cov(η(t, k)X(t− 1, k) + εX(t− 1, k + 1) + ξ(t, k) ;

η(t, k + q)X(t− 1, k + q) + εX(t− 1, k + q + 1) + ξ(t, k + q))

= ε2Cov(X(t− 1, k + 1), X(t− 1, k + q + 1))

= ε2(ε2Cov(X(t− 2, k + 2), X(t− 2, k + q + 2)))

The recursion can be continued until the initial time. Then the following is derived:

Cov(X(t, k), X(t, k + q)) = ε2tCov(X(0, k + t), X(0, k + q + t))).

Which is stated result.

Q.E.D

Proof of Proposition 5 (Diagonal covariance when Eη = 0)
Under the assumptions of the proposition and of Definition 2. This result is obtained by the following
recursion:

Cov(X(t, k), X(t− s, k + s) = Cov(η(t, k)X(t− 1, k) + ξ(t, k) + εX(t− 1, k + 1), X(t− s, k + s))

= εCov(X(t− 1, k + 1), X(t− s, k + s))

= ε
(
εCov(X(t− 2, k + 2), X(t− s, k + s))

)
= ... = εsCov(X(t− s, k + s), X(t− s, k + s))

= εsV X(t− s, k + s).

Q.E.D
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