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Abstract

The European Spallation Source, ESS, is set to become the world’s
brightest spallation neutron source. Spallation neutron sources pres-
ent unique challenges with regards to radiation shielding due to the
creation of a significant number of high energy neutrons during nu-
clear reactions in the spallation target. These can reach up to the
energy of the driving proton beam. Performing Monte Carlo simu-
lations of deep-penetration shielding problems is highly CPU inten-
sive, and with beamlines at ESS reaching up to 150 m in length, it
is a necessity to develop methods to utilize the available computing
power as efficiently as possible.

In this thesis a source biasing technique called a duct source is
implemented in Geant4. The technique reduces variance by uni-
formly generating particles along the length of the beamline and
altering the particle weights to keep the simulation physically valid.
In addition to angular biasing for anisotropic neutron sources, en-
ergy biasing is introduced in order to better study the high energy
component of the spectrum.

Figures of neutron currents in beamline sections show that the
duct source effortlessly transports neutrons arbitrary distances down
a guide. A model problem consisting of a 77 m long beamline with
multiple sections of shielding show that while analog simulations are
effectively unable to populate areas outside the shielding, the duct
source–particularly with energy biasing enabled–can provide neutron
population in virtually the entire geometry within an acceptable time
frame.

Additionally, the duct source is coupled with an algorithm for au-
tomatic weight window generation, and simulations show the tech-
niques to be complementary, with the duct source pushing particles
down the beamline and the weight windows pushing them laterally
toward the edges of the geometry.
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Chapter 1

Introduction

1.1 The Need for Neutrons

If the neutron had not been
discovered by Chadwick in 1932,
it would have been invented.

Bertram Brockhouse, 1994 Nobel
Prize laureate in physics [1]

There is no one-stop solution for probing the innards of objects. To the
general public, looking inside of opaque objects is virtually synonymous with
X-rays thanks to their long history of ubiquitous use in medicine. Far less well
known is that neutrons are at least as useful as material probes. The main
reason for this discrepancy in the public mind is that X-rays are much easier
to produce and work with. Neutrons, being electrically neutral and weakly
interacting, are difficult to control and manipulate. Even so, the first neutron
radiograph was successfully produced as early as 1935 [2], just three years after
the discovery of the neutron by James Chadwick [3]. A radiograph is a two-
dimensional attenuation map of an object; an X-ray of a broken bone is an
example of a radiograph.

Dimness is the Achilles’ heel of neutron sources in general. Even the most
powerful and sophisticated neutron sources are no brighter than a run-of-the-
mill X-ray tube, and advanced facilities such as synchrotrons are many orders
of magnitude brighter than their neutronic counterparts [2]. But despite the
challenges, the inherent properties of neutrons as material probes justify the
development of high brightness neutron sources.

For imaging purposes, X-rays and neutrons are largely complementary [4].
X-rays primarily interact with the electron clouds in materials and the primary
factor that determines penetration depth is electron density. Thus X-rays expe-
rience more and more attenuation as the atomic number of the probed material
goes up. Neutrons by contrast interact with the nuclei of the material, by a
variety of mechanisms such as elastic scattering, inelastic scattering, and ab-
sorption. Overall, the highest scattering cross sections are found among the
low-Z materials of the periodic table, with hydrogen as the most prominent
example, leading to strong attenuation for hydrogeneous materials. Scattering
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2 CHAPTER 1. INTRODUCTION

cross sections vary not only with element but also with isotope, providing a
mechanism by which isotopic composition can be studied or contrast can be
enhanced. The neutron can also experience magnetic scattering because of its
non-zero magnetic moment [2].

Thermal neutrons have energies of around 25 meV and wavelengths that are
on the same order as the spacing of atoms in many common materials. This
makes them attractive for use in diffraction studies of materials and objects [2].

High brightness neutron sources broadly come in two varieties, reactors and
spallation sources. In a nuclear reactor neutrons are continuously released as a
result of a nuclear chain reaction, sustained by nuclear fission. In a spallation
source, a target, typically composed of some heavy metal, is bombarded by
charged particles such as protons or deuterons, releasing a large number of
neutrons in every impact. A “spall” is a fragment of material, hence the term
“spallation” for the process.

1.2 The European Spallation Source

The European Spallation Source, ESS, is currently under construction in the
fields on the outskirts of Lund, Sweden, where it will become the next door
neighbour of the MAX IV synchrotron facility. When it becomes operational it
will be the brightest spallation neutron source in the world, delivering higher
peak and average fluxes than other neutron sources [5]. The first proton beam-on
is set to take place in the early 2020’s, with a suite of fifteen neutron scatter-
ing instruments and one test beamline under construction. The user program
is scheduled to begin in 2023. The facility will host 22 neutron scattering in-
struments in the future with the proton beam operating at a power of 5 MW
average and 125 MW peak. The operational phase is planned to last until 2065,
at which point the facility will be promptly decommissioned and dismantled [5].

ESS is a joint effort by 15 countries, around 40 in-kind partners, and over
130 world-wide institutions [6]. On May 28, 2009, the decision to place the
facility in Lund was taken in Brussels, although the final decision to actually
go ahead and build it was made at a later date [7]. Several European locations
had previously been contenders for the honor of being chosen as the ESS site,
including Debrecen in Hungary and Bilbao in Spain [5], which were the last
remaining contestants. Lund finally secured overwhelming support, in part due
to the area’s strong existing involvement in science and technology.

The original plans for a large European spallation facility, drawn up in 1995,
specified the proton beam power as 10 MW [8], a figure that was eventually
halved for technical and financial reasons. As of March, 2018, the budget of the
project is e1843 million according to the ESS website [6].

As is befitting of a modern large-scale, multi-country collaborative science
project, ESS is careful about its environmental impact. The project aims to
be carbon neutral over all and has established a collaboration with an energy
company to be wind-powered [8]. The area in which it is being built, formerly
tranquil Brunnshög in north-eastern Lund, is currently in an era of intense
expansion and activity as it becomes home to two major research facilities.
The area will become an entirely new part of Lund in its own right, and may
eventually become home to as many as 50,000 people [9]. To facilitate efficient
and environmentally friendly transportation of people to and from Brunnshög,
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the city of Lund is building a 5.5 km long tramway from Lund Central Station to
ESS, the ambition being that at least two thirds of the visitors and inhabitants
of Brunnshög shall arrive by tramway, bike, or on foot [10].

When ESS reaches its end-of-life, 47 years from the time of this writing, the
whole facility will be dismantled and the grounds on which it stands will be
returned to the state they were in before construction began. This process is
planned to take just five years, so that the experience of the employees who has
worked there can be utilized. There will be no usage restrictions on the land
afterwards [5].

1.3 Applications

ESS can be thought of as a microscope on steroids, revealing the structure and
interaction of matter at a wide range of scales in both space and time. Its far-
reaching capabilities will be utilized in many fields of research, including material
sciences, non-destructive studies of historical artifacts, medicine, food science,
life science, imaging, environmental studies, and fundamental physics [5]. Flex-
ibility is a key feature and the instruments have been chosen following input
from the extended neutron community to be eminently general-purpose. The
initial fifteen instruments are divided into four main categories: diffraction,
spectroscopy, large-scale structures, and engineering & imaging [11].

It is possible that ESS could answer a question that has confounded cosmol-
ogists for decades: why is there more matter than antimatter in the universe?
It is not currently known whether or not the neutron has an electric dipole mo-
ment. If it does, it could provide a mechanism by which the charge assymmetry
of the early universe arose, resulting in more matter than antimatter [5]. ESS,
with its world-leading flux, is a prime candidate to settle this question. Should
it turn out that the neutron does not have an electric dipole moment we at least
know to look elsewhere.

1.4 Radiation Background Issues

Unique to spallation sources is the presence of very high energy neutrons in
the source spectrum [12]. The highest-energy neutrons emanating from nuclear
reactors typically show kinetic energies of less than 20 MeV and how to shield
such neutrons is well understood [13]. At spallation sources, the neutron energies
can run much higher, up to the energy of the proton beam driving the spallation
process, which in ESS’s case is 2.0 GeV. This radiation is highly penetrating and
substantial shielding must be designed and employed for the safe and efficient
operation of spallation sources. How to optimize the design of the shielding is
a non-trivial task and the present work aims to provide one tool that can be
employed in the solving of this puzzle. Shielding typically represents a significant
fraction of the budget of a spallation source so figuring out how to get as much
value as possible from the material is important [14].

The high energy neutrons can make their way to the instruments, either
through the beamline, by scattering in the shielding, or scattering against the
sky or ground. This introduces noise, reducing the usability of the instruments
(see later chapters for a more detailed discussion about this problem.) They
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also pose a biological risk to personnel at and the areas surrounding a spallation
source if insufficiently shielded.

1.5 Project and Goals
Computer simulation is crucial tool in the development of efficient shielding, but
simulating particle transport through dense material is a highly CPU-intensive
task. Full simulation of a process (known as analog simulation) may therefore,
depending on the nature of the problem, lead to execution times that are un-
acceptably long. This is definitely the case when simulating shielding of long
neutron beamlines and as such it is of vital importance to employ one or several
techniques for intelligently spending the CPU time in a manner that maximizes
the value of the resulting data.

To illustrate the severity of the problem, consider a crude and simplistic
model of ESS. In this model the target emit spallation neutrons isotropically in
4π. The flux of this source is proportional to 1/r2 where r is the distance from
the surface of the source, and if we consider a straight beamline the neutron cur-
rent crossing the beamline wall falls off proportional to 1/r3 [15]. Consequently
this current, known as the wall current, is six orders of magnitude smaller at
r = 100 m than at r = 1 m. Analog simulation of this situation would produce
a huge number of particles crossing the beamline wall very close to the source,
and almost no particles making it all the way down the beamline. Beamlines at
ESS run up to 150 m in length, further aggravating the problem.

To alleviate this problem Niita et al. introduced a technique they dubbed
the duct source [15]. The idea is to generate particles uniformly along the
beamline walls and compensate the artificially high statistics further down the
guide by proportionally lowering the particle weight. Their implementation was
realized in a software package known as PHITS, a general-purpose Particle and
Heavy Ion Transport code System [16]. The present work aims to extend and
investigate this idea and to implement it in the free software C++-based particle
simulation package Geant4.



Chapter 2

Physics Overview

This chapter will give an overview of the neutrons’ journey from source to
detector, including moderators, shielding, and neutron optics. The problem
of the high energy background at pulsed spallation sources is discussed.

2.1 Properties of the Neutron

U

D D

Figure 2.1: The neutron
and its constituent quarks.

Neutrons are not fundamental particles. Like pro-
tons, neutrons are hadrons, i.e. particles that are
made up of quarks, see Figure 2.1. Both pro-
tons and neutrons are composed of up quarks
(with electric charge +2/3 e) and down quarks
(charge -1/3 e), with the proton consisting of two
up quarks and one down quark and the neutron
consisting of one up quark and two down quarks,
resulting in electrical charges of +1 e and 0, re-
spectively. Free neutrons undergo β-decay with a
half-life of about 10 minutes [17]. This is in con-
trast with protons, which are extremely stable.

The primary role in nature of the neutron is
to act as a kind of nuclear glue. Protons, being
positively charged particles, repel each other via
the electromagnetic force. This repulsion would lead to the disintegration of
any multi-proton nucleus were it not for the stabilizing presence of neutrons,
achieved through the strong nuclear force which acts attractively between nu-
cleons. The strong force is repulsive at very short distances, keeping the nuclear
density roughly constant for all nuclei [17].

The Coloumb repulsion will tend to overpower the nucleon-nucleon attrac-
tion as Z grows large. This is essentially because a nucleon acts only on its
immediate neighbours via the strong force, whereas the Coloumb force between
protons acts simultaneously on every proton in the nucleus [17]. The outcome
of this is that heavier nuclei are rich in neutrons for the sake of stability.

Neutrons are divided into groups according to their kinetic energy. There is
no one definitive way to apply this classification; Table 2.1 details one suggested
classification, by L’Annunziata [18].

5



6 CHAPTER 2. PHYSICS OVERVIEW

Energy Designation
< 3 meV Cold neutrons

3 - 400 meV Thermal neutrons
0.4 - 100 eV Epithermal neutrons
0.1 - 200 keV Intermediate neutrons
0.2 - 10 MeV Fast neutrons
> 10 MeV High energy (relativistic) neutrons

Table 2.1: Neutron classification by energy [18].

Room-temperature neutrons have an energy of 25 meV, and these are fre-
quently labeled thermal neutrons. A particle’s de Broglie wavelength is defined
as [17]

λ =
h

p
=

h

mv
(2.1)

where h is Planck’s constant, p is the momentum, m is the mass, and v is
the velocity (for high energy neutrons it is necessary to use the relativistic
mass.) The velocity v of a 25 meV neutron is 2200 m/s. Using this and the
neutron rest mass of 1.675 · 10−27 kg [17], Equation (2.1) yields the de Broglie
wavelength for a 25 meV neutron as 0.18 nm (1.8 Å). This value is close to
the interatomic distances in many materials; see for instance Linus Pauling’s
detailed 1947 article on interatomic distances in metals [19] and Allen et al. [20]
for organic compounds. Neutrons at about thermal energies therefore undergo
diffraction when passing through materials, and constructive interference results
for neutrons that satisfy Bragg’s law [21]

nλ = 2d sin(θ), (2.2)

where n is a positive integer, λ is the wavelength, d is the interatomic spacing,
and θ is the angle between the incoming neutron and the material lattice. ESS
makes prominent use of this diffraction to probe material structures, with several
beamlines dedicated to diffractometry.

Another attractive feature of thermal neutrons is that their kinetic energy
is of the same order as the excitation and deexcitation energies in condensed
matter systems [21].

2.2 The Spallation Process

The spallation process is driven by an energetic pulsed beam of protons im-
pinging on a target of high-Z material, such as tungsten or mercury [21]. This
process is endothermic [22] and cannot therefore be used as an energy source.
However, it can be used in conjunction with a subcritical reactor to drive a
fission process in what is known as an accelerator-driven system (ADS). This
fission process can in turn generate net energy. ADSs can further be used to
transmutate nuclear waste, rendering it inert or into a form that is easier to
store safely.

Fission is intrinsically poor in terms of neutron yield, yielding only about 2.5
neutrons per fission event on average [23]. The yield per particle for spallation
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Figure 2.2: Spallation neutron yield as a function of energy for a lead target,
given per charge of the projectile. Figure reproduced from Noboru Watan-
abe [24]. © IOP Publishing. Reproduced with permission. All rights reserved.
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is much higher, as can be seen in Figure 2.2; about an order of magnitude for a
2 GeV proton projectile.

The neutron yield increases with the mass of the target nucleus [22], war-
ranting high-Z materials. Uranium targets, with Z = 92, yield about twice
as many neutrons as the lead target (Z = 82) shown in Figure 2.2, but is not
used because of complications arising from fission and metallurgical considera-
tions [22].

The target chosen by ESS is a rotating tungsten (Z = 74) wheel, 2.5 m
in diameter, and helium-gas cooled; using helium as coolant is advantageous
because it is inert [5]. The rotation helps distribute both the heat and the
mechanical stress incurred by the proton beam. The target wheel’s expected
lifetime is five years, after which it will have to be replaced.

The proton’s de Broglie wavelength is on the order of 10−16 m at ∼ GeV
energies, which is significantly smaller than the diameter of a heavy nucleus.
For this reason the interaction between the projectile and the nucleus is treated
as a series of collisions between the incident particle and the individual nucleons
in the target nuclei [22]. This is called a cascade model. Each collision trans-
fers kinetic energy to the nucleons, heating the nucleus. The struck nucleons
may subsequently collide with other nucleons, causing an intra-nuclear cascade,
wherein pion production and emission of high energy secondary hadrons oc-
cur [24]. These particles can, if sufficiently energetic, cause further intra-nuclear
cascades in other nuclei; this is called an inter-nuclear cascade [22].

The intra-nuclear cascade leaves the nucleus in a highly excited state and it
deexcites by isotropically evaporating lower-energy (less than 10 MeV) particles,
most commonly neutrons [24]. The nuclear spallation process is depicted in
Figure 2.3.

2.2.1 The Case for Protons

As Figure 2.2 shows, deuterons–the nuclei of deuterium (2H)–are ideal for trig-
gering spallation, cost notwithstanding. Protons emerge as the best overall
option after also taking financial aspects into account [24].

A positively charged particle entering the target is far more likely to interact
with an electron than a nucleus since the nuclei of the target material only
account for a tiny fraction (about 10−15) of the volume. Coloumb scattering
against electrons is for this reason the dominant mechanism by which the particle
loses energy in the material at lower energies [17]. The particle interacts with
multiple electrons simultaneously, causing it to lose energy continuously until
it–if the slab of material is thick enough–has no kinetic energy at all left. The
distance travelled at this point is called the range of the particle and is a well-
defined quantity that fluctuates marginally around a mean value [17]. The range
is density-dependent and therefore frequently multiplied by the material density,
yielding a quantity that is confusingly also known as the “range”.

It is important to note that the concept of range assumes that no hadronic
nuclear interactions take place. This is a reasonable assumption at energies
below about 100 MeV for a typical spallation target material such as lead [26].
At higher energies, however, the probability for nuclear interactions becomes
significant, and consequently the range and the actual penetration depth start
to diverge. For a given energy, the average distance travelled between nuclear
collisions is called the mean free path and denoted λ. It is typically given
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Figure 2.3: The nuclear spallation process with possible interactions in the
intra-nuclear cascade model. Fission only occurs in heavier target such as ura-
nium. Figure reproduced from Noboru Watanabe [24]. © IOP Publishing.
Reproduced with permission. All rights reserved.

in units of g·cm−2, in a similar fashion as the range. The mean free path is
approximately constant at proton energies above 100 MeV and is given by [26]

λ = 33 ·A1/3, A > 1 (2.3)

where A is the mass number of the target material.
It follows from this discussion that the range is required to be greater than

the mean free path for spallation to occur reliably. In mathematical terms, the
probability of a nuclear collision is given by [24]

Pn = 1− exp(−R/λ), (2.4)

so an interaction probability in excess of > 95 % requires R > 3λ. A comparison
between the range and the nuclear collision probability is given in Figure 2.4.

R is proportional to A/Z2 [24], where A is the mass number, so it is dis-
advantageous to use particles with Z > 1. The deuteron’s advantage over the
proton stems from its higher mass number, but the difference is not large enough
to warrant the increased cost.

2.2.2 Notes on the Accelerator

The job of accelerating the protons falls on the ESS Linac, which will be the
world’s most powerful linear accelerator. The distance from ion source to the
center of the target is just over 600 m, with the actual accelerator accounting
for 443 m [5]. It accelerates protons in pulses, with each pulse lasting 2.86
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ms and a repetion rate of 14 Hz. The pulse duration is a standout feature
of the European Spallation Source, which is the first ever so-called long pulse
spallation source (LPSS) [27]. Previous spallation sources are of a type called
short pulse spallation sources (SPSS), featuring pulse lengths on the order of
µs. In an LPSS the proton pulse lasts considerably longer than the time it takes
for the neutrons to thermalize in the moderator [22].

The LPSS concept simplifies things on the accelerator side, as it is easier
to achieve high beam power with longer pulses. Thus a high-powered SPSS
would require complex beam compression mechanisms in order to achieve µs
pulses, a problem that is bypassed by directly utilizing the longer pulses [28].
In particular, unlike SPSSs, an LPSS does not require a so called compressor
ring [24]. A compressor ring, also known as an accumulator ring, is a very
substantial piece of equipment; for example, the AR at the Spallation Neutron
Source (SNS) in Oak Ridge, Tennessee, has a circumference of 221 m [29]. It
takes ms-long pulses of H− ions as input, strips the ions of their electrons, and
outputs 0.5 µs pulses of protons.

2.3 Moderation

Figure 2.5 shows a comparison between unmoderated spallation and fission spec-
tra. The spallation spectrum is for a 600 MeV proton impinging on a tungsten
target. The ESS unmoderated source spectrum is even harder since the proton
energy is 2.0 GeV in that case. The neutrons that are useful for scattering ex-

Figure 2.5: Comparison of unmoderated spallation and fission spectra. Credit:
N. V. Shetty, 2013 [30]

periments are in the cold and thermal energy ranges, far lower than the “naked”
spectrum. The neutrons coming out of the target therefore have to be moder-
ated, i.e. slowed down.
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A good moderator decreases the neutron energy without affecting the source
brightness. Thus, roughly speaking a good moderator needs to have a high
scattering cross-section and low absorption cross-section. Hydrogen, in pure
form or in a mixture with high hydrogen content, is an obvious option since it
has the highest elastic scattering cross-section for neutrons. It takes, on average,
just 14.5 neutron-hydrogen collisions to slow a 2 MeV neutron down to 1 eV [22].
Deuterium is also an option with the advantage that the absorption cross-section
for thermal neutrons is lower than for hydrogen, since it already has a neutron.

The best moderator option for an LPSS is para-H2 [27], one of the two pos-
sible so called spin isomers of molecular hydrogen. In para-H2, one proton is
aligned spin-up and the other spin-down. The other spin isomer, where the spins
are parallel, is called ortho-H2. The low energy scattering cross-section differs
between the two isomers, with increased mean free path for thermal and, in
particular, cold neutrons in para-H2; this affects directionality of the emerging
neutrons [27]. It is essential that the moderator is surrounded by a reflector in
order to maximize brightness [27], typically composed of beryllium [21]. Open-
ings in the reflector allow for beam extraction.

Of crucial importance to the resulting spectrum is the temperature of the
moderator. The emerging neutron energy spectrum roughly follows a Maxwellian
distribution, centered around the temperature of the moderator. This is demon-
strated in Figure 2.6 [24] for a methane moderator. To enhance the flux of cold
neutrons it is therefore necessary to keep the moderators at low temperatures.

Figure 2.7 shows the neutron spectrum emerging from the moderator as-
sembly at ESS. This figure was produced in Geant4 using data adapted from
an MCNP (Monte Carlo N-Particle Transport Code) input file, which serves as
part of the input data for the simulations performed for this thesis1. MCNP
is a widely used proprietary software package for Monte Carlo simulation of
neutron, photon, and electron transport problems [31], developed by the Los
Alamos National Laboratory.

The source data was calculated for the NMX beamline, a long beamline that
is dedicated to crystallography. The data was calculated at the entrance of the
beamline, 2 m from the moderator surface. Note that a significant high energy
component remains as part of the spectrum.

2.4 Neutron Optics
As with rays of light, neutron beams can be bent and aimed at a certain spot in
order to maximize the beam brilliance at the instrument station [14], although
the efficiency of neutron optics is lower than their photonic counterpart.

For light, the refractive index n for a medium is defined as

n =
c

v
(2.5)

where c is the speed of light in vacuum and v is the speed of light in the medium.
As c ≥ v, it holds that n ≥ 1 under normal circumstances (although there exist
exotic possibilities for n < 1 [32].) As per Snell’s law, this can lead to the
phenomenon of total internal reflection [33]. This means that, when the angle

1I would like to thank Valentina Santoro of the Neutron Shielding and Optics Group at
ESS for supplying the MCNP source data.
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Figure 2.6: Effect of moderator temperature on the resulting neutron spectrum.
Note that higher energies are shown to the left and lower energies to the right.
Figure reproduced from Noboru Watanabe [24]. © IOP Publishing. Repro-
duced with permission. All rights reserved.
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Figure 2.7: Moderated spectrum from the ESS target station at the entrance of
the NMX beamline, normalized to unity.

of incidence is small enough, a ray of light coming from the denser medium is
completely reflected against the interface between regions of higher and lower
refractive indexes. This is the basis of fiber optic cables, which can transmit
optical signals over vast distances [33].

Neutrons similarly have a refractive index given by

n = 1− λ2Nb

2π
+ iλ

Nσa
4π

, (2.6)

where λ is the neutron wavelength, σa is the absorption cross-section, N is
the material’s atomic number density, and Nb is called the neutron scattering
length density [21]. For cold neutrons n is typically smaller than unity in most
materials, leading to total reflection below a critical angle when the neutrons
coming from air or vacuum encounter a dense material. Using this phenomenon
it is possible to construct neutron guides, a kind of neutronic counterpart to
the fiber optic cable. Furthermore, using Equation (2.2) (Bragg’s law), it is
possible to construct layered materials that increase the critical angle for cold
and thermal neutrons [21]. This is called a neutron supermirror.

2.5 Shielding

The high energy hadrons causing the inter-nuclear cascade discussed in Sec-
tion 2.2 have the unfortunate side-effect of forming an intense pulse of high
energy neutrons that is very difficult to eliminate. At a pulsed spallation source
it is called a prompt pulse because the extremely high velocity of the parti-
cles means that the time-of-flight (ToF), as measured by the detector setup,
is practically zero [13]. The velocity of a 2.0 GeV neutron is 0.95c, five or-
ders of magnitude higher than a thermal neutron. Eliminating the high energy
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background is important not only for safety but also because it decreases the
signal-to-noise ratio, S/N, in the scientific instruments, degrading the results.

The prompt neutrons have the ability to make their way to the detectors by
a variety of paths. One is to penetrate the shielding, possibly passing through
without interaction, or scattering against the nuclei of the shielding. The bulk
shielding around the target must be sufficient to reduce this radiation to an
acceptable level. The amount of shielding necessary is substantial; typically,
about 10 % of ∼ GeV neutrons make it through 1 m of shielding [14]. Common
shielding materials include steel/iron and concrete.

The emission of high energy radiation in the spallation process is also strongly
angle dependent, peaking around the direction of the proton beam [22]. Thus
no instruments at ESS are placed in the area directly behind the target, as seen
from the accelerator. Shorter beamlines are also not placed in the vicinity of
the beam direction for this reason.

A second possibility is for the high energy neutrons to travel down the beam-
line. This is a tricky problem to solve, as the beamline obviously must let
neutrons pass. Two strategies for dealing with this are to build curved beam-
lines and to place choppers in the beamline path. The idea behind the curved
beamline is to use neutron optics (see Section 2.4) to bend the beam of use-
ful neutrons toward the detector area whilst the high energy neutrons continue
along a straight path, into the shielding. This process causes degradation of the
neutron signal with curvature, and its use is a matter of optimization–it is not
appropriate in every situation.

A chopper is a kind of rotating shutter that is synchronized with the proton
beam. A significant reduction of prompt neutrons can be achieved by keeping
the chopper closed at the time of the pulse and subsequently opening it when
the cold and thermal neutrons arrive.

A third way the prompt neutrons can reach the detector area is a phe-
nomenon known as skyshine. This occurs when an energetic neutron passes
through the shielding, completely escaping the facility, and subsequently scat-
ters against the outside air and makes its way back into the detector area.
Particles that scatter against the ground are analogously called groundshine.

High energy particles escaping the primary shielding around the target have
the ability to create secondary particle cascades anywhere they go, such as in the
shielding near the detector area, and have a tendency to travel down gaps and
through shielding weak points [14]. Such weaknesses may be difficult to identify
and as such it is of great interest to perform accurate and efficient shielding
simulations before the fact.



Chapter 3

Monte Carlo Simulation

This chapter will give an overview of the Monte Carlo method and describe how
to quantify the errors inherent in the method. The concept of variance reduction
(and why it is necessary) is introduced, and several techniques for reducing the
variance are presented.

3.1 Overview

Monte Carlo simulation is the process of sampling a large number of stochastic
events in order to obtain an average behaviour [34]. For example, determining
beforehand where a particle of a certain energy and direction of travel will end
up after having scattered through dense material is pretty much impossible as
there are simply too many variables involved. In principle, the Monte Carlo
method solves this problem rather elegantly by simulating the event several
times. The resulting distribution of particles is, if the simulation is done in a
physically valid way, what can be expected to happen should the experiment be
conducted in real life.

The history of the Monte Carlo method stretches deep into the past, and well
pre-dates the computer. But it was the development of the modern computer
in the 1940’s that sparked the ripening of the method into a tool with extensive
applications in particle transport problems and other areas. It’s most prominent
pioneers were Stanislav Ulam, Enrico Fermi, and John von Neumann [35].

Direct simulation of the full physical situation is called analog simulation.
Implementation of an analog simulation is straightforward and dependable, but
for many problems the CPU-time required to achieve accurate results with ana-
log simulation is prohibitively long [35]. As an example of this problem, consider
the Swiss Spallation Neutron Source, SINQ. The target station is surrounded by
a shielding “monolith” consisting of 4.5 m of steel followed by 30 cm of boron-
infused concrete [14]. Here the neutron intensity outside the shielding can be as
much as 15 orders of magnitude lower than the beam intensity [14], rendering
analog simulation entirely unfeasible. Similar situations occur for many geome-
tries. The problem is almost intrinsic to the nature of shielding simulations, as
containing radiation is the actual purpose of shielding in the first place. Thus
evening out the particle fluxes across the geometry, or parts of it, is central to
the success of MC simulations. Variance reduction (see Section 3.3) works to

16
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make these kinds of problems tractable.
A natural consequence of the basic premise of the Monte Carlo method is

that a large number of samples, or trials, need to be made in order to achieve a
meaningful result. Therefore MC simulation is necessarily CPU-intensive.

3.2 Relative Error

The relative error is used as a measure of the precision of the simulation, and
by extension how useful the results are. It is defined in this context as [36]

Re =
σx̄
|x̄|

(3.1)

where σx̄ is the standard deviation of the sample mean (i.e. a measure of the
variation of the mean) and x̄ is the average score. If the number of trials is N
then x̄ is obtained as

x̄ =
1

N

N∑
i=1

xi. (3.2)

where xi is the ith score. The xi’s are independent and identically distributed.
The real expectation value 〈x〉 of a tally corresponding to some physical

quantity can’t be calculated directly and is approximated by the mean value
x̄. According to the strong law of large numbers it holds that x̄ → 〈x〉 as the
number of trials N →∞ [36].

The standard deviation of the sample mean σx̄ can be calculated from the
standard deviation σ of the samples themselves using the properties of variance.
The sample variance is given by

σ2 =
1

N − 1

N∑
i=1

(xi − x̄)2 (3.3)

and can be calculated directly. Using Equations (3.2) and (3.3) and basic prop-
erties of variance it is possible to calculate σ2

x̄ as

σ2
x̄ = Var(x̄) = Var

(
x1 + x2 + . . .+ xN

N

)
= Var

(x1

N
+
x2

N
+ . . .+

xN
N

)
=

1

N2
Var(x1) +

1

N2
Var(x2) + . . .+

1

N2
Var(xN )

=
1

N2

(
Var(x1) + Var(x2) + . . .+ Var(xN )

)
,

and since every xi has the same variance Var(xi) = σ2

σ2
x̄ =

1

N2
(N · σ2) =

1

N
σ2. (3.4)

Thus
σx̄ =

σ√
N

(3.5)
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Figure 3.1: Relative error vs number of trials with σ = |x̄| = 1.
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and consequently

Re ∝ 1√
N
. (3.6)

Figure 3.1 shows a plot of Equation (3.1) for the case σ = |x̄| = 1. The con-
clusion is that the relative error decreases slowly with increasing N . Achieving
a ten-fold improvement in the relative error requires a hundred-fold increase in
N . This is the root cause of why Monte Carlo simulation is CPU-intensive [36].
Table 3.1 presents guidelines for assessing simulation precision.

It is important to note that a high precision doesn’t necessarily mean that
the simulation is physically valid or accurate. The precision merely measures
the uncertainty of x̄. But systematic errors can cause x̄ to deviate from the
true physical quantity that is sought, due to an incorrect model, flaws in the
simulation software, or user error [37]. Lack of convergence in simulations may
also cause loss of accuracy, e.g. a rare event carrying very high statistical weight
could “dislodge” x̄.

Relative error Assessment
0.5 - 1 Garbage
0.2 - 0.5 Factor of a few
0.1 - 0.2 Questionable
0.05 - 0.1 Generally reliable except for point detectors
< 0.05 Generally reliable for point detectors

Table 3.1: Guidelines for judging the precision of Monte Carlo simulations.
From the MCNP manual [37].

3.3 Variance Reduction

As Figure 3.1 shows, efforts to reduce Re by increasing the number of trials
quickly suffer diminishing returns. Solving computationally difficult problems
therefore require a more sophisticated approach to variance reduction. This
essentially entails “smearing” the relative error over the region of interest, im-
proving the relative error in areas of poor statistics at the expense of some loss
of precision in areas of high statistics. Of course, the variance reduction must
not lead to changes in the expected result of the simulation–it must remain
physically valid.

Variance reduction can be performed locally, i.e. in a delimited section of
the geometry, or globally across the entire geometry. The two types are abbre-
viated as LVR and GVR, respectively. LVR problems also are frequently called
source-detector problems. The best choice depends on the type of problem and
the sought quantity. A GVR approach is often preferred for deep-penetration
shielding problems at spallation sources as it is necessary to know the flux levels
throughout the model [38].

Variance reduction has been in use throughout the history of Monte Carlo
simulation itself, and over the years a multitude of techniques have been devised.
Which technique, or combination of techniques, to choose–if any–for a given
problem is not always a trivial decision as it depends on the type of problem [34].
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3.4 Source Biasing
An intuitive way to reduce variance is to increase sampling of events that are
relatively improbable but important in the context of the problem. This can
be done with regard to position, direction of travel, and energy. In the spatial
dimension, this can be thought of as artificially “aiming” the source at the areas
where increased statistics are desired. The biased particle weights are adjusted
to avoid skewing the result, with the governing formula given by [34]

wb · pb = w0 · p0 (3.7)

where w0 and p0 refer to the unbiased weight and sampling probability, and wb
and pb refer to the biased dittos. Source biasing is strongly problem-dependent
and using it successfully requires a good understanding of the problem at hand.
A detailed account of a source biasing implementation for long neutron beam-
lines is given in Chapter 4.

3.5 Implicit Capture
Possibly the simplest VR technique is implicit capture. In each collision between
the particle and the material there exist a possibility, Pa, of the particle being
absorbed. In the analog case it is simply absorbed and the simulation continues
with a new particle. But when implicit capture is employed, the particle is
instead allowed to continue with a reduced statistical weight. The new weight
is calculated as [35, 39]

wnew = (1− Pa) · wold (3.8)

where wold and wnew are the weights before and after the collision, respectively.
This allows the particle to contribute to tallies in regions well beyond the area
where it would be absorbed in reality. The technique has proven simple, de-
pendable, and successful enough to be enabled by default in the MCNP family
of codes [39]. This is not the case in Geant4, however [38].

3.6 Russian Roulette
Over time, repeated application of implicit capture (or other VR techniques)
may lead to very low statistical weight for the Monte Carlo particle. At some
point this leads to wasteful use of CPU resources as the particle that is being
followed contributes very little useful information to the final tally. A game of
russian roulette was devised to deal with this problem [39].

Two options for action are available when the weight of an MC particle
falls below a threshold value, wth, for which it is decided that it is no longer
meaningful to continue tracking the particle. They are

(a) kill the particle with probability Pkill, and

(b) continue tracking the particle with increased weight.

The increased weight in option (b) compensates for the weight of the particles
that are killed when option (a) is chosen. This is necessary in order to keep the
final tally unbiased.



3.7. GEOMETRY SPLITTING 21

There are two alternative implementations as to how the game is played.
One is to fix the probability of survival

Psurvive = 1− Pkill (3.9)

to a specified value and adjust the weight of survivors according to [35]

wnew =
w

Psurvive
(3.10)

where w < wth is the weight of the particle before the game. Alternatively,
wnew > wth can be fixed and the survival probability calculated as

Psurvive =
w

wnew
. (3.11)

In both cases the fixed variable can be set to different values depending on the
importance of the region in which the game is played [35]. It is worth noting
that the russian roulette technique decreases CPU utilization at the expense of
increased variance.

3.7 Geometry Splitting

As opposed to russian roulette, which deals with low-weight particles, geometry
splitting takes higher-weight particles and splits them into several lower-weight
particles. The process takes place on the surfaces between regions of disparate
assigned importances and allows particles that happen to enter regions of high
importance to contribute more statistics than they would in the analog case. If
the weight of the original particle is w, and the number of fragments is n, then
the weight of each fragment after the splitting is w/n. The direction of travel is
decisive: travellers from regions of high importance crossing into regions of low
importance play a game of russian roulette rather than splitting [35].

In practice the geometry is divided into cells with each cell having its own
importance I (as opposed to defining unique importance values for each and
every surface.) As described by Lux and Koblinger [35], the splitting can be
performed as follows. Let the weight of each fragment be

w′ =
w

n
=

1

I
(3.12)

and a the fraction between the weight of the original particle and the weight of
the fragments, i.e.

a =
w

w′
. (3.13)

Three possibilities emerge:

1. a is an integer. The original particle is split into n = a fragments (if a = 1
nothing happens.)

2. a is a real number greater than 1, i.e. a = n+v with n ≥ 1 and 0 < v < 1.
The particle is split into either n + 1 fragments with probability v, or n
fragments with probability 1− v.
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3. a is a real number smaller than 1, i.e. 0 < a < 1. Rather than splitting,
the incoming particle plays russian roulette with the survival probability
a.

Geometry splitting can be an efficient method for performing variance re-
duction. The main hurdle for its use is that setting up the importance values
requires significant skill and effort by the user, and optimization of them proves
elusive in many realistic geometries [35].

3.8 Weight Windows . . .
Variance reduction by weight windows is conceptually similar to the geometry
splitting described in Section 3.7, but allows a range of weights for the fragments
in contrast to the geometry splitting requirement that every particle crossing
the cell surface must split or rouletted into fragments of a specified weight.
The idea of a weight window cell is to make sure that the weight of every
particle that dwells in the cell must be between an upper and a lower bound,
i.e. wL ≤ w ≤ wU where w is the weight of the particle.

If the initial particle weight is above wU then it is split until the fragments’
weights are inside the window. Conversely, if w < wL then a game of roulette
is played (see Section 3.6). In the case of roulette the survival probability is
calculated using a fixed survival weight wS , as described by Equation (3.11)
(with wnew = wS). Obviously it must hold that wL < wS < wU . Nothing
happens in case the weight of the incoming particle is already within the weight
window. This is analogous to the case where a = 1 in geometry splitting. A
conceptual weight window cell with its parameters is depicted in Figure 3.2.

Some general recommendations regarding how to set the window bounds and
the survival weight have been in use ever since the weight window method was
devised for MCNP by Thomas E. Booth in the late 1970’s [40]. Let

CU =
wU
wL

(3.14)

CS =
wS
wL

, (3.15)

i.e. wU is CU times greater than wL etc. Then it is generally recommended
that CU = 5 and CS = 3, although the success of the simulation is relatively
insensitive to the exact values of these parameters [40]. CU should never be set
below 2 however, as this would result in particles with initial weights above wU
being split into fragments of weights below wL, immediately forcing them to
play roulette.

Although the weight window method has proven very successful in the many
years since its conception, it does have a rather well-documented problem with
excessive execution times caused by “oversplitting” in some circumstances [40,
41]. A high-weight particle encountering a cell with a much lower wU will have
to split a large number of times before it fits within the weight window, causing
heavy CPU utilization as the program has to track each fragment. The number
of MC particles can increase by several orders of magnitude in extreme cases [40].
This leads to so called long histories (LH), where the computer spends hours,
days, or even weeks tracking fragments that all originate with a single initial
particle, with little value added to the overall result.
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Figure 3.2: A weight window cell.

As part of the general recommendations by Booth, the maximum number
of fragments a particle is allowed to split into is 5. This helps mitigate the
oversplitting problem in some cases, but hardly helps at all in many other cir-
cumstances [40]. Each fragment is itself allowed to split 5 times, and so on;
the splitting can be set to take place on the cell boundary or on collision with
particles in the material, or both. The phenomenon does not seem to be caused
by the weight window method per se, but by particle splitting [41, 42].

This can be a serious problem in MCNP as the simulation cannot be ter-
minated prematurely [41]; the LH must be allowed to terminate naturally. No
tally results are saved if the simulation is forcefully aborted. Some methods to
combat this problem have been developed, such as dynamically adjusting the
weight windows [41]. Geant4 allows the user to enforce user limits, such as
limiting the time an event is allowed to take.

3.9 . . . and Weight Window Generators
The previous section made no mention of the precise value of the weight window
bounds, notably how to set wL, which the others are set in relation to. It is
possible–if laborious–to set the weights by hand [38, 40]. A much more sophis-
ticated and user-friendly method to automatically set the WW cells for GVR
problems was devised by Cooper and Larsen [43], developed for MCNP by van
Wijk et al. [39], and implemented in Geant4 by Stenander and DiJulio [38].
Methods to set the WW cells automatically are called weight window generators
(WWG’s).
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The method is based on running a pre-simulation to obtain flux and relative
error data for the cells. Two alternative approaches, termed the flux-based and
Re-based approaches, for setting the cell lower weight bounds wL are detailed
in References [38, 39]. For the flux-based approach, wL in cell i is set according
to

wL =

(
CU + 1

2

)−1
φi

Max(~φ)
(3.16)

where φi is the scalar flux in cell i, ~φ is a vector containing the fluxes across the
geometry, and CU is the ratio between wU and wL as seen in Equation (3.14).
For the Re-based approach wL is set as

wL =

(
CU + 1

2

)−1 Min( ~Re)

Rei
(3.17)

where Rei is the relative error in cell i and ~Re is a vector containing the rel-
ative errors across the geometry. An advantage of the Re-based approach is
that it leads to smaller differences between adjacent cells, since Rei ∝ 1/

√
φi.

This helps combat the oversplitting/long history problem described in Sec-
tion 3.8 [39].

It might turn out that some particularly hard-to-reach cells receive zero flux
during the presimulation. van Wijk et al. [39] deals with this situation by setting
the relative error to 100 % (for the Re-based approach) or letting the flux be zero
(for the flux-based approach). In the latter case the simulation is simply analog
locally in the cell. Unfortunately, weight windows cells in Geant4 cannot be
turned off; Stenander deals with this problem by setting the lower weight bound
according to the the lowest non-zero flux value encountered globally in the cell
mesh [44].



Chapter 4

Implementation in Geant4

This chapter will give an account of the implementation of the duct source
generator in Geant4 and an overview of the geometry used as a test case
for the generator. The geometry is a simplified model based on the DREAM
beamline at ESS [45, 46].

4.1 About Geant4

Users of Geant4 are expected to develop their own, free-standing applications,
compiled and executed like any other computer program. This is in contrast to
other particle transport codes and provides extensive freedom, flexibility, and
responsibility. Geant4 itself is also free and open source software, allowing
competent users to modify it according to their requirements and to distribute
their modifications freely under the conditions stipulated by the Geant4 Soft-
ware License (see Reference [47]).

Included in the Geant4 source is a large selection of example programs,
showcasing and demonstrating features of the toolkit. The examples range from
basic to advanced, and many highlight specialized features. Users are encour-
aged to use a suitable example as a starting point for their own application
instead of starting from scratch. The application presented in this chapter orig-
inally evolved from basic example B1, although very little of that code remains.

For more information about Geant4, or to acquire a copy of the latest
source code, see the Geant4 website (Reference [48]).

4.2 Structure of a Geant4 Program
The structure of a Geant4 program is fundamentally based on the concepts
of sessions, runs, and events. A session is composed of one or more runs, and
a run is composed of many sequential events. A session is started by running
the program and concludes when the program is closed. Sessions can be either
interactive through a graphical user interface or be conducted in "batch mode"
in a terminal without a GUI. The former is suitable for testing/debugging and
visual inspection of the geometry while the latter is best suited for long runs
as GUIs use up valuable computer resources. Which mode to use is up to the
programmer to decide, one common way is to run the program in interactive
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mode if it is run without command line arguments and in batch mode if an
argument (e.g. a macro file) is specified by the user.

A run is started by issuing a /run/beamOn command, in the spirit of real-
life experiments. This triggers the generation of a series of events. Events are
in turn subdivided into smaller units of simulations such as tracks and steps
(steps being the smallest unit of simulation.) By default, Geant4 performs the
simulation silently and it is up to the user to add scorers to the simulation in
order to register hits.

Geant4 relies heavily on object-oriented principles, allowing users to ex-
tend base classes as necessary, without interfering with the core functional-
ity. Two important abstract classes are G4VUserDetectorConstruction and
G4VUserPrimaryGeneratorAction, both of which contain virtual functions the
user needs to supply implementations of. These classes concern the problem
geometry and generation of primary particles, respectively.

4.3 Setting Up the Simulation
The main function prepares the simulation. It allows the user to choose what
type of source to use (duct source or analog), optionally set a time limit for the
simulation, and to choose whether or not to use weight windows.

Random number generation is an important part of Monte Carlo simulations,
and the main function is responsible for picking a random engine and setting
the seed. Random number generation requires some care with regards to thread
safety, and instantiating the random engine in main and using the G4Random
library to shoot random numbers guarantees thread safety. As is common prac-
tice, the random seed is set using the current Unix time. The random seed is
printed in the program output so that a run can be repeated if needed.

Whether Geant4 runs in multi- or singlethreaded mode is decided when it
is compiled. It is useful to acknowledge both possibilities in the user code since
some statements, such as the number of worker threads, only make sense in MT
mode. This is included in main like so:
#ifdef G4MULTITHREADED

auto run_manager = new G4MTRunManager;
G4int n_cores = G4Threading :: G4GetNumberOfCores ();
run_manager ->SetNumberOfThreads(n_cores);

#else
auto run_manager = new G4RunManager;

#endif

Here a multithreaded run manager is created when multithreading is enabled,
and the number of worker threads is set to the maximum available. Otherwise
a singlethreaded run manager is created.

The program utilizes the Geant4 concept of parallel worlds. Three worlds
exist in parallel. The first is the world containing the mass geometry, including
shielding. The class containing the mass geometry extends G4VUserDetector-
Construction and is dubbed BeamlineConstruction. The second world, de-
scribed in wwgImportanceDetectorConstruction, contains the weight window
cells, which are filled with vacuum. The third world, ParallelWorld, contains
a mesh of flux detectors, also vacuum-filled, and roughly sized 25× 25× 25 cm
to correspond with real dosimeters used in practice at neutron facilities. The
parallel worlds are created in main.
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4.4 Physics List

It is mandatory for the user to tell Geant4 what physics processes to simulate.
This is because Geant4 cannot possibly simultaneously simulate every type
of interaction in every energy range accurately [49]. Also, certain types of
interactions may be irrelevant for the problem at hand and valuable CPU time
should not be spent simulating such physics.

For these reasons the user must choose which types of particles and en-
ergies they deem to be important for the problem at hand. This is done by
supplying a physics list in the main function. The user may write their own
physics list or pick a standard list included in Geant4. The standard physics
list QGSP_INCLXX_HP is used in this thesis as it has given reliable results previ-
ously [50].

The name stems from the models used in the physics list. QGSP means that
it uses the Quark-Gluon String model at high energies. The Liège Intranuclear
Cascade model for C++ [51] (INCLXX) is used at intermediate energies. The HP
(High Precision) part indicates the use of the NeutronHP model at low energies,
for accurate simulation of neutron scattering at energies below 20 MeV [52].

4.5 Neutron Generation

Generation of primary particles (neutrons) takes place in the DuctSourceGenerator
class, which extends G4VUserPrimaryGeneratorAction. The problem geome-
try is aligned in such a way that the beamline stretches out in the positive z
direction while the x axis is parallel to the ground and the y axis is perpendicular
to the ground. Or, to put it more simply, y points to the sky.

The neutron source is assumed to be rectangular and located in the xy plane.
Neutrons are generated uniformly over the source area using the Geant4’s
static G4RandFlat::shoot function, which produces random G4double’s be-
tween given limits. A G4ThreeVector is then created containing the starting
coordinates:

G4double x0 { G4RandFlat :: shoot(xmin , xmax) };
G4double y0 { G4RandFlat :: shoot(ymin , ymax) };
G4ThreeVector start_pos { x0 , y0, z0 };

Here xmin refers to the leftmost edge of the source, etc, and (x0, y0, z0) are the
starting coordinates.

4.6 The Duct Source

The duct is an imagined rectangular cuboid that coincides with the neutron
beamline. The source is in the current implementation located at the very
beginning of the duct, and is of the same dimensions as the duct’s cross section.
This isn’t required; the source and the duct can be placed independently of each
other and do not have to be the same size.

A hit position on the duct wall is generated in order to determine the neu-
tron’s momentum direction. This is in contrast with the analog case, where the
momentum direction is directly randomized. The hit position is generated by
the DuctSourceGenerator::RandomizeHitPosition function, which generates
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a hit position and a normal vector to the hit surface. The duct has five walls;
the cross-sectional surface facing the source is open. Keep in mind that the duct
walls are imagined–they do not physically interact with particles.

The generation of a hit position is done in two steps. The algorithm first
picks a random wall to hit, setting the normal vector accordingly. This fixes
either the x, y, or z coordinate, depending on which wall is chosen. Then a
location on the chosen wall is randomized, fixing the remaining two coordinates
to give a fully defined hit position. The momentum direction is then determined
as the difference of the start and hit position vectors as in the following code
snippet (where start_pos is as generated in Section 4.5.)
G4ThreeVector momentum { hit_pos - start_pos };
G4ThreeVector momentum_unit { momentum/momentum.mag() };

Note that momentum.mag() represents the distance from the start position to
the hit position.

The particle weight must now be altered in order to satisfy Equation (3.7).
The duct can be viewed as a large detector. (This was in fact done in Geant4
for the purpose of proving that the method is sound, see Chapter 5.) Using this
fact, and for the moment assuming that the source emits neutrons isotropically,
the number of neutrons, S, emitted by the source can be back-calculated as

S = N
4π

εipΩ
(4.1)

where N is the number of detected neutrons, εip is the intrinsic peak efficiency
of the detector, and Ω is the solid angle subtended by the detector at the source
location [53]. εip can be set to 1 because every particle is counted.

The volume of the source is negligible–in fact it has no volume, it is a
rectangle–and thus the solid angle Ω can be calculated as [53]

Ω =

∫
A

cosα

r2
dA (4.2)

where r is the distance from the source to the detector surface element dA
(represented in the code as momentum.mag() as noted above), α is the angle
between the source direction and the detector surface normal, and A is the
surface area of the detector. Using the geometric definition of the dot product

a · b = ‖a‖‖b‖ cos θ (4.3)

where a and b are Euclidean vectors and θ is the angle between them, Equa-
tion (4.2) can be rewritten as

Ω =

∫
A

1

r2

r · n̂
‖r‖‖n̂‖

dA (4.4)

where r is the vector from the source to the surface element dA and n̂ is the
normal to dA. n̂ is a unit vector so ‖n̂‖ ≡ 1, and ‖r‖ = r. Thus

Ω =

∫
A

r · n̂
r3

dA =

∫
A

1

r2

r

‖r‖
· n̂dA (4.5)

Performing the integration over the detector area A yields

Ω =
A

r2

r

‖r‖
· n̂. (4.6)
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Insertion of this expression for Ω into Equation (4.1) gives

S = N
4πr2

A

‖r‖
n̂ · r

(4.7)

Equation (4.7) describes the number of particles S that the source has to
emit for the detector to register N hits in the direction r. The fraction p0 = N/S
thus describes the unbiased sampling probability. Utilizing Equation (3.7) with
the unbiased weight w0 = 1 and the biased sampling probability pb = 1 yields
the biased weight

wb =
A

4πr2
· r

‖r‖
· n̂. (4.8)

This is the weight factor that compensates for the geometrical flux attenuation.

4.7 Passing Through the Duct

It is important that the hit positions are generated uniformly across the duct
walls. If this is not the case, the particle weights must be adjusted to reflect the
changed sampling.

It may be desired to intentionally oversample the ulterior duct wall, i.e. the
cross-sectional area at the end of the duct, in order to increase statistics beyond
the end of the duct. In order to achieve this, the weights of all particles must
be altered in accordance with Equation (3.7) to reflect the altered sampling
probabilites p′.

A1 A2

Figure 4.1: Surfaces to be sampled, with A = A1 +A2.
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Consider two surfaces of areas A1 and A2, respectively, and total area A =
A1 + A2, see Figure 4.1. To achieve uniform sampling across A, the sampling
probability for each area should be

p1 =
A1

A
(4.9)

p2 =
A2

A
. (4.10)

Trivially it holds that p1 + p2 = 1. Now, suppose that the sampling prob-
ability for A2 is set to a new sampling probability p′2 6= p2, in defiance of
Equation (4.10). The altered sampling must be compensated for by changing
the particle weight using Equation (3.7) so that

w′2 =
p2

p′2
w2 (4.11)

where w2 and w′2 are the old and new particle weights, respectively.
The total sampling probability must always be unity, so the new sampling

probability p′1 of A1 must be
p′1 = 1− p′2. (4.12)

The new particle weight w′1 is then found by using Equations (3.7) and (4.12):

p′1w
′
1 = p1w1 ⇔ (4.13)

w′1 =
p1

p′1
w1 ⇔ (4.14)

w′1 =
p1

1− p′2
w1. (4.15)

The sampling probability p′2 can be set arbitrarily on the interval 0 ≤ p′2 < 1,
but deviating too far from uniform sampling could lead to adverse effects such
as convergence problems or poor statistics in parts of the geometry.

While the above discussion holds for any general surface, the area A2 would
in the specific case of the duct source correspond to the cross-sectional area at
the end of the duct. The sampling probability p′2 then describes the fraction of
particles that pass all the way through the duct.

4.8 Anisotropic Sources
In reality, neutrons entering the guide are not isotropic. Accounting for this
in analog simulations is simply a matter of adjusting the number of emitted
particles accordingly, but this is not suitable for the duct source. Instead the
weight calculated previously in Section 4.6 needs to be supplemented with a
new factor.

The source data is stored in pairs of sorted one- and two-dimensional vectors.
The angular distribution is given by two vectors of size–in this case–12 elements.
The first one contains polar angles (relative to the z axis, i.e. the direction
of the beamline) given as cosine values ranging from 1 to -1. Its companion
vector gives the flux in the corresponding direction, and after normalization,
the relative probability of emission in that angular range. The values in the
vectors are paired by their index.
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Also tied to each angular range are a vector of energies and a vector of
corresponding fluxes arranged in the same manner as the angular data. In
other words, each emission angle has its own energy spectrum.

Thus, all relevant particle data can be deduced from the cosine µ of its polar
angle θ, i.e. µ = cos θ. This section will describe how to calculate the angular
weight factor. Energy selection will be dealt with in Section 4.9.

The cosine of the emission angle is calculated with the help of Equation (4.3)
by taking the scalar product of the normalized momentum vector and the z unit
vector ẑ:

µ = ẑ · u

‖u‖
(4.16)

The vector index i is then found by performing a linear search in the µ vector.
A linear search is appropriate in this case for two reasons. First, the vector is
small, only 12 elements. And second, due to the geometry of the problem, most
emission angles will fall into the first range, meaning that the first comparison
yields a match. Thus the linear search’s best case scenario complexity of O(1)
(constant time) is also the most common in this case, and the worst case of O(n)
only occurs exceptionally. A linear search might no longer be appropriate or
optimal should the number of elements in the vector be increased substantially
in a future application.

The next step is to calculate the angular weight factor wµ. The two factors
that contribute to wµ are

• the fractional size ∆µ of the interval, and

• the flux φi (or rather the probability of emission pi) in the interval.

A large flux emanating from a narrow angle yields large statistical weights for
associated particles, and conversely, a small flux from a wide angle results in
small statistical weights. For a found index i

∆µ =
µi−1 − µi

µmax − µmin
, µi < µ ≤ µi−1 (4.17)

pi =
φi∑
k φk

(4.18)

where µi−1 and µi are the upper and lower interval limits, respectively. Then

wµ =
pi

∆µ
. (4.19)

The new weight is then obtained as

wnew = wµ · wold. (4.20)

Unlike the polar angle, the azimuthal angle is assumed to be isotropic. A
similar procedure could be applied to account for azimuthal anisotropy should
it be required in some other scenario.

4.9 Energy Selection
As noted above, each angular range has its own unique energy distribution. In
general, directions with narrower angles with respect to the proton beamline
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show larger high energy contributions, as discussed in Section 2.5. The energy
vectors and corresponding flux vectors are stored as vectors-of-vectors, where
the index i found in Section 4.8 enables retrieval of the appropriate energy and
flux vectors for the current µ. A second index, j, identifies the energy range
and corresponding flux in the vectors at position i in the vectors-of-vectors.

Energy selection can be done in an analog fashion, i.e. in a way that corre-
sponds precisely to the physical situation. This was done as part of the work
for this thesis and the results are presented in Chapter 5. This kind of energy
selection is identical whether the simulation as whole is analog or if angular
source biasing is used and requires no modification of the weight of the Monte
Carlo particles.

The implementation uses a C++11 standard library distribution called std::
piecewise_constant_distribution, and random engine std::mt19937, an
implementation of the Mersenne-Twister [54] pseudo-random number generator
(PRNG), to create a weighted random number generator that selects neutron
energies in 1:1 correspondence with their physical probability. Geant4 has a
selection of built-in distributions, but unfortunately lacks a piecewise constant
one. Hence the necessity use standard C++ alternatives.

Using this analog energy selection comes with two drawbacks. The first
problem is technical and is simply that a PRNG is a relatively heavy object
and each worker thread needs its own instance for thread safety reasons (using
external random number generators is discouraged in Geant4).

Manually implementing a version of std::piecewise_constant_distribu-
tion using a standard Geant4 random number generator would solve the first
problem, but would do nothing to address the second problem, which is concep-
tual in nature. The spectra represented in the input vectors are moderated and
consequently the bulk of the neutrons are cold or thermal, with only a small
fraction displaying energies approaching the GeV range. But these contribute
disproportionally to the flux in deep-penetration problems and are therefore of
great interest for the results.

The introduction of energy biasing neatly solves both these problems. Al-
though originally conceived as a method to programmatically streamline the
source code, the potential for advances in variance reduction for shielding prob-
lems soon became apparent. A similar procedure has been successfully tried
before by Liang et al. using the general-purpose Monte Carlo transport code
FLUKA in an application for the Chinese Spallation Neutron Source (CSNS) [34].

To implement the idea, an energy between the low and high extremes is
chosen at random, without consideration of the real probabilities. The particle
weight is then adjusted in accordance with Equation (3.7). The energy ran-
domization takes place in the logarithmic domain since the energy spectrum is
logarithmic in nature. If Emin and Emax are the lowest and highest possible
energies, respectively, then a random number q ∈ R is generated linearly on the
interval [logEmin, logEmax] and the particle energy E is given by

E = 10q. (4.21)

Once an energy E is chosen, the second vector index j must be found to
complete the i, j pair of indices. The reasons given above for using a linear
search to find i do not apply to the search for j, because
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1. the energy data is much more fine-grained than the angular data so the
vectors to be searched are substantially larger in size, and

2. there is no obvious pattern as to which index is most likely.

Thus a binary search is used instead. The search can never terminate early
because it is searching for a range rather than an exact value, meaning that it
always encounters its worst case scenario complexity of O(log n). This is not a
problem since the number of energy bins n ranges in the hundreds, so the binary
search still terminates after just a couple of iterations. The binary search is also
more frugal in terms of memory usage than some alternative fast(er) searches.

The new weight is then calculated in analogy with Equations (4.17)–(4.20)
as

∆E =
logEj−1 − logEj

logEmax − logEmin
, Ej < E ≤ Ej−1 (4.22)

pj =
φj∑
k φk

(4.23)

wE =
pj

∆E
(4.24)

wnew = wE · wold (4.25)

where Ej−1 and Ej are the upper and lower interval limits, respectively, and
wE is the weight factor arising from the energy biasing.

The energies in the source spectrum used in this thesis range from 1 µeV to
2 GeV, i.e. 1 · 10−6 to 2 · 109 eV. Thus the random number q falls in the range[
log (10−6), log (2 · 109)

]
' [−6, 9.3]. The percentage of simulated Monte Carlo

neutrons with energies in excess of 10 MeV is therefore boosted to over 15 %,
and more than 8 % fall in the 100+ MeV category.

4.10 Problem Geometry

Figure 4.2: The DREAM beamline at ESS as pictured by Schweika et al. in the
instrument’s proposal [46]. Reprinted under the terms of the CC-BY-3.0 [55].

The geometry used is a simplified model of the DREAM beamline at ESS, a
straight beamline dedicated to feeding neutrons to a powder diffractometer [45].
It is a medium-length beamline by ESS standards; in the model it measures 77.0
m from the beamline entrance (two meters from the moderator surface) to the
back of the beamstop. A detailed technical overview from the instrument’s
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Figure 4.3: The simplified model of the ESS DREAM beamline used as a test
case for the duct source generator. The coordinate axes are pictured as x, y, z
= red, green, blue. Each color in the figure represents a material. The iron floor
and monolith is gray, the copper collimators (only one is visible from this angle)
are brown, the heavy concrete bunker wall is blue, and the concrete beamline
shielding and instrument cave is green. The bunker roof alternates between
polyethylene (pink) and steel (black).

proposal is shown in Figure 4.2. The simplified Geant4 model is pictured in
Figure 4.3.

The entire model measures X × Y × Z = 4.03 × 6.48 × 77.0 m. It can be
regarded as being divided into four major sections: the monolith, the bunker,
the beamline shielding, and the instrument cave. The structure rests on a 2.0 m
thick iron floor that occupies the entire lower part of the model. Covering the
bunker section is the bunker roof, a massive, layered structure that measures
1.55 m in total thickness. The seven layers alternate between polyethylene and
steel to ensure maximum shielding effectiveness across the neutron spectrum.

The monolith is a 3.5 m thick slab of iron completely covering the xy plane at
the beginning of the beamline. The only opening in it is the 3×3 cm2 beamline
port.

Behind the monolith is the bunker area, an 18 m open area followed by a
3.5 m thick wall made of heavy (magnetite) concrete. In reality this space is
quite crowded by various equipment, such as choppers, but in this model it is
empty save for two identical copper collimator blocks measuring 0.5× 0.5× 0.5
m3. One is placed in the middle and the other is placed flush with the bunker
wall. Like the monolith, both have beamline openings to allow the neutrons to
pass through. The bunker is completely covered by the above mentioned bunker
roof.

Following the bunker is a 44 m long “corridor”, 0.5 m wide and 1.48 m high.
It is surrounded by standard concrete shielding that is 60 cm thick. At its end
is the instrument cave, a room measuring 2.0× 1.48× 6.0 m3. It is shielded by
1 m thick concrete shielding.
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Figure 4.4: The model pictured from the left side. Both collimator blocks in
the bunker are visible, as is the layered roof structure above them.

Figure 4.5: Same view as Figure 4.3 but with wireframes to reveal the inner
structures. The instrument cave is visible on the righthand side.

Figure 4.6: Top wireframe view.
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Figure 4.7: Right side wireframe view.

4.11 Weight Window Generator
The weight window generator algorithm was implemented previously by John
Stenander and Douglas DiJulio, and used largely as-is in this thesis. See Sec-
tion 3.9 for an overview. For further details on its implementation, refer to
John’s master’s thesis [44] or the related article [38].

It is worth mentioning the figures-of-merit (FOM) used previously to judge
the efficacy of the weight window generator. They are defined as [38]

FOM1 =

(
N∑
i=1

Re2

N
· T

)−1

(4.26)

FOM2 =

√√√√√ 1

N

 N∑
i=1

Re2
i −

1

N

(
N∑
i=1

Rei

)2
 (4.27)

where N is the number of (non-zero) cells, T is the simulation wall clock time,
and Rei are the relative errors of the cells. An effective variance reduction
method should result in an increased FOM1 and a decreased FOM2. These
definitions are not without problems and care should be taken when the results
are judged. One problem mentioned by van Wijk et al. [39] is that there is no
straightforward way to take into account cells that receive zero fluxes at the end
of the simulation, and these are simply discarded. Another is that employing
a variance reduction may well lead to increased average relative errors since
analog simulations typically show extremely small errors in the vicinity of the
source.



Chapter 5

Results and Discussion

5.1 Proof of Concept
The duct source was first tested on a simple “toy problem” to verify its validity.
The geometry consisted of a straight beamline measuring 5 cm × 5 cm × 10 m,
fully surrounded by a Geant4 sensitive detector to register the wall current. A
total of 98 detectors were placed in the beam path to register the current. The
toy geometry is depicted in Figure 5.1.

Figure 5.1: Graphical representation of the short beamline section with detector
tiles in the beamline.

Ten million primary particles were simulated for every test case with the
toy problem. The Geant4 output data was processed using the ROOT data
analysis framework [56].

Figure 5.2 shows the resulting wall current for the analog isotropic source,
with arbitrary units on the y axis due to normalization. The red curve is propor-
tional to 1/r3, with the proportionality constant fitted to match the histogram.
The number of histogram bins is set to 10,000. This result serves as a control;
the result of any variance reduction method must match this one qualitatively.
The precision is high for the first 0.5 m, but quickly becomes unacceptable at
greater distances from the source. Very few particles make it to the second half
of the guide and many bins show zero hits.

Figure 5.3 shows the normalized current registered by the in-guide detectors
placed 10 cm apart for the length of the guide. The plotted green curve is

37
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Figure 5.2: Histogram (normalized) of the wall current with the analog isotropic
source. The function shown in red is proportional to 1/r3.
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Figure 5.3: The beamline current (normalized) for the analog isotropic source.
The function shown in green is proportional to 1/r2.
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Figure 5.4: Duct source, isotropic case. Measured wall and beamline currents
with functions proportional to 1/r3 (red) and 1/r2 (green) superimposed.

proportional to 1/r2 and fitted to the histogram. There are no zero count bins
here due to the fact that a single particle traversing the whole beamline is enough
to populate every bin. Still, the histogram data deviates noticeably from the
theoretical value toward the end of the guide.

Figure 5.4 shows both the wall and beamline currents for the isotropic duct
source, i.e. the duct source equivalents of Figures 5.2 and 5.3. The histograms
reveal a dramatic improvement in the statistics throughout the guide at a slight
cost of precision near the very beginning. Every wall current bin is now satis-
factorily populated, and a strict adherence to the theoretical value is observed
for both the wall and beamline currents. The green and red 1/r2 and 1/r3 fitted
plots are unchanged from the analog Figures. The duct source can be extended
indefinitely without loss of precision as long as the number of primary particles
is increased by the same factor as the guide length, in stark contrast with the
analog simulation, where the number of primaries has to increase exponentially
in order to avoid loss of precision at the end of the guide.

Figure 5.5 shows the unnormalized wall currents for isotropic analog and
duct sources. The matching histograms demonstrate that there are no factors
missing in the calculation of the duct source particle weights.

Figure 5.6 showcases the passthrough functionality described in Section 4.7.
Particles are generated uniformly on the interval [−5 m, 0 m], and the passthrough
parameter is set to p′2 = 0.25 (the previous value was 0.01.) In other words,
25 % of the particles travel past the z = 0 m point. The precision drops slightly
toward the end of the guide but the data still shows excellent adherence to the
qualitative trend dictated by the analog case.

Switching from the isotropic source to the anisotropic source yields Fig-
ure 5.7, which shows

• the anisotropic analog source in blue,
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Figure 5.5: Wall current for the isotropic analog source (blue) and the isotropic
duct source (yellow), unnormalized.
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Figure 5.6: Wall current with the duct source extending from -5 to 0 m and
25 % of the particles passing through the cross section of the guide at z = 0 m.
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Figure 5.7: Wall current for the anisotropic analog source (blue), the anisotropic
duct source (yellow), and the isotropic duct source (red). Unnormalized.

• the anisotropic duct source in yellow, and

• the isotropic duct source in red, for comparison.

The figure demonstrates that the anisotropic weighting in the duct source, de-
tailed in Section 4.8, yields the expected result. Another conclusion is that
the anisotropy substantially increases the flux down the guide; the increase is
roughly three orders of magnitude beyond the 2 m point without losing accuracy
near the source.

5.2 Energy Biasing
The analog simulation in the energy domain is represented by Figure 2.7. The
uniform distribution of energies as generated using the energy biasing technique
is shown in Figure 5.8. All particles, regardless of emission angle, are represented
in this plot. The gaps in the spectrum arise because no particles are emitted
with these energies.

Applying the particle weights yields Figure 5.9. The spectrum exhibits the
correct general structure, but is ragged due to a few very high-weight particles
that affect the convergence of the simulation. As it turns out, the offending par-
ticles appear when the angle of emission relative to the z axis is large. Filtering
out particles that cross the beamline wall within 10 cm of the source yields the
spectrum shown in Figure 5.10.

Two strategies for alleviating or eliminating this problem present themselves.
In order of preferability they are

1. use a source spectrum calculated for placement a small distance from the
beginning of the duct, and

2. increase the number of primaries.
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Figure 5.8: Unweighted energy spectrum as used in the energy biasing technique.
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Figure 5.9: The energy spectrum from Figure 5.8 with weights applied.
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Figure 5.10: The spectrum from Figure 5.9 after filtering out particles that cross
the duct wall within 10 cm of the source.

5.3 Beamline Results

All results in this Section were obtained using the anistropic sources. A fully
analog simulation of the DREAM-based geometry is shown in Figures 5.11 and
5.12. The flux maps are calculated at the beamline level in the horizontal (xz)
and vertical (yz) planes. Outlines of the geometry are overlaid.

The analog simulation populates the monolith and the empty bunker space,
and parts of the iron floor near the source. The bunker wall and roof remain
essentially unpopulated, as does most of the rest of the geometry. Some par-
ticles travel down the length of the beamline and interact with the shielding
surrounding the cave at its end, populating the empty space within the cave.

Turning on the duct source (with analog energy selection)–see Figures 5.13
and 5.14–leads to significant improvement particularly in the area in proximity
with the beamline: the beamline shielding, the cave shielding, the cave floor,
and the bunker wall. Some roof penetration can also be seen, as well as greater
penetration in the bunker floor.

Flux maps produced with the duct source in combination with energy biasing
are shown in Figures 5.15 and 5.16. The result is virtually complete population
of the bunker wall and the cave shielding. The area outside the beamline shield-
ing is also starting to become populated. One of the largest improvements is
seen in the bunker roof, where the penetration reaches through several of the
shielding layers.

Figures 5.17 and 5.18 show the flux maps resulting from a simulation com-
bining the duct source with energy biasing and the weight window technique.
The simulation whose results are shown in Figures 5.15 and 5.16 were used as
as a pre-run in order to set up the weight windows for this simulation. The
pre-run results do not count toward these flux maps and they should therefore
be judged with the necessity of spending time on the pre-run in mind.

The weight windows do not improve statistics in the region extending from
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Figure 5.11: Flux map in the horizontal plane, analog simulation, anisotropic
source, ∼16 CPU hours.
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Figure 5.12: Vertical plane flux map from same data as Figure 5.11.
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Figure 5.13: Horizontal plane flux map produced using the anisotropic duct
source without energy biasing, ∼16 CPU hours.
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Figure 5.14: Vertical plane flux map from the same data as Figure 5.13.
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Figure 5.15: Horizontal plane flux map produced using the anisotropic duct
source with energy biasing, ∼16 CPU hours.
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Figure 5.16: Vertical plane flux map from the same data as Figure 5.15.
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Figure 5.17: Horizontal plane flux map produced using the anisotropic duct
source with energy biasing and weight windows, ∼16 CPU hours.
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Figure 5.18: Vertical plane flux map from the same data as Figure 5.17.
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Figure 5.19: The combined fluxes of Figures 5.15 and 5.17, ∼32 CPU hours
total.
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Figure 5.20: The combined fluxes of Figures 5.16 and 5.18, ∼32 CPU hours
total.
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the source to the end of the bunker wall. The benefit is instead to be found in
the area outside the beamline shielding. This large section of the geometry is
now to a large extent populated, with gaps mostly in the iron floor.

The combined fluxes of Figures 5.15 and 5.17 are shown in Figure 5.19.
The corresponding vertical plane flux map is shown in Figure 5.20. The result
is a simulation requiring 32 CPU hours in total to complete. The Figures
demonstrate the strength of combining different variance reduction techniques
to efficiently acquire results in all areas of the geometry: angular source biasing
to push particles down the beamline, source energy biasing to penetrate thick
shielding, and weight windows to push particles laterally.

5.4 Figures-of-Merit and Empty Cells
Table 5.1 show the FOMs (see Section 4.11) resulting from various configurations
and runtimes. The runs are independent from each other and consequently show
some internal variation. For example, the 4 hour analog simulation managed to
populate a larger fraction of cells than its 8 hour counterpart. All figures were
produced using a mesh consisting of 312 cells.

To simplify discussion, the configurations are named using the shorthands

1. Case 1 – analog source

2. Case 2 – duct source without energy biasing

3. Case 3 – duct source with energy biasing

4. Case 4 – duct source with energy biasing and weight windows.

The Case 1 simulation shows the largest FOM1 value for every runtime
with the exception of 16 hour Case 4 simulation using the weight windows. It
should be understood, however, that the necessary (16 hour) pre-run is omitted
from this result, yielding a somewhat unfair advantage for the weight window
technique.

That the Case 1 simulation shows the best values for FOM1 does not mean
that it is performing better than the other cases. The fraction of populated
cells ranges from 44 % for the 8 hour run to just 50 % for the 120 hour run.
The empty cells are discarded from the FOM calculations, and consequently the
result is as if more than half of the geometry didn’t exist. Figures 5.11–5.12
reflect this; the bunker area is well populated, but the rest of the geometry is
largely empty.

Another factor that improves the analog simulation’s FOM1 is that more
particles are simulated per unit time due to the particles generally travelling
short distances and undergoing few shielding interactions before stopping. In
particular, the energy biasing technique provokes a lot of interactions with the
shielding due to the higher energy of the particles. This takes a lot of CPU
effort to simulate leading to fewer primaries being simulated per unit time.

The duct source fares better with regards to FOM2, but the problem of
discarded zero flux cells still unfairly favours the analog simulation. Even at
120 CPU hours, Case 1 is still showing a slightly better figure than Case 2.

One possible conclusion is that the FOMs are of at best marginal value
for this type of simulation and a more suited alternative is desired. Taking
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Source type FOM1 FOM2 Zero cells CPU hours
Case 1 0.0022098 0.309335 53 % 4
Case 2 0.0009009 0.309193 33 % 4
Case 3 0.0008033 0.290219 6 % 4
Case 4 n.p. n.p. n.p. 4
Case 1 0.0043443 0.161668 56 % 8
Case 2 0.0005678 0.282158 31 % 8
Case 3 0.0005330 0.251019 3 % 8
Case 4 n.p. n.p. n.p. 8
Case 1 0.0015345 0.222598 54 % 12
Case 2 0.0003116 0.329249 19 % 12
Case 3 0.0003540 0.261680 0 % 12
Case 4 n.p. n.p. n.p. 12
Case 1 0.0006741 0.289913 52 % 16
Case 2 0.0002687 0.316079 22 % 16
Case 3 0.0003386 0.231660 0 % 16
Case 4 0.0008167 0.145681 0 % 16
Case 1 0.0003028 0.252053 52 % 48
Case 2 0.0000881 0.323634 7 % 48
Case 3 0.0001725 0.205794 1 % 48
Case 4 n.p. n.p. n.p. 48
Case 1 0.0001643 0.301386 50 % 120
Case 2 0.0000812 0.313091 11 % 120
Case 3 0.0001212 0.226918 0 % 120
Case 4 n.p. n.p. n.p. 120

Table 5.1: Figures-of-Merit and empty cells for different runtimes.
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the number of primary particles into account could be a way to go here. The
fraction of unpopulated cells also needs to be taken into account. FOM1 could
for example be multiplied by the fraction of populated cells.

An alternative way to look at it would be that the duct source shouldn’t
be considered a true GVR method, which is what the FOMs are intended to
judge. Instead it could be regarded as an LVR. This viewpoint is supported
by the results for the 16 hour runs, wherein Case 4 shows the highest FOM1

and, by a significant margin, the lowest FOM2 of all four cases. The weight
window method is definitely a GVR method, and as such it is unsurprising that
it performs well in tests intended to judge GVR efficacy.

Disregarding Case 1 and looking only at cases 2–4 supports this view. Case
3 displays a better FOM2 value for every runtime, and the difference gets more
pronounced the longer the runtime. A similar story holds true for FOM1. Case
4 further improves both figures over Case 3. Thus the duct source becomes
more and more “GVR-like” with the inclusion of first energy biasing and then
weight windows, and this is reflected by the figures-of-merit.

The fraction of populated cells is the only figure of the three that gives
a straightforward indication as to the efficacy of the various VR techniques.
At 4 CPU hours, the duct source is showing 67 % population, and the duct
source with energy biasing is already at 94 %. At 48 hours, Case 3 shows 93 %
population, Case 4 is at 99 %, while the analog simulation is at a mere 48 %.
Every cell is populated after 16 CPU hours with the weight windows activated.



Chapter 6

Conclusions and Outlook

The duct source has proven adept to the point of perfection at reducing variance
inside the neutron guide. A large number of particles are effortlessly transported
to distances that are effectively out of reach for analog simulations. Altering the
nominally uniform sampling allows for increased statistics in areas of particular
interest, if desired. Including energy biasing significantly increases populations
in areas of the geometry that are sheltered behind thick shielding and improves
prospects for studies of high energy backgrounds. A small penalty is paid in
the form of high-weight particles that may cause lack of convergence when the
angle of emission is large.

The duct source is nicely complemented by the automated weight window
procedure, with the two techniques doing most of their work in different areas
of the geometry.

The two figures-of-merit seem to be of at best marginal usefulness (and at
worst misleading) for judging the efficacy of the duct source. A possible reason
for this is known weaknesses in their definitions. Another is that it might be
unfair to judge the duct source as a GVR method, and it should instead be
considered an LVR method. The number of zero flux cells does give a direct
indication of how well the chosen variance reduction methods perform, but does
not take the relative error into account.

An attractive feature of the the duct source is that the execution times are
highly predictable: if N primary particles takes T units of time to simulate, then
10N particles will take about 10T units of time. The duct source works well in
a multithreaded environment and future use of it is likely to be conducted using
MPI (see Reference [57]), a Message Passing Interface used in parallelization
and supported by Geant4.

A straightforward extension to the duct source would be to allow the duct to
curve, creating uniform statistics on e.g. a line-of-sight guide. Whether this is
of any significant benefit is to be determined considering that the straight duct
source can be seen as a reasonable approximation of a guide with large radius
of curvature.

A coupling of the duct source with logic for neutron optics has been imple-
mented in PHITS [58] and should be investigated in Geant4, too. The duct
source efficiently delivers precisely the type of neutrons that interact with an
optical guide, enabling studies of shielding concerns related to neutron optics,
or even virtual neutron experiments.

52
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An idea that was investigated during the course of this work was to account
for material attenuation and fire more particles in directions of thick shielding.
The idea did not pan out due to the scattering characteristics of low energy
neutrons, but with the introduction of energy biasing it deserves a second look,
as high energy neutrons are much more directional in terms of shielding pene-
tration. The application of such a technique would likely only be appropriate
for high energy neutrons.

A long-term outlook would be to study the effects of sky- and groundshine
on neutron instruments.
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