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Abstract

In this thesis, the space–time picture of the hadronization model has been implemented in the
event generator Pythia. From this implementation, the hadronic behaviour has been studied
for different scenarios, in order to begin addressing the unexpected collective behaviour of high-
multiplicity pp events, which is typical for heavy-ion collisions. First, the temporal and radial
evolution of pp and toy qq systems are analysed, illustrating the general motion of hadrons in
the two systems. Then, the hadronic density is studied in the central region of the collisions,
showing the presence of hadronic close-packing. This issue is further approached by tackling the
hadronic density for different multiplicities, where pp collisions with higher multiplicity exhibit
more significant close-packing than low-multiplicity collisions. It turns out, however, that colour
reconnection gives a larger transverse area over which particle production occurs, and thereby a
lesser density than without it. Finally, the hadronic overlap is studied as a function of transverse
momentum for each newly generated hadron and for different multiplicities, illustrating that,
although the importance of close-packing increases with multiplicity, it mainly affects low-pT
hadrons.

Populärvetenskaplig sammanfattning

Partikelkolliderare är stora maskiner som accelererar partiklar till höga energier, för att sedan
l̊ata dem kollidera. Därvid bildas ett stort antal produkter, som kan sp̊aras i detektorer. De pro-
cesser som inträffar under och efter kollisionerna beskrivs huvudsakligen av standardmodellen,
en teori som klassificerar de fundamentala partiklarna och växelverkningarna mellan dessa.
Även om standardmodellen beskriver observerade fenomen rätts̊a precist, finns det experi-
mentella observationer som inte kan förklaras genom denna modell, s̊asom gravitation. Därför
utvecklas nya teorier som kompletterar standardmodellen, och som är kapabla att inkludera
s̊adana oförklarade observationer.

Den forskning som görs vid partikelkolliderare best̊ar av att testa olika teorier genom att
jämföra experimentella data med förutsägelser fr̊an dessa teorier, erh̊allna genom simuleringar.
Sammansättningen av s̊adana simuleringar i ett datorprogram kallas för en händelsegenerator.
S̊alunda simulerar en händelsegenerator partikelkollisioner och de produkter som genereras av
dem, vilka kan vara slutliga stabila partiklar, eller sönderfalla till nya partiklar, eller växelverka
med andra partiklar. I just detta projekt fokuserar vi p̊a Pythia, en händelsegenerator som
utvecklats i Lund.

Händelsegeneratorer är den hörnsten som relaterar teoretisk och experimentell partikelfysik.
De m̊aste samtidigt reproducera det observerade experimentella uppförandet och förutsägelserna
fr̊an den teoretiska modell som skall testas. S̊alunda är utvecklingen av dem en komplicerad
och teknisk uppgift, som måste ta hänsyn till olika modeller och ett stort antal mindre detaljer.
Att bekräfta eller förkasta en teori beror till stor del av händelsegeneratorernas resultat. Därför
måste de simuleringar som genomföres vara s̊a noggranna och kompletta som möjligt. I denna
avhandling introduceras en ny komponent till Pythia, som ger information om de positioner
vid vilka partiklar skapas efter kollisionerna. Denna nya kod kommer att bredda den informa-
tion som finns om partiklarna som skapas i acceleratorkollisioner, och s̊alunda hjälpa till att
först̊a de processer som styr uppförandet hos materiens minsta best̊andsdelar.
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1 Introduction

Important progress has been achieved in the understanding of the Universe and matter
formation over the past decades. Part of this progress has been possible thanks to particle
accelerators, such as the Large Hadron Collider (LHC), which accelerate particles to high
energies to make them collide afterwards. During the collisions, some of the conditions of
the early Universe are reproduced and studied by analysing the particles generated. These
particles are tracked by detectors, collecting the experimental data that is later analysed
and used to test different theories, such as the Standard Model.

The Standard Model is the theoretical scheme that describes and classifies the elemen-
tary particles and the interactions among them [1, 2]. Although this model describes ac-
curately the experimental phenomena, it cannot explain some experimental observations,
such as Dark Matter [1]. Hence, new theories complementing the Standard Model are
needed to address those unexplained aspects. These theories, known as Beyond the Stan-
dard Model (BSM) theories [1], can also be tested from the analysis of the data collected
in particle colliders.

In order to test different theories, experimental data is compared with theoretical pre-
dictions, reproduced through computer simulations using Monte Carlo techniques. The
ensemble of such simulations is collected into an event generator [3]. Since event genera-
tors are the cornerstone relating experiment and theory, their simulations must reproduce
the experimental observations while obeying the principles of the theories to be tested
[3, 4]. The three main event generators currently used are Pythia [5, 6], Herwig [7, 8] and
Sherpa [9]. This thesis focuses on the first, in which particle collisions are simulated at
the partonic level, composed of quarks and gluons, whose interactions are described by the
Quantum Chromodynamics (QCD) theory [2]. These partons combine to create hadrons
in a process known as hadronization, which is the main focus of this thesis, modelled in
Pythia by the Lund String Model [10, 11].

The LHC collides mainly protons and heavy-ions, such as lead nuclei. One of the main
differences between the two is the creation, in heavy-ion collisions, of Quark-Gluon Plasma
(QGP), a hot and dense state of matter composed of free partons [12]. The formation
of this plasma requires a system formed by big nuclei that lives long enough to reach
thermal equilibrium. The pp systems are not so long-lived as to generate QGP, a fact that
has been supported by the different behaviour of hadron production in heavy-ion and pp
collisions [12]. Nevertheless, this does not seem to be the case for high-multiplicity pp
collisions, since an unexpected behaviour of the hadron production has been observed in
those collisions over the last few years. Particularly, high-multiplicity pp collisions show a
collective behaviour typical of heavy-ion collisions, such as the enhancement of strangeness
production detected in ALICE [13] or the long-range azimuthal correlations in CMS [14, 15]
and ATLAS [16]. These observations lead to two open scenarios: either the plasma is also
generated in smaller systems than predicted, or else the signals used to define the presence
of QGP and its formation can be questioned.
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The aim of this thesis is to begin addressing this unexpected behaviour by studying
the space–time hadronic density in different pp collisions. A general overview of LHC
physics and event generators can be found in section 2. So far, the hadronization process
in Pythia was only developed in an energy–momentum picture, modelled by the Lund
String Model, presented in section 3. Hence, the space–time picture is firstly implemented
in Pythia, as described in section 4. From that implementation, the space–time location
at which hadrons are created during hadronization is determined, and the space–time
hadronic density is analysed in different situations, as presented in section 5.

Note that, in this thesis, natural units are assumed, i.e. c = ~ = 1, simplifying relations
among variables.

2 LHC physics overview

Quantum Chromodynamics (QCD) is the theory that characterizes the strong interactions
among coloured particles, i.e. quarks and gluons [17]. Those interactions are mediated
by gluons, the force carries of QCD. Contrary to photons in Quantum Electrodynamics
(QED), gluons carry colour charge, which implies that they are self-interacting [1]. QCD
constitutes, along with QED and the weak interactions, the cornerstones of the Standard
Model of particle physics [2].

One of the two fundamental parameters of QCD is the strong coupling constant, αs,
which determines the strength of the interaction in a specific process [2]. Due to the
running of αs, two different limits are defined in the theory, which have to be addressed
using opposite approaches [17]. On the one hand, the value of αs is small for processes
with high momentum transfer. Those processes are tackled using perturbation theory, since
they can be formulated by adding higher-order terms to give an expansion that, hopefully,
converges rapidly. On the other hand, processes with low momentum transfer are related
to a strong coupling, where non-perturbative approaches have to be followed [17]. In such
cases, the coupling among partons is so strong that confinement arises, forming hadrons.

Although all the QCD processes take place in each particle collision at the LHC, only
the confined states are tracked by the detectors, as partons are already confined in hadrons
when hitting the different detector components. By interpreting and understanding the
experimental data and the performance of the detector, conclusions can be drawn about
QCD and its properties. Although the hard QCD processes can be determined using
perturbation theory, some of the inputs needed in the calculation, such as the exact parton
distribution functions of the initial protons, are undefined in the theory. Several techniques
have been developed to obtain such distributions by performing quantitative predictions on
the perturbative QCD level [17]. Moreover, the understanding of the whole QCD picture
needs the development of some models that attempt to describe the mechanisms in non-
perturbative QCD. All those calculations and processes are carried out and modelled in an
event generator, making the comparison of theory with data possible.
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An event taking place at the LHC is described and simulated using several mechanisms.
To illustrate this procedure, we will consider pp collisions, since this thesis is focused on
them. First, the two proton bunches are accelerated to the highest possible energy, when
they are made to collide. Due to Lorentz contraction, protons acquire a pancake shape
when accelerated to high energies in the LHC. Because protons are composite particles
formed by partons, when they collide, partons from each incoming beam interact, gener-
ating several binary partonic collisions. Each of those interactions, known as multiparton
interaction (MPI) [18], takes place separately, without interfering with other interactions.
For a particular study, one may want to single out those events that contain a specific
process, such as ud −→ W+. Often these processes have a higher momentum transfer than
the average interactions and are, therefore, called hard interactions [4]. Those processes
can be described by the Standard Model or by BSM theories.

During the hard interaction, some resonances such as W or Z0 bosons, with short
lifetimes, can be produced. Their decays are regarded as part of the hard interaction, since
their decay products carry important information for the process such as spin correlations
[18]. Apart from the hard process itself, partons can also be emitted due to bremsstrahlung,
generated by both accelerated colour and electromagnetic charges [18]. If the radiated
partons are associated with the incoming colliding partons, the process is known as Initial-
State Radiation (ISR) while, if related to the outgoing partons after the collision, the
emission is known as Final-Sate Radiation (FSR) [4]. Both ISR and FSR are simulated in
Pythia using the parton shower approach.

Up until this point, confinement forces have not been significant, because all the pro-
cesses described so far are part of the QCD short-distance perturbative regime. This
changes when the partons created at previous stages separate from each other, decreasing
the momentum transfer and, thus, increasing the value of αs. Due to the increasing impor-
tance of confinement, further partons are created non-perturbatively and together combine
to create hadrons. This process, called hadronization [3], is modelled in Pythia using the
Lund String Model, presented in the next section.

Once the hadrons have been created, they might decay through strong, electromagnetic
or weak interactions. The lifetimes of the particles that decay are related to the values
of the coupling constant of the interaction ruling the decay. Since the strong coupling
constant of processes with low momentum transfer is large, strong decays are the first to
take place. An example of such decays is the ρ0 decay ρ0 → π+π−, involving the exchange
of at least one gluon [1]. This decay is also possible by the exchange of a photon, in which
case it would be an electromagnetic decay [1]. However, when kinematically possible, the
strong decay modes always dominate over electromagnetic, because αEM < αs [1]. Although
αweak > αEM, electromagnetic decays prevail over weak decays since the latter arise from
the exchange of a W± or Z0 boson, whose masses are quite large, while the photon, the
force carrier of electromagnetic processes, is massless [2]. While particles decaying via weak
decays are long-lived particles which can travel several thousand meters before decaying,

5



particles decaying strongly travel only a few fermi before decaying, making the time range
of the decays quite wide [22].

The hadrons created in the hadronization process are referred to as primary hadrons
and might decay via one of the three decay modes presented, while the hadrons generated
from particle decays are referred to as secondary hadrons. The production points of the
decay products resulting from strong decays are considered by experimentalists as primary
vertices, since the distance travelled by the mother hadron before decaying is of order of
only a few fermi [22]. Although only the proton is a stable hadron, all the hadrons that
do not decay inside the detector are regarded as final hadrons in an event generator. This
selection depends on the lifetime of each hadron, which is related to their decay modes.
Hence, only some particles decaying weakly are regarded as stable, namely µ±, π±, K±,
KL and n. Those particles, along with the truly stable particles (e±, p, p, γ and ν) [22],
are considered final and stable particles in event generator language.

3 The Lund String Model

3.1 The linear force field in QCD

One of the fundamental properties of QCD is the non-appearance of isolated partons. This
phenomenon, known as colour confinement, is generated by a potential between a quark
and an antiquark approximately of the form [1, 2]

VQCD (r) = −4

3

αs
r

+ κr (3.1)

where r is the distance between q and q and αs, the strong coupling constant.

Figure 1: Tubelike potential and string approximation.

The first term of eq. (3.1) is similar to the QED Coulomb potential, apart from the
factor of 4/3, which accounts for the normalization of colour charges. The second term
corresponds to a linear force field, where κ is a constant. For large distances, the linear
term predominates, since the behaviour of the potential field between q and q for those
distances is tubelike, meaning that the colour field between them is compressed into a tube.
As a mathematical approximation, the potential can be expressed as strings or tubes of
zero width, as shown in Figure 1. The strings, whose string tension is κ ≈ 1 GeV/fm [10],
are responsible for confinement. The existence of this linear confining potential and the
value of the string tension have been demonstrated by lattice QCD calculations.
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3.2 Two-parton system

3.2.1 String motion

The mathematical approximation of the linear potential as strings is the cornerstone of
the Lund String model, used to simulate the hadronization process. To illustrate how the
model works, consider the collinear motion in 1+1 dimensional space–time, in the (z, t)
coordinates, of a massless quark–antiquark pair with four-momenta pq and pq, respectively.
For large distances, only accounting for the linear potential, the Hamiltonian of the qq
system is [10]

H = Eq + Eq + κ|zq − zq| (3.2)

where |zq − zq| is the distance between q and q, while Eq and Eq are the energies of the
massless q and q, implying that Eq/q = |~pq/q| = |pzq/q|. From the Hamiltonian, the equation
of motion gives rise to a linear relation between the space–time and the energy–momentum
pictures

dpzq/q
dt

=
dpzq/q
dz

=
dEq/q
dt

=
dEq/q
dz

= ±κ (3.3)

where pzq/q stands for the momentum in the z direction of the quark or the antiquark,
while the sign in κ accounts for the action of the string and the direction of motion of
the parton. When the parton moves along the +z direction, the sign of κ is negative if
the string takes energy from the parton and positive otherwise. On the other hand, if the
parton moves along the −z direction, the sign of κ is negative when the string gives energy
to the parton and positive otherwise.

(a) qq system in the CM frame. (b) qq system in a boosted frame with
respect to the CM frame.

Figure 2: The motion of a qq system, with massless q and q. Figures adapted from [10].

The linear relation between space–time and energy–momentum is essential to explain
the time evolution of a partonic system. To understand why, we will consider the same
qq system as before, with massless q and q, whose dynamical behaviour can be illustrated
using the yo-yo model [10]. In this model, the q and q oscillate back and forth in one-
dimensional space due to the influence of the string tension, as depicted in Figure 2a for
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the system in the centre of mass (CM) frame. At time t = 0, the four-momenta of the q,
q and the string in the CM frame can be expressed as

pq/q (0) =
ECM

2
(1; 0, 0, ± 1)

pstring (0) = (0; 0, 0, 0)
(3.4)

where ECM is the CM energy of the system, the plus sign stands for q and the minus sign
for q, since q moves in the +z direction and q along the −z axis. As time passes, q and
q lose energy, which is transferred to the string due to energy–momentum conservation.
Therefore, the four-momenta of the q, q and the string evolve with time as

pq/q (t) =

(
ECM

2
− κt

)
(1; 0, 0, ± 1)

pstring (t) = (2κt; 0, 0, 0) .

(3.5)

At time t = ECM/2κ, when all the energy of the system is carried by the string, a quarter
of the period has passed. At this point, the string starts to lose energy, which is absorbed
by the q and the q. This process is the inverse of the one followed in the first quarter of
the oscillation, with the q moving along the −z axis while the q moves in the +z direction.
Half of the period is reached at time t = ECM/κ, when the quarks meet again with their
momenta switched

pq/q

(
ECM

κ

)
=
ECM

2
(1; 0, 0, ∓ 1)

pstring

(
ECM

κ

)
= (0; 0, 0, 0) .

(3.6)

The second half of the full period is a repetition of the first half, only with the role of q
and q interchanged.

In order to study the yo-yo system further, the light-cone coordinates are the most
convenient choice, both in energy–momentum, p̃± = E±pz, and in space–time, x̃± = t±z.
Using those coordinates, the invariant mass of the qq system can be written as

m2 = (E + pz) (E − pz) = p̃+p̃−. (3.7)

If the invariant mass of the system is consistent with a hadron mass, the system will be
used to describe that hadron, as long as its flavour content matches the flavour content
of the qq system [10, 11]. On the contrary, if the invariant mass of the system is greater
than the masses of all hadrons with the correct flavour content, the system fragments into
different subsystems. This process, known as fragmentation process, is presented in section
3.2.2.

The simplest yo-yo system can be generalized as illustrated in Figure 2b, where the
quark and the antiquark have different initial energies, Eq 6= Eq. Equivalently, this system
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can be viewed as a boosted copy of the rest–frame setup in Figure 2a. The energy–
momentum and space–time coordinates suffer simultaneous transformations under a lon-
gitudinal boost and eq. (3.3) holds also after the boost. It is important to point out a
seeming contradiction related to longitudinal boosts. Although the string should acquire
momentum along the z direction if the system is longitudinally boosted, it only carries
energy when the boosted system is studied as it has been done earlier in this section. This
apparent contradiction is a consequence of the string being an extended object, with no net
longitudinal momentum when both ends are simultaneous. If that string is longitudinally
boosted, both string ends will no longer be simultaneous, acquiring the string a net longi-
tudinal momentum. It is only when both ends are simultaneous in the new frame that the
string will have no longitudinal momentum, which is the assumption made when addressing
similar systems to the one shown in Figure 2b. Hence, the potential and the characteristics
of the string, such as the string tension, are Lorentz invariant under longitudinal boosts.

3.2.2 String breaking and hadron formation

In the previous section, the potential between a quark and an antiquark was introduced,
illustrating that the potential energy increases with the separation between q0 and q0,
making the creation of a new q1q1 pair energetically favourable [1, 2]. In the Lund String
Model, pair production breaks the string stretched between q0 and q0 into two string
pieces, by the generation of a new q1q1 pair. Naively, the probability for the string to
break increases with time, because the string is longer at later times. On the other hand,
a break can inhibit later breaks, since it fragments the string into two smaller systems,
leaving an in-between region without string, and thus without the ability to break any
further. This ”exponential decay” behaviour of the string is similar to the one observed in
radioactive decay. When the quark and the antiquark pair is generated, both partons have
to be created in the same space–time location due to flavour conservation, if transverse
momentum is ignored and the quarks are massless.

To illustrate string breaking, consider a q0q0 system in which q0 and q0 are anti-collinear.
At some point in space–time, the system breaks into two subsystems by the creation of a
new q1q1 pair, such that the anticolour of q1 corresponds to the colour of q0 and similarly for
q1 and q0, forming two separate colour singlets [10]. After the break, there are two string
segments corresponding to two subsystems: the q0q1 subsystem and the q1q0 subsystem,
each of which can either form a hadron or fragment further [10].

A simple qq system, formed by massless q and q, with two breaks, b1 and b2, is depicted in
Figures 3a and 3b, ignoring the transverse momentum. In such system, the q1q2 subsystem
forms a hadron of mass mh. Due to the linearity between energy–momentum and space–
time (eq. (3.3)), the energy and the momentum of the hadrons can be expressed in terms
of the space–time coordinates. If considering (t1, z1) and (t2, z2) to be the space–time
coordinates of breaks b1 and b2, respectively, the energy and momentum of the hadron
formed by q1q2 are [10]

Eh = κ (z1 − z2) , pzh = κ (t1 − t2) . (3.8)
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(a) x̂± and x± fractions (b) z± fractions

Figure 3: Simple qq system, where q and q are massless, with two breaks, b1 and b2. The
light-cone coordinates are normalized to unity.

To study the hadron production in the energy-momentum picture, the fractions x̂± and
x± illustrated in Figure 3a are extremely useful. The former define the breakup location
in the energy–momentum picture, since they correspond to the absolute coordinates of the
breakups when the light-cone coordinates p̃± are normalized to unity. Conversely, the x±

fractions are momentum fractions related to the hadron, determined as x±h = p̃±h /p̃
±, where

p̃+ = Eq0 + pzq0 and p̃− = Eq0 − pzq0 are associated to the initial quark and antiquark,
respectively. Hence, the x± fractions can be understood as the separation between the two
adjacent breakup locations, given by x̂±. From the definitions, the x± and x̂± fractions
are such that 0 ≤ x± ≤ 1 and 0 ≤ x̂± ≤ 1. Since hadrons are formed from the partons
created in two adjacent breakup points, the energy and momentum of the hadron can be
expressed in term of x± and x̂± as [11]

Eh = |x̂+
1 − x̂+

2 |Eq0 + |x̂−1 − x̂−2 |Eq0 = x+
hEq0 + x−hEq0

pzh = |x̂+
1 − x̂+

2 |pzq0 + |x̂−1 − x̂−2 |pzq0 = x+
h pzq0 + x−h pzq0

(3.9)

where the sub-indices in the x̂± fractions indicate the string breakups taken into account
when forming the hadron. Note that Eq = pq and Eq0 = −pq0 as the quarks are massless.
Using four-vector notation in eq. (3.9), the hadron four-momentum is given by

ph = |x̂+
1 − x̂+

2 |pq0 + |x̂−1 − x̂−2 |pq0 = x+
h p

+ + x−h p
− (3.10)

where pq0 = p+ and pq0 = p− are the four-momenta of the initial quark and the antiquark
constituting the system, respectively [11]. Although eq. (3.10) has been derived for a system
in which q and q are moving in opposite directions, it is valid in all frames. Considering
s = E2

CM = (p+ + p−)
2

= 2p+p− = p̃+p̃−, where ECM is the energy in the CM frame, the
Lorentz invariant expression for hadron mass in terms of the x± fractions is

m2
h = p2

h = x+
h x
−
h s. (3.11)

The initial system can also fragment generating a diquark pair instead of a qq pair. In
such cases, the diquark combines with the quark from the adjacent breakup to create
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a baryon. Similarly, the antidiquark combines with the adjacent antiquark generating
another baryon. Apart from that, the procedure is the same as in meson production, both
in the energy–momentum and the space–time pictures, meaning that all the properties
presented for mesons in the fragmentation process also apply to baryons. Another way of
generating baryons in the Lund String Model is through the ”popcorn” model [19, 20].

Apart from the energy–momentum variables inherent to hadrons, each breakup has an
associate parameter, Γ, which represents the squared invariant time of the breakup with
respect to the origin [10, 11], scaled with the string tension

Γ = (κτ)2 = κ2
(
t2 − x2 − y2 − z2

)
. (3.12)

The geometrical interpretation of Γ is depicted in Figure 4. Using the relations in eq. (3.8)
and due to the linearity between energy–momentum and space–time pictures, the squared
invariant time can be expressed in terms of the x̂± variables [11] as

Γ =
(
x̂+p+ + x̂−p−

)2
= x̂+x̂−s. (3.13)

Figure 4: Squared invariant time representation of the breakups b1 and b2 in a qq system.

So far, the Lund String Model has been presented for a collinear qq system formed by
massless quarks. This model can be easily generalized to more complicated systems, a
topic that will be addressed in section 3.3. Before that, the generation of breakup points
is first presented in the following section.

3.2.3 How are the breakup points obtained?

The fragmentation process is performed using the z± fractions, illustrated in Figure 3b,
which relate the hadron four-momentum and the energy–momentum available in the sys-
tem, z± = p̃±h /p̃

±
available. It is important to emphasize here the difference between z± and the

x± fractions, presented in the previous section. The latter correspond to the fractions taken
by the hadron from the initial p̃±total of the system, while the z± fractions are determined
from the remaining p̃± after the creation of previous hadrons [10]. The difference between
the two fractions is represented in Figure 3a and 3b. To illustrate the relation between
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x± and z± fractions [10], we will consider a q0q0 system, which fragments several times
generating pairs q1q1, q2q2, etc. The first meson q0q1 acquires a fraction z+

1 = x+
1 from the

total p̃+ of the system, while the remnant-jet is left with a p̃+ fraction of 1− z+
1 = 1− x+

1 .
The second hadron q1q2 takes a fraction z+

2 from the leftover p̃+, i.e. x+
2 = z+

2

(
1− z+

1

)
.

Thus, the remnant-jet carries the remaining fraction
(
1− z+

1

) (
1− z+

2

)
= 1 − x+

1 − x+
2 .

Since the fragmentation process is an iterative process, the x± fractions related to hadron
i can be written as

x+
i = z+

i

i−1∏
j=1

(
1− z+

j

)
x−i =

m2
i

x+
i s

(3.14)

where the relation for x−i is given in eq. (3.11). Although in this case we focus on the
positive fractions, the same procedure can be followed for the negative fractions z− and
x−. Since the same relations derived for z+ can be derived for z− following the equivalent
procedure, we will refer to z+ as z from now on.

One of the main properties of the fragmentation process is the fact that breakups
are causally disconnected, which implies that the time ordering of the breaks is frame
dependent. Even though in the centre of mass frame, the last hadrons are generated at
the endpoints of the system, considering a process from the endpoints inwards is always
more convenient to develop the fragmentation process. Although the breaks are causally
disconnected, two adjacent string breaks have to be correlated such that the in-between
hadron is created on its mass shell, since only the breakup points generating physical
masses appear in the physical state [10].

So far, the fragmentation process has been developed as an iterative process starting
from the q0 side and moving towards the q0 end. Since the breakup points are causally
disconnected, the same inverse procedure starting from the q0 side should result in the
same set of hadrons on the average. From this property, known as left-right symmetry,
and further considerations [21], the probability to create a hadron of mass mh taking a
fraction z = z+ from the remaining four-momentum of the quark is given by

f(z) =
(1− z)a

z
exp

(
−bm

2
h

z

)
(3.15)

where a and b are parameters that should be tuned to reproduce the experimental data.
Hence, f(z) determines how the individual vertices correlate in order to create a hadron
of mass mh by taking a fraction z of the energy–momentum left in the system.

Despite the acausal relation among breaks in the string, the squared invariant time
of any breakup point can be expressed in terms of the previous breakup point as a pure
geometrical relation

Γi = (1− zi)
(

Γi−1 +
m2
h

zi

)
(3.16)
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where mh is again the mass of the hadron generated, zi is the fraction of the energy–
momentum taken by the hadron from the system, and Γi and Γi−1 are the squared invariant
times of the i and i− 1 breakups, respectively.

The inclusive probability for a breakup to take place at some specific Γ value is defined
from the left-right symmetry [21] as

P (Γ) = Γa exp (−bΓ) (3.17)

with the same a and b as in eq. (3.15).

The breaks of the string can be determined by directly picking a zi value, according to a
given mh value, by using eq. (3.15). Although this method works for simplest systems, such
as qq systems, the z fractions cannot be easily extended to systems with more than two
partons. Hence, another procedure is needed for the future that works in more complicated
systems. This new procedure [10] uses the Lorentz invariant variable Γi and m2

h, instead
of zi and m2

h. First, a zi value is picked which is later use to calculate Γi, from Γi−1 and
eq. (3.16). Then, if the breakup, along with the adjacent breakup, forms a hadron of mass
mh, its location should satisfy both eq. (3.11) and eq. (3.13).

This last procedure is graphically depicted for a qq system in Figure 5, where only one
region needs to be considered. In that case, the Γ and m2

h distributions are hyperbolae,
represented as dashed and full lines, respectively. The breakup location corresponds to
a point where the hyperbolae for constant Γ and constant m2

h cross, since its location is
determined by those two parameters. Figure 5a shows the hyperbolae related to the first
closest breakup to the q end, while Figure 5b illustrates the corresponding setup for some
random breakup inside the system. Due to left-right symmetry, the same procedure can
be followed from the q end, in which case the m2

h hyperbolae are reverse with respect to
the hyperbolae shown in Figure 5.

(a) First breakup from the endpoints (b) Some breakup inside the system

Figure 5: Hyperbolae of constant Γ and m2
h represented in dashed and full lines.
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3.2.4 Tunneling process and transverse momentum pT

Up to this point, we have assumed that the qq generated from string breaking are massless
and have no transverse momentum, implying that both q and q are created as real particles
at the same space–time location, with vanishing energy–momentum. If the pair is massive
or carries transverse momentum, the transverse mass of q and q is determined as m2

T =
m2 +p2

T , where m is the mass of the quark and pT the transverse momentum. In such cases,
the q and q are created in the same space–time location as virtual particles instead, and they
tunnel out a distance 2l before turning into real particles. This distance 2l is such that the
four-momentum stored in that string piece is used to give both q and q the corresponding
transverse mass. Due to flavour and pT conservation, q and q have the same mass and
carry the same pT but in opposite directions. Taking this into account, the distance 2l can
be determined from the linear relation between space–time and energy–momentum as

2lκ = 2mT (3.18)

Therefore, pair production is a quantum mechanical process, which can then be considered
a tunneling process, whose suppression factor is given by

exp

(
−πm

2
T

κ

)
= exp

(
−πm

2

κ

)
exp

(
−πp

2
T

κ

)
. (3.19)

A consequence of this mechanism is the suppression of heavy quark production from string
breaking, where pair production is estimated to be uu : dd : ss : cc ≈ 1 : 1 : 1

3
: 10−11 [10].

Since the production of heavy quarks, c and b quarks, is strongly suppressed, they are not
generated as new qq pairs during the fragmentation process.

Taking into account that a meson is formed by the combination of a quark and an
antiquark from two adjacent vertices, the transverse momentum of the meson is defined
as the sum of the ~pT vectors of the constituent quark and antiquark. As an example, the
transverse momentum of meson q1q2 is determined as ~pT = ~pT1 + ~pT2, where ~pT1 and ~pT2

are the vectorial transverse momenta of q1 and q2, respectively.

3.2.5 Massive quarks

Although massive quarks are not created from string breaking, they can be generated in
the hard process and form a system that might fragment further. In this section, the yo-yo
model is extended to account for massive quarks as the endpoints of the system. Since the
massive q and q do not travel at the speed of light, their motion is described by hyperbolae
instead of straight lines.

To study the motion of the massive yo-yo system, consider a cc system in the CM
frame, in which c and c are moving along the z axis in opposite directions. The massive
yo-yo system is depicted in Figure 6a, along with the massless case for comparison. At
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(a) Motion of the cc system. (b) Location of the cc system in
the equivalent simple qq system.

Figure 6: The cc system and the equivalent system formed by massless q and q. The grey
region corresponds to the physical region.

time t = 0, the energy and the momenta of the massive quarks and the string are

Ec (0) = Ec (0) = E0 =
ECM

2

pzc/c (0) = ±p0 = ±
√
E2

0 −m2
c

Estring = pzstring = 0

(3.20)

where ECM is the CM energy of the system. In the massive case, the linear relation between
space–time and energy–momentum given by eq. (3.3) reduces to the proper relativistic
definition of force, dpz/dt = ±κ, meaning that at time t

pzc/c (t) = ± (p0 − κt)

Ec/c (t) = E (t) =
√
p2
zc/c (t) +m2

c .
(3.21)

From the energy expression, the speed at which c and c travelled can be determined, i.e
dE (t) /dt = −κpzc/c (t) /E (t) = −κvzc/c (t), with vzc (t) = −vzc (t). The distance travelled
by c or c at time t is

zc/c (t) =

∫ t

0

vzc/c (t) dt = ±1

κ
(E0 − E (t)) , so Ec/c (t) = E (t) = E0 ∓ κzc/c (t) . (3.22)

Note that zc (t) = −zc (t) = z (t), since in the CM of mass frame Ec (t) = Ec (t). Hence,
the four-momenta of c, c and the string at time t can be expressed in a similar way as in
the the massless yo-yo case

pc/c (t) = (E0 ∓ κz (t) ; 0, 0,± (p0 − κt))
pstring (t) = (2κz (t) ; 0, 0, 0)

(3.23)

which implies that the motion of the massive system can be explained similarly to the
procedure presented in section 3.2.1. Although the motion properties of the massless
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and massive cases hold in every longitudinal boosted frame due to Lorentz covariance,
the boosted system is simpler to address when considering massless quarks. Moreover,
the study of the kinematics is easier in the massless case, since for massless four-vectors
p2
q = p2

q = 0, a property that does not hold for massive systems. It is for these reasons that
the kinematics of the massive case is developed in terms of an equivalent system formed
by massless quarks, whose string has the same properties as the string from the massive
case.

In order to study the kinematics of the massive case, the trick is to replace the quark
masses by a string piece at each endpoint. The length of the extra piece at each end is
given by l = mq/κ at the turning point, when pz = 0. This situation is depicted in Figure
6b, where the massive motion is illustrated by the hyperbolae, whose asymptotes are the
straight lines of the massless case. Since the energy stored by this extra string piece is
used to give mass to the initial quarks, it does not break during the fragmentation process.
The region that can fragment is known as physical region and corresponds to the region
between the hyperbolae, highlighted in grey in Figure 6b. The first hadron created from
the endpoint is always heavier than the massive quark, mhad > mq and, consequently, all
the hadrons are automatically created inside the physical region.

To define the equivalent massless case, the massless reference four-vectors should be
determined. Due to Lorentz covariance, the q and q four-momenta of the massless case
have to be linear combinations of the massive quark four-momenta. If pq and pq are the
four-momenta of the massive quarks, while p̃q and p̃q the massless four-momenta, the
relation between both systems is given by

p̃q = (1 + k1) pq − k2pq

p̃q = (1 + k2) pq − k1pq
(3.24)

where the expressions for k1 and k2 are derived using the above relations and the fact that
p̃2
q = p̃2

q = 0.

The massless and massive systems are aligned so that the turning points of the partons
occur at the same time, with mq/κ being the separation between the endpoints of massive
and massless systems. Consequently, the point in which the massive oscillation begins does
not correspond to the real origin of the system, an offset that has to be taken into account
when defining the space–time location of breakups (see section 4.5), since the fragmentation
process takes place in the equivalent massless system.

3.3 Multiparton systems

At the LHC, much more complicated processes than a pure qq system take place. An
example of such processes is the Z0 decay into a pair of massless quarks, which can emit
a gluon:

Z0 −→ qq −→ qgq.
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The gluon emission in the Z0 decay is part of the partonic process, where the interaction
among partons occur, just after high-energy particles collide. In such processes, gluon
radiation is generated from virtual quarks, whose lifetimes are normally short, meaning
that they do not travel far away from the creation point before emitting a gluon. These
processes are known as parton showers and take place before the hadronization process. In
an LHC event, where the hadronization process can extend over several thousand fermi, the
parton showers in one part of the event might take place after the hadronization process has
started in another part. Nevertheless, locally, parton showers occur some time before the
hadronization process. Therefore, the gluons emitted from gluon radiation are considered
to be created at the same space–time location as the initial quark and antiquark, if the
gluons are energetic and well separated from the rest of the partons forming the system.

Figure 7: Colour flow (left) in the Z0 decay system and approximation in the Lund String
Model (right).

Another important property to deal with when accounting for gluons is colour flow. In
order to understand how this property is implemented in the Lund String Model, we first
consider that a non-diagonal gluon is emitted in the Z0 decay. Such gluons carry separate
colour and anticolour [1], implying that the colour flows in the system as exemplified in the
left diagram of Figure 7. In this case, the colour flow is modelled in the Lund String Model
by the existence of two string regions, between q and g and between g and q, as illustrated
in the right diagram of Figure 7. The same procedure cannot be followed when the gluon
emitted is a diagonal one, such as

(
rr + gg − 2bb

)
/
√

6, because colour assignment is not
obvious anymore. Nevertheless, the fraction of diagonal gluons decreases with increasing
number of colours in an su(n) theory, making the number of diagonal gluons negligible
in a theory with an infinity number of colours. This limit is assumed in the Lund String
Model, since it gives rise to an unambiguous colour assignment.

Once those assumptions are taken into account, the string dynamics of the qgq system
formed by massless partons can be addressed. By adopting a suitable Lorentz frame, the
qgq system can always be studied in a frame in which q moves in the +z direction, g in the
+x direction and q in the −z direction. As explained before, two string pieces are present
at the beginning of the process, the string connecting q and g and the string between g
and q, as illustrated in diagram 1 of Figure 8. Each string piece is regarded as a separate
string region, which behaves similarly to the string piece of a qq system. To study the
string dynamics, we will focus on the first region formed by a string between q and g. The
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four-momenta of q, g and the string at t = 0 are

pq (0) = Eq (1; 0, 0, 1)

pg (0) = Eg (1; 1, 0, 0)

pstring (0) = (0; 0, 0, 0) .

(3.25)

Following a similar approach than for a qq system, the system evolves with time as

pq (t) = (Eq − κt) (1; 0, 0, 1)

pg (t) = (Eg − 2κt) (1; 1, 0, 0)

pstring (t) = κt (2; 1, 0, 1) .

(3.26)

The behaviour of the string connecting g and q can be derived exactly in the same way,
taking into account that q moves along the −z direction. Note the factor of two in the
gluon four-momentum, which stands for the presence of the two strings connecting g with
q and q, respectively. Contrary to the qq system, the two string pieces are not at rest, but
move in the transverse direction: the qg string piece has a transverse motion vx = vz = 1

2
,

while the gq piece vx = −vz = 1
2
. Although the energy per unit string length is higher than

for a string at transverse rest, the force acting on the endpoints is of the same magnitude.
Consequently, the same κ value for the qq system can also be used for more complicated
topologies [11].

Figure 8: Time evolution of the qgq system formed by massless partons in a frame where
the gluon moves in the +x direction, while the q and q move in opposite directions along
the z axis. Figure adapted from [11].

Figure 8 illustrates the evolution of half a period of the qgq system in the absence of
string breaks. As indicated before, the system is initially formed by two string regions: the
qg and the gq regions, as depicted in diagram 1. After some time, we assume that the gluon
loses all its energy and a new region is created, which we refer to as the qq region, since
the string piece takes energy and momentum from the q and q, see diagram 2. At some
point, the q also transfers all its energy to the string and starts moving in the +x axis,
due to the influence of the string, which transfers the momentum taken from the gluon to
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the quark. The q eventually gains half of the gluon energy, which is then given back to
the string again, as illustrated in diagrams 3 and 4 from Figure 8. Therefore, the quark
finally loses its energy and starts moving along the −z direction, due to the string effect. A
similar process occurs for q. As shown in diagram 7 of Figure 8, the gluon will eventually
appear again and the sequence will be repeated with the momenta of q and q swapped. If
breaks are taken into account, the evolution of the system is much more complicated.

Figure 9: The parameter plane picture for the qgq system. The dash lines indicate the
turnover regions, normally neglected. Figure adapted from [11].

Although the diagrams from Figure 8 are useful to analyse the time evolution of the
system, the parameter plane picture is most convenient when addressing the kinematics.
The parameter plane picture [11] is a diagram that displays the different string regions
in terms of the light-cone four-vectors defining each region, i.e. p+

q = pq, p
−
q = pq and

p+
g = p−g = 1

2
pg in the qgq case. Figure 9 depicts the parameter plane for the qgq system

discussed so far. The low regions represent the states in which none of the partons have lost
their energy, corresponding to the two string regions in diagram 1 of Figure 8, the qg and
the gq string pieces. The intermediate region corresponds to the new string piece created
from the q and q momenta once the gluon has lost all its energy, which is represented in
diagram 2 of Figure 8. Finally, the upper regions account for the turnover regions, which
are related to the two string pieces formed when g re-appears and q, q swap their momenta,
both illustrated in diagram 8 of Figure 8. Although the complete parameter plane picture
is the one shown in Figure 9, the upper regions or turnover regions are normally neglected,
since we assume the system hadronizes before the q and the q swap their momenta. This
reasonable assumption is made due to large number of complications in the fragmentation
pattern included when accounting for the turnover regions [11].

From the parameter plane picture, the equations defining the hadron properties and
the fragmentation process presented in section 3.2 can be easily generalized. For the qgq
system, the most generatic form of expressing the hadron four-momentum in terms of the
x± fractions is

ph = x+
q p

+
q + x+

g p
+
g + x−g p

−
g + x−q p

−
q

= x+
q pq +

1

2

(
x+
g + x−g

)
pg + x−q pq.

(3.27)
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The hadron mass can be determined directly from the four-momentum as m2
h = p2

h. The
other Lorentz invariant variable Γ is obtained from the x̂± defined in section 3.2.2 as

Γ =
(
x̂+
q p

+
q + x̂+

g p
+
g + x̂−g p

−
g + x̂−q p

−
q

)2
. (3.28)

Note that the relation between the hadron momentum and the light-cone coordinates p̃±,
introduced for the single string system, is more complicated in this case. In a frame where
g moves along the +x direction, q along the +z and q along the −z direction, the light-cone
coordinates of the hadron are [11]

p̃+
h = E + pz = 2x+

q Eq +
1

2

(
x+
g + x−g

)
Eg

p̃−h = E − pz = 2x−q Eq +
1

2

(
x+
g + x−g

)
Eg

px =
1

2

(
x+
g + x−g

)
Eg

(3.29)

where Eq is the energy of the massless quark, Eg the energy of the gluon, Eq the energy of
the massless antiquark and x±g , x±q and x±q are the hadron x± fractions related to the gluon,
the quark and the antiquark, respectively. Therefore, the hadron will have a transverse
momentum and a transverse mass-square, defined as m2

T = (E + pz) (E − pz) = p̃+
h p̃
−
h ,

which does not match the total hadron, determined as m2
h = m2

T − p2
x.

Figure 10: The parameter plane picture for a multiparton system composed by five partons.

The parameter plane picture can be easily extended to a multiparton system, resulting
in the most convenient alternative to study the kinematics of any multiparton system. As
an example, the parameter plane for a system consisting of three gluons, one quark and
one antiquark is depicted in Figure 10, where the turnover regions have been ignored. In
such system, there are four low regions, or initial regions, and six intermediate regions.
The number of initial and intermediate regions can be generalized for any multiparton
system formed by n partons, out of which n − 2 are gluons, as n − 1 initial regions and
1
2

(n− 1) (n− 2) intermediate regions [11]. The expression for the hadron four-momentum
can be also conveniently generalized to an n-parton system by accounting for the momenta
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taken from each parton as

ph = x+
q p

+
q + x−q p

−
q +

n−2∑
i=1

(
x+
gi
p+
gi

+ x−gip
−
gi

)
. (3.30)

Apart from these aspects, the rest of the properties are similarly determined as in previous
cases for a single string system or qgq systems.

3.4 Lund String Model implementation

The hadronization process in Pythia starts once the initial partonic system has been
built, based on the four-momenta of the initial partons, previously created during the hard
process. Due to left-right symmetry, Pythia first chooses randomly the side from which
the step is taken to create a new qq pair, either from the q or the q end. Then, the flavour of
the qq pair is picked randomly, taking into account that the production of ss is suppressed
as uu : dd : ss ≈ 1 : 1 : 1

3
[10]. As mentioned before, heavy quarks are not generated during

the fragmentation process due to the strong suppression given by the tunneling factor (see
section 3.2.5).

Once the flavour of the new qq is set, a hadron is formed combining the old q with the
new q, if the step has been taken from the q end, and vice versa otherwise. The hadron
kind is then established depending on the quark content. Since different hadrons share the
same quark content, this decision is basically based in two different effects with opposite
bias: the spin effect and the mass effect. Due to the spin effect, particle with higher spin
number are generated more often than lower spin particles, because the number of states
goes like 2s+ 1, where s is the spin number. On the other hand, more massive hadrons are
less probable to be generated than lighter hadrons. Because their bias are inverse, those
two effects balanced when the hadron kind is established.

After the hadron kind is established, the hadron mass is set and the transverse mo-
mentum is summed from the constituent q and q contributions. Finally, the longitudinal
momentum is determined and added to the total hadron four-momentum. In order to de-
termined the longitudinal momentum, a zi value is randomly picked according to eq. (3.15),
which, in a simple system, corresponds to z+

i if the step has been taken from the q end
and to z−i otherwise. For that specific zi value, the Γi value of the breakup is calculated
using eq. (3.16). In a simple system, the breakup space–time location is obtained from the
m2
h and the zi value, while in a multiparton topology, a region is searched that obeys the
{m2

h,Γi} constraint, which gives the final solution for the breakup location in the energy–
momentum picture. The hadron longitudinal momentum is then determined as stated in
section 3.2.2. This process is repeated until the energy left in the system is not enough to
produce three hadrons more. At that point, a final breakup is generated in between the
two last breakups from each side, creating two final hadrons. Details on the generation of
the final two hadrons can be found in Appendix A, along with the challenges encountered
when implementing the space–time picture and the methods applied to solved them.
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4 Space–time implementation

4.1 Simplest qq system and hadron production points

So far, the hadronization process in Pythia was developed in terms of the energy–
momentum fractions x± and z±, presented in section 3.2.2. Therefore, the location of
the breakup points could only be determined in the energy–momentum picture, in terms
of the (p̃+, p̃−) coordinates. In order to study the density of hadron production, the energy–
momentum picture should first be translated to the space–time picture, defined in terms
of (t, x, y, z) coordinates.

To illustrate the space–time implementation in the hadronization process, we first con-
sider a breakup point i in a qq system. Its location with respect to the origin of the
energy–momentum picture, where q and q have been created, is given by the x̂± fractions.
Then, considering p+ to be the q four-momentum and p− the q four-momentum, the loca-
tion of breakup i in the energy–momentum picture is defined as x̂+

i p
+ + x̂−i p

−. Recalling
the linear relation between space–time and energy–momentum (eq. (3.3)), the space–time
location of breakup point i is defined as

vi =
x̂+
i p

+ + x̂−i p
−

κ
. (4.31)

Note that the q and q generated by string breaking are considered to be created in the
same space–time location, even if the transverse momentum and the masses of the quarks
are considered. Although Heisenberg uncertainty relations hold and tunneling is taken into
account in the Lund String Model, this is the best assumption we can make in order to
study the space–time behaviour of hadron production.

Eq. (4.31) determines the space–time location of the string breakups inside any region.
Because hadrons are formed by two adjacent string breakups, the space–time location at
which they are generated can be determined from the location of the constituent breakups.
Contrarily to the space–time location of a breakup, the hadron production point definition
is not unique, since hadrons are composite particles. For that reason, we propose three
alternative definitions of hadron production points, illustrated in Figure 11. Figure 11 dis-
plays a q0q0 system with two breakup points, i and i+1, whose space–time coordinates are
vi and vi+1, respectively. The qiqi+1 subsystem forms hadron i, whose hadron production
point, vhi , can be defined by the middle point between the two breakups i and i + 1, red
dot in Figure 11, as

vhi =
vi + vi+1

2
. (4.32)

Alternatively to this ”middle” definition, the ”late” hadron production point is interpreted
as the point where the two partons forming the hadron cross for the first time, illustrated
in green in Figure 11. Taking into account the hadron four-momentum, ph, the ”late”
hadron production point is determined from the ”middle” definition as

vhi =
vi + vi+1

2
+
ph
2κ
. (4.33)
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Finally, an ”early” description, represented in blue in Figure 11, is defined as the initial
point of the fictional oscillation between the partons that form the hadron, given by

vhi =
vi + vi+1

2
− ph

2κ
. (4.34)

Note that the two endpoint hadrons are situated on the light-cone with this ”early” defi-
nition. The different results drawn from the three alternative definitions can be used as a
measure of uncertainty, as it is shown in section 5.1. If not stated otherwise, the default
value use in this thesis is the ”middle” definition, given by eq. (4.32).

Figure 11: Hadron formation in a qq system. The blue, red and green dots represent the
”early”, ”middle” and ”late” definitions of hadron production points, respectively.

4.2 More complex topologies

Multiparton systems are more complicated to address than single string systems, as shown
for the string dynamics and the kinematics in section 3.3. Their complexity also affects
the space–time implementation, which has to be extended to include several string regions.
To explain how the space–time picture is generalized to multiparton systems, consider a
qgq system formed by massless partons, whose parameter plane is displayed in Figure 12,
ignoring the turnover regions. Since each string region behaves as a simple qq system,
eq. (4.31) can be used within each region. Nevertheless, the intermediate region is formed
after the gluon has lost all its energy, at a different location in space–time than the initial
regions, an offset that has to be taken into account when determining the breakup location
in space–time. From the linear relation between space–time and energy–momentum, the
offset for this region can be calculated as vreg = pg/2κ, where pg is the four-momentum of
the gluon. The factor of 1/2 in the offset accounts for the fact that the gluon loses four-
momentum twice as fast as the q or q, since it transfers its four-momentum to two string
pieces. Then, the space–time location of a breakup located in the intermediate region is
given by

vi =
x̂+
i p

+ + x̂−i p
−

κ
+
pg
2κ
. (4.35)
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Figure 12: Parameter plane for a qgq system.

If the system is composed of more than one gluon, more than one intermediate region
have to be taken into account, as illustrated in Figure 13 for system composed of three
gluons, one quark and one antiquark. In such cases, more gluons have to be included
when determining the space–time offset of some intermediate regions, such as region qg3

in Figure 13. The region qg3 is created when the gluons g1 and g2 have lost their energies,
implying that the region offset in space–time is vreg = (pg1 + pg2) /2κ. Following a similar
procedure, the offset of any region in a multiparton system can be determined, which has
to be added to the space–time location of the breakups situated in that region.

Figure 13: Parameter plane for a five parton system.

A general expression for the space–time offset of any intermediate region in any mul-
tiparton system can be easily defined. For a system composed of n partons, out of which
n − 2 are gluons, assign each parton a number such that q is p̃0, q is p̃n−1, g1 is p̃1, etc.
With this notation, the offset of the region p̃j p̃k is found to be

vp̃j p̃k =
k−1∑

m=j+1

pm
2κ

(4.36)

where pm is the four-momentum of parton m. Thus, the general expression of the space–
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time location for a breakup point i located in region p̃j p̃k is

vi =
x̂+
i p

+
j + x̂−i p

−
k

κ
+

k−1∑
m=j+1

pm
2κ
. (4.37)

The implementation of the fully space–time picture in multiparton systems has been a
great challenge in this thesis due to several complications found when the fragmentation
process jumps among different regions. This aspect gives rise to two main problems: the
determination of the space–time location of the final breakup in the system and the non
physical values of the x̂± fraction when fragmentation moves to a new region. Those issues
are further explained in appendices A and B, respectively, along with the solutions found
to properly implement the space–time picture.

4.3 Gluon–loops

So far, we have just taken into account gluons when constituting multiparton systems, along
with a quark and an antiquark. However, gluons are the force carries of QCD and, since
they carry both colour and anticolour, they both interact with quarks and other gluons.
The latter interaction can lead to closed gluon–loop topologies, whose string configurations
are more complex to address than multiparton systems, since the strings form a closed
string system, as exemplified in Figure 14a for a ggg system. As a consequence, the
relation of the string system with the parameter plane is not so trivial anymore. In this
section, we explain how to define a parameter plane for a gluon-loop topology by breaking
one string piece into two pieces, by the generation of a qq pair.

In order to reduce the problem to a familiar one, a qq is generated by string breaking in
one of the string regions, fragmenting that region into two regions with smaller invariant
mass. First, the region in which the pair is created is randomly selected, provided that
the probability to generate at least one break in that region is favoured. Note that, when
choosing the region, a bias is included in the fragmentation process. Once the region
is selected, the breakup point is randomly allocated in the energy–momentum picture,
always obeying the expected Γ distribution, eq. (3.17). The process followed to determine
the energy–momentum location of the new qq pair in the specific region is similar to the
one followed by the fragmentation process presented in section 3.4. After this process,
the gluon-loop topology can be represented by a two-dimensional parameter plane and
treated as a multiparton system, with the only difference that the q and q endpoints are
not different than the rest of breakups, since Γq = Γq 6= 0.

As an example, the parameter plane for a gluon–loop consisting of three gluons is
displayed in Figure 14b. In this case, the string between g1 and g3 has broken into two string
pieces, generating two new string regions: one formed by the influx of g1 and q momenta
and the other by g3 and q momenta. The g1g3 region is duplicated in the parameter plane,
such that the right endpoint region makes use of the ”active area” between q and g1, while
the other uses the complementary area between g3 and q. Note that, since the q and q
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(a) String configuration (b) Parameter plane

Figure 14: The string configuration and the corresponding parameter plane for a three
gluon-loop topology.

endpoints are generated from string breaking as a new qq pair, they are created at the
same location in space–time. Apart from that, the fragmentation process is carried out
in the same way as for any multiparton system and, hence the space–time location of the
breakups can be determined as described in sections 4.1 and 4.2.

4.4 Smearing in transverse space

The hadronization process is simulated in Pythia by assuming the existence of a zero-
width string connecting partons. As a better approximation, the QCD potential can be
expressed as a string whose width is not zero, in which case the space–time location of the
breakups has a transverse uncertainty with respect to the string axis. In this section, the
calculation of the transverse space components is presented. This smearing in transverse
space is included after the longitudinal space–time location has been derived from the
fragmentation scheme.

The transverse location of breakup points is assumed to follow a Gaussian distribution,
whose expectation value is zero. Thus, the probability density for the three-dimensional
transverse space–time location of the breakups is

f (x, y) ∝ e−
x2+y2

2σ2 (4.38)

where x and y are transverse spatial coordinates and σ is the standard deviation of the
distribution. Because we are dealing with hadron formation, the string width can be
approximated to be the proton size, whose three-dimensional radius is rp ≈ 0.87 fm [22].
Then, the standard deviation in each direction, σ, corresponds to

r2
p = 〈x2 + y2 + z2〉 = 3σ2, which implies σ =

rp√
3
. (4.39)

Since the smearing in transverse space only accounts for two dimensions in space, the
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transverse radius of the string is determined as

r2
pT = 〈x2 + y2〉 = 2σ2 =

2

3
r2
p. (4.40)

The smearing in transverse space might generate unwanted situations, such as negative
values for the Γ parameter of the breakup points. Since the space–time location is first
obtained from the fragmentation picture in the longitudinal direction, the squared invariant
time should not change when introducing smearing. Therefore, the time coordinate is
adjusted after including the smearing in transverse space, in order to retain the Γ value
determined by the longitudinal scheme.

4.5 Massive quark implementation

As illustrated in section 3.2.5, the origin of the massive and massless oscillations are dis-
placed for technical reasons, correspondingly the intial point of the massive oscillation is
offset from the origin of the space–time coordinate system. Since the fragmentation process
is performed in the massless system, the space–time locations of the breakups have to be
adjusted to lead to the correct locations.

(a) Massive offset calculation (b) Endpoint correction

Figure 15: Massive qq system and equivalent massless system. The grey region corresponds
to the physical region.

To determine the deviation of the massive system form the origin, consider the system
from Figure 15a, which is composed of two massive q and q in the CM frame moving in
the +z and −z direction, respectively. In this system, the masses of q and q are different,
with mq > mq. Note that, at time t = 0, the system is in the centre of mass frame, where
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p0 = pzq = −pzq and ECM = Eq + Eq, and the energy and momentum of q and q are

Eq =
E2

CM +m2
q −m2

q

2ECM

Eq =
E2

CM +m2
q −m2

q

2ECM

p0 =

√(
E2

CM −m2
q −m2

q

)2 − 4m2
qm

2
q

2ECM

.

(4.41)

The massive oscillation in Figure 15a is offset both in time and z-component of space,
represented as ∆t and ∆z. The temporal offset is determined from the difference between
the time coordinates at which the massless and massive quarks lose their three–momenta,
tmassless and tmassive in Figure 15a, respectively, whose values are given by tmassless = ECM/2κ
and tmassive = p0/κ. Consequently, the time offset of the massive oscillation is

∆t = tmassless − tmassive =
ECM − 2p0

2κ
. (4.42)

The process to define the space offset is slightly different. In Figure 15a, the distance of
the massive q endpoint to the centre of the massive oscillation is represented as z1, while
z2 corresponds to the distance of the massive q endpoint to the centre of the massless
system. These two quantities can be determined using eq. (3.22) and analysing the motion
of the massless system. As illustrated in Figure 15a, the z-offset is given by the difference
between z1 and z2

∆z = z1 − z2 =
1

κ

(
ECM

2
−mq

)
− 1

κ
(Eq −mq) =

Eq − Eq
2κ

. (4.43)

The time and space offsets, given by eq. (4.42) and eq. (4.43), can be written in terms of
the light-cone coordinates as

∆t−∆z =
Eq − p0

κ

∆t+ ∆z =
Eq − p0

κ
.

(4.44)

To define a general expression for the offset in space–time, the expressions in eq. (4.44)
are related to the vectors of the massless system, p±, given by the four-momenta of the
massless quarks. Hence, the vectorial form of the space–time massive offset is

voffset =
1

κECM

(
(Eq − p0) p+ + (Eq − p0) p−

)
. (4.45)

Hence, for each vertex in a region formed by at least one massive quark, the space–time
location is defined as usual from the massless system, vmassless, and then corrected to obtain
the correct space–time location

vcorrect = vmassless − voffset. (4.46)
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For more complex topologies, such as multiparton systems consisting of a massive q and/or
q and several gluons, the effect of the massive q or q is only non-negligible in the lowest
respective endpoint region. Therefore, the correction due to the presence of massive quarks
is only performed in those regions.

Whenever a system is formed by massive quarks, the space–time locations of the end-
points also have to be corrected, because the endpoints obtained from the fragmentation
process correspond to the endpoints of the massless system. This situation is exemplified
in Figure 15b, which illustrates the same massive qq system as before. The three vertices
v1, vq and v2 sketched correspond to the space–time location of the massless endpoint, the
massive turning point and the closest breakup to the massless endpoint, respectively. Since
the motion takes place along the z axis, the x and y components of the vertices are equal to
zero. The system can be studied in a Lorentz frame such that the three vertices are simul-
taneous in time, v1t = v2t = vqt. In such frame, the linearity between energy–momentum
and space–time (eq. (3.3)) gives rise to the relations

v1z − v2z =
mh

κ

v1z − vqz =
mq

κ

(4.47)

where mq is the mass of the heavy quark and mh the mass of the hadron formed from the
vertices v1 and v2. Then, vzq can be determined as vqz = v1z + mq

mh
(v2z − v1z). Using four-

vector notation, the general expression of the space–time location of the massive endpoint
is given by

vq = v1 +
mq

mh

(v2 − v1) . (4.48)

Eq. (4.48) is Lorentz invariant and can be applied to both q and q endpoints, whenever
they are massive. Note that, after the accurate endpoint location has been determined,
the corresponding offset correction has to be included as stated in eq. (4.46). A massive
system might be formed by one massless q and one massive q, in which case, eq. (4.48) has
to be applied only to the massive q, while the correction given by the space–time offset in
eq. (4.46) has to be used both for q and q.

A final feature has to be included in the massive space–time implementation, to account
for the reduced oscillation period of the endpoint hadrons consisting of massive quarks,
which is shorter than for hadrons formed by massless quarks. This discrepancy only affects
the estimation of the ”late”, vhl , and ”early”, vhe , definitions of hadron production points,
whose expressions, previously given by eq. (4.33) and eq.( 4.34), become

vhl/e =
vi + vi+1

2
± αred

ph
2κ

(4.49)

where αred is the parameter that accounts for the reduced oscillation period. This param-
eter is determined in the hadron rest frame by the three-momenta of the quarks forming
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the hadron, i.e. αred = p0/mh = |−→pq |/mh = −|−→pq |/mh, whose general expression, p0, is
displayed in eq. (4.41). Thus, the reduced oscillation parameter is

αred =

√(
m2
h −m2

q −m2
q

)2 − 4m2
qm

2
q

m2
h

(4.50)

where mh is the mass of the hadron and mq and mq, the masses of the constituent q and
q, respectively.

4.6 Other implementation details

Up until now, only qq systems, multiparton systems and gluon-loop topologies have been
considered. Although those systems are the most common ones, systems composed of three
different quarks or antiquarks are also possible, specially in pp collisions, where two of the
hadrons created during hadronization have to be baryons due to the conservation of baryon
number. Those systems, known as junction systems, also fragment in the hadronization
process and need a special mention in the space–time implementation.

A junction system consists of three different ”legs” or subsystems, whose ends corre-
spond to the quarks forming the junction system, which define the flavour content of the
system, and the junction proper, where the colour-string legs meet. The hadronization
process is most conveniently performed in the rest frame of the junction, in which the total
energy of each leg is determined and the two legs with the lowest energy are fragmented
first. The fragmentation process in each leg is performed always stepping from the q/q end
towards the centre of the junction system. The process stops whenever the next step to be
taken would require more energy than the energy left in the leg.

Once the two initial legs have fragmented, a q or q from the last break is left in each
of them. These two partons combined to create a diquark. Together with the third leg
and its orginal endpoint q/q, this diquark defines a final string system, which fragments
following the same process described in section 3.4.

In Pythia, the assignment of the space–time location to the hadrons is performed once
all the hadrons of the system have been created in the energy–momentum picture. The
fragmentation process of a junction system follows an order, which has to be taken into
account when assigning the space–time locations to the breakups, already generated. This
is done by considering the three different legs to be three different systems and dealing with
them in the same order as they fragmented, starting from the leg with the lowest energy.
Apart from this, the calculation of the space–time locations and all the implementations
presented so far are performed in the same way as in a qq system.

Low-invariant-mass systems also hadronize, following the same fragmentation process
as in systems with higher invariant masses. The only difference takes place when the
invariant mass of the system is so low that it can only form one hadron. In such cases, the
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”early” description of hadron production point corresponds to the origin of the qq system,
i.e. vhi = ( 0; 0, 0, 0). Note that the smearing in transverse space will give rise to negative
squared invariant times in such cases, which is not considered to be a problem due to the
pancake picture (see section 2). The ”middle” and ”late” definitions are calculated from
the four-momentum of the hadron ph as vhi = ph/2 and vhi = ph, respectively.

5 Hadron density studies

In this section, the space–time implementation is used to study the space–time hadronic
density in different situations. First, we show that the three different definitions of hadron
production points (see section 4.1) can be regarded as a measure of uncertainty. This is
done by analysing the longitudinal and transverse spectra of hadron production in section
5.1. Then, the temporal evolution of hadron production is studied in section 5.2, both for
single string qq systems and for pp collisions, for which the radial evolution is also analysed.

Once the general evolution of hadron production is understood, the close-packing fea-
ture is addressed. First the hadronic density in the central region of the collision is tackled
in section 5.3, showing the presence of overlapping hadrons. To extend the study to all
the regions and determine the effects of close-packing for different multiplicities, a similar
analysis is performed as a function of hadronic multiplicity for pp collisions at

√
s = 13

TeV, as presented in section 5.4. This issue is examined further in section 5.5, where the
number of hadrons overlapping with a newly generated one are analysed for different mul-
tiplicity ranges, as well as the relation between close-packing and the hadron transverse
momentum.

5.1 Longitudinal and transverse distributions

In section 4.1, the three definitions of hadron production point were presented. In order
to prove that the different results drawn from the definitions can be used as a measure
of uncertainty, the longitudinal and transverse space–time distributions are studied. The
transverse spectrum is represented using the variable r =

√
x2 + y2, while for the longitu-

dinal spectrum a ”space–time” rapidity, yτ , is used

y =
1

2
log

(
E + pz
E − pz

)
−→ yτ =

1

2
log

(
t+ z

t− z

)
(5.51)

where t, x, y and z are the coordinates of the hadron production points. Note that the
longitudinal variable is dimensionless while the transverse one is expressed in units of
fermi (fm). Although formally unrelated, the dynamics of string fragmentation introduces
a strong correlation between y and yτ , as illustrated in Figure 16. The spread from the
diagonal comes from a number of effects, such as the probabilistic fragmentation process,
given by eq. (3.15), and hadronic decays.
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Figure 16: Correlation between rapidity, y, and the equivalent space–time rapidity, yτ , for
all hadrons in 100 pp collisions at

√
s = 13 TeV.

Figures 17 and 18 display the longitudinal and transverse spectra for pp collisions at√
s = 13 TeV given by the ”early”, ”middle” and ”late” definitions of hadron production

points, represented in green, red and blue, respectively. In the same figures, the spectra for
a single string, whose CM energy is

√
s = 13 TeV, using the ”middle” definition are also

illustrated in black. In both cases primary and secondary hadrons are taken into account
and all the distributions have been normalized to the number of events simulated and the
bin width.

As can be seen in Figure 17, the longitudinal spectra given by the different definitions
are extremely similar. The largest disagreement among definitions can be seen for values
around yτ ≈ 0, where the spectra of the ”early” definition peaks at a higher value than
in the other two cases. Another small discrepancy is observed for larger yτ values, where
especially the ”early” description seems to behave slightly different than the other two
definitions. The reason for those disparities is the fact that the ”early” alternative maxi-
mizes the extreme behaviour of hadron production. Apart from that, the results obtained
from the three alternatives are similar enough to consider the differences among them as
an uncertainty measure.

Similar conclusions are drawn from the transverse spectra, shown in Figure 18. The
Gaussian shape, especially in the qq spectrum, is a consequence of the smearing in trans-
verse space, which follows a Gaussian distribution, as explained in section 4.4. This Gaus-
sian shape is distorted in the pp transverse spectra due to the large number of strings
that constitute pp events, each of them stretching in a different way between the partons
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Figure 17: Longitudinal spectra for pp collisions and qq systems, both at
√
s = 13 TeV.
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Figure 18: Transverse spectra for pp collisions and qq systems, both at
√
s = 13 TeV.

from hard collisions, parton showers and beam remnants. For the same reason, the qq
transverse spectrum drops faster and peaks closer to zero than the pp spectra. As in the
longitudinal case, the pp transverse spectrum given by the ”early” definition shows a more
extreme behaviour than the other two definitions. Although the discrepancy among the
results for the three definitions is greater than in the longitudinal spectrum, we conclude
that the three definitions for hadron production points are equivalent and can be use as
an uncertainty measure.
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To illustrate the effect of the transverse smearing, the transverse spectrum for 13 TeV
pp collisions given by the ”middle” definition without including smearing is also displayed
in Figure 18. In that case, the transverse spectrum peaks at r = 0 fm and falls for
increasing radii, indicating the presence of some strings aligned with the beam axis, while
other stretch in diverse ways along the transverse direction. Although the spectrum for
small radii changes when including transverse smearing, displacing the peak at r = 0 fm
to a larger value of r ≈ 0.5 fm, the behaviour for large radii is unchanged thanks to the
assumption that the transverse location of the breakups follows a Gaussian.

5.2 Temporal and radial evolution of hadron production

Once the transverse and longitudinal spectra have been displayed, let us focus in this
section on the temporal and radial evolution of hadron production in pp and qq systems.
Note that the space–time quantities are expressed in units of fermi (fm), if not stated
otherwise.

The number of hadrons in the system is displayed as a function of time for a single string
system at

√
s = 20 GeV in Figure 19, and for pp collisions at

√
s = 13 TeV in Figures 21

and 22. The red curve corresponds to the number of primary hadrons, or hadrons formed
during the hadronization process, while the green curve represents the number of secondary
hadrons in the system, generated from particle decays. The total number of hadrons in
the system, illustrated in blue, is given by the sum of the primary and secondary hadrons
present in the system. The brown curve represents the number of final hadrons in the
system, or hadron regarded as stable in event generators. Finally, the black curve depicts
the number of hadrons located at the longitudinal centre of the collision, i.e. at a location
|z| < 0.5 fm, a behaviour that will be discussed later in section 5.3.

As illustrated in Figure 19, the number of primary hadrons peaks at t = 10 fm for a 20
GeV simple qq system formed by massless quarks in the CM frame. This effect arises from
the fact that the system is completely hadronized at t > 10 fm and, thus, no more primary
hadrons can be formed. The maximal string length for this system is l = 10 fm and,
because massless quarks travel at the speed of light, it is reached at t = 10 fm, when the
hadronization process comes to an end. The number of secondary hadrons also peaks at
t = 10 fm due to the decays of short-lived primary hadrons generated in the hadronization
process. Since some of the primary hadrons decay into other particles, including hadrons,
the number of secondary hadrons increases as the number of primary hadrons decreases for
t > 10 fm. Another important effect observed is the fact that the hadronic outflux from
the central region is larger than the influx, showing that hadrons tend to move further out
in the longitudinal direction. This is the reason why the number of hadrons located in the
central region is only relevant for times t ≤ 4 fm. This condition is required in the analysis
performed in the next section.

Note that there are no hadrons in the system up until t ≈ 0.5 fm, because it takes some
time for hadronization to start, since the string has to begin stretching out before it can
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Figure 19: Hadron number per event as a function of time for a simple qq system formed
by massless quarks in the CM frame with

√
s = 20 GeV.
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Figure 20: Invariant time τ distribution of primary hadrons generated in qq systems.

begin fragmenting. This feature is illustrated in Figure 20, which displays the invariant
time distribution of the primary hadrons in the qq system presented earlier in this section,
normalized to the number of events and the bin width. By default, the parameters a and
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b in eq. (3.15) and eq. (3.17) are set to a = 0.68 and b = 0.98 GeV−2 [23], giving rise to a
suppression of the small Γ values and an expectation value of 〈Γ〉 = (1 + a)/b ≈ 1.7 GeV2,
determined from eq. (3.17). Due to the relation between Γ and the invariant time τ , given
by eq. (3.12), the τ expectation value is 〈τ〉 =

√
〈Γ〉/κ ≈ 1.3 GeV, as also illustrated in

Figure 20. The relation between Γ and τ also implies the suppression of small τ values,
as shown in Figure 20, since P (Γ) ≈ ΓadΓ ∝ τ 2aτdτ = τ 2a+1dτ for τ → 0. Because those
aspects are typical of the hadronization process, a similar behaviour is also observed in pp
collisions.

The time evolution of hadron production in 13 TeV pp collisions is displayed in Figure
21 for times t ≤ 20 fm. Although the qualitative behaviour is similar to the hadron
production in qq systems, the temporal evolution is smoother and the number of hadrons
generated per unit time increases more rapidly in pp system than in the simple qq system.
These effects are direct consequences of the presence of several string systems in pp events,
whose strings are more spread out, possibly extending out to 6500 fm.
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Figure 21: Hadron number per event as a function of time, up until t = 20 fm, for pp
collisions at

√
s = 13 TeV.

To understand the whole time evolution of hadron production in 13 TeV pp collisions,
Figure 22 shows it in a logarithmic scale extending from 1 fm to 1015 fm, equivalent to a
distance of 1 meter. As in the case of the qq system, the total number of primary hadrons
increases until hadronization is over (t ≈ 103 fm), which occurs at later times than in the
qq systems due to the presence of several string systems, some of which are much more
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energetic than the qq presented before. As time passes, unstable primary hadrons decay
into secondary hadrons, generating an increase of the number of secondary hadrons in the
system, while the number of primary hadrons decreases. The significant drop in the total
number of hadrons at t ≈ 108 fm, also visible in the number of primary and secondary
hadrons, represents the electromagnetic decay of the π0 hadrons present in the system into
photons, π0 → γ + γ. Although the lifetimes of hadrons composed of s, b and c quarks in
their rest frame are of order of some millimeter or centimeter, their decays are still ongoing
at times t = 1015 fm, since the hadrons are in a boosted frame with respect to their rest
frame. All the unstable primary and secondary hadrons will decay until the only hadrons
left in the system are stable hadrons, meaning that the blue and yellow lines will meet. As
mentioned in section 2, the decays of µ±, π±, K±, K0

L, n and n are not considered or else
only a few p and p would remain per event, since p and p are the only truly stable hadrons.
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Figure 22: Hadron number per event as a function of time for 13 TeV pp collisions.

Alternatively, the radial evolution of hadron production for 13 TeV pp collisions is
displayed, in a logarithmic scale extending from r = 1 fm and r = 1015 fm = 1 m, in
Figure 23. Overall, the diverse effects visible in the time evolution of the system are also
present in the radial evolution. Some of the primary hadrons are generated close to the
collision centre, where r < 1 fm, meaning that the distribution of primary hadrons does
not fall to zero for r < 1 fm. The same feature is observed for secondary hadrons, since
some of them are created close to the collision centre, generated in the decays of short-lived
primary hadrons, such as ρ. As in the time evolution, the significant drop at r ≈ 106 fm in
the primary, secondary and total number of hadrons is due to the electromagnetic decay
π0 → γ+γ. The number of final stable hadrons increases slightly at r ≈ 1013 fm, implying
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Figure 23: Hadron number per event as a function or radius for 13 TeV pp collisions

that almost all weak decays of the hadrons composed of s, c and b quarks take place before
r ≈ 1015 fm, making the number of stable final hadrons and the total number of hadron in
the system coincide. Although this aspect could have been inferred form the time evolution
in Figure 22, the total number of hadrons and the stable hadrons do not coincide at time
t ≈ 1 m/c since hadrons can have a very large longitudinal motion.

5.3 Close-packing of hadron production in the central region

The space–time density of hadron production, dN/dV , can be analysed in terms of different
measures, which must be Lorentz invariant to give rise to frame independent conclusions.
Since Lorentz invariant measures tend to hide the time aspect, to begin with the analysis
of hadronic density, the hadron density is studied in this section in a specific region. Par-
ticularly, the time evolution of the hadronic density is studied in the longitudinal central
region, defined such that |z| ≤ 0.5 fm, a choice that is approximately Lorentz invariant
under longitudinal boosts in the central rapidity plateau. For that region, the hadronic
density can be expressed in cylindrical coordinates as

dN

dV

∣∣∣
|z|≤0.5

=
dN

dxdydz

∣∣∣
|z|≤0.5

=
dN

dxdy
=

dN

2πrdr
(5.52)

giving a measure of the hadronic densities as a function of radius.

Figures 24a and 24b show the distribution of the hadronic densities in the central region
as a function of the radius, determined by eq. (5.52), and for different times, for qq systems
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(a) 20 GeV single string systems
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(b) 13 TeV pp collisions

Figure 24: Hadronic density as a function of the radius for different constant times, for a
central slice |z| < 0.5 fm.

at
√
s = 20 GeV and 13 TeV pp collisions, respectively. Only times up to t = 2 fm

have been considered, since the total number of hadrons in the central region peaks at
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t ≈ 2 fm both in qq and pp systems, as illustrated in the previous section, particularly
in Figures 19 and 21. In both distributions, primary and secondary hadrons have been
taken into account. The hadron density at times t = 0.5 fm is extremely low in both
systems, since they hardly have had time to start hadronizing yet. From this point on,
hadrons are generated from hadronization and particle decays, increasing the value of the
hadron density in the central region. The maximal value of the hadronic density in the
region closer to the origin is obtained at t = 1.5 fm, both in pp collisions and qq systems,
a value that relates to typical hadronization time scales. From this time on, the hadron
density spreads in the longitudinal and transverse directions, illustrating the motion of the
hadrons, which are created at the collision centre and moving away from it.

Another important feature that can be deduced from Figure 24b is the close-packing
of hadrons near to the centre of the collision. To demonstrate this, consider the typical
hadron volume to be defined by the proton volume, whose radius is rp = 0.87 fm [22], thus
Vh = (4πr3

p)/3 ≈ 2.76 fm3. The maximum value of the hadronic density for pp collisions,
reached at time t = 1.5 fm for radii r ≈ 0 fm, is dNhad/dV = 1.8 fm−3, implying that five
hadrons overlap in the centre of the collisions, disregarding Lorentz contraction. Therefore,
the generation of a new hadron from the hadronization process is affected by the presence
of other hadrons overlapping with it. In the following sections the close-packing of hadrons
is analysed as a function of event multiplicity.

5.4 Hadron production at different multiplicities

In the previous analysis, we focused on the longitudinal central region, leading to the first
evidence of the presence of close-packing in hadron production. Although the hadronic
density definition is reasonable for a central slice with limited longitudinal motion, the
analysis cannot be extended to all the regions because the results will be frame dependent.
In order to perform a Lorentz invariant analysis of the space–time hadron production
including all regions, the Lorentz invariant measure d3x/t is used in this section. Since the
number of particles in an event, N , is frame independent, a Lorentz invariant measure of
the hadron density can be defined as

t
dN

d3x
=

dN

d2r dz
t

=
dN

πdr2dyτ
→ N

πr2
m∆yτ

(5.53)

where ∆yτ is the space–time rapidity range of the event and r is the radius at which
particles in that event are created. As we want to study the typical average behaviour of
hadron production, we consider rm to be the median radius of the set of hadrons created
in the event, to avoid a strong dependence on the extreme values. For similar reasons,
∆yτ is determined as the extent of the space–time rapidity between two yτ values at which
dN/dyτ is half of its maximum value, given by dN/dyτ at yτ = 0. Note that cylindrical
coordinates have been used, i.e. dxdy = rdrdϕ = πdr2. Since we are interested only in the
hadron production, we consider N to be the number of hadrons in the event, a variable
that can be understood as the event hadronic multiplicity.
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Note that the concept of hadronic multiplicity applied to these studies is different than
its experimental definition. In experimental particle physics, the hadronic multiplicity of
an event is defined as the number of charge hadrons in that event, since they can be
associated with tracks in the detector components, while neutral hadrons are detected as
energy deposits. For the study of hadron production, all hadrons are equally important,
no matter if they are charged or not. Consequently, the event hadronic multiplicity in our
studies is defined as the total number of hadrons in an event, subjected to some constraints.

In this analysis, the event hadronic multiplicity has been determined taking into ac-
count primary and secondary hadron and including some specific constraints. Since we are
interested in the hadronization process, only strong decays should be taken into account
in our analysis. For that reason, the hadrons whose lifetimes are τ ≥ τπ0 ≈ 2.55313× 10−5

mm/c [22] are regarded as stable, since their decays are electromagnetic or weak. Similarly,
decay products generated at radii r > 10 fm are not taken into account in this analysis. In
order to include the space–time location of the hadrons and their decay products without
accounting for more hadrons than the final hadrons of the event, all secondary hadronic
decay vertices enter with a weight one less than the hadronic multiplicity of the decay, thus
compensating for the already bookkept decaying hadron.
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Figure 25: Hadron multiplicity distribution for 13 TeV pp collisions.

The event hadronic multiplicity distribution for 13 TeV pp collisions simulated in
Pythia is displayed in Figure 25, subjected to all the constraints presented and normalized
to the number of total events simulated. As can be seen, most of the events generated in
Pythia have multiplicities between nhad ≈ 40 and nhad ≈ 120, while the average multiplic-
ity value is at nhad = 169. Events with multiplicities nhad > 400 are generated at a much
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lower rate. For our purposes, ten multiplicity ranges are defined, based on the multiplicity
distribution, by simulating one hundred thousand 13 TeV pp collisions and requiring each
multiplicity range to contain around ten thousand events.

Before moving forward with the analysis of hadronic density as a function of hadron
multiplicity, the space–time longitudinal and transverse spectra of hadron production in
13 TeV pp collisions are presented for different multiplicity ranges in Figures 26 and 27,
respectively, normalized to the number of events in each range and the bin width. For
the sake of clarity, some intermediate bins are left out of the figures. In Figure 26, the
space–time rapidity range decreases with multiplicity because more hadrons are produced
in the central region at higher multiplicities. The hadron production at the endpoints
is suppressed for increasing multiplicity due to energy-momentum conservation, since the
energy to create more central hadrons has to be taken from the beam remnants.
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Figure 26: Longitudinal spectra for 13 TeV pp collisions and different multiplicity ranges.

Similar conclusion are drawn for the transverse spectra shown in Figure 27. Since at
high multiplicities more hadrons are generated, the number of hadrons per unit radius
increases with multiplicity. The median and average radii also increase with multiplicity,
which could be an effect of colour reconnection, a property by which partons from discon-
nected subprocesses are tied together, generating fewer string pieces and more MPIs than
otherwise.

The effect of colour reconnection is analysed in Figure 28, which displays the median
radii as a function of the median hadronic multiplicity, nhad, of each multiplicity range.
The red and blue curves represent the values obtained with and without including colour
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Figure 27: Transverse spectra for 13 TeV pp collisions and different multiplicity ranges.
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Figure 28: Median radii as a function of multiplicity for 13 TeV pp collisions. The red
curve corresponds to the approach with colour reconnection, while the blue and green
curves represent the model without colour reconnection and a tuned model without colour
reconnection, respectively.

reconnection, respectively. Although the multiplicity ranges in both approaches are equally
defined, the median nhad value for the last range differs for both configurations, due to the
increase in multiplicity when colour reconnection is not included. Consequently, a new
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set of values is included in Figure 28 in green, corresponding to a CR off model tuned to
have the same median multiplicity as when colour reconnection is on. This adjustment is
performed by reducing the number of low-pT MPIs in the CR off scenario. Although both
CR off models follow the same trend, the values at high multiplicity scales are slightly
different due to the fact that the hadrons in the tuned model have a slightly higher pT ,
as the pT of the average MPI is higher, and particles decay further out, meaning that the
production vertices take place at larger space–time scales. The discrepancy between the
values with and without colour reconnection grows as multiplicity increases since more and
larger strings are present at higher multiplicities when colour reconnection is not included,
which are more aligned with the longitudinal direction.

To determine the hadron production behaviour as a function of multiplicity, the values
nhad, rm and ∆yτ have to be determined in each multiplicity range by taking into account
all the events inside each range. As said before, rm is the median radius of the set of hadrons
inside that range, where radius is defined as r =

√
x2 + y2. Similarly, ∆yτ is determined in

each multiplicity range from the set of hadrons inside the range as described previously in
this section. From that approach, the endpoint behaviour is excluded as wanted, since our
analysis focuses on the typical hadron production given by more central regions. Finally,
nhad is defined in each multiplicity range as the median hadronic multiplicity value of all
the events in that range.
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Figure 29: Hadron density as a function of multiplicity for pp collisions at 13 TeV. The
red, blue and green curves represent the three different models with and without colour
reconnection, also included in Figure 28.

Figure 29 displays the hadron density, defined in eq. (5.53), as a function of hadron
multiplicity for 13 TeV pp collisions for the three different scenarios presented in Figure
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28. Overall, the space–time hadron density increases with hadronic multiplicity. The
densities for the two models without colour reconnection are significantly higher at large
multiplicities than the approach including colour reconnection, an effect arising from the
divergent trend in the median radii for the two CR off models, illustrated in Figure 28. In
the three cases, the rise in the density is less dramatic for lower multiplicity values while
the hadron density increases almost linearly for nhad > 150. Even though close-packing is
enhanced in high-multiplicity pp collisions in the three models, its effect is more significant
when colour reconnection is not taking into account. Yet, even with the default CR on
scenario, it is clear that particles are produced closely packed, i.e. with a significant overlap.

5.5 Close-packing analysis in hadron rest frame

The close-packing of hadron production is further analysed in this section by focusing on
the hadronic overlap. This analysis is performed by regarding hadrons as three-dimensional
spheres whose radius is the proton radius, rp = 0.87 fm [22]. In order for this analysis to be
Lorentz invariant, the number of hadrons overlapping with a given hadron are counted in
the rest frame of the given hadron. To illustrate the process followed, consider a hadron h1

generated at time th1 , where th1 is defined in the rest frame of hadron h1. The rest of the
hadrons in the system are boosted to the rest frame of h1, where only the hadrons created
at times t ≤ th1 and which have not decayed at t = th1 are taken into account. Since the
exact location of each hadron at t = th1 can be determined from the hadron production
point, defined in section 4.1, and its four-momentum, the distances of each hadron with
respect to h1 when the latter is created can be calculated. If such distances are shorter
than 2rp, the hadrons are considered to overlap, implying that the production of h1 could
be affected by the presence of these other hadrons. Note that Lorentz contraction is not
taken into account. In this analysis, two cases are studied, including and excluding the
adjacent hadron on each side along the string, since any effect of such overlaps is already
taken into account in the tuning of the fragmentation process, in eq. (3.15) and eq. (3.17).
This procedure is followed for each of the hadrons generated in the event.

The hadron overlapping distributions in the rest frame of each hadron for pp collisions
at
√
s = 13 TeV are displayed in Figures 30a and 30b, including and excluding adja-

cent hadrons and for different hadronic multiplicity ranges, where the definition of hadron
multiplicity is presented in section 5.4. As in the previous analysis, each distribution is
normalized to the number of events considered in each multiplicity range, and some inter-
mediate bins are left out of the figures for the sake of clarity. As expected, more hadrons
overlap when the adjacent hadrons are taken into account. Although close-packing in
hadron production also takes place in low-multiplicity pp collisions, the number of hadrons
overlapping with a newly generated one is not significantly high. That is not the case for
high-multiplicity pp collisions, where close-packing often arises with a significant number
of nearby hadrons, likely leading to unknown effects that are not taken into account in
Pythia.

In the analysis so far, hadrons have not been separated by any kinematics variable.
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(a) Including adjacent hadrons
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(b) Excluding adjacent hadrons

Figure 30: Hadron overlap for different multiplicity ranges for 13 TeV pp collisions.

Generally, particles produced at large transverse momenta are not expected to suffer from
close-packing: even if parton showers can generate many partons from each initial high-
pT parton, these daughter partons are spread widely in momentum space. Therefore, the
fragmenting strings stretched between them also will have a modest overlap, unlike the
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accretion of low-pT strings from multiple soft MPIs. In order to isolate this feature, we
study the hadron overlap as a function of the hadron transverse momentum, by determining
the number of nearby hadrons in the hadron rest frame. In this case, the adjacent hadrons
are excluded when determining the number of overlapping hadrons.

The average number of nearby hadrons in the hadron rest frame as a function of the
hadron pT is illustrated for 13 TeV pp collisions in Figure 31, for soft and hard QCD
in red and blue, respectively. For the hard QCD approach, the cutoff for the minimum
jet transverse momentum is set to 100 GeV. Note that, although the number of nearby
hadrons have been counted hadron by hadron, this analysis gives an approximate average
measure of hadronic overlap in the rest frame. Even though the number of nearby hadrons
is higher for hard QCD processes than for soft QCD, since more particles are generated in
hard processes, the trend is the same in both cases. The number of nearby hadrons peaks
at pT ≈ 0.5 GeV in both cases, although at a higher value for hard QCD processes because
such processes are biased towards central pp collisions, which are more likely to produced a
high pT jet, but also generate more soft MPIs. To the right of the peak, both distributions
drop dramatically until pT ≈ 4 GeV, whereafter they continue to drop rather slowly. This
trend implies that close-packing only affects low-momenta hadrons, particularly hadrons
with transverse momentum pT ≤ 3 GeV, meaning that the hadron production properties
are different in different regions.

 (GeV)
T

p
0 2 4 6 8 10

>
ne

ar
by

<
n

0

1

2

3

4

5

Hard QCD 

Soft QCD

Figure 31: Average number of nearby hadrons inside a jet as a function of the jet transverse
momentum for 13 TeV pp collisions. The red and blue distributions illustrated the soft
and hard QCD processes.
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6 Summary

The aim of this thesis was to start addressing the unexpected collective behaviour of
high-multiplicity pp collisions, typical of heavy-ion collisions and the production of Quark-
Gluon plasma, by analysing the hadronic density in terms of different measures and for
different multiplicities. To perform these studies, the space–time picture was first imple-
mented in Pythia, by determining the space–time location of the string breakups and
establishing three alternative definitions for primary hadron production points. Different
situations have been tackled, such as massive systems, gluon loops or the smearing in
transverse space. Although the implementation of the space–time picture in the simple
string topologies is easy and straightforward, the picture gets much more intricate when
more complicated topologies are addressed, for which the region offset has to be taken into
account. Hence, most of the time and effort in this thesis has been spent in overcoming
those issues, presented in section 4 and appendices A and B.

From the space–time implementation, the space–time hadron density has been ad-
dressed in terms of different measures. First, the correlation between the energy–momentum
rapidity and the corresponding space–time quantity was presented, as well as the space–
time longitudinal and transverse spectra, which are closely related to their energy–momentum
counterparts. Then, the temporal and radial evolution of hadron production was tackled,
both for pp and qq systems, illustrating, among other aspects, the different decays of pri-
mary and secondary hadrons and the fact that, at some point in time, the number of total
hadrons in the system stabilizes, since all the hadrons left in the system are regarded as
stable hadrons. Moreover, the fact that hadronization takes some time to start could also
be deduced from the temporal evolution of pp and qq systems, leading to the study of the
typical scales at which hadronization takes places.

The evolution of hadron production was further addressed by analysing the hadron
density in the central region, showing that the outflux of hadrons from the central region
of the z coordinate is greater than the influx. The first evidence of close-packing arises in
those studies, illustrating that close-packing is important in pp collisions, especially close
to the collision centre, where hadronization takes place.

The hadron density has been also tackled as a function of multiplicity for different
models, with and without colour reconnection. The median radius at which hadrons are
created significantly increases with multiplicity in the model with colour reconnection, while
it remains almost fixed when colour reconnection is off. As a consequence, the hadron
density increases dramatically when colour reconnection is off, while almost remaining
constant with the default CR on scenario. Despite this, even when colour reconnection is
taken into account, the particles are produced closely packed.

The close-packing of hadrons was further analysed by accounting for the number of
hadrons overlapping with a newly generated one in the production rest frame, for different
event multiplicities. In this case, the number of nearby hadrons increases with multiplicity,
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implying that close-packing becomes increasingly important with multiplicity, presumably
leading to unknown effects not addressed in Pythia. This hadronic overlap predominantly
affects low-pT hadrons, as observed in the study of the hadronic overlap as a function
of the transverse momentum, implying that high-pT jets do remain unaffected by the
extreme close-packing experienced in low-pT particle production. Therefore, analysing the
possible effects of the hadronic overlap could be the starting point to address the unexpected
behaviour of high-multiplicity pp collisions.

Even though different situations and details have been addressed in the space–time
implementation, it can be improved in the future by including the exact location of each
multiparton interaction and the offset given by parton showers. Moreover, secondary col-
lisions among hadrons can also be included and studied in Pythia using the space–time
implementation. Regarding the analysis of close-packing, its effects on the hadronization
process have to be studied and understood. In fact, the density of hadron production could
be the starting point of a new discussion on the formation of QGP, since it is related to the
particle and energy density of the system. Analysing those aspects further could contribute
to a better understanding of high-multiplicity pp collisions and, hence, of the formation of
Quark-Gluon plasma.

A Space–time location of the final breakup

Hadronization is modelled in Pythia following a fragmentation process which iterates
until the remaining invariant mass of the system is only sufficient to generate the last two
hadrons (see section 4.1). At that point, a final breakup is generated between the two last
consecutive breakups, one created stepping from the q side and the other from the q side.
For the energy–momentum picture, the final breakup occurs in a fictitious final region,
created from the combination of all the unused parts of all remaining regions.

Figure 32: The two possibilities for the final breakup, in blue, and the final region, in red,
in a qq system. The two old breakups, vneg and vpos, are also represented in red.
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The procedure presented in section 3.4 and the process followed to generate the final
breakup differ in the calculation of the longitudinal momentum of the hadron. This cal-
culation is performed in the final region after the two hadron kinds have been established.
Hence, the mass distribution of each of those hadrons is represented by hyperbolae, as ex-
plained in section 3.2.3. The two hyperbolae, corresponding to the mass constraint of each
of the two final hadrons, might either cross in two different points or not cross at all. In
the latter case, no solution can be found and the fragmentation process should be repeated
again. The former case is illustrated for a qq system in Figure 32, where the blue dots
represent the two points where the hyperbolae meet and the final region is depicted in red.
Then, when the hyperbolae cross in two different locations, there are two possible options
to describe the final breakup point. Since both possibilities have different Γ values, the
probabilities for them to occur are given by eq. (3.17) (see section 3.2.3). For simplicity,
eq. (3.17) is simplified in this specific case as P (Γ) ≈ exp (−bΓ). Hence, the probability
ratio of each of the two possibilities are

P (Γ1) =
exp (−bΓ1)

exp (−bΓ1) + exp (−bΓ2)
=

1

1 + exp (−b (Γ2 − Γ1))

P (Γ2) =
exp (−bΓ2)

exp (−bΓ1) + exp (−bΓ2)
=

1

1 + exp (−b (Γ1 − Γ2))
.

(A.54)

Then, the final breakup is obtained based on the probability ratios in the final region. The
kinematics of the hadrons is also constructed in this final region.

Although the process presented so far is enough to develop the energy–momentum
picture, it does not provide the information needed in the space–time picture. To implement
the latter, the fractions x̂± of each breakup with respect to the origin of the real region
in which the breakup is located are needed. For the final breakup, those fractions are
calculated in the final region. Since this region does not have a well-defined space–time
offset (see section 4.1), a new method is needed to obtained the space–time location of
this final breakup. The development of this method has been one of the main and time-
consuming issues of this project. In particular, the major complication has been found in
systems consisting of several gluons, specifically when the two old breakups are located in
different regions. In those cases, knowing the region in which the final breakup is located
is not possible. Since that aspect is essential to calculate the x̂± fractions, several methods
were tested to finally choose the ones presented in this appendix.

To explain the methods, we will refer to the old breakup closer to the q end as positive
breakup, vpos, the region at which it is located as positive region, and the final hadron
generated from vpos and the final breakup as positive hadron. Similarly, the negative
breakup, vneg, is the breakup closer to the q end, the negative region is the region in which
it is located and the negative hadron, the one generated from the negative breakup and
the final breakup.

The first implemented method consists in projecting the positive/negative hadron four-
momentum on the positive/negative region. If the two old breakups are located in the
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Figure 33: Final breakup point and final two hadrons, corresponding to the grey regions,
in a qq system. The red and blue points are the previous breakups and the endpoints of
the final region, while the green dots represents the final breakup.

same region, the positive and negative hadron four-momenta are projected on the same
region. In that case, the final region is contained in the real region and they have the same
transverse and longitudinal directions. This situation is exemplified in Figure 33, where
the green point is the final breakup, the red and blue points are the old breakups, which
correspond to the endpoints of the final region, and the grey squares represent the two
final hadrons created. As can be seen in the figure, the x± fraction of the positive hadron
are x±pHad and the x̂± of the positive breakup are x̂±pOld. Then, the x̂±f of the final breakup
can be obtained as

x̂+
f = x̂+

pOld − x
+
pHad

x̂−f = x̂−pOld + x−pHad.
(A.55)

The same procedure can be followed with the negative breakup and the negative hadron.
The expression can be derived as in the previous case

x̂+
f = x̂+

nOld + x+
nHad

x̂−f = x̂−nOld − x
−
nHad.

(A.56)

The solutions from eq. (A.55) and eq. (A.56) will agree only if the positive and the negative
regions correspond to the same string region. The projection method can also be used when
the positive and negative regions are different, in which case the longitudinal momentum
of the positive or negative hadron is projected on the corresponding region, using either
eq. (A.55) or eq. (A.56). If the final breakup is not located in that specific region, the
values for x̂±f derived from this method do not satisfy the requirement 0 ≤ x̂±f ≤ 1. Since
there is no possible way of finding the region in which the final breakup is located to use
the projection method in that region, a new method is needed in such cases.

One of the main complication to obtain the x̂±f is the fact that the z value of the final
breakup is not calculated, since it is not needed in the energy-momentum picture. If the
projection method fails, the z value can be calculated from the Γ of the old breakups, the
transverse masses of the final two hadrons, and the transverse mass of the final region.
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Figure 34: Final breakup and final two hadrons of a qq system. The blue and red areas
represent the two final hadrons while the green area corresponds to the final region.

All these variables are depicted in Figure 34, along with z′f and zf which correspond to
the z+ fractions of the positive hadron in the final region and the real region, respectively.
The zreg variable in the figure represent the z+ fraction taken from the negative breakup
if the final breakup was not created. This value can be calculated from the relation give
by eq. (3.16), which in this case gives

Γneg = (1− zref)

(
Γpos +

m2
posT

zreg

)
(A.57)

where the final breakup was not taken into account. From this relation, the value of zreg

is found to be

zreg =

√(
m2

posT + Γneg − Γpos

)2
+ 4m2

posTΓpos −
(
m2

posT + Γneg − Γpos

)
2Γpos

. (A.58)

Once the zreg value is calculated, the zf = z+
f can be determined, noting that zf = z′fzreg,

which relates the positive hadron fractions in the final and the real regions. The same
process can be followed to calculate z−f , using m2

negT instead of m2
posT and swapping the

variables Γpos and Γneg. Once the z+
f or z−f value is calculated, the region in which the final

breakup is located can be deduced and the x̂± fractions calculated.

Although the last procedure presented succeeds in the large majority of the cases,
sometimes the region in which the final breakup is located cannot be found. In those few
cases, the space–time location of the final breakup is calculated from the old breakups by
determining the space–time location of the origin of the final region. As can be deduced
from Figure 35, the space–time location of the CM of the final region is defined by vCM =
(vpos + vneg) /2. This final region can be treated as a qq system whose four-momentum is
K = k+ + k−, where k± are the four-momenta vectors of the two endpoints. Following
the same approach used to derive the early hadron production point (see section 4.1), the
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Figure 35: Final region of a qq system. The origin of the region is represented by v0 while
vCM stands for the location of the CM of the region. The four-momentum of the final
region is defined as K. As in other cases, vpos and vneg represent the old breakups.

space–time location of origin of the final region is given by

v0 = vCM −
1

2
K. (A.59)

Considering x̂′±f to be the x̂± fractions of the final breakup in the final region, the space–
time location of the final breakup can be calculated as

vf = v0 + x̂′+k+ + x̂′−k− =

= vCM +

(
x̂′+ − 1

2

)
k+ +

(
x̂′− − 1

2

)
k−.

(A.60)

Eq. (A.60) holds in the transverse rest frame, when the final region system is not evolving
in time. That is not the case if the two old breakups are in different regions. In order
to find an expression valid for all the cases, we define the variable r =

√
l2/K2, with

l2 = − (vneg − vpos)
2, to quantify how much the final string system differs from the system

in the transverse rest frame. Then, the origin of the final region in the string system is
determined by v0 = vCM −Kr/2 and the general expression for the space–time location of
the final breakup is

vf = vCM +
(
x̂′+ − r

2

)
k+ +

(
x̂′− − r

2

)
k− (A.61)

The methods presented in this section are implemented in Pythia to obtain the space–
time location of the final breakup. First the projection method is executed from the q or
positive side. If it fails, the same method from the negative side is carried out. Whenever
the projection method fails, the calculation of z+ is performed as previously explained. In
case of failure, the same method is carried out to calculate z−. If none of the previous
methods work, the space–time location of the final breakup is determined by eq. (A.61).
The different procedures are carried out in order of accuracy, tested several times when
deciding the methods that were going to be implement in Pythia.
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B Correction to non-physical situations

As mentioned in section 3.2.3, by definition 0 < x̂± < 1. Although this should always
be the case, Pythia allows values outside that range whenever a step is taken from one
region to a new region. Since the x̂± fractions were only used to determine the energy
and momentum of the hadrons, stepping outside the allowed range was not a problem, as
long as the hadron energy was positive. Nevertheless, fractions outside the range x̂± are a
significant problem in the space–time picture, since they lead to negative times or negative
squared invariant times of the breakup locations. In order to correct these unphysical
situations, two corrections are applied in the space–time implementation. Both corrections
are included before adding the region offset, the smearing in transverse space or the massive
correction.

The first correction consists in adjusting the space–time location of the breakup with
a fraction of the region four-momentum, requiring the new squared invariant time to be
equal to zero, Γnew = 0. The four-momentum of the region is defined by the four-momenta
endpoint vectors, p±, as preg = p+ + p−. Then, the expression of the new breakup location
is determined by

vnew = vold + ξpreg (B.62)

where ξ is a number, vold and vnew are the same breakup space–time location before and
after the correction, respectively. The value ξ is calculated by requiring Γnew = v2

new = 0.

Another approach can be followed to correct the values of the breakup space–time
location. In this case, the x̂± fractions whose values are x̂± > 1 or x̂± < 0 are set equal to
one and zero, respectively, and the space–time location is calculated again as presented in
section 4.1 (eq. (4.31)).

The new breakup space–time location is determined following the two different ap-
proaches presented above. The option adopted is the one whose space–time components
are closer to the space–time components of the breakup before the correction.
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