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Abstract

In this project, an electromagnetic side-channel attack has been made by exploit-
ing the information leakage from a field programmable gate array (FPGA) and an
implemented advanced encryption standard with a 256-bit key (AES-256). The
FPGA-board was a Nexys-4 from Digilent with Artix-7 FPGA. The attack was
partially successful. A few subkeys were successfully extracted from AES-256 with
only 2000-3000 electromagnetic (EM) traces. The rest of the key guesses were
ranked accordingly and presented in a chart. Three different data acquisitions
were made on AES-256, and no average values were taken. Most of the previous
work used an average value of 10-100 EM traces per plaintext input. In this thesis,
only one plaintext per EM trace was used. The purpose of this was to simulate
a real-world scenario where an attacker has access to the cryptographic device for
approximately one hour.

The experiments also included an electromagnetic side-channel attack on an iso-
lated hardware area in the AES algorithm by designing only the initial round and
the SubBytes operation using single 8-bit data blocks. The purpose of this attack
was to make the analysis less complex and more adapted to the simulation model.

Due to the parallelism in the FPGA, there was a low correlation between the
key guesses and the correct key. The low correlation was expected but created
obstacles when collecting data for key extraction.

There was also interference from the power supply. Every time someone plugged in,
e.g., a cell phone charger or a laptop charger in the neighboring rooms it made the
data acquisition corrupt. The random interference made longer test runs harder to
conduct. The experiment needed constant supervision to detect if an interference
occurred.

For future work, the side-channel attack needs more data points per EM trace,
more EM traces, faster oscilloscope (or data acquisition unit), low-pass filter and
an amplifier with a wider bandwidth.
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Popular Science Summary

Every time a computer makes computations in its central processing unit (CPU) or
dedicated hardware support, different currents start flowing in the circuits. When
an electric current is moving, it generates a magnetic field. There is also an electric
field coming from the differences in electrical potential between wires.

Cryptographic devices protect sensitive data from unauthorized personnel, making
the information unreadable for everyone who does not have the secret key. En-
cryption algorithms often rely on advanced mathematics, to create a protection for
the sensitive data. The only threats to a strong cryptographic algorithm are the
computing capabilities of quantum computers and the risk of side-channel attacks.

In the year 1996, there was research published where the scientist discovered a
way of analyzing the power consumption of the cryptographic device and with
that information extract the secret key used for encrypting the data. This type of
power analysis was given the name side-channel analysis (SCA). Later on, there
were several other side-channel analysis where the attacker exploited the tempera-
ture, noise and electromagnetic emissions from the electronic device to extract the
key. There exist historically older examples of people utilizing the side-channels
to retrieve information, but not on modern computers.

In this thesis, an electromagnetic side-channel analysis (EM-SCA) was made on
an FPGA. FPGA is a chip with unique abilities to reconfigure its hardware de-
pending on the bitstream uploaded to it. FPGAs are becoming more and more
integrated into the cybersecurity applications to accelerate different mathematical
operations in the cryptographic device. Several companies design and deliver dif-
ferent cryptographic intellectual properties (IPs). Crypto-IPs is an architecture for
FPGAs and application specific integrated circuits (ASICs). The electromagnetic
footprint from an FPGA depends totally on the design of the IP. If an attacker
gets physically close to the cryptographic device, one will have a good opportunity
to record the electromagnetic emissions and the output/input from/to the device.
With only these two parameters an attack can extract the secret key and decrypt
information that was unreadable before.
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The IP that was attacked is an implementation of advanced encryption standard
with a 256-bit key (AES-256). AES-256 is considered post-quantum computer
secure, meaning that a quantum computer will not be able to brute force the
encryption within a reasonable time. A side-channel attack is much easier and
cheaper to conduct and can bypass strong mathematical encryption algorithms,
but the attacker needs to be physically close. The experiments made in the thesis
were partially successful; the attacks were able to extract subkeys from a data
acquisition below 10000 electromagnetic traces.
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Chapter1
Introduction

1.1 Background

With increasing use of advanced cryptographic algorithms, when protecting sen-
sitive data, the computational strength to brute force the password has increased
a lot. The time effort needed is so large that it makes the information useless,
and outdated, when it is decrypted. The information is not valid anymore. Today
there are two generic threats to cryptographic systems; quantum computers and
side-channel analysis. In this project, the focus will be on the more inexpensive
option; side-channel analysis.

Cryptographic operations such as encryption/decryption, message-authentication,
and digital signatures rely on secret keys that must be kept securely within a device
and protected from unauthorized personnel. With the use of different methods, an
attacker can exploit the side-channels from a security device to extract the secret
key. The methods are passive or active with an invasive or non-invasive approach.

A passive non-invasive attack is often called side-channel analysis [1]. It is
a way of analyzing metadata of an encryption scheme, to obtain the actual secret
key. A side-channel analysis is often limited to different physical aspects; analyzing
electromagnetic radiation, power consumption, time or audio [2]. With the use of
side-channel analysis, the attacker can bypass the mathematical protection, and
still acquire the secret key without the help of computational strong computers.

Advenica is a company which has specialized in cybersecurity with hardware ap-
plications. National armed forces and other authorities use their products. EU,
NATO and Swedish armed forces have certified Advenicas products to the EU-
standard SECRET UE/EU SECRET, TOP SECRET for Swedish armed forces
and NATO SECRET [3].

Security systems use mathematical algorithms to provide confidentiality, integrity,
and authentication. According to [1, p.3] the definition for a cryptographic device
is: Cryptographic devices are electronic devices that implement cryptographic algo-
rithms and that store cryptographic keys. The algorithm is implemented in either
hardware or software and accepts two inputs; the message and the cryptographic
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2 Introduction

key, see Figure 1.1.

Figure 1.1: Main concept of cryptographic algorithm.

The encrypted message is called ciphertext. Nowadays the encrypting algorithm
and the ciphertext are considered known to the public. Depending on which model
the attacker is using, the plaintext can also be known. The only thing that is kept
a secret is the cryptographic key. If the attacker acquires the key all future secret
messages belonging to that key, and associated older messages, are considered lost
and public.

Most of the cryptographic algorithms today are stored at personal computers.
The laptop is more than capable of encrypting a message with different encryp-
tion schemes. To make this possible the private key also has to be stored on the
computer. The issues with personal computers are their security. The computer
can be a target for viruses, trojans, malwares, and worms which mostly spread
through the internet. This bad intension software can steal the private key and
expose the encrypted data to the public or a high bidding customer.

Nowadays there is specific equipment to store secret keys and encrypt messages.
The equipment exists to provide better security standards and routines, e.g., hard-
ware virtual private network (VPN) tunnels and universal serial bus (USB) with
implemented security hardware.
These devices are capable of conducting cryptographic operations with the private
key stored on it. Now it is not just the secret key that is sensitive but the whole
cryptographic system and its implementation.

When an attacker "break" a cryptographic device, one has succeeded to extract
the private key from the device. To extract a key from a cryptographic device, the
attacker needs to have some knowledge regarding the actual hardware; therefore
always assume the attacker has full knowledge of the device [1, p.3]. What the
attacker does not have is the private key stored in it. As mentioned before there
are different methods to extract this key.

There are examples of commercial electronics that reduce the electromagnetic
radiation, e.g., in Sweden, it is called RÖS-protected electronics. The EM ra-
diation could expose a security system to an outsider. The solution is to build
thicker shielding which increases the weight drastically of the computer. It could
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be printers, laptops, and servers. If one could alter the actual layout of a device
without adding extra shielding much could be gained; space, weight and economic
cost. This type of protection does not prevent the attacker from analyzing the
power consumption on the device.

To be able to conduct a side-channel analysis, physical access to the product
is needed. There are examples of side-channel attacks with the use of cell phones.
The cell phone is placed on top of the cryptographic device and begin collect-
ing data through different electromagnetic sensors. If we consider a larger data
storage center with servers, there could be computer racks with cryptographic de-
vices. These data centers need maintenance of a vast variety. A large rotation
of personnel creates an opportunity for the attacker to get physically close to the
security system and its power supply. The attacker could extract the key without
the owner knowing it. Alternatively, the owner can lose the cryptographic device
and notice it days later. In Figure 1.2 a fictive threat scenario is presented.

Figure 1.2: Illustrative method for attacking a cryptographic device.

This thesis will focus on the electromagnetic radiation from an FPGA.
The FPGAs have increased in popularity in the computer security industry be-
cause of their flexibility to generate a unique, inexpensive implementation of an
encryption algorithm. FPGA is a good solution for accelerating different crypto-
graphic operations.

1.2 Project aims

The primary goal of this project is to investigate possible data leakage from the
FPGA. The Nexys-4 board with Artix-7 will be running an AES-encryption with
a 256-bit key. The FPGA will be encrypting random text on the loop.

1.2.1 Formalization of questions

1. How is it possible, with EM measurements, to extract the AES subkeys
directly from the FPGA? If extraction of the key is not successful, what
could be the reason for this?
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2. How many traces, and how much time, is needed before a correct subkey
can be extracted?

3. Discuss the economic aspect of conducting a partial successful EM side-
channel analysis?

4. With the result of question 1. How is it possible to extract the same infor-
mation outside the cryptographic device, at a distance of 10 cm?

1.3 Related work

There has been some previous work in this area. The thesis relies heavily on [1] to
study the theory regarding simple and differential analysis. There are examples of
both successful and unsuccessful EM side-channel attacks. In [4] the researchers
made a correlation electromagnetic analysis (CEMA) on Kintex-7 Xilinx FPGA
chip. The researchers used a specially designed FPGA board for side-channel anal-
ysis and were successful in retrieving all 16 subkeys with 7000 EM traces. Their
results vary depending on their parameters, but overall they made a successful
attack and came to the conclusion that it is the actual position of the key that
affects its signal-to-noise ratio (SNR) value and not the actual value of the key.
The experiments in this thesis contain a side-channel attack on the FPGA Artix-7
with AES-256. The side-channel attack is also made with less expensive equip-
ment and at a distance from the FPGA. There is also a master thesis [5] where
the students only attacked an implemented AddRoundKey and SubBytes in the
initial and first round of AES.

A great source of information is also Elke De Mulders work [6]. She has stud-
ied different techniques for conducting side-channel attacks and provides much
experience regarding which type of equipment and method to use when making
an electromagnetic side-channel attack.

The results from this thesis were analyzed and compared with other research on
side-channel attacks. The numbers of EM traces, data points, and frequencies
were compared with our methods and results to check if the findings were unique
in some way.

1.4 Scope

There are several different side-channel attacks besides electromagnetic analysis
(EMA) which is mentioned in Section 2. The electromagnetic analysis (EMA) can
be divided into subgroups. The thesis will only include the theory of simple elec-
tromagnetic analysis (SEMA) and differential electromagnetic analysis (DEMA).
Most of the theory is based on power analysis, but the method is still the same
except for some of the equipment. The research will be more on ideal, than realis-
tic, scenarios. The use of ideal situations is primarily because of the time needed
to conduct the study. The thesis focuses mainly on Nexys-4 with Artix-7 FPGA.
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The thesis will only consider the AES-256 and only the encryption, not decryp-
tion. There is no (known to the student) research regarding side-channel attacks
on Artix-7 chip and a side-channel attack at a distance from the FPGA. To control
and verify some of the results from the thesis a comparison with previous results
will be made.

1.5 Outline

Five sections build the foundation of the thesis. First, there is a chapter dedicated
to the theory for the project in Section 2. Section 2 describes the side-channel
attacks and the mathematics behind retrieving the secret key. Section 3 includes
the method which describes the practical aspects of the research. The method
informs the reader about the equipment and how the experiments were conducted.

Section 4 includes the results from Section 3. The findings are presented with-
out discussion. Finally, Section 5 includes a discussion regarding the results in
Section 4. The section also provides answers to the formalized questions.
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Chapter2
Theory

There are five different side-channel attacks known today. The different side-
channel attacks take advantage of physical data leakage through audio, electro-
magnetic emissions, power consumption, temperature, and timing analysis [7,
p.28]. The thesis will focus on one of them; electromagnetic side-channel anal-
ysis/attack. This chapter presents FPGA, the cryptographic algorithm AES, and
simple/differential analysis.

2.1 Field programmable gate array

An FPGA is an integrated circuit which contains different logic cells, look-up-
tables, and block random access memory (RAM). It is a reconfigurable chip and
can produce the same hardware logic as an application specific integrated circuit
(ASIC), but it is not equally fast when doing computations, and it consumes more
power. The advantage of an FPGA is the flexibility of creating dedicated hard-
ware for specific operations. There are different kinds of FPGAs with different
properties. Some FPGAs can only be configured once. After the first configura-
tion, it will act as an ASIC but with higher power consumption and slower speed.
An advantage with FPGA is that small companies, which can not afford to de-
sign their own ASIC, can buy FPGAs and then accelerate different computational
operations. Some FPGAs are reconfigurable after the first configuration, which
opens up possibilities to make flexible solutions. The FPGA is still much faster
than a microprocessor with included software.

2.2 Advanced encryption standard

National Institute of standards and technology (NIST) initiated the work for find-
ing a replacement for data encryption standard (DES) January 1997. The new
standard is named advanced encryption standard (AES). AES was announced
November 26, 2001 [8]. The AES algorithm must have the following properties:

• 128-bit block cipher with three different key sizes of 128, 192 and 256 bits.

• At least as secure as two-key triple-DES.

• Royalty free.

7
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2.2.1 AES architectural overview

Figure 2.1: Block overview of the AES algorithm.

Figure 2.1 presents the overall architecture of the AES-algorithm. Depending on
the size of the key, the number of rounds will vary. Each round is a number of
operations with parts of the expanded key. When sending the secret key into the
AES-algorithm, it is expanded to fit the number of rounds. This project uses a
256-bit key. The 128-bit key will generate ten rounds, the 192-bit key will be 12
rounds, and the 256-bit key will produce 14 rounds. Using more rounds implies
more security against cryptanalysis. Using heavy computational cryptographic
algorithm will require more power. Therefore, it is a balance between the need
for security, performance and power consumption. The initial round and the final
round, in AES, is partly modified and differ from the usual rounds. The differences
will be described in the Section 2.2.2.

2.2.2 AES design

AES uses substitutions and permutations. It requires 10, 12 or 14 rounds plus
the initial round. The number of rounds depends on the length of the secret key
(128, 192 or 256 bits). The encryption algorithm accepts 16 bytes as input for
encryption. Consider the input data as a matrix of size 4x4, see Figure 2.2. The
purpose of the different operations is not within the scope of this project.

Figure 2.2: The 16-byte AES matrix.
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The typical structure is divided into several suboperations, see list below and
Figure 2.3.

1. Key expansion

2. Initial round (Not included in the 14 rounds)

- AddRoundKey

3. Rounds (iterated 9,11 or 13 times depending on key length.)

- SubBytes

- ShiftRows

- MixColumns

- AddRoundKey

4. Final round

- SubBytes

- ShiftRows

- AddRoundKey

Figure 2.3: The AES scheme with suboperations and rounds. Figure
presents a detailed version of Figure 2.3.

The final round is slightly different compared to the rest; it has no MixColumn
operation.
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Key expansion

Each round uses a modified version of the original secret key. This phase is also
called Rijndael key schedule. Each variant of AES (128, 192, 256) uses a 128-
bit key for each round, plus the initial round. Therefore the key expansion uses
the 256-bit key and generates several subkeys for the different rounds. To expand
the key for each round, a specific key schedule is used. The theory behind the key
expansion is not within the scope of this project.

AddRoundKey

The initial round starts with the AddRoundKey. AddRoundKey is an XOR-
operation (eXclusive OR) between the key and the plaintext. Consider the XOR-
operation as: f(d, k) = b, where d is the data block (byte) and k is the key byte.
The whole operation can be viewed in Figure 2.4. Notice the modified 256-bit key,
which is now a 128-bit round key (4x4-key matrix). See Figure 2.4.

Figure 2.4: The AddRoundKey operation.

SubBytes

In this operation, the byte is sent into an s-box. The s-box is a substitution box.
The byte sent in gets a new value according to a schematic, see Figure 2.5. When
implementing AES in software or hardware, the designer often uses a lookup-table
for this matrix. How these values are generated is outside the scope of this project
[8].
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Figure 2.5: The s-box in hexadecimal. The input is one byte from
the 4x4 data matrix. e.g., input 0x3A ⇒ 0x80.

ShiftRow

In this operation, the rows in the matrix (4x4) are shifted to the left. Rows shift
data blocks cyclically by a certain offset. The first row is left unchanged. The
second row shifts its data blocks one element to the left. The third row shifts two
data blocks to the left. See Figure 2.6.

Figure 2.6: The ShiftRows operation.
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MixColumns

The MixColumns [8] operation uses a specific function g(x) and a binary mul-
tiplication. The function is part of an invertible linear transformation. Every
single byte sends into MixColumns affect the four output bytes. ShiftRows and
MixColumns create what is known as diffusion in cryptography.

Figure 2.7: The MixColumns operation.

2.3 Origin of side-channel analysis

The physics behind an electronic device creates observable phenomena. Comput-
ing tasks create heat, electromagnetic fields, power consumption and noise. These
phenomena can be measured with different equipment.

The technology in an FPGA is generally low voltage complementary metal ox-
ide semiconductor (CMOS), see Figure 2.8. The different transistors act like an
opening (or closing) current gate for the circuit. When a current start flowing in
the circuit, a magnetic field is generated from the wires. This magnetic field can
be extracted with an antenna. Much of the theory relies on the Power Analysis;
Revealing the secrets of Smart Cards [1]. The theory for electromagnetic analysis
is the same except for the origin of information leakage. That is why the thesis
will use references to literature which explain power analysis.

Figure 2.8: CMOS including a NMOS and a PMOS transistor.
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2.4 Simple analysis

When a microprocessor or an FPGA makes computations, it sends out EM emis-
sions. It could be a magnetic field or electric field. An example of a loop antenna
extracting magnetic emission from an FPGA can be viewed in Figure 2.9.

Figure 2.9: An example of electromagnetic measurement on FPGA
with a loop antenna.

The attacker can observe a specific EM trace on an oscilloscope when the processor
is making computations. With the use of one EM trace, an attacker can extract
the key from the cryptographic device. It is a technique that directly interprets
the EM emissions collected during cryptographic operations. To succeed with a
simple electromagnetic analysis (SEMA), the attacker needs detailed knowledge
about the implemented encryption algorithm. The SEMA is useful if the attacker
only gets access to the device during a short time and can extract few EM traces.
A real-world application could be the hired-by-the-hour technician, trying to re-
trieve information from the cryptographic device without anyone noticing it.
E.g., the technician only has access for a couple of minutes.
The attacker tries to extract the secret key while the cryptographic device is en-
crypting data. SEMA is divided into Single-shot SEMA and Multi-shot SEMA.
Single-shot is an attack where the attacker only got one EM trace to analyze.
Multi-shot is a technique that uses several EM traces. With the use of several EM
traces, the attacker can extract more meta information regarding the encryption.

2.4.1 Analyze data from an electromagnetic waveform

Every encrypting algorithm executes in sequential order on a microprocessor. The
instructions are using a specific architecture to conduct encryption. The micropro-
cessor instructions set architecture will use different arithmetic operations, logical,
branching and data transfer instructions. Each of these instructions uses different
parts of the processor or peripherals. These components have a specific EM trace
[1]. The attacker can use an EM trace from an encryption device to figure out
which instruction the microprocessor is using. If the number of instructions and
the sequence of them is directly related to the secret key, there might be a good
chance to extract the secret key. For example: if a bit is 1, a particular operation
takes place. If the bit value is 0, then another operation is made. Worth mention-
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ing is the vital relationship between the sequence of instructions and the secret
key. The SEMA will only succeed if there is a strong relationship between these
two. The extraction of the key relies heavily on the executed operations and the
secret key.

In this thesis, SEMA will be used to extract metadata from AES-256. There
is full access to the hardware implementation which makes the SEMA more valu-
able. However, to be realistic, assume the attacker has no access to the netlist for
the FPGA.

2.5 Differential analysis

The differential analysis does not require knowledge of the target device, which
makes the attack easier to conduct. There is also a possibility to make a differ-
ential analysis on devices which generate much noise and still extract the secret
key. Compared to simple analysis, differential analysis requires a large number
of EM traces to reveal the key. Each trace is recorded while the cryptographic
device is encrypting one block of data. Therefore it creates a requirement for the
attacker to have physical access to the device for a longer time than simple analysis.

With the use of SEMA, the attacker extracts the key by visually observing and
analyzing one EM trace along the time axis. When the attacker is using a differen-
tial electromagnetic analysis (DEMA), one uses statistical methods to reveal the
secret key. In DEMA the attacker compares different EM traces with a given set
of data, at a specific time. DEMA focuses primarily on the data dependency of
the EM traces. According to [1], the definition of differential analysis is: Differ-
ential Power Analysis attacks exploit the data dependency of the power
consumption of the cryptographic devices. They use a large number
of power traces to analyze the power consumption at a fixed moment
of time as a function of processed data. In this case, exchange the words
"power consumption" with "EM trace". The theory is still the same.

2.5.1 How to practically conduct a differential analysis

There are several practical steps to conduct a differential analysis [1, p.119].

Step 1: Intermediate result of the encryption algorithm

The first step in a differential analysis is to decide which area of the algorithm to
attack. The attacker chooses intermediate results which are written as b = f(d, k),
where d is the data block, and k is the not known partial subkey. d is often the
plaintext or ciphertext. d is a known non-constant value. b is the intermediate
result and could be from anywhere in the encryption algorithm.
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Step 2: Measure EM traces

In this phase, the attacker captures EM traces from the cryptographic device
when it is encrypting D data blocks. For each data block d the attacker needs to
know the actual data value of d. This data value is recorded together with the
corresponding EM trace. The data block is a vector b = (d1, ..., dD), where di is
the data block of the ith encryption run. Each EM trace includes several thousand
data points from the oscilloscope. The EM traces data points are collected in a
vector ti = (ti,1, ..., ti,T ) where T is the number of data points from the EM trace,
i is the sequence number of the data block. This results in a data block di with
corresponding EM trace vector ti. The number of data blocks D, and the number
of EM traces data point T , create a matrix DxT . The attacker needs to measure
the EM traces at precisely the same time as the EM trace before. Otherwise, the
following steps (statistical model) will not work correctly.

Step 3: Hypothetical intermediate values

In the third phase the attacker creates simulated values from a specific EM model.
With the use of every possible k in k = (k1, ..., kK) and the vector d, the attacker
create hypothetical values with the function f(d, k). The results are stored in a
matrix V of size DxK.

vi,j = f(di, kj) i = 1, ..., D j = 1, ...,K (2.1)

The goal of a DEMA attack is to find which column of V the D encryption uses.

Step 4: Create hypothetical EM model

In this step the matrix V is matched with a matrix H. Matrix H is matrix with
hypothetical EM traces. To create the H matrix, the attacker is using an EM
simulation model. There are several different EM simulation models. Some of
these models are more adapted to a microprocessor and some to FPGA. According
to [1] the Hamming distance will be a good suggestion for EM modeling. If the
attacker has more knowledge about the device, e.g., the netlist, one could make
better EM simulations of the algorithm. Better EM simulations will reduce the
number of EM traces needed for revealing the secret key.

Step 5: Compare hypothetical EM values with EM traces

After the mapping of V to H the attacker uses matrix H and compares it with the
collected EM traces T. Comparing the hypothetical EM values with the measured
EM values from real encryption, can reveal the secret key. Each column in H is
compared with the EM trace vector/column tj from matrixT in step 2. Remember
that matrix T = D x T includes all the EM traces belonging to each encryption
run where D is the number of data blocks. The final results will hold a comparison
between hypothetical EM values with the key hypothesis and the measured EM
traces. The comparison is stored in matrix R, where R is of the size K x T. The
comparison between hi and tj can be done with different statistical methods. Each
element in R (ri,j) contains the result between hi and tj . The element value of ri,j
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should be as high as possible. A high element value implies there is a correlation
between the hypothetical EM trace and the real EM trace. The index value of the
element ri,j will give the attacker the key and intermediate value. Remember that
hi is the hypothetical EM trace for a key k-hypothesis and a plaintext data block
d. The overview of the steps is visualized in Figure 2.10.

Figure 2.10: The different steps in differential analysis.
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2.5.2 Electromagnetic simulation models

There are different methods to model an EM trace of a circuit. If the attacker has
profound knowledge about the device, one can create a good model that accurately
simulates the EM traces. When an attacker makes a differential analysis, the
assumption is that one does not know the circuit layout. With this starting point,
there are two different models of power/EM simulations on FPGA [9][10]. There
are several researched EM/power simulations models regarding FPGAs, but the
assumption for this thesis is: the attacker has no, or very reduced, knowledge
of the device. According to [9] and [10] there are only two models that could
give an approximation of the hypothetical EM emission with little knowledge of
the cryptographic device; the Hamming weight and the Hamming distance. The
position of the electromagnetic simulation model in the DEMA can be viewed in
Figure 2.10.

Hamming weight

The Hamming weight [1] model analyzes the processing bits of value 1. In this
thesis, it will be the number of 1s in the intermediate results from Section 2.5.1
step 1. The result is dimensionless but will give a good indication of the EM
emission in that operation. To give an example: Hamming weight of 1001 0110 =
4. H(D) = 4 where D = 10010110.

Hamming distance

In CMOS technology, operated at high frequency, the primary EM emissions are
not in the static state of the transistor. The primary EM emission is in the dynamic
state of the transistor. When currents are changing it creates a magnetic field that
the attacker can extract. Hamming distance [11] is a developed Hamming weight
model. First, there is an XOR-operation, and then the number of 1s is counted in
the result. Let D denote an old 8-bit data value. Let R denote the new value of
the 8-bit register. Then the Hamming distance can be written as:

HD = a ·H(D ⊕R) + b (2.2)

HD represent the simulated EM emission, H is the Hamming weight function.
Often a = 1 and b = 0, the reason for this is outside the scope of this thesis. a = 1
and b = 0 simplify the Hamming distance to

EM = H(D ⊕R) (2.3)

Hamming distance is a better option because it takes into consideration which
bits that have hanged its value. According to Ampère - Maxwell law, a change in
current will create a dynamic magnetic field. A varying magnetic field induces a
current in a wire. Since the experiments are using a loop antenna, the measured
EM traces will become better if a dynamic magnetic field is used instead of static.
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2.5.3 Statistical models

In Figure 2.10 there is a state called "Statistical model". In this state, the goal
is to produce results which can reveal the secret key. There are several different
models to extract the key. In this thesis two models will be introduced; Distance-
of-mean [1] and correlation electromagnetic analysis [12] with Pearsons correlation
coefficient. After the introduction of the methods, one will be chosen.

Distance-of-means

The distance-of-mean is a method that is based on a selection function D. With
the function D the attacker decides which bit (MSB or LSB) to target. Refer
to this bit as d. When the different plaintexts are encrypted the radiated EM
traces are extracted and sorted based on selection function D. With 1000 different
plaintexts, there would be around 500 EM traces with d=0 and 500 traces with
d=1. By calculating the mean value from the collected traces, d=1 and d=0, the
attacker can determine the effect d has on the EM emissions. After calculating the
mean value, the two results are subtracted from each other. The largest differences
reveal where in time the power consumption depends on d.

Pearson’s correlation coefficient

Pearsons correlation coefficient is denoted r. One dataset is x1, ...., xn where n is
number of values, and one data set is y1, ...., yn.

r =

∑n
i=1(xi − x̄)(yi − ȳ)√∑n

i=1(xi − x̄)2 ·
√∑n

i=1(yi − ȳ)2
(2.4)

x̄ and ȳ is the sample mean and is given by

x̄ =
1

n

n∑
i=1

xi (2.5)

ȳ =
1

n

n∑
i=1

yi (2.6)

Pearson correlation coefficient is a good method for detecting a linear relationship
between data. It also creates better results but requires more computations. The
reason why Pearson correlation method creates better results is outside the scope
of this thesis. Due to the fact that Pearson correlation function produces (in
general) better results, this method was chosen as the statistical model.
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Method

3.1 Equipment

The equipments used in the experiment are presented in the list below and the
actual lab setup is presented in Figure 3.1, 3.2 and 3.3.

• - RIGOL DS1054Z Oscilloscope.

• - EM probe kit.

• - Nexys 4 FPGA-board with Artix-7 from Digilent.

• - Spectrum Analyzer 9kHz-3.5GHz Rohde & Schwarz.

• - Voltage probes

• - Powerbox3000B

• - Broadband amplifier ZHL-2-8

• - LabView 2017

• - Python 3

• - MatLab 2017b

• - PC

• - Xilinx Vivado

19
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3.2 Experiment setup

A block schematic of the experiment setup is presented in Figure 3.1.

• PC: The computer is used to make computations and control the oscilloscope
with LabView. In the LabView program, the number of encryptions is
compared with the number of trigger pulses. They should match if the
measurements are made without corruption.

• Powerbox 3000B: This is the power supply for the amplifier.

• Amplifier: Connected between the EM probe and the oscilloscope.

• Xilinx FPGA: The FPGA is mounted on the Digilent Nexys-4 board. From
the board, a trigger signal is connected to channel two on the oscilloscope.
The USB provides the power supply from the PC.

• Oscilloscope: Capture EM traces on channel one and presents it on display.

• EM probe: 1 cm, or 5 cm diameter loop antenna.

Figure 3.1: Schematic overview of the experiment setup.

In Figure 3.2 the lab environment is presented. The instrument in top left of
Figure 3.2 is the spectrum analyzer. Figure 3.3 is a zoomed in version of the
Digilent Nexys-4 board with Artix-7 FPGA and an EM probe.

Figure 3.2: Lab setup.
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Figure 3.3: How measurements are done with a 5 cm loop antenna.

3.3 FPGA setup

The experiments are divided into two different attacks. One attack is on Ad-
venicas IP, and one attack is on a self-designed initial and first-round AES. The
self-designed round will be named "simplified AES" and the Advenicas IP as "AES-
256". The purpose of the separation of attacks is to test different hardware designs
when extracting the EM traces. With a more straightforward and less complicated
design of the target, the experiments hope to provide an easier target for EM simu-
lation model which can deliver results that are very close to the reality. See Figure
3.8 for system overview of simplified AES. More explanation regarding separation
of attacks will be in Section 3.5.

To conduct a side-channel analysis on an FPGA, it needs to run an encryption
algorithm. The AES algorithm IP from Advenica has a peripheral component in-
terconnect express (PCI-e) as an interface. Implementation of the PCI-e interface
on the FPGA is out of the scope of this thesis. Instead, an encryption loop was
created on the FPGA with a linear feedback shift register (LFSR) as a pseudo-
random text generator. With this type of setup, a very high speed integrated
circuit hardware description language (VHDL) wrapper, encapsulated the whole
AES implementation, called AES-wrapper. The wrapper will give commands to
the AES implementation and send the plaintexts to the encryption algorithm. Ev-
ery time an encryption starts, it sends a trigger signal to the oscilloscope. A trigger
signal is not a realistic scenario. In a successful electromagnetic side-channel at-
tack in the real-world application, the different EM traces need to be aligned along
the time axis. Implementation of the aligning algorithm is outside the scope of
this thesis. Instead, a trigger signal from the FPGA will solve the aligning issue.

3.3.1 AES-wrapper for AES-256

The wrapper will work as a "testbench"; feeding Advenicas AES IP with plain-
texts, keys and start signals. In the wrapper, different numbers of plaintexts are
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generated and sent into the AES component. The plaintexts will contain the data
blocks di from step 2 in Section 2.5.1. The encryption key is stored in the AES-
wrapper. The hexadecimal value of the 256-key is 0x000102030405060708090A0B
0C0D0E0F101112131415161718191A1B1C1D1E1F. See Appendix B.1 for VHDL
code for the wrapper.

Figure 3.4 presents the finite state machine (FSM) of AES-wrapper. Implemen-
tations for the different states can be found in the Appendix B.1. The main task
for the FSM is to keep track of the control signals, send trigger signals at the
right time in operation, feed the AES encryption with plaintexts from the LFSR
at the right moment. The reason for using an LFSR in the wrapper is to generate
random text strings which can symbolize different data transmission over a data
link.
When the oscilloscope receives the trigger signal, it starts to measure the whole
encryption run or a specified AES round. In this thesis, the initial round and the
SubBytes operation in the first round was targeted. The reason is to be able to
extract as many subkeys as possible from the original 256-bit key. Remember that
AES-256 uses its first 128 key bits in the initial round and the SubBytes opera-
tion. The rest of the 256-bit key is expanded and spread out for the rest of the 13
rounds. Extracting the 128 bits from AES initial and first round would give 50%
of the 256-bit key.

The oscilloscope shall present 14 distinct AES rounds on the oscilloscope screen,
plus one memory storage cycle and one for the AES wrapper. There should be 16
distinct peaks if a whole encryption run is captured and displayed on the screen.
To capture different parts of the encryption algorithm, the offset can be configured
to start at different moments.

The internal system clock at 100 MHz is too fast for the oscilloscopes bandwidth at
50 MHz, according to the Nyquist theorem. Therefore, a 12.5 MHz clock was used
as the encryption frequency. The 12.5 MHz is created by dividing 100 MHz with a
hardware implemented counter. If the clock is too fast for the oscilloscope (which
has 50 MHz bandwidth), the extracted data becomes corrupted and represents
wrong values from the encryption. The oscilloscope is communicating with the
PC through USB. The USB interface further reduces the data throughput from
the oscilloscope.

Below 12.5 MHz, the signals from the FPGA became very weak. The magnetic
coupling increases with the square of the frequency. The relationship between
frequency and magnetic coupling implies that the magnetic amplitude is reduced
by a factor of 4 if the frequency is reduced by 50%. Therefore 12.5 MHz was
selected as the highest possible frequency for the oscilloscope with frequency di-
vider. A higher frequency also adds extra switching noise from the transistors on
the FPGA.
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Figure 3.4: FSM of the AES-wrapper. See Appendix B for VHDL
code.

3.3.2 Oscilloscope

The control of the oscilloscope is made in detail with help from LabView. The
oscilloscope is set to NORMAL trigger mode. NORMAL trigger mode presents
the waveforms when the trigger condition is met otherwise it keeps the previous
waveforms from last trigger pulse. See Figure 3.5 and 3.6 for LabView block dia-
gram with oscilloscope setup and explanations.

Every EM trace contains 1200 data points. The number of sampled points is
a low number of data points, but it made the EM trace extraction faster. The al-
ternative was to put the oscilloscope in SINGLE-mode, extend the memory depth
and collect more data points. If the oscilloscope is set to SINGLE-mode, it has
to stop the data acquisition, fill up the internal memory and then send it to the
PC. In the experiments, the screen memory buffer was used as primary storage
before sending the data to the PC. The screen memory buffer only saves what
it can display on the screen. Due to the screen memory buffer, the oscilloscope
had to be configured to capture/display the targeted intermediate value from step
2 in Section 2.5.1; first round in AES with parts from neighboring cycles. The
most important part is that the trigger pulse becomes active exactly at the same
time in the encryption operations and that it encapsulates the targeted operations.

The side-channel attack will use a loop antenna according to Elke De Mulders
conclusions in [6]. The FPGA will create small current loops. Extracting the
magnetic field from the current loops require a loop antenna which can encapsu-
late the currents on the FPGA. Extending the diameter of the loop antenna will
result in more extracted signals, but they will be weaker in amplitude. In the third
data acquisition, the side-channels are exploited at a distance of 10 cm above the
FPGA-chip with a 5 cm in diameter loop antenna.
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In Figure 3.1 there is an included amplifier with supporting powerbox. The EM
emission from the FPGA is very weak therefore an amplifier is needed to amplify
the signals before they enter the oscilloscope. With an amplifier, there was mV
as input signals. Without the amplifier, almost all of EM traces were lost due to
their low amplitude. See Figure 3.5 and 3.6 for LabView setup.

Figure 3.5: First block in LabView. Setup the parameters for the
oscilloscope.
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Figure 3.6: Second block in LabView. Collect and save the data to
file.
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3.3.3 Scanning the FPGA for EM emissions

When conducting an electromagnetic side-channel analysis on an FPGA chip, it is
first required to locate where on the chip the emissions are radiated. Using a probe
with a diameter larger than the size of the chip the attacker will collect all signals
from the chip. In later attacks, the aim is to extend the distance from the chip
to investigate the possibilities to extract subkeys without being physically close to
the cryptographic device. However, as a first step, it is important to locate where
on the chip there are distinct EM emissions. With the use of the actual floorplan
of the layout, it is easy to compare the actual location of the EM emissions with
the implemented logic cells. It is essential that the EM emissions be captured from
the correct logic cells.

3.3.4 Building tool for collecting EM traces

It is crucial that the EM traces be captured at the same point in time when run-
ning the encryption operations. With the use of the trigger signal, the oscilloscope
can capture the data from the EM emission and store it locally. The data is saved
when the trigger condition is met. When the trigger signal is LOW, the oscillo-
scope stops collecting data. The software LabView 2017 controls the oscilloscope
from the PC. To run LabView 2017 with the RIGOL oscilloscope different drivers
were needed to make the correct setup.

The spectrum analyzer will analyze the variety of frequency emitted from the
FPGA. If measurements are made on signals that are not on 12.5 MHz, or har-
monics of it, the oscilloscope will not capture the correct electromagnetic emissions.
Wrong signals will generate false results.

3.4 Simple electromagnetic analysis

With the use of different probes on top of the actual FPGA-chip, several different
traces are extracted to reveal the information about the encryption. The different
probes were: electric field sphere antenna and magnetic field loop antenna. How-
ever, the loop-antenna with 1cm in diameter was the best option for extracting
EM emissions at 0 cm. According to [6] the small loop antennas are the best
probes for measuring close to the FPGA chip. The reason for using small loop
antennas as probes is because of the small current loops that are created on the
FPGA chip when it is operational. To extract the EM emission, the oscilloscope
manually records the received signals, with trigger mode on NORMAL. When the
trigger condition is met, the oscilloscope was stopped manually, and the waveform
saved as a CSV file on a USB-stick.

The goal of this attack/analysis is to collect electromagnetic traces and then an-
alyze them visually to extract information from the FPGA regarding encryption
algorithm and frequency. As a first stage, a capture is made of all 14+1+1 rounds.
The reason for this is to confirm that the trigger signal is working properly and to
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confirm the AES structure. After the first stage, the trigger signal was changed
and instead encapsulated the initial round and SubBytes in the first round in AES.

3.5 Differential electromagnetic analysis

The DEMA is divided into two subsections; Isolated attack on first AES round
and Advenicas IP AES-256. The side-channel attack will follow the steps made in
Section 2.5.1 to conduct a differential analysis.

3.5.1 DEMA steps

Step 1: Intermediate result

The target is the output of the SubBytes operation in the first round. SubBytes
is a valid target because of the non-linearity the s-box provide. If the target is
just the XOR operation in AddRoundKey, not enough EM emissions will be gener-
ated from the switching transistors. Attacking other rounds in the implementation
needs a more complex model for the hypothetical values. An attack on the whole
256-bit key requires different models when targeting different rounds. The in-
creased complexity is because each round is using values from the previous round,
except for the first round. There is also a possibility to target the last round if the
attacker has the ciphertext. The attacker can then take the inverse of the s-box
and get the intermediate value.

The AES algorithm is using 8-bit data blocks as a standard block size. In the
python simulation model, the data chunks are separated into 8 bits. The AES-256
IP process all 128 bits in one clock cycle but they are sent into XOR and s-box
operation as 8 bits in parallel. The intermediate result will be written as:

f(d, k) = SBOX(d⊕ k) (3.1)

In Equation 3.1, k is the unknown subkey, the attacker wants to extract and d is
8 bits of data from the plaintext.

Step 2: Measure EM traces

To get correct EM traces, the FPGA sends a trigger signal to the oscilloscope.
A trigger signal is not a very realistic scenario, but it is enough for this project.
A more realistic scenario is a situation where an attacker collects EM traces and
then afterward align them into the right time interval. The attacker needs the
correct sequence of operations from the encryption algorithm to reveal the secret
key. At least one trace for every specific data block is needed. Otherwise, there is
no chance to find the correct key.

In this step, the EM traces are collected and stored as data points in a 2D-array
(matrix). Since the order the LFSR output is known due to the seed, the VHDL
wrapper can log the values and save them in a txt-file. The plaintexts can appear
random, but always repeat the same pattern if the LFSR is provided with the
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same seed. Therefore, a sequence of 128-bit plaintexts is generated. With every
trigger signal from the FPGA, the actual EM trace is stored and mapped to the
corresponding 128-bit plaintext. 10000 trigger signals imply that the FPGA has
encrypted 10000 plaintexts and captured 10000 EM traces.

Step 3: Hypothetical intermediate values

The AES encryption is using a 256-bit key. The key is divided into 8 bits chunks
and presented as hexadecimal values. The 32-byte key used in the AES-256 en-
cryption is
0x000102030405060708090A0B0C0D0E0F101112131415161718191A1B1C1D1E1F.
For the simplified AES version, 0x02 is the 8-bit input key. The key matrix used
in the first round will according to Figure 3.7.

Figure 3.7: The first 16 key bytes used in first round of AES-256.

When the hypothetical values were created, the simulation used a key vector of all
possible 8-bit keys, from 0x00 to 0xFF. These hypothetical values are then sent as
an input into the python script, see Appendix A, which contains the intermediate
value function from step 1. The key vector will create a matrix of different values
according to the Table 3.1.

Table 3.1: Example of how hypothetical values are created.

f(d, k) = SBOX(d⊕ k) = vi
d1 ki vi d2 ki vi d3 ki vi

0x0F 0x00 0x76 0xF0 0x00 0x8C 0xCC 0x00 0x4B
0x0F 0x01 0xAB 0xF0 0x01 0xA1 0xCC 0x01 0xBD
0x0F 0x02 0xD7 0xF0 0x02 0x89 0xCC 0x02 0x8B
0x0F 0x03 0xFE 0xF0 0x03 0x0D 0xCC 0x03 0x8A
0x0F 0x04 0x67 0xF0 0x04 0xBF 0xCC 0x04 0xE8
... ... - ... ... - ... ... -

The hypothetical values are now stored in a 2D array V. The data block d will
take the value of 8-bit data chunks from the 128-bit plantext.



Method 29

Step 4: Create hypothetical EM model values

The python script, with implemented Hamming distance function, accepts two
inputs; 8-bit plaintext data block d and the hypothetical value v. The results from
the Hamming distance is saved in a vector representing the relative EM values.
When using 10000 8-bit plaintexts, 10000 hypothetical EM traces are generated
for every possible key. The hypothetical EM traces will be of size 10000x256 for
each 8-bit data block b. The plaintext contains 16 bytes which imply a size of
10000x256x16. In the python script, only 8 bits considered at a time and not 128
bits. The complexity of FPGA is that they process 128-bits in parallel, but the
attacker tries to find a correlation with only 8 bits. Using 128 bits will generate
25616 different combinations instead of 256 combinations for 8 bits. The low
number of combinations is the advantage of the side-channel attack compared to
brute force the 128-bit key directly. 8 bits can be attacked in separate analysis
and confirm the correct subkey.

Step 5: Comparison between hypothetical EM values and the measured EM
values

The Pearson correlation function accepts two inputs; the measured EM values
and the hypothetical EM values. The Pearson will take the first column in the
hypothetical EM values matrix, H, and loop through a comparison with all the
columns in the measured EM values matrix T. The function of Pearson method
implies that one column of hypothetical EM values will be compared with 1200
sampled data points because that is the length of one row in T. The final result is
stored in a 2D-array R, where R contains all the Pearsons correlation coefficients.
The R rows are sorted according to their first elements correlation values, with
the highest correlation value at top. The R matrix now have all the highest cor-
relation values in the first column. The python script then selects the correct key
and presents its rank. The correct key is stored in the python script to confirm if
the key guess is correct or not.

The hardcoded correct key in the python script is compared with each key guess
in the column of the best correlation value. When there is a match between the
key guess and the correct key the rank of that key guess will be presented to the
user. If the key guess gets the highest rank (1), then the hypothetical guess is
the correct guess. If the rank is 256, then the correlation is worst among all other
correlation values in the first column in R.

These different DEMA steps can be tricky to grasp. A good way to understand
the process is looking at Figure 2.10 or reading [1] from page 119.

3.5.2 Trigger signal

Due to the data speed of the oscilloscope, it was not possible to extract signals
at a normal pace. Therefore a counter was used in the RTL design. This counter
started at the falling edge of the trigger signal. During this period the oscilloscope
saves the waveform data into an array and stores it in a CSV file on the computer.
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Making the oscilloscope faster, by reducing the hold time after trigger signal, will
only increase the loss of EM traces belonging to certain encryption. In this way
the whole data acquisition becomes corrupt.

3.5.3 Isolated attack on first AES round

A new RTL-design was used to make the AES-attack less complex. With the use
of only 8-bit key and 8-bit data, the subkey 0x02 was attacked. The hardware
design of this construction can be viewed in Figure 3.8. The attack is similar
to the AES-256. 10000 plaintexts are generated with an LFSR. Only the least
significant 8 bits were used as a plaintext input to the simplified AES. The 8-bit
data was encrypted with the 8-bit key 0x02

Figure 3.8: Isolated parts of AES-256.

3.5.4 Advenicas IP AES-256

The IP has optimized the computations with the use of parallelism and memory
storage. The optimization will create a problem for an attacker since every compu-
tation covers the other in noise from neighboring computations. The self-designed
simplified version of AES should reduce this type of issue. Advenicas IP is encap-
sulated by a wrapper to control the input and output, according to Section 3.3.1.
The attack will be conducted two times with different trigger encapsulation and
one time with a 5 cm loop antenna, at 10 cm directly above the FPGA. In the
1st data acquisition, only a single clock cycle was captured and 20% of the next
one. The 2nd data acquisition used an extended timebase to the data capture.
With modified trigger signal the capture now contains three cycles instead of one.
The reason for extended trigger signal was to capture more data from neighboring
computations in the hope of getting better correlation values. The 3rd data ac-
quisition is exactly as the 1st data capture except for the size of the loop antenna
and the distance to the FPGA. Making more data acquisitions will yield a better
result but requires more time. Three attacks will provide the thesis with enough
results to answer the formalized questions.
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3.5.5 Computation

Doing computations are not a time-vital action. The attacker can make the sta-
tistical computations at other locations than the attacked device. All collected
traces are sent as an input into a python script together with the plaintexts, see
Appendix A. The python script converts the CSV-files into lists of integers, gener-
ate the hypothesis model, create a list of hypothetical electromagnetic emissions,
and in the end, it creates a Pearson correlation coefficient between the hypotheti-
cal model and the measured traces from the FPGA.
With no average measurement, the attack becomes vulnerable to noise. The noise
generated from the FPGA can disturb the analysis and make subkeys produce
false signals. The Pearson correlation coefficient method was used to find the cor-
rect key. Distance-of-means would create results that would have been harder to
analyze, compared to Pearson correlation coefficient. Pearson correlation coeffi-
cient is a mathematical stronger method to find linearity between two sets of data
samples than distance-of-means. The python script will also collect the highest
values of the coefficients, sort them and present them to the user. The correct key
is displayed together with its rank among the other guessed keys.
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Chapter4
Results

4.1 Location of EM emissions on the FPGA

Figure 4.1: Overview of the areas which are sending out electro-
magnetic emissions.

The area which radiated most electromagnetic emissions can be observed in Figure
4.1. The highlighted area in the left picture is where the actual logic cells are
implemented on the FPGA. The left part of Figure 4.1 is a schematic made by
Xilinx Vivado; elaborated design. There are few cells spread out along the border
of the FPGA. The border cells are I/O-pins. In the right part of Figure 4.1
two highlighted areas of electromagnetic emission can be observed. The results
generate questions regarding the second area of EM emissions which have few logic
cells. There are no logic cells there except I/O-pins.
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4.2 Frequency spectrum of the FPGA

Figure 4.2: The 100 MHz internal clock is divided into a 12.5 MHz
clock. The figure presents the frequency spectra of the encryp-
tion.

Before the extraction of EM traces, the spectrum analyzer gathered all the present
frequency on the FPGA. Figure 4.2 clearly show the internal frequency of 100 MHz
and the divided frequency 12.5 MHz. It is not exactly 12.5 MHz. There are many
harmonics with +12.5 MHz for every single harmonic. If the 12.5 MHz clock
became faster, the data acquisition would suffer because the oscilloscope is not
fast enough when switching between state "WAIT" and "TD" (triggered). These
two states indicate if the trigger condition is met or not. When the oscilloscope is
in WAIT-state, the trigger condition is not met, and no data is collected. When
clock becomes faster, the oscilloscope will continuously trigger, because it cannot
evaluate the trigger condition correctly.

4.3 Simple electromagnetic analysis

In Figure 4.3, 4.4 and 4.5 the trigger signal with a 14-round AES encryption is
presented, plus two cycles from the memory storage and AES-wrapper. The y-axis
presents the amplitude in volts. The x-axis presents the sampled data points, and
it is not time-dependent. Each sampled data point includes a y-value from the
measurement. The screen memory buffer only contains 1200 data points which set
the length of the x-axis. When the trigger condition is met, all the data between
the rising edge and falling edge are captured and stored in a CSV-file as a string
of integers. Depending on where the trigger signal is implemented in the register
transfer level (RTL) design, different parts of the EM trace can be captured. As
a first stage, all 14 rounds plus memory storage and AES-wrapper cycle are ex-
tracted and presented as 16 peaks. The peaks in the beginning and end of the
AES-encryption are due to the trigger signal. It is generating noise in the FPGA



Results 35

due to the 3,3-volt output. The frequency between the two peaks is 12.5 MHz,
which is the wanted encryption frequency.

Figure 4.3, 4.4 and 4.5 presents a whole encryption with 14 rounds and the trigger
pulse. The data in these figures come from the first attack on the AES-256. When
the actual DEMA attack occurred, the trigger pulse was changed to encapsulate
only the first round.

Figure 4.3: The trigger pulse
for encryption.

Figure 4.4: A zoomed in ver-
sion of Figure 4.3.

Figure 4.5: A zoomed in
version of Figure 4.4.
Presenting 14 rounds of
AES, plus one round
for memory storage, and
one round for the AES-
wrapper.

Figure 4.6: One round of AES
encryption.

In Figure 4.6 the attack has captured one encryption round. The peaks have a
frequency of approx. 12.5 MHz. Between these peaks is the important data that
is used to extract the secret key.
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Figure 4.7: Captured EM trace at 10 cm distance with 5 cm loop
antenna.

In Figure 4.7 a SEMA, at 10 cm distance, is presented from the first round of AES.
This EM trace does not have much visually in common with Figure 4.6. However
both represent the same AES round but at different distance from the FPGA.

Figure 4.8: Capturing EM traces with a frequency over 50 MHz.

Figure 4.8 presents how the data acquisition is affected if the data is extracted at
the same speed as the internal clock of 100 MHz.

4.4 Differential electromagnetic analysis

In Table 4.1, 4.2 and 4.3 the results from three different DEMA on AES-256, are
presented. A rank of 1 implies that the key guess is 100% correct. While a rank
of 256 implies that our key guess has the worst result compared to the other 255
key guesses.
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In Table 4.1 the subkeys 0x03 and 0x0E are 100% extracted. In Figure 4.9 the
relative correlation value is presented together with the correlation values for the
other keys with 9000 captured EM traces. Figure 4.10 collects the best rank
independent of the key value.

Table 4.1: Rank of key guess first data acquisition.

1st data acquisition with number of EM traces and the ranked key.
Key 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

0x00 231 247 254 174 189 81 55 98 104 192
0x01 177 70 30 10 2 46 32 23 6 3
0x02 41 37 41 14 18 41 28 98 139 123
0x03 171 121 1 32 100 13 14 1 1 1
0x04 198 65 56 50 5 16 7 4 5 9
0x05 190 14 23 99 64 70 6 25 139 138
0x06 110 90 100 38 120 104 92 125 73 102
0x07 217 163 191 158 135 230 221 48 204 190
0x08 235 123 104 176 114 239 164 193 206 174
0x09 147 137 171 218 245 219 231 12 250 246
0x0A 163 169 195 67 2 25 82 39 102 38
0x0B 254 240 237 255 200 211 178 73 125 160
0x0C 86 120 74 46 64 11 17 21 9 11
0x0D 112 92 59 45 36 59 57 66 99 60
0x0E 48 1 2 2 15 6 36 2 4 5
0x0F 73 56 57 47 49 13 47 81 53 97

Figure 4.9: Highest corre-
lation coefficient at key
guess 0x03.

Figure 4.10: Summary of
highest rank from Table
4.1.
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In Table 4.2 the subkey 0x0D is fully extracted but without any repeating rank.
Subkey 0x06 has an overall high rank independent of the number of EM traces.
In Figure 4.11 the relative correlation value is presented for subkey 0x0D at 4000
EM traces. Figure 4.12 presents the highest rank for each n · 1000 EM traces.

Table 4.2: 2nd data acquisition with extended oscilloscope timebase.

2nd data acquisition with number of EM traces and the ranked key.
Key 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

0x00 141 249 180 145 241 213 249 244 172 222
0x01 222 212 110 163 117 157 136 213 236 204
0x02 161 151 188 246 250 248 256 253 249 161
0x03 178 244 78 173 19 23 94 163 36 27
0x04 139 40 21 103 50 11 48 26 23 65
0x05 222 74 188 183 192 238 243 235 212 209
0x06 82 51 15 67 30 5 7 8 4 11
0x07 62 128 177 191 162 111 117 109 231 198
0x08 86 192 123 76 66 71 123 92 133 117
0x09 238 244 216 209 209 165 229 231 223 213
0x0A 147 102 223 21 61 113 153 173 233 246
0x0B 6 194 102 75 191 125 64 86 74 137
0x0C 196 126 225 18 23 32 160 229 63 206
0x0D 229 227 161 1 12 26 30 39 54 40
0x0E 84 15 77 42 66 25 34 41 55 167
0x0F 223 200 123 174 178 98 95 115 138 93

Figure 4.11: Highest corre-
lation coefficient at key
guess 0x0D.

Figure 4.12: Summary of
highest rank of key
guesses from Table 4.2.
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Table 4.3 is the results from the measurements made at 10 cm directly above the
FPGA with a 5 cm diameter loop antenna. Subkey 0x05 is fully extracted. The
relative correlation value, for all key guyesses at 10000 EM traces, is presented in
Figure 4.13. The overall rank for each n · 1000 is presented in Figure 4.14.

Table 4.3: Rank of key guess 3rd data acquisition at 10 cm distance.

3rd data acquisition with number of EM traces and the ranked key.
Key 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

0x00 31 245 253 254 192 254 229 216 135 219
0x01 46 212 49 29 129 168 92 39 59 83
0x02 197 54 95 54 55 72 105 81 85 56
0x03 151 37 25 35 87 38 136 18 61 34
0x04 80 208 199 175 43 37 138 116 115 57
0x05 56 5 33 26 30 31 8 4 2 1
0x06 32 55 103 87 143 113 23 78 25 33
0x07 235 161 82 107 65 12 118 134 27 15
0x08 4 10 80 7 56 124 40 183 135 143
0x09 158 95 168 200 217 98 15 21 45 179
0x0A 215 144 65 37 89 65 25 50 69 67
0x0B 209 155 180 125 107 108 163 171 180 228
0x0C 39 27 62 109 22 12 5 11 44 72
0x0D 233 171 194 217 184 217 201 243 244 203
0x0E 39 75 73 223 167 170 56 81 116 145
0x0F 97 18 24 101 231 198 242 249 208 242

Figure 4.13: Highest corre-
lation coefficient at key
guess 0x05.

Figure 4.14: Summary of
highest rank of key
guesses from Table 4.3.
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Table 4.4 provides the results from the DEMA of the simplified AES design. Sev-
eral data acquisitions were made due to power supply interference, but only with
one key; 0x02. Figure 4.15 presents the highest-ranked key for every 1000 EM
trace.

Table 4.4: Rank of key guess for simplified AES. Implementation
according to Figure 3.8.

Data acquisition on simplified AES, with EM traces and the ranked key.
Key 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

0x02 216 172 55 70 112 50 42 52 38 31

Figure 4.15: The graph presents a summary of highest rank of the
key guesses from Table 4.4.
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Discussion

The section is divided into several subsections. First a comment on the results
from Section 4, and in the end, discussion regarding the main cause of errors in
the results.

5.1 Location of EM emissions on the FPGA

After examining the layout in Figure 4.1 and discussing with employees at Xilinx,
it was concluded that the radiation must come from the LEDs wires. There is also a
second option; there could be electronics on the other side of the FPGA board that
is radiating. The second area of emissions was not investigated further, but instead,
the focus was put on the actual encryption logic on the right side of the FPGA. It
is important to locate the actual encryption logic to get the correct EM traces and
reducing noise. In a real-world scenario, an attacker does not know where on the
cryptographic device the encryption core is implemented. Therefore the attacker
has to collect EM traces from larger areas which will include all the noise from,
e.g., power supply, surface mounted capacitors, resistors, and processors. In this
thesis, the implemented design was used as a sheet when comparing the X-Y EM
emissions. Mainly to confirm that the correct EM traces were extracted.

5.2 Frequency spectrum of the FPGA

Figure 4.2 presents the frequency spectra of the EM emission from the FPGA.
In the AES-wrapper, Section 3.3.1, a clock divider is implemented. The clock
divider creates a 12.5 MHz clock. The 12.5 MHz clock can be observed in the
spectra with its harmonics. The internal system clock at 100 MHz is also there.
No other frequencies are present. The absence of unknown frequencies is good.
In this way, the clock divider can be verified, and there is no larger interference
taking place at other frequencies. If there are larger amplitudes at non-harmonics
signals, then there is a risk that the wrong signals are extracted which generates
false EM traces.
The use of a clock divider was vital to the experiment. Due to the equipment,
faster extraction of the signals was not possible. If the frequency would have been
higher the important data may have been lost.
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5.3 Simple electromagnetic analysis

In Figure 4.6 a single round of AES is presented. The waveform of an AES round
depends totally on the actual hardware implementation. A repeating pattern is
sought after and wanted. By doing a SEMA, it was concluded that the encryption
core is presumably using 14 rounds which in turn could imply AES-256 encryption.

Advenica makes their AES IP in such a way that it makes dummy computa-
tions while not encrypting anything. The dummy computations can visually hide
the actual 14 encryption rounds. Without the trigger-signal, a mathematical algo-
rithm would have to align and cross-correlate all the traces to find the exact start
of the encryption. To create an algorithm for aligning all the traces is out of the
scope of this thesis. Therefore a trigger signal is used to capture the actual start
and end of one encryption round.

5.4 Differential electromagnetic analysis

5.4.1 1st data acquisition AES-256

Succeeding to extract the 128-bit subkey matrix from the first round, will auto-
matically give the first 128 bits of the 256-bit key. According to previous results in
Section 1.3 and the theory about Pearson correlation coefficient, a more significant
number of EM traces should create a better correlation between the hypothetical
values and the captured EM traces. Table 4.1 presents the rank of the key, where
the integer 1 is the highest rank. Overall 16 bits of the 256-bit key were success-
fully extracted. If a rank of 11 and higher is accepted, five subkeys are within
the range of brute force technique with reasonable computational time. Because
no averaging method was used, the correlation value will be calculated with more
signal interferences as input. Using an averaging method generates a better cor-
relation value because the interferences are averaged.
Some rows did not improve regarding rank. The unchanged low rank indicates
that the side-channel, related to that key, is very weak. To extract these subkeys,
more data points are needed per waveform. The attack is using 1200 data points
per waveform. Using more EM traces should also generate a higher correlation
value.

In the key interval 0x06-0x0B in Table 4.1, the rank seldom passes below 100.
There is also no sign of improvement with a higher number of EM traces. It is
unwise to make conclusions regarding the possibilities to extract these keys. Some
previous results needed, as mentioned before, millions of traces to retrieve all the
subkeys.

Some keys are less complicated to extract than others. Key 0x03 is 100% extracted
at 3000 EM traces, and key 0x0E is extracted at 2000 EM traces. Comparing the
results from other research on side-channel analysis on a microprocessor, where
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they could get a correlation around 0.1-0.2, there is a clear difference between this
thesis results and previous work. In the results from the thesis, the correlation
value lay around 0.01-0.05. The correlation value is a reduction with a factor of
10. Which seems correct according to [1] where they attacked the AES-128 on
an ASIC with power analysis. The actual value of the correlation number is not
important, it is the relative correlation value compared to all other key guesses
that is important. It takes around 70 minutes to collect 10000 EM traces. The
amount of time may vary depending on the used equipment for extracting the EM
traces. The rank, in some rows, get worse compared to the previous result which
might be due to noise interference in the rest of the EM traces. Some rows got an
overall high rank, e.g., 0x04 in Table 4.1 which will provide us with an excellent
opportunity to brute force the last bits.

In the experiments, the correct key was used to validate the results. In a real-
world application, the attacker does not have this opportunity. The guessed keys,
which do not keep their high rank when the number of EM traces increases, will
be excluded. Continuously high rank leaves us with only one key 100% extracted;
0x03. If the limit for accepted keys are extended, there is also a repeating key at
rank 2; 0x0E.

Figure 4.10 presents how the method at least present us with high ranking keys for
every thousand EM traces. In Figure 4.9 there is a clear peak at the correct key.
The correlation is around 0.048 where maximum value can be 1.0. The correlation
value is very low and sensitive to different kind interference. The H-probe need to
be still; otherwise, different amplitude on our signals will be acquired due to the
distance to the FPGA.

According to [4], there is a dependency on the actual position of the subkey and
not its actual value. Some keys are harder to extract basically because of the cir-
cuits and where they are used in the encryption algorithm. The subkeys get a bad
signal-to-noise ratio (SNR) value which make the extraction harder to conduct.
However, in the thesis experiments, some keys gave a good correlation value in
the 1st data acquisition and a worse correlation value in the 2nd data acquisition.
Even if they were at the same key position.
There is no definite answer on how many electromagnetic waveforms that are
needed to extract the subkeys. It all depends on the circumstances and the envi-
ronment.

5.4.2 2nd data acquisition AES-256 with extended timebase

The second acquisition involves an extended time interval for acquiring data. This
is done by changing the timebase of the oscilloscope. The density of the sampled
data points is always 1200 for screen memory buffer on the oscilloscope. When
two more cycles were included from the encryption run, a broader interval of data
points was extracted. The disadvantage of this method is the loss of sampled
points per encryption cycle. Instead of acquiring 1200 per cycle, the oscilloscope
captured 400 points per round. The wider interval approach aimed to get a better
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correlation, but instead, the overall ranking of the subkey guesses became worse.
Increasing the number of sampled points, will generate a better chance of getting a
higher rank on the key guess. With the comparison between first data acquisition
and second data acquisition, it was concluded that the number of points per EM
trace is vital and directly impact the correlation coefficient.

In Table 4.2 there are only one key extracted 100%; 0x0D. However, applying
this table to a real-world application, the attacker would never know it is 100%
correct key guess. When compared with neighboring ranked keys it can be ob-
served that it is not a key guess that will keep its rank when EM traces increases.
As mentioned before; the attacker is looking for a key that keeps repeating its
high rank. If the top five key guesses are presented for every thousand EM traces
(sorted by there correlation coefficient), there might be a repeating pattern among
the key guesses. The repeating pattern will present the attacker with good oppor-
tunities to brute force the correct key.

Figure 4.11 presents the key guess with its correlation value. However, it has
not a significantly high correlation value compared to other surrounding peaks.
The attacker is looking for a single relative high correlation value, like the one in
Figure 4.9. There is no definition of a relatively good correlation value. However,
many correlation peaks indicate that the side-channel is not strong for the correct
key. The side-channel is strong enough to get the correct key, but there are other
key guesses with a nearby correlation value which might provide the attacker with
wrong key guess when number of EM traces increases.

5.4.3 3rd data acquisition AES-256 at distance of 10 cm

Table 4.3 presents the key 0x05 fully extracted. According to [1]; an increasing
number of data traces should generate an increasing rank of the key. There is only
a clear result on key 0x05. However, at a distance of 10 cm, it is still possible
to extract subkeys with relative high correlation coefficient, see Figure 4.13. If it
is possible to extract subkeys at a distance, with included noise from the power
supply, resistors, and capacitors, new opportunities are created for the attacker. In
this attack, the diameter of the loop antenna was increased to 5 cm. The EM trace
in Figure 4.7 is visually very different from the first data acquisition in Figure 4.6
but still the program was able to find a relatively high correlation and extract one
subkey. To confirm that it was the correct key, more EM traces are needed. As
written before; the attacker needs a repeating pattern of ranked keys to confirm
that one has the correct key. With only Table 4.3 an attacker will not be able to
confirm that 0x05 is the correct key due to the lack of repeating subkey pattern.

5.4.4 Data acquisition from simplified AES

The simplified version of AES should provide results of how an attacker can extract
the unknown parameter k in the function f(d, k). Since it was less complicated in
its design, the EM emissions should have a reduced number of interfering signals.
This attack was not as successful as the attack on AES-256. There could be several
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reasons for this result. It could be the power supply interference making the trigger
signal go out of sync with the plaintexts from the FPGA. When the FPGA was
programmed to encrypt 10000 plaintexts, the LabView program only registered
around 6000 encryptions which imply 4000 EM traces were not registered. The
FPGA sends an "encryption done" signal to an LED on the FPGA board. Because
of the lost EM traces, the test had to be retaken several times. However, there is
still an improvement in the ranking system in Figure 4.15. With more traces and
sample points there should be a better result.

5.5 Sources of errors

According to [1] it is a complex task to extract secret keys from hardware en-
cryption. The complexity is primarily due to the parallelism of operations and
the wiring on the SoC. Different length of wires generates various electromagnetic
fields. When extracting the partial secret key, it is often needed to collect at least
100000 traces. Sometimes even up to millions of traces are needed [5]. The number
of EM traces varies a lot depending on experiment setup in different research. In
other research, they have used between 10000 EM traces and up to 3 million EM
traces. In this thesis, the number of traces was at maximum 10000.

Based upon the previous results in Section 1.3 in [4] where they have been us-
ing around 7000 EM traces to extract the 120-bit of the 128-bit, the results in this
thesis did not deliver the same success. Their results came from an SCA-FPGA-
board with an oscilloscope that cost x15 times more than the used oscilloscope in
this experiment. Moreover, they used an amplifier that has a wider bandwidth.
On the other hand, there are examples of master thesis [13] where they never
succeed to extract any subkeys at all. They only reached the rank of 2153 at best
when attacking single-cycle SHA-256, two bytes, on a low power FPGA platform.
They also had 143000 EM traces compared with this thesis 10000 EM traces. [13]
was made on the SASEBO-GII. They used a different encryption algorithm, but
the theory and method is still the same.

One way to reduce the noise and interference from the switching transistors is
to lower the encryption frequency. Some of the previous results were clocked at
3 kHz. Using 3kHz as encryption frequency is not possible in this thesis due to
the bandwidth of the amplifier (10MHz-1GHz). When encrypting at such a low
frequency, a vast majority of the switching interference from the transistors will
be drastically reduced. If a filter is added high-frequency noise can be excluded.

In some of the measurements, weird interference can be observed. This noise
behavior came from the power supply jack from all the rooms on this side of the
corridor. When someone was plugging in a charger, e.g., for cell phone or computer
this phenomenon occurred, see Figure 5.1.
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Figure 5.1: Waveforms when charger is plugged into the 230V jack
in neighboring rooms or the lab room. The saturated (yellow)
signal is the actual EM waveform. The signal (blue) with low
amplitude, and which is alternating close around the x-axis, is
the trigger signal.

This interference corrupted the data acquisition so that the next EM traces ti
where not aligned to their data block d. When this interference occurred, the data
acquisition was stopped and reset. Taking a more substantial number of mea-
surements will increase the risk of including power supply disturbance which in
return made test runs corrupt. While making measurements, it is a necessity to
stay present all the time to exclude the risk of interference in the data acquisition.
By visually inspecting the data capture on the oscilloscope the power interference
could be observed. To counter this interference a filter could be applied.

One thing worth mentioning is the temperature in the FPGA chip will affect
the EM emissions. The effect of the temperature is not considered that in this
thesis.
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In this thesis, one 8-bit subkey was 100% extracted at 0 cm distance from the
FPGA. Including higher ranked keys, from Table 4.1, five subkeys were extracted
from 10000 EM traces. At 10 cm from the FPGA, one subkey was extracted. It
took around 70 minutes, without averaging, to extract the EM traces. To brute
force a 256-bit key requires testing 2256 = 1, 1579 · 1077 different combinations.
AES-256 would require a multiple of the lifetime of our universe, to brute force
with modern digital computers. Brute forcing the first 128-bit would need to
2128 = 3, 4028 · 1038 different combinations.

The results, with high ranked keys, would give us 288 = 3, 0948 · 1026 different
combinations to try for 128-bit key encryption. With new technology in the form
of a quantum computer and the promised computational power, even AES-256 is
not safe anymore. A full AES-256 is considered post-quantum secure with present
technology. By combining side-channel attacks with a quantum computer, it is
possible to lower the number of bits to brute force the last non-extracted bits.
However, more time is needed to extract all the subkeys with current equipment.

The sources of threats, within the cyberspace, can be divided into three differ-
ent categories; individuals, organizations, and nations. In this thesis, the provided
results confirm that it is doable, as an individual, with low-cost equipment, to con-
duct a side-channel attack on a post-quantum secure encryption algorithm. Not
all subkeys were extracted, but the method and apparatus proved to be able to
retrieve subkeys from an FPGA that is not designed for SCA. The measurement
is sensitive to different interferences, but with an increased number of sampled
points and a filter, the results would be better. The problem in this experiment
was the simplified design of the first round in AES, see Section 3.5.3. For a none
confirmed reason, the same results from AES256 could not be generated on the
simplified version of AES. The simplified AES was designed to match the EM
model Hamming distance. According to the theory, an attacker should be able to
extract the subkeys much faster than AES-256 since the simplified AES do not
have any additional logic.
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6.1 Future work

Continuing and improving the experiment for the future, the following subjects
need to be addressed:

6.1.1 Number of data points

In this experiment, 1200 data points were used for each EM trace. According to
previous work in Section 1.3, and the results in Section 4, it was concluded that
more data points are needed to create better correlation coefficients.

6.1.2 Oscilloscope

The oscilloscope used a USB to transfer data which limits the data throughput.
To capture more data, a faster interface is needed between the oscilloscope and the
PC. A more upgraded oscilloscope can also have a larger memory screen buffer,
e.g., 3000 data points.

6.1.3 Number of EM traces

The experiment did not extend beyond 10000 EM traces. Extracting EM traces
faster, should increase the total number of captured EM traces and still stay below
70 minutes for data extraction.

6.1.4 Amplifier

The amplifier had a bandwidth of 10 MHz to 1 GHz. An amplifier with a lower
interval could lower the encryption frequency and in return reduce the switching
noise from the transistors.

6.1.5 Low-pass filter

Using a low-pass filter could reduce the noise generated from higher frequencies,
e.g., transients and other power quality reducing effects.

6.1.6 Power supply filter

A filter could be used to reduce the received power quality interference from neigh-
boring rooms e.g., common and differential mode filter.

6.1.7 EM trace alignment software

In the experiment, a trigger signal was used to mark where the encryption starts
and where it ends. In a real-world application, the attacker does not have this
trigger signal support. One would need a software tool that aligns the EM traces.
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6.1.8 Distance

The measurements were made at 0 cm and 10 cm. Further investigations are
needed regarding the possibilities to extract subkeys at greater distances.

6.1.9 The last 128 key bits

The thesis only included an attack on the first 128 key bits in AES-256. To
completely extract all the 32 subkeys, the attack needs to be modified for the last
128 bits.
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AppendixA
Python

import numpy as np
import csv
import re
from s c ipy . s t a t s . s t a t s import pearsonr
import matp lo t l i b . pyplot as p l t
from operator import i t emge t t e r
from t emp f i l e import TemporaryFile

sbox = [
0x63 , 0 x7c , 0 x77 , 0 x7b , 0 xf2 , 0 x6b , 0 x6f , 0 xc5 ,
0x30 , 0 x01 , 0 x67 , 0 x2b , 0 xfe , 0 xd7 , 0 xab , 0 x76 ,
0xca , 0 x82 , 0 xc9 , 0 x7d , 0 xfa , 0 x59 , 0 x47 , 0 xf0 ,
0xad , 0 xd4 , 0 xa2 , 0 xaf , 0 x9c , 0 xa4 , 0 x72 , 0 xc0 ,
0xb7 , 0 xfd , 0 x93 , 0 x26 , 0 x36 , 0 x3f , 0 xf7 , 0 xcc ,
0x34 , 0 xa5 , 0 xe5 , 0 xf1 , 0 x71 , 0 xd8 , 0 x31 , 0 x15 ,
0x04 , 0 xc7 , 0 x23 , 0 xc3 , 0 x18 , 0 x96 , 0 x05 , 0 x9a ,
0x07 , 0 x12 , 0 x80 , 0 xe2 , 0 xeb , 0 x27 , 0 xb2 , 0 x75 ,
0x09 , 0 x83 , 0 x2c , 0 x1a , 0 x1b , 0 x6e , 0 x5a , 0 xa0 ,
0x52 , 0 x3b , 0 xd6 , 0 xb3 , 0 x29 , 0 xe3 , 0 x2f , 0 x84 ,
0x53 , 0 xd1 , 0 x00 , 0 xed , 0 x20 , 0 xfc , 0 xb1 , 0 x5b ,
0x6a , 0 xcb , 0 xbe , 0 x39 , 0 x4a , 0 x4c , 0 x58 , 0 xcf ,
0xd0 , 0 xef , 0 xaa , 0 xfb , 0 x43 , 0 x4d , 0 x33 , 0 x85 ,
0x45 , 0 xf9 , 0 x02 , 0 x7f , 0 x50 , 0 x3c , 0 x9f , 0 xa8 ,
0x51 , 0 xa3 , 0 x40 , 0 x8f , 0 x92 , 0 x9d , 0 x38 , 0 xf5 ,
0xbc , 0 xb6 , 0 xda , 0 x21 , 0 x10 , 0 x f f , 0 xf3 , 0 xd2 ,
0xcd , 0 x0c , 0 x13 , 0 xec , 0 x5f , 0 x97 , 0 x44 , 0 x17 ,
0xc4 , 0 xa7 , 0 x7e , 0 x3d , 0 x64 , 0 x5d , 0 x19 , 0 x73 ,
0x60 , 0 x81 , 0 x4f , 0 xdc , 0 x22 , 0 x2a , 0 x90 , 0 x88 ,
0x46 , 0 xee , 0 xb8 , 0 x14 , 0 xde , 0 x5e , 0 x0b , 0 xdb ,
0xe0 , 0 x32 , 0 x3a , 0 x0a , 0 x49 , 0 x06 , 0 x24 , 0 x5c ,
0xc2 , 0 xd3 , 0 xac , 0 x62 , 0 x91 , 0 x95 , 0 xe4 , 0 x79 ,
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0xe7 , 0 xc8 , 0 x37 , 0 x6d , 0 x8d , 0 xd5 , 0 x4e , 0 xa9 ,
0x6c , 0 x56 , 0 xf4 , 0 xea , 0 x65 , 0 x7a , 0 xae , 0 x08 ,
0xba , 0 x78 , 0 x25 , 0 x2e , 0 x1c , 0 xa6 , 0 xb4 , 0 xc6 ,
0xe8 , 0 xdd , 0 x74 , 0 x1f , 0 x4b , 0 xbd , 0 x8b , 0 x8a ,
0x70 , 0 x3e , 0 xb5 , 0 x66 , 0 x48 , 0 x03 , 0 xf6 , 0 x0e ,
0x61 , 0 x35 , 0 x57 , 0 xb9 , 0 x86 , 0 xc1 , 0 x1d , 0 x9e ,
0xe1 , 0 xf8 , 0 x98 , 0 x11 , 0 x69 , 0 xd9 , 0 x8e , 0 x94 ,
0x9b , 0 x1e , 0 x87 , 0 xe9 , 0 xce , 0 x55 , 0 x28 , 0 xdf ,
0x8c , 0 xa1 , 0 x89 , 0 x0d , 0 xbf , 0 xe6 , 0 x42 , 0 x68 ,
0x41 , 0 x99 , 0 x2d , 0 x0f , 0 xb0 , 0 x54 , 0 xbb , 0 x16

]

#−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

def HYPO_AddRoundKey( key_byte , text_byte ) :

XORed = bin ( key_byte ^ int ( text_byte , 2 ) )
return XORed

#−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
def HYPO_SubBytes(AES_byte ) :

AES_byte = sbox [ int (AES_byte , 2 ) ]
return AES_byte

#−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
def HYPO_HammingDistance( text_byte , AES_byte ) :

count = 0
HD_byte = bin ( int ( text_byte , 2 ) ^ AES_byte)
HD_byte . r ep l a c e ( "0b" , "" )
for i in range ( len (HD_byte ) ) :

i f HD_byte [ i ] == ’ 1 ’ :
count+=1

return count

#−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
VHDL_plaintexts = open( "PLAINTEXTS. txt " , " r " )

a l l_p l a i n t e x t s = [ ]

nbr_of_traces = 4000

for l i n e in VHDL_plaintexts :
a l l_p l a i n t e x t s . append ( l i n e )

for l in range ( 1 6 ) :
# Loop through key po s i t i o n from 0x00−0x0F . F i r s t 128− b i t s

H = [ ]
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for i in range ( nbr_of_traces ) :
#Loop through every 8 b i t s o f a l l _ p l a i n t e x t s

input_byte = a l l_p l a i n t e x t s [ i ] [ ( l ∗ 8 ) : ( l ∗8+8)]
HD_row = [ ]
for k in range ( 2 5 6 ) :
# Create key hypo theses f o r every p o s s i b l e key 0−255

#−−−−−−−Cryptographic a lgor i thm−−−−−
#Send in every key hypo theses and produce an output V
XORed = HYPO_AddRoundKey(k , input_byte )
SBOX_value = HYPO_SubBytes(XORed)
#SBOX_value i s the Hypo the t i ca l
#Intermedia Value (V) .
HD = HYPO_HammingDistance( input_byte , SBOX_value)
# HYPO_HammingDistance i s the "POWER MODEL"
# in the f l ow char t .
HD_row. append (HD)
# Row of h y p o t h e t i c a l EM−po in t s . h (1 ,K) ,

H. append (HD_row)#Hypo the t i ca l EM−t races , s i z e DxK
#Add rows to an array to c r ea t e a 2D−array (Matrix )

#−−−−−−−−−−−−CREATE T−matrix o f measured va lues−−−−−−
T_row = [ ]
T_column = [ ]
H_column = [ ]

with open( "10000_2 . csv " ) as c s v f i l e 2 :
readCSV = csv . reader ( c s v f i l e 2 , d e l im i t e r=’ ␣ ’ )
for row in readCSV :

T_row . append ( row [ 0 ] )
#Fetch a l l the va l u e s from CSV− f i l e

for i in range ( nbr_of_traces ) :
T_row [ i ] = T_row [ i ] . r e p l a c e ( " , " , " . " )
T_row [ i ] = re . s p l i t ( r ’ \ t+’ ,T_row [ i ] )

#Create a row in T−matrix wi th l e n g t h 1200 data po in t s
for k in range ( 1 200 ) :

T_row [ i ] [ k ] = f loat (T_row [ i ] [ k ] )
#Measured va l u e s are wr i t t en in s t r i n g s so we
#need to conver t them in to f l o a t s .

for i in range ( 1 200 ) :
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#For every data po in t in every EM−t r ace add them
#in a new array to make i t e a s i e r to compute
# Pearson c o r r e l a t i o n Co e f f i c i e n t .
T_temp = [ ]
for k in range ( nbr_of_traces ) :

T_temp . append (T_row [ k ] [ i ] )

T_column . append (T_temp)
#Now we have Colums o f data from T−matrix
#in rows .

for i in range ( 2 5 6 ) :
H_column_temp = [ ]
for k in range ( nbr_of_traces ) :

H_column_temp . append (H[ k ] [ i ] )

H_column . append (H_column_temp)

#−−−−−CREATE Resul t−matrix . The l a s t s t ep in the f low−chart−−−−−−
#−−−−−−−−−−−−S t a t i s t i c a l Analys is−−−−−−−−−−−

r_matrix = [ ]
r_temp_matrix= [ ]
#Loop through every column of Matrix T and compare them with columns
#in H. Create a c o r r e l a t i o n va lue "r" f o r every T_column vs H_column .
for i in range ( 2 5 6 ) :

r_temp_matrix= [ ]
for k in range ( 1 200 ) :

r = pearsonr (T_column [ k ] , H_column [ i ] ) [ 0 ]
r_temp_matrix . append (abs ( r ) )
#We dont care i f t h e r e i s a nega t i v e l i n e a r r e l a t i o n s h i p .
#Only i f t h e r e i s a l i n e a r r e l a t i o n s h i p at a l l .

r_matrix . append ( ( r_temp_matrix ) )

#−−−Create an array wi th maximum r−va l u e s to rank the key guess .
max_r_matrix_tuple =[ ]
max_r_matrix =[ ]
for i in range ( len ( r_matrix ) ) :

max_r_matrix_tuple . append ( (max( r_matrix [ i ] ) , i ) )
max_r_matrix . append (max( r_matrix [ i ] ) )

max_r_matrix_tuple . s o r t ( key=i t emge t t e r ( 0 ) , r e v e r s e=True )

print ( "What␣ c o r r e l a t i o n ␣had␣ the ␣ c o r r e c t ␣key␣among␣ the ␣key␣ gue s s e s : " )
print ( [ item for item in max_r_matrix_tuple i f item [ 1 ] == l ] )
#Change l a s t d i g i t to search f o r key
i n d i c e s = [ i for i , tu in enumerate(max_r_matrix_tuple ) i f tu [1]== l ]
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#Change l a s t d i g i t to search f o r key
print ( "What␣was␣ the ␣ rank␣ o f ␣ the ␣ c o r r e c t ␣key␣among␣our␣key−gue s s e s "

, i n d i c e s )
p l t . p l o t (max_r_matrix )

c s v f i l e 2 . c l o s e ( )
VHDL_plaintexts . c l o s e ( )



58 Python



AppendixB
VHDL

B.1 AES-wrapper

l ibrary IEEE ;
use IEEE .STD_LOGIC_1164 .ALL;
use i e e e . numeric_std . a l l ;
l ibrary std ;
use std . t e x t i o . a l l ;
use i e e e . s td_log i c_text io . a l l ;

entity AES_Wrapper i s
Port (

r s t : in s td_log i c ;
i n i t_ s t a r t : in s td_log i c ;

−− Cl i c k on but ton to s t a r t the N encryp t ion runs
f a s t_c lk : in s td_log i c ;
t r i g g e r : out s td_log i c ;
key_done_LED : out s td_log i c ;
cipher_wrapper_OUT : out unsigned (7 downto 0)

−− Vivado op t imize the code and remove the c i p h e r t e x t s i g n a l s .
−− Therefore we f o r c e i t to keep them by g i v i n g them as output .

) ;
end AES_Wrapper ;

architecture r t l of AES_Wrapper i s
type state_type i s (TRIGGER_HOLD,BUSY_AES,IDLE_AES,HOLD_AES,

START_AES_128,START_AES_256,
SEND_HOLD_DATA,SEND_DATA) ;

signal s ta te , next_state : state_type ;
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component aes_256_top
−− Advenicas AES−256 IP . The code f o r t h i s IP w i l l not be inc luded .

port (
sys_rst : in s td_log i c ;
sys_clk : in s td_log i c ;
c l e a r : in s td_log i c ;
new_key : in s td_log i c ;
key : in unsigned (127 downto 0 ) ;
key_done : out s td_log i c ;
s t a r t : in s td_log i c ;
p l a i n : in unsigned (127 downto 0 ) ;
c iphe r : out unsigned (127 downto 0 ) ;
busy : out s td_log i c ;
v a l i d : out s td_log i c

) ;
end component ;

component LFSR −− Used to genera te psudo−random p l a i n t e x t s .
port ( −−We cou ld use a counter but t ha t would not be r e a l i s t i c .

r e s e t : in s td_log i c ;
c l k : in s td_log i c ;
enable : in s td_log i c ;
q : out s td_log ic_vector (127 downto 0)
−− 128 b i t s o f p l a i n t e x t . Sent as an input to aes_256_top

) ;
end component ;

signal busy_wrapper , valid_wrapper , key_done_wrapper ,
new_key_wrapper : s td_log i c ;

signal cipher_wrapper , plain_wrapper : unsigned (127 downto 0 ) ;
signal q_plain_text : s td_log ic_vector (127 downto 0 ) ;
signal cipher_q , cipher_next : unsigned (127 downto 0 ) ;
signal key_256 : unsigned (255 downto 0 ) ; −− Complete key o f 256 b i t s .
signal key_128 : unsigned (127 downto 0 ) ;
−− The 256− b i t key i s d i v i d ed in t o two 128− b i t s and sen t in t o aes_256_top .

signal in i t_start_q : s td_log i c ;
−− S ta r t s i g n a l genera ted from the i n i t_ s t a r t from the FPGA−board

signal clear_wrapper : s td_log i c := ’0 ’ ;
−−S igna l to c l e a r the memories . Not used in the experiment .

signal counter : unsigned (1 downto 0):="00" ;
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−− Counter i s used to c r ea t e a s low c l o c k .
signal c l k : s td_log i c := ’ 0 ’ ; −− Slow c l o c k
signal enc_counter : unsigned (13 downto 0):="00000000000000" ;
−−Set the number o f encryp t ion to run by ad j u s t i n g the b i n a r i e s .

signal round_counter : unsigned (3 downto 0) :="0000" ;
−− Used to s e t the t r i g g e r at c o r r e c t time i n t e r v a l l .

signal SEL : unsigned (3 downto 0):="0000" ;
−− A s e l e c t o r in a mu l t i p l e x e r f o r cipher_wrapper_OUT

signal enable : s td_log i c ; −− Contro l the LFSR
signal t r igger_count : unsigned (21 downto 0)
:="0000000000000000000000" ;
−− Delay time a f t e r the t r i g g e r pu l se , to g i v e the
−− o s c i l l s c o p e time to r e con f i gu r e f o r the next EM−t r ace .

−− f i l e file_RESULTS : t e x t ;
−− Used in s imu la t i on s to l o g the p l a i n t e x t s from LFSR.

begin
aes_256_top_COMPONENT: aes_256_top

port map (
sys_rst => rst ,
sys_clk => clk ,

key => key_128 ,
new_key => new_key_wrapper ,
key_done => key_done_wrapper ,
p l a i n => unsigned ( q_plain_text ) ,
busy => busy_wrapper ,
v a l i d => valid_wrapper ,
s t a r t => init_start_q ,
c l e a r => clear_wrapper ,

c iphe r => cipher_wrapper
) ;

random_text :LFSR
port map (
r e s e t => rst ,
c l k => clk ,
enable => enable ,
q => q_plain_text
) ;

c l ock_div ide r : process ( fast_clk , r s t )
begin
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i f ( r s t = ’1 ’) then

e l s i f ( fast_clk ’ event and f a s t_c lk = ’1 ’) then
counter<=counter +1;

i f ( counter = "11" ) then
c l k <= not c l k ;
counter<=(others => ’0 ’);

end i f ;

end i f ;

end process ;

s e qu en t i a l : process ( c lk , r s t )
−− v a r i a b l e p l a i n t e x t : l i n e ;
begin

i f ( r s t = ’1 ’) then
−−On r e s e t s e t the i n i t i a l s t a t e
−−f o r the FSM and other i n i t i a l v a l u e s .

s t a t e <= BUSY_AES;
plain_wrapper<=(others => ’0 ’);

SEL<="0000" ;
t r i g g e r <= ’0 ’;

−− f i l e_open ( file_RESULTS ,
−− "C:\ Users\ oskar \Desktop\PLAINTEXTS. t x t " , write_mode ) ;

e l s i f ( c lk ’ event and c l k = ’1 ’) then

i f ( s t a t e=TRIGGER_HOLD) then
−− Sta t e where a counter de lay the
−− amount o f time a f t e r a t r i g g e r pu l s e .

tr igger_count<=tr igger_count+1;

e l s i f ( valid_wrapper = ’1 ’ ) then
−− When an encryp t ion i s done the p l a i n t e x t
−−r e g i s t e r i s loaded wi th new data .

SEL<=SEL+1;
plain_wrapper<=unsigned ( q_plain_text ) ;
−− Load new p l a i n t e x t from LFSR
−− wr i t e ( p l a i n t e x t , q_plain_text ) ;
−− w r i t e l i n e ( file_RESULTS , p l a i n t e x t ) ;
enc_counter<=enc_counter+1;
−− Increment the encryp t ion counter .
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e l s i f ( next_state=SEND_DATA and
round_counter="0000" ) then

−− An opera t ion to f o r c e the t r i g g e r to occur at a
−− s p e c i f i c po in t in time .
−− Send a t r i g g e r s i g n a l to o s c i l l o s c o p e

round_counter<=round_counter+1;
t r i g g e r <= ’1 ’;

e l s i f ( next_state=SEND_DATA
and round_counter/="0000" ) then

round_counter<=round_counter+1;
t r i g g e r <= ’0 ’;

else
t r i g g e r <= ’0 ’;
end i f ;

cipher_q<=cipher_next ;
s ta te<= next_state ;

end i f ;

end process ;

key_done_LED<=key_done_wrapper ;

combinat iona l : process ( enc_counter , tr igger_count ,
cipher_wrapper , cipher_q , busy_wrapper , i n i t_s ta r t , s
tate , key_done_wrapper , valid_wrapper , key_256 )
begin
−−d e f a u l t v a l u e s
key_256<=X"000102030405060708090 a0b

0 c0d0e0f101112131415161718191a1b1c1d1e1f " ;
−− Encryption key f o r the AES−256

next_state<=s t a t e ;
cipher_next<=cipher_q ;
in it_start_q <= ’0 ’;
enable <= ’0 ’;
new_key_wrapper<= ’0 ’;
key_128<=(others => ’0 ’);

case ( s t a t e ) i s
when BUSY_AES => i f ( busy_wrapper = ’0 ’) then
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next_state<= IDLE_AES;
end i f ;

when IDLE_AES => i f ( i n i t_ s t a r t = ’1 ’) then
next_state<=HOLD_AES;
end i f ;

when HOLD_AES => i f ( i n i t_ s t a r t = ’0 ’) then
next_state<=START_AES_128;
end i f ;

when START_AES_128 =>i f ( busy_wrapper= ’0 ’)then
new_key_wrapper <=’1 ’;
key_128<=key_256 (255 downto 128 ) ;
next_state<=START_AES_256;
end i f ;

when START_AES_256 => i f ( busy_wrapper= ’1 ’) then
key_128<=key_256 (127 downto 0 ) ;
new_key_wrapper<= ’0 ’;
next_state<= SEND_HOLD_DATA;
end i f ;

when SEND_HOLD_DATA => i f ( key_done_wrapper = ’1 ’) then
in i t_start_q <= ’1 ’;
next_state<=SEND_DATA;
enable <= ’1 ’;
end i f ;

when SEND_DATA =>i f ( valid_wrapper = ’1 ’ ) then
cipher_next<=cipher_wrapper (127 downto 0 ) ;
next_state<=TRIGGER_HOLD;
enable <= ’0 ’;

end i f ;

when TRIGGER_HOLD => i f ( enc_counter="11111111111111" ) then
next_state<=IDLE_AES;

else
i f ( t r igger_count="1111111111111111111111" )
then
next_state<=SEND_HOLD_DATA;
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end i f ;
end i f ;

end case ;

end process ;

cipher_OUTPUT : process (SEL , cipher_wrapper )
begin
case SEL i s

when "0000" => cipher_wrapper_OUT <=
cipher_wrapper (127 downto 120 ) ;

when "0001" => cipher_wrapper_OUT <=
cipher_wrapper (119 downto 112 ) ;

when "0010" => cipher_wrapper_OUT <=
cipher_wrapper (111 downto 104 ) ;

when "0011" => cipher_wrapper_OUT <=
cipher_wrapper (103 downto 96 ) ;

when "0100" => cipher_wrapper_OUT <=
cipher_wrapper (95 downto 88 ) ;

when "0101" => cipher_wrapper_OUT <=
cipher_wrapper (87 downto 80 ) ;

when "0110" => cipher_wrapper_OUT <=
cipher_wrapper (79 downto 72 ) ;

when "0111" => cipher_wrapper_OUT <=
cipher_wrapper (71 downto 64 ) ;

when "1000" => cipher_wrapper_OUT <=
cipher_wrapper (63 downto 56 ) ;

when "1001" => cipher_wrapper_OUT <=
cipher_wrapper (55 downto 48 ) ;

when "1010" => cipher_wrapper_OUT <=
cipher_wrapper (47 downto 40 ) ;

when "1011" => cipher_wrapper_OUT <=
cipher_wrapper (39 downto 32 ) ;
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when "1100" => cipher_wrapper_OUT <=
cipher_wrapper (31 downto 24 ) ;

when "1101" => cipher_wrapper_OUT <=
cipher_wrapper (23 downto 16 ) ;

when "1110" => cipher_wrapper_OUT <=
cipher_wrapper (15 downto 8 ) ;

when "1111" => cipher_wrapper_OUT <=
cipher_wrapper (7 downto 0 ) ;
when others =>
end case ;
end process ;

end r t l ;
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B.2 Simplified AES

l ibrary IEEE ;
use IEEE .STD_LOGIC_1164 .ALL;
use i e e e . numeric_std . a l l ;
l ibrary std ;
use std . t e x t i o . a l l ;
use i e e e . s td_log i c_text io . a l l ;

entity top_simple_aes i s
Port ( s t a r t : in STD_LOGIC;

r e s e t : in STD_LOGIC;
fa s t_c lk : in STD_LOGIC;
sbox_out : out s td_log ic_vector (7 downto 0 ) ;
t r i g g e r : out s td_log i c
) ;

end top_simple_aes ;

architecture Behaviora l of top_simple_aes i s
type state_type i s (IDLE_AES,HOLD_AES,
SEND_HOLD_DATA,XOR_SBOX,TRIGGER_HOLD) ;

signal s ta te , next_state : state_type ;

signal enable , c l k : s td_log i c := ’0 ’ ;
signal q_plain_text : s td_log ic_vector (127 downto 0 ) ;
signal sbox_input : s td_log ic_vector (7 downto 0 ) ;
signal counter : unsigned (1 downto 0 ) ;
−−Clock d i v i d e r . Make the 100MHz a 12 ,5MHz c l o c k .

signal enc_counter : unsigned (13 downto 0):="00000000000000" ;
signal t r igger_count : unsigned (21 downto 0)
:="0000000000000000000000" ;

−− f i l e file_RESULTS : t e x t ;

component LFSR
port (

r e s e t : in s td_log i c ;
c l k : in s td_log i c ;
enable : in s td_log i c ;
q : out s td_log ic_vector (127 downto 0)

) ;
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end component ;

component sbox
port (
c l k : in s td_log i c ;
r s t : in s td_log i c ;
byte in : in s td_log ic_vector (7 downto 0 ) ;
byteout : out s td_log ic_vector (7 downto 0)
) ;

end component ;
begin

random_text :LFSR
port map (
r e s e t => re s e t ,
c l k => clk ,
enable => enable ,
q => q_plain_text
) ;

sbox_component : sbox
port map (
c l k => clk ,
r s t => re s e t ,
byte in => sbox_input ,
byteout => sbox_out

) ;

c l ock_div ide r : process ( fast_clk , r e s e t )
begin

i f ( r e s e t = ’1 ’) then
counter<="00" ;

e l s i f ( fast_clk ’ event and f a s t_c lk = ’1 ’) then
counter<=counter +1;

i f ( counter = "11" ) then
c l k <= not c l k ;
counter<=(others => ’0 ’);

end i f ;

end i f ;
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end process ;

s e qu en t i a l : process ( c lk , r e s e t )
variable p l a i n t e x t : l i n e ;
begin

i f ( r e s e t = ’1 ’) then
t r i g g e r <= ’0 ’;
s ta te<=IDLE_AES;

e l s i f ( c lk ’ event and c l k = ’1 ’) then
i f ( next_state=XOR_SBOX) then

enc_counter<=enc_counter+1;
t r i g g e r <= ’1 ’;

e l s i f ( s t a t e=TRIGGER_HOLD) then
tr igger_count<=tr igger_count+1;
t r i g g e r <= ’0 ’;

e l s i f ( s t a t e=SEND_HOLD_DATA) then

else
t r i g g e r <= ’0 ’;

end i f ;
s ta te<=next_state ;

end i f ;

end process ;

combinat iona l : process ( s ta te , s t a r t , enc_counter ,
tr igger_count , q_plain_text )

begin
next_state<=s t a t e ;
enable <=’0 ’;
sbox_input<= ( q_plain_text (7 downto 0) XOR X"03" ) ;

case ( s t a t e ) i s
when IDLE_AES => i f ( s t a r t = ’1 ’) then

next_state<=HOLD_AES;

end i f ;

when HOLD_AES => i f ( s t a r t = ’0 ’) then
next_state<=SEND_HOLD_DATA;
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end i f ;
when SEND_HOLD_DATA => enable <= ’1 ’;

next_state <=XOR_SBOX;

when XOR_SBOX =>
sbox_input<= ( q_plain_text (7 downto 0)
XOR X"03" ) ;
next_state<=TRIGGER_HOLD;

when TRIGGER_HOLD => i f ( enc_counter="11111111111111" ) then
next_state<=IDLE_AES;

e l s i f ( t r igger_count=
"1111111111111111111111" ) then
next_state<=HOLD_AES;
else

end i f ;

end case ;
end process ;

end Behaviora l ;


	Introduction
	Background
	Project aims
	Related work
	Scope
	Outline

	Theory
	Field programmable gate array
	Advanced encryption standard
	Origin of side-channel analysis
	Simple analysis
	Differential analysis

	Method
	Equipment
	Experiment setup
	FPGA setup
	Simple electromagnetic analysis
	Differential electromagnetic analysis

	Results
	Location of EM emissions on the FPGA
	Frequency spectrum of the FPGA
	Simple electromagnetic analysis
	Differential electromagnetic analysis

	Discussion
	Location of EM emissions on the FPGA
	Frequency spectrum of the FPGA
	Simple electromagnetic analysis
	Differential electromagnetic analysis
	Sources of errors

	Conclusions
	Future work

	Python
	VHDL
	AES-wrapper
	Simplified AES


