
“main” — 2018/6/15 — 21:00 — page 1 — #1

Radio based Cooperative Positioning for
Vehicle-to-Vehicle Systems in Urban Scenarios

Hao Wu
wir15hwu@student.lu.se

Department of Electrical and Information Technology
Lund University

Supervisor:
Fredrik Tufvesson

Meifang Zhu

Examiner: Fredrik Rusek

June 15, 2018

“main” — 2018/6/15 — 21:00 — page 2 — #2

c© 2018
Printed in Sweden
Tryckeriet i E-huset, Lund

“main” — 2018/6/15 — 21:00 — page i — #3

Abstract

This master thesis aims at improving vehicle positioning in high-speed move-
ment scenarios where global navigation satellite system (GNSS) does not work
well. The standard 802.11p, as one of the WiFi family members, it can sup-
port to share vehicle information between vehicle and vehicle or between vehicle
and infrastructure in a high-speed movement environment. Without the help
of GNSS, the vehicles can estimate their position by sharing position informa-
tion with other vehicles. In order to reach highly accurate positioning in urban
scenarios, non-linear filters, such as extended Kalman filter (EKF), square root of
cubature Kalman filter (SCKF) and particle filters (PF) are investigated in this the-
sis. These filter algorithms are simulated in MATLAB to evaluate the positioning
performance. Useful information from vehicles are used in the algorithms, such
as velocity, acceleration of vehicles. To obtain realistic scenarios, vehicles are sim-
ulated in different road networks in SUMO and obtain the vehicle information
from one another in GEMV2 and NS3. SUMO, GEMV2 and NS3 are the tools to
help the simulation. In the simulations, the positioning accuracy is greatly im-
proved when sharing vehicle information and utilizing the filter algorithm. This
thesis compares the advantages and disadvantages of two filter algorithms. One
is square root of cubature Kalman filter, the other is particle filter. As a conclusion
from the simulation result, the SCKF works better than the particle filter and it
improves the accuracy of positioning when the GNSS is not well received.

i

“main” — 2018/6/15 — 21:00 — page ii — #4

ii

“main” — 2018/6/15 — 21:00 — page iii — #5

Popular Science Summary

Global navigation satellite system makes vehicles to locate themselves with the
help of satellites. Each vehicles needs at least three satellites sending time in-
formation from distance between it and the satellites. With geometry tool, the
vehicles can estimate their positions on the earth approximately. However, the
satellite signals travel a long distance to the vehicle so that the strength of the sig-
nal is weak to be detected. These signals are easily blocked by objects, which in-
troduces an error in the positioning estimation. With the help of signal from base
station, it improves the positioning. However, the signal from base station is also
reflected and degenerated by the objects in the way of its propagation. Inspired
by the idea that selecting a close signal access point to navigation, the nearest
access points are picked up instead, what these points have the same function as
satellite and base station is to measure the distance from themselves to vehicles in
this thesis. These nearest access points are vehicles, since there are a lot of them
running on the road. The thesis focuses on how the vehicles can obtain good ac-
curate positions with the help of other vehicles. Vehicles supported by distance
measurement among each other is the main idea in this thesis. The WiFi standard
802.11p supports vehicle-to-vehicle communication and vehicle-to-infrastructure
communication, making vehicles share their information with others easily. Each
vehicle collects all information from the surround vehicles to improve its own
positions.

802.11p, as a member of IEEE 802.11 standard, supports sharing vehicle in-
formation in a high-speed dynamic environment. The vehicles share their own
information in two ways. The first way is to send it directly to the destination
vehicles. The second way is to send it to the infrastructure road side unit or other
wireless access points before sending to the target vehicles. The 802.11p stan-
dard provides broadcast protocol so that the distance measurement is estimated
through the arrival time of the signal. The shared information include position
estimated by GNSS, velocity, acceleration and distance measurement of each ve-
hicle. The thesis also compares the simulation results from the Kalman filter and
the particle filter as different fusing tools. Both these two filters are good at fusing
shared information to obtain good positioning.

The vehicular network simulation software simulates a real road network as
not all the tests can be applied in real road networks with the hardware limita-
tion. The software such as SUMO, GEMV2 and NS3 make vehicles run on the

iii

“main” — 2018/6/15 — 21:00 — page iv — #6

simulation road network and show all the vehicle information for further anal-
ysis. These software provide us the exact vehicle locations, velocities and corre-
sponding distances among vehicles. The vehicle information is implemented into
MATLAB to evaluate the filter algorithm performance on positioning. In order to
make the simulation more general and see how accurate the positioning, several
scenarios are created to examine the robustness of the algorithm. Several sce-
narios like distance, distance-velocity, GPS-distance, GPS-distance-velocity are
discussed in each scenario.

iv

“main” — 2018/6/15 — 21:00 — page v — #7

Contents

1 Introduction 1
1.1 Motivation . 1
1.2 Project Aims and Approach . 1
1.3 Background of Techniques for Positioning 2
1.4 Thesis Structure . 7

2 Cooperative Positioning 9
2.1 Kalman Filter Algorithm . 9
2.2 Extended Kalman Filter . 13
2.3 Square Root of Cubature Kalman Filter 13
2.4 Particle Filter . 20

3 Tools Introduction 23
3.1 Introduction to V2V Communication 23
3.2 Tools . 23
3.3 Target Tracking Model . 26

4 Data Analysis 29
4.1 Parameter Settings . 29
4.2 Simulation in Different Scenarios . 31
4.3 Simulation Results . 47

5 Conclusion 51
5.1 General Conclusion . 51
5.2 Future Work . 51

Bibliography 53

A Appendix 57
A.1 The Kalman Filter Algorithm . 57
A.2 The CKF Algorithm . 57
A.3 SCKF Algorithm . 59
A.4 The Structure of Generic Particle Filter 60
A.5 Figure . 61

v

“main” — 2018/6/15 — 21:00 — page vi — #8

vi

“main” — 2018/6/15 — 21:00 — page vii — #9

List of Figures

1.1 Triangulation Positioning . 3
1.2 Error measurement in distance in position estimation 3
1.3 Positioning Concept of DOA . 6

3.1 Vehicles meeting in a Crossroad . 24
3.2 The whole Simulation Process . 25

4.1 Open Street Map for simulation use 32
4.2 Road Condition of Crossroad . 33
4.3 Four Vehicles’ route at Crossroad . 33
4.4 Only GPS used in positioning . 33
4.5 Simulation result with Distance . 34
4.6 Positioning error for each vehicle . 34
4.7 Simulation result with GPS and Distance 35
4.8 Position error for each vehicle . 35
4.9 Simulation result with GPS, Distance and Velocity 36
4.10 Position error for each vehicle . 36
4.11 Simulation result with Distance and Velocity 37
4.12 Position error for each vehicle . 37
4.13 Particle Filter Simulation result with GPS, Distance and Velocity . . . 39
4.14 Position error for each vehicle . 39
4.15 Distribution of distance error with GPS, Velocity and Distance 40
4.16 Distribution of position Error with GPS, Velocity and Distance 40
4.17 Distribution of distance error with GPS and Velocity 41
4.18 Distribution of position Error with GPS and Velocity 41
4.19 Real route for each vehicles . 42
4.20 Real route for each vehicles . 43
4.21 Real route for each vehicles . 44
4.22 Real route for each vehicle . 45
4.23 Real route for each vehicle . 46
4.24 Distance error affected by GPS error 49

A.1 Distribution of distance error with GPS and Velocity 61
A.2 Distribution of position Error with GPS and Velocity 61

vii

“main” — 2018/6/15 — 21:00 — page viii — #10

A.3 Distribution of distance error with GPS and Velocity 61
A.4 Distribution of position Error with GPS and Velocity 61
A.5 Simulation result with GPS, Distance and Velocity 62
A.6 Position error for each vehicle . 62
A.7 Distribution of distance error with GPS, Velocity and Distance 62
A.8 Distribution of position Error with GPS, Velocity and Distance 62
A.9 Simulation result with Distance and Velocity 63
A.10 Position error for each vehicle . 63
A.11 Distribution of distance error with Velocity and Distance 63
A.12 Distribution of position Error with Velocity and Distance 63
A.13 Simulation result with GPS, Distance and Velocity 64
A.14 Position error for each vehicle . 64
A.15 Distribution of distance error with GPS, Velocity and Distance 64
A.16 Distribution of position error with GPS, Velocity and Distance 64
A.17 Simulation result with Distance and Velocity 65
A.18 Position error for each vehicle . 65
A.19 Distribution of distance error with Velocity and Distance 65
A.20 Distribution of position error with Velocity and Distance 65
A.21 Simulation result with GPS, Distance and Velocity 66
A.22 Position error for each vehicle . 66
A.23 Distribution of distance error with GPS, Velocity and Distance 66
A.24 Distribution of position error with GPS, Velocity and Distance 66
A.25 Simulation result with Distance and Velocity 67
A.26 Position error for each vehicle . 67
A.27 Distribution of distance error with Velocity and Distance 67
A.28 Distribution of position error with Velocity and Distance 67
A.29 Simulation result with GPS Distance and Velocity 68
A.30 Psition error for each vehicle . 68
A.31 Distribution of distance error with GPS, Velocity and Distance 68
A.32 Distribution of position error with GPS Velocity and Distance 68
A.33 Simulation result with Distance and Velocity 69
A.34 Position error for each vehicle . 69
A.35 Distribution of distance error with Velocity and Distance 69
A.36 Distribution of position error with Velocity and Distance 69
A.37 Simulation result with GPS, Distance and Velocity 70
A.38 Position error for each vehicle . 70
A.39 Distribution of distance error with GPS, Velocity and Distance 70
A.40 Distribution of position error with GPS, Velocity and Distance 70
A.41 Simulation result with Distance and Velocity 71
A.42 Position error for each vehicle . 71
A.43 Distribution of distance error with Velocity and Distance 71
A.44 Distribution of position error with Velocity and Distance 71

viii

“main” — 2018/6/15 — 21:00 — page ix — #11

List of Tables

4.1 Process Noise Parameter . 30
4.2 Initial Position Error Variance . 30
4.3 Sensor Noise Parameter . 31
4.4 Comparison among different Input Information 38
4.5 Distribution comparison among different Input Implementation 41
4.6 Comparison among different scenarios in distance-velocity implemen-

tation . 47
4.7 Comparison among different scenarios in GPS-distance-velocity im-

plementation . 48

ix

“main” — 2018/6/15 — 21:00 — page x — #12

x

“main” — 2018/6/15 — 21:00 — page 1 — #13

Chapter1
Introduction

1.1 Motivation

At presents, vehicle positioning does not always work satisfactory in the urban
scenario. Vehicle mostly use satellite signals to positioning, but the signals are
easily influenced or blocked completely by objects in the environment. This
causes an error in position estimation. Some vehicles can use the signal from
nearest base station to assist and improve their position. Nevertheless, the sig-
nal from base stations face the same problem as signals from satellites, which
vehicles are surrounded by tall buildings, pedestrians, running vehicles and veg-
etation in the urban scenario. To improve vehicle positioning performance, the
802.11p WiFi standard can be used with the cooperative positioning, which each
vehicle contribute their information to others to help them improve position-
ing. The standard provides the vehicle-to-vehicle communication and vehicle-
to-infrastructure communication to help vehicles sharing information with each
other. Vehicles estimate their positions by fusing information from surround-
ing vehicles, which different kind of vehicle information can restrict the vehicle
movement in their path. The cooperative positioning method will improve the
vehicle positioning even without GNSS.

1.2 Project Aims and Approach

The master thesis aims at investigating positioning in an urban scenario without
GNSS. The way is to analyze different methods and find out if the performance
is satisfactory for safety related application. To achieve the goal, the thesis sim-
ulates the use of the 802.11p standard to share position information among ve-
hicles to positioning in the software. The software helps us to simulate vehicle
positioning performance with cooperative positioning, by comparing them with
the ground true position intuitively. The data fusion tools for cooperative posi-
tioning used are the non-linear Kalman filter and particle filter. In all, there are
three approaches needed to be done in order to make a good simulation. Firstly,
the simulation road network are done with SUMO and the sharing of informa-
tion from the vehicles is preformed in the vehicular simulation software, such
as GEMV2 and NS3. Secondly, the non-linear Kalman filter and particle fiter are

1

“main” — 2018/6/15 — 21:00 — page 2 — #14

2 Introduction

implemented and simulated in MATLAB. Finally, the information from vehicle is
implemented as observation values in the filter to have a good position in differ-
ent scenarios. Several scenarios are investigated to analyze the robustness of the
filter algorithm.

1.3 Background of Techniques for Positioning
At present, vehicle use the global navigation satellite system (GNSS) to assist their
positioning. The GNSS is an abbreviation for global navigation satellite system.
It is a big family including Global positioning system (GPS) operated by United
State, GLONASS operated by Russia, Galileo operated by European Union and
BeiDou navigation system operated by China. The deviation of GNSS, taking
Global Positioning System (GPS) as an example, is roughly in meters, sometimes
higher. In the thesis, the GNSS positioning is assumed to be obtained from the
GPS sensor, while GPS still has the largest number of users. The error is caused
by inaccurate signal collection by the electronics and obstructed signal by ob-
jects being in the way of the propagating wave. These effects contribute to signal
multi-path arrival and wrong arrival time. The power of signal sometimes de-
creases rapidly then becoming undetectable in the long distance travel. All these
influences make positioning more inaccurate. Therefore, devices use coopera-
tive methods to improve their position estimates, which makes devices position-
able when GPS is not well received. The common cooperative position methods
are summarized into five typical positioning estimation schemes: triangulation,
scene analysis, proximity [2] self-measurements and data fusion method. These
methods are used both in indoor and outdoor environments. The rest of the sec-
tion describes five different kinds of cooperative methods.

1.3.1 Triangulation
Triangulation is based on the geometric properties. It estimates the measurement
point P (measuring unit) with help of the known reference units A, B, C and
the distances from point P to each reference unit. The configuration is shown
in Figure 1.1. The reference units can be the nearest base stations, WiFi access
points and other wireless access points. Instead of measuring distance to estimate
position directly, there are several ways to estimate distance based on different
radio properties.

“main” — 2018/6/15 — 21:00 — page 3 — #15

Introduction 3

P
A

B

C

R1

R3

R2

Figure 1.1: Triangulation Positioning

TOA

TOA is an abbreviation for the time of arrival measuring the time of flight (TOF)
of signal in the air. What the TOF measure is the flight time from signal leaving
reference to signal arriving at measurement point. Once the time of flight t is
known, the distance s is calculated by relation s = c × t, where c is the speed
of light. Due to an unavoidable error in measuring time t, the distance estimate
is not a deterministic value. The range of distance measurement is between two
curve lines shown in Figure 1.2, where the position estimate of point P is in the
intersection area, shown in Figure 1.2.

P
A

B

C

R1

R3

R2

Figure 1.2: Error measurement in distance in position estimation

“main” — 2018/6/15 — 21:00 — page 4 — #16

4 Introduction

The final estimate of the position can be anywhere in the intersection area. In
order to minimize the error, the cost function with least squares algorithm is ap-
plied to optimize the position. It is given by [2] :

F(P) =
N

∑
i=1

α2
i f 2

i (x), (1.1)

where α is the weight based on the reliability of the received signal, subscript i
means the information are from the ith reference unit, P = (x, y, z)T is the position
of point P represented by coordinate, f (x) is formed as [2] :

fi(x) = v× t−
√
(xi − x)2 + (yi − y)2 + (zi − z)2. (1.2)

The location of (x, y, z) is calculated by minimizing the function F(P) in (1.1).

TDOA
TDOA is an abbreviation for time difference of arrival. Instead of measuring the
absolute distance shown in section TOA, TDOA [3] method determines difference
distance between PA and PB, where PA and PB are the absolute distance from
measuring point P to reference unit A and from measuring point P to reference
unit B respectively. In each TDOA measurement, the position of P relies on the
hyperboloid. It is shown by the following equation [2] :

Di,j =
√
(xi − x)2 + (yi − y)2 + (zi − z)2 −

√
(xj − x)2 + (yj − y)2 + (zj − z)2,

(1.3)
where (xi, yi, zi) and (xj, yj, zj) are the reference units, (x, y, z) is measuring point.
The position of the target device is solved at least by measuring two arrival time
in two reference points respectively. Due to the error in time measurement and
time synchronization, point P is no longer a deterministic point but vary in an
area as the TOA. The optimization solution is also to minimize the cost function
(1.1), like TOA does. The time t in equation (1.2) is obtained by maximizing the
correlation function, represented as [2] :

Rxi ,xj(t) =
1
T

∫ T

0
xi(τ)xj(τ − t)dτ, (1.4)

The TDOA measurement method is widely used in LTE release 9 [3]. Another
method called OTDOA is used in LTE release 11 [3]. The difference between these
two methods is that TDOA method estimates the position by the base station af-
ter receiving mobile phone’s broadcast reference signal. OTDOA [3] method esti-
mates the relative location by the mobile phone itself after receiving the reference
signal from the base station.

RSS
RSS is an abbreviation for received signal strength. The basic principle of RSS is
to estimate the distance by the strength of received signal. A statistical model for

“main” — 2018/6/15 — 21:00 — page 5 — #17

Introduction 5

RSS is given by [4]:
P(d) = P0 − 10γlog10d + S, (1.5)

where P(d) is the strength of received signal based on distance d, P0 is the strength
at one-meter reference point from target device, γ is the path-loss exponent and
d is the distance between the receiving device and the reference unit. S is large-
scale fading. The more precise model in [5] introduces standard derivation of S
and γ. Both them depend on the distance. However, this method is not accurate
either. The strength of the signal is affected by many aspects including multi-path
signal arrival and non-line of sight (NLOS). Due to the error in distance measure-
ment, the solution is optimized by minimizing the cost function just like equation
(1.2), where fi is represented as [2] :

fi(x) = d−
√
(xi − x)2 + (yi − y)2 + (zi − z)2, (1.6)

RTOF
RTOF is an abbreviation for round-trip time of flight. It uses the same principle as
TOA but calculates the back-and-forth time ttotal instead of one-way time t. The
round-trip time of flight ttotal contains back and forth time that the signal travels
in the air from measuring unit to reference unit. Assuming these two units are
static, the signal spends the same time t in the air. Therefore, the relation is shown
in the following equation [2] :

ttotal = 2× t + ∆t, (1.7)

where ∆t is the processing time in the repeating unit from it is receiving the ref-
erence signal until it is sending the reference signal back to the measuring unit.
After estimating the time t, the measuring unit position is estimated by the least
square method.
Synchronization is the hardest part in the communication system. This method
avoids those issues by using a relative synchronization clock embedded inside
reference unit itself. However, the processing time in measuring unit is uncer-
tainty depending on different kinds of hardware. The hardware also causes some
unavoidable error in the time measurement.

PDOA
PDOA is an abbreviation for phase-difference-of-arrival. It assumes that the ref-
erence unit transmits two pure cosine waves at the same time with different fre-
quency f1, f2 and the same initial phase. After propagating in the medium, mea-
suring unit extracts the phases difference between these two phases ∆p shown in
following relation equation [2] :

∆p = 2π(f1 − f2)t, (1.8)

Since ∆p and two reference frequencies are known, the propagation time is solved
by the above equation. Hence the distance can be calculated. In this method,
these two cosine waves are assumed that suffering from the same environment
influence. The strength of signal does not affect the phase difference ∆p.

“main” — 2018/6/15 — 21:00 — page 6 — #18

6 Introduction

DOA

DOA [2] is an abbreviation for direction of arrival. Assuming that measuring
unit P sends a signal to two reference units A and B. Reference units A and B
are able to measure the direction of the incoming signal. Then they communicate
each other to decide where the signal comes from as Figure 1.3 is showing. After
calculating the the position in the reference point A and B, they send the position
information back to the measuring unit.

A B

P

Figure 1.3: Positioning Concept of DOA

In order to measure the angle of arrival of signal, the 2D antenna array imple-
mented in reference units A and B are the basic requirement to be capable of
detecting the angle of arriving signal.

1.3.2 Proximity

The proximity algorithm [2] estimates position relating to reference unit posi-
tion. The position of measuring unit is based on the dense grid of reference units
continuously receiving all kinds of signals. Each reference unit has its own po-
sition. The measuring unit considers the position of reference unit who receives
the strongest strength of signal, as its position. RFID [6], CELL-ID are the repre-
sentative method based on proximity. Proximity is widely used with low cost, no
dedicated hardware and synchronization requirement.

1.3.3 Scene Analysis

Scene Analysis is widely used in indoor positioning. It also called "Fingerprints
[7]". It collects some properties of often signal in every position. Then, build
a database to store these properties. The properties could be strength of signal,
electromagnetic field of signal in X, Y, Z directions. The measuring unit collects

“main” — 2018/6/15 — 21:00 — page 7 — #19

Introduction 7

the signals and compares them with the references stored in the database. The
estimate is given as position which has the most properties of signal, as the device
position.

1.3.4 Self Measurement
Some electronic devices have a self-measurement [4] system. They comprise a
small IMUs unit based on microelectromechanical systems (MEMS) for measur-
ing angular velocity and specific force. The specific force is acceleration combin-
ing the gravitational and the inertial linear acceleration. Each IMU contains three
orthogonal accelerometers and three orthogonal gyroscopes. Knowing these pa-
rameters, standalone inertial navigation (INS) is possible with error free angular
velocity and acceleration measurement. If acceleration measurement or angular
velocity measurement has a small error, the error will increase accumulatively in
a long time tracking. In practice, inertial navigation is supplementary to GPS to
get an accurate positioning. This is an alternative tool when GPS do not work
well.

1.3.5 Data Fusion
Due to the different accuracy requirements in positioning, combining different
methods to optimize the solution might be necessary. Let’s take one example,
using visual information to calibrate the positioning [8] and using inertial navi-
gation based on IMUs and Kalman filter to correct the positioning [9] are better
than only one of these methods is used. Kalman filter is adapted to many ar-
eas, such as the virtual reality, GamePad, indoor and outdoor positioning. The
next chapter focuses on the principle and derivation of Kalman filter, including
its modified Kalman filter square root of cubature Kalman filter (SCKF).

1.4 Thesis Structure
In the thesis, the content is divided into three main parts. The first part is to intro-
duce the construction of the Kalman filter algorithm and particle filter algorithm.
These two algorithms, as the main filter algorithms, will be compared in the fol-
lowing chapter. The second part is to simulate the real road network through
widely-used vehicular simulation software. All the tests are based on simulation
data instead of real data. The third part is about implementing the simulation
information into MATLAB for further analysis. This part is to understand how
accurate the positioning could be by the cooperative algorithm.

“main” — 2018/6/15 — 21:00 — page 8 — #20

8 Introduction

“main” — 2018/6/15 — 21:00 — page 9 — #21

Chapter2
Cooperative Positioning

As higher and higher accuracy of positioning requirement in outdoor, the posi-
tioning algorithm can also be used to assist with satellite positioning. One of the
typical positioning algorithms is the Kalman filter. The principle of the Kalman
filter is based on the process model and measurement model. In the statistics
point of view, most noise can be represented as Gaussian model with one mean
value me and one variance value σ2, written as N(me, σ2). Many extension are
based on the original Kalman filter. They include cubature Kalman filter (CKF)
[11], unscented Kalman filter (UKF) [12], square root Kalman filter (SCKF) [11],
extended Kalman filter (EKF) [10] and so on. In the thesis, original principle of
Kalman filter is described in detail.

2.1 Kalman Filter Algorithm

The original Kalman filter algorithm [13] consists of two steps. The first step
is to estimate the state vector in prediction step at time k and the second step
is to estimate the measurement values in update step up to time k, denoted by
z1:k. This filter problem is described to compute the probability density func-
tion p(xk|z1:k). This probability density function p(xk|z1:k) calculates prediction
distribution p(xk|z1:k−1) and then updates to the distribution p(xk|z1:k). In the
prediction step, p(xk|z1:k−1) is computed by the previous states which is updated
by p(xk−1|z1:k−1) at time (k− 1) [10] :

p(xk|z1:k−1) =
∫

p(xk|xk−1)p(xk−1|z1:k−1)dxk−1, (2.1)

where p(xk−1|z1:k−1) is known due to recursion in every time step and p(xk|xk−1)
is computed by equation (2.3). The distribution over xk is considered as a prior
estimate. After receiving the most recent measurement zk, the distribution over
xk is updated to [10] :

p(xk|z1:k) ∝ p(zk|xk)p(xk|z1:k−1). (2.2)

In general, the original Kalman filter is optimal choice but it is hard to adapt to
highly dynamic environment due to the long time consuming computation and

9

“main” — 2018/6/15 — 21:00 — page 10 — #22

10 Cooperative Positioning

large memory needed. It can not be carried out analytically, but can be imple-
mented by Monte Carlo sampling. This simplifies the process that the Kalman
filter only use the previous states.

Structure of Algorithm
The Kalman filter is the optimal choice due to the fact that the noise is assumed
to be Gaussian distribution. Even through there is an error-estimated in mea-
surement caused by noise, the Kalman filter still have capability of solving the
problem. The structure of Kalman filter are defined as the a following serial of
equations [10] :
Process Equation

Xk|k−1 = FXk−1|k−1 + Bµk + wk−1, (2.3)

Measurement Equation
Zk|k−1 = HXk|k−1 + vk. (2.4)

X..|.. is a column vector containing all states. H is a transformation matrix de-
termining the measurement transformation from the states. The method to solve
matrix F is called the observer design problem state. The content in the matrix F
is not necessary to be known. What the algorithm really want is the outputs of
matrix F (m×m). Matrix B (m× l) is to make an optional control on extra values
µk (l × 1). When B is set to be 0, it means there is no extra values to adjust the
input signal. Z is transformation matrix showing the predicted measurements,
which is compared with the real measurements collected from sensors. The pre-
dicted measurement values are obtained by equation (2.4), which transforms the
internal predicted state Xk|k−1 into measurement (observation) value Zk|k−1. In
the original Kalman filter, the descriptions about the transformation from Xk|k−1
to Zk|k−1 are linear combinations. It means that the system F and H are all linear.
As for nonlinear solutions, they are solved in the following section with extension
of Kalman filter or particle filer. The subscript in each element is to distinguish
notation in the different time steps. For example, subscript (k|k− 1) means that
the states is in k step, but the states are calculated based on the previous states
in (k − 1) time step. The random value w and v are the process noise and mea-
surement noise respectively. Assuming all the noise are modeled as the Gaussian
distribution, they are independent of each other. The noise are expressed by [10]
:

p(w) ∼ N(0, Q), (2.5)

p(v) ∼ N(0, R). (2.6)

In practice, the covariance of process noise Q and the covariance of measurements
noise R could be different when the algorithm is used in different scenarios. But
in the thesis, these two noises variance are assumed to be constant. The consis-
tent noise covariance increase the error in estimating current state vector Xk|k.
Affected by different Gaussian noise w and v, predicted states Xk|k−1 and obser-
vation values Zk|k−1 have different mean values and covariances respectively like
Xk|k−1 ∼ N(FXk−1|k−1, Q) and Zk|k−1 ∼ N(HXk|k−1, R).

“main” — 2018/6/15 — 21:00 — page 11 — #23

Cooperative Positioning 11

The main idea of the Kalman filter is to use the process equation (2.3) to predict
the internal predicted states Xk|k−1, which is based on the old a posterior state
Xk−1|k−1. Implement predicted (a priori) state to estimate Xk|k−1 and the cor-
responding predicted measurement value Zk|k−1 in equation (2.4) to update the
current state vector (a posterior state vector) Xk|k. The relationship among these
three different states is presented by the following equations [10] :

Xk|k = Xk|k−1 + Kk(Zk − Zk|k−1), (2.7)

where Zk is an observation value from sensors in electronic device and Kk repre-
sents Kalman gain in time step k. It determines how much difference is added
to the priori states to obtain more accurate states Xk|k. The principle of obtaining
Kalman gain Kk is to minimize a posterior error covariance Pk|k. It is represented
as [10] :

Pk|k = E{(Xk|k − X̂k|k)(Xk|k − X̂k|k)
T}, (2.8)

where Xk|k is an updated states obtained from equation (2.7) and X̂k|k is the av-
erage value among Xk|k. One of solutions to get Kalman gain is to minimize a
posteriori error covariance. It is provided by the Brown and Hwang mentioned
in [14]. Hence, the expression of Kalman gain is shown as [10] :

Kk = Pk|k−1HT(HPk|k−1HT + R)−1, (2.9)

where Pk|k−1 is a priori error covariance having the same description as a poste-
rior error covariance Pk|k. A priori error covariance is shown as [10] :

Pk|k−1 = E{(Xk|k−1 − X̂k|k−1)(Xk|k−1 − X̂k|k−1)
T}, (2.10)

when Kk infinitely approaches to 0, it means that the measurement from sensors
Zk are much more reliable. Otherwise, the predicted measurement values Zk|k−1
are better. The difference (Zk − Zk|k−1) is referred to measurement innovation or
residual. If the measurement innovation is 0, it means that measurements from
sensor Zk and predicted measurement Zk|k−1 are totally matched. Otherwise,
both the measurement innovation and Kalman gain would affect the state up-
date simultaneously. In conclusion, the whole structure of Kalman filter can be
derived as [10] :

The Structure of the Kalman Filter

Time Update:

1) Assume old posterior density function is known at time step k:

Xk|k−1 = FX̂k−1|k−1 + Buk

2) Error covariance
Pk|k−1 = FPk−1|k−1FT + Qk−1

“main” — 2018/6/15 — 21:00 — page 12 — #24

12 Cooperative Positioning

Measurement Update:

1) Kalman Gain
Kk = Pk|k−1HT(HPk|k−1HT + R)−1

2) Updated State
Xk|k = Xk|k−1 + Kk(Zk − HXk|k−1)

3) New Posterior covariance

Pk|k = (I − Kk H)Pk|k−1

Constant Model and Dynamic Model

The Kalman filter is modeled as a constant model with the fixed process and
fixed measurement transformations (fixed F and H). It also can be modeled as
a dynamic model combining many physical models. If a dynamic model is im-
plemented, the algorithm converge only if one of the models converge. So that
both states and system will tend to be steady once again. Although the dynamic
model is a good way to reflect complex phenomenon, the Kalman filter needs to
re-initialize the parameters when one of model fails to express [10]. The constant
model is mainly used in the thesis.

Discussion about Error Covariance P and Noise Covariance Q, R

In practice, the measurement noise covariance R is obtained from the sensor mea-
surements. Import the off-line pilot sequence to the information signal and send
it to the device along with useful signal. The destination device estimates the
noise covariance with off-line pilot. The measurement noise is generated when
the signal propagate in the medium such as copper wire, optical fiber and air. It
is also generated in such way that the signal is collected by electronic devices and
they are affected by the temperature and the inherent error estimate. Fortunately,
the most sources of noise are represented with a Gaussian model with one mean
value and one variance value in the statistics point of view. In practice, the mea-
surement noise covariance is always set a little larger. The critical parameters in
the Kalman filter is the ratio between error covariance Pk|k−1 and measurement
noise R. Both of them determine the Kalman gain Kk in equation (2.7). If Pk|k−1/R
[17] is underestimated, the Kalman filter converges very slowly. This is not good
for estimation in a highly dynamic environment. If Pk|k−1/R is overestimated,
the Kalman filter has a quick convergence but unstable state estimates due to
large measurement noise R. The measurement noise influences greatly on the
estimates. However, the process noise covariance Q is generally much harder to
estimate. Process state vector Xk|k−1 is unobserved and unknown at every time
step. One possible way is to fix the Q, P and vary R in each iteration. Q and
R can be estimated by analyzing off-line sampling in different Kalman filter and

“main” — 2018/6/15 — 21:00 — page 13 — #25

Cooperative Positioning 13

then updates the optimal values to the current Kalman filter. The measurement
noise covariance also updates in every updated circle like adaptive variational
bayesian cubature Kalman filter (VBCKF) [15] does.

2.2 Extended Kalman Filter

The Kalman filter algorithm only suits linear systems, where both transforma-
tions F and H are linear. When either one of matrices F or H is not a linear combi-
nation, the original Kalman filter causes a lot of error due to the model mismatch.
One solution is to linearize matrix F or H with Jacobian matrix of spatial deriva-
tion. The method is referred to the extended Kalman filter [10]. The core idea
in extended Kalman filter algorithm is to use the first order derivation of Tayler
theorm to approximately represent a nonlinear combination as a linear system.
The process and measurement equations are shown in a similar way [10] :

Xk|k−1 ≈ X̃k + F̊(Xk−1 − X̂k−1|k−1) + W̊ · wk−1, (2.11)

Zk ≈ Z̃k + H̊(Xk|k−1 − X̃k) + V̊ · vk, (2.12)

where X̃k and Z̃k are approximate states and corresponding approximate pre-
dicted measurements respectively. Both them are derived from the equation (2.3)
and (2.4) without noise [10] :

X̃k = FX̂k−1|k−1, (2.13)

Z̃k = HX̃k. (2.14)

Xk|k−1 and Zk are the actual states and measurement vectors. The subscript repre-
sents time step k or (k− 1). F̊, W̊, H̊ and V̊ are Jacobian Matrix of partial deriva-
tives of F, w, H, v respectively. Jacobian matrix of partial derivation does not
work well in high degrees of matrix F and H, especially in the high-dimensional
states estimates. High-dimensional state is the large size vector in state X. The
algorithm would seriously be punished by the divergence [11] because of inaccu-
racy underlying physical model, incorrect data collection and high nonlinearity.
Estimated by the partial derivations, the non-linear algorithm is transformed into
linearity finally. They are easily be implemented in linear combination steps by
steps, which is the same as the original filter algorithm.

2.3 Square Root of Cubature Kalman Filter

Instead of linearizing the system as the EKF does, SCKF (square root of cubature
Kalman filter), which is the extension of CKF (cubature Kalman filter), uses the
Bayesian filter theory in the time update and the measurement update. SCKF
assumes both process noise and measurement noise to Gaussian distribution. It

“main” — 2018/6/15 — 21:00 — page 14 — #26

14 Cooperative Positioning

employs deterministic sampling to get an approximately mean value and vari-
ance of the state vector. We rewrite the process equation (2.3) and measurement
equation (2.4) into [11] :

Xk|k−1 = f (Xk−1|k−1, uk−1) + wk−1, (2.15)

Zk|k−1 = h(Xk|k−1, uk) + vk, (2.16)

where the transformation function f and h are no longer linear. As the Bayesian
theory is applied, the probability density should be known in each time step
when doing the process and measurement update. The most important thing is a
posterior density function, which helps the algorithm to find out the optimization
state [11] :

X̂k|k =
∫

Xk|k · p(Xk|k|Dk)dXk|k, (2.17)

where p(Xk|k|Dk) is called as a posterior density and Dk is measurement value
from time step 1 until k, shown as Dk = {Zi}k

i=1. So that the equation is rewritten
as [11] :

p(Xk|k|Dk) = p(Xk|k|Dk−1, Zk) =
1

Ck
p(Xk|k−1|Dk−1)p(Zk|Xk|k−1), (2.18)

where Ck is used to normalize the posterior density into unit value, p(Xk|k−1|Dk−1)

is the predictive density function obtained by equation 2.15, p(Zk|Xk|k−1) is mea-
surement likelihood function and Zk are the values from real measurement. The
models are all assumed to be Gaussian, whose density function is represented
by the mean value and the error covariance value. Thus, the predictive density
function and the likelihood density function are shown as below separately [11] :

p(Xk|k−1|Dk−1) = N(Xk|k−1; X̂k|k−1, Pk|k−1), (2.19)

p(Zk|Xk|k−1) = N(Zk; Ẑk|k−1, Pzz,k|k−1), (2.20)

where N(a;b,c) means the probability to get the value ”a” in the Gaussian model
with mean ”b” and its noise covariance ”c”. The mean value of predicted state
Xk|k−1 and predicted measurements Zk|k−1 are calculated as [11] :

X̂k|k−1 =
∫

f (Xk−1|k−1) · N(Xk−1|k−1; X̂k−1|k−1, Pk−1|k−1)dXk−1|k−1, (2.21)

Ẑk|k−1 =
∫

h(Xk|k−1) · N(Xk|k−1; X̂k|k−1, Pk|k−1)dXk|k−1, (2.22)

where Xk−1|k−1 is the old posterior state from old posterior density p(Xk−1|k−1|Dk−1).
These equations make recursion automatically to get a more correct states. The
predicted error covariance Pk|k−1 and innovation error covariance Pzz,k|k−1 are
shown below [11] :

“main” — 2018/6/15 — 21:00 — page 15 — #27

Cooperative Positioning 15

Pk|k−1 = E[(Xk|k−1 − X̂k|k−1) (Xk|k−1 − X̂k|k−1)
T |Z1:k−1]

=
∫

Rnx
f (Xk−1|k−1) f T(Xk−1|k−1) · N(Xk−1|k−1; X̂k−1|k−1, Pk−1|k−1) dXk−1|k−1

− X̂k|k−1X̂T
k|k−1 + Qk−1,

(2.23)

Pzz,k|k−1 = E[(Zk|k−1 − Ẑk|k−1) (Zk|k−1 − Ẑk|k−1)
T |Z1:k−1]

=
∫

Rnx
h(Xk|k−1) hT(Xk|k−1) · N(Xk|k−1; X̂k|k−1, Pk|k−1) dXk|k−1

− Ẑk|k−1 ẐT
k|k−1 + Rk,

(2.24)

After receiving new measurement values Zk, the Bayesian filter computes the a
posterior density p(Xk|k|Z1:k) [11] :

p(Xk|k|Z1:k) = N(Xk|k; X̂k|k, Pk|k), (2.25)

where the posterior estimate state is [11] :

X̂k|k = X̂k|k−1 + Kk(Zk − Ẑk|k−1), (2.26)

the posterior error covariance is [11] :

Pk|k = Pk|k−1 − KkPzz,k|k−1KT
k , (2.27)

and the Kalman gain is [11] :

Kk = Pxz,k|k−1P−1
zz,k|k−1, (2.28)

where the Pxz,k|k−1 is the cross covariance [11] :

Pxz,k|k−1 = E[(Xk|k−1 − X̂k|k−1)(Zk|k−1 − Ẑk|k−1)
T |Z1:k−1]

=
∫

Rnx
Xk|k−1hT(Xk|k−1) · N(Xk|k−1; X̂k|k−1, Pk|k−1)dXk|k−1

− X̂k|k−1ẐT
k|k−1. (2.29)

So far, we derive the cubature Kalman filter from the linear Kalman filter. From
the construction of the equation, the main core to solve the CKF algorithm is to
solve the function non− linear trans f ormaion × Gaussian distribution [11] :

I(f) =
∫

f (x) · N(x; µ, Σ)dx, (2.30)

where Gaussian distribution N(x; µ, Σ) is:

N(x; µ, Σ) =
1√

2πΣ
e−

1
2
(x−µ)2

Σ , (2.31)

“main” — 2018/6/15 — 21:00 — page 16 — #28

16 Cooperative Positioning

Letting x =
√

2Σy + µ, makes y = x−µ√
2Σ

and dx =
√

2Σdy. So that the function is
[11] : ∫

f (x) · N(x; µ, Σ)dx

=
∫

f (x)
1√

2πΣ
e−

1
2
(x−µ)2

Σ dx

=
1
√

π
n

∫
f (
√

2Σy + µ)e−yTydy

=
1
√

π
n

∫
f (
√

2Σx)e−xT xdx

(2.32)

Therefore, the question is shrunk to solve the function
∫

f (x)e−xT xdx. The arti-
cle written by Simon Haykin [11] solves this with third-degree spherical-radial
method. The result shows like [11] :∫

f (x)w(x)dx ≈
m

∑
i=1

wi f (xi), (2.33)

where weight function is w(x) = e−xT x. To avoid complicated computation from
numerous points as inputs in the algorithm, invariant theory [16] employs the
symmetric points into f (x) and corresponding equally weight function w(x).
Constructing symmetric cubature points simplifies the approximation function
(2.33) from infinity points down to 2n points. According to invariant theory, n
represents the total dimension of states vector.
First, the function above at the left side are transformed into combination of ra-
dius r and direction vector ~y as follows: x = r~y with ~yT~y = 1 leading to xTx = r2

with r from 0 to ∞. Thus, the function above is rewritten as [11] :

∫
f (x)e−xT xdx =

∫ ∞

0

∫
Un

f (r~y)rn−1e−r2
dσ(~y)dr. (2.34)

The equation (2.34) could be divided into two parts:

I(f) =
∫ ∞

0
S(r)rn−1e−r2

dr, (2.35)

S(r) =
∫

Un
f (r~y)dσ(~y). (2.36)

Then employ Generalized Gaussian Quadrature rule to solve 2.35 and spherical
cubature rule to solve (2.36). The spherical rule leads to a result that the cubature
points locate at the intersection of the unit sphere and their axes. The cubature
points are expressed in a mathematical point of view [11] :

[1] =

1 0 · · · 0 −1 0 · · · 0

0 1 · · ·
... 0 −1 · · ·

...
...

...
. . .

...
...

...
. . .

...
0 · · · · · · 1 0 · · · · · · −1

 . (2.37)

“main” — 2018/6/15 — 21:00 — page 17 — #29

Cooperative Positioning 17

There are two symmetric cubature points around the original points for each di-
mension of state vector. According to the generalized Gaussian Quadrature with
three degrees rule, there is only one cubature point locating at

√
2n/2. There-

fore, the whole algorithm is based on total full symmetric cubature points. The
weight for each point is 1/(2n) [11]. Integrating these two solutions of equation
(2.35) and (2.36), third-degree spherical radial rule is extended to solve function
in (2.30). Take Gaussian distribution N(x; 0, I) for example, it is shown as [11] :

IN(f) =
∫

Rn
f (x)N(x; 0, I)dx ≈

m

∑
i=1

wi f (yi), (2.38)

where

yi =

√
2n
2
[1]i

wi =
1

2n
,

(2.39)

where i=1,2,· · · ,2n, and [1]i is the ith column in matrix [1]. When extending the
result to a normal case, Gaussian distribution N(x; x̂, P) is shown like [11] :

IN(f) =
∫

Rn
f (x)N(x; x̂, P)dx ≈

m

∑
i=1

wi f (yi), (2.40)

where

yi =

√
2n
2

√
P[1]i + x̂

wi =
1

2n
.

(2.41)

The error covariance matrix P satisfies P =
√

P
√

P
T

. At the end, implement
the final expression (2.40) into every Kalman filter algorithm with non − linear
f unction × Gaussian Distribution. The complete CKF algorithm is shown in the
Appendix.
Briefly, the idea of CKF is to create symmetric cubature points by adding a per-
mutating and changing the sign to the original point to build the generator [1].
Then, insert every cubature point into the process and the measuring algorithm
respectively. Average all of them to get a more accurate state. In this thesis, SCKF
algorithm is the main tool to increase accuracy of positioning, which uses the
least-squares method to compute the Kalman gain and uses triangularizations
for covariance updates. The CKF algorithm is superior to EKF algorithm. The
reason is that the EKF is only suitable for the low dimension state vector and
low-linearity system. SCKF algorithm is superior to CKF due to these phases.
Firstly, SCKF can maintain the error covariance matrix Pk|k symmetry and posi-
tive definiteness in every update cycle. If not, the algorithm will be crash imme-
diately and then wastes time to re-do the algorithm until it succeeds. In the view,
SCKF is much stable and much more anti-inference than CKF. Secondly, due to

“main” — 2018/6/15 — 21:00 — page 18 — #30

18 Cooperative Positioning

the finite word-length digital computation, information is often lost. It influences
on the covariance properties and the lost information ruins the whole algorithm.
These computations include matrix square-root, matrix inversion and division
between two matrices in the covariance update. SCKF is designed to avoid these
kinds of computations [11], increasing stability by using the least-squares method
to against matrix inversion, using matrix triangular factorizations to against the
square root of the matrix and using forward/back substitution to against the di-
vision between two metrics. The structure SCKF is showing in the following:

The SCKF Algorithm [11]

Process update:

1) Cubature points

Xi,k−1|k−1 =

√
2n
2

Sk−1|k−1[1]i + X̂k−1|k−1,

, where i=1,2,· · · ,2n.
2) Propagated cubautre points

X∗i,k|k−1 = f (Xi,k−1|k−1)

3) Predicted state

X̂k|k−1 =
1

2n

2n

∑
i=1

X∗i,k|k−1

4) Square-root factor of Predicted error covariance

Sk|k−1 = Tria([X∗k|k−1 SQ,k−1]),

where

Qk−1 = SQ,k−1ST
Q,k−1

and weighted, centered matrix:

X∗k|k−1 =
1√
2n

[X∗1,k|k−1 − X̂k|k−1 X∗2,k|k−1 − X̂k|k−1 · · ·X∗m,k|k−1 − X̂k|k−1],

and Tria is general triangularization algorithm (such as QR decomposition), S=Tria[A].
In order to get the lower triangular matrix using QR decomposition. Let the up-
per triangular matrix R be the QR decomposition of AT , so that the lower trian-
gular matrix would be S = RT .

“main” — 2018/6/15 — 21:00 — page 19 — #31

Cooperative Positioning 19

Measurement Update:
1) Cubature points

Xi,k|k−1 =

√
2n
2

Sk|k−1[1]i + X̂k|k−1 (2.42)

2) Propagated Cubature points

Zi,k|k−1 = h(Xi,k|k−1) (2.43)

3) Predicted Measurement

Ẑk|k−1 =
1

2n

2n

∑
i=1

Zi,k|k−1 (2.44)

4) Square-root of the innovation covariance

Szz,k|k−1 = Tria([Zk|k−1 SR,k]), (2.45)

where SR,k is the square-root of Rk that Rk = SR,kST
R,k. And weighted, centered

matrix is:

Zk|k−1 =
1√
2n

[X1,k|k−1 − X̂k|k−1 X2,k|k−1 − X̂k|k−1 · · ·Xm,k|k−1 − X̂k|k−1] (2.46)

5) The cross-covariance matrix

Pxz,k|k−1 = Xk|k−1ZT
k|k−1, (2.47)

where the weighted, centered matrix

Xk|k−1 =
1√
2n

[X1,k|k−1 − X̂k|k−1 X2,k|k−1 − X̂k|k−1 · · ·Xm,k|k−1 − X̂k|k−1] (2.48)

6) Kalman gain

Kk = (Pxz,k|k−1/ST
zz,k|k−1)/Szz,k|k−1 (2.49)

7) Updated State
X̂k|k = X̂k|k−1 + Kk(Zk − Ẑk|k−1) (2.50)

8) Square-root factor of the new posteriori error covariance

Sk|k = Tria([Xk|k−1 − KkZk|k−1 KkSR,k]) (2.51)

“main” — 2018/6/15 — 21:00 — page 20 — #32

20 Cooperative Positioning

2.4 Particle Filter
As discussed in the original Kalman filter section, the original Kalman filtering is
implemented with the method of Monte Carlo sampling. Sequential importance
sampling (SIS) is the principle method. The Monte Carlo method is also used in
particle filter [18]. Instead of considering the marginal full posterior distribution
p(xk|z1:k

) in equation (2.2), SIS needs to consider of all the previous states up to

time k, p(x0:k|z1:k). They are associated weighted set of samples (xi
0:k, wi

k)
N
i=1,

where N is the number of total particles at time step k. The states xi
0:k are a set

of support points up to time k with its weight wi
k. In each time step, weight is

normalized to be one that ∑i wi
k = 1. Therefore, the posterior density at k is

approximated as [18] :

p(x0:k|z1:k) ≈
N

∑
i=1

wi
kδ(x0:k − xi

0:k). (2.52)

The definition of weight wi
k uses importance sampling method. Assuming that

the particles state xi
0:k is drawn from an importance density function q(x0:k|z1:k),

the weight in equation (2.52) is expressed as [18] :

wi
k ∝

p(xi
0:k|z1:k)

q(xi
0:k|z1:k)

. (2.53)

In the sequential situation, the existing particle distribution p(x0:k−1|z1:k−1) adds
other new sets of particles to form new probability density distribution p(x0:k|z1:k)
in every recursion. Therefore, the importance density q(.) is factorized as [18] :

q(x0:k|z1:k) = q(xk|x0:k−1, z1:k)q(x0:k−1|z1:k−1). (2.54)

The new set of particles xi
0:k ∼ q(x0:k−1|z1:k) are derived from existing samples

xi
0:k−1 ∼ q(xk|x0:k−1|z1:k−1) by adding new state xi

k ∼ q(xk|x0:k−1, z1:k). For the
target distribution p(x0:k|z1:k), it use Bayes’ rule to factorize them as [18] :

p(x0:k|z1:k) =
p(zk|x0:k, z1:k−1)p(x0:k|z1:k−1)

p(zk|z1:k−1)
, (2.55)

where p(x0:k|z1:k−1) is written as:

p(x0:k|z1:k−1) = p(xk|x0:k−1, z1:k−1)p(x0:k−1|z1:k−1). (2.56)

Due to the recursion up to time step k, there are two equations: p(xk|x0:k−1, z1:k−1) =
p(xk|xk−1) and p(zk|x0:k, z1:k−1) = p(zk|xk). The equation (2.55) is factorized into
[18] :

p(x0:k|z1:k) ∝ p(zk|xk)p(xk|xk−1)p(x0:k−1|z1:k−1). (2.57)

Then, substituting equation (2.54) and (2.57) into (2.53), the weight updating
equation is represented as [18] :

wi
k ∝ wi

k−1
p(zk|xi

k)p(xi
k|x

i
k−1)

q(xi
k|x

i
0:k−1, z1:k)

. (2.58)

“main” — 2018/6/15 — 21:00 — page 21 — #33

Cooperative Positioning 21

Normally, only filtered p(xk|zk) is required at each step so that one can ignore the
path xi

0:k−1 and history observation z1:k−1. Then the weight is updated to be [18]
:

wi
k ∝ wi

k−1
p(zk|xi

k)p(xi
k|x

i
k−1)

q(xi
k|x

i
k−1, zk)

. (2.59)

2.4.1 Generic Particle Filter
There is one problem in the particle filter algorithm after a few iterations. It is
called degeneracy problem, which one but all particles are going to lose their own
weights. The degeneracy problem is typically measured by the effective sample
size Ne f f [18] :

Ne f f =
1

∑N
i=1(w

i
k)

2
, (2.60)

where wi
k is the normalized weight in equation (2.53). Small Ne f f indicates serious

degeneracy. When the degeneracy happens, there are two methods to solve it in
some degree. The first one is to pick up a good importance density, such as local
linearization techniques [19] and unscented transforms [20]. It is good to choose
importance density as following equation to simplify the implementation [18] :

q(xk|xi
k−1, zk) = p(xk|xi

k−1), (2.61)

so that the weight in equation (2.53) is simplified as [18] :

wi
k ∝ wi

k−1 p(zk|xi
k). (2.62)

The other way is to resample the particles when the effective particle size Ne f f
drops below a certain threshold. What the resampling step do is to eliminate the
particles with small weights and keep the particles with large weights. Gener-
ate the new set of particles to keep the total particles size constant. The weight
of the new sets of particles are reset to wi

k = 1/N due to new particles in inde-
pendently and identically distribution. Thus, resampling effectively manages the
degeneration problem by getting rid of particles with small weight. At the same
time, some particles with high weight are chosen several times and particles with
small weight are totally discarded. It will cause some new practical problems,
such as sample impoverishment problem. The problem decreases diversity of
the particles. In this thesis, systematic resampling [21] is applied due to its easy
implementation and uncomplicated operation [18] .

A =
∞

∑
i=0

βαi =
β

1− α
|α| < 1

“main” — 2018/6/15 — 21:00 — page 22 — #34

22 Cooperative Positioning

“main” — 2018/6/15 — 21:00 — page 23 — #35

Chapter3
Simulation Software

3.1 Introduction to V2V Communication

Vehicle-to-Vehicle communication is introduced in the WiFi 802.11p standard,
which uses Dedicated Short-Range Communications (DSRC) protocol to assist
vehicle communication operating in the licensed ITS high frequency band. Ve-
hicles share information with others for convenient driving, intelligent naviga-
tion and avoidance of accident. The advantage of DSRC protocol is that there is
no prepare any phases such as building link between each other before starting
sharing information. The sharing begins when the vehicle is at each other’s range.
However, the V2V communication is affected by shadow fading and hidden ter-
minal issue if there is crowed vehicles on the road network. The signal could
not arrive at the destination vehicle. One possible solution is Vehicle-Roadside-
Vehicle Relay Network [22]. The information would arrive at the destination ve-
hicle before it passing through roadside access points. Another possible way is
to use detectable vehicles as a jump point then send the information to the des-
tination vehicle. Otherwise, use the broadcast protocol to collect the as much
information as possible from different detectable vehicles [23] and then use these
limiting information to improve the position. In the thesis, the broadcast proto-
col is preferred with its convenient distance measurement and easy operation on
their structures. With these external information, each vehicle collects all infor-
mation of other vehicles to calibrate its own position time by time. The great at-
traction is that the vehicle can estimate time of flight (TOF) of signal using 802.11p
broadcast protocol to obtain distances among vehicles. Use them subsequently to
restrict the vehicle position in a correct way.

3.2 Tools

The vehicular simulation tools help us establish a representative true environ-
ment. These simulation tools include SUMO [24], GEMV2 and NS3 [26]. SUMO
is used to extract the open-street-map and subsequently make vehicles run on
their own predefined path in the open-street-map. The vehicles are assumed run-
ning in a typical environment in the urban scenario, where there are many trees,
lakes and pedestrians around vehicles. GEMV2 determines the paths of signal

23

“main” — 2018/6/15 — 21:00 — page 24 — #36

24 Tools Introduction

transmitting and decides how much signal power can be reached at the destina-
tion vehicles. NS3 [26] simulates the real network package communication that
the packages are suffered by degeneration, multi-path components and so on.

3.2.1 SUMO
SUMO is an abbreviation for simulation of urban mobility. SUMO can define the
paths of virtual vehicles in the simulated road network manually. It can also set
vehicles to wait when they meet each other at the traffic light in the crossing. The
Figure 3.1 shows the an urban scenario how vehicles meet at crossing.

Figure 3.1: Vehicles meeting in a Crossroad

The colorful triangles represent various vehicles. SUMO performs very well in
simulating how the vehicles run in a given road network. The road network can
also be simulated by the SUMO, which can establish a complicated surroundings
including pedestrians, vehicles and so on. The structure of road network is used
in the GEMV2 to calculate the signal power reaching at destination vehicles. In
order to simulate running vehicles in the predefined path, powerful tool SUMO
can set the types of vehicles, speed of vehicles, lanes in multiple-lanes streets,
right-of-way rules and traffic lights in road network. SUMO also provides a fast
OpenGL graphical user interface for users to review the open-street-map [25].
The open-street-map is saved into ".osm" file containing all road networks and
environmental information.

3.2.2 GEMV2

GEMV2 is an abbreviation for geometry-based, efficient propagation model for
vehicle-to-vehicle and vehicle-to-infrastructure communication. GEMV2 uses out-

“main” — 2018/6/15 — 21:00 — page 25 — #37

Tools Introduction 25

lines of vehicles, buildings and other objects in the scenarios to calculate how
much signal can be reached at the vehicles. Most propagation factors are taken
into account in GEMV2, such as line-of-sight (LOS), non-line-of-sight (NLOS),
path-loss, small-scale fading, large-scale fading and so on. Small-scale fading of
the signal is calculated based on the number and size of the surrounding objects
around the vehicle. The large-scale fading is affected by the object that standing
in the way of wave propagation. GEMV2 can detect the power of signal at desti-
nation vehicles in the urban, sub-urban, highway and the open space scenarios.
If the power of signal is under the threshold, the signal is considered as fading
away. Otherwise they are considered that the vehicles have succeeded in estab-
lishing the link between each other. One of the drawbacks of the GEVM2 is that
it does not support the 3D construction environment. GEMV2 still works in the
thesis, since our algorithm works in 2D as well.

3.2.3 NS3
NS3 is a discrete-event network simulator to provide a solution to simulate the
V2V communication. It combines different device modules flexibly in complete
networks, such as LTE, WIFI and GPS. NS3 is also used in the non-Internet net-
work analysis. NS3 sets up the link among vehicles and shares the NS3-generated
packets with each other. Through the link, the vehicles estimate the distance
among the target vehicles.

3.2.4 Structure in Simulation
The structure of the simulation with these software is shown in Figure 3.2.

Figure 3.2: The whole Simulation Process

Firstly, extract one scenario in open-street-map and save them in the file. Sec-
ondly, set the route of each vehicle in the road network in the predefined open-
street-map. Thirdly, set the sumo configuration including road network and trips
of vehicle. They are all saved in the XML file. The XML will be both provided

“main” — 2018/6/15 — 21:00 — page 26 — #38

26 Tools Introduction

to GEMV2 and NS2. Fourthly, with scenario parameters and the sumo configu-
ration XML file, GEMV2 does the simulation on the radio channel. Finally, NS3
will simulate the entire network to collect the distance measurement, GPS, veloc-
ity and acceleration of each vehicle.

3.3 Target Tracking Model

In the thesis, each vehicle collects all the information from neighboring vehicles.
These information include positioning from GPS estimate, velocity and accelera-
tion from each vehicle. Here, we are going to introduce the global system model
in this thesis. The global system is that each vehicles improve its positioning
not only by using the information from its own data sensors, but also collecting
and using the information from surrounding vehicles. Thanks to IEEE 802.11p
standard introduces the V2X communication protocol in broadcast protocol, the
vehicles can share the information in a high-speed dynamic environment and
measure the distance among around vehicles from estimating the arrival time of
signal. Distance measurement restricts the estimation of position helping vehicle
with better positioning. As the global system is used, all vehicles is assumed to
have the same state vector represented as:

Xi =
[
xi vxi yi vyi axi ayi

]
, (3.1)

where xi and yi are real positions, vxi and vyi are velocity in x and y direction
respectively, axi and ayi represent acceleration, and the subscription i represents
the ith vehicle. In the global system, each vehicle should take other vehicle states
into consideration so that the states vector looks like:

X =
[
X1 Xi · · · XN

]
. (3.2)

The principle of global system is to use all states from different vehicles instead
of only their own state. Each vehicle predicts not only its own position but also
other vehicles’ positions using the same transform function shown in equation
(3.3). The prediction is based on the previous posterior states and the process
noise. Therefore, the predicted process equation in equation (2.3) is written as:

X1
...

XN

k

=

F1 Z · · · Z

Z Fi · · ·
...

...
...

. . .
...

Z · · · · · · FN

X1

...
XN

k−1

+ wk−1, (3.3)

where subscript i represents different vehicle, N represents the number of ve-
hicles in all scenarios, k is the time step, Z is zero matrix with size 6 × 6, Fi is

“main” — 2018/6/15 — 21:00 — page 27 — #39

Tools Introduction 27

transition function which is shown in equation (3.4).

Fi =

1 T 0 0 T2/2 0
0 1 0 0 T 0
0 0 1 T 0 T2/2
0 0 0 1 0 T
0 0 0 0 1 0
0 0 0 0 0 1

 , (3.4)

where T is the time step according to the 802.11p standard. It is set to be 100 ms.
wk−1 is the process noise with a singular covariance Q :

Q = diag
(
[φ1 φi · · · φN]

)
. (3.5)

For each φi, they are assumed to be the same:

φi = diag
(
[σ2

xi
σ2

vxi
σ2

yi
σ2

vyi
σ2

axi
σ2

ayi
]
)

, (3.6)

where σ2
xi

, σ2
vxi

, σ2
yi

, σ2
vyi

, σ2
axi

, σ2
ayi

represent noise variance of x position, x velocity,
y position, y velocity, x acceleration and y acceleration respectively in ith vehicle.

The measurement values mostly depend on what kind of sensors are used.
Some of them are non-linear measurements such as distance, the angle of arrival.
Others are linear measurements such as GPS, velocity and acceleration. There-
fore, equation (2.4) is written in a most common way:

Zk = h(Xk) + vk, (3.7)

where h(.) represents any kind of transition function. It is described in details in
the following chapter based on different sensors implementation.

The initial states in equation (3.2) are based on the first time measurement
from the sensors like GPS sensor, velocity sensor and the acceleration sensor. The
associated covariance is given by:

P0/0 = diag
(
[K1 Ki · · · KN]

)
, (3.8)

where Ki looks like:

Ki =
(

σ2
0xi

σ2
0vxi

σ2
0yi

σ2
0vyi

σ2
0axi

σ2
0ayi

)
, (3.9)

where σ2
0xi

, σ2
0vxi

, σ2
0yi

, σ2
0vyi

, σ2
0axi

, σ2
0ayi

are the error variance of x position, x ve-
locity, y position, y velocity, x acceleration and y acceleration respectively in ith
vehicle at very beginning time step.

“main” — 2018/6/15 — 21:00 — page 28 — #40

28 Tools Introduction

“main” — 2018/6/15 — 21:00 — page 29 — #41

Chapter4
Data Analysis

4.1 Parameter Settings
In the filter algorithm, there are four parameters that need to be initialized. They
are the process noise, the measurement noise, the initial error covariance and
the initial state vector. The process noise Q tries to stabilize the filter against
filter becoming overconfident in estimation. Low Q in equation (3.5) means that
the modeling error can be neglected. High Q means the opposite. The process
noise setting is the most difficult part for designing the Kalman filter algorithm,
which is unknown for all system considering it as a black box. In the different
scenarios, the process noise settings are different. For example, if the vehicle has
a very bad initial positions, high Q helps the vehicle to track itself back very
quickly. It has a large variation around its real path after it tracking back, while
low Q takes much more time to track the vehicle back to its own path but it
keeps fairly smooth with small variation after tracking back. One possible way
to estimate the process noise is to collect measurement information from sensors.
Then, implement these measurement values into the algorithm. While keeping
the measurement noise fixed, try to input many possible process noises to find
out the better performance of positions. A more-likely process noise is found in
specific scenario after many trials. The algorithm could be overconfident when
the vehicle runs in the highway scenario due to its smooth driving, while the
algorithm maybe lack confidence when the vehicle runs in the urban scenario
because the vehicle’s movement is much more unpredictable. In the thesis, a high
process noise Q is applied since the urban scenario is discussed. The vehicles
meet at the cross and do some reaction such as running straightly or making
turns correspondingly. The parameters in φi in (3.6) are shown in the Table 4.1,
assuming all vehicles suffering the same predicted noise covariance.

29

“main” — 2018/6/15 — 21:00 — page 30 — #42

30 Data Analysis

Standard Derivation of Q Value (unit)
σxi 0.2 m
σvxi 1.4 m/(0.1s)
σyi 0.2 m
σvyi

1.4 m/(0.1s)
σaxi 1 m/(0.1s)2

σayi
1 m/(0.1s)2

Table 4.1: Process Noise Parameter

The cooperative algorithm SCKF is influenced by the initial position and its
corresponding covariance. If the initial position has a small error but with large
covariance or if the initial position has a large error but with small error variance,
both of them push the vehicles in the erroneous and bad prediction on their initial
positions. A wrong prediction of initial positions makes algorithm take much
more time to converge back to real path. The values of error covariance of initial
states P0|0 in (3.9) are shown in Table: 4.2.

Standard Derivation of Initial States Error
Covariance of P0|0

Value (unit)

σ0xi 7 m
σ0vxi 0.8 m/(0.1s)
σ0yi

7 m2

σ0vyi
0.8 m/(0.1s)

σ0axi 0.5 m/(0.1s)2

σ0ayi
0.5 m/(0.1s)2

Table 4.2: Initial Position Error Variance

These values adjust the initial state X0 by the algorithm automatically. It is critical
to choose values in initial states error covariance. For the initial positions value,
it is good to choose twice than variance of error of GPS sensor in initialization
timestep. This makes cooperative algorithm more flexible to fetch an accurate
relative initial positions. It is easier to converge vehicles to the right path even in
a bad initial position estimate. In Table: 4.3, it reveals the error variances in all
kind of sensors.

“main” — 2018/6/15 — 21:00 — page 31 — #43

Data Analysis 31

Sensors standard
derivation

Value (unit)

GPS 30 m
Distance 1 m
Velocity 0.3 m/(0.1s)

Table 4.3: Sensor Noise Parameter

The standard derivation of GPS error in the urban scenario is set to be 30 m ac-
cording to a survey in [27]. The distance error comes from the inaccuracy syn-
chronization of broadcast protocol and multi-path signals arrival. Assuming it
has an accurate time synchronization and an accurate high-speed hardware cal-
culation, the distance measurement error can shrink down to one meter. In order
to decrease the payload of network, the acceleration sensor does not use in the
thesis.

Error Estimation
There are two methods to represent the algorithm performance. One is the root-
mean-square-error (RMSE) method, which is called position error in the thesis.
All position errors in x and y directions are taken into account by the following
equation:

Eposition =

√√√√ 1
N

N

∑
i=1

(Ai − Ri)2, (4.1)

where Ai represents the position estimates from algorithm including both x and
y direction in each vehicle, Ri is the same as Ai but represents real position and
N is the total number of collecting data.

The other way is the distance error. It is more in perceptual intuition, showing
in the following equation:

Edistance =
1
N

N

∑
i=1

√
(Xi − Rxi)2 + (Yi − Ryi)2, (4.2)

where X is position estimated by global system in X coordinate and Y is the Y
coordinate. Rx is the real position in X direction and Ry is in Y direction. Calcu-
late the distance error in each vehicle in every timestamp and then average them
to get a more accurate value. However, there is only a small difference between
these two methods.

4.2 Simulation in Different Scenarios
In the thesis, several scenarios are generated to verify the robustness of coopera-
tive algorithm in the global system. The global system is that each vehicle collects

“main” — 2018/6/15 — 21:00 — page 32 — #44

32 Data Analysis

all the information from around vehicles and then utilizes all these information
for position estimates.

Scenario Selection
Figure 4.1 is obtained from open street map randomly to reveal the real road net-
work. Utilize SUMO to place some sceneries around the road in the open-street-
map, which includes trees, lakes, buildings and pedestrians. They are shown
as the color region displayed in Figure 4.1. All the simulations and the analysis
are based on theses road network in crossroad scenario, T-crossroad scenario and
highway scenario.

Figure 4.1: Open Street Map for simulation use

4.2.1 Scenario 0: Four vehicles meet at the crossing
Crossroad is the most typical traffic in the urban scenario along with the traffic
light. Therefore, it is meaningful to make a research on this scenario. The cross-
road scenario is grabbed in open-street-map in Figure 4.1 and afterward is shown
in Figure 4.2. Make four vehicles run straightly and meet in an intersection as
shown in Figure 4.3.

“main” — 2018/6/15 — 21:00 — page 33 — #45

Data Analysis 33

Figure 4.2: Road Condition of
Crossroad

440 460 480 500 520 540 560 580 600 620

X position/m

500

520

540

560

580

600

620

640

660

Y
 p

o
s
it
io

n
/m

Car A

Car B

Car C

Car D

Initial Point A

Initial Point B

Initial Point C

Initial Point D

Figure 4.3: Four Vehicles’ route at
Crossroad

In the Figure 4.3, the stars are the initial points of each vehicle and dots are vehi-
cles’ real running-path for the simulation. As Table: 4.3 mentioned, GPS error in
the urban is approximately equaling to 30 meters, which is a large and unaccept-
able error for positioning shown in Figure 4.4. The dots cover mostly the whole
maps that even the route of each vehicle can not be recognized.

350 400 450 500 550 600 650 700

450

500

550

600

650

700

750
Real-Route vs GPS signal

A-real

B-real

C-real

D-real

A-GPS

B-GPS

C-GPS

D-GPS

Figure 4.4: Only GPS used in positioning

The solid lines represent the real route for each vehicle and dots represent posi-
tions collecting from GPS sensor. Different vehicles are distinguished by differ-
ent colors. From the figure, the dots are distributed around the real route. Some
of them are far away from their real positions. Many predecessors utilize the
Kalman filter to improve the accuracy of GPS positioning, but rarely use cooper-
ative method especially using distance as input measurement value. This idea is
also the spotlight in the thesis. Considering distance as the input measurement
value, radio device based on IEEE 802.11p needs to be placed in each vehicle

“main” — 2018/6/15 — 21:00 — page 34 — #46

34 Data Analysis

to estimate distance and collect vehicles’ states among the surrounding vehicles.
Other vehicles positions information are also required to estimate the distance
through distance equation:

Distance =
√
(XI − XN)2 + (YI −YN)2), (4.3)

where XI and YI are the X and Y positions of the local vehicle respectively, XN
and YN are the X and Y coordinate of the remote vehicle respectively. In order to
compare the principle result in the same level, it is necessary to keep the random
seed same to generate noise in MATLAB. Here, we compare four different ways
that improve the performance of positions.

Position with Distance Implementation

Since V2X system is published in the standard IEEE 802.11p, the vehicles in dis-
tance measurement has much more improvement than the method using multi-
path component to measure distance. The accuracy of distance measurement im-
proves down to one meter. Therefore, the distance measurement will be widely
used in the cooperative positioning method. DSRC module is a distance mea-
surement sensor fulfilling the standard IEEE 802.11p requirement. It broadcasts
information at a fixed time and calculates the distance by the arrival time of sig-
nal. The distance calculation is proportional to the signal flight time in the air.
While with a bad GPS estimate, using distance measurement is a possible method
to accurate the position estimates. In the Figure 4.5, it shows the simulation re-
sult from cooperative algorithm SCKF with only distance measurement value as
input. The initial positions and variance of initial positions are assumed to be
known by the algorithm. For example, they can obtained by GPS sensor in the
previous timestamp.

450 500 550 600 650 700

X position

500

520

540

560

580

600

620

640

660

680

Y
 p

o
s
it
io

n

Position only based on Distance

A-simu

B-simu

C-simu

D-simu

start point A

start point B

start point C

start point D

A-real

B-real

C-real

D-real

Figure 4.5: Simulation result with
Distance

0 50 100 150

Time step / 0.1s

0

10

20

30

40

50

E
rr

o
r

/
m

Error in car A

x

y

0 50 100 150

Time step / 0.1s

0

20

40

60

80

E
rr

o
r

/
m

Error in car B

x

y

0 50 100 150

Time step / 0.1s

0

10

20

30

40

50

60

E
rr

o
r

/
m

Error in car C

x

y

0 50 100 150

Time step / 0.1s

0

10

20

30

40

50

60

E
rr

o
r

/
m

Error in car D

x

y

Figure 4.6: Positioning error for
each vehicle

The stars represent the initial points of each vehicle, dots are the real route that
the vehicles run in simulation, solid lines are the vehicle route estimated from

“main” — 2018/6/15 — 21:00 — page 35 — #47

Data Analysis 35

cooperative positioning algorithm. In the Figure 4.5, vehicles are on their own
running path with small variation before all vehicles meeting at the crossing. In
this period, it is good to see that the vehicles do not fluctuate a lot and run the
same direction as they should be. This is fairly acceptable before encountering at
the cross. The cooperative algorithm no longer works after intersecting since it
only can estimate the positions of each vehicle, which they could lead to vehicle
running in the wrong direction. When the vehicles are off-track from real path,
they faces the challenge about tracking themselves back to the real path as Figure
4.6 shown. It indicates that how much errors of each vehicle are accumulated
from time to time both in X and Y directions. In order to track the vehicles back,
there are two methods that can be used to improve the prediction of positioning.
One is to use GPS data from sensor directly instead of the position estimates from
algorithm at the certain time, so that the error accumulation by the algorithm
estimates can be eliminated through redoing the algorithm. This method is not
very suitable because GPS sensor is not going to be well-performed in the urban
scenario. The other way is to use GPS sensor data as measurement value in SCKF
to adjust the positions. The second method would be discussed on the following
section.

Position with GPS-Distance Implementation

In order to relocate after off-track, GPS is introduced to assist to accurate vehi-
cles positions. In the WiFi 802.11p standard, the vehicles in the global system
share information with each other. The information includes GPS positions and
distance measurement. Each vehicle not only implements itself information but
also implements other vehicle information into the SCKF algorithm to estimate
the positions. The simulation results of GPS-distance implementation is shown
in the Figure 4.7. Both measurement errors from sensors are listed in Table 4.3.

440 460 480 500 520 540 560 580 600 620

X position

500

520

540

560

580

600

620

640

660

680

Y
 p

o
s
it
io

n

Position based on GPS and Distance

A-simu

B-simu

C-simu

D-simu

start point A

start point B

start point C

start point D

A-real

B-real

C-real

D-real

Figure 4.7: Simulation result with
GPS and Distance

0 50 100 150

Time step / 0.1s

0

5

10

15

E
rr

o
r

/
m

Error in car A

x

y

0 50 100 150

Time step / 0.1s

0

5

10

15

E
rr

o
r

/
m

Error in car B

x

y

0 50 100 150

Time step / 0.1s

0

5

10

15

20

E
rr

o
r

/
m

Error in car C

x

y

0 50 100 150

Time step / 0.1s

0

5

10

15

20

E
rr

o
r

/
m

Error in car D

x

y

Figure 4.8: Position error for each
vehicle

In Figure 4.7, the algorithm indeed solves the problem about the estimates of ve-
hicle positioning in the wrong direction when coming to a crossing. However,

“main” — 2018/6/15 — 21:00 — page 36 — #48

36 Data Analysis

GPS sensor data is unstable with a huge error that it affects the positioning esti-
mate from SCKF algorithm seriously. Compared with the Figure 4.7, Figure 4.5
shows that the position estimates of the vehicle is quite smooth before meeting
each other at the crossing. The reason for these two differences is that the GPS
sensor is in the bad performance. With GPS-distance implementation, the simu-
lated positions are fluctuating along their own real positions and very unstable
with distance error 7.4 meters. This model is not acceptable for our determination
even though it improves a little bit better performance compared to demonstra-
tion only GPS measurement used.

Position with GPS-Distance-Velocity Implementation

As the discussion above, the model with GPS-distance implementation provides
better position estimates than the model only with GPS. But the performance of
positioning are influenced by the error variance of GPS sensor. In this section,
velocity information is implemented to restrict the position estimates. Since the
error variance of velocity is smaller than variance error from GPS sensor, the filter
algorithm have much more confidence on the velocity measurements instead of
GPS. In the SCKF algorithm, high variance of measurement noise means a less
confidence on it. Hence, all sensors data from GPS, velocity and distance are
packeted to send to other vehicles through DSRC module. Implement all these
information into cooperative positioning algorithm to check the positioning per-
formance. The simulation outcomes are shown in Figure 4.9 and 4.10.

440 460 480 500 520 540 560 580 600 620

X position

500

520

540

560

580

600

620

640

660

680

Y
 p

o
s
it
io

n

Position based on GPS Distance and Velocity

A-simu

B-simu

C-simu

D-simu

start point A

start point B

start point C

start point D

A-real

B-real

C-real

D-real

Figure 4.9: Simulation result with
GPS, Distance and Velocity

0 50 100 150

Time step / 0.1s

0

0.5

1

1.5

2

2.5

3

E
rr

o
r

/
m

Error in car A

x

y

0 50 100 150

Time step / 0.1s

0

1

2

3

4

E
rr

o
r

/
m

Error in car B

x

y

0 50 100 150

Time step / 0.1s

0

0.5

1

1.5

2

2.5

E
rr

o
r

/
m

Error in car C

x

y

0 50 100 150

Time step / 0.1s

0

1

2

3

4

E
rr

o
r

/
m

Error in car D

x

y

Figure 4.10: Position error for
each vehicle

In Figure 4.9, it seems that the GPS-distance-velocity implementation has solved
the error estimate boosting problem when they come to crossing as Figure 4.5
shown. It also solves the problem that the error position estimate has a large
variance all the time as Figure 4.7 shown. Even having the poor initial positions,
the SCKF algorithm can still track the vehicle back to its real path quickly. The ve-
hicles move exactly along their own path with only 1.2 meters distance error. The
drawback of this implementation is that so many information should be shared

“main” — 2018/6/15 — 21:00 — page 37 — #49

Data Analysis 37

each other through the limited bandwidth. The payload is more than heavy when
an increasing vehicles join in the global system.

Positioning with Distance-Velocity (without GPS) Implementation
The goal of thesis is to solve the problem of positioning in the urban scenario,
where dense high buildings and crowed pedestrians perhaps block the GPS sig-
nal. When GPS is not well received, we also test the algorithm without GPS,
barely using velocity and distance measurements as observation values. The fol-
lowing Figures 4.11 and 4.12 show the simulation outcomes from cooperative
algorithm. The initial positions of vehicle are assumed to be known by the GPS
in the previous time stamp.

440 460 480 500 520 540 560 580 600 620

X position

500

520

540

560

580

600

620

640

660

680

Y
 p

o
s
it
io

n

Position based on Distance and Velocity (without GPS)

A-simu

B-simu

C-simu

D-simu

start point A

start point B

start point C

start point D

A-real

B-real

C-real

D-real

Figure 4.11: Simulation result
with Distance and Velocity

0 50 100 150

Time step / 0.1s

0

1

2

3

4

E
rr

o
r

/
m

Error in car A

x

y

0 50 100 150

Time step / 0.1s

0

1

2

3

4

E
rr

o
r

/
m

Error in car B

x

y

0 50 100 150

Time step / 0.1s

0

0.5

1

1.5

2

2.5

3

E
rr

o
r

/
m

Error in car C

x

y

0 50 100 150

Time step / 0.1s

0

1

2

3

4

E
rr

o
r

/
m

Error in car D

x

y

Figure 4.12: Position error for
each vehicle

In Figure 4.11, the initial positions of the vehicles derivate from the real positions
slightly. The movement of vehicles are very smooth along with the real path,
since the error from velocity sensor and distance sensor are small. The distance
error in this implementation is approximate 2.1 meters, which is suboptimal to
GPS-distance-velocity implementation. There is still a problem. If all the vehicles
have poor initial positions, the outcomes simulation suffer from the tracking-back
problem unavoidable. Both velocity error and distance error are accumulated.
There is no way to relocate the vehicles back to its real path. Even they are only a
little bit derivation from the real path. Nevertheless, the outcome of positioning
from SCKF algorithm with distance-velocity implementation is also acceptable
even the GPS signal is totally blocked.

In conclusion, Table 4.4 shows the all simulation result in each implementation
with single random seed in MATLAB to generate noise. The input information
shows what kind of data is used. All the GPS error as input information is about
30 m.

“main” — 2018/6/15 — 21:00 — page 38 — #50

38 Data Analysis

Implementation used in
SCKF Algorithm

Distance error (m)

GPS 12.6
GPS-Distance 7.4

GPS-Distance-Velocity 1.2
Distance-Velocity 2.1

Table 4.4: Comparison among different Input Information

Through Table 4.4, any combinations with additional sensors information as ob-
servation values will improve the performance than the implementation only
GPS used. In comparison, there is no doubt that the GPS-distance-velocity im-
plementation has the best performance than others. It is also acceptable that
input all measurement values without GPS value into SCKF to obtain the po-
sitions, whose error is only slightly smaller than the best implementation. How-
ever, these analysis are based on the fixed seed to generate the noise in MAT-
LAB. It can not represent the noise in reality very well. So that the models with
distance-velocity implementation and GPS-distance-velocity implementation are
discussed in statistic point of view in different scenarios.

4.2.2 Particle Filter
The particle filter is widely used in indoor positioning with its good performance
in tracking devices back to the real positions when they are in the wrong places.
It means that the error does not accumulate. In this section, particle filter algo-
rithm is introduced to test whether it has a better performance or not in high-
speed movement positioning. The particle filter is good at handling the wrong
initial position estimates because they produce many state particles giving a high
weight on the valuable state particles and a low weight on less valuable state par-
ticles. The particle filter extracts good state particles and abandons bad particles
with resampling method. After resampling, the valuable particles create more
particles based on their parent states and subtract more valuable state particles
from them. In order to compare particle filter algorithm with SCKF algorithm, all
the parameters are the same in both algorithms, shown in Table 4.1, 4.2 and 4.3.
All theses information from vehicles are implemented in the particle algorithm.
Due to the high dimensional states, each states create more than 500 state parti-
cles to assure accurate positioning. As 24-dimensional states in the global system
model in the thesis, particle filter would iterate 12000 times to get the present
positions in every timestep. The results are shown in Figure 4.13 and 4.14.

“main” — 2018/6/15 — 21:00 — page 39 — #51

Data Analysis 39

440 460 480 500 520 540 560 580 600 620

X position

500

520

540

560

580

600

620

640

660

680
Y

 p
o
s
it
io

n
Position based on GPS Distance and Velocity

A-simu

B-simu

C-simu

D-simu

start point A

start point B

start point C

start point D

A-real

B-real

C-real

D-real

Figure 4.13: Particle Filter Sim-
ulation result with GPS, Dis-
tance and Velocity

0 50 100 150

Time step / 0.1ms

0

1

2

3

4

5

E
rr

o
r

/
m

Error in car A

x

y

0 50 100 150

Time step / 0.1ms

0

2

4

6

8

E
rr

o
r

/
m

Error in car B

x

y

0 50 100 150

Time step / 0.1ms

0

1

2

3

4

5

E
rr

o
r

/
m

Error in car C

x

y

0 50 100 150

Time step / 0.1ms

0

2

4

6

E
rr

o
r

/
m

Error in car D

x

y

Figure 4.14: Position error
for each vehicle

The distance error is around 3.4 meters, which is worse than the distance error
in SCKF algorithm simulation with same GPS-distance-velocity implementation.
This could happen when the number of new state particles are not enough to
trace vehicle back in high-dimensional states. However, the resampling method
is always applied while the present states create more particles. The chosen par-
ticles will be given to the same weight. This is the same principle as SCKF algo-
rithm does, who selects particles intersecting with the axis and applies the same
weights to them. The difference between them is that SCKF algorithm picks up
the domain particles, while particle filter algorithm picks up both domain par-
ticles and less domain particles at the same time giving them the same weights.
This is the reason why particle filter works worse than SCKF algorithm in high-
dimensional stats situation. Meanwhile, a large number of particles take more
time in calculation, which does not suit for the vehicle-to-vehicle communication
limiting 0.1 s to finish the process. Therefore, in the rest sections, deep research
about SCKF is made instead of analyzing both algorithms.

4.2.3 Statistic Analysis

The analysis so far are based on the single random seed to generate the noise
in MATLAB. This section introduces a better way to analyze them in the statis-
tic point of view. The algorithm simulation in MATLAB utilizes different seeds
to simulate complicated noise for analysis of distribution. From Table 4.4, the
third and the fourth models have better performance than the first and the sec-
ond models. The third and the fourth models will be discussed in statistics point
of view in next section.
As for analyzing the distribution, one mathematic method called Nakagami dis-
tribution [28] is introduced to analyze the statistic distribution. Nakagami distri-
bution is used to fit the phenomenon in telecommunication area, which the signal
transmits between Non-LOS and LOS. Non-LOS is matched by Rayleigh distribu-
tion and LOS is matched by Rician distribution. Nakagami distribution is one of
the members in the probability family with shape parameter m [29] and control-

“main” — 2018/6/15 — 21:00 — page 40 — #52

40 Data Analysis

ling spread ω parameter. Shape parameter is neither location parameter shifting
the entire distribution left or right, nor scale parameter compressing or stretching
entire distribution. Nakagami distribution changes the shape of distribution in
other ways.

Positioning with GPS-Distance-Velocity Implementation
Instead of generating the noise with one random seed in MATLAB, the random
seeds are varied from 1 to 100 with intercepting one to generate different Gaus-
sian noise and keeping other parameters the same. In GPS-distance-velocity im-
plementation, the distribution of distance error and position error are shown in
Figure 4.15 and 4.16 respectively.

Distance Error Distribution based on GPS Distance and Velocity

0 2 4 6 8 10 12 14

Distance Error/m

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

P
D

F

Figure 4.15: Distribution of dis-
tance error with GPS, Veloc-
ity and Distance

Position Error Distribution based on GPS Distance and Velocity

-10 -5 0 5 10

Positioning Error/m

0

0.05

0.1

0.15

0.2

0.25

0.3

P
D

F

Figure 4.16: Distribution of posi-
tion Error with GPS, Velocity
and Distance

In Figure 4.15, the distance error is modeled as Nakagami distribution. The mean
value is 2.3 m and the variance value is about 1.7 m2. Form Figure 4.16 shown,
positions distribution is more likely to be the Gaussian distribution because both
process noise and measurement noise in SCKF algorithm are assumed to be the
Gaussian distribution. As for every parameter in the states such as GPS, velocity
and acceleration, they have almost the same characteristics. The reason why the
distribution not exactly fit with the Gaussian distribution is that distance mea-
surement value is implemented into SCKF algorithm as well. The distance mea-
surement introduces the non-linear factor to the cooperative positioning. How-
ever, the position error distribution is the Gaussian distribution with zero mean
and 1.8 m2 variance. This is a quite good result among all the simulation dis-
cussed above.

Positioning with Distance-Velocity Implementation (without GPS)
As for the situation that GPS is blocked due to very high buildings and crowded
pedestrians, GPS data is dropped from the sensor unfortunately. Only velocity

“main” — 2018/6/15 — 21:00 — page 41 — #53

Data Analysis 41

and distance measurement can be obtained from their sensors. The simulation of
distance error and position error are shown in Figure 4.17 and 4.18 respectively
with velocity-distance implementation.

Distance Error Distribution based on Distance and Velocity

0 2 4 6 8 10 12 14

Distance Error/m

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

P
D

F

Figure 4.17: Distribution of dis-
tance error with GPS and
Velocity

Position Error Distribution based on Distance and Velocity

-10 -5 0 5 10

Positioning Error/m

0

0.05

0.1

0.15

0.2

0.25

0.3

P
D

F

Figure 4.18: Distribution of posi-
tion Error with GPS and Ve-
locity

Even without GPS, the cooperation positioning algorithm still has a good per-
formance. The mean value of distance error distribution is 3.4 m with its error
variance 3.4 m2. The distribution of position error is assumed to be the Gaussian
distribution with zero mean and 2.7 m2 error variance. The result is still a little
bit worse than the implementation with GPS-distance-velocity measurement.
In conclusion, the Table 4.5 shows the entire simulation results based on different
implementations. These results include mean distance error, variance error of
distance and variance error of position. The mean position error is about zero so
it is neglected in the chart. The error from raw GPS sensor is set to be 30 m.

Implementation Mean
distance
error(m)

Variance
distance
error(m2)

Variance
positioning
error(m2)

GPS-Distance 6.6 13.6 5.3
GPS-Distance-

Velocity
2.3 1.7 1.8

Distance-
Velocity

3.4 3.4 2.7

GPS-Velocity 4.0 4.9 3.2

Table 4.5: Distribution comparison among different Input Implemen-
tation

“main” — 2018/6/15 — 21:00 — page 42 — #54

42 Data Analysis

Compared with mean distance error in the Table 4.4, Table 4.5 shows the worse
simulation results. But the results in Table 4.5 are more reliable because the noise
in our real environment is quite random to predict. The GPS-Distance and GPS-
velocity implementations are also simulated in the same way showing the results
in Figure A.1, A.2 and Figure A.3, A.4 respectively. The variances of distance
error in Table 4.5 shows how the distance error varies around its mean distance
error. A smaller variance implies more stable performance in positions. As for
table shown above, the full implementation has the smallest mean distance error
and the smallest variance of both distance error and position error. In the simu-
lation, even without GPS sensor, the implementation with distance-velocity still
has a good performance. This result is what we expect in our entire simulation.
It shows that distance cooperation measurements helps vehicles to locate them-
selves, especially the GPS running out. All these simulations are only operated in
four vehicles meeting in a crossing. In order to verify that distance measurement
still helps in different road networks, several other scenarios are simulated in a
statistical way to see their behaviors.

4.2.4 Simulation in more Scenarios

Scenario 1: Four vehicles intersect at a crossing while three ve-
hicles go straightly and one vehicle makes a turn
The simulation of four vehicles are going straightly when intersecting in a cross-
ing. The algorithm need to be test when some of the vehicles make the turn and
some of them still go straightly. In Figure 4.19, it indicates that three vehicles go
ahead and one vehicle makes a turn at the cross.

440 460 480 500 520 540 560 580 600 620

X position/m

500

520

540

560

580

600

620

640

660

Y
 p

o
s
it
io

n
/m

Real Route

A-real

B-real

C-real

D-real

start point A

start point B

start point C

start point D

Figure 4.19: Real route for each vehicles

“main” — 2018/6/15 — 21:00 — page 43 — #55

Data Analysis 43

The dots represent the actual route for each vehicle, one color for one vehicle.
Every interval between two adjacent dots is 100ms in each step. Stars are the
initial positions of each vehicle. The red line and green line are overlapping. The
vehicle B turns right when it comes to cross and follows after vehicle C until
the end of simulation. Keeping all parameters the same as above is important
both in this scenario and in following scenarios simulation. In the thesis, only
two best implementations depending on the given analysis result are simulated.
One is SCKF with GPS-distance-velocity implementation, the other is SCKF with
distance-velocity implementation. The simulation results form SCKF with GPS-
distance-velocity implementation are shown in appendix. Figure A.5 and A.6 are
the simulation results, which utilize a single random seed to generate noise in
MATLAB. Figure A.7 and A.8 are in terms of distribution point of view. In this
scenario, mean distance error estimate form the Nakagami model is about 2.3
m with variance 1.9 m2 and mean position error is about zero but with variance
1.9 m2. As for distance-velocity implementation, the simulation analysis plots
in Figure A.9 and A.10 in a fix random seed. The Figure A.11 and A.12 are in
distribution point of view. The mean distance error is approximately 3.5 m and
its variance is about 3.3 m2. The mean position error is zero but with the variance
of position error to be 2.8 m2.

Scenario 2: Four vehicles intersect at the crossing while two ve-
hicles go straightly and two vehicles make turn
In this scenario, four vehicles are simulated to run in different ways. Two vehicles
go straightly and two other vehicles make turn when they are at the cross. The
entire road network is shown in Figure 4.20, where the dots are the real route for
each vehicle, stars are the initial positions of each vehicle.

450 500 550 600

X position/m

500

520

540

560

580

600

620

640

660

Y
 p

o
s
it
io

n
/m

Real Route

A-real

B-real

C-real

D-real

start point A

start point B

start point C

start point D

Figure 4.20: Real route for each vehicles

“main” — 2018/6/15 — 21:00 — page 44 — #56

44 Data Analysis

The simulation results of SCKF algorithm with full implementations are sepa-
rately shown in Figure A.13 and A.14 with single seed for noise generation in
MATLAB. The Figure A.15, A.16 are in terms of statistic distribution. In statistics
point of view, the mean distance error is roughly 2.2 m and its variance is about
1.6 m2. The mean position error is zero with its variance error of position 1.8
m2. When only velocity and distance measurements are implemented into SCKF
algorithm, Figure A.17 and Figure A.18 are plotted to show the analysis results
with single seed for noise simulation. Figure A.19 and A.20 are shown in distri-
bution point of view. According to the implementation in distribution analysis,
the mean distance error is approximate 3.4 m and its variance is about 3.0 m2. The
mean position error is zero with 2.7 m2 variance of position error.

Scenario 3: Four vehicles intersect in a crossing while one vehi-
cle goes straightly and three vehicles make turn
Based on Scenario 2, one more vehicle makes a turn when they are meeting at a
crossing. The scenario is shown in Figure 4.21.

480 500 520 540 560 580 600

X position/m

520

540

560

580

600

620

640

660

680

700

720

Y
 p

o
s
it
io

n
/m

Real Route

A-real

B-real

C-real

D-real

start point A

start point B

start point C

start point D

Figure 4.21: Real route for each vehicles

“main” — 2018/6/15 — 21:00 — page 45 — #57

Data Analysis 45

The dots represent the real path for each vehicle and stars represent the initial
positions. Do the same analysis as above, getting some results shown in the fol-
lowing figures. With GPS-distance-velocity implementation, position estimates
from SCKF algorithm are shown in Figure A.21 and A.22. When analyzing the
demo in a statistic point of view, the results are shown in Figure A.23 and A.24
representing the distance error and position error separately. The mean distance
error is approximate 2.2 m and variance of distance error is about 1.6 m2. The
mean position error is zero with 1.8 m2 variance of position error. When only
velocity and distance are implemented into SCKF algorithm, the simulation re-
sults with the single seed for noise generation are shown in Figure A.25 and A.26.
They display how the vehicles position varies around the real route and what the
position error it is for each vehicle. The distance error is 3.5 m. In statistic point
of view, the analysis in different seeds are shown in Figure A.27 and A.28. The
distance error is 3.4 m distance error with variance 3.0 m2 and the mean position
error is approximately equal to zero with variance 2.7 m2.

Scenario 4: Four vehicles intersect in a crossing while all vehicles
make turns
At the end, the scenario are simulated that all the vehicles make turns when they
come across at crossroad. The scenario is shown in Figure 4.22.

480 500 520 540 560 580 600

X position/m

520

540

560

580

600

620

640

660

680

700

720

Y
 p

o
s
it
io

n
/m

Real Route

A-real

B-real

C-real

D-real

start point A

start point B

start point C

start point D

Figure 4.22: Real route for each vehicle

“main” — 2018/6/15 — 21:00 — page 46 — #58

46 Data Analysis

When using the single random seed to generate noise in simulation, the results
are plotted in the following figures. Figure A.29 and A.30 display the analysis
results when implementing GPS velocity and distance measurement into algo-
rithm. The distance error in this implementation is about 2.0 meters. The Figure
A.33 and A.34 show the simulation outcome with distance-velocity implemen-
tation in the algorithm. The distance error is about 1.9 meters. When simulat-
ing the algorithm in different seeds to generate noise, the distribution results are
shown in Figure A.31 and A.32 with fully information as observation values. The
mean distance error is approximate 2.2 m and variance of distance error is about
1.6 m2. The mean position error is zero with 1.8 m2 variance. The Figure A.35
and A.36 display the distribution analysis using distance-velocity implementa-
tion. The mean distance error is 3.3 m with variance 2.9 m2 and the mean position
error approximately equals to zero with variance 2.6 m2.

Scenario 5: Four vehicles intersect in T-cross
Having discussed all the scenarios at the crossroad, one more scenario is simu-
lated in the T-cross shown in Figure 4.23 showing how the four vehicles move in
T-cross.

360 380 400 420 440 460 480 500 520 540

X position/m

480

500

520

540

560

580

600

Y
 p

o
s
it
io

n
/m

Real Route

A-real

B-real

C-real

D-real

start point A

start point B

start point C

start point D

Figure 4.23: Real route for each vehicle

“main” — 2018/6/15 — 21:00 — page 47 — #59

Data Analysis 47

The dots and stars are the same description as above discussion. The simulation
results of SCKF algorithm with fully implementations are separately shown in
Figure A.37 and A.38 with single random seed in noise generation in MATLAB.
Figure A.39 and A.40 are the simulation results in terms of distribution with GPS-
distance-velocity implementation. In statistics point of view, the mean distance
error is approximately 2.4 m and variance of distance error is about 1.7 m2. The
mean position error is zero with 1.9 m2 variance error of position. When SCKF al-
gorithm uses distance-velocity implementation, Figure A.41 and A.42 are plotted
to show the analysis results in the single seed for noise generation in MATLAB.
Figure A.43 and A.44 show the distribution analysis, which the mean distance
error is approximate 3.6 m and its variance is about 3.4 m2. The mean position
error is zero with 2.8 m2 variance of position error.

4.3 Simulation Results
Collecting all the simulation results from above, Table 4.6 and 4.7 show the mean
distance error, variance of distance error and variance of position error both in
GPS-distance-velocity implementation and distance-velocity implementation. Both
tables neglect mean position error because they are almost close to zero in the
Gaussian noise assumption model. Scenario 0 is that four vehicles all go straightly
when they come to cross. Scenarios from 1 to 5 are described as the titles in our
discussion above.

Scenario Mean
distance
error(m)

Variance
distance
error(m2)

Variance
position
error(m2)

0 3.4 3.4 2.7
1 3.5 3.3 2.8
2 3.4 3.0 2.7
3 3.4 3.0 2.7
4 3.2 2.9 2.6
5 3.6 3.4 2.8

Average 3.4 3.2 2.7

Table 4.6: Comparison among different scenarios in distance-
velocity implementation

“main” — 2018/6/15 — 21:00 — page 48 — #60

48 Data Analysis

Scenario Mean
distance
error(m)

Variance
distance
error(m2)

Variance
position
error(m2)

0 2.3 1.7 1.8
1 2.3 1.9 1.9
2 2.2 1.6 1.8
3 2.2 1.6 1.8
4 2.2 1.6 1.8
5 2.4 1.7 1.9

Average 2.3 1.7 1.8

Table 4.7: Comparison among different scenarios in GPS-distance-
velocity implementation

In Table 4.6, the average of mean distance error is about 3.4 m with 3.4 m2 er-
ror variance among six different scenarios when SCKF algorithm uses distance-
velocity implementation. While in Table 4.7, the average of mean distance error is
about 2.3 m with GPS-distance-velocity implementation. From the simulation re-
sults, the distance-velocity implementation is about only one meter less accurate
than GPS-distance-velocity implementation. In other words, as normal GPS error
with 30 meters assumed in the thesis, the implementation with GPS measurement
barely improves positioning. But it increases the payload in wireless network
heavily. Every vehicle share one more GPS measurements to other vehicles. If
the GPS error increases, the distance error in GPS-distance-velocity implementa-
tion increase accordingly. Figure 4.24 shows the analysis result that keeping all
parameters same as Table 4.1, 4.2 and 4.3 shown, but varies the standard deriva-
tion of GPS measurement noise from 30 to 2000 meters. The simulation result is
shown:

“main” — 2018/6/15 — 21:00 — page 49 — #61

Data Analysis 49

50 100 150 200 250 300 350 400 450 500 550 600

GPS error /m

0

0.5

1

1.5

2

2.5

3

3.5

M
e
a
n
 d

is
ta

n
c
e
 e

rr
o
r

/m

Mean distance error affted by GPS error

GPS-velocity-distance

Velocity-distance

Figure 4.24: Distance error affected by GPS error

X axis is the standard derivation of GPS error and the Y axis is the distance er-
ror from SCKF algorithm. The straight line in red and curve line in black rep-
resent the simulation result of the cooperative algorithm with distance-velocity
implementation and GPS-distance-velocity implementation respectively. Since
distance-velocity implementation does not suffer from GPS error, the distance
error is a constant no matter how the GPS error changes. In the GPS-distance-
velocity implementation, the error of simulation result increases along with the
increment of GPS error. From Figure. 4.24, the black line tends to close to the red
line as GPS error increasing. It means that the difference of distance error between
these two implementations will be eliminated. It also means that GPS-distance-
velocity implementation is only one meter more accurate than distance-velocity
implementation at most time in the urban scenario.

In conclusion, utilizing the cooperative algorithm SCKF can estimate position
of vehicles in the urban scenario without GPS measurements. The SCKF algo-
rithm with cooperative measurement works quite good in most urban scenario,
because the mean distance error and the mean position error slightly variate from
their average values as shown in Table 4.6 and 4.7. The algorithm will not di-
verge even the vehicles run on the different ways. The position estimates with
distance-velocity implementation performed at most one meter worse than GPS-
distance-velocity implementation. To positioning, this implementation improves
a lot than only GPS measure.

“main” — 2018/6/15 — 21:00 — page 50 — #62

50 Data Analysis

“main” — 2018/6/15 — 21:00 — page 51 — #63

Chapter5
Conclusion

5.1 General Conclusion

In conclusion, the cooperative algorithm SCKF with vehicle information is a good
tool to help vehicle to estimate the position in the urban scenario. As WiFi tech-
nology being developed in the high-speed movement area, this method is an eco-
nomical solution when GNSS is not working properly. The Kalman filter im-
proves positioning by using the cooperative positioning with the distance mea-
surement, which is implemented in the Kalman filter. In the good positioning
estimates from GPS sensor, the Kalman filter with cooperative positioning will
get a much better positioning with less position error and less position error co-
variance than the GPS sensor. When the vehicle share more information with
others, the positioning of vehicles in this global system will getting much better.
From the thesis, the way to positioning without GNSS in the urban scenario is
achievable with our cooperative positioning method. As more and more kinds of
vehicle information sharing with each other, the cooperative positioning method
will help vehicle get better positions even without using GNSS.

5.2 Future Work

A real road network is so complicated that the Kalman filter to update vehicles
positions seems not good enough in the single model. Based on the complicated
road network scenarios, the multi-models combining many physical models can
be picked up by vehicles automatically. For example, the single model with small
process noise is chosen to estimate position in the high way scenario when the
vehicle moves in relative steady distance and velocity. While in the urban road
network, vehicles suffer from many types of road network, so that multi-models
can be picked up to against the unstable road network.
As for the measurement noise implementation, a fixed value is hard to represent
the real measurement process precisely. In this thesis, the measurement noise
is set to a little bit larger than the real measurement noise variance to against
the complex and highly dynamic road networks. In the future work, these error
variance of sensors can be estimated by adding a pilot to their noise measurement
off-line and the measurement noise is updated to the Kalman algorithm from

51

“main” — 2018/6/15 — 21:00 — page 52 — #64

52 Conclusion

time to time. With a very good estimate in the measurement noise, the algorithm
performs a better way to estimate position.
To improve the positioning, one possible way is to improve the accuracy of dis-
tance sensors and velocity sensors. It stabilizes the algorithm and gets a better
performance in positioning. The other way is to combine more sensor measure-
ments such as acceleration sensors to restrict the algorithm and to limit the esti-
mates of position.
All the position estimates are based on simulation software. The algorithm should
be tested in the real system. The vehicle should use the measurements obtained
from vehicle sensors and uses 802.11p to share the information with others.

“main” — 2018/6/15 — 21:00 — page 53 — #65

Bibliography

[1] D.Dardari, E.Falletti, and M.Luise,"Satellite and Terrestrial Radio Position-
ing Techniques-A Signal Processing Perspective". London, U.K.:Elsevier, 2011,
p.464.

[2] Hui Liu, Houshang Darabi, Pat Banerjee, and Jing Liu "Survey of Wireless
Indoor Positioning Techniques and Systems", published in IEEE Transactions on
Systems, Man and Cybernetics, Part C (Applications and Reviews) p.1067 -
1080, Nov. 2007.

[3] Sven Fischer "Observed Time Difference Of Arrival (OTDOA) Positioning in
3GPP LTE" in 2014 Qualcomm Technologies, INC, June,6 2014.

[4] Davide Dardari, Pau Closas, and Petar M.Djuric "Indoor Tracking: Theory,
Methods, and Technologies" published in IEEE Transactions on Vehicular Tech-
nology, Volume:64, Issue:4, April 2015.

[5] J.M.Castro-Arvizu, P.Closas and J.A.Fernandez-Rubio, "Cramer– Rao lower
bound for breakpoint distance estimation in a path-loss model", published in
Proc.IEEE ICC Workshop Adv.Netw. Localization Navigat, Sydney, Aus-
tralia, Jun. 2014.

[6] M.Bolic, M.Rostamian and P.M.Djuric, “Proximity detection with RFID: A step
toward the Internet of things”, pubished in IEEE Pervasive Computing, Vol-
ume:14, Issue:2, Apr.-June 2015.

[7] J.Chung, “Indoor location sensing using geo-magnetism,” in Proc.9th Int. Conf.
Mobile Syst., Appl., Services., ACM, 2011, pp. 141–154.

[8] Ihn-Sik Weon, Soon-Geul Lee, Sang-Chan Moon "Precise localization of a ve-
hicle within a driving lane by combining the vehicle trajectory with vision infor-
mation", published in Control, Automation and Systems (ICCAS), 2016 16th
International Conference. 16-19 Oct. 2016.

[9] Jianmin Duan, Zhixue Song, Changren Wang, Dan Liu "Inertial Navigation
Algorithm Based on Modified Kalman Filter and Wavelet Technique for Intelligent
Vehicle", published in Intelligent Human-Machine Systems and Cybernetics
(IHMSC), 2016 8th International Conference, 27-28 Aug. 2016.

53

“main” — 2018/6/15 — 21:00 — page 54 — #66

54 Bibliography

[10] Gary Bishop and Greg Welch, "An Introduction to the Kalman Filter", De-
partment of Computer Science University of North Carolina at Chapel Hill
Chapel Hill, NC 27599-3175, July 24, 2006.

[11] Ienkaran Arasaratnam and Simon Haykin, "Cubature Kalman Filter", pub-
lished in IEEE Transactions on Automatic Control. Volume:54, Issue:6,
page:1254 - 1269, June 2009.

[12] Eric A.Wan and Rudolph vander Merwe "The Unscented Kalman Filter for
Nonlinear Estimation", published in Adaptive Systems for Signal Processing,
Communications, and Control Symposium 2000. AS-SPCC. The IEEE 2000,
4-4 Oct. 2000.

[13] Emin Orhan "Particle filtering" Department of Brain & Cognitive Sciences
University of Rochester, NY14627, USA, August 9, 2012.

[14] Brown,R.G.and Hwang,P.Y.C. “Introduction to Random Signals and Applied
Kalman Filtering”, Second Ed., Wiley, New York, 1992.

[15] Feng Shen and Guanghui Xu, "An Enhanced UWB-Based Range/GPS Coopera-
tive Positioning Approach Using Adaptive Variational Bayesian Cubature Kalman
Filtering", published in Mathematical Problems in Engineering. College of
Automation, Harbin Engineering University, 26 December 2014.

[16] R.Cools, “Constructing cubature formulas: The science behind the art”, Act a
Numerica, vol.6, pp.1–54, 1997.

[17] Paul D.Groves "Principles of GNSS, Inertial, and Multisensor Integrated Navi-
gation Systems" published in book Acta Numerica, Cambridge, Page74, Jan-
uary 1997.

[18] M.Sanjeev Arulampalam, Simon Maskell, Neil Gordon, and Tim Clapp A
Tutorial on Particle Filters for Online Nonlinear/Non-Gaussian Bayesian Tracking,
published in IEEE Transactions on Signal Processing. Volume:50, Issue:2,
Feb 2002.

[19] A.Doucet “On sequential Monte Carlo methods for Bayesian filtering” Dept.
Eng., Univ. Cambridge, UK, Tech. Rep., 1998.

[20] R.vander Merwe, A.Doucet, J.F.G.deFreitas, and E.Wan, “The unscented par-
ticle filter”, Adv. Neural Inform. Process. Syst., Dec. 2000.

[21] G.Kitagawa, “Monte Carlo filter and smoother for non-Gaussian non- linear state
space models”, J.Comput. Graph.Statist., vol.5, no.1, pp.1–25, 1996.

[22] Huiting Cheng, Yasushi Yamao"Performance Analysis of ITS V2V Broadcast
Communication Using CSMA/CA and a Roadside Relay Station at Intersections"
published in Performance Analysis of ITS V2V Broadcast Communication
Using CSMA/CA and a Roadside Relay Station at Intersections. October 10,
2012.

[23] Mariam Elazab, Aboelmagd Noureldin and Hossam S.Hassanein "Integrated
Cooperative Localization for Connected Vehicles in Urban Canyons", published
in Global Communications Conference (GLOBECOM), 2015 IEEE. Electrical
and Computer Eng. Dept., Queen’s University, Canada, Dec. 2015.

“main” — 2018/6/15 — 21:00 — page 55 — #67

Bibliography 55

[24] SUMO official website http://www.sumo.dlr.de/daily/userdoc/Downloads.html
fetched at June, 2017.

[25] OSM official website http://www.openstreetmap.org fetched at June, 2017.

[26] NS3 official website https://www.nsnam.org/ns-3-dev fetched at June, 2017.

[27] URL:"http://geoawesomeness.com/how-accurate-is-your-smartphones-gps-in-an-
urban-jungle/", fetched at June, 2017.

[28] URL:https : //en.wikipedia.org/wiki/Nakagami_distribution, fetched at
June, 2017.

[29] URL:https : //en.wikipedia.org/wiki/Shape_parameter,fetched at June,
2017.

[30] URL:https://www.cnet.com/news/south-korea-aims-more-accurate-gps-at-
navigation-systems/ fetched at June, 2017.

“main” — 2018/6/15 — 21:00 — page 56 — #68

56 Bibliography

“main” — 2018/6/15 — 21:00 — page 57 — #69

AppendixA
Appendix

A.1 The Kalman Filter Algorithm
Time Update:
1) Assume old posterior density function is known at time step k:

Xk|k−1 = FX̂k−1|k−1 + Buk (A.1)

2) Error covariance
Pk|k−1 = FPk−1|k−1FT + Qk−1 (A.2)

Measurement Update:
1) Kalman Gain

Kk = Pk|k−1HT(HPk|k−1HT + R)−1 (A.3)

2) Updated State
Xk|k = Xk|k−1 + Kk(Zk − HXk|k−1) (A.4)

3) New Posterior covariance

Pk|k = (I − Kk H)Pk|k−1 (A.5)

A.2 The CKF Algorithm
Time Update:
1) Assume old posterior density function is known at time step k:

p(Xk−1|k−1|Z1:k−1) = N(X̂k−|k−1, Pk−1|k−1) (A.6)

Factorize the old posterior covariance error:

Pk−1|k−1 = Sk−1|k−1ST
k−1|k−1 (A.7)

2) Cubature points

Xi,k−1|k−1 =

√
2n
2

Sk−1|k−1[1]i + X̂k−1|k−1 (A.8)

57

“main” — 2018/6/15 — 21:00 — page 58 — #70

58 Appendix

where i= 1,2,· · · ,2n.
3) Propagated Cubature points

X∗i,k|k−1 = f (Xi,k|k−1) (A.9)

4) Estimate predicted state

X̂k|k−1 =
1

2n

2n

∑
i=1

X∗i,k−1|k−1 (A.10)

5) Predicted error covariance

Pk|k−1 =
1

2n

2n

∑
i=1

X∗i,k|k−1X∗Ti,k|k−1 − X̂k|k−1X̂T
k|k−1 + Qk−1 (A.11)

Measurement Update:
1) Factorize the predicted error covariance

Pk|k−1 = Sk|k−1ST
k|k−1 (A.12)

2) Cubature points

Xi,k|k−1 =

√
2n
2

Sk|k−1[1]i + X̂k|k−1 (A.13)

3) Propagated Cubature points

Zi,k|k−1 = h(Xi,k|k−1) (A.14)

4) Predicted Measurement

Ẑk|k−1 =
1

2n

2n

∑
i=1

Zi,k|k−1 (A.15)

5) Innovation covariance

Pzz,k|k−1 =
1

2n

2n

∑
i=1

Zi,k|k−1ZT
i,k|k−1 − Ẑk|k−1ẐT

k|k−1 + Rk (A.16)

6) Cross-covariance matrix

Pxz,k|k−1 =
1

2n

2n

∑
i=1

Xi,k|k−1ZT
i,k|k−1 − X̂k|k−1ẐT

k|k−1 (A.17)

7) Kalman Gain
Kk = Pxz,k|k−1P−1

zz,k|k−1 (A.18)

8) Updated state
X̂k|k = X̂k|k−1 + Kk(Zk − Ẑk|k−1) (A.19)

9) New posterior covariance

Pk|k = Pk|k−1 − KkPzz,k|k−1KT
k (A.20)

“main” — 2018/6/15 — 21:00 — page 59 — #71

Appendix 59

A.3 SCKF Algorithm
1) Cubature points

Xi,k−1|k−1 =

√
2n
2

Sk−1|k−1[1]i + X̂k−1|k−1 (A.21)

where i=1,2,· · · ,2n.
2) Propagated cubautre points

X∗i,k|k−1 = f (Xi,k−1|k−1) (A.22)

3) Predicted state

X̂k|k−1 =
1

2n

2n

∑
i=1

X∗i,k|k−1 (A.23)

4) Square-root factor of Predicted error covariance

Sk|k−1 = Tria([X∗k|k−1 SQ,k−1]) (A.24)

where

Qk−1 = SQ,k−1ST
Q,k−1 (A.25)

and weighted, centered matrix:

X∗k|k−1 =
1√
2n

[X∗1,k|k−1 − X̂k|k−1 X∗2,k|k−1 − X̂k|k−1 · · ·X∗m,k|k−1 − X̂k|k−1] (A.26)

and Tria is general triangularization algorithm (such as QR decomposition), S=Tria[A].
In order to get the lower triangular matrix using QR decomposition. Letting up-
per triangular matrix R be the QR decomposition of AT , so that the lower trian-
gular matrix would be S = RT .

Measurement Update:
1) Cubature points

Xi,k|k−1 =

√
2n
2

Sk|k−1[1]i + X̂k|k−1 (A.27)

2) Propagated Cubature points

Zi,k|k−1 = h(Xi,k|k−1) (A.28)

3) Predicted Measurement

Ẑk|k−1 =
1

2n

2n

∑
i=1

Zi,k|k−1 (A.29)

4) Square-root of the innovation covariance

Szz,k|k−1 = Tria([Zk|k−1 SR,k]) (A.30)

“main” — 2018/6/15 — 21:00 — page 60 — #72

60 Appendix

where SR,k is a square-root of Rk that Rk = SR,kST
R,k. And weighted, centered

matrix

Zk|k−1 =
1√
2n

[X1,k|k−1 − X̂k|k−1 X2,k|k−1 − X̂k|k−1 · · ·Xm,k|k−1 − X̂k|k−1] (A.31)

5) The cross-covariance matrix

Pxz,k|k−1 = Xk|k−1ZT
k|k−1 (A.32)

where the weighted, centered matrix

Xk|k−1 =
1√
2n

[X1,k|k−1 − X̂k|k−1 X2,k|k−1 − X̂k|k−1 · · ·Xm,k|k−1 − X̂k|k−1] (A.33)

6) The Kalman gain

Kk = (Pxz,k|k−1/ST
zz,k|k−1)/Szz,k|k−1 (A.34)

7) Updated State
X̂k|k = X̂k|k−1 + Kk(Zk − Ẑk|k−1) (A.35)

8) Square-root factor of the new posteriori error covariance

Sk|k = Tria([Xk|k−1 − KkZk|k−1 KkSR,k]) (A.36)

A.4 The Structure of Generic Particle Filter
1) Creating particles based on Gaussian distribution.
Draw:

xi
k ∼ q(xk|xi

k−1, zk) (A.37)

where i is the ith particles, which it is set to up to Ns particles totally.
Assign the particle weight wi

k

wi
k ∝ wi

k−1 p(zk|xi
k) (A.38)

Calculate the total weight and normalized them

wi
k =

wi
k

∑Ns
i=1(w

i
k)

(A.39)

Calculate the effective sample size Ne f f

Ne f f =
1

∑Ns
i=1(w

i
k)

2
(A.40)

If Ne f f < NT
Resample the particles using the following algorithm:
Initial the CDF:

C1 = 0

for i=2:Ns construct CDF:
ci = ci−1 + wi

k (A.41)

“main” — 2018/6/15 — 21:00 — page 61 — #73

Appendix 61

A.5 Figure

A.5.1 Scenario 0
Four go straightly and none vehicle makes a turn in the crossing.

GPS-Distance Implementation

Distance Error Distribution based on GPS and Distance

0 5 10 15 20 25 30

Distance Error/m

0

0.05

0.1

0.15

P
D

F

Figure A.1: Distribution of dis-
tance error with GPS and
Velocity

Position Error Distribution based on GPS and Distance

-10 -5 0 5 10

Positioning Error/m

0

0.05

0.1

0.15

0.2

0.25

0.3

P
D

F

Figure A.2: Distribution of posi-
tion Error with GPS and Ve-
locity

GPS-Velocity Implementation

Distance Error Distribution on GPS and Velocity

0 5 10 15 20

Distance Error/m

0

0.05

0.1

0.15

0.2

0.25

P
D

F

Figure A.3: Distribution of dis-
tance error with GPS and
Velocity

Position Error Distribution on GPS and Velocity

-10 -5 0 5 10

Positioning Error/m

0

0.05

0.1

0.15

0.2

0.25

0.3

P
D

F

Figure A.4: Distribution of posi-
tion Error with GPS and Ve-
locity

“main” — 2018/6/15 — 21:00 — page 62 — #74

62 Appendix

A.5.2 Scenario1
Three vehicles go straightly and only one vehicle make turn at the crossing.

GPS-Distance-Velocity Implementation

440 460 480 500 520 540 560 580 600 620

X position

500

520

540

560

580

600

620

640

660

Y
 p

o
s
it
io

n

Position based on GPS Distance and Velocity

A-simu

B-simu

C-simu

D-simu

start point A

start point B

start point C

start point D

A-real

B-real

C-real

D-real

Figure A.5: Simulation result with
GPS, Distance and Velocity

0 50 100 150

Time step / 0.1s

0

1

2

3

4

E
rr

o
r

/
m

Error in car A

x

y

0 50 100 150

Time step / 0.1s

0

2

4

6

8

E
rr

o
r

/
m

Error in car B

x

y

0 50 100 150

Time step / 0.1s

0

1

2

3

4

5

6

E
rr

o
r

/
m

Error in car C

x

y

0 50 100 150

Time step / 0.1s

0

1

2

3

4

E
rr

o
r

/
m

Error in car D

x

y

Figure A.6: Position error for
each vehicle

Distance Error Distribution based on GPS Distance and Velocity

0 2 4 6 8 10 12 14 16

Distance Error/m

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

P
D

F

Figure A.7: Distribution of dis-
tance error with GPS, Veloc-
ity and Distance

Position Error Distribution based on GPS Distance and Velocity

-10 -5 0 5 10

Positioning Error/m

0

0.05

0.1

0.15

0.2

0.25

0.3

P
D

F

Figure A.8: Distribution of posi-
tion Error with GPS, Velocity
and Distance

“main” — 2018/6/15 — 21:00 — page 63 — #75

Appendix 63

Distance-Velocity Implementation

440 460 480 500 520 540 560 580 600 620

X position

500

520

540

560

580

600

620

640

660

Y
 p

o
s
it
io

n

Position based on Distance and Velocity (without GPS)

A-simu

B-simu

C-simu

D-simu

start point A

start point B

start point C

start point D

A-real

B-real

C-real

D-real

Figure A.9: Simulation result with
Distance and Velocity

0 50 100 150

Time step / 0.1s

0

1

2

3

4

5

E
rr

o
r

/
m

Error in car A

x

y

0 50 100 150

Time step / 0.1s

0

1

2

3

4

5

6

E
rr

o
r

/
m

Error in car B

x

y

0 50 100 150

Time step / 0.1s

0

1

2

3

4

5

6

E
rr

o
r

/
m

Error in car C

x

y

0 50 100 150

Time step / 0.1s

0

1

2

3

4

5

6

E
rr

o
r

/
m

Error in car D

x

y

Figure A.10: Position error for
each vehicle

Distance Error Distribution based on Distance and Velocity

0 2 4 6 8 10 12 14 16

Distance Error/m

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

P
D

F

Figure A.11: Distribution of dis-
tance error with Velocity and
Distance

Position Error Distribution based on Distance and Velocity

-10 -5 0 5 10

Positioning Error/m

0

0.05

0.1

0.15

0.2

0.25

0.3

P
D

F

Figure A.12: Distribution of posi-
tion Error with Velocity and
Distance

“main” — 2018/6/15 — 21:00 — page 64 — #76

64 Appendix

A.5.3 Scenario2
Two vehicles go straightly and two vehicles make turn at the crossing.

GPS-Distance-Velocity Implementation

450 500 550 600

X position

500

520

540

560

580

600

620

640

660

Y
 p

o
s
it
io

n

Position based on GPS Distance and Velocity

A-simu

B-simu

C-simu

D-simu

start point A

start point B

start point C

start point D

A-real

B-real

C-real

D-real

Figure A.13: Simulation result
with GPS, Distance and Ve-
locity

0 50 100 150

Time step / 0.1s

0

2

4

6

8

10

E
rr

o
r

/
m

Error in car A

x

y

0 50 100 150

Time step / 0.1s

0

2

4

6

8

10

E
rr

o
r

/
m

Error in car B

x

y

0 50 100 150

Time step / 0.1s

0

1

2

3

4

E
rr

o
r

/
m

Error in car C

x

y

0 50 100 150

Time step / 0.1s

0

2

4

6

8

10

12

E
rr

o
r

/
m

Error in car D

x

y

Figure A.14: Position error for
each vehicle

Distance Error Distribution based on GPS Distance and Velocity

0 2 4 6 8 10 12

Distance Error/m

0

0.1

0.2

0.3

0.4

0.5

0.6

P
D

F

Figure A.15: Distribution of dis-
tance error with GPS, Veloc-
ity and Distance

Position Error Distribution based on GPS Distance and Velocity

-10 -5 0 5 10

Positioning Error/m

0

0.05

0.1

0.15

0.2

0.25

0.3

P
D

F

Figure A.16: Distribution of posi-
tion error with GPS, Velocity
and Distance

“main” — 2018/6/15 — 21:00 — page 65 — #77

Appendix 65

Distance-Velocity Implementation

440 460 480 500 520 540 560 580 600 620

X position

500

520

540

560

580

600

620

640

660

Y
 p

o
s
it
io

n

Position based on Distance and Velocity (without GPS)

A-simu

B-simu

C-simu

D-simu

start point A

start point B

start point C

start point D

A-real

B-real

C-real

D-real

Figure A.17: Simulation result
with Distance and Velocity

0 50 100 150

Time step / 0.1s

0

2

4

6

8

E
rr

o
r

/
m

Error in car A

x

y

0 50 100 150

Time step / 0.1s

0

2

4

6

8

10

E
rr

o
r

/
m

Error in car B

x

y

0 50 100 150

Time step / 0.1s

0

2

4

6

8

E
rr

o
r

/
m

Error in car C

x

y

0 50 100 150

Time step / 0.1s

2

4

6

8

10

12

E
rr

o
r

/
m

Error in car D

x

y

Figure A.18: Position error for
each vehicle

Distance Error Distribution based on Distance and Velocity

0 2 4 6 8 10 12 14

Distance Error/m

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

P
D

F

Figure A.19: Distribution of dis-
tance error with Velocity and
Distance

Position Error Distribution based on Distance and Velocity

-10 -5 0 5 10

Positioning Error/m

0

0.05

0.1

0.15

0.2

0.25

0.3

P
D

F

Figure A.20: Distribution of po-
sition error with Velocity and
Distance

“main” — 2018/6/15 — 21:00 — page 66 — #78

66 Appendix

A.5.4 Scenario3
Only one vehicle go straightly and three vehicles make turn at the crossing.

GPS-Distance-Velocity Implementation

480 500 520 540 560 580 600

X position

500

550

600

650

700

750

Y
 p

o
s
it
io

n

Position based on GPS Distance and Velocity

A-simu

B-simu

C-simu

D-simu

start point A

start point B

start point C

start point D

A-real

B-real

C-real

D-real

Figure A.21: Simulation result
with GPS, Distance and Ve-
locity

0 50 100 150

Time step / 0.1s

0

2

4

6

8

10

E
rr

o
r

/
m

Error in car A

x

y

0 50 100 150

Time step / 0.1s

0

2

4

6

8

10

E
rr

o
r

/
m

Error in car B

x

y

0 50 100 150

Time step / 0.1s

0

1

2

3

4

E
rr

o
r

/
m

Error in car C

x

y

0 50 100 150

Time step / 0.1s

0

2

4

6

8

10

12

E
rr

o
r

/
m

Error in car D

x

y

Figure A.22: Position error for
each vehicle

Distance Error Distribution based on GPS Distance and Velocity

0 2 4 6 8 10 12

Distance Error/m

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

P
D

F

Figure A.23: Distribution of dis-
tance error with GPS, Veloc-
ity and Distance

Position Error Distribution based on GPS Distance and Velocity

-10 -5 0 5 10

Positioning Error/m

0

0.05

0.1

0.15

0.2

0.25

0.3

P
D

F

Figure A.24: Distribution of posi-
tion error with GPS, Velocity
and Distance

“main” — 2018/6/15 — 21:00 — page 67 — #79

Appendix 67

Distance-Velocity Implementation

480 500 520 540 560 580 600 620

X position

500

550

600

650

700

750

Y
 p

o
s
it
io

n

Position based on Distance and Velocity (without GPS)

A-simu

B-simu

C-simu

D-simu

start point A

start point B

start point C

start point D

A-real

B-real

C-real

D-real

Figure A.25: Simulation result
with Distance and Velocity

0 50 100 150

Time step / 0.1s

0

2

4

6

8

E
rr

o
r

/
m

Error in car A

x

y

0 50 100 150

Time step / 0.1s

0

2

4

6

8

10

E
rr

o
r

/
m

Error in car B

x

y

0 50 100 150

Time step / 0.1s

0

2

4

6

8

E
rr

o
r

/
m

Error in car C

x

y

0 50 100 150

Time step / 0.1s

2

4

6

8

10

12

E
rr

o
r

/
m

Error in car D

x

y

Figure A.26: Position error for
each vehicle

Distance Error Distribution based on Distance and Velocity

0 2 4 6 8 10 12 14

Distance Error/m

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

P
D

F

Figure A.27: Distribution of dis-
tance error with Velocity and
Distance

Position Error Distribution based on Distance and Velocity

-10 -5 0 5 10

Positioning Error/m

0

0.05

0.1

0.15

0.2

0.25

0.3

P
D

F

Figure A.28: Distribution of po-
sition error with Velocity and
Distance

“main” — 2018/6/15 — 21:00 — page 68 — #80

68 Appendix

A.5.5 Scenario4
None vehicle go straightly and all vehicles make turn at the crossing.

GPS-Velocity-Distance Implementation

480 500 520 540 560 580 600

X position

500

550

600

650

700

750

Y
 p

o
s
it
io

n

Position based on GPS Distance and Velocity

A-simu

B-simu

C-simu

D-simu

start point A

start point B

start point C

start point D

A-real

B-real

C-real

D-real

Figure A.29: Simulation result
with GPS Distance and Ve-
locity

0 50 100 150

Time step / 0.1s

0

1

2

3

4

5

E
rr

o
r

/
m

Error in car A

x

y

0 50 100 150

Time step / 0.1s

0

1

2

3

4

5

E
rr

o
r

/
m

Error in car B

x

y

0 50 100 150

Time step / 0.1s

0

1

2

3

4

5

E
rr

o
r

/
m

Error in car C

x

y

0 50 100 150

Time step / 0.1s

0

1

2

3

4

5

E
rr

o
r

/
m

Error in car D

x

y

Figure A.30: Psition error for
each vehicle

Distance Error Distribution based on GPS Distance and Velocity

0 2 4 6 8 10

Distance Error/m

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

P
D

F

Figure A.31: Distribution of dis-
tance error with GPS, Veloc-
ity and Distance

Position Error Distribution based on GPS Distance and Velocity

-10 -5 0 5 10

Positioning Error/m

0

0.05

0.1

0.15

0.2

0.25

0.3

P
D

F

Figure A.32: Distribution of posi-
tion error with GPS Velocity
and Distance

“main” — 2018/6/15 — 21:00 — page 69 — #81

Appendix 69

Distance-Velocity Implementation

480 500 520 540 560 580 600

X position

500

550

600

650

700

750

Y
 p

o
s
it
io

n

Position based on Distance and Velocity (without GPS)

A-simu

B-simu

C-simu

D-simu

start point A

start point B

start point C

start point D

A-real

B-real

C-real

D-real

Figure A.33: Simulation result
with Distance and Velocity

0 50 100 150

Time step / 0.1s

0

1

2

3

4

E
rr

o
r

/
m

Error in car A

x

y

0 50 100 150

Time step / 0.1s

0

1

2

3

4

E
rr

o
r

/
m

Error in car B

x

y

0 50 100 150

Time step / 0.1s

0

0.5

1

1.5

2

2.5

E
rr

o
r

/
m

Error in car C

x

y

0 50 100 150

Time step / 0.1s

0

1

2

3

4

E
rr

o
r

/
m

Error in car D

x

y

Figure A.34: Position error for
each vehicle

Distance Error Distribution based on Distance and Velocity

0 2 4 6 8 10 12

Distance Error/m

0

0.05

0.1

0.15

0.2

0.25

0.3

P
D

F

Figure A.35: Distribution of dis-
tance error with Velocity and
Distance

Position Error Distribution based on Distance and Velocity

-10 -5 0 5 10

Positioning Error/m

0

0.05

0.1

0.15

0.2

0.25

0.3

P
D

F

Figure A.36: Distribution of po-
sition error with Velocity and
Distance

“main” — 2018/6/15 — 21:00 — page 70 — #82

70 Appendix

A.5.6 Scenario 5
All four vehicles meet in T-cross while two vehicles go straightly, one vehicle
makes turn and one vehicle stop at the T-cross.

GPS-Velocity-Distance Implementation

360 380 400 420 440 460 480 500 520 540 560

X position

480

500

520

540

560

580

600

Y
 p

o
s
it
io

n

Position based on GPS Distance and Velocity

A-simu

B-simu

C-simu

D-simu

start point A

start point B

start point C

start point D

A-real

B-real

C-real

D-real

Figure A.37: Simulation result
with GPS, Distance and Ve-
locity

0 50 100 150

Time step / 0.1s

0

2

4

6

8

E
rr

o
r

/
m

Error in car A

x

y

0 50 100 150

Time step / 0.1s

0

1

2

3

4

5

E
rr

o
r

/
m

Error in car B

x

y

0 50 100 150

Time step / 0.1s

0

1

2

3

4

5

E
rr

o
r

/
m

Error in car C

x

y

0 50 100 150

Time step / 0.1s

0

1

2

3

4

5

E
rr

o
r

/
m

Error in car D

x

y

Figure A.38: Position error for
each vehicle

Distance Error Distribution based on GPS Distance and Velocity

0 2 4 6 8 10 12 14

Distance Error/m

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

P
D

F

Figure A.39: Distribution of dis-
tance error with GPS, Veloc-
ity and Distance

Position Error Distribution based on GPS Distance and Velocity

-10 -5 0 5 10

Positioning Error/m

0

0.05

0.1

0.15

0.2

0.25

0.3

P
D

F

Figure A.40: Distribution of posi-
tion error with GPS, Velocity
and Distance

“main” — 2018/6/15 — 21:00 — page 71 — #83

Appendix 71

Distance-Velocity Implementation

360 380 400 420 440 460 480 500 520 540 560

X position

480

500

520

540

560

580

600

Y
 p

o
s
it
io

n

Position based on Distance and Velocity (without GPS)

A-simu

B-simu

C-simu

D-simu

start point A

start point B

start point C

start point D

A-real

B-real

C-real

D-real

Figure A.41: Simulation result
with Distance and Velocity

0 50 100 150

Time step / 0.1s

0

2

4

6

8

E
rr

o
r

/
m

Error in car A

x

y

0 50 100 150

Time step / 0.1s

0

1

2

3

4

5

E
rr

o
r

/
m

Error in car B

x

y

0 50 100 150

Time step / 0.1s

0

1

2

3

4

5

6

E
rr

o
r

/
m

Error in car C

x

y

0 50 100 150

Time step / 0.1s

0

1

2

3

4

5

6

E
rr

o
r

/
m

Error in car D

x

y

Figure A.42: Position error for
each vehicle

Distance Error Distribution based on Distance and Velocity

0 2 4 6 8 10 12 14

Distance Error/m

0

0.05

0.1

0.15

0.2

0.25

0.3

P
D

F

Figure A.43: Distribution of dis-
tance error with Velocity and
Distance

Position Error Distribution based on Distance and Velocity

-10 -5 0 5 10

Positioning Error/m

0

0.05

0.1

0.15

0.2

0.25

0.3

P
D

F

Figure A.44: Distribution of po-
sition error with Velocity and
Distance

