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Abstract

The rate of migration and accretion onto protoplanets is greatly influenced by the
structure of the surrounding protoplanctary disc. This structure changes with time as the
disc evolves on a million year timescale, implying that the process of planet formation
might look very different depending on when it was initiated. Further on, the evolution of
the disc structure is affected on smaller timescales by the presence of the planet, the most
obvious effect being the planctary induced gap. In this project I will determine how much
planet formation affects disc evolution. To do so I perform 1D simulations of an evolving
viscous disc that is perturbed by an embedded planet that migrates and accretes gas. |
will consider different models for migration and gas accretion, and compare the results
to observations of protoplanctary discs with the ALMA telescopes. From the results I
can confirm what was previously known, namely that 1D simulations yield deeper and
narrower planetary gaps than their higher dimensional counterparts. The removal of gas
from the disc due to gas accretion onto the planet significantly alters the final mass and
semimajor axis of the planet. From my simulations I also find that the classical Type-I and
Type-II migration scenario results in that most planets migrate to the inner edge of the
protoplanctary disc. This can be avoided using a new migration model where the planets
never enter into the Type-II regime, but continue to migrate under the actions of disc
torques that are decreased by the opening of the planetary gap. In this scenario planets
that start to accrete gas close to the star will migrate a short distance and then continue
to accrete gas practically in-situ, while planets that start to accrete gas further out in the
disc will migrate a longer distance before the migration halts.

Acknowledgments

I wish to thank my supervisor Anders Johansen for coming up with an interesting project
which covers many topics of planet formation, and has given me a good idea of how rescarch
in astronomy is being done. Even more I wish to thank Anders for the opportunity to
continue to work within this arca of resecarch in my upcoming PhD. I am grateful to
Michiel Lambrechts for informative discussions regarding the pebble isolation mass, and
to Bertram Bitsch for answering many questions about planet formation in general. I wish
to thank Ross Church and Henrik Jonsson for their constructive feedback which led to an
improved thesis. Last I wish to thank the people at the department who have given me
the opportunity to develop as a researcher by not only publishing papers, but also talking
about them at both informal meetings and at the For All conference in Lund.






Populiarvetenskaplig beskrivning

En nyfodd stjarna ar omgiven av en disk som bestar till mestadels av gas med en liten
andel grus, en sa kallad protoplanctarisk disk. Det ér i den hér disken som planeter bildas,
och likt planeter sa roterar den runt solen. En viktig egenskap hos den protoplanetariska
disken éar att den fordndras med tiden. Stjarnans gravitation drar till sig material fran
disken, vilken gor att den blir mindre och mindre massiv ju langre tiden gar. Samtidigt
kommer stralning fran stjarnan att varma gasen i disken och fa topplagret att avdunsta.
Dessa tva processer gor att all gas i disken har forsvunnit efter bara nagra miljoner ar.

Nagra miljoner ar ar en véldigt kort period om man jamfér med aldern pa solsystemet,
och under den hér tiden maste alla planeter som bestar till storsta del utav gas hinna bildas.
Sadana plancter kallas for gasjattar, och ett exempel pa en gasjitte ar Saturnus. Saturnus
bestar av en fast kidrna som ér omgiven av en enorm méngd gas. Massan av Saturnus kérna
ar ungefar 10 ganger storre én Jordens massa, och massan av gasen som omger den ar hela
85 ganger storre an Jordens massa. Denna jatteplanct maste alltsa bildas pa bara nagra
miljoner ar. Hur detta sker ar fortfarande inte helt forstatt. De steg som ar involverade ar:
1) gruskorn som kolliderar med varandra, fastnar och bildar smasten; 2) Om densiteten
av smasten nagonstans i disken blir tillrakligt hog sa kan gravitationen binda ihop dem
till asteriod-liknande objekt; 3) De storsta av dessa objekten fortsitter att vixa genom att
dra till sig mindre objekt; 4) Om dessa blir tillrdkligt stora kan de borja dra till sig gas
och utvecklas till gasjattar. I mitt projekt kommer jag att undersoka det sista steget, hur
en planetkédrna drar till sig gas.

Under tiden som planeten bildas kommer den att rora sig radiellt (migrera) genom
disken. Till exempel, om en planetkidrna bildas langt ut i disken vid Neptunus och Uranus,
sa kanske den befinner sig vid Jupiter nér den har vuxit klart. Migration av planeter ar ett
stort problem inom planctformation, eftersom de flesta migrationsmodellerna vi har leder
till att planeterna vandrar alldeles for snabbt och blir uppétna av stjarnan. I mitt projekt
kommer jag att undersoka en ny modell for planetmigration som gor att plancterna inte
blir uppéatna av stjarnan.

Eftersom plancter bildas i disken, och eftersom allt material som de adr uppbyggda av
kommer ifran den, s& kommer planeterna att paverkas mycket av hur disken ser ut. Men
kan plancterna paverka disken? Radioteleskopet ALMA, som bestar av 66 stora samar-
betande teleskop, har lyckats ta bilder pa ett antal protoplanctariska diskar. Diskarna
pa dessa bilder har morka ringar i sig. Man tror att dessa ringar bildas av att planeter
puttar bort material fran sin bana nér de roterar i disken. Planeterna gréaver alltsa ett hal
i disken nar de bildas, och ju mer massiv en planet ar, desto djupare blir halet. Alltsa kan
plancterna paverka disken pa minst ett sitt, och hur stor denna paverkan ér, ar ytterligare
en sak som jag kommer att undersoka.
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Chapter 1

Introduction

Protoplanetary discs form around newly born stars and evolve on million year timescales
as matter is accreted onto the central star (e.g. Haisch et al. 2001; Fedele et al. 2010).
The lifetime of protoplanetary discs is constrained by finding the observed fraction of stars
that has discs around them within a star forming cluster, as a function of the cluster age
(see left panel of Figure 1.1). These observations suggest that 50% of the stars have lost
their discs already after 3 Myr. The mass accretion rate onto the star has been loosely
constrained from observations of accretion luminosities of accreting young stellar objects
(Hartmann et al., 1998; Manara, 2014; Sicilia-Aguilar et al., 2010). For stellar ages between
1-3 Myr there are inferred mass accretion rates in the range between 107191077 M, /yr (see
right panel of Figure 1.1). In the commonly used model of Hartmann (2009) (black line
in Figure 1.1) the mass accretion rate decreases from 107" Mg /yr to around 1078 M, /yr
in 3Myr. Mass accretion onto the central star is made possible via a transfer of angular
momentum outwards in the disc (Pringle, 1981). Because of this outward transfer of
angular momentum, the disc expands with time (Lynden-Bell & Pringle 1974; Hartmann
et al. 1998). Such a disc is called a wviscous accretion disc, and it is often modeled using
a 1-D approach where the column density evolves due the outwards transport of angular
momentum.

Previous observations of thermal emission from dust at mm and cm wavelengths in
protoplanctary discs have put constraints on their structure and lifetime. With the con-
struction of ALMA (the Atacama Large Millimeter / submillimeter Array) observations
of discs showing detailed structures such as rings and gaps has been made possible (e.g.
ALMA Partnership et al. 2015; Fedele et al. 2017, 2018, see Figure 1.2). Various processes
have been suggested to be the origin of such gap- and ring-structures, for example dust
growth (Zhang et al., 2015; Okuzumi et al., 2016) and disc-planet interactions (e.g. Kana-
gawa et al. 2015b), but so far it has been difficult to establish the dominant process from
the observations. By using simulations as well, this can be determined by modeling the
different processes and comparing the resulting gap structures to observations. Further on,
finding a relationship between the gap structure and the mass and size of a planet would
put even stronger constraints on the planet formation process.

Protoplanets in the disc grow via the accretion of solids and gas in their vicinities.
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Figure 1.1: Left panel: fraction of stars within a star forming cluster that have discs around
them, as a function of cluster age (Haisch et al., 2001). From this plot we learn that 50% of
the stars have lost their discs after 3 Myr. Right panel: mass accretion rates as a function
of stellar age (Manara, 2014). The different symbols represent observations in different star
forming regions. The cyan region are values which can be reproduced by viscous evolution.
The black line is the evolution model of Hartmann (2009).

Figure 1.2: Observations at 1.3mm of (left panel) the protoplanetary disc around around
HL Tau (ALMA Partnership et al., 2015), (middle panel) the protoplanetary disc HD
169142 (Fedele ct al., 2017), and (right panel) the protoplanctary disc AS 209 (Fedele et
al., 2018). The bright rings in the pictures appears due to emission from mm sized dust. In
between these bright rings the density of mm sized dust is very low, we call these features
gaps. One process which could explain these ring- and gap-structures in protoplanctary
discs is planet formation.



CHAPTER 1. INTRODUCTION

There are two main theories describing the growth from planetesimals to solid planctary
cores: planetesimal accretion and pebble accretion. For solar-like solid-to-gas ratios the
first process alone takes a longer time than the lifetime of the disc itself (Pollack et al. 1996;
Rafikov 2004; Levison et al. 2010). This problem can be remedied by including the accretion
of mm-cm sized pebbles onto the protoplanet, a much faster process (Johansen & Lacerda
2010; Ormel & Klahr 2010; Lambrechts & Johansen 2012; Morbidelli & Nesvorny 2012).
During the pebble accretion process, the protoplanet starts to attract a gaseous envelope.
Heat generated when the pebbles fall down through the protoatmosphere provides pressure
support to the gas envelope and hinders it from falling down onto the protoplanet. This
flow of pebbles through the protoatmosphere halts at the so called pebble isolation mass
(Lambrechts & Johansen, 2014; Bitsch et al., 2018), after this mass has been reached the
gascous envelope can start to contract onto the protoplanct. Subsequent gas accretion
continues until the disc has been depleted of gas.

During the planet formation process there are important interactions taking place be-
tween the protoplanet and the surrounding gaseous disc, these are illustrated in Figure 1.3
for a protoplanet moving clockwise in a protoplanetary disc. The protoplanet’s coorbital
region divides the disc into an inner and outer part (middle panel). Exchange of angular
momentum between the protoplanet and material that executes horseshoe turns relative
to it (material in the coorbital region) gives rise to a corotation torque. The protoplanet
further generates spiral density waves in the disc which gives rise to Lindblad torques (left
panel) (Goldreich & Tremaine 1979, 1980). The inner spiral rotates ahead of the proto-
planet and pulls it forward. By doing so it exerts a positive torque on the protoplanet
which results in a gain of angular momentum and outward migration. On contrast, the
outer spiral rotates behind the protoplanet and results in inward migration. The total
torque acting on the planet is the sum of the Lindblad and the corotation torques, and will
generally be directed inwards. For low mass protoplanets that do not significantly perturb
the disc, a linear analysis of the Lindblad and corotation torque can be used to infer the
orbital evolution of the protoplanct, resulting in what we call Type-I migration.

If a planet grows massive enough for the planetary torque to deplete the coorbital region,
it results in an annular gap being carved around the planetary orbit (Lin & Papaloizou,
1986a). Since the density in the coorbital region is low the corotation torque becomes
insignificant, and for large gaps even the Lindblad torque becomes suppressed by gap
formation. Until not long ago it was the common belief that the planet becomes coupled
to the viscous evolution of the disc at this point, and continues to migrate with what is
called Type-II migration. In this picture the gas flowing through the protoplanctary disc
will slowly pile up at the outer edge of the gap, strengthening the outer Lindblad torque
and forcing the planct to migrate at the same speed as the viscous accretion speed of the
gas. Recent studies of migration of gap-opening planets however show that this might not
be the case (e.g. Duffell et al. 2014; Dirmann & Kley 2015). In order for the planet to
become coupled to the viscous evolution of the disc, the disc must be split to an inner
and outer part, and in order for that to occur gas must be prevented from flowing across
the planetary gap. Duffell et al. (2014) show that gas can actually cross the gap, even for
very deep gaps, and hence there should be no Type-II regime for migration. Diirmann &

4
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Figure 1.3: These plots from Armitage & Rice (2005) show the interaction between a
protoplanctary disc and a planet that orbits clockwise in it. In the left panel the planet
is of low mass and still embedded in the disc, this is called Type-I migration. In the right
panel the planet has gained enough mass to open up a gap in the disc. In the classical
migration picture no or little mass is allowed to cross the planetary gap at this stage,
resulting in what is called Type-II migration. The middle panel shows a sketch of the
streamlines close to the planetary orbit. The planets coorbital region divides the disc into
an inner and outer part, and material inside the coorbital region executes horseshoe turns
relative to the planet (the direction of motion is indicated by arrows in the figure).

Kley (2015) also investigated giant planet migration and found that the migration rate of
a planet is entirely governed by the gravitational torque exerted on it by the disc, and thus
completely independent of the viscous speed of the disc. Kanagawa et al. (2018) continued
on this track and showed using 2-D hydrodynamical simulations that the torque on the
planet is roughly proportional to the depth of the planetary gap. The migration of planets
is still a very active arca of rescarch and as of today there are still new developments that
can change our picture of migration substantially..

In this project I use 1D simulations to model the evolution of a viscous accretion
disc that is being perturbed by a growing protoplanet. I will not model the formation
of the planctary core, but instead start the protoplanets at their pebble isolation mass
and consider the accretion of gas onto the core. Furthermore, I will test different models
for planetary migration. The aim of this work is to determine the effect that planet
formation has on disc evolution. I am particularly interested in finding any observational
effects on the disc, which could help to connect planet formation models with observations
of protoplanctary discs. The most obvious way in which a protoplanet affects the disc
structure is by the formation of a planctary gap. I will compare gap depths produced in
my 1D simulations to those of others, and investigate what effect the gap depths have on
the gas accretion rates onto the planct, as well as the migration rates. I will then compare
the resulting growth tracks to observations, in order to draw conclusions about the realism
of the different models for gap opening, gas accretion and migration. I will show that
(a) the new models for type-IT migration yield growth tracks in good agreement with the
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observations of dark rings in protoplanetary discs and (b) that inclusion of gas accretion
has a significant effect on the observational properties of the protoplanetary disc.



Chapter 2

Background theory

In this chapter I will summarize all the different equations that are used in this work.
For further details the reader is directed to the literature cited in the following sections.
Protoplanetary discs form around young stars and evolve with time (Sect. 2.1) as matter
is accreted onto the central star. It is inside such discs that the planet formation process
takes place. Observations have shown a large diversity of planetary systems. For example,
around 30% of all stars are expected to harbor a super-Earth (e.g. Fressin et al. 2013; Fulton
et al. 2017), and Jupiter analogs have an inferred occurrence rate of around 3% (Rowan
et al., 2016; Vigan et al., 2017). In this project I will limit myself to study the formation
of gas giants, where by gas giants I refer to planets that reach their pebble isolation mass
(Sect. 2.2), and thus start to accrete a gascous envelope (Sect. 2.3). Such planets do not
grow in-situ at a fixed radial distance from the star, but they migrate through the disc
(Sect. 2.4) during the formation process.

2.1 Evolution of the disc structure with time

The surface density evolution of a viscous disc that is perturbed by a planet can be de-
scribed by a one dimensional equation derived in Lin & Papaloizou (1986b),

2AYR3/?
(GM,)1/2 |’

ox 10 0
— = —— |3R2—(vZR'?) + 2.1
ot  ROR aR( ) (2.1)
where ¥ is the surface density, ¢ is the time, R is the semimajor axis, v is the kinematic
viscosity of the disc, A is the torque density distribution, G is the gravitational constant,
and M, is the stellar mass. The torque density distribution is the rate of angular momentum
transfer per unit mass, directed from the disc to the protoplanet. Note that this equation
is derived assuming Keplerian rotation, Q = (GM.,/R3)"/2.

Equation (2.1) is essentially a form of the continuity equation in cylindrical coordinates,

oy 10
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with two radial velocity components, Ur = VR viscous + VR planet- 1 he first term describes the
viscous evolution of the disc, while the second governs the tidal effect of the protoplanet-
disc interaction. The radial velocity components are obtained by simply dividing the terms
in the square bracket in Eq. (2.1) by (—XR), to obtain

3 d

UR, viscous = _WE(VZRUZ% (23)
2AR!/?
UR,planet = — M . (24)

While the viscous term governs the global radial velocity of gas in the disc, the planet
induced term only affect the radial velocity of gas close to the planctary orbit. For a
large planetary mass, which translates to a large torque density, gas in the vicinity of the
planctary orbit will obtain large radial velocities and move away from the planet, thus
creating a gap. In the case of a multiple-planet system each planet contributes a torque
density distribution to the second term.

The kinematic viscosity of the disc is approximated using the standard « approach of
Shakura & Sunyaev (1973), v = aQH?, where « is a parameter roughly between 0 and 1
that determines the efficiency of turbulent momentum transport, and H is the disc scale
height. T adopt the scale height

Cs
H=— 2.5
Q ? ( )
where ¢, is the sound-speed, calculated as
KT\ 234 T \'?
co=—] =99x10"["—~=—] cms" (2.6)
gy w280

Here p is the mean molecular weight, which I set to be 2.34 for a cosmic mixture of hydrogen
and helium (Hayashi, 1981). The temperature structure of the disc is approximated as

T = Tlau X R_C(L/L®)1/4K7 (27)

where T,y is the temperature in the midplane of the disc at 1au, and ( sets the slope of
the temperature with radius (Hayashi, 1981). The standard temperature exponent used
in this thesis is ( = 3/7, and the temperature at 1au is set to be 150 K. These values are
derived from models of passive discs, where one only considers stellar heating (Chiang &
Goldreich, 1997).
The radial mass flux across the disc, which will be referred to as the “disc accretion
rate”, is simply
M = 2nRY(—vg), (2.8)
where the minus sign originates from the convenction that M > 0 when vg < 0 (Pringle,
1981). As can be seen in the right panel of Figure 1.1, the disc accretion rate decreases
with time, and the decrease is non-linear. In viscous evolution models the decrease in disc
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accretion rate is set by the size of the disc and «. Hartmann et al. (1998) represent this
decline as M oc t", and estimate 1 to be between 1.5 and 2.8.

As mentioned in the introduction, mass accretion onto the star is made possible via a
transfer of angular momentum outwards in the disc. This raises the question of what drives
this angular momentum transport in protoplanetary discs? In the standard picture, the
disc viscosity is driven by turbulence that arises when ionized atoms and molecules hit the
disc and interact with the magnetic fields within it, referred to as MRI (magnetorotational
instability, see Balbus & Hawley 1991). MRI is a linear instability which occurs because
an ideal magnetohydrodynamic (MHD) flow is stable only if the angular velocity increases
with radius. This is not satisfied in Keplerian discs, and thus sufficiently well-ionized discs
arc rendered unstable. However, in order for this mechanism to work efficiently there
must be enough ions in the gas, and it has been suggested that the ionization fraction in
protoplanetary discs may become quite low (e.g. Umebayashi & Nakano 1988; Gammie
1996).

Tonization of atoms and molecules occurs mainly due to cosmic-rays and X-rays hitting
the protoplanctary disc. Such processes are most cfficient in the top-layer of the disc, and
thus the level of ionization varies between different parts of the disc. The mid-plane of the
disc, which is more or less shielded from such rays, suffers a lower degree of ionization and
is therefore MRI inactive. This has been dubbed the “dead zone” in protoplanctary discs
(Gammie, 1996; Sano et al., 2000). Pinte et al. (2016) compared models of dust emission
from protoplanetary discs to ALMA observations of the disc surrounding HL Tau (see left
panel of Figure 1.2). They found that in order to match the observed accretion rate onto
the star o ~ 1072 was required; however, for modeling dust settling to the mid-plane they
found that observations are consistent with o ~ 10~ for the turbulent diffusion of dust
particles. This could either be explained by that different physical mechanisms control the
viscous and the diffusive alpha, and/or that « varies radially within the disc (as in the case
when there is a dead zone).

Another mechanism that could drive the viscous evolution of the disc is magnetically-
coupled disc winds (Bai & Stone, 2013; Turner et al., 2014), which carry angular momentum
along the magnetic field lines in the disc, causing it to lose angular momentum. In this
work I will not separate different physical mechanisms for driving turbulence. Instead I
will choose an « for disc accretion which is consistent with observations, and when possible
a reduced « in the mid-plane of the disc which is similar to the one suggested for HL Tau,
and produces reasonable gas accretion rates onto the planetary core.

2.1.1 Torque density distributions

Planets excite density waves through gravitational interactions with the surrounding disc
(see e.g. Goldreich & Tremaine 1980). These density waves carry angular momentum away
from the planet. Due to gradual wave-dampening, caused by the disc viscosity or non-
linear steepening (e.g. Lin & Papaloizou 1986b), this angular momentum is deposited on
the disc. Therefore, the planet exerts a torque on the disc material.

The deposition of angular momentum on the disc as caused by the planet is the direct
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cause of gap-formation; however, modeling this requires detailed hydrodynamical simula-
tions. One common way to simplify this problem is to remove the gap-forming planet,
and instead apply a torque on the disc. This torque now becomes the mechanism of
gap-formation; however, it is important to remember that the applied torque only is an
approximation to the presence of a real planet. In order to calculate Eq. (2.1) one needs to
specify the functional form of A, which depends on where in the disc angular momentum
is deposited. In this work I will assume instantaneous wave-dampening. The credibility
of this approximation will be discussed in further detail in chapter 4.2; but generally, if
the kinematic viscosity is relatively large then the dissipation will be concentrated in the
vicinity of the planet’s orbit, making it a reasonable approximation (Papaloizou & Lin,
1984).

The angular momentum exchange between a protoplanetary disc and a protoplanet, or
analogously that between binary stars and accretion discs, has been calculated by various
methods. One common way to model A would be to use the impulse approximation of Lin

& Papaloizou (1986b),
fPGM, [ R\
2R |Ao| ) 7

where the torque on the planet has been calculated approximately by considering the
exchange of angular momentum between a planet and individual particles passing by it.
In the above equation a is the semimajor axis of the protoplanet, f is a dimensionless
constant, g is the planet to star mass ratio, and Ay is taken to be the maximum of H or
|R — a|. Although this is a commonly used form of A, which has been proved to match
results obtained from summing over Lindblad resonances (sce e.g. Goldreich & Tremaine
1980), it comes with sharp transitions in the profile and has a long tail that is unphysical
(see e.g. D’Angelo & Lubow 2010 and references therein).

D’Angelo & Lubow (2010) provide an improved 1D description for A, which shows
better agreement to hydrodynamical simulations including a planet than the impulse ap-
proximation. The equation they provide is

A =sign(R — a) (2.9)

4
A= —Fla, 8,00 (4 ) . (2.10)
where F is a dimensionless function, z = (R — a)/H,, 8 = —%22 and § = —Z2L.

This is the torque density distribution that I will use to model gap-formation in this work.
Equation (2.10) describes the torque density exerted on the planet by the disc, and includes
contributions from both Lindblad resonances and the corotational resonance. Prior to
D’Angelo & Lubow (2010) the function F' was taken to be an inverse power law with
distance from the planet that was modified close to the planet. One of the improvements
that they introduced was to find a more accurate analytic expression for F' by fitting the
results of 3D simulations. The functional form of F' used for fitting is

(x4 p2)?
2
3

(ZL‘ + p5)2
6

F(z,5.€) = {pl exp [— ] + pyexp [— ] } x tanh(py — psz)  (2.11)

10
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Figure 2.1: Figure adapted from D’Angelo & Lubow (2010). Torque density distribution
for different values of the scale height at the planets location. This plot was produced

4
using 8 = 0.5 and £ = 1. The torque density is scaled by the quantity Q2a?%¢? (Hia) :

where (p1,...,ps) are parameters resulting from the fit. The tanh part affects the slope
with which the profile goes from positive to negative. D’Angelo & Lubow (2010) has a
table of parameters for specific values of # and &, which I will interpolate between in order
to obtain a good fit for the function F.

Equation (2.10) is derived under the assumption that the mass density distribution
along the orbit of the planet remains largely unperturbed. When the tidal torque of the
planet exceeds the viscous torque responsible for disc spreading, this criterion breaks down
and a gap is formed. D’Angelo & Lubow (2010) find that gap-opening planets introduce
variations to the height of the peak in the torque density distribution of a factor around
2-3. Therefore, they introduce a factor of 1/2 to Eq. (2.10) for cases when the tidal torque
exceeds the viscous torque. I will also use this extra factor when the Hill radius of the
planet exceeds the disc scale height at the planet’s location. I will then exchange the term

(Hia)él with (%)4 in Eq. (2.10), where rg is the Hill radius. Furthermore, D’Angelo &
Lubow (2010) tested the universality of function F' to changes in «, ¢ and H/a. They
obtain very small variations for changes in a and ¢; however, the variation they obtain
from changing H/a is more significant (see Figure 2.1 which is the same as Figure 3 in

D’Angelo & Lubow (2010)).

2.2 Pebble isolation mass
The pebble isolation mass M;g, is the mass at which pebble accretion is halted and gas

accretion can initiate. In the following section I will explain what causes the flow of pebbles
to stop at this mass, and how it can be derived.

11



CHAPTER 2. BACKGROUND THEORY

The pressure P in the midplane of an unperturbed disc, which is proportional to ¥T/H,
decreases outwards. This negative pressure gradient results in a pressure force directed
away from the star. Pebbles, which are not supported by pressure, would continue to orbit
at the Keplerian velocity, set by the balance between the gravitational acceleration towards
the star and the centripetal force directed outwards in the disc. This is not the case for
the gascous component of the disc. Since gas is supported by pressure and thercfore feels
the effect of this outward pressure force, the centripetal force does not have to be as large
in order to remain at the same orbit and conserve angular momentum. Therefore the
gas component of the disc will orbit at sub-Keplerian velocity. The pebbles therefore feel
a headwind due to the sub-Keplerian velocity of the gas, and subsequently lose angular
momentum and spiral inwards. This is what causes the radial drift of the pebbles in discs.
The velocity difference between the gascous component of the disc and the Keplerian
motion can be described as

VUgas = k(1 — 1) = vg — Uk = vg — Av (2.12)
where .
1 /H In P
= -3\ 2.13
g 2 < r > Olnr ( )

(Nakagawa et al., 1981; Bitsch et al., 2018).

As long as the radial pressure gradient in the disc is negative, pebbles will continue
to drift towards the star. Globally this will always be the case in protoplanctary discs;
however, if there are gap-opening protoplanets in the disc, they can change the sign of
the radial pressure gradient locally. When a gap is opened up it creates a positive radial
surface density gradient just outside the orbit of the protoplanet. If Z%E% > giﬁg — ‘flllﬁg,
it will generate a pressure maximum outside the planetary orbit. This will cause the gas
to orbit at super-Keplerian velocity in a ring just outside the orbit of the planet. At this
location in the disc, pebbles will feel a net outward acceleration, and instead of radially
drifting over the planetary orbit they will pile up outside the planct. At these locations
the density of pebbles can become large enough to trigger planctesimal formation, and by
doing so aiding the formation of other planets.

The pebble isolation mass is defined as the mass where the velocity of the gas equals the
Keplerian velocity. This occurs at n = 0, see equations 2.12 and 2.13, which is equivalent
to dln P/0Inr = 0. This criterion can in turn be written as

dinP  dIn(XT/H) dn¥ N dinT dlnH

dlnR~  dlmR  dlnR  dnR dhnR (2.14)

The logarithm of the radial surface density and temperature gradients are respectively —f3
and —¢, and the scale height depends on R as

Cs T1/2 R—¢/2 3-¢

H:@OCR—(°,/2O<R—:’,/2:R2

(2.15)
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From this I finally drive the logarithmic derivative of the pressure gradient as

dnP 8326 (o3
dinR F=¢ 2 g (2 ) (2.16)

Since in this work I will use a constant temperature profile, the pebble isolation mass is
obtained by finding the planctary mass at which g = — %‘5 :

Bitsch et al. (2018) derive an analytical fitting formula for the pebble isolation mass
using 3-D hydrodynamic simulations of planet-disc interactions. As in this work, they
use a radial temperature profile that is constant throughout the simulation, and find the
planctary mass at which 7 = 0. They further investigate how the pebble isolation mass
scales with disc aspect ratio, viscosity and global radial pressure gradient. They obtain
this way the fit

Miso = 25 X fa:Me (2.17)
where , ,
H/R] log(as) IbE 425
= |=L=| |0.34 0.66| |1 — 2 _ % 2.18
S [0.05] ( log(a) | 6 ’ (2.18)

where a3 = 0.001.

2.3 (Gas accretion

During pebble accretion the protoplanet starts to attract gas from the disc; however, due
to heat generated from pebbles raining down in the proto-atmosphere, the hot hydrostatic
envelope contains a gas mass that is much smaller than the core mass. Until pebble
isolation mass is reached and the flow of pebbles stops, the attracted gas will remain in a
proto-envelope around the core. Even so, Lambrechts & Johansen (2014) and Bitsch et al.
(2015b) argue that small amounts of highly polluted gas can become bound to the planet
during pebble accretion. They assume a gas to solid ratio of 1:9, meaning that 10% of
the mass is counted as gas prior to the pebble isolation mass is reached. I will make the
same assumption, and since I do not model solid accretion, I will initiate the planets in my
simulations at their pebble isolation mass.

I use two different models to calculate the gas accretion rates onto the planet. In the
first model T follow Bitsch et al. (2015b) directly. After the pebble isolation mass has
been reached, the proto-envelope starts to contract onto the core. Machida et al. (2010)
performed 3-D hydrodynamical simulations and found that the gas accretion rate increases
with planetary mass up to a certain critical mass, after which is saturates or decrcases.
Piso & Youdin (2014) show that this critical mass is reached roughly when the mass of the
envelope equals the mass of the core. While My, < Mcore, the contraction takes place on
a long timescale, leading to low gas accretion rates. Piso & Youdin (2014) estimated the
contraction time of the proto-envelope, and from that Bitsch et al. (2015b) extracted the
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corresponding gas accretion rate

-1 —-1/6 11/3
) _ -2 Reny pc Mc
Mes = 0001757 (m) (m) (%)

y < Moy >‘1( T )‘0'5 Mg
0.1 Mg 81 K Myr
In this equation f is a fudge factor, Ken, is the opacity in the gaseous envelope and p,. is
the core density. The factor f is varied in order to match analytical and numerical results.
I will adopt a value of 0.2 for f, similar to Piso & Youdin (2014). For the envelope opacity
and core density T adopt the same values as in Bitsch et al. (2015b), Kepy = 0.05 cm?/g
and p. = 5.5 g/cm?.

When the envelope mass grows larger than the core mass, the gas accretion rate sat-
urates and is no longer dependent on the planetary mass. The gas accretion rate at this
stage has been calculated by Machida et al. (2010) using 3-D hydrodynamical simulations,
and are taken as the minimum of the following two accretion rates

(2.19)

. 9/2
Myas 10w = 0.83Q5 H? (%‘) (2.20)

and .
Mas nigh = 0.14Q3 H?. (2.21)

These gas accretion rates are calculated using the unperturbed surface density at the
location of the planct.

In the second model of gas accretion I will follow Tanigawa & Tanaka (2016). They
argue that if sufficient gas is supplied towards the protoplanet’s orbit by disc accretion,
the gas accretion rate will be determined by the hydrodynamics of the gas flow onto the
protoplanet, which they call Mp7hydm. This rate can be calculated using the following
equation

Mp,hydro = Dzacm (222)
where D is the area in which the gas is to be accreted onto the planet per unit time, and
Yace is the surface density at the accretion channel in the disc (Tanigawa & Tanaka, 2016).
According to the results of 2D hydrodynamical simulations of the accretion flow onto a
planet performed by Tanigawa & Watanabe (2002), D in the equation above is given by

H,\ .
D = 0.29 (-) 30’0, (2.23)
a

Tanigawa & Tanaka (2016) did not usec a torque density distribution to carve the
planctary gap, instead they used an empirical formula for the gas surface density at the
bottom of the gap. From hydrodynamical simulations Kanagawa et al. (2015) obtained

the fit
1

Eacc = —Eun 5 2.24
O 14+0.04K M (224)
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where
H,

K = (7) - ot (2.25)

In all my simulations of gas accretion where I use the model of Tanigawa & Tanaka (2016),
I will use both gap depths produced in my own simulations and gap depths calculated using
Eq. (2.24). Similar to Bitsch et al. (2015b) I limit the gas accretion rate to 80% of the
disc accretion rate. This limitation comes from the fact that a planet can not accrete at a
higher rate than the global gas flow in the disc can supply, and Lubow & D’Angelo (2006)
predicted that the mass flow onto the star across the planetary gap is around 10-25% of
the mass accretion rate outside the planctary orbit.

Since the gas that is accreted onto the planet comes from the disc, I will perform some
simulations where I decrease the surface density within one hill radii from the planet by a
corresponding amount. Because the effect on the disc is expected to be small, I will remove
equal amounts of gas from each grid cell within one Hill radius, and neglect the fact that
the grids are unequally spaced in R (see chapter 3).

2.4 Planet migration

The transfer of angular momentum in the disc causes the planet to migrate at a rate

da 1 a \/2 [4rn
- —_— T 2.2
dt ~ or <GM*> (Mp> ’ (2.26)

where M, is the planetary mass and

I =27 / ASRAR (2.27)

is the total torque exerted on the planet (Lin & Papaloizou, 1986b). This equation has
been derived from the conservation of total angular momentum. In this work I will apply
different prescriptions for the total torque, and compare the resulting migration rates with
cach other. As a first simple approach for migration I will use a Type-I torque formula
from D’Angelo & Lubow (2010),

2
T = —(1.36 4 0.628 + 0.43€) x S,0%a'¢? (%) 7 (2.28)

which describes the total torque exerted on a low-mass planet that is still embedded in
the disc. Since the gas disc is expected to be largely unperturbed, /3 is calculated using
the unperturbed surface density profile. Since this torque formula does not include any
dependence on the gap shape, it can only be used to compare migration rates of planets
with mass up to a few tens of Earth masses.

As a second approach I will implement the same migration prescriptions as used in
Bitsch et al. (2015b). The total torque acting on embedded planets is a sum of the Lindblad
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torque I'y, and the corotation torque I'c. In Paardekooper et al. (2010) it was shown that the
non-linear corotation torque, or horseshoe drag, is prone to saturation. In order to maintain
the corotation torque both thermal diffusion and viscosity are needed. However, since the
global o in my disc is fairly high, I choose to ignore the risk of saturation and instead work
with the total unsaturated torque I'io;. In this work I'y is computed using a prescribed
formula from Paardeckooper et al. (2010). Similar to the Type-I torque formula from
D’Angelo & Lubow (2010), the total unsaturated torque prescription from Paardekooper
et al. (2010) depends on the local radial gradients of surface density and temperature.
Furthermore, the total unsaturated torque also depends on the negative of the local radial
gradient of entropy €, which is related to 5 and £ according to € = £ — (v — 1)3, where ~
is the adiabatic index.

I will simply list the unsaturated torques here, for details on ecach one of them see
Paardekooper et al. (2010). The Lindblad torque is

AL To = —2.5 — 1.76 + 0.15, (2.29)

the baryonic part of the horseshoe drag is

3
hapars/To = 11 (5 = ). (2.30)
the entropy-related part of the horseshoe drag is
€
’ths,ent/ro = 79; (231)

the baryonic part of the linear corotation torque is

3
VFc,lin,baro/FO =0.7 (5 — ﬁ) N (232)

and the entropy-related part of the linear corotation torque is

1.4
’YFC,lin,ent/FO - (22 - _> €. (233)
8

All torques are normalized to Ty = (q/h)?X,a*Q?%, where h = H/R is the disc aspect ratio
taken at the position of the planet. The total torque is obtained by adding the contributions
from Eq. (2.29)-(2.33).

For massive gap-opening planets Bitsch et al. (2015b) consider a transition to the Type-
IT migration regime. The idea behind Type-II migration is that when a protoplanet grows
massive enough to open up a deep gap, here defined as ¥4, < 0.13,, the disc is split
into two parts (in this equation X, refers to the surface density of the unperturbed gas
disc). When this criterion is fulfilled the protoplanet positions itself in the middle of the
gap so that the transfer of angular momentum on both sides of it is precisely balanced.
Since the protoplanct is locked in the middle of the gap, it will continue to migrate with the

16



CHAPTER 2. BACKGROUND THEORY

viscous accretion speed of the disc, which can be significantly slower than Type-I migration,
particularly if « is low. The viscous accretion timescale of the disc is 7, = a?/v, where the
timescale is defined as 7 = a/a. The migration speed can be further reduced if the planet
grows much more massive than the gas outside the gap. This occurs if M, > 47Ya? and
results in Type-II migration timescales of

Ti1 = T, X max (1, %) (2.34)
(Baruteau et al., 2014). In this work I will allow a sharp transition between Type-I and
Type-II migration, in contrast to the smooth transition used in Bitsch et al. (2015b).

As discussed in the introduction, whether or not Type-II migration exists is a disputed
subject. If gas is allowed to cross the planctary gaps even for high-mass planects, there
will be no separation between the inner and outer disc, and thus no Type-II migration.
Diirmann & Kley (2015) reach the conclusion that planetary migration is entirely deter-
mined by the disc torques acting on the planet, and thus completely independent of the
viscous timescale. Since the regions close to a gap-opening planet are mostly depleted
of mass, they will not exert a significant torque onto the planet. This is confirmed by
Kanagawa et al. (2018), where they also use 2-D hydrodynamical simulations to show that
the torque on the planet is roughly proportional to the gap depth. Based on this result [
construct a migration model where I use Type-I torques of Paardekooper et al. (2010) and
replace the unperturbed surface density by the perturbed surface density at the position
of the planet. This will result in migration rates which are proportional to the depth of
the planetary gap, as suggested by Kanagawa et al. (2018).

As the final approach for migration I will let the planets migrate self-consistently under
the action of the same torque density distribution that is used for the planetary gaps. Since
Eq. (2.10) includes contributions from both Lindblad and corotation resonances, it should
readily be able to describe the migration of planets, which D’Angelo & Lubow (2010) also
confirmed in their paper. [ will not do a transition to Type-II migration, but use this
torque also for gap-opening planets. The biggest difference between this migration model
and the previous one is that the migration rate now is proportional to the radial integral
of the perturbed surface density, and not directly proportional to the gap depth.
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Numerical methods

I have written a code in Fortran 90 that solves the surface density evolution of a viscous
accretion disc, and if present, the evolution of the orbit and mass of a protoplanct. The
code is modularized and allows the user to easily determine what set of initial conditions
and parameters to use for the disc and the protoplanet, as well as which output files to
produce.

I solve Eq. (2.1) numerically using a first order finite difference scheme. I use the trick
from Pringle et al. (1986) and solve the equation on a grid of points that are equally spaced
in R'/2. By using a radial variable X = 2R'Y? and dependent variables S = %X 3% and
V= %I/EX , the viscous evolution part of Eq. (2.1) can be rewritten as

oS  0*V

The second term in Eq. (2.1), responsible for the planet-disc interaction, is solved individ-
ually on the same radial grid. Rewritten in X it is equal to

16 1 0

The space derivative in this term is computed using a symmetric two-point finite difference
approximation. Then at the end of each timestep the solutions to the first and second part
of Eq. (2.1) are combined to yield the surface density across the disc.

In order to solve the time evolution of Eq. (2.1) I need to specify the initial surface
density profile of the disc. I do so in a manner similar to Alexander & Armitage (2007),
and choose the initial surface density profile to be that of a steady disc

MO Rin R
Y= — — - . .
(1= eo [ 0

In the above equation M, is the initial disc accretion rate, Ry, is the location of the inner
disc edge and Ry is the location of the outer disc edge. The term in brackets is present due
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to the inner boundary condition where the surface density is put equal to zero, to allow for
matter to be accreted onto the star, and the exponential term is related to the size of the
disc and takes care of the exponential cut-off beyond the outer disc edge. I use an open
boundary condition for the surface density at the outer disc edge.

I adopt a disc lifetime of 3 Myr, similar to Bitsch et al. (2018). The initial mass
accretion rate was set to be My = 1077 Moyr—', in accordance with observations of young
protoplanetary discs by Manara (2014). The evolution of the mass accretion rate is set by
the viscosity parameter a and the initial size of the disc. If I adopt a viscosity parameter
of a = 0.0054, which is the value used in Bitsch et al. (2015b), an inner disc edge at 0.1 au
and an outer disc edge at 70au, the mass accretion drops to around M = 1078 Myyr
in 3 Myr. This is in accordance with the model suggested by Hartmann (2009) (black line
on right plot in Figure 1.1). However, note that in some models T use a reduced « in
the mid-plane of the disc. The reduced « is set to be 107, in accordance with Pinte et
al. (2016), and results in gas accretion rates of order 1 Mj/yr (see section 4.6). For the
boundary conditions at the disc edges, I simply put the viscous radial velocity to be zero.
Further, I let the disc itself stretch several times beyond R4 by increasing the width of the
grid-cells on the X-grid by a factor of 2.5. The grid I use has a total of 5000 grid points.

I calculate the time-step dt for the simulations as the global minimum of

2
at = 8 (3.4
v

where AR is the grid spacing in the semimajor axis. For the standard set of parameters
presented in this chapter that results in a timestep of a few years. However, preliminary
simulations showed that a timestep this big results in unstable solutions, and therefore
I use a timestep that it ten times smaller instead. Since I do not model the formation
of the planctary core, but start the planects at pebble isolation mass, I need to consider
the time it takes to reach this stage. Johansen & Lambrechts (2017) measure the time it
takes for a planctesimal to grow up to 0.1 My, via pebble accretion, and the result varies
a lot depending on the semimajor axis. For a planet initiated at 15au it takes between
1 —2Myr. To reach pebble isolation mass, which is around 20 Mg, at 15au in a disc with
low viscosity and and increasing with semimajor axis, one would have to add some time to
this. Due to this uncertainty in the growth time-scale of the planetary core, I perform four
simulations for each planet, where they are inserted after 2.0, 2.2, 2.4 and 2.6 Myr of disc
evolution. Furthermore, it takes some time for the disc and planet to reach equilibrium
after the planet has been inserted into the disc. Therefore, if a planet is supposed to be
introduced in the disc after 2.0 Myr of disc evolution, I actually insert it a while before this
and let it reach equilibrium with the disc before gas accretion and migration is initiated.
The time to reach equilibrium depends on the mass and location of the planet, and is
varied between simulations.

I only consider a central star of one solar mass in my simulations. The part of the
protoplanetary disc that is closest to the star is assumed to be truncated by the star’s
magnetic field. T do not take this effect into account; therefore, I will neglect the part
of the disc interior of 1au. When a planet migrates interior of 1au, I simply end the
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simulation. Furthermore, I will introduce a surface density floor to the simulation, so
that if the planet opens up a gap that is deeper than 10~% times the unperturbed surface
density, 1 set the surface density at that point in the disc to be equal to this floor value.
The unperturbed density is calculated using linear interpolation between one point at each
side of the gap. Since there might be some material piling up close to the gap edges, I
use points several scale heights away from the planets location, where the exact number
of scale heights are varied between the simulations. As mentioned in section 2.1.1 of this
thesis, linear interpolation is also used to find the values (pi,...,ps) used in Eq. (2.11).
To do so I first calculate the unperturbed g using linear interpolation. Then I use this
together with the temperature gradient &, which is constant throughout the simulation, to
interpolate between the values found in Table 1 from D’Angelo & Lubow (2010).
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Chapter 4

Results of the simulations

In this chapter I will begin with presenting results from the most basic model, that of an
unperturbed disc (section 4.1). Then in the sections following that I will add more details to
the model. The first step is to add a planet and model the resulting planetary gap (section
4.2). In this section I will compare the gap depths obtained in my own simulations with
those of others. Now in my simulations I wish to initiate the planet at its pebble isolation
mass, so the next step is to calculate the pebble isolation mass in my code (section 4.3).
Once this is done, I will add planetary migration (section 4.4). I will start with a very
simple model of only Type-I migration, then I will add Type-II migration. Since it is
disputed whether or not Type-II migration actually exist, I will also construct a model
to mimic the scenario when the migration is governed entirely by the disc torques which
are reduced due to the opening of the planetary gap. In my last most complete migration
model I will model migration in a self-consistent manner using the same torque density as
I use to model the planetary gap. So up to this point I have modeled a planet of constant
mass that migrates in an evolving disc. The final step will be to include the accretion
of gas onto the planetary core (section 4.5). I will use two different prescriptions for the
gas accretion rates and begin with comparing them to each other. Then I am going to
combine these two models of gas accretion with the different models for planetary migration
(section 4.6-4.8). At this stage I will have a planet that both migrates and grows. For
cach of these models I will look at the resulting growth tracks, discuss how realistic they
are and compare them to observations. At the end of the chapter I will make a summary
of the results (section 4.9).

4.1 The unperturbed disc

In this first most basic model I model the evolution of an unperturbed disc, that is a disc
with no planet in it. The evolution of the unperturbed surface density and unperturbed
disc accretion rate is shown in the top panels of Figure 4.1 as a function of semimajor axis.
In the bottom panel I plot the evolution of the disc accretion rate in the innermost part of
the disc. During 3 Myr the disc accretion rate decreases from 1077 Mgoyr~! to 1078 Mgyr—!,
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Figure 4.1: Left: Time evolution of the unperturbed surface density versus semimajor
axis for a viscous accretion disc with viscosity parameter a = 0.0054, inner disc edge
Ry, = 0.1au, outer disc edge Ry = 70au and a lifetime of 3 Myr. The small plot is a
zoomed in version of the big plot with non logarithmic axis. Right: Time evolution of the
unperturbed disc accretion rate versus semimajor axis. Dotted lines has been added to the
plot to mark 105 and 10° years of evolution. Bottom: time evolution of the disc accretion
rate in the innermost part of the disc. The decrease is following the model of Hartmann
(2009), see black line on right panel of Figure 1.1. The dots mark the times when the lines
in the top panecls were drawn.
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which is in accordance with the model suggested by Hartmann (2009) (black line on right
plot of Figure 1.1). As can be seen in the plot, the decrease in disc accretion rate is
non-linear. Hartmann et al. (1998) expressed this decrease as M o t7 with 1.5 < n < 28.

The negative mass accretion rate seen in the outer part of the disc is present because,
as discussed in the introduction, in order for mass to be accreted onto the star angular
momentum must be transported outwards in the disc. The outward mass transfer also
causes the surface density to increase in the outer parts of the disc. The region of outward
mass transfer moves further away from the star with time, as can be seen in the right plot.

4.2 Planetary gaps

In the previous section I modeled how the disc evolved when there was no planet in it. In
this section I will add a planet to the disc. So what will happen when I do so? The planet
will excite density waves in the disc which carry angular momentum away from the planet
and deposit it in the disc via viscous dampening. This angular momentum deposition leads
to the opening of a planetary gap; however, instead of directly modeling the interaction
between the planet and the disc I choose to instead apply a 1-D torque radially across the
disc. Further I assume that the density waves are damped instantancously. This result in
narrower gaps, and might be a bad approximation since we know from observation of mm
sized dust that the gaps in protoplanctary discs are quite wide. However, for simplicity, and
since it is not certain how well the dust is coupled to the gas, I will use this approximation
regardless.

The resulting planetary gaps can be viewed in the upper left panel of Figure 4.2. In
this figure we see that high-mass planets open up deeper and wider gaps than low-mass
planets. The exact depth of the gap is very dependent on the shape of the torque profile
(see e.g. Hallam & Paardekooper 2017), and varies a lot depending on which model is being
used, as can be seen in the lower panel of Figure 4.2. The difference between the models
increases with increasing planetary mass, especially the gaps formed in my 1-D simulations
become very deep for massive planets. It is well known that 1-D models produce narrower
and deeper gaps than their higher dimensional analogs (e.g. Lin & Papaloizou 1986b;
Kanagawa et al. 2015). Hallam & Paardeckooper (2017) performed an extensive analysis
of the difference between 1-D and 2-D models and found that the difference still remains
even if they apply the same torque density distribution radially across a 2-D model. They
suggest that the difference originates from the fact that 2-D/3-D simulations are influenced
by instabilities which results in an unstable gap-edge, instabilities which are not present
in 1-D simulations. Two such important instabilities are the Rayleigh instability and the
Rossby wave instability.

The Rayleigh instability sets in if the criterion for stability of a rotating disc d(R*Q)) /dR >
0, is violated (Chandrasekhar, 1961). What this means is that the specific angular momen-
tum must increase outwards. If this condition is violated the system will be able to reach a
lower energy state by radially mixing material, and so the system becomes unstable. The
stability condition can be violated due to a deviation from Keplerian rotation speed of
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Figure 4.2: Left: Gap-profiles created by the torque density distributions showed in the left
panel. Right: Torque density distributions for planets of different masses located at 5 au in
a disc where oo = 0.004 and H/R = 0.05 (Eq. (2.10)). Bottom: Gap depths as a function of
planetary mass for different models. The gap depths obtained from my own simulations are
the same as in the upper left panel, they are calculated using linear interpolation between
the points marked with circles on the upper left panel. The curve labeled “K15” is obtained
using Eq. (2.24) from Kanagawa et al. (2015), this empirical formula has been obtained
from 2-D hydrodynamical simulations. The curve labeled “HP17 - 2D planet” is from a
2-D hydrodynamical simulation by Hallam & Paardekooper (2017).
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Figure 4.3: Figure adapted from Lyra et al. (2008). Snapshots of a disc of gas (top panel)

and a disc of solids (bottom pancl) taken after the number of orbital periods indicated

above the panels. The vortices triggered by the Rossby wave instability result in trapping

of solid particles and gas. This occurs already after 17 orbital periods, which is the time
indicated above the leftmost panels.

disc material close to the planet. The approximation of Keplerian velocity is never fully
accurate due to the radial pressure gradient in the disc that causes the gas to rotate at a
sub-Keplerian speed. This deviation is further increased if a steep surface density gradient
is present. The deviation from Keplerian rotation affects the angular momentum transfer
at the gap and can, if large enough, violate the Rayleigh criterion. When this occurs the
angular momentum transfer becomes enhanced, which results in a shallower surface den-
sity gradient and thus a shallower gap depth. The Rossby wave instability, which occurs
due to the formation of Rossby vortices by the shear in velocity of disc material close to
the planet, is only present for steep density gradients and results in the formation of a
turbulent gap edge (see Lovelace et al. 1999; Lyra et al. 2008). This promotes angular
momentum transfer, which decreases the density gradient and results in a shallower gap,
similar to above. The formation of vortices by the Rossby wave instability is shown in
Figure 4.3.

Hallam & Paardekooper (2017) conclude that they can explain the discrepancy between
1-D and 2-D simulations by the absence of the Rossby wave instability in 1-D simulations.
This would also explain why the discrepancy is small for low-mass embedded plancts,
since only gap-opening planets can violate the Rossby wave instability. The Rossby wave
instability is only significant for relatively low viscosities; however, the limit at which it
becomes significant varies in the literature. Kanagawa et al. (2015) performed a similar
investigation as Hallam & Paardekooper (2017), but instead of the Rossby wave instability
they explained the difference by a combination of three processes: 1) the deviation from
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Keplerian angular velocity due to the pressure gradient, 2) the violation of the Rayleigh
stable criterion due to high density gradients at the gap-edge, and 3) the effect of wave
propagation which causes the angular momentum to be deposited in a wider region of the
disc. They reported that the first two processes make the gap shallower, while the third
makes it both shallower and wider. In their complete model they take all these effects into
account and obtain 1-D gaps which are consistent with hydrodynamical simulations.

A combination of the processes above may thus explain why the gaps produced in
my 1-D simulations are considerably deeper than the gaps formed in 2-D hydrodynamical
simulations. The curve labeled “K15” in the bottom panel of figure 4.2 was calculated using
Eq. (2.24). This empirical formula, which has been obtained from 2-D hydrodynamical
simulations, results in much shallower gaps than my 1-D simulations, and agrees fairly well
with the 2-D hydrodynamical simulations of D’Angelo & Lubow (2010).

The fact that the gaps produced in my simulations are too deep will have multiple effects
on the evolution of the system, e.g. a faster transition to the slower Type-II migration, less
mass flowing across the gap, and lower pebble isolation masses. The gas accretion rate
onto the planet will also be affected. Because of this I will use both gap depths resulting
from my own simulation and gap depths calculated using the equation from Kanagawa ct
al. (2015) to calculate the migration and gas accretion rates in the following sections. From
the discussion above I conclude that in order to produce an accurate self-consistent model
of gap-formation in one dimension, a more advanced torque density distribution than the
one we use is required, using e.g. the angular momentum transport equation of Kanagawa
et al. (2015).

4.3 Pebble isolation mass

In this section I am going to calculate the pebble isolation mass using the surface density
profile obtained in the previous sections, and compare it to results of 3-D simulations.
This I do because I wish to start the planet at its pebble isolation mass in my complete
simulations. A planet reaches pebble isolation mass when it can perturb the surface density
enough to create a positive radial density gradient that counteracts the negative radial
gradients of temperature and scale height. This causes the gas outside the planet to
no longer orbit at sub-Keplerian velocities, and results in that the pebbles no longer lose
angular momentum due to drag. Once the planet reaches pebble isolation mass, the pebbles
will thus start to pile up outside the planetary orbit; hence, hindering further pebble
accretion onto the core.

In my simulations the pebble isolation mass is calculated by finding for which planetary
mass the radial pressure gradient is zero, an example is shown in the right panel of Figure
4.4. The formula from Bitsch et al. (2018) that was presented in section 2.2, Eq. (2.17),
was derived in a similar way from fitting results of 3-D hydrodynamical simulations of
planct-disc interactions. As discussed in the previous section, the gaps produced in 1-D
simulations are deeper than their higher dimension analogs. The result will be that a
lower planetary mass is required to reach pebble isolation in my simulations, compared to
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Figure 4.4: Left panel: Pebble isolation masses obtained from my own simulation and
from Eq. (2.17) of Bitsch et al. (2018) as a function of semimajor axis. Masses are shown
both for the high a used for disc evolution, and for the reduced « in the midplane of the
disc. Right panel: The negative radial pressure gradient as a function of semimajor axis
for different planetary masses. The pebble isolation mass is obtained by finding for which
planetary mass the radial pressure gradient is zero, in this particular case it is for a planet
of mass slightly larger than 13M.

the masses obtained from using Eq. (2.17). This can be seen in the top panel of Figure
4.4 where I have done a comparison between the pebble isolation masses obtained from
my simulations and the ones obtained from using Eq. (2.17). For the high o model my
simulations yield masses which are around 30% lower than the masses obtained using the
equation from Bitsch et al. (2018). For the reduced o model this difference increases and
my simulations now yield masses which are 80% smaller instead of 30%. This suggests
that the gaps formed in my simulations are much more dependent on the viscosity than
the ones formed in 3-D hydrodynamical simulations. In all following simulations I will use
Eq. (2.17) to calculate the pebble isolation masses, and I will use it together with the
reduced « in the mid-plane of the disc.

4.4 Planetary migration

4.4.1 Comparing migration rates

In Figure 4.5 I compare the migration rates obtained from using the different migration
prescriptions discussed in Section 2.4. The migration rates of the planets depend on the
surface density. The initial surface density profile is proportional to «; however, in this
figure I removed this dependency on « so that the initial surface density profile is the same
regardless of a. This is to allow for casier comparison.

The Type-I migration prescription from D’Angelo & Lubow (2010) (labeled DL10 in
the figure) is proportional to the planetary mass. Since this migration model does not care
about the opening of the planetary gap, it results in unreasonably high migration rates
for massive planets. In the classical migration picture the planet becomes coupled to the
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Figure 4.5: Migration rates versus planctary mass for different torque prescriptions and
different viscosity models. The curve labeled “DL10” is the Type-I migration rate from
D’Angelo & Lubow (2010). The curves labeled “B15” are following the migration prescrip-
tion of Bitsch et al. (2015b) for Type-I and Type-II migration. The curves labeled “P10”
are obtained using the Type-I migration rates from Paardekooper et al. (2010) multiplied
by the gap depth, where I use gap depths both from Kanagawa et al. (2015) and from
my own simulation. The migration rates labeled “Int” are calculated in a self consistent
manner by using the same torque density distribution of D’Angelo & Lubow (2010) as I
use to calculate the planetary gaps. For the migration rates where I use my own planetary
gaps (curves “P10 mygap” and “Int”) I measure the rates at 10®yr for a = 0.01 and at
10* yr for o = 0.001.
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viscous evolution speed of the disc when a sufficiently deep gap, here taken to be 10%
of the unperturbed surface density, is opened up. This results in lower migration rates
than for Type-I migration, and migration in this regime is called Type-II migration. For
very deep gaps the Type-II migration speed can be even further reduced. In the model
labeled B15 I follow the migration prescription of Bitsch et al. (2015b) where they use
both Type-I migration and Type-II migration. Unlike Bitsch et al. (2015b) I have not used
smooth transitions between the different migration regimes, which is what causes the sharp
transitions in migration rates seen in Figure 4.5. This migration model yield migration
rates that are more reasonable than the DL10 model for massive planets; however, for
a = 0.01 a Saturn mass planet at say 10au would still reach the inner edge of the disc
within 10°yr. For a lower viscosity the planetary gaps become deeper, which result in a
faster transition to Type-IT migration and lower migration rates. In this scenario it would
take the same planet as above around a millions years to reach the inner disc, which is
more reasonable. For very high planetary masses the perturbation on the surface density
due to the planet becomes huge in my model, resulting in large torques on the planet. If
this is a physical effect or an numerical effect I can not tell, and therefore I will not look
deeper into migration in this regime.

Type-II migration could only occur if matter is prevented from crossing the planctary
gap, thus dividing the disc into an inner and outer part. Since this migration model
often results in that planets migrate all the way to the inner disc, a lot of effort has
been put into coming up with an alternative scenario. If as discussed in section 2.4 gas
isn’t prevented from crossing the planetary gap, there will be no separation between the
inner and outer disc and thus the planet will continue to migrate under the actions of
the disc torques. Because of the low surface density in the gap region, these torques
will be reduced, and thus the migration rates should decrease as well. Kanagawa et al.
(2018) perform 2-D hydrodynamical simulations and show that the torque on the planct is
decreasing roughly linearly with the gap depth. I mimic this scenario in the model labeled
P10, and I do so using the Type-I torque prescription from Paardekooper et al. (2010),
where the unperturbed surface density is exchanged for the perturbed one. From the figure
it is clear that this migration model indeed results in lower migration rates than in the
typical Type-II scenario. Since this model depends on the depth of the planetary gap, and
since I know that the gaps produced in my simulations are too deep, I use gap depths both
from my own simulations and gap depths obtained using equation 2.24 from Kanagawa
et al. (2015). The gap depths from Kanagawa et al. (2015) are shallower than mine for
massive planets, which results in higher migration rates than when I use the gaps from
my own simulations. When I use gaps from my own simulations the migration halts long
before Jupiter masses are reached. For low viscosities the same would be the case for the
gaps from Kanagawa et al. (2015).

In the last migration modeled labeled Int I use the same torque density to model
migration as I use to model the opening of the planetary gap. This is my most complete
and self-consistent model of migration. In this model I do not make a transition to Type-
IT migration, but let the planet migrate entirely due to the actions of the disc torque.
Because of this I would have expected these migration rates to follow the P10 model;
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Figure 4.6: In this plot I show the migration tracks for planets of constant mass that start
at different semimajor axis and at different times during disc evolution. I have used the
migration prescription from Bitsch et al. (2015b) to produce this plot, and since there is
no easy way to separate the a used for disc evolution from the one used for migration in
this model, I use the same for both (o = 0.0054). The mass of the planets in the plot is the
pebble isolation mass at their initial locations, calculated using the equation from Bitsch
et al. (2018) together with the reduced « in the mid-plane of the disc.

however, looking at the figure I find that the migration rates instead follow the classical
Type-I1/Type-II migration model. One difference between the models is that the P20 model
is directly proportional to the perturbed surface density, while the Int model is proportional
to the radial integral of the perturbed surface density. Type-II migration should only exist
if much of the gas is hindered from crossing the planetary gap, so it would seem that this
might be the case in my 1-D simulations. If so, that would be another difference between
1-D simulations and 2-D simulations, since Dirmann & Kley (2015) used 2-D simulations
to show that gas do flow across the gap on horseshoe orbits. I will investigate this further
in section 4.8.

4.4.2 Type-I and Type-1I migration tracks

In Figure 4.5 T made a comparison between different migration rates, now lets move on
to see how the migration tracks of planets might look like. In Figure 4.6 I have plotted
the semimajor axis evolution for planets of constant mass using the Type-I and Type-II
migration prescription from Bitsch et al. (2015b), this I have done using multiple one-
planet simulations. The planets in the plot have different initial locations and are initiated
at different times during disc evolution. The mass of the plancts are set to be the pebble
isolation mass at their respective initial location, calculated using Eq. (2.17) together with
the reduced « in the mid-plane of the disc. Since the pebble isolation mass increases with
semimajor axis, and the Type-I migration rate is proportional to the planetary mass, the
plancts that start at 30 au reach the inner part of the disc in approximately the same

30



CHAPTER 4. RESULTS OF THE SIMULATIONS

amount of time as the planets starting at 5 au.

If a planet migrates past 1au the simulation is terminated; however, in Figure 4.6 the
migration of most planets stop before they reach 1au. From the figure I can tell that
more massive planets stop migrating further out in the disc, up until one reaches masses of
around 30 Mg, after that the planets continue to migrate all the way to 1au. The reason
for this behavior is the following. The migration rate equals zero only if the total torque
on the planet (Eq. (2.29) to (2.33)) equals zero. The only variable in these equations that
changes during the simulation is /3, the negative slope of the logarithmic surface density.
In my simulations I calculate 3 by taking the derivative between two points taken multiple
scale heights away from the planet’s location. For the nominal disc parameters that I use,
the total torque equals zero only when 8 ~ 0.54. For § < 0.54 the migration changes
direction to outwards.

Now Type-I migration is derived for the case when the surface density is largely un-
perturbed by the presence of the planet, and looking at the unperturbed surface density
profile in Figure 4.1, 8 > 0.54 at 30 au and should increase towards 1au. However, when
a planet opens up a gap in my simulations it results in some mass piling up outside the
planct. One explanation for this could be if some matter is prevented from crossing the
planetary gap. If so then the amount of matter that is being piled up increases with gap
depth. Since the gap depth increases for smaller semimajor axis, this results in more mass
being piled up closer to the star. This effect can be seen multiple scale heights away from
the planetary orbit, and because of this 3 decreases towards the star. Since this effect is
larger than the increase of 8 due to the unperturbed surface density profile, the planets
eventually reach a position where § ~ 0.54. More massive planets open up deeper gaps
and thus reach g =~ 0.54 further out in the disc. If the planets are more massive than
around 30 Mg they enter the Type-II regime before this occurs, and continues to migrate
all the way to 1au.

Since this effect is caused by the planet, and Type-I migration is derived for an unper-
turbed disc, it is most likely not physical. It could be avoided by using a smooth transition
between Type-I and Type-II migration, occurring before this effect becomes visible. An-
other alternative is to change the condition for entering into Type-II migration, essentially
making the required gap depth shallower. This is not something I will do in the following
simulations. For simplicity, and in order for it to be easy to compare different models
between each other, all future simulations will have planets starting at the same locations,
masses and times as in Figure 4.6.

4.5 (Gas accretion

As the final step I am going to add gas accretion onto the planetary core in my model. I
use two different analytical prescriptions for the gas accretion rates (see 2.3). The resulting
gas accretion rates are compared in Figure 4.7. The model labeled B15 has two regimes:
as long as the envelope mass is less massive than the mass of the core the gas accretion
rates increase with planetary mass; when the envelope mass grows larger than the core
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Figure 4.7: Gas accretion rates as a function of planetary mass for the models of Tanigawa
& Tanaka (2016) and Bitsch et al. (2015b) (see section 2.3). I use the same disc and planet
parameters as in Figure 1 of Tanigawa & Tanaka (2016) to produce this plot (o = 3 x 1074,
H/a=0.05, f =1, a=>5.2au), and indeed the blue curve labeled “TT16” follows the curve
showed in Tanigawa & Tanaka (2016) exactly. The gas accretion rates from Tanigawa &
Tanaka (2016) result in timescales for accretion onto Jupiter mass planets that are as short
as 10*yr when my nominal disc accretion « is used. Therefore I will use the reduced a
from the mid-plane of the disc to model gas accretion when I use the rates from Tanigawa
& Tanaka (2016). The reduced « is set to be 1074, since that results in gas accretion
rates on the order of a few Mj/yr when the planet reaches one Jupiter mass. The model
of Bitsch et al. (2015b) has two regimes. As long as the envelope mass is smaller than a
certain critical mass, which is roughly equal to the mass of the core, the gas accretion rates
increase with planctary mass. Once the critical envelope mass has been reached, the gas
accretion rate saturates and is roughly constant with planetary mass. In my model I use
a hard boundary between the two regimes for gas accretion, while in reality the transition
should be smoother (see Figure 5 of Machida et al. (2010)). I can not as easily separate
the viscosity used in gas accretion from the one used for disc evolution in this model, and
therefore I will continue to use a = 0.0054.
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mass rapid gas accretion initiates. At this stage the gas accretion rates are independent
on the planetary mass. The sharp transition between the two regimes comes from fitting a
very simple formula to the results of Machida et al. (2010), the actual data that they use
for fitting features a smoother transition. The model of Tanigawa & Tanaka (2016) has a
dependency on both the planetary mass and the depth of the planetary gap, causing the
parabolic-like shape.

For the same level of viscosity, the gas accretion rates of Tanigawa & Tanaka (2016)
arc a few factors higher than the ones from Bitsch et al. (2015b) for planets with masses
between 0.1 and 1 Jupiter masses. However regardless of this discrepancy, both models
yield gas accretion rates that are much higher than 1 M;/Myr when o = 0.0054 is used.
To form gas giants with a mass comparable to Saturn or Jupiter, it is not desirable to
have gas accretion rates higher than a few M;/Myr. In the model of Tanigawa & Tanaka
(2016) lower gas accretion rates onto the planet can be obtained by reducing « in the
calculation for the gap depths (Eq. (2.24)). This can be motivated if one assumes that
the planet is positioned in the mid-plane of the disc, where the viscosity as discussed in
section 2.1 is likely lower than in the top-layer of the disc. From the figure we see that
using a = 107* results in more reasonable gas accretion rates. There is no easy way to
separate the viscosity used in gas accretion from the one used for disc evolution in the
model of Bitsch et al. (2015b), so therefore I will continue to use a = 0.0054 in that model.

Now I have added all the steps to my planet formation model, and in the following
sections I will combine the above gas accretion rates with the different models for planctary
migration showed in section 4.4.

4.6 Type-I & Type-II migration + gas accretion

In this section I use the classical Type-I and Type-IT migration model (model labeled B15 in
Figure 4.5) together with gas accretion rates from either Bitsch et al. (2015b) or Tanigawa
& Tanaka (2016). For the Tanigawa & Tanaka (2016) model I will use gap depths both
from my own simulation, and gap depths calculated using the formula of Kanagawa ct al.
(2015) together with the reduced « in the midplane of the disc. The viscous « is kept at
0.0054 throughout this work.

The results of these simulations can be seen in Figure 4.8. The most obvious concern
with these simulations is that the migration rates are so high that the nearly all planets
migrate all the was to the inner disc. The only planets that survive are the ones that
start far out in the disc and late during disc evolution. This result was expected since one
known issue with both Type-I and Type-II migration is that they are too fast, in the sense
that the planets migrate tens of au while they grow and end up close to the star unless the
embryo starts far away from the star and late in the life-time of the disc. In the simulations
where the planets shift migration direction, the planets open up gaps deep enough for
to become smaller than 0.54 while still remaining in the Type-I regime. As discussed in
the previous section this is likely not very physical, and therefore those simulations will be
discarded.
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Figure 4.8: Growth tracks of planets resulting from models where I use the migration
prescription of Bitsch et al. (2015b), together with gas accretion rates from either Tanigawa
& Tanaka (2016) (TT16) or Bitsch et al. (2015b) (B15). The gas accretion rates from
TT16 are calculated using either gap depths from my own simulation (mygap) or using the
formula from Kanagawa et al. (2015) (K15gap). The black dots mark the pebble isolation

mass, and the color of the lines indicate when during disc evolution the migration and gas
accretion was initiated. The same coloring scheme will be used in all following plots of

growth tracks.

300 ) TT16 - myGap
250 1

)

5 10 15 20 25 30 5 10 15 20 25 30
Scmimajor axis [au] Scmimajor axis [au]

Figure 4.9: These plots are produced using the same simulations as for the B15 and TT16-
myGap plots in Figure 4.8, but this time I also take into account the removal of gas from
the disc due to gas accretion onto the planet.
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Figure 4.10: These simulations are produced using gas accretion rates from Bitsch et al.
(2015b). Blue lines are for simulations where I do not include the removal of gas from the
disc, and red lines are for simulations where I do (this coloring will be the same in all plots
where I compare between models with and without the removal of gas). Top left panel:
growth track for planets starting at 30au after 2.4 Myr of disc evolution. Right panel:
evolution of the planctary mass. Bottom panel: evolution of the semimajor axis.

Regarding the final masses for the planets, the only simulations that do not produce
gas giants of Jupiter size are the ones where I use the gap depths from Kanagawa et al.
(2015) together with the reduced «. It turns out that for small planetary masses, using the
reduced « actually results in deeper gaps than the ones I obtain from my own simulation.
This translates into lower gas accretion rates, which means that it will take more time for
the planets to carve gaps deep enough to start migrating in the Type-II regime. A longer
period of fast Type-I migration means that the planets will come significantly closer to
the star before Type-II migration initiates, and reach the inner disc much faster than in
the simulations where I use my own gaps or the model of Bitsch et al. (2015b). These
planets thus have a much shorter amount of time to accrete gas, and consequently grow
less massive.

In Figure 4.9 I redo the same simulations as in Figure 4.8, but this time I also take into
account the removal of gas from the disc due to gas accretion onto the protoplanet. I do so
by finding the grid cells which are located within one Hill radii away from the protoplanet,
and divide the total amount of gas that should be removed equally between these cells. If
the resulting effect on the gap depths is so large that the gas accretion rates and migrates
rates change significantly, then this back reaction is important and should be taken into
account in models of planct formation. After comparing them I conclude that this indeed
is the case. Generally the removal of gas from the disc results in lower final masses and
shorter migration distances. The final mass is affected more when the gas accretion rates
from Tanigawa & Tanaka (2016) arc being used, which is expected since these rates are
proportional to the depth of the planctary gap.
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Figure 4.11: These plots are from the same simulations as those in Figure 4.10. Left
pancl: snapshots of the surface density profile at 5 different moments in time. Top right
pancl: planetary mass divided by the mass accretion rate. This gives the timescale for
gas accretion as a function of time. The non-sharp lines are a numerical effect origin in
the low precision used to calculate Mp. Middle right panel: semimajor axis divided by the
migration rate. Similarly this gives the migration timescale as a function of time. Bottom
right panel: the unperturbed /3 as a function of time.
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Figure 4.12: These simulations are produced using gas accretion rates from Tanigawa &
Tanaka (2016) together with gap depths from my own simulations. Top left panel: growth
track for planets starting at 30 au after 2.4 Myr of disc evolution. Right panel: evolution
of the planetary mass. Bottom panel: evolution of the semimajor axis.
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Figure 4.13: These plots are from the same simulations as those in Figure 4.12. Left panel:
snapshots of the surface density profile at 5 different moments in time. Top right panel:
planetary mass divided by the mass accretion rate. Middle right panel: semimajor axis
divided by the migration rate. Bottom right panel: the unperturbed § as a function of
time.

I investigate the differences between the models where I include the removal of gas, and
the models in which I do not, more thoroughly in Figures 4.10-4.13. In these figures I only
look at simulations starting at 30 au after 2.4 Myr of disc evolution. I use gas accretion
rates from Bitsch et al. (2015b) in Figures 4.10-4.11, and gas accretion rates from Tanigawa
& Tanaka (2016) in Figures 4.12-4.13. In the models where I use gas accretion rates from
Tanigawa & Tanaka (2016) I use gap depths from my own simulations. In Figure 4.10 and
4.12 T compare the mass and semimajor axis evolution of the models. In Figure 4.11 and
4.13 T show snapshots of their surface density profiles at 5 different moments in time (left
panels), the timescales for gas accretion (top right panels) and migration (middle right
panels), and the evolution of the unperturbed 5 (bottom right panels).

From these figures we learn that the inclusion of gas removal from the disc, at least
initially, results in deeper planetary gaps. This leads to an earlier transition to Type-II
migration, which is why the migration distance becomes shorter. From the middle right
panel of Figure 4.11 and 4.13 we see that the migration timescale also gets longer, which
once again is because the transition to Type-II migration happens further out in the disc.
Turning to gas accretion, this process is really fast initially when the gaps are shallow and
the migration rates are high. The majority of the mass is accreted during the first small
time period of Type-I migration. Since the gaps at this point are deeper for the simulations
where I include gas, that results in lower accretion rates and once again a shorter period of
fast accretion. This is why those planets become less massive, even though the timescale
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Figure 4.14: In these plots I use the Type-I torque from Paardekooper et al. (2010) together
with the perturbed surface density in an attempt to mimic the scenario when Type-II
migration does not exist. On each figure I indicate what gas accretion rates that was being
used, and which gap depths that are being used for the migration rates (this is the same
gap depths used for gas accretion when the TT16 gas accretion rates are being used).

for gas accretion is much shorter for at least half of the evolution (see bottom right panel
in Figure 4.11 and 4.13).

Overall the gaps get wider in the simulations where I include the removal of gas. This is
expected since I remove gas from the entire Hill radius, which with the current resolution is
equivalent to a minimum of 10 grid cells. The pile-up of material interior of the planetary
orbit, that is visible in the plots where I do not include the removal of gas, disappears
when I do include it. Furthermore, there is a clear dip in the surface density interior to
the planet that appears when I include gas removal. This results in that 5 is lower for
the model in which I remove gas from the disc. After around 2.7 Myr of disc evolution
becomes smaller than 0.54, which in the Type-I regime would have resulted in outward
migration. However, since Type-II migration is reached much carlier than that, it will not
affect the migration.
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Figure 4.15: This plot is produced using the same simulations that were used to produce

the top-right panel of Figure 4.14, the only difference being that I include the removal of
gas from the disc due to gas accretion onto the planet in these simulations.

4.7 Type-I x gap depth & no Type-II + gas accretion

In the previous set of simulations the migration speed was too fast, resulting in that the
planets reached the inner disc in a short amount of time. If there is no Type-II migration,
and the torque on the planet decreases roughly linearly with gap depth (Kanagawa et al.,
2018), then the migration could potentially be halted before this occurs. T investigate this
scenario by using Type-I torques from Paardekooper et al. (2010), which I modify so that
they are proportional to the gap depth. For deep gaps this will basically cause the planets
to stop migrating, and continue to accrete gas in-situ.

Once again I will use gas accretion rates from both Bitsch et al. (2015b) and Tanigawa
& Tanaka (2016). For the migration rates I use both the gap depths resulting from my own
simulation and the gap depths from Kanagawa et al. (2015), together with the reduced
a. The results of these simulations can be seen in Figure 4.14. Once again the gap
depths obtained from using the Kanagawa et al. (2015) formula are deeper for low mass
planets, in this case resulting in a shorter period of migration before the planet stops
and continue to accrete gas practically in-situ. When the planets grow massive enough
becomes less than 0.54, and the Type-I torque prescription results in outward migration.
As mentioned previously this is most likely not physical but a consequence of using this
torque prescription in a regime that it was not derived for. However, since the planets at
this point migrate so slowly anyway, in most cases it does not make a big difference.

From the results presented above I can conclude that this migration model could solve
the problem of too fast planctary migration. The planets that are initiated on a small
semimajor axis migrate a very short distance before they stop and continues to accrete gas
in-situ, if they migrate at all. The planets that start further out in the disc will migrate
further, due to the higher migration rates and shallower planetary gaps. Depending on
which gas accretion rates that are being used, and when and where in the disc the planets
are initiated, I end up with planets located between 2 — 25 au and with masses between
100 — 400 M.
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Figure 4.16: These simulations are produced using gas accretion rates from Bitsch et al.
(2015b), and migration rates calculated using gap depths from my own simulations. Top
left panel: growth track for planets starting at 10 au after 2.0 Myr of disc evolution. Right
pancl: evolution of the planctary mass. Bottom panecl: evolution of the semimajor axis.
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Figure 4.17: These plots are from the same simulations as those in Figure 4.16. Left panel:
snapshots of the surface density profile at 5 different moments in time. Top right pancl:
planetary mass divided by the mass accretion rate. Middle right panel: semimajor axis
divided by the migration rate. Bottom right panel: the unperturbed g as a function of
time. The simulations in which I include the removal of gas reach 8 = 0.54 slightly further
out in the disc, and thus reverses its migration direction sooner, but except for that there
are no big differences between the simulations.
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Figure 4.18: In these plots I allow the planet to migrate self-consistently by using the same

torque density distribution that I use for the gap-opening. For consistency I then also use

the gap depths produced in my own simulation when I calculate the gas accretion rates of
TT16.

In Figure 4.15 I perform the same simulations as in the top right pancl of Figure 4.14,
but now I include the removal of gas from the disc. The effects on planet formation due
to this is quite small this time. The planets become a bit less massive and reverse their
migration direction sooner, but the final semimajor axis does not change much in most
cases. In the previous section the difference in semimajor axis was mostly due to the fact
that Type-II migration was reached earlier. Since there is no Type-II migration in this
model, the difference in semimajor axis evolution should thus be smaller. Any difference
in 8 would also be less prominent since I multiply by the gap depth, which becomes very
deep in my 1D simulations.

In Figure 4.16 and 4.17 1 compare the evolution of plancts starting at 10au after
2.0 Myr of disc evolution, for models with and without the removal of gas. The model
in which I remove gas from the disc migrates a bit slower due to the deeper planetary
gap. The deeper gap also results in that 3 = 0.54 is reached further out in the disc. The
difference between the timescales for migration and gas accretion is fairly small. Further,
the difference between the width of the gaps are less prominent this time. Generally I
conclude that, removing the same amount of gas from the disc that is accreted onto the
planet, matters less when this migration model is being used.

4.8 Self-consistent planetary migration 4+ gas accre-
tion

In this final set of simulations I let the planets migrate self-consistently using the same
torque density distribution that is used to open up the planetary gaps, this is my most
complete model. The migration rate of the planet is now proportional to the radial integral
of the prescribed torque density times the perturbed surface density. I do not make a
transition to Type-II migration in this model. T use the same models for gas accretion as
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previously, but now in order to be consistent I only use the gap depths resulting from my
own simulations when I use the gas accretion rates of Tanigawa & Tanaka (2016), and not
the gap depths from Kanagawa et al. (2015). The results of these simulations can be seen
in Figure 4.18.

From Figure 4.5 I expect these growth tracks to look very similar to the analogous ones
in Figure 4.8, and indeed this is the case. The growth tracks differ a bit from the ones
in Figure 4.8 close to the star, which is because the perturbation on the disc for massive
planets close to the inner edge becomes extremely big. The surface density just inside and
outside the planetary gap grows very high, resulting in very large torques. Most often the
outer torque grows very much larger, causing the planet to migrate so fast to the inner
edge that my sampling timestep is too small to catch it. At rare occasions the inner torque
wins instead, which causes the planet to make a similar leap in semimajor axis outwards
in the disc.

So how comes that these growth tracks resemble the ones where I use Type-II migration?
In section 4.4 T argued that this should be the case only if mass is hindered from crossing
the planetary gap. This would not have an effect on the model where the migration rate
is directly proportional to the perturbed surface density, but would have an effect in this
model where the migration rates are proportional to the radial integral of the perturbed
surface density. To investigate what happens in this case I picked a typical simulation and
plotted the surface density profile and the disc accretion rate at a time when the planet
and the disc has reached equilibrium (see Figure 4.19).

From this plot I learn that gas is effectively prevented from crossing the planetary gap.
This means that there is no refilling of gas into the inner disc, and so for example if the
planet migrates slower than the disc accretes onto the central star, the surface density
interior to the planet should be depleted. However, looking at the top panel there is no
such depletion visible. The surface density looks unperturbed both interior and exterior to
the planctary gap. This all suggests that both the inner disc, the planet, and the outer disc
moves with the same radial velocity. So in my 1-D model I end up with classical Type-II
migration. Since Dirmann & Kley (2015) used 2-D simulations to show that gas does flow
across the planetary gap, and I have shown in my 1-D simulations that gas is hindered
from crossing the gap, it would seem that this is yet another discrepancy between 1-D and
2-D simulations.

In Figure 4.20 I performed the same simulations as in the right panel of Figure 4.18, but
this time I also take into account the removal of gas from the disc due to mass accretion
onto the planet. As can be seen in the plots, this results in lower planctary masses. Since
the planctary masses are lower when the inner edge is reached, there are no occasional
outward jumps in semimajor axis. Regardless if I remove mass from the disc or not, the
fact remains that the migration speed is too fast. Since I use the unperturbed surface
density to calculate 3 in the torque density distribution this was expected. In order to
slow down migration enough to prevent the planets from reaching the inner disc, the torque
reduction due to the gap must be taken into account.
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Figure 4.19: Snapshot of the surface density profile (top panel) and the disc accretion
rate across the disc (bottom panel) taken at a time when the disc and planet has reached
equilibrium. The planet in this specific simulation was initiated at 25 au after 2 Myr of disc
evolution. In this simulation I used gas accretion rates from Bitsch et al. (2015b). From
the bottom panel we learn that gas is prevented from crossing the planctary gap. Looking
at the top panel, gas has neither been depleted or piled-up close to the planetary orbit.
This suggests that the planet and the disc moves together with the same speed. So in my
1-D model I end up with classical Type-II migration rates.
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Figure 4.20: This plot is produced using the same simulations as in the right panel of
Figure 4.18, but for this plot I also take into account the removal of gas from the disc due
to gas accretion onto the planet.
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4.9 Summary of results

In section 4.2 I confirmed what was previously known, that 1-D simulations produce deeper
gaps than their higher dimensional counterparts. In section 4.3 I see that this results in
lower pebble isolation masses than those obtained in higher dimensional simulations. In
section 4.5 I compare different models for planetary migration and find that all models,
except for the one where the migration rates are directly proportional to the gap depth
throughout the simulation, result in migration rates that are so high that the planets are
lost to the star. I also find that if T use the same torque density distribution to model
migration as I use to model the planetary gaps, I obtain migration rates which are very
similar to the classical model of Type-I and Type-IT migration. One suggestion to why
this might be the case, is that mass is hindered from crossing the gap in 1-D simulations.
The simulations show that this indeed is the case for part of the evolution, but not always.
Further analyzes are required to fully understand why this is the case.

In order to obtain reasonable gas accretion rates, a lower viscosity in the mid-plane
of the disc is required. In section 4.6 I find that o = 10™* yields gas accretion rates on
the order of 107% — 1075 Mj/yr. The reduced « is further used to calculate the pebble
isolation masses. Since the gas accretion rates in one of the two models that I use are
proportional to the gap depths, and I know that my gap depths are to deep, I perform
additional simulations using gap depths that are calculated from the empirical formula of
Kanagawa et al. (2015). The reduced « in the mid-plane of the disc is used to calculate
these gap depths. For large planetary masses, this results in much shallower planetary gaps.
However, it turns out that for small planetary masses, the gap depths from Kanagawa et
al. (2015) are deeper than those produced in my simulations. This affects the simulations
where I use the classical Type-1/Type-II migration model. Since the gap depths are deeper
for small planetary masses, the gas accretion rates will also be lower, and this results in
a longer period of Type-I migration. Because of this, the planets will reach the inner disc
edge before they have grown to Jupiter sizes (see Figure 4.8).

In the model where the migration rates arise from the Type-I torque multiplied by the
gap depth, the planets migrate a short distance before they stop and continue to accrete
gas practically in-situ. In this model the planets migrate a shorter distance when the gap
depths from Kanagawa et al. (2015) are used. Regardless of which gap depths that are
used, this is the only model in which I am able to form Jupiter like planets that does
not have a 40 — 50 Mg core. Finally I also investigate the effect of gas accretion on the
protoplanctary disc. The gas that is accreted onto the protoplanet originates from the
disc, and in some simulations I remove the same amount of gas that is accreted onto the
planct from the disc. This results in deeper and wider planctary gaps, which leads to
longer timescales for gas accretion. The effect on planet migration is most prominent in
the model where I make a transition to Type-II migration, and results in shorter migration
distances.
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Discussion and conclusions

In this thesis I have performed 1-D simulations of a viscous evolution disc that is perturbed
by a protoplanet which migrates and accretes gas. 1 have considered three different models
for planetary migration: in the first model I use standard Type-I and Type-II migration
rates; in the second I mimic the case when Type-II migration does not exist and the Type-I
migration rates are reduced due to gap-opening; in the third I let the planet migrate self-
consistently using the same torque as I use for gap-opening. I use two different models for
gas accretion, where one of them takes into account the reduced a in the mid-plane of the
disc. The aim has been to investigate what effect planet formation has on disc evolution,
the most obvious one being the planet induced gap.

The torque which I apply to the disc in order to produce the planetary gaps assumes
instantaneous wave dampening, and does not take into account that there are instabili-
ties occurring in 2-D/3-D simulations which are not present in 1-D simulations. As other
authors have concluded previously (e.g. Hallam & Paardekooper 2017; Kanagawa et al.
2015), this results in that the gaps produced in 1-D simulations are deeper and thinner
than those produced in 2-D/3-D simulations. I measure the gap depths produced in my
simulations, compare them to results presented in other papers and reach the same conclu-
sion. Deeper gap depths translate to lower pebble isolation masses, and further affect the
mass at which the transition between Type-I and Type-II migration occurs. It also affects
the gas accretion rates in models which depend on the surface density at the location of the
planet. The depth of the planetary gaps thus have a big impact on the planet formation
process, and correct gap depths could greatly improve models of planet formation.

In order to obtain reasonable gap-shapes in 1-D simulations one needs to use torque
prescriptions that take all the effects mentioned in section 4.2 into account. These torque
prescriptions can become quite complicated, and therefore authors such as e.g. Kanagawa
et al. (2015) have used hydrodynamical simulations to derive empirical fitting formulas
for the depths of planctary gaps. Unless a more advanced torque model is being used,
one can choose to use these fitting formulas in order to obtain more realistic gas- and
migration rates. However, if one wants to learn about the shapes of planctary gaps in
order to compare with observations of rings in protoplanetary discs, knowing only the gap
depth is not enough. One method to mimic the effect of the Rossby wave instability and
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the Rayleigh instability could be to increase the viscosity at the edges of the gap. This
would increase the angular momentum transfer at the gap edges and most likely results in
a shallower gap. This is something that I will continue to work on.

The gas that is accreted onto the protoplanet is taken from the disc. This implies
that when I model gas accretion onto the planet I should also remove the same amount
of gas from the disc. Depending on how massive the disc is compared to the planet, and
the timescales for mass and migration, this may or may not be important to incorporate
into the model. From running simulations with and without the removal of gas, I conclude
that it makes a significant difference in most cases. Including it results in deeper and wider
planetary gaps, which leads to lower planetary masses. In the case when Type-II migration
is included in the model, the transition to Type-II migration occurs earlier, which leads to
shorter migration distances. In the case when I only use Type-I migration multiplied by
the gap depth, the direction of migration is reversed further out in the disc. Comparison
between these two cases shows that it is more important to include the removal of gas
when the planet is migrating, than when it is accreting gas practically in-situ.

In my simulations the classical model of Type-I and Type-II migration results in mi-
gration rates that are too high. When I use the same torque to model migration as I use
to model the planctary gaps, I end up with migration rates that are very similar to the
Type-I and Type-II migration rates, even though I do not make a transition to Type-II
migration. Type-II migration occurs if the planet stops gas from drifting across the gap,
so that the disc is split into two parts. After analyzing my simulations I find out that this
indeed is what happens, so in my 1-D model I end up with classical Type-II migration.
However, in 2-D simulations mass is supposed to be able to cross the gap even for deep
gaps (Diirmann & Kley, 2015), so this seems to be yet another difference between 1-D and
2-D simulations.

The model in which the migration rates arise from the Type-I torque multiplied by the
gap depth is the only model in which the planets do not migrate all the way to the inner
disc. In these simulations the planet migrates a short distance, after which it continues to
accrete gas practically in-situ. In this model I am able to form Jupiter-like planets with
core masses of around 10 — 20 Mg. This model is supported by Kanagawa et al. (2018)
where they show that the torque on the planet decreases relatively linearly with the gap
depth. The results of my simulations show that taking the reduction in the magnitude
of the torque due to the planetary gaps into account, is one way to potentially solve the
problem of too fast migration. This I would argue is the most interesting finding from this
project, since the problem of too fast migration has been known for a long time and has
no commonly accepted solution.

5.1 Connection to observations

Observations show dark rings in protoplanetary discs at varying distances from the star
(see Figure 1.2). Fast migration like in the classical Type-I and Type-II migration picture
is a problem when we try to explain these gaps by planet-disc interactions, since it would
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be unlikely to capture planets at large distances from the star; the time-scale a/a is so
short that these planets will migrate on time-scales much shorter than a million years.
In order to explain these gaps from planet formation, slow migration or in-situ growth,
is thus required. This I can obtain in the model where there is no Type-II migration
and the planet migrates under the action of the disc torques, which are reduced due to the
opening of the planetary gap (sce Figure 4.14). This model is supported by hydrodynamical
simulations, which show that the relation between the torque on the planet and the gap
depth is essentially linear (Kanagawa ct al., 2018).

The gaps seen in observations are often multiple au wide. In order to reproduce such
wide gaps using 1-D simulations one would need to take instabilities, wave-propagation
and also the back-reaction on the disc into account. The back reaction on the disc is likely
also important in 2-D and 3-D simulations. The widening of the planetary gap due to gas
accretion onto the planet is an example of a case where the planet affects the evolution of
the protoplanetary disc, and the fact that the gap width is an observational property makes
it very important to take into account. It should be mentioned here that the observations
of protoplanctary discs are taken at mm wavelengths, so it is not the gas content but the
content of mm sized dust that is observed. In order to properly compare the gap depths
and gap widths from my model with observations one would thus have to include dust
dynamics into the model. This is something that I will do in the near future.

One argument for why planct-disc interactions are the likely origin of dark rings in
protoplanetary discs, is that they have been shown to be located near ice-lines (Zhang et
al., 2015). This matters for planet formation since the formation of planetesimals, which
are the building blocks of planets, is very efficient near ice-lines (Ros & Johansen, 2013;
Drazkowska & Alibert, 2017; Schoonenberg & Ormel, 2017). If the growth up to pebble
isolation mass is rapid, and gas accretion is as efficient as in my models; then a gap which
is deep enough to substantially slow down migration would appear quickly, and the planet
would remain fairly close to the ice-line.

In order to improve on these results, a more advanced torque prescription that produces
similar results in 1-D simulations as in 2-D and 3-D simulations is required. Alternatively,
if one could find a simple relation between the pebble isolation mass obtained in my
simulations and the ones obtained in 3-D hydrodynamical simulations, one could use that
to scale the torque for low mass planets. A 1-D model which reproduces results of 2-D
and 3-D hydrodynamical simulations is desirable since it would decrease the amount of
computer power needed drastically. It is also necessary if a study of multiple stages of
planet formation is ever to be possible.
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