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Abstract

In this thesis a new method for the numerical solution of coupled systems of
ordinary differential equations is investigated. To understand this new method,
the workings of existing Waveform iteration methods, in particular the Jacobi
and Gauß-Seidel methods were explored first. These methods were introduced to
be able to exploit multirate behaviour in systems and use an iterative procedure
to successively approximate the solution of the problem. The new multirate
time integration method is similar to these methods, but introduces a new way
of parallelising the time integration, thereby improving performance over the
existing methods. In this work an analysis of the performance of the Jacobi
and Gauß-Seidel method when applied to linear systems is done, both for a
singlerate setting as well as a multirate setting. This analysis is then compared
to numerical simulations of the waveform iteration methods, as well as the new
multirate time integration method. The results look promising for the new
method, having a superior performance compared to the waveform iteration
methods for almost all test cases when applied to the heat equation.
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Chapter 1

Introduction

Many real world problems can be described by differential equations. A big
part of numerical analysis revolves around finding solutions to these equations.
Sometimes a system can be better described by multiple smaller subsystems
working together. In this work we will explore the waveform iteration methods,
designed for the numerical solution of these systems. Alongside two existing
methods, the Jacobi and Gauß-Seidel method, a new multirate method proposed
by Philipp Birken will be presented. The performance of this method will be
compared to the Jacobi and Gauß-Seidel methods.

1.1 Motivation and problem description

When a system is made up of two or more subsystems, it can be beneficial to
be able to use the different properties of the subsystems to design more efficient
methods. Some of the properties that can be exploited include, but are not
limited to, differing time scales between the problems or the requirement to
use different existing codes for the different subsystems. In this thesis, we will
consider a system of two coupled ODEs of the following form:{

System A ẋ(t) = f(x(t), y(t))
System B ẏ(t) = g(x(t), y(t))

x(0) = x0
y(0) = y0

t ∈ [t0, te]. (1.1)

Here x ∈ Rn, y ∈ Rm are the system’s state variables and ẋ ∈ Rn,ẏ ∈ Rm
the time derivatives of the state. The two maps f : Rn × Rm 7→ Rn and
g : Rn × Rm 7→ Rm are the maps describing the derivatives of each subsystem.
Both functions x(t) and y(t) are functions of time. For the rest of this thesis the
systems will be referred to as system ”A” and system ”B” as described above.

Waveform iteration methods seek to exploit the properties of these coupled
systems. Waveform relaxation methods, of which waveform iteration methods
are a subclass, were first proposed in the PHD-thesis by Lelarasmee in 1982 [1]
as a means of simulating integrated circuits. The methods work by an itera-
tive procedure, generating sequences of functions, also called waveforms, that
represent the solution of one of the subsystems. Combining the solution of the
subsystems, we then have a numerical solution of the full system.

Some waveform iteration methods can be implemented in a parallel way.
These methods are however not fully exploiting all possibilities regarding par-
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4 CHAPTER 1. INTRODUCTION

allelisation. In this thesis a new method proposed by Philipp Birken is imple-
mented and analysed. This new method introduces parallelisation on a lower
level compared to conventional waveform iteration methods with the idea that
parallelisation will decrease computational time. To be viable the method should
fulfil the following criteria:

• Partitioned: Contrary to the monolithic approach, where the full system
is discretised and solved together, we want to have a partitioned method
separating the solvers for the different systems. The exchange of informa-
tion between the systems is achieved by coupling.

• Order of convergence ≥ 2: Any less of a convergence order is not very
useful in modern scientific computing.

• Implicit: We need the ability to solve stiff problems. Many interesting
applications of these methods are stiff.

• Multiscale: Both systems should use independent time steps. This is
again a property of the given problem we want to exploit to increase
performance.

• Parallel: By parallelising the method we hope to decrease the time needed
to solve the problem.

• Time-adaptivity: We would like the ability for the method to adapt the
step size in order to control the error. This is however not considered in
this thesis.

1.2 Overview of content

In chapter 2 we are going to lay out the basics of the numerical solution of
ordinary differential equations and parallel computing which is needed in sub-
sequent chapters. This chapter is not meant as an introduction to the topics for
someone unfamiliar with numerical analysis , rather it should serve as a com-
mon ground for the rest of the thesis. In chapter 3 the basics of the waveform
iteration methods will be discussed, including an analysis of the convergence of
these methods when applied to linear systems. The new multirate method is
introduced in chapter 4. In chapter 5 we compare the results from these three
methods, comparing the waveform iteration methods to the analysis done in
chapter 3 and comparing the new multirate method to the Jacobi and Gauß-
Seidel methods. Finally in chapter 6 we present conclusions made based on
the results and analysis. Also possible improvements and continuations of this
work are proposed. There is also a short appendix containing the numerical
integration methods used.

1.3 Literature review

This master thesis is based on different works in the field of waveform itera-
tion methods. The main source is the book on waveform relaxation methods
for parabolic problems by Vandewalle [2]. This book explores a new numeri-
cal method combining multigrid methods and waveform iteration methods. It
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includes a comprehensive background on waveform relaxation methods and its
applications. A thorough analysis of the convergence rates of waveform relax-
ation methods applied to linear systems is done in two papers by Nevanlinna
in [3] and [4]. In the first paper the method is presented and analysed in the
continuous case. Also the stopping criterion of the iteration is discussed. In the
second paper the discrete case is analysed. Also some additional measures are
proposed to speed up the computation of the solution. Finally the PHD thesis
by White [5] gives great insight in the general convergence properties of wave-
form relaxation methods. Also the convergence of the methods in a multirate
setting is analysed.
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Chapter 2

Prerequisites

In this section we give a brief background on the numerical solution of ordinary
differential equations as well as a short introduction on parallel computing.

2.1 Numerical solution of ODEs

In this section we give a short introduction to the numerical solution of ordi-
nary differential equations (ODEs). This introduction is meant to introduce
definitions used later in this thesis, not as an introduction to numerical analysis
for someone unfamiliar with the subject. A more thorough explanation can be
found in any introductory book on numerical analysis, for example the book by
Arieh Iserles [6].

Ordinary differential equations can be written as

ẋ = f(x, t), x(t0) = x0 (2.1)

where ẋ ∈ Rn is the time derivative of the different state variables x ∈ Rn. The
map f : (Rn × [t0, te]) 7→ Rn describes the relation between the system’s state
and its derivatives. For completeness we also require f to be Lipschitz contin-
uous. Most numerical methods for ODEs solve equation (2.1) by generating a
sequence xi ≈ x(ti) approximating the real solution on a grid of specific points
in time ti. Between these grid points we can approximate the solution using
interpolation. Using an equidistant grid, meaning a constant step size h, we can
write down the simplest numerical method, called the explicit Euler method:

xi+1 = xi + hf(xi, ti).

It is an explicit method, meaning defines the new point xi+1 only in terms of
xi, ti or even earlier points in time. A method is called implicit if an equation
needs to be solved, for instance in the implicit Euler method:

xi+1 = xi + hf(xi+1, ti+1).

A list of the methods used throughout this thesis can be found in appendix A.
All numerical methods introduce an error in the solution. The error intro-

duced by a single step, assuming the step starts at the exact solution: xi = x(ti),
is called the local truncation error and can be written as

δhi+1 = xi+1 − x(ti+1). (2.2)

7



8 CHAPTER 2. PREREQUISITES

A method is called consistent if δhi → 0 as h→ 0 with order p if δhi = O(hp+1).
The global error of a method is the error eh between the numerical solution and
the real solution at the end of the time interval te:

eh = xe − x(te).

The global error for a method of order p decreases as O(hp). Both the implicit
Euler and explicit Euler methods are of order 1.

For a method to be useful it needs to be convergent. Convergence here means
that

lim
h→0+

max
i=0,1,...,t∗/h

‖xi,h − x(ti)‖ = 0

where t∗ > t0 and xi,h denotes the resulting solution on an equidistant grid
with step size h [6]. A necessary condition for convergence is that the method
is consistent with an order of p > 0. Consistency alone is not enough; a method
also needs to be stable. For so called stiff problems, stability can be a real
issue. This is where implicit methods come into play since they are generally
more stable than explicit methods. For the rest of thesis, we assume that the
methods used to solve the ODEs are stable for the given problem and time step.

2.2 Parallelisation

Thus far we have introduced basic numerical methods for solving ODEs on the
form of equation (2.1). These methods are all sequential methods meaning all
calculations are done in sequence. To decrease the time taken to calculate the
solution, one would like to parallelise the computation, meaning multiple cal-
culations are done simultaneously. In this section we give a short introduction
to parallel computing. A more thorough introduction to parallel computing
techniques can be found in the book on concurrent scientific computing by E.
F. van de Velde [7]. To understand how parallelisation works we first need
to have a rough understanding of how the hardware works. In most modern
computers the processor consists of multiple cores. One core is able to execute
instructions independently of the other cores. This means that, for instance a
four core processor can simultaneously execute four different instructions. The
same goes for large supercomputers which consist of many processors working
together where very processor can execute instructions independently. The in-
structions being executed come from so called processes. A Process is a set
of instructions, coming from a computer program, being processed by a pro-
cessor. A computer program consists of one or more of these processes. If a
program uses multiple processes, the processes can utilize different cores in the
processor to execute instructions in parallel. Processes can communicate with
each other using different means of communication. In numerical analysis we
want to exploit multiprocessing techniques for parallelisation, meaning splitting
the solution procedure of the problem into multiple independent instructions
executed by different processes.

2.2.1 Communication between processes

Sometimes processes need to exchange data with each other. There are two
main paradigms when it comes to data sharing. There is the shared memory
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paradigm meaning both processes have access to the same memory, and there
is the message passing paradigm where the processes have separate space in
memory meaning all communication is done by sending messages between the
processes. The results in this thesis are based on an implementation using
message passing.

It is important to realise that whenever a sequential algorithm is parallelised
the total amount of work needed to be done increases. This comes from the
extra communication introduced in the parallelisation which was not there in the
sequential algorithm. To parallelise code efficiently we want a high computation
to communication ratio meaning that we want the time spent communicating be
negligible compared to the time spent computing. This means that the parallel
methods will be more efficient for more difficult problems, for instance coupled
FEM problems, than simple problems like solving two coupled 1D ODEs.
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Chapter 3

Waveform iteration

In this section we give a definition of the waveform iteration methods, in partic-
ular the Jacobi and Gauß-Seidel methods. Also an analysis of the convergence
rates for the different methods is presented. Finally some details regarding the
implementation are presented, as well as some alternatives for improving the
waveform iteration methods that are not covered further in this thesis.

3.1 Method descriptions

All methods described in this thesis stem from a similar idea, namely to divide
the whole time domain into so called macrosteps, in some literature also called
windows. These macrosteps are needed as a common ground for the integration
of each subsystem. Waveform iteration is a method for numerically approximat-
ing and iteratively approaching the subsystems’ solutions on these macrosteps.
The idea is to solve each subsystem using information from the other system
available prior to integration. The solution for the subsystems at iteration K+1
are governed by the following equation:{

ẋK+1 = f(xK+1, y∗)
ẏK+1 = g(x∗, yK+1)

. (3.1)

Here the iterates xK+1 and yK+1 are all functions defined on t ∈ [T0, T1]; the
domain of the macrostep. The functions y∗(t) : R 7→ Rm and x∗(t) : R 7→ Rn
are functions on the whole macrostep as well. The successive application of this
iteration scheme results in sequences of functions {x(t)K}∞K=1 and {y(t)K}∞K=1.
We want these sequences to converge to some limit x(t) and y(t). For a general
waveform iteration method these may be defined in many different ways. We
will present two different methods here, the Jacobi method and the Gauß-Seidel
method.

3.1.1 Jacobi iteration

The Jacobi method is obtained by setting x∗ = xK and y∗ = yK . This results,
given initial data x0 and y0, in the following iteration [2]:{

ẋK+1 = f(xK+1, yK)
ẏK+1 = g(xK , yK+1)

. (3.2)

11



12 CHAPTER 3. WAVEFORM ITERATION

Figure 3.1: Diagram of the Jacobi iteration.

Figure 3.2: Diagram of the Gauß-Seidel iteration.

Looking at the equation we see that to update from iteration K to K +
1 each subsystem only needs information from the previous iteration of the
other subsystem. In an implementation of Jacobi, the subsystems are solved
separately and information is exchanged at the end of the macrostep. This
means that this method is inherently parallel and therefore easily implemented
in a parallel fashion. This is depicted in figure 3.1. Also we recognize the similar
structure between the Jacobi method for linear equation systems and equation
(3.2), therefore we call this iteration scheme Jacobi iteration.

3.1.2 Gauß-Seidel iteration

For the Gauß-Seidel method we set x∗ = xK and y∗ = yK+1. This results in
the following iteration [2]:{

ẋK+1 = f(xK+1, yK)
ẏK+1 = g(xK+1, yK+1)

. (3.3)

Looking at the equation we see where the name comes from as the triangular
structure of the system reminds us of the Gauß-Seidel iteration for solving linear
systems. The difference in the definition of y∗ compared to the Jacobi method
changes the method significantly. The inherent parallelism of the Jacobi method
is lost in the Gauß-Seidel approach. Figure 3.2 gives a schematic view of the
iteration.

3.1.3 Comparing Gauß-Seidel and Jacobi

In a 2-dimensional system there is an interesting relationship between the Gauß-
Seidel method and the Jacobi method, namely that the Jacobi method has twice
the computational cost of the Gauß-Seidel method. To visualise this we rewrite
equation (3.1) using only the independent variables with

ϕ(y∗) = f(xK , y∗)
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and
ψ(x∗) = g(x∗, yK).

We denote the Gauß-Seidel and Jacobi iterates with the subscripts GS and J

respectively. Given initial data we can write down the subsequent iterates for
Gauß-Seidel,

x1GS = ϕ(y0GS), x2GS = ϕ(y1GS), x3GS = ϕ(y2GS)

y1GS = ψ(x1GS), y2GS = ψ(x2GS), y3GS = ψ(y3GS)

and for Jacobi:

x1J = ϕ(y0J), x2J = ϕ(y1J), x3J = ϕ(y2J)

y1J = ψ(x0J), y2J = ψ(x1J), y3J = ψ(y2J).

Comparing the first x iterates we see that

x1J = ϕ(y0J) = ϕ(y0GS) = x1GS .

Using substitution we see that

y2J = ψ(x1J) = ψ(x1GS) = y1GS .

We can do the same for

x3J = ϕ(y2J) = ϕ(y1GS) = x2GS .

Continuing we get
y4J = ψ(x3J) = ψ(x2GS) = y2GS

and
x5J = ϕ(y4J) = ϕ(y2GS) = x3GS .

From these equations we observe that

xKGS = x2K−1J

yKGS = y2KJ
(3.4)

for iteration K. This shows us that Jacobi takes twice the amount of iterations
as Gauß-Seidel, up to a single iteration. This relation only holds for systems
that are partitioned in to two subsystems. For three subsystems this does not
hold anymore. Also if the problem is solved using multiple macrosteps this
doesn’t since the solutions produced by the methods are slightly different, giving
subsequent macrosteps slightly different initial conditions.

3.1.4 Creating a function from discrete data points

The different methods above are rules for iterating over functions. However the
numerical integration of an ODE does not give us a function, rather it returns
discrete data points. We denote these point sets by {xi}n1 and {yi}m1 respec-
tively. To transform these point sets to functions we resort to interpolation,
for example polynomial spline interpolation where we can also determine the
number of continuous derivatives. The functions x∗ and y∗ will then be defined
as
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Figure 3.3: Figure sketching the idea of interpolation. We have discrete data
points (the black dots) given from a numerical solution. Using different inter-
polations we can convert this discrete solution to a function in continuous time.
The dotted line represents a linear interpolation and the continuous line a higher
order interpolation.

x∗ = interp({xi}n1 )
y∗ = interp({yi}m1 )

(3.5)

where interp is some interpolation procedure. A schematic example of how
interpolation works can be seen in figure 3.3.

3.1.5 Singlerate vs multirate methods

Looking at the partitioning in equation (3.1) we see that, given a x∗ and y∗,
both systems can be solved independently from each other. This means that
the solvers used for the different systems don’t have to use the same time step
length. When this property is utilized the solution method is called a multirate
method. Here multirate refers to the fact that both subsystems are solved with
different time steps, or in other words at different rates. If the different systems
are solved with the same time step, the method is called a single rate method.
Figure 3.4 shows schematically how the parallel time integration for a multirate
system may look like.
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Figure 3.4: Diagram showing the workings of one macrostep. The subsystems
have independant microsteps.

3.2 Convergence analysis for linear systems

To get an understanding of the behaviour of these methods we will analyse the
convergence properties of the two methods defined above when applied to a
2-dimensional linear system. The analysis will also be limited to real valued
functions on finite-time intervals. First we will analyse continuous time wave-
form iterations, meaning the iterates are functions defined on a continuous time
domain. Thereafter we will analyse the discrete case where the iterates are the
result of numerical time integration.

3.2.1 Convergence of iterative schemes

In the analysis below we will look at the behaviour of different waveform iter-
ation methods. To understand how those iterative schemes work, we look at
the more general case first. This also requires a small summary of topics from
functional analysis. More background on this summary can be found in [2] or
in any introductory book on functional analysis.

We define the norm of a bounded linear operator A in a normed space X in
the following way:

‖A‖X = sup
‖x‖X=1

‖Ax‖X . (3.6)

We also define the spectrum of this operator A, σ(A) as the set of scalars λ
for which the operator (λ−A)−1 is not a bounded operator defined on a dense
subset of X . This leads us to the following definition of the spectral radius,
valid when σ(A) is non-empty and bounded:
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ρ(A) = sup
λ∈σ(A)

|λ|. (3.7)

If A is a matrix, the spectral radius corresponds to the largest absolute value
of the eigenvalues of A. The spectral radius has an important property, namely

ρ(A) = lim
n→∞

n

√
‖An‖X . (3.8)

An interpretation of this equation is that the sequence xi ∈ X where xi+1 =
Axi has the asymptotic relationship∥∥xi+1

∥∥
X = ρ(A)

∥∥xi∥∥X (3.9)

between successive iterates.
This leads us to the final result, namely that the iteration

xi = Axi+1 + ϕ (3.10)

is convergent if ρ(A) < 1.

3.2.2 Linear systems and splittings

To be able to compare these results and derivations to existing texts we will
in this chapter consider ordinary differential equations of the following form,
consistent with the analysis done by Vandewalle in [2] and Nevanlinna in [3]:

u̇+Au = f, where u(0) = u0, t ∈ [0, T ] (3.11)

where A ∈ R2×2 and u ∈ R2, f ∈ R2 are functions of time. For these systems
there exists the direct formula

u(t) = e−tAu0 +

∫ t

0

e(s−t)Af(s)ds (3.12)

for the solution.
To arrive at an iterative scheme we use a splitting technique. By applying a

splitting to the system with A = P −Q we can rewrite the system to

u̇+ Pu = Qu+ f, where u(0) = u0, t ∈ [0, T ] (3.13)

and introduce the iterative scheme

˙uK + PuK = QuK−1 + f, where uK(0) = u0, t ∈ [0, T ] (3.14)

given an initial starting point for the iteration: u0 = u0 ∀t ∈ [0, T ].
Using this we can write the Jacobi and Gauß-Seidel iteration in terms of

P , Q and the decomposition of A = D − L − U into its strictly upper/lower
triangular parts −U,−L and its diagonal D:

Jacobi: P = D , Q = L+ U
Gauß-Seidel: P = −L+D , Q = U

(3.15)
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3.2.3 Convergence for continuous time functions

We would like to rewrite equation (3.14) in a form with a single operator K
operating on uK−1 and a rest term ϕ similar to (3.10):

uK = KuK−1 + ϕ. (3.16)

This can be done by applying the solution formula (3.12) to the splitting in
(3.14),

uK(t) = e−tPu0 +

∫ t

0

e(s−t)PQuK−1(s)ds+

∫ t

0

e(s−t)P f(s)ds. (3.17)

Then

Ku =
∫ t
0
e(s−t)PQu(s)ds

ϕ = e−tPu0 +
∫ t
0
e(s−t)P f(s)ds

(3.18)

we can view this operator K as a convolution operator with a kernel k:

Ku(t) = k ? u(t) =

∫ t

0

k(t− s)u(s)ds with k(t) = e−tPQ. (3.19)

Now the iterations can be thought of as successive applications of this con-
volution. Hence we can define the kernel at iteration K, kK∗ with the following
recursive definition:

kK∗ = k ? kK−1∗, where k1∗ = k. (3.20)

We also define KK as K successive applications of the operator K. To analyse
the convergence rate we need to define a norm to measure in. We will use the
max norm ‖.‖T defined in the following way:

‖u‖T = max
[0,T ]
‖u(t)‖ , (3.21)

where ‖.‖ denotes a suitable vector norm. We define the upper bound of k
as

‖k‖T = C. (3.22)

Using this bound and the recursive definition for kK∗ we can bound kK∗(t)
in the following way:

∥∥kK∗(t)∥∥ =
∥∥∥k(t) ? k(K−1)?(t)

∥∥∥ ≤ C ∫ t

0

∥∥∥k(K−1)∗(s)∥∥∥ ds (3.23)

using that ∥∥∥∫ t0 k(t− s)k(K−1)?(s)ds
∥∥∥ ≤ ∫ t0 ∥∥k(t− s)k(K−1)?(s)

∥∥ ds
≤
∫ t
0
C
∥∥k(K−1)?(s)∥∥ ds.
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This recursive definition results in a successive evaluation of integrals defined in
(3.23): ∥∥k2?(t)∥∥ ≤ C ∫ t

0
Cds = C(Ct)∥∥k3?(t)∥∥ ≤ C ∫ t

0
C(Cs)ds = C (Ct)2

2∥∥k4?(t)∥∥ ≤ C ∫ t
0
C (Cs)2

2 ds = C (Ct)3

6

giving us the following estimate for the Kth kernel kK∗(t):

∥∥kK∗(t)∥∥ ≤ C (Ct)K−1

(K − 1)!
. (3.24)

Now that we have an upper bound on the kernel, we need to translate this
bound to an upper bound for the operator K. This can be done using the
estimate, given by Nevanlinna in [3],

∥∥KK∥∥
T
≤
∫ T

0

∥∥kK∗(t)∥∥ dt (3.25)

which after integrating becomes:

||KK ||T ≤
(CT )K

K!
. (3.26)

To get to the error estimate we again look at the iteration scheme in equation
(3.16). If the spectral radius of K, ρ(K) < 1 this iteration converges [2].

A solution ũ satisfies the following equation:

ũ = Kũ+ ϕ. (3.27)

We have established in equation (3.26) that the operator K is bounded su-
perlinearly meaning the spectral radius ρ(K) = 0 in the max norm [2]. We
want to get an explicit formula for the iterate uK . By seeing what happens in
successive applications of the iterative scheme in equation (3.16) we can find a
general expression:

u1 = Ku0 + ϕ
u2 = K(Ku0 + ϕ) + ϕ
u3 = K(K(Ku0 + ϕ) + ϕ) + ϕ.

(3.28)

We see the following relation for uK :

uK = KKu0 +

K−1∑
i=0

Kiϕ. (3.29)

Finally we arrive at the error estimate for the iterates:

||ũ− uK ||T ≤
(CT )K

K!
||ũ− u0||T . (3.30)

Here we have a formula showing superlinear convergence for waveform iter-
ation schemes as defined above. It is superlinear because of the limit

lim
K→∞

(CT )K

K!
→ 0.
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It is evident that both the macrostep length T and the constant C coming from
the splitting are greatly impacting the speed of convergence.

To get a value for C we analyse the T-norm of the kernel k. For simplicity
we assume T = 1. For Gauß-Seidel we have

||kGS ||T =
∥∥∥e−t(D−L)Q∥∥∥

T
= max
t∈[0,1]

∥∥∥e−t(D−L)U∥∥∥ (3.31)

and similarly for Jacobi:

||kJ ||T =
∥∥∥e−t(D)Q

∥∥∥
T

= max
t∈[0,1]

∥∥∥e−t(D)(L+ U)
∥∥∥ . (3.32)

3.2.4 Singlerate convergence for discrete time functions

For the discrete case we first need some notation. We denote the set of the
discrete points of the solution as U = [u1, u2, ..., uN ]T . Here ui denotes the
solution at time step ti. Our iterates are denoted as UK for iterate K and uKi
for the value of the iterate at the particular time ti.

To simplify the analysis we use the implicit Euler method for time integra-
tion. A more general analysis for other multistep methods can be found in
Vandewalle [2]. Using implicit Euler with step size τ we can discretise equation
(3.14) in the following way:

1

τ
(uKn+1 − uKn ) + PuKn+1 = QuK−1n+1 + f(un+1). (3.33)

To arrive to a similar error estimate as in equation (3.30), we rewrite equation
(3.33) in terms of the iteration errors eKn = uKn − un,

1

τ
(eKn+1 − eKn ) + PeKn+1 = QeK−1n+1 (3.34)

using the fact that the iteration doesn’t change the exact solution, similar to
equation (3.27). We rewrite this equation into

C0e
K
n + C1e

K
n+1 = D1e

K−1
n+1 (3.35)

with C0 = − 1
τ I, C1 = ( 1

τ I + P ) and D1 = Q. Now forming the full solution
EK = [eK1 , e

K
2 , ...e

K
N ] we arrive at the waveform iteration scheme

CEK = DEK−1 ⇔ EK = C−1DEK−1 (3.36)

with C,D ∈ R(2N)×(2N) as block matrices defined as

C =


C1

C0 C1

C0 C1

. . .
. . .

C0 C1

 , D =


D1

D1

. . .

D1

 . (3.37)

Recognizing the special block lower triangular structure, the spectral radius
of C−1D can be expressed in P and Q:
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Figure 3.5: Figure showing the simple multirate case we are going to study. The
central axis denotes advancing in time. For every step in the y system two steps
are taking in the x system. We have no direct value of y1 however we can assign
a value using interpolation.

ρ(C−1D) = ρ(C−11 D1) = ρ((
1

τ
I + P )−1Q). (3.38)

This means that the asymptotic convergence rate is not determined by the
macrostep length T or the number of microsteps. It is the microstep length τ
that plays a key role.

3.2.5 Multirate convergence for discrete time functions

To understand the multirate case we first analyse a simple setup, as seen in
figure 3.5, where the two time steps are related by τy = 2τx. We define yi and
xi to denote the state of both systems at time ti. Also since every other point in
system y, y2n+1, n ∈ N, is not given by the ODE integration method we define
those points using interpolation. In this instance we use linear interpolation
which, using a fix time step τx has the following form:

y2n+1 :=
1

2
(y2n + y2(n+1)). (3.39)

We also need some more notation. We split the matrices P and Q as

P =

[
Pxx Pxy
Pyx Pyy

]
(3.40)

and

Q =

[
Qxx Qxy
Qyx Qyy

]
. (3.41)

Denote the iteration errors of the subsystems as ξi = xi−xKi and ηi = yi−yKi .
Using this we can write down the equations for the two unknowns ξ2(n+1) and
η2(n+1), similar to equation (3.34):

1
τx

(ξK2(n+1) − ξ
K
2n+1) + Pxxξ

K
2(n+1) + Pxyη

K
2(n+1)

= Qxxξ
K−1
2(n+1) +Qxyη

K−1
2(n+1)

(3.42)
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and
1
τy

(ηK2(n+1) − η
K
2n) + Pyyη

K
2(n+1) + Pyxξ

K
2(n+1)

= Qyyη
K−1
2(n+1) +Qyxξ

K−1
2(n+1)

. (3.43)

For step ξK2n+1 we have

1

τx
(ξK2n+1 − ξK2n) + Pxxξ

K
2n+1 + Pxyη

K
2n+1 = Qxxξ

K−1
2n+1 +Qxyη

K−1
2n+1 (3.44)

where we notice that the error ηK2n+1 doesn’t exist because of the different rates
of the subsystems. Therefore we resort to linear interpolation:

ηK2n+1 =
1

2
(ηK2n + ηK2n+2).

changing equation (3.44) into

1
τx

(ξK2n+1 − ξK2n) + Pxxξ
K
2n+1 + 1

2Pxy(ηK2n + ηK2(n+1)) =

Qxxξ
K−1
2n+1 + 1

2Qxy(ηK−12n + ηK−12(n+1)).
(3.45)

Writing the error eK2(n+1) = [ξK2n+1, ξ
K
2(n+1), η

K
2(n+1)] we can combine equa-

tions (3.42), (3.43) and (3.44) and write the iteration process for the error as

C0e
K
n + C1e

K
n+1 = D0e

K−1
n +D1e

K−1
n+1 (3.46)

with

C0 =

0 − 1
τx

1
2Pxy

0 0 0
0 0 − 1

τy

 , C1 =

 1
τx

+ Pxx 0 1
2Pxy

− 1
τx

1
τx

+ Pxx Pxy
0 Pyx

1
τy

+ Pyy


D0 =

0 0 1
2Qxy

0 0 0
0 0 0

 , D1 =

Qxx 0 1
2Qxy

0 Qxx Qxy
0 Qyx Qyy

 . (3.47)

We can again write this in terms of a matrix C, D and EK = [eK2 , e
K
4 , ..., e

K
2N ]T ,

CEK = DEK−1

with

C =


C1

C0 C1

C0 C1

. . .
. . .

C0 C1

 , D =


D1

D0 D1

D0 D1

. . .
. . .

D0 D1

 (3.48)

where C,D ∈ R(3N×3N) and the spectral radius ρ again follows the relation

ρ(C−1D) = ρ(C−11 D1). (3.49)

We can expand this analysis to fit any integer (q) amount of steps for system
A (x) in a single step of system B (y), qτx = τy. We again write the iteration
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in terms of the error according to equation (3.46) but now with
eKq(n+1) = [ξKqn+1, ξ

K
qn+2, ..., ξ

K
qn+q, η

K
qn+q]. For all points ξKqn+1 to ξKqn+q−1 we

again need to use interpolation since the corresponding errors ηKqn+1 to ηKqn+q−1
do not exist. To show where interpolation is introduced we write down inter-
mediate step p: ξKqn+p, where we take an implicit euler step from xqn+p−1 to
xqn+p:

1
τx

(ξKqn+p − ξKqn+p−1) + Pxxξ
K
qn+p + Pxyinterp(p, η

K
qn, η

K
qn+q) =

Qxxξ
K−1
qn+p +Qxyinterp(p, η

K−1
qn , ηK−1qn+q)

(3.50)

where

interp(p, ηK−1qn , ηK−1qn+q) = (1− p

q
)(ηK−1qn ) +

p

q
(ηK−1qn+q)

is the linear interpolation of ηK−1qn and ηK−1qn+q at point qn + p. Substituting in
this interpolation formula in equation (3.50) we get

1
τx

(ξKqn+p − ξKqn+p−1) + Pxxξ
K
qn+p + Pxy((1− p

q )ηKqn + p
q η
K
qn+q) =

Qxxξ
K−1
qn+p +Qxy((1− p

q )ηK−1qn + p
q η
K−1
qn+q)

. (3.51)

For ηKqn+q we have a similar equation to (3.43):

1
τy

(ηKqn+q − ηKqn) + Pyyη
K
qn+q + Pyxξ

K
qn+q

= Qyyη
K−1
qn+q +Qyxξ

K−1
qn+q

. (3.52)

Now we can combine equations (3.51) and (3.52) into the same form as
equation (3.46), now with
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C0 =


0 · · · 0 − 1

τx
(1− 1

q )Pxy
0 · · · 0 0 (1− 2

q )Pxy
...

. . .
...

...
...

0 · · · 0 0 0
0 · · · 0 0 − 1

τy



C1 =



1
τx

+ Pxx 0 · · · 0 1
qPxy

− 1
τx

1
τx

+ Pxx 0 0 2
qPxy

0
. . .

. . .
. . .

...
0 · · · − 1

τx
1
τx

+ Pxx Pxy
0 · · · 0 Pyx

1
τy

+ Pyy



D0 =



0 · · · 0 (1− 1
q )Qxy

...
. . . (1− 2

q )Qxy
...

0 · · · 0 0
0 · · · 0 0



D1 =



Qxx 0 · · · 0 1
qQxy

0
. . .

. . . 2
qQxy

...
...

0 · · · 0 Qxx Qxy
0 · · · 0 Qyx Qyy

 .

(3.53)

Here we can clearly see the structure in the matrices where the q first rows
correspond to time stepping in system x. This is seen in the diagonal structure
of C1 as well as in the linear interpolation of system y in the right-most columns
of all four matrices.

Again we combine the errors in a large error vector EK = [eKq , e
K
2q, ..., e

K
qN ]T

and write the iteration as

CEK = DEK−1

with C and D defined in the same way as equation (3.48). We then also arrive
at the same equation for the spectral radius:

ρ(C−1D) = ρ(C−11 D1).

3.2.6 Comments on the convergence analysis

There are different uses to the results of the continuous and the discrete analysis.
The continuous analysis gives us a bound for the iteration error of a particular
iterate. This is however only valid for the analytical solution. Still the continu-
ous analysis gives us some insight in how the method performs during the first
couple of iterates.
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The discrete analysis does not tell us anything about a particular iteration.
Rather it tells us the asymptotic convergence rate of the method when the
equation is solved using implicit Euler.

From the discrete analysis we can also draw the conclusion that the number
of time steps does not affect the asymptotic convergence rate. It is only the
time step length τ that appears in the equation (3.38).

3.3 Stopping criteria

The sequence obtained by the iteration schemes is an infinite sequence. In
general the limit will not be reached in finite time. In numerics we want to stop
the iteration when the solution satisfies some error condition. We define the
iteration error as

eK =
∥∥u− uK∥∥ (3.54)

which measures the difference between the Kth iterate and the analytical solu-
tion. Since we generally don’t have access to the real solution, we need a way
of estimating the iteration error based on data we have access to. One way to
do this is to use the absolute difference between iterations, defined as

∆eK =
∥∥uK − uK+1

∥∥ (3.55)

which gives us an estimate of how much the solution changes each iteration.
According to Nevanlinna [3] this is a good error estimate in the sense that∥∥u− uK∥∥

T
≈
∥∥uK+1 − uK

∥∥
T
. (3.56)

Since our numerical schemes return points on a grid instead of continuous func-
tions, we want to have an estimate based on these discrete numerical results.
We know that in general ‖ut − u(t)‖ increases as t > t0 increases, as described
by [8]

‖ut − u(t)‖ ≤ max(δhi )

L
(eL(t−t0) − 1) (3.57)

where L is a positive constant depending on the numerical integration method
and δhi are the local errors defined in equation (2.2). Since the bound on the error
increases with time, it makes sense to estimate the iteration error by comparing
the iterates at the last grid point te:

eK ≈
∥∥uKe − uK+1

e

∥∥ . (3.58)

It is this estimate that will be used in the implementation of the methods.

3.3.1 Weighted Scaled Norm

The solution of the full system u = [x, y]T consists of both solutions x and y.
To measure the error given by equation (3.55) we need to relate the errors in
the subsystems to the error of the full system. This can be done by a weighted
scaled norm.

Given that x ∈ Rn and y ∈ Rm we can write down the weigted scaled norm
based on the two-norm of the subsystems:
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||u||wsn = ||[x, y]T ||wsn =

√
1

n+m
Σαiu2i where αi =

{
n, i ≤ n
m, i > n

. (3.59)

This leads to

||u||wsn =

√
n

n+m
||x||22 +

m

n+m
||y||22 (3.60)

expressing the norm in terms of the norms of the subsystems. Here we can
see that if n > m meaning system A is larger it is weighted more heavily than
system B.

The weighted scaled norm defined above stems from using the two-norm. If
the max norm is used instead we resort to using the max norm:

‖u‖wsn =
∥∥[x, y]T

∥∥
∞ . (3.61)

3.4 Waveform relaxation

Thus far after each iteration we throw away old data and continue with the
newly obtained iterate. There are ways to accelerate the convergence using
relaxation. This means that we instead of only using the new iterate, create a
weighted sum of the new iterate and the previous iterate:

uK+1 = ωũK+1 + (1− ω)uK . (3.62)

Here ω is the relaxation constant which is used to create the new iterate uK+1

as a convex combination of the old iterate uK and the newly obtained unrelaxed
iterate ũK+1.

Relaxation is a whole topic itself and analysis of finding good values of ω is
difficult. For that reason we will stick to waveform iteration in this thesis.

3.5 The first iteration

The first iteration of a macrostep doesn’t have any information available from
previous iterations. The only piece of information that is known is the initial
state of both systems, obtained from either initial conditions u(t0) (if this is the
first macrostep) or from the previous macrostep. To start the iteration we need
a way to define yK=0. The simplest method only uses the state itself without
gradient information. Using extrapolation we have an initial guess

xK=0(t) = x0
yK=0(t) = y0

(3.63)

used as first iterate for the whole macrostep domain.
An alternative here is to include more information from the previous macrostep.

One could include information about the gradient or even higher order deriva-
tives. This could improve the performance of the method since the initial iterate
yK=0 will approximate more derivatives of the solution. This will however not
be discussed in this thesis.
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Chapter 4

The new multirate time
integration method

Building on the principles of the discussed waveform iteration methods, we can
see that both methods exchange information at predetermined places in time.
This makes implementation easier but also severely limits flexibility. Ideally we
would like both systems to use the most recent available information from each
other. We describe this behaviour in the following equation:

ẋK+1 = f(xK+1, y∗(yK , yK+1))
ẏK+1 = g(x∗(xK , xK+1), yK+1)

. (4.1)

Here x∗(xK , xK+1) and y∗(yK , yK+1) denote representations of the subsystems
that gradually build up during the parallel integration of both subsystems. This
means that as each subsystem is being integrated, information is sent from one
system to another whenever one system has advanced its solution in time. Figure
4.1 shows how this multirate integration works.

An important side effect of sending and retrieving information whilst inte-
grating is that, contrary to Jacobi and Gauß-Seidel, the method is no longer
deterministic. Underlying processes or other effects from the underlying oper-
ating system may result in a system finishing before the other for one run of a
simulation, but finishing after the other when redoing the exact same simulation.

Figure 4.1: Diagram of the multirate integration scheme. Contrary to the Gauß-
Seidel and Jacobi approach, information is exchanged whilst integrating the
subsystems, not only after a full iteration.

27
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4.1 Algorithm

The main workings of the method are condensed in algorithms 1 and 2. Algo-
rithm 1 describes the workings of the macrostep iteration.

Algorithm 1 Multirate time integration, integrate macrostep

1: procedure Integrate macrostep
2: for K ← 1, 2, 3... do . Iteration loop
3: Integrate subsystems in parallel . acc. to alrogithm 2
4: Check stopping criterion . If met, stop iteration
5: end for
6: end procedure

Algorithm 2 describes the integration of one of the subsystems.

Algorithm 2 Multirate time integration, loop of system A

1: procedure Solve subsystem x . Analogous for y
2: while not finished time integration do
3: Update point set {yi}m1 . . Data read in from system B
4: Create function y∗ = interp({yi}m1 ) from point set.
5: xn+1 ← ODEStep(xn, y

∗) . Take next microstep
6: Send xn+1 to y system.
7: end while
8: end procedure

4.2 Choosing function representations

The main difficulty with this method revolves around choosing a good way
of representing the other system. If, for the current iteration and timestamp,
system A has data about system B then the state of system B will be known
by interpolation. However if A has advanced further in time than B this data
is not available, thus one needs another way to represent the system. There are
many different ways to do this. We could opt to only use simulation data from
the current iteration and get the system’s state using extrapolation. Although
easy to implement, this can lead to great aproximation errors, meaning that in
some cases the iteration might not converge. Instead we could also include data
from previous iterations. Here we have several options.

4.2.1 The general case

In the general case we want to be able to use both information from the previous
and the current iteration. We can write it down in the following form:

y∗(yK , yK+1) = γ(tx, ty)yK + (1− γ(tx, ty))yK+1. (4.2)

Here the function representation y∗ of system B is generated as a combi-
nation between the new and old iterates using the function γ(ty, tx) which is
a function of tx and yy, which denote how far in time both subsystems have
advanced their time integration.
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Figure 4.2: Figure schematically showing the mixed Jacobi and Gauß-Seidel
method. The solid line shows the iterate K of system B. The dashed line shows
the progress of iterate K + 1. At time t1 system B has information from the
newest iterate available, therefore we choose y∗(t1) = yK+1(t1). At t2 however
we don’t have this information available and resort to y∗(t2) = yK(t2).

4.2.2 Mixed Jacobi and Gauß-Seidel

One option is to always choose to use the most recent system state available.
Lets assume that system A is ahead of system B, meaning that tx > ty. This
means that system B can use information from the most recent iteration of
system A. However, since system A has no information from system B at time
tx, the most recent information available at that time comes from the previous
iteration. This leads to a kind of compromise between the Gauß-Seidel and the
Jacobi approach. A schematic drawing of this process can be seen in figure 4.2.
Using the notation from equation (4.2) we can opt for the following γ:

γ(tx, ty) =

{
1 if ty < tx
0 if ty > tx

. (4.3)

This can be formulated in terms of yK and yK+1:

y∗ =

{
yK+1 if ty < tx
yK if ty > tx

. (4.4)

All the results in this thesis are based on methods using this mixed Jacobi
and Gauß-Seidel approach.

4.2.3 Other options

There are other options as well. We could use extrapolation for y∗ when ty > tx.
Here we could for instance use a weight w between the extrapolated state ỹK+1
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and yK :

y∗ =

{
yK+1 if ty < tx
wyK + (1− w)ỹK+1 if ty > tx

where ỹK(t) is the extrapolation based on yK . Instead of a constant one can
also use a function ω(tx, ty) for weighting between the extrapolated state and
the previous iterate:

y∗ =

{
yK+1 if ty < tx
ω(tx, ty)yK + (1− ω(tx, ty))ỹK+1 if ty > tx

.

These options will not be explored more in this thesis, but are worth exploring
in future work.
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Results

The results presented in this section are all produced using an implementation
in Python version 3.6 using the SciPy and NumPy packages. With regard to
parallelisation there are many libraries to choose from. In this implementation
the built in package multiprocessing is used. The actual sending of the mes-
sage is handled by the process itself in the background. This is important as
this negatively affects the performance. In this thesis we do not look further
into this except that it is worth noting that there might be gains in performance
available using more efficient means of communication such as shared memory.

For all parallelised algorithms in this thesis two processes are allocated, one
for subsystem A and one for subsystem B. These processes run for the full length
of the simulation.

All simulations were run on computers with at least four core cpu’s. This was
done to minimize the impact other processes run by the operating system might
have on the performance of the methods. Also whenever results are compared,
they were done on the same machine.

Measuring computational time

When a program uses multiple cores or processors there are different ways of
measuring the time taken to execute a task. We can measure the time in elapsed
time for the user, called wall-clock time, which is the time from the start of
execution until the task is complete. However when using multiple processes this
doesn’t reflect the amount of work done by the processor. It is also interesting to
measure the total cpu time, meaning the sum of time consumed by all processes.
For instance a program fully utilising two cores that takes one second to finish
in wall clock time uses two seconds of total cpu time. All results involving
computational time are presented using wall-clock time.

5.1 Verification of the methods

To verify the order of the methods we resort to solving a system of which we
know the analytical solution. Comparing the numerical approximation to the
real solution we can see how the order if affected by different parameters.

We use the following 2D system:

31
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{
ẋ = −x+ y/2
ẏ = −x/2− y

x(0) = 1
y(0) = 3

. (5.1)

The solution to this system is given by the general solution for linear dynamical
systems using the matrix exponential from equation (3.12).

5.1.1 Varying microstep length

The results in figures 5.1, 5.2 and 5.3 have been produced using the following
solver parameters:

• Number of macrosteps: 1

• Macrostep length: 1

• Microstep length for system A: τx = τ , B: τy = 2τ , where τ is the base
step length shown in the plot.

• Subsystem interpolation: Linear

• Macrostep iteration stopping tolerance: 10−14, in 2 norm

• Subsystem solver: SDIRK2 (see appendix A.0.2)

• Representation of x∗,y∗: Mixed Jacobi, Gauß-Seidel, equation (4.4)

Order of convergence

To check the order the length of the microsteps in both the subsystems were
varied. Then the obtained numerical approximation is compared to the analyt-
ical solution. The norm used to measure the error is the 2-norm. As the second
order SDIRK2 method is used, it makes sense that the three waveform iteration
methods have an order of accuracy of two. This can be seen in figure 5.1.

Number of iterations

As previously discussed, mixed Jacobi and Gauß-Seidel is a compromise between
the two methods. If one of the processes is always ahead of the other, we
essentially have a parallelised version of Gauß-Seidel. Therefore the multirate
method is expected to take a similar amount of iterations as Gauß-Seidel. This
can be seen in figure 5.2.

Execution time

Here we measure the execution time of the different methods. The methods were
timed from the initialisation of the methods, for example just before starting
a second process, until after returning the result. The results presented are in
wall-clock time and can be seen in figure 5.3.
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Figure 5.1: Order plot of the three methods solving the system from equation
(5.1). The green line is for comparing with a slope of order 2.

Figure 5.2: Number of iterations done solving the system from equation (5.1)
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Figure 5.3: Execution time of the different methods solving equation (5.1)

Comments

The three figures above reveal some behaviour of the methods. In figure 5.1 it
is clearly seen that the order of the time integration method used is preserved
by the iterative scheme. Also the results from figures 5.2 and 5.3 show a minor
improvement in performance for the new multirate method. Since these results
are from a very simple 2D system where the communication to computation
ratio is relatively bad, this small improvement makes the new method look
promising.

5.1.2 Varying number of macrosteps

Contrary to the results above, now we use a fix microstep length and vary the
amount of macrosteps taken. The results in figure 5.4, 5.5 and 5.6 have been
produced using the following solver parameters:

• Macrosteps: Varied

• Microstep length: Both systems held constant at τx = 0.1 1
29 , τx = 0.05 1

29 .

• Subsystem interpolation: Linear

• Macrostep iteration stopping tolerance: 10−14, in 2 norm

• Subsystem solver: SDIRK2 (see appendix A.0.2)

• Representation of x∗,y∗: Mixed Jacobi, Gauß-Seidel, equation (4.4)
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Figure 5.4: Global error as a function of macrostep length for the three methods
solving the system from equation (5.1). The green line is for comparing with a
constant slope of 0.

Global error

Here we again investigate how the global error is affected by the method. This
time we measure what happens when the number of macrosteps used is changed.
Again we use the 2-norm to compute the error. Here it is expected that the
macrostep length does not affect the global error since the microsteps and the
stopping criterion on the iterations are held constant. This behaviour is clearly
seen in figure 5.4.

Number of iterations

Here we again see how many iterations are taken by the method. It is expected
to take more iterations the longer the macrosteps are. What is different from
when we varied microstep length in figure 5.2 is that since we use multiple
macrosteps, we here display the average number of iterations done over all
macrosteps, as seen in figure 5.5. Also since multiple macrosteps are used, the
relationship between the Jacobi and Gauß-Seidel methods described in equation
(3.4) doesn’t hold anymore.

Execution time

In figure 5.6 we show the execution time of the different methods. Again the
methods were timed from just before initialisation until it returned a result,
and the time is presented in wall-clock time. It is expected to look similarly to
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Figure 5.5: Number of iterations done solving the system from equation (5.1)

figure 5.5 since the microstep length is constant, the amount of iterations is the
only other factor affecting execution time. Also again the multirate method has
slightly better performance compared to the other two methods.

Notes on the results

Here we have seen that the methods preserve the numerical order of the underly-
ing time integration method. Also we saw that the new multirate method shows
promising performance results. It is also shown that the number of macrosteps
used to solve the problem does affect the performance. We are however not
going to investigate this further in this thesis. A more thorough analysis of how
to choose the macrostep length can be found in Nevanlinna [4].

5.2 Comparison with analysis of linear systems

In this section we compare the methods’ performance to the analytical results
from chapters 3.2.3 and 3.2.4. We analyse the number of iterations taken by
the methods when solving 2D linear systems with an error tolerance of 10−12

according to (3.58) and compare it with a prediction based on the estimates
from equation (3.30). For some choices of parameters the number of iterations
required are so high that it is practically impossible to calculate this. Therefore
we don’t investigate what happens after 1000 iterations, since this many iter-
ations is impractical in any application anyways. Comparing with the discrete
analysis we analyse how well the prediction of the spectral radius corresponds to
the convergence factor from the numerical results. Since we are after the asymp-



5.2. COMPARISON WITH ANALYSIS OF LINEAR SYSTEMS 37

Figure 5.6: Execution time of the different methods solving equation (5.1)

totic convergence rate, the results are calculated based on the convergence rate
between the last three iterates before termination. We also complement the
Jacobi and Gauß-Seidel results with results from the new multirate method.

All numerical results in this section are produced using the implicit Euler
method with a time step of τ = 0.01 for both systems. Since the Multirate
method is non-deterministic the results show the average amount of iterations
taken over three samples. To compare the numerical results, a reference solution
was computed using the Gauß-Seidel method with stopping criterion tolerance
of 10−14, close to machine precision. This reference solution was then used to
calculate the iteration errors. All the errors are calculated in the max norm
‖.‖∞.

The systems are of the form of equation (3.11) which we solve on a time
domain of t ∈ [0, 1] with initial conditions [x, y] = [1, 1]. The different systems’
matrices for the test cases are given below. The dots (∗) represent the matrix
entries that are varied.

Influence of main diagonal terms

Here we test the system

A =

[
−∗ 1
1 ∗

]
(5.2)

where we vary the two diagonals with different signs.

From figures 5.7, 5.8, 5.9 and 5.10 it is immediately apparent that the entry
A11 has a significant impact on the performance of the methods compared to
entry A22. This can be explained by the difference in signs of the entries where
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Figure 5.7: Number of iterations done by the Jacobi and Gauß-Seidel methods
compared to the estimated amount.

Figure 5.8: Number of iterations done by the three methods.
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Figure 5.9: Comparison between the spectral radius given by the discrete anal-
ysis and the convergence rate obtained through numerical experiments.

Figure 5.10: Comparison of convergence factor of the three methods.
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Figure 5.11: Number of iterations done by the Jacobi and Gauß-Seidel methods
compared to the estimated amount.

the minus in front of A11 leads to exponential growth whereas the positive entry
A22 leads to exponential decay. Even though the analytical estimate predicts
this behaviour, it greatly overestimates the number of iterations needed.

Varying the two couplings

Here we are testing the system

A =

[
1 −∗
∗ −1

]
(5.3)

where we vary the two coupling factors with different signs. The results can be
seen in figure 5.11, 5.12, 5.13 and, 5.14.

Here the analysis seems to better predict the results than in the previous
examples. Also it is evident that the different signs of the coupling constants
have little to no impact on the iterations needed.
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Figure 5.12: Number of iterations done by the three methods.

Here it is quite evident that both coupling factors directly affect the perfor-
mance significantly.

General remarks

From the results above we can see that the iterations needed in the prediction
from equation (3.30) greatly overestimates the importance of the growth factor.
This could be explained by the estimate of the norm of the kernel in equation
(3.22) being a very crude way to estimate the decay of iterates. Figure 5.11
suggests that the estimate of the influence of the couplings is much more accurate
than the estimate of the exponential growth terms.

In figures 5.8 and 5.12 it is evident that Gauß-Seidel required the least
amount of iterations of the methods. Jacobi seems to require the most amount
of iterations to get to the same accuracy. The Multirate method has due to its
non-deterministic nature not as clear figures as the other methods. However the
general trend is that the amount of iterations needed is close to the amount of
iterations Jacobi takes.

Figures 5.9 and 5.10 show a strange kind of noise for the Jacobi method. It is
difficult to say where this comes from. This behaviour is not seen in figures 5.13
and 5.14. This suggests that the iterates from the Jacobi method behave wildly
when the method is applied to a problem with a large exponential component
A11. This phenomenon will however not be further investigated in this thesis.

The predicted convergence rates are generally better for Gauß-Seidel than
Jacobi which is seen in figures 5.9 and 5.13. Gauß-Seidel also seems to al-
ways have a better convergence rate compared to Jacobi. When it comes to
convergence rates, the new multirate method behaves similar to Jacobi. The
non-deterministic property of the new multirate method is also clearly seen in
these plots.
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Figure 5.13: Comparison between the spectral radius given by the discrete anal-
ysis and the convergence rate obtained through numerical experiments.
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Figure 5.14: Comparison of convergence factor of the three methods.

5.3 Multirate vs Singlerate

In this section we investigate the difference in performance of the methods when
applied to a multirate setting, meaning the different time steps are of different
length: τx 6= τy.

For the results below we use the same settings as in chapter 5.2 except that
τx = 0.005 and τy = 0.01.

Influence of diagonal terms

Here we are testing the system

A =

[
−∗ 1
1 ∗

]
(5.4)

where we vary the two diagonals with different signs.
Comparing figures 5.15 and 5.16 from the multirate setting to figures 5.7

and 5.8 from the singlerate setting we see that there is not much difference in
the performance of Jacobi and Gauß-Seidel. However the new multirate method
performs significantly better in this multirate setting, having similar behaviour
to Gauß-Seidel.

In figures 5.17 and 5.18 we see that for Gauß-Seidel the convergence rate
follows the prediction quite well. Jacobi again performs worse than predicted.
The Multirate method again performs very similar to Gauß-Seidel, also when it
comes to convergence rate.

Varying the two couplings

Here we are testing the system

A =

[
1 −∗
∗ −1

]
(5.5)

where we vary the two coupling factors with different signs.
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Figure 5.15: Number of iterations done by the Jacobi and Gauß-Seidel methods
compared to the estimated amount, this time in a multirate setting

Figure 5.16: Number of iterations done by the three methods in a multirate
setting.
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Figure 5.17: Comparison between the spectral radius given by the discrete anal-
ysis and the convergence rate obtained through numerical experiments.

Figure 5.18: Comparison of the convergence factor of the three methods.
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Figure 5.19: Number of iterations done by the Jacobi and Gauß-Seidel methods
compared to the estimated amount, this time in a multirate setting.

Figure 5.20: Number of iterations done by the three methods in a multirate
setting.
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Figure 5.21: Comparison between the spectral radius given by the discrete anal-
ysis and the convergence rate obtained through numerical experiments.

Again it can be seen in figures 5.19 and 5.20 that the performance of the
multirate method is very similar to Gauß-Seidel.

In figures 5.21 and 5.22 we again see that also when the coupling constants
are varied, the new multirate method performs similarly to Gauß-Seidel.

General Remarks

When in a multirate setting, the new multirate method behaves much more like
Gauß-Seidel than when in a single rate setting. This can be explained in the
following way. Since one of the systems takes larger steps, the process concerning
this system will advance in time much faster than the other system. Therefore
according to equation (4.4), the slower process will always have information
available from iteration K+1, similarly to Gauß-Seidel. In a single rate setting,
both subsystems and thus both processes use the same time step. The only way
for a process to advance faster in time than the other is if the operating system
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Figure 5.22: Comparison of the convergence factor of the three methods.

interferes with one of the cores associated with a process.
The noise effect in the Jacobi plots, possible induced by the large exponential

component, can also be seen in the multirate case in figures 5.17 and 5.18 Also
again, when applied to the other system seen in figures 5.21 and 5.22 this noise
is not there.

5.4 1d Heat equation

The following results are from applying the methods to a 1 dimensional heat
transfer problem. The general form of the heat equation has the following form:

∂tu+ O · (α(x)Ou) = f, u = gd on Γd,n · Ou = gn on Γn. (5.6)

Here f is a source term, α the heat diffusivity, gd the prescribed Dirichlet
condition on the boundary Γd and gn the prescribed Neumann condition on the
boundary Γn.

The problem we are going to study is a system of two coupled heat equations.
The domain is cut in half and split between the two processes where the left
domain has a heat diffusivity of αl and the right domain αr.

Finite difference discretisation

The discretisation is not done on equation 5.6 directly, but on a 1d variant of
the equation. Also since we have a variable α(x) we can split the divergence
term in two. We then arrive at

∂tu+ ∂xα · ∂xu+ α · ∂xxu = f (5.7)

which can easily be discretised using a finite difference scheme. On a grid
with the distance ∆x separating the grid points, the first order derivatives are
approximated using a forward finite difference scheme

∂xu(xi) ≈
ui+1 − ui

∆x



5.4. 1D HEAT EQUATION 49

Figure 5.23: The initial conditions and the solution of the heat equation with
two different heat diffusivities.

and the second order derivatives are approximated using the central scheme

∂xxu(xi) ≈
ui−1 − 2ui + ui+1

∆x2
.

Formally the problem description prescribes a discontinuous α. Instead between
the two points where the discontinuity is situated, we describe α as the a linear
function from αl on grid point x19 and αr on grid point x20. This makes it possi-
ble to solve the problem, at the cost of slightly changing the problem. Since the
main objective is to compare the different waveform iteration methods, not the
precise computation of the heat distribution, this simplification is reasonable.

Results

The following results are from a simulation of the 1d heat equation on a domain
x ∈ [0, 1] split in two equally big parts. On the left side the heat diffusivity
α = 1, on the right side α = 2. The equation was discretised using a finite
difference discretisation with 20 internal grid points. The boundary conditions
are both Dirichlet conditions with a temperature of uleft = 1 on the left side
and uright = 10 on the right side. The initial condition is a linear temperature
distribution conforming to the boundary conditions, as can be seen in figure 5.23.
The simulations were done for 0.1 seconds using 1 macrostep, and a termination
criterion of eK ≤ 10−12 in the max norm was used. The results presented below
are done using the SDIRK2 method with different time steps for the different
subsystems. For these results, no reference solution was computed. Instead
the absolute error is assumed to be similar to the relative difference between
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iterations,
∥∥uKe − uK+1

e

∥∥
∞. It is shown by Nevanlinna [3] that this is a good

estimate of the absolute error.
To minimize computational effort spent on communication between the sys-

tems only relevant data is sent between the systems. In this case it is not nec-
essary to send the full solution between the systems. Data from the boundary
between the domains is sufficient.

5.4.1 Decay of iterates

Here we present results showing how the norm of the absolute difference between
iterates,

∥∥uKe − uK+1
e

∥∥
∞, decays. In figures 5.24 and 5.25 the system was solved

using a singlerate configuration with τx = τy = 0.001s and τx = τy = 0.01s re-
spectively. It is observed that Jacobi uses roughly twice the amount of iterations
compared to Gauß-Seidel, as expected. The new multirate method shows very
different behaviour depending on the microstep length. This can be explained
in the following way. When the microstep length τ = 0.01 only 10 microsteps
are taken for each macrostep, compared to 100 microsteps when τ = 0.001.
When more steps are taken, it increases the likelyhood of one process conse-
quently being ahead of the other. When this is the case, the performance of
the multirate method mimics that of Gauß-Seidel, since one process always has
access to data from the most recent iteration (see section 4.2.2). When only a
few steps are made, no process can get ahead of the other significantly. In that
case the behaviour of the new multirate method comes closer to that of Jacobi.
This could also explain the shape of the curve in figure 5.25 which shows a lot
of noise compared to the curve in 5.24. To verify this explaination, this needs
to be studied in more detail.

In figures 5.26 and 5.27 we present the decay when the heat equation is solved
using a multirate setting, τy = 2τx = 0.002 and τy = 2τx = 0.02 respectively.
Again we see that when more microsteps are taken per macrostep, the iterates
of the new multirate method look similar to the iterates produced by the Gauß-
Seidel method. When comparing between the singlerate and the multirate cases,
we observe that the iterations from the new multirate method are more similar
to the iterations produced by Gauß-Seidel in the multirate setting.
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Figure 5.24: Figure showing the decay of the max norm
∥∥uKe − uK+1

e

∥∥
∞ when

solving the heat equation using the three different methods in a singlerate setting
with τx = τy = 0.001s.

Figure 5.25: Figure showing the decay of the max norm
∥∥uKe − uK+1

e

∥∥
∞ when

solving the heat equation using the three different methods in a singlerate setting
with τx = τy = 0.01s.



52 CHAPTER 5. RESULTS

Figure 5.26: Figure showing the decay of the max norm
∥∥uKe − uK+1

e

∥∥
∞ when

solving the heat equation using the three different methods in a multirate setting
with τy = 2τx = 0.002. The multirate line is barely visible behind the Gauss
-Seidel line.

Figure 5.27: Figure showing the decay of the max norm
∥∥uKe − uK+1

e

∥∥
∞ when

solving the heat equation using the three different methods in a multirate setting
with τy = 2τx = 0.02.
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5.4.2 Performance results

The time measurements were done using the python method time.perf counter,
measuring the wall-clock time of the simulation.

Table 5.1: Time (s) taken to simulate using the new multirate method with
different internal time steps

τy \τx 0.01 0.005 0.002 0.001
0.01 19.4 24.2 59.2 112.9
0.005 23.0 31.6 528.5 106.5
0.002 60.7 58.2 67.3 103.0
0.001 120.2 111.5 108.0 117.8

Table 5.2: Time (s) taken to simulate using the Jacobi method with different
internal time steps

τy \τx 0.01 0.005 0.002 0.001
0.01 22.4 36.9 108.7 216.1
0.005 42.4 40.1 99.5 207.8
0.002 117.1 107.7 105.2 197.6
0.001 230.8 209.9 205.3 208.9

Table 5.3: Time (s) taken to simulate using the Gauß-Seidel method with dif-
ferent internal time steps

τy \τx 0.01 0.005 0.002 0.001
0.01 20.9 29.6 62.0 117.9
0.005 31.6 37.5 69.1 119.6
0.002 67.5 72.6 101.5 148.0
0.001 124.1 124.5 152.3 203.0

Comparing tables 5.1, 5.2 and 5.3 we see that in fact in all but one case
the multirate method is faster than both the Jacobi and Gauß-Seidel methods.
It is interesting to see that for both Jacobi and the multirate method, it is
the shortest time step that dominantly effects the total simulation time. This
can be explained by the parallel nature of these methods, where if one system
takes longer time steps, it can finish before the system with shorter time steps.
This also explains why this can not be seen in the Gauß-Seidel results where it
is clear that the sequential nature of the method leads to both systems’ time
discretisations affecting the computational time, regardless of the ratio between
the time steps. What also is interesting is that the relative speedup from the
new multirate seems to be greater when both systems take smaller steps.
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Table 5.4: Asymptotic convergence rate of the new multirate method using
different time step settings.

τy \τx 0.01 0.005 0.002 0.001
0.01 0.6412 0.6230 0.4893 0.4900
0.005 0.5195 0.5790 0.6763 0.4209
0.002 0.4897 0.4375 0.4729 0.4016
0.001 0.4876 0.4213 0.3822 0.4382

Table 5.5: Asymptotic convergence rate of the Jacobi method using different
time step settings.

τy \τx 0.01 0.005 0.002 0.001
0.01 0.7051 0.7027 0.6983 0.6996
0.005 0.7031 0.6576 0.6584 0.6492
0.002 0.6995 0.6578 0.6183 0.6162
0.001 0.6979 0.6498 0.6161 0.6058

Table 5.6: Asymptotic convergence rate of the Gauß-Seidel method using dif-
ferent time step settings.

τy \τx 0.01 0.005 0.002 0.001
0.01 0.4965 0.4951 0.4880 0.4878
0.005 0.4931 0.4305 0.4330 0.4192
0.002 0.4882 0.4316 0.3795 0.3756
0.001 0.4880 0.4181 0.3756 0.3618

From the results presented in tables 5.4, 5.5 and 5.6 we see again that the
performance of the new multirate method lies in between Jacobi and Gauß-
Seidel. Gauß-Seidel also has significantly better convergence rates than Jacobi.
In general for all three methods, the convergence rate is slightly better the
smaller the time steps used. Looking at the results from Jacobi and Gauß-
Seidel it seems that the largest time step used has the most dominating effect
on the convergence rate. This is most clear by looking at the first row and first
column of tables 5.5 and 5.6. These findings conform to the results from White
[5], which say that the ratio of time steps does not affect the convergence rate.
Rather, it is the largest time step that affects the convergence rate.



Chapter 6

Conclusions

This thesis mainly consists of two parts. First we analysed two existing wave-
form iteration methods, writing down their properties analytically and com-
paring them with numerical results. Secondly we investigated a new method
and compared its numerical performance with the existing waveform iteration
methods. We saw that the qualitative performance of the Gauß-Seidel and Ja-
cobi methods can be described by the analytical formulas derived in chapter
3.2.3 and 3.2.4. However the analysis seems to overestimate the work needed
for solving systems meaning it can only be used as a rough guideline and not so
much for accurate predictions of the methods’ performances. The Gauß-Seidel
and Jacobi methods also performed in a multirate setting as predicted by the
analysis.

The new waveform iteration method has shown promising results. Its per-
formance regarding convergence rate lies in between the performance of Jacobi
and Gauß-Seidel. When in a single rate setting the performance is closer to
that of the Jacobi method, whilst in multirate settings the performance mimics
Gauß-Seidel a lot. Because of this convergence behaviour, the method is in most
cases faster than both Gauß-Seidel and Jacobi.

6.1 Outlook and future work

This work contains analysis of existing waveform iteration methods. However,
no analysis other than an interpretation of the numerical results is done on
the new multirate method, mainly because the non-deterministic nature of this
method makes it difficult to analyse. Still an analytical description of the be-
haviour of the iterates produced by the method would benefit the applicability
of the new method.

An other point of improvement is how the functions y∗ and x∗ are produced
in equation (4.2). In this thesis, only the mixed Jacobi and Gauß-Seidel method,
described by equation (4.4) is explored. There could be much to be gained
by choosing smarter combinations of iterates, and even using extrapolation to
predict a system’s state when that system is behind in the time integration
process.

In many of the plots in the result section a lot of noise could be seen in
the Jacobi results. A possible explanation was given, where large exponential

55
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factors might be the cause. It could be very interesting to further investigate
this phenomenon.

At some points in the program the processes need to synchronize or exchange
data. If one process finishes before the other, which more often than not is the
case, one of the processes needs to wait for the other to finish. This means
that the processes are not efficiently balanced. It would be better to make sure
that both processes finish at roughly the same time. There are multiple ways
to combat this problem, like changing the partitioning of the equation system
or other load balancing techniques. Further exploring these techniques could
improve the performance of the new method.

In this thesis, whenever interpolation was necessary, only linear interpolation
was used. It would be interesting to see how different interpolation methods
would affect the solution. Using a similar technique as in section 3.2.5, it is
possible to introduce nearest neighbour interpolation. For higher order inter-
polations, other techniques need to be employed for the analysis. In [5], White
discusses how different polynomial spline interpolations affect the convergence
rates of waveform relaxation methods. It would be interesting to see how the
new multirate method performs using different interpolations.

All work presented in this thesis revolves around a system that is split in two
parts. The theory presented by Vandewalle in [2] and Nevanlinna in [3] and [4] is
also valid for systems split into more than 2 parts. It would be very interesting
to see how the new method behaves when partitioned into more parts. The
communication between the subsystems can become very complicated very fast.
To see how this new method scales is also an important topic to be analysed.



Appendix A

Methods for solving
Ordinary Differential
Equations

To integrate the subsystems we need numerical methods suited for ODE’s. We
will not go into detail about these methods and how they work. However here
comes a list of methods used in this thesis as a reference.

All methods in this section are made for solving systems of the following
form.

ẏ = f(t, y) (A.1)

In the methods below yn denotes the numerical approximation of y at time
tn. The step size is denoted as h.

A.0.1 Implicit Euler method

The implicit Euler method is a Runge-Kutta method of order 1.

yn+1 = yn + f(tn+1, yn+1) (A.2)

A.0.2 SDIRK2

The SDIRK2 method is a Runge-Kutta method of order 2. It has better damp-
ening properties when applied to the heat equation compared to the trapezoidal
rule. It is however slightly more costly due to it having two stages while the
trapezoidal rule is a one stage method. SDIRK2 has the following Butcher
tableau [9].

α α 0
1 1− α α

1− α α

Here α = 1−
√

1
2 .
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A.1 Solving systems of equations

When using implicit solvers a system of equations needs to be solved. One way
of doing this is using the Newton-Raphson iteration. It works by finding roots
to a function using the function’s jacobian.

For a function g(x) ∈ C1 the Newton Raphson method finds the root using
the following iteration scheme [10]:

Dg(xk)(xk+1 − xk) = −g(xk) (A.3)

given an initial guess x0. Here Dg denotes the jacobian of g.
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Mathematics, vol. 29, pp. 328–346, Jun 1989.

[4] O. Nevanlinna, “Remarks on Picard-Lindelöf iteration,” BIT Numerical
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