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Abstract

We show that an unsupervised artificial neural network can be trained

to parameterize the set of N representable density matrices well enough to

enable ground state energy calculations. A one-dimensional harmonic oscillator

system is used to test the method. 4, 5, or 6 fermions are placed in an external

potential. They interact with one of three different interaction types. By

choosing the most successful network according to a well-defined measure, the

approach is shown to generalize to interaction types not considered by the

measure.
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Abbreviations

2-RDM Two-particle reduced density matrix (also denoted with Γ)

P (N) Set of N representable two-particle density matrices (set of all 2-RDMS)

AE Autoencoder

ANN Artificial Neural Network

Artificial Neural Network terminology

Deep Learning Using ANNs with many layers.

Weights Free parameters of ANNs.

Loss Measure of distance between output and desired output.

Training Adjusting weights to minimize loss.

Adversarial Examples Examples engineered explicitly to produce erroneous net-

work behavior.
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1 Introduction

Quantum mechanics is a remarkably successful theory. It is also a weird theory.

Niels Bohr in conversation with Werner Heisenberg claimed that “Anyone who is not

shocked by quantum theory has not understood it”[1]. However, time and time again,

the predictions are observed in experiments. So we are in a tricky spot. There is

an excellent theory describing the world of small objects and their interactions, but

it does not make sense to us. What if we can create artificial intelligence for which

quantum mechanics is reasonable? In its most broad and abstract form, the goal of

this work is to be the first step towards an AI with intuition for quantum mechanics.

Philosophical problems with quantum mechanics are often “solved” with a “shut up

and calculate” approach. The idea is to not care about the philosophical implications.

Do not bother to understand it. Just make sure your math is correct. But what to

do when the math is too hard? Only a handful of systems, like the hydrogen atom,

can be solved exactly with pen and paper. With the help of computers, approximate

solutions are possible for a range of small systems. But the time it takes to do the

computation increases exponentially with the number of interacting particles. Making

predictions with quantum mechanics is a tough challenge. There are many approaches

to do many-body quantum mechanics. For example, density functional theory [2, 3]

and Green’s functions [4]. This work is trying to provide the first step in the creation

of a new approach within the reduced density matrix branch [5].

The reduced density matrix formalism draws from the insight that the wave

function tells us more than we need to know [6]. A two-particle reduced density

matrix (2-RDM) is the reduction of an N-particle state to an ensemble of 2 particle

states. The formalism replaces the physical significance of the wave function with the

reduced density matrix. Using a reduced density matrix formulation seemingly solved

the exponential increase in computation time with the number of interacting particles

by flattening the space in which we need to search for a solution. However, the catch

is that this smaller set of possible solutions (referred to as P (N)) is hard to search

over. It is a formidable challenge to exclude all elements that cannot be physical
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solutions from the search. This challenge is called the N representability problem.

In sharp contrast to quantum mechanical reformulations is the hot buzz-word

field deep learning. The term deep learning has appeared in recent years as a term for

many-layer artificial neural networks (ANN). The idea to mimic the way the human

brain learns in a computer dates back to 1949 when Hebb first proposed that the

brain learns by changing the strength of connections between neurons [7, 8].

Recent achievements in training ANNs to do image recognition [9], playing games

[10], and translation [11] have dramatically improved the state-of-the-art in said fields.

Attempts to utilize ANNs in physics have been made both in experimental settings

[12] and theoretical calculations [13]. However, the role of ANNs in physics and their

importance is still an open question. Partly this is because recent advancement in

ANNs are, well, recent. Further, there is no consensus regarding why ANNs are so

useful.

The initial approach of the project was to use a classifier network to discriminate

between density matrices as either in P (N) or not. The idea was to use the discrimi-

nator to exclude elements not in P (N) from the search. Interestingly, creating an

ANN that manages to classify matrices as either in P (N) or not correctly was not

the problem. Instead, adversarial examples [14] stopped the discriminator approach.

The adversarial examples and the general instability of the discriminator approach

sent us back to the drawing board. ANNs work very well in many applications [8].

However, there is no consensus why they work so well. An often cited reason is that

a feed-forward ANN can approximate any function given enough neurons [15]. Even

though it is a significant result, the space of all functions is so large that all reasonably

sized ANNs still only cover a small part of the space of all function. The question of

why networks work so well can be rephrased as, why the subset of all functions that

ANNs efficiently approximate hold so many practical uses.

Some argue that that physics can explain the success of ANNs. More precisely

that ANNs efficiently incorporates mathematical properties often found in theoretical

physics, such as symmetry, locality, compositionality and hierarchical structure [16].
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This explanation is music to my ears, inciting hope that unsupervised learning might

on its own uncover vital physical insights into the N-Representability problem.

Further, one can also argue that the power of ANNs lies in their ability to create

a high-level description of the data. A representation is effectively a parametrization

of the data set. Using unsupervised learning, we train a network to develop a

parametrization of the set of N representable density matrices. This parametrization

can then be used to solve the constrained optimization problem of finding the ground

state. Our results show that autoencoder (AE) ANNs can find parametrizations good

enough to do energy calculations as seen in figure 10 in section 4.2.
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2 Theory

In the theory section 2.1 we will define the set of two particle reduced density matrices

P (N) and show their importance. Section 2.2 explain the basics of ANNs and

introduce dense and convolutional layers.

2.1 N Representability

Before we get started, there is the question of notation. I will use second-quantization

formalism and mostly follow Variational approach to electronic structure calculations

on second-order reduced density matrices and the N representability problem by M.

Nakata et al. [17]. Section two goes through much of what I will cover in the beginning

of this section. [18] also quickly introduced the N representability problem using

second quantization and bra-ket notation in a similar but more condensed way as

here.

The second quantization formalism uses a set of creation and annihilation operators

{ai, a†i}Mi=1 where a†i creates and ai annihilates a particle in the one-particle state ψi.

M is the number of one-particle wave functions used as a basis. It is noteworthy that

no result in this section is dependent on a specific choice of one-particle states {ψi}.
The choice of {ψi} determines the subset of the full Hilbert space that is considered.

Second quantization operators commute according to their statistics. We will

only be considering fermions although the method is extendable to bosons as well.

The commutation relations for the second quantization operators for fermions are

{ai, aj} = {a†i , a
†
j} = 0 and {a†i , aj} = δij. Second quantization is convenient as it

makes creating anti-symmetric combinations of one particle wave functions as easy

as applying creation operators to the 0 particle state |0〉.

All operators can be expressed in terms of second quantization operators. For any

system with only one- and two-particle interactions the Hamiltonian can be written

as:
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Ĥ =
∑
ij

vija
†
iaj +

∑
ijkl

ωij
kla
†
ia
†
jakal (1)

vij in equation 1 are the coefficients determining one-particle interaction and ωij
kl

the two-particle interaction [17]. For three-particle interactions, one would need

to add terms on the form a†ia
†
ja
†
kalanam. We can get vij and ωij

kl from the position

space-representation as follows:

vij =

∫
ψ∗i (z)

(
−1

2
∇2 − V (z)

)
ψj(z)dz (2)

ωij
kl =

∫
ψ∗i (z1)ψ∗j (z2)I(z1, z2)ψl(z1)ψk(z2)dz1dz2 (3)

V (z) is the external potential. The results in section 4 use the Harmonic oscillator

external potential V (z) = 1
2
mω2z . I(z1, z2) is the interaction term. We will use three

different interaction terms I(x1, x2) = δ(z1−z2), e
(z1−z2)

2

0.5 , e
(z1−z2)

2

1.0 . ψi(z) are the space-

representations of our one-particle wave functions basis. That is: ψi(z) = 〈z| a†i |0〉.

By noting that
∑

k a
†
kak = N̂ we can for a space of only N-particle states get the

identity a†iaj = 1
N−1

∑
k a
†
ia
†
kakaj. Combining this identity with equation 1 for the

Hamiltonian, the exact expectation value can be rewritten from wave function form

to the 2-RDM form. Γ is the 2-RDM. In the reduced density matrix formalism, the

2-RDM takes over the physical significance of the wave function.
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E = 〈Ψ| Ĥ |Ψ〉 =
∑
ij

vij 〈Ψ| a
†
iaj |Ψ〉+

∑
ijkl

ωij
kl 〈Ψ| a

†
ia
†
jakal |Ψ〉

=
∑
ijk

vij
N − 1

〈Ψ| a†ia
†
kakaj |Ψ〉+

∑
ijkl

ωij
kl 〈Ψ| a

†
ia
†
jakal |Ψ〉

=
∑
ijkl

vijδkl

N − 1
〈Ψ| a†ia

†
kalaj |Ψ〉+

∑
ijkl

ωij
kl 〈Ψ| a

†
ia
†
jakal |Ψ〉

Do dummy index changes: k → j, j → l, l→ k

=
∑
ijkl

vilδjk
N − 1

〈Ψ| a†ia
†
jakal |Ψ〉+

∑
ijkl

ωij
kl 〈Ψ| a

†
ia
†
jakal |Ψ〉

=
∑
ijkl

(
vilδjk
N − 1

+ ωij
kl

)
〈Ψ| a†ia

†
jakal |Ψ〉

Hijlk ≡
vilδjk
N − 1

+ ωij
kl, Γij

lk ≡ 〈Ψ| a
†
ia
†
jakal |Ψ〉 (4)

E =
∑
ijlk

HijlkΓij
lk ≡ EH(Γ) (5)

At first glance, this might seem only like a cumbersome renaming. However, notice

that the degrees of freedom of Ψ are O(
(
M
N

)
) and O(MN) if M � N , where M is

the number of one-particle basis states and N is the number of particles. On the

other hand the degrees of freedom of Γ is M4 from the four indices that range from

1 to M . From the definition of Γij
kl in equation 4 it is clear that Γij

kl will have many

(anti-)symmetries. The number of free variables in the 2-RDM after considering the

symmetries is
((M

2 )+1

2

)
= O(M4).

Γij
lk = −Γji

lk = −Γij
kl = Γji

kl (6)

Γlk
ij = −Γlk

ji = −Γkl
ij = Γkl

ji

The same procedure as in equation 5 above for the Hamiltonian can be carried

out with all one- or two-particle interaction observables. This generality means other
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expectation values can be calculated from the 2-RDM as well. The mapping from

the full N-particle state space to the reduced density matrix space is however not

one-to-one. As the mapping is not one-to-on more than one wave function is mapped

to the same density matrix. This loss of information about the original wave function

is in line with the idea that the entire N-particle wave function tells us more than we

need to know.

So what do we need to know, and what do we forget? Remember the first

assumption we made about the Hamiltonian, that it can have at most two-particle

interactions. Two-particle interaction is the only constraint for which operators we

keep the expectation values exact. We have explicitly created the reduction so that

the expectation value of relevant observables are conserved.

Let’s consider the set of all operators that can be written with two-particle

interaction as in equation 1 and call it the two-operator set O. The lowest eigenvalues

of two operators are essential, after all, it is those eigenvalues we aim to calculate.

wave functions that are non-degenerate eigenvectors with the smallest eigenvalue of

the operator are special. For an operator with a non-degenerate ground state, there is

only one wave function that gives the expectation value equal to the lowest eigenvalue.

Thus non-degenerate ground state wave functions have a one-to-one mapping to their

2-RDM.

〈ψ| a†ia
†
jakal |ψ〉 = 〈Φ| a†ia

†
jakal |Φ〉 ⇔ 〈ψ| Â |ψ〉 = 〈Φ| Â |Φ〉 ∀Â ∈ O (7)

Equation 7 tells us that if we only have measurements corresponding to operators

expressible in two-particle interactions, there is no way we can distinguish between

states represented with the same 2-RDM by their expectation values. It is remarkable

for an exponential reduction free parameters retaining so much relevant information.

The exponential improvement the in number of free variables as a function of

particle number makes variational methods for many-body problems more feasible.

Traditional variational methods approximate the ground state by minimizing the

energy expectation value over the N-particle Hilbert space H⊗N = H⊗H⊗H . . . .
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In practice, a subspace or even just a subset of H⊗N is used. In the same way, we

can construct a variational search among all possible Γ

Eg = min
Ψ∈H⊗N

〈Ψ| Ĥ |Ψ〉 = min
Γ∈P (N)

EH(Γ). (8)

Equation 8 reformulate the problem of calculating ground state energies to finding

an efficient algorithm for the constrained optimization over the set of all 2-RDMs.

Unfortunately, not all two-particle density matrices are the representation of some N

particle state Ψ. The density matrices that are representations of N particle states

are called N representable. The set of N representable density matrices (also named

two-particle reduced density matrices) is denoted P (N).

P (N) = {Γ | ∃Ψ ∈ H⊗N |Γij
lk = 〈Ψ| a†ia

†
jakal |Ψ〉} (9)

Writing down the definition of P (N) poses no problem and is done in equation 9.

The tricky part is to create an efficient search algorithm. The problem to characterize

P (N) in such a way is called the N representability problem. Garrod and Percus [19]

showed that P (N) can be characterized by the fact a two-particle density matrix is

in P (N) if and only if for every Hamiltonian the expectation value is larger than the

ground state energy for the corresponding Hamiltonian.

P (N) = {Γ |EH(Γ) ≥ Eg(H) for all two-particles Hamiltonians H}

The ground state energy characterization is not practical since it requires all ground

state energies to be known. However, the characterization can be useful in identifying

examples of elements that are not in P (N). Some necessary, efficient criteria have been

discovered but no complete, practical solution to the N representability problem is

known.Unfortunately, the N representability problem is in the NP-complete complexity

class [18]. The classification as NP-compete means that finding a full and efficient

solution is virtually impossible as that would solve the famous P vs NP problem
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in computational complexity theory. However, that does not stop us from finding a

good approximate solution.

Before we attack the NP-hard core of the N representability problem with ANNs,

some conditions can be implemented explicitly. Shrinking the space from RM×M×M×M

to the set of density matrices will make the job of the networks simpler.

First, we transform the 2-RDM Γij
kl 1 ≤ i < j ≤M ; 1 ≤ k < l ≤M to a matrix

form Γj−i+(2M−i)(i−1)/2,l−k+(2M−k)(k−1)/2 that is more convenient when doing linear

algebra [17]. Then we turn our attention to the fact that we want Γ to be a density

matrix. Theorem 2.5 in section 2.4 of [20] aptly named Characterization of density

operators specifies a set of necessary and sufficient demands on a density operator.

Characterization of density operators. An operator ρ is the density operator

associated with some ensemble {pi, |ψi〉} if and only if it satisfies the conditions:

1. (Trace condition) ρ has trace equal to one.

2. (Positivity condition) ρ is a positive operator.

Note that the trace of Γ is not 1 but N(N − 1). The value of the trace differ

between conventions, but what is important is not the value (that can always be

changed by multiplying a scalar) but that it is fixed. The physical significance of

conserving the trace is that of conserving the particle number. The ideas behind

positive eigenvalues are a bit more involved.

A density matrix, in general, represents a statistical ensemble of pure states ψi

with different probabilities pi and can be written as
∑

i pi |ψi〉 〈ψi|. However, the set

of pure states and probabilities that form a density matrix is not unique. More than

one set of wave functions and probabilities combine to form the same density matrix.

For any density matrix, one way to get such a set is to diagonalise the matrix. The

eigenvectors are the states and the eigenvalues the probabilities. As probabilities

must be non-negative, the eigenvalues must be non-negative. So we see that the

positivity conditions comes from the fact that only positive, or zero, probabilities are

meaningful.

13



In summary, to search the space of two-particle density matrices, we need a

way to make Γ satisfy the symmetries in equation 6, trace N(N − 1), and positive

definiteness.

All two-particle reduced density matrices are (unsurprisingly) density matrices.

However, one might wrongly assume that all two-particle density matrices are reduced

N particle density matrices, as unfortunately, that is not the case. A.J Coleman

discovered this when he in 1951 did variational calculations over the set of two-particle

density matrices for the ground state of lithium. Variational methods typically

guarantee that the ground state energy obtained is above the actual ground state

energy. However, Coleman got an energy 20% below the ground state energy [21].

This concludes the necessary theory from a physics perspective. The next section

will bring us up to speed on the primary tool that we use to achieve our goal of an

efficient algorithm to search P (N).
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2.2 Artificial Neural Networks

A feed-forward artificial neural network (ANN) is a function taking a vector input

and returning a vector or scalar output. An essential element is that ANNs also

depend on a large number of free parameters called the weights. The number of

weights can be in the millions [9]. The loss is a measure of the difference between

the actual output and the desired output. The value of each weight is determined by

minimizing the loss with respect to the weights. Gradient descent is often used as

the optimization algorithm.

y = f

([
θh1 θh2

]
f

([
θ11 θ21

θ12 θ22

][
X1

X2

]))
(10)

= f(θh1f(θ11X1 + θ21X2) + θh2f(θ12X1 + θ22X2))

The terminology introduced so far for ANNs fits just as well to linear regression

and in a sense, ANNs are nothing more than linear regression on steroids. ANNs can

bee seen as consisting of multiple linear regressions, but with nonlinear functions in

between each layer of linear regression.

Another way to see ANNs is as weighted directed computational graphs. Graphs

consist of nodes (also called points or vertices) connected by lines (also called arcs or

edges). A graph can be directed, meaning that each line is an arrow with a direction

from one node to another. If an arrow exist from x to y, x is a direct predecessor

to y and y is a direct successor of x. A weighted graph has a real number weight

associated with each line in the graph.

The computation in computational graphs is the process of assigning a value to

each node in the graph. Input nodes are nodes without incoming lines (no direct

predecessors) and are assigned the values of the inputs to the network. For all other

nodes, the value of the node is calculated as the weighted sum of the values of direct

predecessors passed as argument to an activation function. Nodes without successors

(outgoing lines) are output nodes and constitutes the output of the network.
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Figure 1: Graph representation of a neural network. The argument passed to the

network is set as the value of the input nodes X1 and X2 with no incoming lines. The

value of a node, multiplied by the line weight is feed as input to the next layer nodes.

For example X1 send X1θ11 to the “hidden 1” node. The value of the hidden nodes

are calculated as the sum of all inputs passed as argument to an activation function

f . For example, the value of “hidden 1” becomes f(θ11X1 + θ21X2) and will in turn

be multiplied by θh1 and passed as input to the next layer that happen to be the

output layer. The output layer nodes have no outgoing lines and their values are the

resulting output of the network. Equation 10 writes down the function representation

of the neural network depicted in this graph.
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The configuration of nodes and lines creating the graph representation of an ANN

is called the architecture of the ANN. A common architectural property is to divide

the nodes into ordered layers. The first layer is the input layer and the last layer is

the output layer. A neuron only have direct predecessors in the layer before it and

direct successors in the next layer. Networks of this type are called feed-forward

neural networks .

If all nodes in a layer are connected with all nodes in the next layer, the layer

is said to be dense. This dense connectivity is not always desirable due to the high

number of weights. To many weights can cause over fitting, where the network

memorizes the examples instead of understanding them. The task of finding optimal

weights also becomes harder, and finally all weights might not fit in memory at some

point.

Convolutional neural networks reduce the number of weights in two ways. Firstly,

nodes only have direct predecessors from a small part of the previous layer. Secondly,

weights are shared between lines. Deep (many layers) convolutional neural networks

have had great success in image recognition tasks [9].
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3 Method

The theory section left us with a constrained optimization problem formulation of

many body quantum mechanics and an ANN toolbox. The aim of the method section

is to transform the constrained optimization problem into a function approximation

problem, solvable with our ANN toolbox. Before we hand over control to the ANN,

we need to check what conditions we can incorporate ourselves explicitly. As derived

in section 2.1, there are some conditions on Γ we know we need to satisfy.

3.1 Parametrization

Before the ANN is involved, we make sure that the conditions of (anti-)symmetry, fixed

trace, and positivity are met. These demands are met with the help of parametrization.

The parametrization makes it possible for the network to only worry about the

problems that we cannot solve with explicit parametrization.

The most challenging condition that we want to parameterize is the positivity

condition. As discussed in the theory section the 2-RDM is a positive semi-definite,

symmetric matrix. Fortunately, we are not the first to crave a parametrization for

symmetric, positive-definite matrices [24]. J. C. Pinheiro and D. M. Bates from the

departments of biostatistics and statistics at the University of Wisconsin-Madison

published a paper in 1996 where they modified the Cholesky decomposition to be a

parametrization of symmetric positive-definite matrices suitable for minimization.

Any positive definite matrix A can be decomposed into A = LL† where L is a

lower triangular matrix called the Cholesky decomposition of A. If the elements on

the diagonal are positive, then L is unique [24]. Using the logarithm of the diagonal

elements in L as parameters produces a unique parametrization. To get a more clear

picture of how this parametrization works, we show next the procedure to get from a

list of parameters specifying the two particle density matrix (c1, c2, c3, c4, c5, c6) to a

general positive semi-definite symmetric 3× 3 density matrix.

18



(c1, c2, c3, c4, c5, c6)→ L =


ec1 0 0

c2 ec4 0

c3 c5 ec6



A = LL† =


e2c1 c2e

c1 c3e
c1

c2e
c1 c2

2 + e2c4 c2c3 + c5e
c4

c3e
c1 c2c3 + c5e

c4 c2
3 + c2

5 + e2c6


Tr[A] = e2c1 + c2

2 + e2c4 + c2
3 + c2

5 + e2c6

The log-Cholesky parametrization only works for positive-definite matrices [24].

The eigenvalues of a positive-definite matrix is always greater than zero. However, in

the case of density matrices, as zeros occur as a probabilities, eigenvalues can be zero.

Fortunately, any positive-semi-definite matrix can be approximated arbitrarily close

by a positive-definite matrix.

Parametrization of the index (anti-)symmetries is conceptually trivial. Index (anti-

)symmetries as in equation 6 dictate direct relationships between pairs of elements.

Any set of linearly independent tensor elements from which the 2-RDM can be fully

specified constitutes a proper parametrization. This type of parametrization can be

done for all symmetries in equation 6. It is not necessary to impose all symmetries in

equation 6 in this way as the log-Cholesky parametrization technique for imposing

positivity at the same time take care of the symmetry Γij
kl = Γkl

ij .

To practically implement the transformation between the index symmetry parametriza-

tion and the full tensor is however not trivial. It requires constructing a transformation

tensor with elements with values 0, 1 or -1 that specify the mapping between the

parametrization and the full rank four tensor.

Fixing the trace of the operator Γ to N(N − 1) is achieved by multiplying the

operator with N(N−1)
Tr[Γ]

. This brings up the special case of Tr[Γ] = 0. Luckily Tr[Γ] 6= 0

as Γ is positive semi-definite. The non-zero trace is evident from the fact that the

trace is the sum of all (in this case positive) eigenvalues.
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Why stop here? From Γij
kl one can get more matrices than Γj−i+(2M−i)(i−1)/2,l−k+(2M−k)(k−1)/2

that need to be positive. These matrices are often called Q, G, T1, and T2 [17]. Our

parametrization scheme transformed Γ such that it is positive semi-definite. Then

from the parametrization, we calculate Γij
kl as made possible by the one to one mapping

between them. We could do the same thing for the other matrices, as long as the

transformations are invertible, but there is no clear way how to do it for more than

one condition at a time. Incorporating our knowledge of other conditions into the

design of the network is probably a more rewarding approach. Such networks are not

explored in this work. However, appendix B describes how knowledge of multiple

parametrizable conditions can be tightly incorporated into the network, given the

existence of inverse transformations.

3.2 Artificial Neural Networks

The problem we want to use neural networks for is to solve the constrained optimization

problem in equation 8. A picture that might help to make sense of our search for

ANNs is to make an analogy to mining. In a sense we are mining the space of all

computable functions that are efficiently approximated by ANNs. A space that has

turned out to include many useful functions. The following two subsections will deal

with methods to extract valuable functions from this space. But before starting the

search, we must know what functions we are looking for. I will show two different ways

to transform the problem of constrained minimization to the search for a function.

3.2.1 Discriminator

The initial approach (pursued with limited success) use a discriminator D : Rn → [0, 1].

D multiplied with γ forms a punishment term with max size γ. The idea is that the
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new term will force the minimization to stay in the set P (N) ⊂ Rn

D(x) =

0 if x ∈ P (N)

1 if x /∈ P (N)

γ > min
x∈P (N)

E(x)− min
x∈Rn

E(x)

⇒ min
x∈P (N)

E(x) = min
x∈Rn

[
E(x) + γD(x)2

]
(11)

The value of min
x∈P (N)

E(x) in equation 11 is not known beforehand, so there is no way

to determine how large γ need to be. However, by checking the output of D on the

result, it can be determined if γ was too small.

Figure 2: The figure depicts an illustration of a simple feed-forward artificial neural

network classifier. Examples are feed in as input at the bottom (red). Weights multiply

the inputs (represented by the lines), forming the input to the next layer (green). The

activation function is applied generating the output of the green layer. The process

is then done one more time to produce a single output neuron (blue). In both layers,

there is also a bias node (grey) that always gives the same value independent of input.

The entire network (with fixed weights) is used as the discriminator D. Figure from

[22]

The network needs one input node for every element in our log-Cholesky parametriza-

tion and a single output node. Figure 2 shows an illustration of such a network. To

assure the network output is between zero and one the activation function for the

output layer is a sigmoid function S(x) = 1
1+e−x . The Binary cross entropy below is

used as loss function.
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loss(ypred, ytarget) = −(1− ytarget) log(1− ypred)− ytarget log(ypred).

ytarget is the desired target output as defined by equation 11. ypred is the networks

output. The network is trained on pairs of log-Cholesky parametrizations and targets.

The positive examples (with ytarget = 1) are generated by reducing N particle wave

functions with equation 4. Negative examples are generated by randomly sampling

log-Cholesky parametrizations and finding two-particle density matrices that have

an energy lower than the ground state energy. Note that the process of generating

negative examples requires known ground state energies making the method empirical.

An unfortunate feature of ANNs doing classification is that they are very suscepti-

ble to adversarial examples. Adversarial examples are input to the classifier that only

differ just so slightly from a correctly classified example but are explicitly created

to become wrongly classified. An example from image recognition is the adversarial

images to a binary car classifier in figure 3.

Figure 3: Figure from [14]. The figure shows adversarial examples to a binary car

classifier. In both a) and b) the randomly chosen example to the left is classified

correctly as a car, but the car in the middle is not. The image to the right is the

difference between the two images.

A way to generate adversarial examples is by the fast gradient sign method [25],

that use the gradient to find the steepest path away from the correct classification.

If gradient descent is used for optimization over a classifier (as we have done) the

problem of adversarial examples will be significant. The minimization algorithm will

most likely end up in a wrongly classified density matrix that has to low energy.
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To remedy the effect of adversarial examples, we add adversarial examples to the

training set. Again, generating adversarial examples requires Hamiltonians with

known ground states.

The idea is to train the network to classify density matrices correctly by training

on its own mistakes. With the classifier, the optimization in equation 11 is now

possible. If the answer is lower than the known ground state energy, the “solution” is

added to the training set, and labeled with 0 (not N representable). To balance the

training set, a positive example is also added. After doing this procedure for finding

wrongly categorized examples for all training Hamiltonians, the network trains with

the expanded training set.

The solution found by minimizing the effective energy can also end up with an

energy that is higher than the ground state energy. In this case, the convex property

of the set of N representable density matrices comes in handy. The solution will

always be a pure-state density matrix. Allowing convex combinations does not change

the global minima as they will always have higher energy than the ground state.

Convex combinations of the initial starting point of the minimization and the actual

ground state 2-RDM are added to the training set. The idea is that a path down to

the ground state will be formed in the discriminator function. In theory, this is not

needed as if D always correctly classifies its input there will be a path inside P (N)

between any initial guess and the ground state. However, flaws in D and problems

with getting stuck in a local minimum can make the use of “shortcuts” through

convex combinations practical.

The loop updating the training set should both prevent false positives and create

paths in the landscape down to the ground states. The first test will be if the

network can converge to the solution on the test Hamiltonians, but generalization

to other Hamiltonians are vital. Unfortunately, the results of this approach are very

disappointing as we will see in the results section.
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3.2.2 Autoencoder

The fundamental idea of the AE (autoencoder) approach is to force a network to

encode N representable density matrices into a smaller space Rm that is also called

the Z layer (not to be confused with the set of integers). The hope is that the AE

will discover relationships between elements and remove such relationships to fit all

N representable density matrices into the Z layer. Figure 4 illustrates the idea that

by extensively sampling P (N) and making m so small that the AE needs the entirety

of Rm to encode P (N), an approximate parametrization of P (N) is formed.

Figure 4: Visualization of the idea behind using an AE for constrained search. P (N)

is the set of N representable 2-RDMs, Z is the layer forming the bottleneck of the

AE. The arrows are the mappings defined by the encoder: P (N)→ Z and generator

G : Z → P (N). The faint dotted line is the image of G. a) The AE is trained on

too few samples, or the Z layer is too large. The image of the generator network

is not contained within P (N). b) By increasing the number of points, the network

“needs” more of the Z space to encode elements from P (N). The image of G becomes

a better approximation of P (N).

The main innovation of this work is that we train an autoencoder such that the

decoder part (G for generator) will have the property G[Rm] = P (N). If so we can

change E(x)→ E(G(z)) and P (N)→ Rm and get:

G[Rm] = P (N)⇒ min
x∈P (N)

E(x) = min
z∈Rm

E(G(z)) (12)
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Figure 5: The figure shows an illustration of a simple feed-forward artificial neural

network AE. Input is feed into the bottom neurons (red). Weights then multiply the

inputs (represented by the lines). The result is summed together in the next layer

(green) before the activation function is applied. The procedure is applied one more

time to produce the output neurons (blue). In both layers, there is also a bias node

(grey) that always gives the same value independent of input. The decoder part of

the network forms the generator G. Figure based on [22]

In practice, an AE is nothing more than an ANN with the goal of reproducing the

input in the output. The difficulty for the network is created by having a bottleneck

in the network architecture. The most straightforward AE (as the one shown in figure

5) has two layers and the hidden layer is the bottleneck. After training, the decoder

part of the network is separated from the encoder and used as the generator function

G in equation 12. The activation function used is the hyperbolic tangent, tanh. The

loss is defined as the mean square error between input and output of the network.

For each training step, the loss is calculated over a small subset called a batch of all

training data.

The above-described approach will in the best case characterize P (N) for one

specific N . To calculate systems with another number of particles the training and

architecture fine tuning needs to be redone. Adding N as an extra element in the

parametrization the network can be told to encode into P (4) or P (5). To be able

to create a modified generator G̃ : Z,N → P (N), N need to be feed as input to the

hidden layer. This is done by adding the squared difference between one neuron in
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the Z layer and the input neuron that is feed with the number of particles. The extra

loss will make the network allocate that Z neuron to hold N , and it becomes possible

to change N after training by changing the input to that hidden neuron.

The ability to generalize in N becomes even more critical when scaling to higher

particle numbers. In section 2.1 the number of free variables of the 2-RDM approach

is MN , where M is the number of one-particle base functions used. Generating

positive examples suffer from a time complexity of O(
(
M
N

)
).

3.3 Generating data

Drawing random samples from P (N) is done by drawing random wave functions

Ψ from the N-particle wave-function Hilbert space H⊗N . Each wave-function can

then be transformed into an N representable density matrix via equation 4 derived

in section 2.1. From the density matrix, the log-Cholesky parametrization can be

computed, and we have our N representable data point.

Γij
lk ≡ 〈Ψ| a

†
ia
†
jakal |Ψ〉 (13)

The implementation details of the C++ code sampling wave-functions and reducing

them to log-Cholesky parametrizations of 2-RDMs can be found in the GitHub

repository [26]. Appendix A describes the algorithm reducing Ψ to Γij
lk. The GNU

Scientific Library [27] is used for the Cholesky decomposition.
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Figure 6: Sampling positive examples according to different N particle wave function

distributions. x is the coefficient number. The energy expectation values are calculated

relative to a test Hamiltonian. The test Hamiltonian consists of 4 particles in a

harmonic oscillator interacting with delta interaction for different interaction strengths.

The black line is the ground state energy as a function of interaction strength. Note

that all positive examples must be above the ground state line. Ground state energies

are known by configuration interaction calculations.

The natural choice is to draw the coefficients of Ψ uniformly and then normalize

the resulting state. As seen in figure 6, uniform sampling results in very little spread
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in energy. What we are seeing is that a uniform distribution of coefficients results in

a non-uniform distribution of energies. This distributio is caused by that there are

many more wave functions with energy in the middle of the energy spectra.

It is not the high entropy states that we are looking for but the ground states.

To incorporate this bias, we need to abandon the uniform distribution. First assume

the basis is ordered in energy expectation value, starting with the lowest. Then the

ground state we are looking for will be heavily skewed toward the first couple of

coefficients.

The straightforward approach is thus to draw N-Particle state coefficients according

to a distribution tilted toward the low energy states. Let d be a function describing

this “tilt” such that d takes the coefficient index as input. The i:th coefficient is

drawn from uni(−d(i), d(i)). After all coefficients are drawn, the state is normalized.

Figure 6 shows energies of samples drawn with different d.

Adding a bias toward some states might seem very limiting, but to parameterize

the full space is unnecessarily challenging, when we have prior knowledge of in what

neighborhood we are going to find the solution.

3.4 On not reinventing the wheel

Up until this section, we have formulated our problems down to unconstrained

optimization. As mentioned before calculating the gradient of ANNs is cheap, so it

makes sense to use a gradient-based method. The naive approach would be to write a

program that calculates the derivatives given architecture, weights, and input and use

gradient descent to do optimization. With such a formidable software to write, there

would probably be little to no results to present in this report. Further, building and

debugging such a sophisticated piece of software would force design choices giving

little to no agility for prototyping new ideas.

Instead, we build our work using Tensorflow [28]. Tensorflow is a free (as in

freedom) python package with a C++ back-end that facilitates the creation of

symbolic functions. Notably, derivatives of the symbolic functions can easily be
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calculated and an optimization schemes applied in a line of code. Tensorflow is

optimized for machine learning in general and training ANNs in particular. A result

of Tensorflow’s focus on machine learning is that Tensorflow support distributed

workloads on both different processing units inside the same computers and a cluster

of computers. Tensorflow gives the user precise control of the machine learning model

but automates the grunt work of implementing all the details of gradient calculations

enabling fast prototyping.

Even though the application of constrained optimization is as far as I know unique,

the dense and convolution layer described in section 2.2 are standard. Constructing

custom gradient-based optimization schemes is outside the scope of this work as well.

Again it is foolish to try and reinvent the wheel. Keras [29] is an extra layer on

top of Tensorflow that takes care of the details of implementing different types of

standard layers and ANN training schemes. It is still possible to access the underlying

Tensorflow objects when needed. Such a case arises when calculating the energy given

a log-Cholesky parametrization.

Using Keras with the Tensorflow back end, work that ten years ago would have

demanded the attention of a small herd of computer science Ph.D. students now can

be achieved by a single master student. This progress in facilitating prototyping

makes it even more important sometimes to stop and think about what one is doing.

3.5 A note about all the free parameters

In Freeman Dysons essay “A meeting with Enrico Fermi” [30], Dyson describes a

meeting with Fermi in which according to Dyson, Fermi had the following to say

about the use of arbitrary variables in theoretical physics:

I remember my friend Johnny von Neumann used to say, with four

parameters I can fit an elephant, and with five I can make him wiggle his

trunk

In the essay, Dyson describes how Fermi “politely but ruthlessly demolished a
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program of research that [Dysons] students and [Dyson himself] had been pursuing

for several years”. Fermi is also credited with the quote:

There are two ways of doing calculations in theoretical physics. One way,

and this is the way I prefer, is to have a clear physical picture of the

process that you are calculating. The other way is to have a precise and

self-consistent mathematical formalism. You have neither.

So what would Fermi think about using ANNs in theoretical physics? The number

of free parameters is in the hundreds of thousands. A clear physical picture is nowhere

to be seen, and even though the reduced density matrix formalism is a consistent

mathematical formalism, our methods rely on ANNs and why ANNs work is not even

well understood.

So should we do as Dyson and his students, disperse and find other lines of

work? Maybe, maybe not. First of all the weights are not actually free as they are

determined by the method through training. Instead it is the system architecture

constitutes the free parameters that will be adapted to work well on the test systems.

The property that separates the wheat from the chaff is the ability of an ANN to

generalize to unseen systems. Therefore, we need to be meticulous about the ANN

selection method. The act of selecting a network architecture based on its performance

for a system results in that we can no longer use the result on said system to asses if

the method works.

Our solution to this problem is two-fold. For every architecture tested, the

Hamiltonians that it will be tested against are explicitly stated. The tests and

architecture selection with the help of test Hamiltonians is automated with a clear

and stated metric. There is a critical need to select the result to present solely based

on specific, explicit tests. Even though the best network according to the test score is

not the best overall network we must only choose according to the formal tests when

presenting results.
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4 Results

Up till now, there have been a lot of ideas, math, and formalisms. But in the end,

methods need to answer questions. Now it is time to investigate if our approach

works. Everything up to this point can be done agnostic to the Hamiltonian we want

to solve. Using our technique on a particular system comes down to deciding the

one-particle basis, the interaction function I(x1, x2) between two-particles and the

external potential V (x). From equation 2 and 3 the Hamiltonian in equation 4 can

be calculated and an energy expectation value function created from equation 5.

The systems used to test the method have 4-7 fermions in a one-dimensional

harmonic oscillator V (x) = 1
2
x2 with three different interactions I(x1, x2) = δ(z1 −

z2), e
(z1−z2)

2

0.5 , e
(z1−z2)

2

1.0 . The one-particle base is chosen to be the ten lowest eigenstates

to the one-particle harmonic oscillator.

Before we take a look at how the ANNs perform let’s see what happens if only

the normalized log-Cholesky parametrization (see section 3.1) is used. Using just

the parametrization corresponds to searching over the space of two-particle density

matrices. The space of two-particle density matrices contain more than P (N). The

results in figure 7 are thus unsurprisingly lower than the actual ground state energy.

However, by the nature of gradient-based optimization algorithms, there is no way of

knowing if our solutions correspond to the global minima or just a local minimum.

4.1 Discriminator

The discriminator approach started this project. It is based on ANNs achievements

in classifying data [9]. On the task of distinguishing between negative and positive

samples, the network achieved satisfactory accuracy. The problem? Adversarial

examples. The dashed line in figure 8 is the output of the constrained minimization

scheme in equation 11 before adding any adversarial examples to the training data.

The error is larger than the search over all density matrices in figure 7. Without

adversarial examples in the training set, the punishment term did not hinder the
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Figure 7: Variational calculations of ground state energies over the space of two-

particle density matrices using log-Cholesky parametrization with fixed trace. The

test system consists of 4 fermions in a one-dimensional harmonic oscillator with delta

interaction. The solution is calculated for 100 interaction strengths evenly distributed

between λ = −4 and 4. The reference solutions are CI calculations.
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search from going outside of the set of 2-RDMs. Instead, the punishment term leads

the optimization past the local minima that trapped the search in figure 7, resulting

in an even larger error than with no discriminator at all.

Figure 8: Calculated ground state energies of 4 fermions with delta interaction in

a harmonic oscillator. The adversarial examples loop was run for 700 iterations.

Iteration 363 was the one with the lowest mean square error. The reference solutions

are from CI calculations.

That those adversarial examples would be a problem was clear from the beginning

of the project, and the plan was always to add adversarial examples to the training

set. The hope was that for every iteration of adding new adversarial examples (as

described in section 3.2.1) the solution would slowly rise towards the ground state

energy. That is not what happened.
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As we see in figure 9, for the first 250-300 iterations the mean square error steadily

improve. The lowest mean square error was achieved after 363 iterations of adding

adversarial examples to the network. The solutions after 363 iterations are shown in

figure 8. Gone is the continuous looking line and instead, the result seems stochastic.

The stability of the solution with regards to small changes in starting position and

interaction strengths is at best weak.

Figure 9: Mean square error of ground states calculations as a function of iteration.

Each iteration adds new adversarial examples to the set used to train the discriminator

When investigating the solutions at different iterations, the picture is not that of

a slow stable rise towards the ground state. Instead, the main driving force for better

mean square error is the increased noise in the solution. The noise pushes answers

up towards the ground states. However, once noise cause some solutions to be high

above the ground state, the mean square error no longer shrinks. Instead, the mean

square error also starts to exhibit more and more stochastic behavior.

It is interesting to note that after each iteration the validation accuracy never

dropped below 90%. When dealing with programming in general and ANNs, in

particular, a common theme emerges. The network does what we ask of it but not

what we want from it. We ask it to classify examples generated with some sampling

method correctly, and so it does. However, it does so in a weird way that does not

fit well with what we want it to use the network for, act as a judge in a punishment
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term.

Only two discriminator architectures were tested and only one with 700 iterations.

In the next section on the AE hundreds of architectures where tested in an organized

fashion to find the optimal architecture. So why not do the same thing for discrimi-

nators? The answer is threefold. First, completing 700 iteration takes on the order of

days, while an AE takes less than 30 minutes to train. Secondly, even the worst AEs

did not exhibit the stochastic behavior both discriminator tests did.

If the initial tests of an approach are unsuccessful, chances are that no amount of

fine tuning will suffice. Instead, it is often a better idea to try out other ideas until a

promising way forward is found, and then fine tune the promising design.

4.2 Autoencoder

A significant difference to the discriminator approach is that the iterations are no

longer needed. The main advantage resulting from that is speed. The increased speed

makes it possible to try many more architectures than the discriminator approach.

Calculation quickness is also an essential factor in the general attractiveness of the

method. However, high design iteration frequency also adds complexity, the many

architectures that we test cannot all be shown. As discussed in section 3.5 we need

to be clear about what metric has been used to select the results presented.
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Figure 10: Generalizing in interaction type while allowing for different architectures

and weights for different particle numbers. Each row has the same interaction type

as written in each sub-figure. Columns have the same particle number as indicated

at the top. The mean square error on the systems with delta interaction was used as

a metric. The results that were used in choosing the architecture are in the red box,

and unseen systems are in the green box. The reference solutions are from variational

calculations by Gillis Carlsson [31].



Figure 11: Results of attempt to generalize in particle number. The metric used is

the mean square error of all systems with four, five, and six particles. The AE is

trained on four-, five-, and six-representable density matrices. Each row has the same

interaction type as written in each sub-figure. Columns have the same particle number

as indicated at the top. The results that were used in choosing the architecture are

in the red box, and unseen systems are in the green box. The reference solutions are

from variational calculations by Gillis Carlsson [31].



Figure 10 shows that using the mean square error on systems with delta interaction

as metric our method generalizes to other interaction types. We achieve generalization

for both four, five, and six particles. Note that training a new AE is necessary

when adapting the method to a different number of particles but not to an unseen

Hamiltonian.

In section 3.2.2 the benefits of generalizing not only to new Hamiltonians but also

to higher particle number is discussed. Figure 11 shows the result of our attempts to

achieve such generalization. Note that our solution is too high for N = 4, accurate

for N = 5, too low for N = 6, and much to low for N = 7. This trend is clear

for all interaction types. Also, note that the errors are qualitatively similar when

changing interaction but not when switching particle number. The hypothesis is

that networks fail to take into account the changes between P (4), P (5), and P (6),

only approximating P (5). Something more seems to be needed to make an AE that

successfully generalize in the number of particles.
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5 Conclusion

How did the marriage between the old quantum mechanical formalism and the hot

buzz-word technology end up? The work aimed to approach the QMA-hard problem of

N representability from a neural network perspective and produce a proof-of-concept.

After a detour in classifiers and adversarial examples, we have shown that AEs can find

parametrizations of P (N) that produce results in qualitative agreement with exact

solutions for the subspace. So we achieved the goal of providing a proof-of-concept

that ANNs can be used to tackle the N representability problem. However, we have

not show that ANNs can be useful in that role and compete with standard methods.

39



6 Prospects

The next step is to use the AE approach for fixed particle number and increase the

number of orbitals and use it for real physical problems. The aim is to do calculations

in a situation where polynomial scaling free parameters becomes significant.

It is worth to note that the AE approach described herein contains none of the

progress that have been made on the N representability problem since the 1950s. The

technique introduced in appendix B makes it possible to integrate knowledge of more

physical conditions and incorporate them in the AE architecture. Implementing the

method described in appendix B is a lot of work but and might not even be possible.

It could however, for example, form the starting point of a future diploma-work.

Using an autoencoder to train a network into having the image of the training

set is not commonly used. Instead, generative neural nets (GANs) [32] are the

state-of-the-art in generating content such as images. Training GANs is a tough

challenge that also might yield interesting results.
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A The TANDEM algorithm

TANDEM calculates the 2-RDM Γ of a state Ψ, where Ψ is a state consisting of N

fermions. The input to TANDEM is the coefficients that define Ψ. The basis for Ψ is

the antisymmetrized products of M one particle states.

Γij
kl = 〈Ψ| a†ia

†
jalak |Ψ〉 (14)

Each basis state is represented in the algorithm by a string of M bits. Each bit

represents the occupation number of an orbital. As the particles are fermionic the

occupation number can be only 0 or 1. Each bit string will consist of N ones and

M −N zeros.

We need a convention to map bit strings of length M , like 01011, to second

quantization states like a†ia
†
ja
†
k |0〉. If we assume the one particle orbitals are ordered

according to energy expectation value for some Hamiltonian, to make low energy

states come first in the basis ordered in lexicographical order, the index is counted

from the right starting at 1. In the example above the indices will become 1, 2,

and 4. As the creation operators anti-commute, to have a consistent sign there

is a need to specify in which order to apply the creation operators. For example:

a†4a
†
2a
†
1 |0〉 = −a†4a

†
1a
†
2 |0〉. The convention adopted is to order the creation operators

such that the one with the lowest index acts first. Now we have created a one-to-

one mapping between bit strings of length M with N non-zero elements to second

quantization states formed by applying creation operators to vacuum. For M = 5, the

example state is unambiguously identified as |01011〉 = a†3a
†
1a
†
0 |0〉. All basis states

are permutations of such bit strings. The basis is ordered in lexicographic order.

Expanding Ψ in the basis we get |Ψ〉 =
∑

sCs |s〉. The sum is over all bit

permutations of bit strings s of length M with N ones. We rewrite Γ in equation 14

as:

Γij
kl =

∑
s′s

C∗s′Cs 〈s′| a†ia
†
jalak |s〉 (15)
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The symmetries of Γij
kl given in equation 6 means that many elements can be

trivially deduced from others. Only some elements need to be calculated explicitly by

TANDEM as the rest can later be deduced if needed. The choice of which variables

to use is:

i < j k < l (16)

and if i = k then j < l

The general idea of TANDEM is to iterate over the permutations of s and s′ and

iterate though the ways the second quantization operators can turn s into s′. The sign

of 〈s′| a†ia
†
jalak |s〉 is calculated by applying the creation and annihilation operators

counting the number of commutations needed. Then adding C∗sCs′ multiplied with

the calculated sign to the appropriate position in Γ. Pseudo code can be found in

algorithm 1 and the complete code including python bindings in the git repository

[26].

The algorithm as a function of wave function is efficient and executes in polynomial

time. But the N-particle basis have the length
(
M
N

)
, where M is the number of one-

particle orbitals used. The algorithm itself is efficient, but the input as a function of

M and N is not. If used as a way to randomly sample P (N), taking M and N as

input, the computational complexity is O
((

M
N

)2
M
)

.

A.1 Example

The simplest non trivial case of calculating the 2-matrix is when there are 3 particles

in 4 orbitals with |Ψ〉 = |0111〉. By equation 4 the 2-RDM is given by:

−Γij
kl = 〈Ψ| a†ia

†
jakal |Ψ〉 = 〈1110| a†ia

†
jakal |0111〉

TANDEM start with the state s = s′ = 0111. This will give a non-trivial

contribution. The next iteration have the same s but s′ = 1011. As C1011 = 0

TANDEM will move to the next s′. As all these will be zero nothing more than



Algorithm 1 Tandem

1: Γij
kl ← 0 for all ijkl

2: C ← Coefficients of Ψ

3: S ← List of all permutations in lexicographic order

4: for s in S do

5: if Cs 6= 0 then

6: for s′ in S do

7: if Cs′ 6= 0 then

8: Γ = contribution(Γ, s, s′)
return Γ

9: function contribution(Γ, s, s′)

10: a← s Xor s′

11: bs ← a& s

12: bs′ ← a& s′

13: if Number of nonzero elements in a > 4 then

14: return Γ

15: else if Number of nonzero elements in a = 4 then

16: (k, l) and (i, j)← non-zero elements of bs and bs′

17: i, j, k, l ← i, j, k, l ordered according to equation 16.

18: S ← 0

19: for q in (k, l, j, i) do

20: sq ← not sq

21: for all si = 1 with i > q do

22: S ← S + 1

23: Γij
kl ← Γij

kl + (−1)SCsC
∗
s′

24: return Γ

25: else if Number of nonzero elements in a = 2 then

26: k and i← non-zero elements in bs and bs′

27: for k = i = common nonzero element of s and s′ do

28: Do same steps as on line 16-21

29: return Γ

30: else if Number of nonzero elements in a = 0 then

31: L← indices of non-zero element of s.

32: for all
(
N
2

)
choices of i, j from L do

33: Do line 16-21 for i, j, i, j

34: return Γ
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checking if coefficients are zero will be done. When all permutations have been

iterated though on s′, s will be changed. Now Cs = Cs′ = 0. Now it is clear that no

s′ can make a difference and the algorithm moves on test the remaining permutations.

None of them will give any contributions.

Going back to that first and only non-trivial combination s = s′ = 0111. We

calculate a and see that there is no non-zero elements in a.

a = s⊕ s′ = 0111⊕ 0111 = 0000 (17)

(18)

The list of ones in s becomes L = [0, 1, 2]. The combinations of taking two elements

out of this set becomes (0, 1), (0, 2), (1, 2). This means that the interesting i, j, k, l

combinations will be (0, 1, 0, 1), (0, 2, 0, 2), (1, 2, 1, 2). These indices are ordered so

that they satisfies the conditions in equation 16.

The sign calculation is done by iterating over the four indices. Flip the k:th bit

from the right and count the number of ones to the left of the k:th bit. Repeat for l, j, i.

Table 1 contains these calculations for our example. Each row represents one flip and

count. The first column is filled by k, l, j, i, the positions to flip. The second column

are the bit strings after each flip with the flipped bit in bold. The third column is the

number of ones before the flipped bit. Summing up the number of flips column gives

5, 3, and 1 respectively. As these are all odd the sign will be negative for all three.

However, as the observant reader might have already noted this calculation have been

calculating 〈1110| a†ia
†
jakal |0111〉 instead of 〈1110| a†ia

†
jalak |0111〉. Therefore, a final

sign change is needed.

In the end, the non-zero elements of Γ becomes:
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Table 1: Sign table calculations

(a)

0111 count

0 0110 2

1 0100 1

0 0101 1

1 0111 1

(b)

0111 count

0 0110 2

2 0010 0

0 0011 1

2 0111 0

(c)

0111 count

1 0101 1

2 0001 0

1 0011 0

2 0111 0

Γ01
01 = Γ02

02 = Γ12
12 = 1⇒

Γ10
10 = −Γ10

01 = −Γ01
10 = 1

Γ20
20 = −Γ20

02 = −Γ02
20 = 1

Γ21
21 = −Γ21

12 = −Γ12
21 = 1
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B ANN approach to combining parametrization

conditions

As mentioned in section 3.1 there are more necessary positivity demands for a density

matrix to be N representablex. The matrices that are to be kept positive are often

called P , G, Q, T1 and, T2 [17] and can be calculated as linear combinations of

elements in the 2-RDM defined in equation 4, section 2.1.

Fortunately we have log-Cholesky parametrization that makes it possible to

construct a general symmetric positive semi-definite matrix. As mentioned in section

3.1 it is not evidently clear how this can be useful in the case of multiple positivity

demands. There is a need to synchronize the parametrizations such that they all

generate the same two-particle density matrix. This appendix proposes an untested

way of solving this problem by making the AE responsible for the synchronization.

The method is general to any number of different positivity conditions, as long as

the matrices have a one-to-one mapping to Γ. Let’s assume we have m conditions

and the corresponding set of matrices Ai(Γ)i∈{1,...m}. We call the function we want

to minimize E(Γ). The problem can be formulated as finding minΓE(Γ) under the

condition Ai(Γ) � 0∀i.
For every matrix Ai we can get the log-Cholesky parametrization xi. Every

example decomposed into the log-Cholesky parametrizations of all the matrices A as:

Γ↔


A1

...

Am

↔

x1

...

xm

 (19)

Figure 12 depicits the schematics of an AE that map one parametrization of Γ

to z and then to every parametrization. The m parametrizations hold exactly the

same information, that of Γ. The job of the AE T = Tgen ⊗ Tenc is to see this, and

with Tenc encode that information in a way that it can be retrieved by Tgen. As I said

before, xi hold the same information so we really only need one parametrization as
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input. Using only one parametrization reduces the number of parameters in Tenc.

The loss for the network in figure 12 is composed of two parts. First a regular AE

part, mean square error of the expected output and the actual output. The second

part makes sure that for any input z, the output parametrizations x1, . . . , xm all

generate the same Γ. T i
gen gives xi from z as in figure 12. z̃ is a uniformly drawn

from [0, 1]m and α ∈ (0, 1) determines how much the network priorities between the

two goals. m is the number of neurons in the z layer.

loss = α‖T (x1)− (x1, . . . , xm)‖2 + (1− α)
∑
i,j

‖Γ[T i
gen(z̃)]− Γ[T j

gen(z̃)]‖2 (20)

A large α means that the network priorities to successfully encode and decode the

examples over that random input results in sensible synchronized parametrizations.

For small α the network will prioritize to sync the output parametrizations for all

input but making the network prone to mode collapse. Mode collapse means that

the image of Tgen will be to small, giving the same output for many different inputs.

It is the combination of the two loss terms that create overall synchronization while

avoiding mode collapse.

The naive approach is to use Tgen in the place of G in the AE approach described

and tested in the main work. But we can take it further and utilize the fact that we

have a way to check if all the positivity conditions are met. The way we check is to

assure that the parametrizations are synchronized. There is a natural metric of how

close the parametrizations are to be synchronized. The second loss term in equation

20. By using this extra loss term as a punishment term we get the effective energy in

equation 21.

min
Γ∈P (N)

E(Γ) = min
z

[E(Γ[T 0
gen(z)]) + γ

∑
i,j

‖Γ[T i
gen(z̃)]− Γ[T j

gen(z̃)]‖2] (21)

The error of AE approach described in equation 12 is hard to predict and under-

stand. The network could potentially ignore any conditions not hard-coded into the
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Figure 12: AE-like network architecture that takes as input one of the log-Cholesky

parameterized matrices that must be positive. The output is trained to be the m

log-Cholesky parametrizations for all the matrices that have a positivity condition.

Tgen consist of m separate networks that all take the same z layer as input and

returns the output parametrizations for one condition each. (Represented as separate

rectangles in the output)
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parametrization. Here the network cannot ignore the positivity conditions without

increased loss. Further by adding the extra synchronization punishment term to

the minimization the global minima (for a large enough γ) will be large or equal to

the ground state energy as calculated with all the positivity conditions. Further, by

checking the synchronization after convergence it is possible to assure that the found

solution actually satisfies the conditions. If the punishment term is zero we know that

the found solution satisfies the positivity conditions. If it is non-zero the solution

might not satisfy the conditions. The increased knowledge of how the error behaves

means that a network performance for problems can be compared without actually

knowing the answer to the problem we test the network against. The network that

gives the lowest energy while still maintaining synchronization is closest to the real

answer. This only hold if no other conditions than the positivity conditions explicitly

stated need to be respected.

N-Representabilty is not just a semi-definite programming problem. There are

probably other conditions as well. These extra conditions need not to be ignored.

The it is still an AE that will remove any unnecessary freedom to fit all data to the z

layer just like in the regular AE approach.

Note that the method can be generalized to any set of conditions that individually

can be guaranteed by parametrization. No modification needed the loss, effective

energy or, the high-level network architecture as shown in figure 12.
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C Network Details

The main ANN architecture and optimization parameters used for presented AE

results are tabulated in table 2. Especially note that the decoder units specify the

decoder but also indirectly the encoder part by the transpose regularization. For

example if the decoder units is [10, 20, 100] it means that the Z layer will have 10

neurons. And the rest of the network will look like:((N
2

)
+ 1

2

)
→ 100→ 20→ 10→ 20→ 100→

((N
2

)
+ 1

2

)
It is also important to remember that weight sharing is employed by transposing

the dense layers. For example, in the example above, if ω20→10 is the weight matrix in

the last layer of the encoder 20→ 10 then the matrix in the first layer of the decoder

10→ 20 is ω10→20 = ωᵀ
20→10.
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Table 2: AE method hyper parameters. The AE where all composed of dense layers.

The encoder is the transpose of the generator with bias weights as only weights not

shared. Decoder units specify the number of neurons in each layer, starting with the z

layer until the last hidden layer. Activation sets the activation function for the hidden

layers while z layer activation specifies the activation function for the output layer

of the encoder.Batch size is the number of examples for which each gradient decent

step is calculated over. Gradient norm condition sets the condition on the energy

gradient norm at which the energy search is considered converged. The loss function

specify the AE network training loss that is reduced with the algorithm specified by

the optimizer.

Result Decoder

Units

Activation Batch

Size

Epochs Gradient

Cond.

Learning

Rate

Loss Optimizer Z activa-

tion

Fig 11 37 31 29

182 1200

tanh 181 9 0.001 0.001 Mean

Square

Adadelta sigmoid

N = 4

Fig 10

14, 18,

31, 62

tanh 96 8 0.001 0.001 Mean

Square

Adam sigmoid

N = 5

Fig 10

18, 15,

33, 62

tanh 96 9 0.001 0.001 Mean

Square

Adam sigmoid

N = 4

Fig 10

20, 16,

27, 66,

251

tanh 97 9 0.001 0.001 Mean

Square

Adam sigmoid
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