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Abstract

This report consists of three main parts. The first part explores how the density of traffic on a road
can be mathematically modeled as a partial differential equation: a relation between a function and
its derivatives. The second part describes an algorithm which can find a numerical solution for the
differential equation. This algorithm is used in the third part of the report where simulations are run
in order to study the effects of traffic lights on traffic.

Populärvetenskaplig sammanfattning

Fenomenet trafikflöde är en integrerad del av det moderna samhället. Varje dag åker folk bil eller
buss dit de vill åka och varor transporteras mellan producenter och säljare. Dessutom har ett hinder
i trafikflödet en negativ effekt p̊a ekonomin och v̊ar vardag. Därför är det viktigt att först̊a hur detta
fenomen fungerar.

I denna rapport framställs trafikflödesfenomen matematiskt genom en s̊a kallad differentialekvation,
och en algoritm beskrivs och används för att hitta approximationer av lösningarna till ekvationen.
Detta görs eftersom det ofta är omöjligt att hitta exakta lösningar.

Denna algoritm kan användas för att simulera trafik och erh̊alla information för att förbättra trafikflöde.
Till exempel i den sista sektionen av rapporten presenteras ett kriterium för att optimera trafikfködet.
Detta kriterium inneh̊aller förh̊allandet mellan grönt och rött ljus vilket m̊aste överkrida en konstant.
Om kriteriet uppfylls, slipper fordon vänta för länge framför trafikljuset.

1 Introduction

One’s ability to commute between places and the ability to transport goods from manufacturers to
vendors are both crucial to modern society since any impediment of either of them might lead to
serious repercussions for the economy and one’s quality of life. Traffic flow is thus an integral part of
modern day life; to better understand it, this phenomenon is studied throughout this report.

The traffic flow problem is finding the density of cars on a road after a certain time, given that the
density of cars on the road at said time is known. In section one of this report, it is seen that the traffic
flow problem can be restated as an initial value problem for a partial differential equation (PDE). A
graphical solution can then be found using the method of characteristics.

Unfortunately traffic flow problems can get very complicated, which makes finding exact solutions
very difficult. This problem is addressed in section two of the report where a numerical method is
found that solves the PDE.

In the third section of the report, this numerical method is used to find solutions for traffic lights
problems; a traffic lights problem is a traffic flow problem with traffic lights somewhere on the road.
This allows for simulating the movement of traffic on a road with traffic lights, which in turn allows
for finding a criterion, which when followed, reduces the waiting time of cars at a red light.
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Figure 1: The velocity-occupancy plot[1]

2 The Model

This section is loosely based on the lecture notes by Stefan Diehl[3].

2.1 Framework

Cars flowing down a one-way infinite road can be modeled as follows:

• The road is modeled as X “ R where the origin, x “ 0, is some chosen point on the road. The
positive direction is chosen as that of the cars on the road.

• Time is modeled as T “ R`.

• On X ˆ T define the non-negative real valued density function upx, tq, i.e. the number of cars
per unit of length at point x at time t.

• On X ˆ T define the non-negative real valued velocity function vpx, tq, i.e. the velocity of the
cars at point x at time t. Consider Figure 1 which shows the speed-occupancy plot based on
experimental data measured by detectors on a freeway in San Francisco [1]. It suggests that
the speed of cars decreases as the occupancy of the road increases. The occupancy of a road is
what percentage of that road is occupied, for example the occupancy is 100% if the density of
cars on that road is umax. Thus the velocity function can be redefined as vpuq, a non-decreasing
function with vp0q “ vmax and vpumaxq “ 0.
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• On X ˆ T define the non-negative real valued flux function fpx, tq, i.e. the number of cars
traversing the point x at time t. However, fpx, tq “ vpx, tqupx, tq. Therefore, it can be redefined
as fpuq “ vpuqu. For this model, the choices of v are restricted to those such that fpuq “ vpuqu
is a strictly concave function.

Since f is a strictly concave function, it has the following properties:

1. f2puq ă 0, @u P r0, umaxs ðñ @u1, u2 P r0, umaxs, u1 ă u2 ùñ f 1pu1q ą f 1pu2q.

2. Dû P r0, umaxs such that fpûq “ max
uPr0,umaxs

fpuq and f 1pûq “ 0.

3. @u P r0, ûq, u ă û ùñ f 1puq ą f 1pûq ą 0 ùñ f increasing on r0, ûq.

4. @u P pû, umaxs, u ą û ùñ f 1puq ă f 1pûq “ 0 ùñ f decreasing on pû, umaxs.

5. @u1, u2 P r0, umaxs, @λ P r0, 1s, λfpu1q ` p1´ λqfpu2q ă fpλu1 ` p1´ λqu2q.

2.2 The conservation law

Consider a section of the road rxstart, xends, and assume upx, tq and fpx, tq are C1prxstart, xends ˆ
r0, tendsq with tend ą 0. Let a ă b be two arbitrary points of rxstart, xends. Cars are neither created
nor destroyed on the road, so the change in the number of cars on ra, bs at a time t P r0, tends is the
difference between the number of cars entering a at t and the number of cars leaving b at t, i.e.

d

dt

ż b

a
upx, tqdx “ fpa, tq ´ fpb, tq. (1)

Since upx, tq and fpx, tq are C1, then the above equations can be restated as:
ż b

a

B

Bt
upx, tqdx “ ´

ż b

a

B

Bx
fpx, tqdx, (2)

and therefore:
ż b

a

ˆ

Bu

Bt
`
Bf

Bx

˙

dx “ 0. (3)

Since ut ` fx is continuous, and a and b where arbitrarily chosen, then:

ut ` fx “ 0 (4)

almost everywhere on rxstart, xends ˆ r0, tends. Since f is a function of u, the above partial differential
equation can be restated as:

ut ` f
1puqux “ 0. (5)

2.3 Characteristics

Assume one knows that the solution u of the following initial-value problem:

ut ` f
1puqux “ 0

upx, 0q “ u0pxq

is in fact C1. Let xptq be a level curve of upx, tq in X ˆ T , i.e.

DU0 P R : U0 “ upxptq, tq

ðñ 0 “
Bu

Bt
pxptq, tq

ðñ 0 “ uxx
1ptq ` ut

ðñ 0 “ uxx
1ptq ´ f 1puqux

ðñ 0 “ uxpx
1ptq ´ f 1pU0qq.
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If x1ptq “ f 1pU0q then xptq is straight line with slope 1
f 1pU0q

in X ˆ T . The level curve x(t) is called a

signal, and x1ptq “ f 1pU0q is its speed.

If ux “ 0 in some region, then ut “ 0 by the conservation law. Therefore, u is constant in this region,
and any curve in it is a level curve, particularly xptq the straight line with slope 1

f 1pU0q
.

These lines are called characteristics and they define an implicit solution
#

x “ f 1pu0px0qqt` x0

upx, tq “ upx0q.

This allows for the construction of a geometric solution, by drawing the characteristics at each point
of the initial data.

2.4 Example 1

Consider the following traffic flow problem:

fpuq “ vpuqu “ p1´ uqu

ut ` fpuqx “ 0 (6)

u0 “ upx, 0q “

#

0 if x ă 0

1 if x ě 0.

A geometric solution can be constructed as follows:

f 1pu0q “ 1´ 2u0 “

#

1 if x ă 0

´1 if x ě 0.

By the implicit solution

upx, tq “

#

0 if Dx0 ă 0 such that x “ t` x0

1 if Dx0 ě 0 such that x “ ´t` x0.

The characteristics passing through tpx, 0q : x P Ru are drawn to get Figure 2, which gives the following
solution:

upx, tq “

$

’

&

’

%

0 if x ă 0 and t ă ´x

1 if x ě 0 and t ă x

undetermined if ´ t ď x ď t.

Note that the method of characteristics requires the solution to be C1 on the region of interest. It is
therefore no surprise that the method fails near the discontinuity p0, 0q.

2.5 A shock wave and its speed

If a discontinuity appears at pxd, tdq, it might lead to a shock wave i.e. a jump from u´ “ upx´d , tdq
to u` “ upx`d , tdq. If the shock wave does occur, its speed s can be computed. This allows for the
plotting of the shock wave in the X ˆ T plane. Moreover, u will have the value u´ to the left of the
shock wave and u` to the right of it.

Let s be the speed of the shock wave. Consider a new inertial system moving with speed s with respect
to the original system such that at t “ 0 the coordinates of the origin of the new system with respect
to the original system are pxd, tdq, i.e. the discontinuity is always at point p0, 0q with respect to the
new inertial system.
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Figure 2: Characteristics of (6)

The flux with respect to the new system is fnewpuq “ uvnewpuq “ upvpuq ´ sq. Since the number of
cars passing the point x “ 0´ is equal to the number of cars passing the point x “ 0` at time t “ 0,
then:

fnewpup0
´, 0qq “ fnewpup0

`, 0qq

ðñ fnewpu
´q “ fnewpu

`q

ðñ u´pvpu´q ´ sq “ u`pvpu`q ´ sq

ðñ s “
u`vpu`q ´ u´vpu´q

u` ´ u´

ðñ s “
fpu`q ´ fpu´q

u` ´ u´
. (7)

2.6 Example 1 (continued)

If a shock wave was created at p0, 0q, a complete solution of example 1 can be found by computing its

speed which is s “ fp1q´fp0q
1´0 “ 0, then plotting the characteristics as in Figure 3. This figure gives the

following solution:

@t ą 0, upx, tq “

#

0 if x ă 0

1 if x ě 0.
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Figure 3: Characteristics (6) and the shock wave

2.7 Example 2

Consider the following traffic flow problem:

fpuq “ vpuqu “ p1´ uqu

ut ` fpuqx “ 0 (8)

u0 “ upx, 0q “

#

1 if x ă 0

0 if x ě 0.

A geometric solution can be constructed as follows:

f 1pu0q “ 1´ 2u0 “

#

´1 if x ă 0

1 if x ě 0.

By the implicit solution

upx, tq “

#

1 if Dx0 ă 0 such that x “ ´t` x0

0 if Dx0 ě 0 such that x “ t` x0.

The characteristics passing through tpx, 0q : x P Ru are drawn to get Figure 4, which gives the following
solution:

upx, tq “

$

’

&

’

%

1 if x ă 0 and t ă ´x

0 if x ě 0 and t ă x

undetermined if ´ t ď x ď t.

In Figure 4, it is once again seen how the method of characteristics fails near discontinuities. This
time, instead of getting a region with intersecting characteristics, one gets a region without any
characteristics at all.
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Figure 4: Characteristics of (8)

2.8 The entropy condition

Suppose there is a discontinuity at a point pxd, tdq. For a shock wave to arise, its speed s must satisfy
the entropy condition[2]:

s ă
fpvq ´ fpu´q

v ´ u´
@v P pminpu´, u`q,maxpu´, u`qq. (9)

However, for strictly concave functions this condition can be simplified as follows:

fpu`q ´ fpu´q

u` ´ u´
´
fpvq ´ fpu´q

v ´ u´
ă 0

ðñ
pv ´ u´qfpu`q ` pu` ´ vqfpu´q ´ pu` ´ u´qfpvq

pu` ´ u´qpv ´ u´q
ă 0

ðñ
pv ´ u´q

pu` ´ u´qpv ´ u´q
fpu`q `

pu` ´ vq

pu` ´ u´qpv ´ u´q
fpu´q ă

1

v ´ u´
fpvq.
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Since v is in pminpu´, u`q,maxpu´, u`qq, then there exists a λ in p0, 1q such that v “ λu´`p1´λqu`.
Therefore:

p1´ λqpu` ´ u´q

pu` ´ u´qpv ´ u´q
fpu`q `

λpu` ´ u´q

pu` ´ u´qpv ´ u´q
fpu´q ă

1

v ´ u´
fpλu´ ` p1´ λqu`q

ðñ
p1´ λq

pv ´ u´q
fpu`q `

λ

pv ´ u´q
fpu´q ă

1

v ´ u´
fpλu´ ` p1´ λqu`q

$

’

&

’

%

if u` ą v ą u´, p1´ λqfpu`q ` λfpu´q ă fpλu´ ` p1´ λqu`q

if u` ă v ă u´, p1´ λqfpu`q ` λfpu´q ą fpλu´ ` p1´ λqu`q.

By property 5 of subsection 2.1, the first condition is true for all v strictly between u´ and u`, and
the second is false for all such v. The entropy condition is reduced to

u´ ă u`, (10)

for strictly concave f . In example 1, the jump was from pu´ “ 0q to pu` “ 1q. Since (10) holds, a
shock wave is created and the solution given in subsection 2.6 is correct. If there is a discontinuity at
pxd, tdq and (10) does not hold, an expansion wave is created which continuously decreases u from u´

to u`. This is illustrated in subsection 2.9.

2.9 Example 2 (continued)

At t “ 0 there is a discontinuity in x at 0, where pu´ “ 1q ą pu` “ 0). According to the entropy
condition, a shock wave will not be created at this point. Instead, an expansion wave is created at
p0, 0q. The solution is:

upx, tq “

$

’

&

’

%

1 if x ă 0 and t ă ´x

0 if x ě 0 and t ă x
1
2 ´

x
2t if ´ t ď x ď t.

The characteristics of the complete solution can be seen in Figure 5.
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Figure 5: Characteristics of (8) and the expansion wave

3 The Finite Volume Method

This section is loosely based on the book ”Front Tracking for Hyperbolic Conservation Laws” [2].

3.1 The numerical density

Consider the traffic flow problem:

ut ` fpuqx “ 0 (11)

u0 “ upx, 0q.

The solution to (11) is the density function upx, tq. Moreover, the velocity function vpuq, the flux
function fpuq “ vpuqu and the initial density function u0pxq “ upx, 0q are all known. The goal is to
find a numerical solution U for (11). To do that, step sizes ∆x ą 0 and ∆t ą 0 are picked according
to a criterion discussed in subsection 3.2. Let xj “ j∆x and tn “ n∆t for all j P Z and all n P N.

Define the average of u on x P rxj´1, xjs at time tn as:

Un
j “

1

∆x

ż xj

xj´1

upx, tnqdx, @j P Z, @n P N. (12)

The conservation law states that:

d

dt

ż xj

xj´1

upx, tqdx “ fpupxj´1, tqq ´ fpupxj , tqq, @j P Z

ùñ
d

dt

ż xj

xj´1

upx, tqdx “ fj´1ptq ´ fjptq

ùñ
d

dt

1

∆x

ż xj

xj´1

upx, tqdx “
1

∆x
pfj´1ptq ´ fjptqq
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Integrating both sides between tnand tn`1 gives:

1

∆x

ż xj

xj´1

upx, tn`1qdx´
1

∆x

ż xj

xj´1

upx, tnqdx “
1

∆x

ż tn`1

tn

pfj´1ptq ´ fjptqqdt

ùñ Ujptn`1q ´ Ujptnq “
1

∆x

ż tn`1

tn

pfj´1ptq ´ fjptqqdt

ùñ Un`1
j “ Un

j `
1

∆x

ż tn`1

tn

pfj´1ptq ´ fjptqqdt. (13)

Since u0pxq is known for all x P R, then U0
j can be computed using (12) for all j P Z. If the integral

on the right hand side of (13) can be computed exactly for all n P N, then exact averages Un
j can be

computed for all pj, nq P Z ˆ N. Then the numerical density function can be defined as a piecewise
constant function:

Upx, tq “ Un
j if px, tq P Ωj,n, (14)

where:

Ωj,n “ tpx, tq : xj´1 ă x ď xj and tn ´
1

2
∆t ď t ă tn `

1

2
∆tu. (15)

It is easy to see that Upx, tq converges point-wise to upx, tq as ∆x and ∆t tend to 0 since the Un
j ’s are

the exact averages. Unfortunately, for all j P Z, fjptq “ fpupxj , tqq cannot be computed without prior
knowledge of the unknown solution u of (11) at the point pxj , tq. However fjptq can be approximated
with the Godunov flux Fjptq which does not require any prior knowledge of u. An approximation of
right hand side of (13) can be computed using Fjptq to obtain approximations of averages Un

j . These
approximations Un

j allow for a construction of U as in (14) and (15) which converges to upx, tq as ∆x
and ∆t tend to 0[2].

3.2 The Courant–Friedrichs–Lewy condition

Consider traffic flow problem (11). For some arbitrary n P N, Un
j is known @j P Z. If fpupxj , tqq is

known for all t P rtn, tn`1s and all j P Z then Un`1
j can be computed for all j P Z by (13). Since

fpuq is a known function, fpupxj , tqq is totally determined by upxj , tq. Moreover, for all x P pxj´1, xjs,
upx, tnq can be approximated with Un

j , the average of these points.

A problem with piecewise constant initial density function is called a Cauchy problem. Consider the
following Cauchy problem:

ũt ` fpũqx “ 0 (16)

ũtnpxq “ ũpx, tnq “ Un
j , if xj´1 ă x ď xj .

Note that in (16) the initial density is given at time tn instead of 0, and the solution to (16) is
ũpx, tq for all t ě tn. Since the density at time tn for traffic flow problem (16) is a piecewise constant
approximation of the density at time tn for traffic flow problem (11), the solution ũ of (16) can be
used to approximate the solution u of (11) for times close to tn, and especially for times t P rtn, tn`1s.
Thus fjptq “ fpupxj , tqq « fpũpxj , tqq for all t P rtn, tn`1s. Assume the solution to the following traffic
flow problem:

˜̃ut ` fp˜̃uqx “ 0 (17)

˜̃utnpxq “ ˜̃upx, tnq “

#

Un
j if x ď xj

Un
j`1 if x ą xj

is known for all t ą tn. A solution for ũ can be constructed along the line x “ xj using ˜̃u. Let
D1 “ pxj´1, xj`1s and D2 “ p´8, xj´1s Y pxj`1,8q. If for all x2 P D2 the signal that starts at
px2, tnq never reaches the point pxj , t

˚q with t˚ ą tn, then the density at pxj , tq is totally determined
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by the signals that start at px1, tnq with x1 P D1 for all t P rtn, t
˚s. However, for all x1 P D1,

ũpx1, tnq “ ˜̃upx1, tnq, so ũ and ˜̃u have the same signals at px1, tnq, for all x1 P D1. Therefore,
ũpxj , tq “ ˜̃upxj , tq.

Consider an arbitrary x2 P D2. The distance between xj and x2 is ∆x2 ě ∆x. The time needed for
the signal that starts at px2, tnq to move a distance of ∆x2 regardless of orientation is

T2 “
∆x2

|f 1pũpx2, tnqq|
ě

∆x

|f 1pũpx2, tnqq|
ě

∆x

max
0ďũďumax

|f 1pũq|
“

∆x

max
0ďuďumax

|f 1puq|

The following is called the Courant–Friedrichs–Lewy (CFL) condition

∆x

max
u
|f 1puq|

ą ∆t. (18)

If (18) holds, then for all x2 P D2, if T2 ą ∆t then the signal that starts at px2, tnq never reaches the
point pxj , tq, @t P rtn, tn `∆ts “ rtn, tn`1s. This implies that ũpxj , tqq “ ˜̃upxj , tq for all t P rtn, tn`1s.
Under this condition, the numerical (Godunov) flux is defined as Fjptq “ fpũpxj , tqq “ fp˜̃upxj , tqq «
fpupxj , tqq “ fjptq for all t P rtn, tn`1s and j P Z.

3.3 The Riemann Problem

Traffic flow problem (17) is a Riemann problem, a Cauchy problem where there is only one discontinuity
in the initial density. For simplicity, (17) can be rewritten as:

˜̃ut ` fp˜̃uqx “ 0 (19)

˜̃u0pxq “ ˜̃upx, 0q “

#

˜̃u` “ Un
j`1 if x ą 0

˜̃u´ “ Un
j if x ď 0,

and the corresponding Godunov flux of (11) is Fjpt` tnq “ fpp˜̃up0, tqq for all t P r0,∆ts. Through out
this subsection, the value of fp˜̃up0, tqq will be investigated for all Riemann problems.

• If ˜̃u´, ˜̃u` P r0, ûs

– If ˜̃u´ ă ˜̃u`, then the entropy condition is satisfied and a shock wave is created with speed

s “ fp˜̃u`q´fp˜̃u´q
˜̃u`´˜̃u´

. The denominator is positive since ˜̃u´ ă ˜̃u`, and the numerator is positive

since f is increasing on r0, ûq by property 3 of a strictly concave function f . Therefore, s
is positive, and the shock wave is moving to the right. The characteristics and shock wave
are plotted in Figure 6.

For all t P r0,∆ts, Fjpt` tnq “ fp˜̃up0, tqq “ fp˜̃u´q “ min
uPrUn

j ,Un
j`1s

fpuq “ constant.

– If ˜̃u´ ą ˜̃u`, then the entropy condition is not satisfied and a shock wave cannot exist.
Instead an expansion wave is created. Moreover, û ě ˜̃u´ ą ˜̃u` which implies 0 ă f 1p˜̃u´q ă
f 1p˜̃u`q by property 1 of a strictly concave function f , and therefore, 0 ă 1

f 1p˜̃u`q
ă 1

f 1p˜̃u´q
ď

8. The characteristics and expansion wave are plotted in Figure 7.

For all t P r0,∆ts, Fjpt` tnq “ fp˜̃up0, tqq “ fp˜̃u´q “ max
uPrUn

j`1,U
n
j s
fpuq “ constant.

• If ˜̃u´, ˜̃u` P pû, umaxs

– If ˜̃u´ ă ˜̃u`, then the entropy condition is satisfied and a shock wave is created with speed

s “ fp˜̃u`q´fp˜̃u´q
˜̃u`´˜̃u´

. The denominator is positive since ˜̃u´ ă ˜̃u`, and the numerator is negative

since f is decreasing on pû, umaxs by property 4 of a strictly concave function. Therefore, s

11



Figure 6: Characteristics of (19) with ˜̃u´ ă ˜̃u` ď û, and the shock wave moving to the right

Figure 7: Characteristics of (19) with ˜̃u` ă ˜̃u´ ď û, and the expansion wave moving to the right
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Figure 8: Characteristics of (19) with û ă ˜̃u´ ă ˜̃u`, and the shock wave moving to the left
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Figure 9: Characteristics of (19) with û ă ˜̃u` ă ˜̃u´, and the expansion wave moving to the left

is negative, and the shock wave is moving to the left. The characteristics and shock wave
are plotted as seen in Figure 8.

For all t P r0,∆ts, Fjpt` tnq “ fp˜̃up0, tqq “ fp˜̃u`q “ min
uPrUn

j ,Un
j`1s

fpuq “ constant.

– If ˜̃u´ ą ˜̃u`, then the entropy condition is not satisfied and a shock wave cannot exist.
Instead an expansion wave is created. Moreover, û ă ˜̃u´ ă ˜̃u` which implies 0 ą f 1p˜̃u´q ą
f 1p˜̃u`q by property 1 of a strictly concave function f , and therefore, 0 ă 1

f 1p˜̃u´q
ă 1

f 1p˜̃u`q
.

The characteristics and expansion wave can are plotted in Figure 9.

For all t P r0,∆ts, Fjpt` tnq “ fp˜̃up0, tqq “ fp˜̃u`q “ max
uPrUn

j`1,U
n
j s
fpuq “ constant.

• If ˜̃u´ P r0, ûs and ˜̃u` P pû, umaxs then a shock wave is admitted since ˜̃u´ ă ˜̃u`. The shock wave

speed is s “ fp˜̃u`q´fp˜̃u´q
˜̃u`´˜̃u´

. The denominator is positive so the sign of s is that of the numerator.

There are two cases to consider:

– If fp˜̃u`q ě fp˜̃u´q, then s ě 0 and the shock wave is moving to the right (or is stationary if
the equality holds). The characteristics and the shock wave are plotted in Figure 10.

For all t P r0,∆ts, Fjpt` tnq “ fp˜̃up0, tqq “ fp˜̃u´q “ min
uPrUn

j ,Un
j`1s

fpuq “ constant.

– If fp˜̃u`q ă fp˜̃u´q, then s ă 0 and the shock wave is moving to the left. The characteristics
and the shock wave are plotted in Figure 11.

For all t P r0,∆ts, Fjpt` tnq “ fp˜̃up0, tqq “ fp˜̃u`q “ min
uPrUn

j ,Un
j`1s

fpuq “ constant.

• If ˜̃u` P r0, ûs and ˜̃u´ P pû, umaxs, then the entropy condition is not satisfied and a shock wave
cannot exist. Instead an expansion wave is created. Moreover, f 1p˜̃u´q ă 0 and f 1p˜̃u`q ą 0 which
implies that 1

f 1p˜̃u´q
ă 0 and 1

f 1p˜̃u`q
ą 0. The characteristics and the expansion wave are plotted

in Figure 12.

For all t ą 0, p0, tq belongs to the same characteristic line with equation x “ 0. This means that
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Figure 10: Characteristics of (19) with ˜̃u´ ď û ă ˜̃u` and fp˜̃u`q ě fp˜̃u´q, and the shock wave
moving to the right

Figure 11: Characteristics of (19) with ˜̃u´ ď û ă ˜̃u` and fp˜̃u`q ă fp˜̃u´q, and the shock wave
moving to the left
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Figure 12: Characteristics of (19) with ˜̃u` ď û ă ˜̃u´, and the expansion wave expanding in both
directions

the value of ˜̃u is a constant ˜̃u˚ at these points, and f 1p˜̃u˚q “ 0. Therefore, ˜̃u˚ “ û, and for all
t P r0,∆ts, Fjpt` tnq “ fp˜̃up0, tqq “ fpûq “ max

uPrUn
j`1,U

n
j s
fpuq “ constant.

Thus for all t P rtn, tn`1s, Fjptq is a constant Fn
j , where

Fn
j “

$

’

&

’

%

min
uPrUn

j ,Un
j`1s

fpuq if Un
j ď Un

j`1

max
uPrUn

j`1,U
n
j s
fpuq if Un

j ą Un
j`1.

(20)

3.4 The algorithm

Recall that the exact averages Un
j ’s cannot be found without prior knowledge u. What is computed

instead are Ũn
j ’s, the approximations of the averages. This can be done as follows:

1. ∆x and ∆t are chosen so that they satisfy the CFL condition (18).

2. For all j P Z, U0
j is constructed from u0pxq by equation (12). Set Ũ0

j “ U0
j .

3. For all j P Z and n P N, Fn
j “

$

’

’

&

’

’

%

min
uPrŨn

j ,Ũn
j`1s

fpuq if Ũn
j ď Ũn

j`1

max
uPrŨn

j`1,Ũ
n
j s

fpuq if Ũn
j ą Ũn

j`1

.
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4. For all j P Z and n P N,

Ũn`1
j “ Ũn

j `
1

∆x

ż tn`1

tn

pFj´1ptq ´ Fjptqqdt

“ Ũn
j `

1

∆x

ż tn`1

tn

pFn
j´1 ´ F

n
j qdt

“ Ũn
j `

∆t

∆x
pFn

j´1 ´ F
n
j q @j P Z,@n P N. (21)

A piecewise constant numerical density U can be constructed from the Ũn
j ’s according to (14).

3.5 Trajectory of a car

Consider a car c whose position at time t “ 0 is x “ x0. Let xcptq and vcptq be its position and velocity
respectively, at any t ě 0. Then:

@t ě 0, xcptq “

ż t

0
vcpzqdz ` x0 “

ż t

0
vpupxcpzq, zqqdz ` x0.

After differentiating both sides with respect to t, one gets:
#

x1cptq “ vpupxcptq, tqq, @t ě 0

xcp0q “ x0.

A numerical solution Xc to the initial value problem above can be constructed using Euler’s method
as follows

Tn “ n∆t, @n P N
X0

c “ x0

V n
c “ vpUpXn

c , T
nqq, @n P N

Xn`1
c “ Xn

c `∆tV n
c , @n P N

. Note the Xn
c is the numerically computed position of c at time Tn.

4 Simulating Traffic Lights

4.1 Introduction

Traffic flow problems can get very complicated making finding a solution by hand through the method
of characteristics very cumbersome. However, one can use the algorithm described in subsection 3.5
to get numerical solutions to traffic flow problems. Throughout the rest of this section, the algorithm
will be used to run simulations in order to understand the effects of traffic lights on the behavior of
traffic.

4.2 The traffic lights problem

A traffic lights cycle consists of two parts. The first part lasts for a period of tr during which the
traffic lights are red, and the second part lasts for a period of tg during which the traffic lights are
green.

Consider a road with traffic lights at x “ 0. The velocity function vpuq is known; so are the flux
function fpuq “ vpuqu “ vmaxp1 ´ u{umaxqu and the initial density u0pxq “ upx, 0q “ u0, which is
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constant for all x P R. The road can be divided into two parts: the one to the left of the traffic lights
and the one to the right of it. During the first part of a cycle, the traffic lights are red. This means
that traffic cannot flow from the left part of the road to the right part. Two things can be inferred
from this. The first is that the two parts of the road can be treated separately. The second is that the
flux at the traffic lights is fpup0, tqq “ 0. Since fpuq “ vpuqu, either u “ 0 or vpuq “ 0. During the
second part of a cycle, the traffic lights are green, and traffic can flow from the left part of the road
to the right part. Therefore, the two parts of the road have to be treated as one system.

The first cycle begins at time t “ 0 and ends at time t “ tr ` tg. What follows is a method for
finding the solution to the traffic lights problem during the first cycle. Consider the left part of the
road. The initial density is u0 to the left of the traffic lights, i.e. when x ă 0. Since fpu0p0qq “ 0,
either u0p0q “ 0 or vpu0p0qq “ 0. Moreover, cars to the left of a red traffic light stand stationary, so
vpu0p0qq “ 0. This implies that u0p0q “ umax. The density of cars to the left of the traffic lights can
be found up to a time tr by solving the following Riemann problem:

ũt ` fpũqx “ 0

ũpx, 0q “

#

u0 if x ă 0

umax if x ě 0.

Then upx, tq “ ũpx, tq for all x ď 0 and t ď tr. Now consider the right part of the road. The initial
density is u0 to the right of the traffic lights, i.e. when x ą 0. Since fpu0p0qq “ 0, either u0p0q “ 0
or vpu0p0qq “ 0. Moreover, there are no cars directly to the right of a red traffic light, as cars to the
left of it are not allowed to pass. This implies that u0p0q “ 0. The density of cars to the right of the
traffic lights can be found up to a time tr by solving the following Riemann problem:

ũt ` fpũqx “ 0

ũpx, 0q “

#

0 if x ď 0

u0 if x ą 0.

Then upx, tq “ ũpx, tq for all x ą 0 and t ď tr. After a time tr has passed the traffic lights turn and
remain green for a period of time tg. During this time, cars are allowed to flow from the left part of
the road to the right part of the road. The solution during t P ptr, tgs can be found by solving the
following traffic flow problem problem:

ũt ` fpũqx “ 0

ũpx, 0q “ upx, trq for x P R.

Then upx, tq “ ũpx, t´ trq for all x and t P ptr, tr ` tgs.

Now that upx, tq is known for all x and all t P r0, tr ` tgs, the solution of u for the next cycle
can be found by repeating the same method described above with one key difference: a new initial
density u0pxq “ upx, tr ` tgq, is used. In general, if n P Z` and the solution for the nth cycle is
known, the solution of u can be found for the pn ` 1qth cycle by repeating the same method with
u0pxq “ upx, nptr ` tgqq.

4.3 The solution over one traffic lights cycle with low initial constant density

The problems described above can be solved using the algorithm described in subsection 3.4, to obtain
a numerical solution U . This solution can then be graphically visualized.
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Figure 13: The characteristics of a traffic lights problem with low initial constant density during one
traffic lights cycle

For example, the characteristics of the traffic lights problem with the following parameter values:

vmax “ 100 km{h

umax “ 100 cars{km

u0 “ 25 cars{km

tr “ 20 s

tg “ 65 s

can be seen in Figure 13.

The program with which Figure 13 was generated plots the contours (or the level curves) of U where
U is changing. Therefore the lines seen in Figure 13 are the characteristics. Moreover, the density is
constant in the four parts of the figure where there are no contour lines. Another way to visualize U in
a two-dimensional plot is to visualize the values of U with colors as in Figure 14. The characteristics
can also be seen in Figure 14, as they are the lines made up of points of the same color; these are
points that have the same value and therefore belong to the same level curve. It also provides the
constant values of U which Figure 13 did not.

Consider Figure 14. At t “ 0 s the traffic lights turn red. Two shock waves emerge from x “ 0 km.
The one on the left is due to a jump from u´ “ u0 “ 25 cars{km (in light blue) to u` “ umax “

100cars{km (in dark red). The one on the right is due to a jump from u´ “ 0cars{km (in dark blue) to
u` “ u0 “ 25 cars{km (in light blue). This shock wave can be seen in Figure 15, a three-dimensional
plot of U .

At tr “ 20 s the traffic lights turn green. An expansion wave starts at x “ 0 km to continuously
decrease the density from u´ “ umax “ 100 cars{km to u` “ 0 cars{km. This expansion wave can be
divided into a left part which includes the signals with densities in ru0, umaxs and a right part which
includes the signals with densities in r0, u0q.

The shock wave on the left first intersects paths with the expansion wave when it meets the first signal
of the expansion wave from the left, which has density umax. This is the top left point of the dark
red triangle in Figure 14. The discontinuity is between u´ “ u0 and u` “ umax. After this point the
shock wave meets signals with densities continuously decreasing from umax to u0.
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Figure 14: The characteristics of a traffic lights problem with low initial constant density during one
traffic lights cycle

Figure 15: The shock wave of a traffic lights problem with low initial constant density during one
traffic lights cycle
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Figure 16: The secants of f between u0 (low density) and u P r0, umaxs

The speed of the shock wave between u´ and u` is s “ fpu`q´fpu´q
u`´u´

which is the slope of the secant

of f between u´ and u` (given that u´ ă u`). Therefore the change of the speed of the left shock
wave can be seen in Figure 16.

Note that:

fpumax ´ u0q “ vmaxp1´
umax ´ u0
umax

qpumax ´ u0q

“ vmaxp
u0
umax

qpumax ´ u0q

“ vmaxp1´
u0
umax

qpu0q

“ fpu0q.

As the shock wave meets signals continuously decreasing from umax “ 100 cars{km to umax ´ u0 “
75cars{km, the speed of the shock wave continuously increases from the negative value of s “ ´25km{h
(the shock wave is traveling to the left) to s “ 0 km{h (the shock wave is stationary). After that the
shock wave meets signals continuously decreasing from 75 cars{km to û “ 50 cars{km. The speed of
the shock wave increases continuously from s “ 0 km{h to s “ 25 km{h (the shock wave is moving
to the right). Finally, as the shock wave meets signals continuously decreasing from û to u0, its
speed continues to increase until it reaches a maximum value of f 1pu0q “ 50 km{h. This happens
asymptotically as tg tends to 8.

The shock wave on the right first intersects paths with the expansion wave when it meets the first
signal of the expansion wave from the right, which has density 0 cars{km. This is the top right
point of the dark blue triangle in the Figure 14. The discontinuity is between u´ “ 0 cars{km and
u` “ u0 “ 25 cars{km. After this point the shock wave meets signals with densities continuously
increasing from 0 cars{km to 25 cars{km. At this point the speed of the shock wave is s “ 75 km{h.
As the densities of the signals intersecting with the right shock wave increases, the speed of the shock
wave decreases until it reaches a minimum of f 1pu0q “ 50 km{h. This also happens asymptotically as
tg tends to 8. The intersections of the left and right shock waves with the expansion wave can also
be seen in Figure 17.

If a car was in position xc and time tc the trajectory of this car can be traced for all t ě tc using the
algorithm described in subsection 3.5. Plotting the trajectories of cars that are evenly spaced with
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Figure 17: The expansion wave of a traffic lights problem with low initial constant density during
one traffic lights cycle

density u0 at t “ 0 allows for the visualization of the trajectory of every car on the road. For a clearer
figure the trajectory of every second car on the road was plotted in Figure 18.

4.4 Solution over several traffic lights cycles with low initial constant density

In the previous example, it was found that when u0 P r0, ûq (i.e for a low initial constant density),
the solution over the first cycle can be characterized by two shock waves and an expansion wave. The
shock wave on the left was initially moving to the left with constant speed. After the traffic lights turn
green, it starts decelerating until it becomes stationary. Then it starts moving to the right with an
increasing speed. The second cycle starts at time t “ tr ` tg. At this time, the shock wave on the left
might still be to the left of the traffic lights, or it might have moved to the right of it. To investigate
the effect of this on traffic, two simulations are ran.

For both simulations, vmax “ 100 km{h, umax “ 100 cars{km, u0 “ 25 cars{km and tr “ 20 s. The only
difference is that tg is chosen to be 65 s for first simulation and 25 s for the second simulation. The
solutions to both simulations were found numerically as described in subsection 4.2. The characteristics
for simulation 1 can be seen in the Figure 19.

At time tr ` tg “ 85 s, the shock wave can be seen in the figure above to be to the right of the traffic
lights (the time axis). Therefore, upx, tr ` tgq “ u0 for all x ă 0. Then the initial density for the left
part of the road is the same for both cycles and upx, tq “ upx, t ` tr ` tgq for all t P r0, trs and for
all x ď 0. Moreover, when the traffic lights turn green during the second cycle, the same expansion
wave as in cycle one will be created to continuously decrease u from umax “ 100 cars{km to 0 cars{km.
Therefore, upx, tq “ upx, t ` tr ` tgq for all t P r0, tr ` tgs and for all x ď 0. By a similar argument
this property can be shown for any two consecutive cycles therefore, upx, tq “ upx, t` nptr ` tgqq for
all t P r0, tr ` tgs , x ď 0 and n P Z`. This leads to the following conclusion. If the last car waiting
in the line of stationary cars formed during the first part of cycle one passes the traffic lights during
the second part of cycle one, then the last car waiting in the line of stationary cars formed during the
first part of any cycle passes the traffic lights during the second part of that cycle.

This can be seen in Figure 20 showing the trajectory of every fourth car on the road in simulation 1.
Note that the last car waiting in the line of stationary cars in any cycle, passes the traffic lights in
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Figure 18: The trajectory of every second car on the road for a traffic lights problem with low initial
constant density during one traffic lights cycle

Figure 19: The characteristics of simulation 1 during several traffic lights cycles
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Figure 20: The trajectory of every fourth car on the road in simulation 1 during several traffic lights
cycles

that same cycle and there is no traffic build up.

The characteristics for simulation 2 during several traffic lights cycles can be seen in Figure 21. Unlike
in simulation 1, at the end of the first cycle (t “ tr ` tg “ 45 s), the shock wave remains to the left
of the traffic lights (the time axis). The initial density for the second cycle is different than that of
the first cycle. The difference is over an interval rx̃, 0s where x̃ is a real negative number. Over this
interval, the initial density for the second cycle is a set of continuous high densities (i.e they belong to
rû, umaxs). It can be seen from Figure 16 that jumps from high densities to umax lead to shock waves
moving faster to the left than jumps from u0 (low density) to umax. Note that the length of the line
of stationary cars is the x-coordinate of the intersection of the shock wave on the left, and the first
signal of the expansion wave from the left (which has density umax). If the shock wave on the left is
moving faster to the left than in the previous cycle, its intersection with that signal of the expansion
wave will also be further to the left. Therefore, it leads to longer traffic lines. This can be seen in the
Figure 21, where every cycle has a longer traffic line than the one before it. The trajectory of every
fourth car on the road can be seen in Figure 22. This figure shows how some cars have to wait at the
same traffic lights for two cycles.
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Figure 21: The characteristics of simulation 2 during several traffic lights cycles

Figure 22: The trajectory of every fourth car on the road in simulation 2 during several traffic lights
cycles
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4.5 Criterion 1: choice of tg given tr and u0 P r0, ûq

In subsection 4.4, it was seen that for a given time tr and constant initial density of u0 P r0, ûq, the
choice of tg had a clear effect on traffic. Therefore, a set of criteria can be set to choose a value for tg
in order to achieve certain desirable effects.

One such desirable effect is that any car that has to stop for the traffic lights during the first part of
a traffic lights cycle, must pass the traffic lights during the second part of the same cycle.

During the first cycle, this effect is achieved when the number of cars that pass the traffic lights
between the times tr and tr ` tg is greater than or equal to the number of cars that had to stop for
the red traffic lights during the first part of the cycle.

The number of cars that pass the traffic lights between the times tr and tr ` tg is:

ż tr`tg

tr

fpup0, tqqdt.

However, the value of fpup0, tqq is determined by the expansion wave which started at p0, trq for all
t P rtr, tr` tgs. Along the time axis there is only one signal. Therefore fpup0, tqq is constant. Since the
speed of the signal is 0, this is the signal with density û. Thus, fpup0, tqq “ fpûq for all t P rtr, tr` tgs.

The number of cars that pass the traffic lights between the times tr and tr ` tg can be reformulated
as:

ż tr`tg

tr

fpûqdt “ fpûqtg.

The number of cars that had to stop for the red traffic lights is the product of the length of the line
of stationary cars and their density umax. However, by referring to Figure 14, it can be seen that the
length of the line of stationary cars is the absolute value of the x-coordinate of the intersection point
of the shock wave on the left and the first signal from the left of the expansion wave which has density
umax.

The shock wave on the left is described by this equation:

x “
fpumaxq ´ fpu0q

umax ´ u0
t “

fpu0q

u0 ´ umax
t. (22)

The first signal from the left of the expansion wave is described by this equation:

x “ f 1pumaxqpt´ trq.

The x-coordinate of their intersection point is

x˚ “
trfpu0qf

1pumaxq

pu0 ´ umaxqf 1pumaxq ´ fpu0q
.

The number of cars that had to stop for the red traffic light is

´x˚umax “
umaxtrfpu0qf

1pumaxq

fpu0q ´ pu0 ´ umaxqf 1pumaxq
.

All the cars that stopped for the red traffic light during the first part of the first traffic lights cycle
will pass the traffic lights during the second part of the first cycle if:

fpûqtg ě
umaxtrfpu0qf

1pumaxq

fpu0q ´ pu0 ´ umaxqf 1pumaxq

ðñ tg ě
umaxtrfpu0qf

1pumaxq

fpûqpfpu0q ´ pu0 ´ umaxqf 1pumaxqq
. (23)
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Assume the shock wave on the left reaches the traffic lights at x “ 0 at time t “ tshock. It was seen
in the previous section that if tr ` tg ě tshock, u mimics itself every cycle on the left part of the road.
Therefore it is enough to study the behavior of traffic on the left part of the road during the first
cycle. If

tg “ max

ˆ

tshock ´ tr,
umaxtrfpu0qf

1pumaxq

fpûqpfpu0q ´ pu0 ´ umaxqf 1pumaxqq

˙

, (24)

then any car that is stopped by the traffic lights during a cycle, will pass the traffic lights during that
same cycle.

4.6 A numerical method for finding tshock

The time at which the shock wave on the left is in position x˚ can be found by plugging in x˚ in
equation (22) to get

t˚ “
pu0 ´ umaxqtrf

1pumaxq

pu0 ´ umaxqf 1pumaxq ´ fpu0q
.

At this point the discontinuity is between u´ “ u0 and u` which is determined by the expansion wave.

The value of u inside the expansion wave which started at p0, trq can be found by the following relation:

f 1pupx, tqq “
x´ 0

t´ tr

ùñ vmaxp1´
2upx, tq

umax
q “

x

t´ tr

ùñ upx, tq “
umax

2
´

umaxx

2vmaxpt´ trq
.

The speed of the shock wave at a time t is can then be found by

x1shockptq “ spxshockptq, tq “
fpupxshockptq, tqq ´ fpu0q

upxshockptq, tq ´ u0
,

where xshockptq is the position of the shock wave at time t. This is an ordinary differential equation
with an initial value of xshockpt

˚q “ x˚.

The trajectory of the shock wave can be found using Euler’s method:

$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

x0 “ x˚

t0 “ t˚

sn “ spxn, tnq @n P N
xn`1 “ xn ` sn∆t @n P Nzt0u
tn`1 “ tn `∆t @n P Nzt0u

where ∆t ą 0 is predetermined step size.

This algorithm can be ran while xn ă 0. When it terminates the last tn will be tshock.

4.7 Example

Consider a traffic lights problem with the following parameter values:

vmax “ 100 km{h

umax “ 100 cars{km

u0 “ 30 cars{km

tr “ 20 s.
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Figure 23: The characteristics for the traffic lights problem with tg “ 105 s

Using the algorithm described in subsection 4.6, tshock is found to be 125s. Then:

max

ˆ

tshock ´ tr,
umaxtrfpu0qf

1pumaxq

fpûqpfpu0q ´ pu0 ´ umaxqf 1pumaxqq

˙

“ p105, 35q “ 105s.

The characteristics for the traffic lights problem with tg “ 105 s can be seen in Figure 23. As expected
the solution of u mimics itself on the left part of the road during each cycle.

The trajectory of every third car on the road can be seen in Figure 24. As expected any car that is
stopped by the red traffic lights in a given cycle, passes the traffic lights during that same cycle.

The characteristics for the traffic lights problem with tg “ 35s can be seen in Figure 25. The solution
does not mimic itself on the left part of the road as expected given that tg “ 35s ă tshock ´ tr “ 105s.

The trajectory of every third car on the road can be seen in Figure 26. In the first cycle, any car that
is stopped by the red traffic lights, passes the traffic lights before the start of the second cycle. This
is expected since tg “ 35s satisfies (23). However, this is not true for later cycles.
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Figure 24: The trajectory of every third car on the road for the traffic lights problem with tg “ 105 s

Figure 25: The characteristics for the traffic lights problem with tg “ 35 s
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Figure 26: The trajectory of every third car on the road for the traffic lights problem with tg “ 35 s

4.8 Criterion 2: choice of tg{tr given u0 P r0, umaxs

Consider the traffic lights problem with constant initial density u0 P r0, umaxs. The length of a traffic
lights cycle is tr ` tg. Had there been no traffic lights at x “ 0, the density of traffic would have been
equal to u0 at any place x and time t. Therefore the number of cars passing the traffic lights during
a traffic lights cycle would have been:

ż tr`tg

0
fpup0, tqqdt “ fpu0qptr ` tgq.

A reasonable requirement is that the number of cars that pass the traffic lights during any cycle be
greater than or equal to the number of cars that would have passed had there not been any traffic
lights. This means that the traffic lights, at worst will have no net effect on traffic flow between the
left part of the road and the right part over a period of tr ` tg; at best, the traffic lights will lead to a
greater traffic flow between the two parts of the road.

The number of cars that pass the traffic lights during a traffic lights cycle is:

ż tr`tg

0
fpup0, tqqdt “

ż tr

0
fpup0, tqqdt`

ż tg

tr

fpup0, tqqdt “ 0tr ` fpûqtg “ fpûqtg.

Then the requirement mentioned above can be restated as:

ptr ` tgqfpu0q ď tgfpûq

ùñ
tg
tr
ě

fpu0q

fpûq ´ fpu0q
. (25)

Note that criterion 1 for the traffic lights problem considered earlier with the following parameters:

vmax “ 100km{h

umax “ 100cars{km

u0 “ 30cars{km

tr “ 20s
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Figure 27: The characteristics of a traffic lights problem with high initial constant density during
one traffic lights cycle

recommends tg ě 105s. On the other hand, criterion 2 recommends that (25) is satisfied. This means
that tg{tr ě 5.25, and therefore tg ě 5.25tr “ 105s. The trajectories of a third of the cars on the
road can be seen in Figure 24. Note that there was no traffic accumulation from cycle to cycle, as the
maximum length of stationary cars in each cycle is constant.

Also note that criterion 2 can be computed directly using the formula, while criterion 1 needs to find
tshock first. Moreover, criterion 2 is more versatile as it does not assume anything about the value of
u0.

It is worth mentioning, however, that as u0 tends to û, tg{tr tends to 8, therefore it is not very
practical to use this criterion when u0 is close to û.

4.9 The solution over one traffic lights cycle with high initial constant density

Consider the traffic lights problem with the following parameter values:

vmax “ 100km{h

umax “ 100cars{km

u0 “ 75cars{km

tr “ 20s

tg “ 105s.

The numerical solution of this problem is shown graphically in Figure 27.

At t “ 0 s the traffic lights turn red. Two shock waves emerge from x “ 0 km. The one on the left
is due to a jump from u´ “ u0 “ 75 cars{km (in orange) to u` “ umax “ 100 cars{km (in dark red).
The one on the right is due to a jump from u´ “ 0 cars{km (in dark blue) to u` “ u0 “ 25 cars{km
(in orange).

At tr “ 20 s the traffic lights turn green. An expansion wave starts at x “ 0 km to continuously
decrease the density from u´ “ umax “ 100 cars{km to u` “ 0 cars{km. This expansion wave can be
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Figure 28: The secants of f between u0 (high density) and u P r0, umaxs

divided into a left part which includes the signals with densities in ru0, umaxs and a right part which
includes the signals with densities in r0, u0q.

The shock wave on the right first intersects paths with the expansion wave when it meets the first
signal of the expansion wave from the right, which has density 0. This is the top right point of the
dark blue triangle in Figure 27. The discontinuity is between u´ “ 0 and u` “ u0. After this point
the shock wave meets signals with densities continuously increasing from 0 to u0.

The speed of the shock wave between u´ and u` is s which is the slope of the secant between u´ and
u` (given that u´ ă u`). Therefore the change of the speed of the left shock wave can be seen in
Figure 28.

As the shock wave meets signals with densities continuously increasing from 0 cars{km to umax´u0 “
25cars{km, the speed of the shock wave continuously decreases from the positive value of s “ 25km{h
(the shock wave is traveling to the right) to s “ 0 km{h (the shock wave is stationary). After that the
shock wave meets signals with densities continuously increasing from 25 cars{km to û “ 50 cars{km.
The speed of the shock wave decreases continuously from s “ 0 km{h to s “ ´25 km{h (the shock
wave is moving to the left). Finally, as the shock wave meets signals continuously decreasing from û
to u0, its speed continues to decrease until it reaches a minimum value of f 1pu0q “ ´50 km{h. This
happens asymptotically as tg tends to 8.

The shock wave on the left first intersects paths with the expansion wave when it meets the first
signal of the expansion wave from the left, which has density umax. This is the top right point
of the dark red triangle in Figure 27. The discontinuity is between u´ “ u0 “ 75 cars{km and
u` “ umax “ 100 cars{km. After this point the shock wave meets signals with densities continuously
decreasing from 100cars{km to 75cars{km. At this point the speed of the shock wave is s “ ´75km{h.
As the densities of the signals intersecting with the left shock wave decrease, the speed of the shock
wave increases until it reaches a maximum of f 1pu0q “ ´50 km{h. This also happens asymptotically
as tg tends to 8.
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Figure 29: The characteristics for the traffic lights problem with tg “ 60 s

4.10 The solution over several traffic lights cycles with high initial constant den-
sity

Consider the traffic lights problem with the following parameter values:

vmax “ 100 km{h

umax “ 100 cars{km

u0 “ 75 cars{km

tr “ 20 s.

The choice of tg and tr satisfies criterion 2 if (25) is satisfied, that is if tg{tr ě 3. Therefore, tg ě
3tr “ 60 s. To see what happens when a choice of tg and tr satisfies criterion 2, simulation 1 is ran
with tg “ 60 s. The solution can be seen in Figure 29. Moreover, the trajectory of every tenth car on
the road is plotted to get Figure 30.

To see what happens when a choice of tg and tr doesn’t satisfy criterion 2, simulation 2 is ran with
tg “ 30 s. The solution can be seen in Figure 31. Moreover, the trajectory of every tenth car on the
road is plotted to get Figure 32.

For high densities, a the choice tg{tr that satisfies criterion 2 leads to a solution which mimics itself
every cycle on the right part of the road. This can be seen in Figure 29 and not in Figure 31.

As a result, the length of the part of the road where there are no cars, remains constant for all cycles
with such a tg{tr as can be seen in Figure 30. On the other hand when tg{tr does not satisfy criterion
2, the the length of the part of the road where there are no cars, grows with each cycle as can be seen
in Figure 32.
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Figure 30: The trajectory of every tenth car on the road for the traffic lights problem with tg “ 60 s

Figure 31: The characteristics for the traffic lights problem with tg “ 30 s
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Figure 32: The trajectory of every tenth car on the road for the traffic lights problem with tg “ 30 s

5 Conclusions

Throughout this report, it was seen how the traffic flow problems can be mathematically modeled and
numerically solved. The model and the numerical method are important because they allow for the
simulation of traffic flow. The model used in this report required that the velocity function v be chosen
so that the flux function fpuq “ uvpuq is strictly concave. This is a somewhat strong assumption, and
the model can be made more general by relaxing the condition that f is a strictly concave function to
f is a unimodal function.
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