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Abstract

Describing many-body quantum systems has been an analytically and computation-
ally challenging task since the advent of quantum mechanics. However, in the past
50 years as a result of our technological advancement and the emergence of meth-
ods such as density-functional theory (DFT), we have taken crucial steps forward
regarding our ability to study and understand large quantum systems. In this work,
we have studied the extended Hubbard model using a mean-field approximation
where we have tested an approach to the long-ranged electronic interaction that
is not entirely local. We have developed a near-local approximation (NLA) for the
model under study, where the exact non-local electronic interaction at site i is ap-
proximated using the densities at a pair of sites neighbouring i in addition to the
density at i. As preliminary to a discussion of NLA, we showed results for the density
of states of systems with a three-site supercell, thus providing a simple character-
ization of the mean-field treatment (in the case of local interactions only). When
it comes to the main results of our work, i.e. a derivation and the testing of the
NLA, our findings can be summarised as follows: we have found three NLA variants,
namely a left site approximation (LSA), a right site approximation (RSA) and a cen-
ter site approximation (CSA). Furthermore, we have found that CSA performs better
than a local approximation both under the effect of a parabolic external potential
and a distorted one. We have also found that the performance of LSA and RSA are
scarce in general. Albeit this work (being based on the extended Hubbard model un-
der a mean-field approximation) does not address exchange and correlation effects
directly, it provides a first step towards future work where a near-local treatment is
carried out on more accurate grounds.
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Chapter 1

Introduction

1.1 Motivation

Following the mathematical formulation of quantum mechanics (1925-1930), physicists have been

relentlessly on the search for a practical framework in which the theory can be used to study many-

body systems. Although quantum mechanics is an exact theory for non-relativistic systems, the lack

of computational means and the complexity of realistic systems made an application of the theory

to large ensembles of particles a daunting task. One of the most prominent methods introduced

during those years is the Hartree-Fock (HF) method. Strictly speaking, D. Hartree introduced the

Hartree method in 1927 as a way of providing a mean-field approximation to describe electrons in

atoms that fits into the picture of the emerging wave mechanics formalism [14]. A significant flaw

in Hartree’s initial formulation is that the method neglects the fermionic nature of electrons. The

proposed equation by Hartree does not take into account the Pauli exclusion principle which was

later corrected following the contributions of J. C. Slater, J. A. Gaunt and V. A. Fock [16–18]. By

the year 1935, we had what is known as the Hartree-Fock (HF) method which takes into account

the anti-symmetry of the wave-function of a fermionic system and can be viewed as a correction

to the preceding Hartree method [15]. The HF method will act as a basis for the work presented

in this thesis.

The Hartree-Fock method is a wave-function based approximative treatment of many-body quan-

tum mechanical systems, which depends explicitly on the many-body wave-function of the system

in question. In its simplest form, the HF method is a ground state (GS) stationary theory. The GS

wave-function of a fermionic quantum mechanical system is approximated by a Slater determinant

and the GS energy is calculated by invoking the variational principle, i.e. optimizing the expecta-

tion value of the energy with respect to the wave-function. Therefore, we have the following1:

Ψ0 ≈ ΦSD =
1√
N !

det{ℵ1(x1)ℵ2(x2) · · · ℵN (xN )} (1.1)

ℵk(xi) = φk(ri)σ(si) (1.2)

E0 ≈ EHF = min
ΦSD

E[ΦSD] (1.3)

where N is the number of electrons in the system, {ℵj}Nj=1 are spin orbitals consisting of a spatial

part φ and a spin part σ ∈ {↑, ↓} and the energy functional E[ΦSD] will be specified in the next

chapter. The HF method approximates the ground state energy E0 by finding the optimal Slater

determinant that minimizes the energy functional E[ΦSD].

1The notation adapted throughout this thesis is explained in Appendix A.
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CHAPTER 1. INTRODUCTION 2

The HF method takes into account the quantum mechanical nature of the problem by invoking

appropriate symmetry constraints on the approximated wave-function (Slater determinants being

anti-symmetric abides by the Pauli exclusion principle for fermions). An immediate consequence

of such constraint is a non-local energy term in the full solution called the exchange energy. That

is, the solution can be written as:

EHF = EHF − Ex + Ex = El︸︷︷︸
local

+ Ex︸︷︷︸
non-local

(1.4)

where Ex is the exchange energy. The non-locality of Ex makes an exact calculation, more often

than not, not achievable. An approximation for Ex can be obtained in the spirit of a local density
approximation (LDA) or equivalently, by the Hartree-Fock-Slater method where the exchange hole

is assumed to be spherically symmetric and centered around the electron. Formally, the exchange

hole is defined as the difference between the conditional probability of finding an electron with spin

σ at r2 given that a reference electron with the same spin is at r1, and the completely uncorrelated

probability of finding an electron with spin σ at r2. It can be pictured as the reference electron

digging a hole around it that results in repelling other electrons of the same spin due to the anti-

symmetry of the total wave-function. Slater’s approximation, which is in agreement with that of

LDA, is given by [24]:

Ex[ρ] ≈ ESlater
x [ρ] = −9

8

(
3

π

)1/3

αS

∫
ρ(r)4/3dr (1.5)

where αS is a semi-empirical factor between 2/3 and 1 and ρ is the electronic density. This ap-

proximation only requires the knowledge of the electronic density distribution of the system under

study. Furthermore, equation (1.5) is local and significantly easier to employ than a non-local ex-

pression. In the same sense, the work presented in this thesis combines density-functional theory

(DFT) and the HF method in order to obtain an approximation for non-local interactions (anal-

ogous to Ex) that is not entirely local, and compares it to a local one. However, this is targeted

towards a different class of systems, namely lattice models. In particular, we focus on the Hubbard

model [13].

1.2 Density-functional theory

An inevitable consequence of a pure HF treatment, which is in fact an approximation method, is a

deviation away from the actual ground state energy in question. That is, the real problem can not

be described by a single Slater determinant. This simplification leads to an error in estimatingE0. A

single Slater determinant description often leads to “electrons getting too close to each other” [5, Ch.

1]. This is evident in the Hartree-Fock equations where the Coulomb repulsion part of the HF

potential is taken into account only in average as we shall see in the next chapter. The difference

between the HF energy and the exact ground state energy is what was initially granted the term
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correlation energy, that is:

Ecorr = E0 − EHF (1.6)

which indicates that there is still plenty of room for improvement. Many approaches were taken to

rectify this error with some being an extension to the original HF method, e.g. one can have a lin-

ear mixing of a very large number of Slater determinants called configuration interaction [19, Ch.

4]. However, one of the most effective and astonishingly easy to grasp approaches has its genesis

in 1964, from the hands of P. Hohenberg and W. Kohn (HK).

In the 1950s, by the time digital electronic computers became available, the HF method was put

to practice and this area of research became increasingly popular in numerical applications. The

emergence of post-HF methods and DFT followed (and continues to) by the end of 1964. DFT

has its roots in the HK seminal paper in 1964 where they provided the proof for two landmark

theorems [1]. The first HK theorem states that: the external potential Vext(r) is a unique functional

of the ground state density ρ0(r) up to a constant. It follows that the GS wave-function Ψ0 is also

a functional of ρ0(r) up to a multiplication by an arbitrary phase. For a Hamiltonian on the form:

Ĥ = T̂ + Û + V̂ext (1.7)

where T̂ and Û are the operators for the kinetic energy and the inter-particle interaction respec-

tively, we can define the universal functional given by:

F [ρ0(r)] ≡ 〈Ψ0|T̂ + Û |Ψ0〉. (1.8)

The GS energy functional is then defined as:

EVext [ρ0(r)] ≡ F [ρ0(r)] +

∫
Vext(r)ρ0(r)dr (1.9)

where the density can be expressed as the variational derivative of the energy with respect to the

external potential. The second HK theorem states that: the total energy is minimized at the exact

ground state density ρ0(r). The problem is then reduced to an optimization problem with respect

to the density ρ(r), that is:

E0 = EVext [ρ0(r)] = min
ρ

(
F [ρ(r)] +

∫
Vext(r)ρ(r)dr

)
. (1.10)

However, this does not provide us with any means of solving the problem or lower its complexity,

albeit it does reformulate the problem in terms of the density ρ(r) instead of the wave-function

Ψ(r), which is often easier to obtain. This is evident by the fact that ρ depends only on three spa-

tial coordinates, whereas Ψ depends on 3N spatial coordinates where N is the number of electrons

in the system.
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Thanks to the work of W. Kohn and L. J. Sham (KS) in 1965 [3], DFT was set and ready to provide a

practical framework to employ the electronic density as the primary variable, as first envisioned by

L. Thomas, E. Fermi and P. Dirac [5, Ch. 3]. Replacing the wave-function of a many-body quantum

system by the density not only made the problem simpler to work with analytically, but also made

it more computationally efficient to achieve a higher level of accuracy. KS provided a framework in

which the HK theorems become applicable; they introduced a fictitious system of non-interacting

fermions where the exact wave-function for said system is a Slater determinant ΦKS with orbitals

{θi}Ni=1 in analogy to HF. Furthermore, they divided the universal functional F [ρ(r)] into three

parts as follows:

F [ρ] = T0[ρ] + J [ρ] + Exc[ρ] (1.11)

where T0[ρ] is the kinetic energy of the non-interacting system, J [ρ] =
1

2

∫ ∫
ρ(r1)ρ(r2)dr1dr2 is the

classical Coulomb repulsion, Exc[ρ] = Txc[ρ] + Jxc[ρ] is the so called exchange-correlation energy

functional which contains kinetic and interaction energy parts due to the real system consisting of

interacting fermions. Exc can be thought of as the complicated portion of the energy of the system.

KS also required that the non-interacting system must have the same density as the GS density of

the system under study, that is:

ρKS(r) =
∑
s

N∑
i=1

|θi(r, s)|2 = ρ0(r) (1.12)

where N here denotes the number of occupied orbitals and s ∈ {↑, ↓}. To abide by the restriction

on the density profile in (1.12), one must solve the KS equations given by:[
−1

2
∇2 + VKS(r)

]
θi = µiθi (1.13)

where VKS is defined as:

VKS(r) ≡ Vext(r) + VJ(r) + Vxc(r) = Vext(r) +
δJ [ρ]

δρ(r)
+
δExc[ρ]

δρ(r)
. (1.14)

Since VKS depends on the density ρ, the KS equations given by (1.13) must be solved self-consistently

analogous to the HF equations which we shall introduce in the next chapter. Once self-consistency

has been reached in the solution, the ground state density ρ0(r) can be calculated using (1.12) fol-

lowed by all properties such as E0. However, things practically are not as sound as on paper; the

possibility of representing an arbitrary ground state density by a system of non-interacting fermions

hinges on the existence of Vxc; otherwise, the problem can not be solved using this scheme [20].

This is due to the fact that Vext and VJ are relatively easy to calculate. VJ is explicitly known and

Vext depends on the system, so this leaves the kinetic energy part of the non-interacting system and

Vxc (which is the most problematic).

While exact in principle, to be made practical DFT requires the use of approximations. The most
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notorious quantity in a DFT calculation, as mentioned above, is the exchange-correlation potential

Vxc which is non-local in principle. The non-locality of Vxc makes an exact calculation rather

tedious and unachievable in cases of large systems, analogous to Ex in the HF scheme. The main

problem is therefore to find a suitable approximation for the exchange-correlation potential that

is computationally applicable, whilst quantitative results regarding the system under study remain

accessible. Such approximation can be obtained by extracting the exchange-correlation potential

from an infinite reference system where V ref
xc is not necessarily non-local, i.e. V ref

xc [ρ] = V ref
xc (ρ). An

example is that of LDA where the reference system used is the homogenous electron gas (Jellium)

which is solvable in an exact numerical manner [25]. The LDA for Vxc is given by:

V LDA
xc =

δELDA
xc

δρ(r)
= εxc(ρ(r)) + ρ(r)

δεxc(ρ)

δρ
(1.15)

where εxc(ρ) is the exchange-correlation energy per particle of a uniform electron gas of density

ρ [4].

It has been shown by K. Schönhammer, O. Gunnarsson and R. M. Noack in 1995 that the concept

of DFT applies not only to functionals of the density ρ in the continuous case, but to any functional

of a function that is non-interacting v-representable in what they called “{A}-functional theory” [6].

This is for example the case of the Hubbard model, which describes lattice systems where electrons

can hop to neighboring sites (tight-binding part) and interact with other electrons localized at the

same site (local interaction part) [2]. One generalized-DFT-like theory for lattice systems is site-
occupation-functional theory (SOFT) where the site occupation number2 〈n̂〉 (which we call density)

assumes the role of the density ρ(r) in the continuous case3 [7]. In one dimension, the reference

system for LDA, i.e. the one-dimensional homogenous Hubbard model, is exactly solvable. The

solution uses the Bethe-ansatz and the details are not relevant for our work [8]. However, this

made it possible to construct an exact LDA for the discrete case, i.e. the Bethe-ansatz local density

approximation (BALDA) for one-dimensional lattice systems. Vxc is approximated using4:

V BALDA
xc (〈n̂〉 < 1) = −2 cos

(
π〈n̂〉
β(U)

)
+ 2 cos

(
π〈n̂〉

2

)
− U〈n̂〉

2

V BALDA
xc (〈n̂〉 > 1) = +2 cos

(
π(2− 〈n̂〉)
β(U)

)
− 2 cos

(
π(2− 〈n̂〉)

2

)
+
U(2− 〈n̂〉)

2

(1.16)

where U is the local interaction strength (see section 2.2) and β(U) is given by the solution to the

transcendental equation:

β(U)

π
sin

(
π

β(U)

)
= 2

∫ ∞
0

J0(x)J1(x)

x
(
1 + eUx/2

)dx, (1.17)

2Defined as the expectation value of the number operator n̂ to be defined in the next chapter.
3See also the work by Gunnarsson and Schönhammer [21].
4Strictly speaking, the approximation given by (1.16) is not exact since Capelle’s interpolation is an approximation

itself, however, it is believed to be a good one (see [9] or [10]).
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where J0(x) and J1(x) are Bessel functions of the first kind [10]. The graph of V BALDA
xc at different

values of the parameter U is shown in Figure 1.1. The discontinuity around half-filling 〈n̂〉 = 1

is a characteristic of Vxc when U > 0 that manifests the Mott metal-insulator transition for the

one-dimensional Hubbard model [9].

0 0.5 1 1.5 2

〈n̂〉

-3

-2

-1

0

1

2

3

V
B
A
L
D
A

x
c

U = 0

U = 3

U = 6

U = 9

Figure 1.1: V BALDA
xc as a function of the density 〈n̂〉 according to (1.16) and (1.17) at different values of U .

Note the discontinuity at 〈n̂〉 = 1. This figure is a reproduction of [10, Fig. 2].

We end this section by presenting results of applying BALDA to N = 14 electrons in the spin

compensated case (N↑ = N↓ = 7) on a one-dimensional lattice of L = 21 sites trapped in a

parabolic potential on the form:

Vp(i) = p(i− dL/2e)2 (1.18)

where i denotes the site index and p is a real number. A comparison between the density profiles

obtained in the cases of employing BALDA and without Vxc for p = 0.5 and two different values of

U is shown in Figure 1.2. The hopping parameter t (see section 2.2) is set to 1 in all cases presented

in this thesis. Note that the correction to the density profile offered by BALDA is pronounced when

the interaction strength U dominates over the effect of the external potential p. It is also clear in

the U = 6 case the effect of the discontinuity in V BALDA
xc around half-filling on the density profile.

5 10 15 20

Site (i)

0

0.5

1

1.5

2

〈n̂
i
〉

U = 6

Vxc = 0
Vxc = V

BALDA
xc

5 10 15 20

Site (i)

0

0.5

1

1.5

2

〈n̂
i
〉

U = 3

Figure 1.2: A figure that shows a comparison between employing BALDA for Vxc and the case of neglecting
exchange-correlation effects all together. The density 〈n̂i〉 is plotted as a function of the site
index i for two different systems. The left panel shows U = 6 while the right panel shows
U = 3.
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1.3 Scope of this work

The work presented by this thesis, as mentioned previously, aims to compare an approximation

for long-ranged electronic interaction that is not entirely local to a local approximation for the

same interaction. Ideally, said interactions would be the exchange and correlation and an ap-

proximation would be formulated in the spirit of BALDA. Furthermore, BALDA would be the local

approximation to compare with. However, BALDA is built from a reference system that is analyti-

cally solvable, i.e. the homogenous Hubbard model [8]. To expand such approximation to include

non-local effects, say nearest neighbors, we would like to get an expression on the form:

Vxc[〈n̂i〉] ≈ V ref
xc = V ref

xc (〈n̂i−1〉, 〈n̂i〉, 〈n̂i+1〉), (1.19)

where 〈n̂i−1〉, 〈n̂i〉 and 〈n̂i+1〉 can be different. However, no analytical solution is known for the

reference system we would want to extract V ref
xc from; a not-entirely-homogenous Hubbard model.

Albeit it is not possible to construct an approximation in the same way as BALDA, this approach

can still be tested at another level to gain an intuition and set the stage for a more thorough

treatment. We will refrain from discussing Vxc any further in this thesis and we will focus on a

simpler approach to the problem that is analytically solvable, i.e. the HF approximation for the

extended Hubbard model. In this context, HF will act as an exact solution and the long-ranged

interaction potential in the extended Hubbard model will be the approximated potential. We will

also offer a characterization of the HF solution in the case of local interaction only and how to

extend this work in the future. The work presented will only address the case of one dimension

and the case of higher dimensions is left to future work. We only considered local interaction in

characterizing the HF solution via numerical results due to lack of time to include long-ranged

interaction as the problem is non-trivial. The restriction to the HF approximation is also a result of

the limited time assigned to the project.



Chapter 2

Theory

2.1 The Hartree-Fock approximation: A closer look

Given that we set HF to be our focus, this section is aimed towards presenting some details of the

theory as well as fill any gaps left by the Introduction. The following part is based on [4, Sec. 1.3]

and [5, Sec. 1.3]. Let us now look at the HF solution for a many-body system described by the

Hamiltonian given by equation (1.7). Furthermore, suppose that the operator V̂ext has a spatial

representation which can be written as:

V̂ext =
N∑
i=1

v(ri) (2.1)

where v(ri) is the external potential felt by the ith electron (for example, V̂ext can be the operator

of the total energy of the interaction between the electrons of the system and stationary nuclei in

the Born-Oppenheimer limit). The HF energy (equation (1.4)) is then given by:

EHF =

N∑
i

hi︸ ︷︷ ︸
Ek+Eext

+
1

2

N∑
ij

(Jij −Kij)︸ ︷︷ ︸
Eee

(2.2)

where Ek is the kinetic energy, Eext is the energy due to the external potential and Eee is the

electron-electron interaction energy. hi, Jij and Kij are given by1:

hi =

∫
ℵ∗i (x)(−1

2
∇2 + v(r))ℵi(x)dx

Jij =

∫ ∫
ℵi(x1)ℵ∗i (x1)

1

|r1 − r2|
ℵ∗j (x2)ℵj(x2)dx1dx2

Kij =

∫ ∫
ℵ∗i (x1)ℵj(x1)

1

|r1 − r2|
ℵi(x2)ℵ∗j (x2)dx1dx2

(2.3)

and the orbitals {ℵi(x)}Ni=1 are defined as in (1.2). Jij and Kij are called the Coulomb and ex-

change integrals respectively. In order to find the set of orbitals {ℵi(x)}Ni=1 that minimizes the

energy according to equation (1.3), one must solve the HF equations (analogous to the KS equa-

tions (1.13)) given by2:
f̂ℵi(x) = εiℵi(x)

f̂ = −1

2
∇2 + v(r) + VHF(x)

(2.4)

1For notation, see Appendix A.
2Under the constraint that the orbitals {ℵi(x)}Ni=1 are normalized.

8
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where the eigenvalues {εi}Ni=1 are the orbital energies, f̂ is the Fock operator and VHF is the HF

potential which reads:

V̂HF =

N∑
i=1

ĵi − k̂i, (2.5)

here ĵ and k̂ are the Coulomb and exchange operators respectively, given by:

ji(x1) =

∫ ∣∣ℵi(x2)
∣∣2 1

r12
dx2 (2.6)

ki(x1)ℵj(x1) = ℵi(x1)

∫
ℵ∗i (x2)

1

|r1 − r2|
ℵj(x2)dx2. (2.7)

Needless to say, the HF potential depends on the orbitals {ℵi(x)}Ni=1 and (2.4) should be solved

self-consistently (analogous to the KS equations (1.13)) which is what granted the method the

name: The self-consistent field. We will encounter a correspondence in the self-consistency require-

ment when we turn to a DFT (or rather SOFT) treatment of HF in the next section. However,

the solution then would depend on the density and not the orbitals which are equivalent when

discussing the GS.

We end this section with some remarks to link it to what we presented in the first part of the

Introduction. The HF potential VHF(x) when acting on the spin orbital ℵi represents the average

Coulomb repulsion (ĵ part) felt by the ith electron due to the remaining electrons, and in addition a

non-local exchange contribution (k̂ part) imposed by the anti-symmetry of the total wave-function.

Accounting for the classical Coulomb repulsion only in average is what gave rise to equation (1.6).

What is meant by the non-locality of the exchange part in VHF(x) can be readily seen in equation

(2.7). Note that when the operator k̂i acts on the orbital ℵj(x1), the result does not depend

only on the value of ℵj at x1, but on all points in space in contrary to the operator ĵi, which is

local. Furthermore, the expectation values of ĵi and k̂i are nothing but the Coulomb and exchange

integrals given by (2.3) and the non-locality in Ex (−1/2
∑

i 6=jKij) follows3. Finally, the results

presented in this thesis are for an even number of electrons in the spin-compensated case, i.e.

the restricted HF (RHF). However, we will not discuss more than the general attributes of the HF

method in the continuous case presented in this section. In the next section, we will consider the

HF approximation for a one-dimensional lattice system and change our basic variable from being

an orbital to an occupation number.

2.2 Density-functionalising Hartree-Fock: The Hartree-Fock approxi-

mation for the extended Hubbard model

This section is aimed at looking at the Hubbard model under the HF approximation. In this regime,

our system will be a one-dimensional lattice and our basic variable will be the site-occupation

3Here we use i 6= j to avoid the non-physical self-interaction term which is canceled in the full expression by virtue
of Jii = Kii.
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number 〈n̂i〉 (i is the site index) as appropriate for DFT calculations performed on a lattice, i.e.

SOFT [7]. The Hubbard Hamiltonian, first introduced by John Hubbard in 1963, is a lattice model

used to describe localized electrons around stationary nuclei (under the Born-Oppenheimer ap-

proximation) where a lattice description is appropriate [2]. The electrons interact only with other

electrons localized at the same nucleus (site) and the model was successfully employed to describe

electron correlations in narrow energy bands [13]. The one-dimensional Hubbard Hamiltonian Ĥ0

in its simplest form in second quantization formalism is given by:

Ĥ0 = −
∑
〈i,j〉σ

tij ĉ
†
iσ ĉjσ + U

∑
i

n̂i↑n̂i↓ (2.8)

where the notation 〈i, j〉 denotes ordered pairs of nearest neighbors, σ ∈ {↑, ↓}, tij are the hopping

matrix elements, ĉ†iσ and ĉjσ denote creation and annihilation operators of an electron with spin σ

at sites i and j respectively, U is the on-site interaction strength and n̂i↑ = ĉ†i↑ĉi↑ and n̂i↓ = ĉ†i↓ĉi↓

are number operators. t and U set the energy scale and determine the relative strength of the two

sums that contribute to the Hamiltonian. In this thesis it will be assumed that the hopping matrix

elements are given by tij = t between nearest neighbors and tij = 0 otherwise.

For arbitrary sites i and j, consider the following representation of the spin dependent density

operators n̂iσ and n̂jβ where σ, β ∈ {↑, ↓}:

n̂iσ = 〈n̂iσ〉+ n̂iσ − 〈n̂iσ〉 = 〈n̂iσ〉+ δn̂iσ

n̂jβ = 〈n̂jβ〉+ n̂jβ − 〈n̂jβ〉 = 〈n̂jβ〉+ δn̂jβ.
(2.9)

Multiplying n̂iσ and n̂jβ, we find:

n̂iσn̂jβ = 〈n̂iσ〉n̂jβ + 〈n̂jβ〉n̂iσ − 〈n̂iσ〉〈n̂jβ〉+ δn̂iσδn̂jβ. (2.10)

By setting the product of fluctuations δn̂iσδn̂jβ to zero, we apply a mean-field approximation to

equation (2.10). Furthermore, the quantity 〈n̂iσ〉〈n̂jβ〉 will only contribute to the total energy of

the system which has no relevance to our calculations and can be safely neglected. Under said

assumptions, equation (2.10) reads:

n̂iσn̂jβ ≈ 〈n̂iσ〉n̂jβ + 〈n̂jβ〉n̂iσ. (2.11)

If we now combine equations (2.8) and (2.11) we get the Hamiltonian:

ĤHF
0 = −t

∑
〈i,j〉σ

ĉ†iσ ĉjσ + U
∑
iσ

〈n̂i,−σ〉n̂iσ. (2.12)

The above equation is what some people call the Hubbard Hamiltonian under the Hartree-Fock

approximation (for example John Hubbard) [2]. However, some people will reserve the name

Hartree-Fock for a mean-field treatment that preserves the spin rotational invariance of the origi-
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nal Hubbard model given by (2.8), which would explicitly contain a spin dependent term for the

exchange part (for example Frank Lechermann) [12, Ch. 3]. Therefore, the above treatment ne-

glects the Fock part and the resulting Hamiltonian only contains the Hartree approximation, or

simply, a mean-field. To avoid ambiguity, such treatment will always have the name Hartree-Fock

in this thesis since it preserves the property of having a linear potential for electronic interaction

analogous to RHF.

In order to be able to test different approximations for electronic interactions, we need to include

a long-ranged interaction term in the Hamiltonian. This can be applied by adding a non-local term

to the original Hubbard Hamiltonian. The extended Hubbard Hamiltonian Ĥ1 then reads:

Ĥ1 = Ĥ0 +
1

2

∑
i 6=j

Uijn̂in̂j (2.13)

where Uij denotes the interaction strength between the sites i and j, n̂i = n̂i↑ + n̂i↓ and n̂j =

n̂j↑ + n̂j↓. Note that, unlike the local interaction term, interaction between electrons of the same

spin is permitted (in the local case it would be a non-physical self-interaction).

One can easily find by combining equation (2.13) and the approximation (2.11), and using the

fact that Uij = Uji that the HF approximation for Ĥ1 is given by:

ĤHF
1 = ĤHF

0 +
∑
i 6=j

Uij〈n̂j〉n̂i. (2.14)

If the system under study is subject to an external potential or an additional perturbation, we add

it to the Hamiltonian Ĥ1 via:

ĤHF = ĤHF
1 +

∑
i

vin̂i

= −t
∑
〈i,j〉σ

ĉ†iσ ĉjσ + U
∑
iσ

〈n̂i,−σ〉n̂iσ +
∑
ij

Uij(1− δij)〈n̂j〉n̂i +
∑
i

vin̂i
(2.15)

where vi denotes the additional potential. In general, an additional perturbation might be spin

dependent. However, we restrict the focus to spin independent modifications in the present work.

Equation (2.15) is the general form of the HF Hamiltonian we will work with in this thesis. Note

that if one wishes to diagonalize ĤHF, the solution should be self-consistent since the interaction

terms in (2.15) depend explicitly on the density profile, which is what we called “the self-consistency
correspondence” in the previous section. In the next section, we will show how to obtain a local

approximation for the long-ranged interaction term in ĤHF.
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2.3 Long-ranged interaction: A local approximation within Hartree-

Fock

In analogy to BALDA, where the reference system is the one-dimensional homogenous Hubbard

model which is, as mentioned in the Introduction, analytically solvable using the Bethe-ansatz [8],

we aim to find a local (density) approximation (for which we will use the acronym LHFA to avoid

confusion with the acronym LDA) that fits into the Hartree-Fock picture. BALDA provides us with

an LDA to the exchange-correlation potential extracted from an infinite model of the system under

study where all sites have the same density [10]. In our case, we want to find an LHFA to the

potential given by:

Vi =
∑
j

Uij(1− δij)〈n̂j〉. (2.16)

Assuming a corresponding infinite homogenous reference system (Figure 2.1 up) where 〈n̂j〉 =

〈n̂i〉 = 〈n̂ref〉 for all i and j and Uij = U(|i− j|), we get:

V LHFA
i = 〈n̂i〉

∑
j

U(|i− j|)(1− δij). (2.17)

Since the system is infinite, the site i will have an infinite number of sites to the left and right of it,

thus the summation in the above equation can be written as:∑
j

U(|i− j|)(1− δij) = (U(1) + U(2) + U(3) + ...)︸ ︷︷ ︸
left of i

+ (U(1) + U(2) + U(3) + ...)︸ ︷︷ ︸
right of i

= 2(U(1) + U(2) + U(3) + ...) = 2
∞∑
k=1

Uk

(2.18)

where Uk = U(k) = U(|i− j| = k). Finally, by combining equations (2.18) and (2.17), we arrive

at the following result:

A 1. The local approximation V LHFA
i = V LHFA(〈n̂i〉) for the long-ranged interaction potential (2.16)

is given by:

V LHFA
i = 2〈n̂i〉

∞∑
k=1

Uk, (2.19)

here A 1 denotes Approximation 1. In the next section, we will present a near-local approximation

(NLA) for Vi based on a system that is not entirely homogenous.

2.4 Long-ranged interaction: A near-local approximation within Hartree-

Fock

If we want to find an approximation for Vi based on a reference system that is not entirely ho-

mogenous, the task gets more complicated than that of the previous section. In this thesis, the

reference system we used has a degree of homogeneity up to three consecutive sites. That is, the
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system can be divided into unit cells where each unit cell contains three different sites. Each site

is identical to its counterpart in other unit cells. A comparison between said reference system and

the homogenous reference system used in the previous section is shown in Figure 2.1.

i-1 i i+1
a

Local approximation reference system

j-1 j j+1b

Near-local approximation reference system

Figure 2.1: A sketch that shows a comparison between the homogenous reference system used in the pre-
vious section for LHFA and the reference system we aim to use in the NLA case. The number of
sites chosen in the sketch is only intended to show the general characteristics of each system.
The unit cell index for the homogenous model is i and the lattice constant is a, while for the
reference system used in this section, the unit cell index is j and the lattice constant is b.

It is rather natural to introduce the degree of freedom α ∈ {l, c, r} where l denotes left, c denotes

center and r denotes right. For the reference system in question, each unit cell will contain three

sites with corresponding densities 〈n̂l〉, 〈n̂c〉 and 〈n̂r〉 from left to right. This is true for all unit cells

since the system has a degree of homogeneity up to three consecutive sites. In this notation, the

long-ranged interaction part of the Hamiltonian ĤLR =
∑

i 6=j Uij〈n̂j〉n̂i as in (2.15) reads:

ĤNLA
LR =

∑
jαj′α′

Ujαj′α′(1− δjj′δαα′)〈n̂j′α′〉n̂jα (2.20)

where the subscript LR denotes the long-ranged interaction part of the Hamiltonian, j and j′ here

denote unit cell indices and α and α′ denote the left, center or right sites within the unit cells

with indices j and j′ respectively. The above equation does not add or take anything from the

expression given by equation (2.15) for ĤLR, rather, it is merely a reformulation for our reference

system. From equation (2.20) we can immediately see that the potential V NLA
i (now V NLA

jα ) is given

by:

V NLA
jα =

∑
j′α′

Ujαj′α′(1− δjj′δαα′)〈n̂j′α′〉. (2.21)

The above expression suggests 3 different possible values for V NLA
i . This is the starting point to

arrive at the final expression for V NLA
i . We end this section by presenting the approximation A 2

which offers us three variants (one for each value of α) of the near-local approximation, namely the

left site approximation (LSA), the center site approximation (CSA) and the right site approximation

(RSA). The details behind arriving at A 2 are given in Appendix B.
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A 2. The near-local approximation V NLA
i = V NLA(〈n̂cell〉) for the long-ranged interaction potential

(2.16) can be obtained in three distinct ways given by:

V NLA
i = 〈n̂cell〉

∞∑
k=1

Uk(1− δ0mod(k,3)) + 〈n̂i〉
∞∑
k=1

(3U3k − Uk)

〈n̂cell〉 =


〈n̂i〉+ 〈n̂i+1〉+ 〈n̂i+2〉 LSA

〈n̂i〉+ 〈n̂i+1〉+ 〈n̂i−1〉 CSA

〈n̂i〉+ 〈n̂i−1〉+ 〈n̂i−2〉 RSA

.

(2.22)

i

i

i

i-1 i+1

Unit cell

CSA

i-1 i+1

Unit cell

LSA

i-1 i+1

Unit cell

RSAi-2

i-2

i-2

i+2

i+2

i+2

Figure 2.2: A sketch that shows the different ways to approximate the long-ranged interaction potential at
site i of any inhomogeneous system under consideration according to NLA. Each approximation
defines a different unit cell, hence, a different reference system.

This non-uniqueness in the approximation presented by NLA is the price we pay for the α degree

of freedom as explained in the derivation. The two equations given by (2.22) offer three different

ways to approximate Vi from a reference system that is homogenous up to three consecutive sites,

namely, LSA, CSA and RSA. To construct the total density of one unit cell, LSA considers the

value of the density at a given reference site i and the density at a pair of sites succeeding i, CSA

considers the density at i and the density of the two sites nearest to i and RSA considers the density

at i and the density at a pair of sites preceding i. If an answer to the question: which one is the

best approximation? did exist, it is definitely not intuitive. There is no clear reason why one would

perform better than the other, however, they are definitely different approximations in general.

This leaves the preferred protocol to be determined via assessment over different systems under

study. We need to emphasize however, that the approximations LSA, CSA and RSA only differ

from each other in the choice of 〈n̂cell〉. Formally, this choice is arbitrary since left, center and right
are a matter of convention. Therefore, in principle the approximations are not different, rather,

our choice of the unit cell is the only factor that determines the value of the potential. Regardless

of which value of 〈n̂cell〉 is used to calculate V NLA
i , we can make a comparison between the local

approximation and an approximation that takes into account neighboring sites using all variants

given by (2.22). However, to make an accurate statement, we need to take all of them into account.
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2.5 A characterization of the Hartree-Fock solution via the density of

states

In this section, we will provide a characterization of the HF solution for the reference system

discussed in the previous section in the case of local interaction only (U). We will consider the

spinless case only in this section since extending our discussion to include spin in the RHF scheme

(spin-compensated case) would only require a multiplication by 2. That is, from (2.15), we will be

looking at the Hamiltonian given by:

Ĥref
HF = −t

∑
〈jα,j′α′〉

ĉ†jαĉj′α′︸ ︷︷ ︸
Ĥref

TB

+
∑
jα

εαn̂jα︸ ︷︷ ︸
Ĥref
ε

+U
∑
jα

〈n̂jα〉n̂jα︸ ︷︷ ︸
Ĥref
U

(2.23)

where we dispose of the spin degree of freedom by omitting the summation over σ and adapt the

notation from the previous section otherwise. Note the term Ĥref
ε which gives rise to the α degree

of freedom, here {εα}α are real numbers which represent the different energy shifts within one unit

cell. The main attributes of Ĥref
HF will be given on the form of analytical expressions4, namely, the

energy dispersion with respect to the wave-vector which we call k and the density of states (DoS) f .

First, let us look at an example to make clear what we mean by the energy dispersion. Consider

the spinless tight-binding Hamiltonian given by:

ĤTB = −t
∑
〈i,j〉

ĉ†i ĉj (2.24)

where i and j here are site indices. For a system described by ĤTB, with lattice constant a = 1 and

under periodic boundary conditions5, the following relation holds:

Ek = −2t cos k (2.25)

where k = (2π/λ) ∈ [−π, π) is the wave-vector in the first Brillouin zone and λ is the wavelength.

Equation (2.25) is called the energy dispersion formula for ĤTB and coincides with [11, Exercise

1.3]. A derivation is provided in Appendix B since it is analogous to that of the next statement,

which provides us with the energy dispersion formula for our last reference system.

Statement 1. For a system described by the Hamiltonian (2.23), under periodic boundary conditions
and with the lattice constant b = 1, the allowed energy values for a given wave-vector k in the first
Brillouin zone are given by:

{Ekm}3m=1 = eig(Ak) (2.26)
4The derivations are given as appendices for the sake of readability.
5Born-von Karman, 1912.
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where Ak is 3x3 and reads:

Ak =

Dc −t −t
−t Dl −te−ik

−t −teik Dr


Dc = εc + U〈n̂c〉

Dl = εl + U〈n̂l〉

Dr = εr + U〈n̂r〉

(2.27)

where Dl, Dc and Dr are different energy shifts at the left, center and right sites of any given unit

cell in the system. A derivation of Statement 1 can be found in Appendix B. Statement 1 gives rise

to an immediate result, namely the following:

Statement 2. The energy eigenstates for the Hamiltonian given in (2.23) are the eigenvectors of
{Akp}p denoted by {|kpm〉}pm where m ∈ {1, 2, 3}. Furthermore, given an arbitrary, yet allowed,
kp = k in the first Brillouin zone, the energy eigenstates {|km〉}m corresponding to the energies
{Ekm}m as given in Statement 1, are given by:

|km〉 =
∑
α

Ckmα |kα〉, α ∈ {c, l, r} (2.28)

where Ckmc , Ckml and Ckmr denote the first, second and third entry of the 3-dimensional vector

|km〉, respectively. The importance of the above statements will become more clear after combining

them with the following result; they will provide us with means to calculate the density of states,

and hence, the density profile for the system.

Statement 3. For the system described by the Hamiltonian given in (2.23) in the ground state, the
center, left, and right densities {〈n̂α 〉}α within one unit cell are given by:

〈n̂α〉 =

∫ µ

−∞
fα(E)dE =

1

L

∫ µ

−∞

∑
pm

∣∣∣Ckpmα

∣∣∣2δ (E − Ekpm) dE (2.29)

where fα(E) is the density of states at site α normalized to 1, µ is the chemical potential and the

coefficients {Ckpmα }pm and the energy values {Ekpm}pm, are given in accordance with Statement 2

and Statement 1, respectively. A derivation of Statement 3 is given in Appendix B.

The above results allow us to study the reference system for NLA from a different perspective.

Although only local interactions were taken into account, qualitative results can still be obtained

for the DoS. The solution would be a characteristic of the reference system with the energy shifts

{εα}α. When applying (2.22) to a system under study, we determine the densities {〈n̂α〉}α, and

thus {εα}α, of the corresponding reference system according to the system under study. In this sec-

tion, we facilitated the ability to alter the values {εα}α and investigate the corresponding densities

{〈n̂α〉}α from the resulting DoS functions {fα(E)}α. Note that since the energy shifts {Dα}α de-

pend on the densities {〈n̂α〉}α, equations (2.26), (2.28) and (2.29) must be solved self-consistently.
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Results

3.1 Local density of states

In this section, we will present results for the DoS functions {fα(E)}α for one system in accordance

with Equation (2.29). Other systems were considered and the results can be found in Appendix

C. In all cases presented in this thesis, the systems considered consist of L = 500 unit cells (1500

sites) with lattice constant b = 1. The chemical potential µ is set to zero by convention and the

Dirac delta function is approximated using a Lorentzian according to:

δ(x) ≈ Γ

π

1

x2 + Γ2
(3.1)

where we set Γ = 0.01 in the present work. Figure 3.1 shows the resulting DoS functions {fα(E)}α
for a system with energy shifts εc = 0, εl = −1 and εr = 1, for different values of U .
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Figure 3.1: Comparison between the density of states functions {fα(E)}α at four different values of the
interaction parameter U , for εc = 0, εl = −1 and εr = 1. Left upper panel: U = 0, Right upper
panel: U = 1, Left lower panel: U = 3, Right lower panel: U = 5. The densities {〈n̂α〉}α are
also displayed for each case.
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If we start by looking at the case of no interaction in Figure 3.1 (Left upper panel), we notice that

fc(E) and the collective graph of {fα(E)}α are both symmetric around E = εc = 0. This is a

consequence of the symmetry in the unit cell of the system by construction (εl = −1, εc = 0 and

εr = 1). Physically, the symmetry of fc(E) around 0 indicates that the total number of center states

for E < εc = 0 is the same as the total number of center states for E > εc = 0 since the absolute

difference in energy between εc and either of εr and εl is 1. The total symmetry of {fα(E)}α around

0 indicates that the total number of states for E < εc = 0 is the same as the total number of states

for E > εc = 0 which also reflects the symmetry of the unit cell of the system under study. Keeping

in mind that the total number of states at one site in the spinless case is 1, these remarks can be

confirmed from the values of {〈n̂α〉}α indicated in Figure 3.1 since we have chosen εc = µ = 0.

If we now look at the cases in Figure 3.1 where we have introduced a non-zero interaction

parameter U , we notice that in all said cases the collective graph of {fα(E)}α is shifted to the

right (higher energy). This is due to the fact that the interaction introduced is repulsive (U > 0)

and the resulting energy of said interaction is larger than zero. Therefore, all available energy

states are shifted to the right with respect to the case of no interaction. More formally, the local

interaction term in the total Hamiltonian of the system adds a diagonal shift to the Hamiltonian of

the system without interaction. That is, the system with local interaction can be in first instance

be approximately seen as a system without interaction and energy shifts given by: ε′c = εc +U〈n̂c〉,
ε′l = εl + U〈n̂l〉 and ε′r = εr + U〈n̂r〉. However, as a consequence of the non-zero interaction

parameter U , we also notice a slight asymmetry around ε′c in the cases displayed in Figure 3.1.

The effect of local interaction in Figure 3.1 does not appear to be only a simple shift in

{fα(E)}α; in some energy ranges, the shifted graphs become “wider” and “shorter”1 , e.g. the

case of U = 1 (Right upper panel) in the energy range E ∈ [−0.5, 1.5] compared to the case of

U = 0 (Left upper panel) in the energy range E ∈ [−1, 1]. Mathematically, this is nothing but abid-

ing by the normalization condition, namely, the area under any of the graphs {fα(E)}α must be 1.

Finally, according to Figure 3.1, it is tempting to deduce that the density 〈n̂α〉 becomes smaller as

U becomes larger. This would be the natural conclusion since if we start adding electrons to the

system, we will reach the chemical potential value in energy faster in the case of strongly interact-

ing electrons than not. However, a generalization can not be made, which is evident by the more

general case considered in Figure C.1.

1By “shorter” we mean that the height of the DoS profile adjusts (being generally reduced) to keep into account
normalization requirements.
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3.2 Performance of NLA

In this section, we will show the result of employing NLA. We will present a comparison between

the performances of LHFA, LSA, CSA and RSA with respect to the exact HF solution for two dif-

ferent systems. The differences between the systems under study will be in the number of sites L,

number of electrons N and external perturbation VEXT ≡ vi in accordance with equation (2.15).

Both systems are studied within the RHF regime (N↑ = N↓). The first external potential we used

is the parabolic potential Vp as described by equation (1.18), and the second external potential is

a mixed potential Vmixed which contains more distortion than Vp and reads:

Vmixed(i) = Vp(i) +Vdistortion(i) = p(i−dL/2e)2 + (i−dL/2e)e−λ1|i−dL/2e| cos(λ2(i−dL/2e)) (3.2)

where λ1 and λ2 are real numbers. For all results presented in this work, we set: p = 0.1, λ1 =

0.0001 and λ2 = 0.3. The graphs of Vp and Vmixed are shown in Figure 3.2.
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Figure 3.2: Corresponding Vp and Vmixed to the set of parameters: p = 0.1, λ1 = 0.0001 and λ2 = 0.3. Note
that in this figure, we have used the notation: dL/2e → 0, positive count for sites to the right of
0 and negative count for sites to the left of 0.

For the long-ranged interaction parameter Uij = U(|i− j|) = Uk, the expression used reads as:

Uk =
U

2

e−λ3k

k
, k ∈ {1, 2, 3, · · · } (3.3)

where we set λ3 = 1 for all cases presented in this thesis. Note that in the following, the higher the

local interaction parameter U is, the bigger the effect of the long-ranged interaction in the system

considered. First, we present results for a system subjected to the external parabolic potential Vp.

Figure 3.3 shows a comparison between all different approximations discussed previously.
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Figure 3.3: Performance of LHFA, LSA, CSA and RSA at different values of the local interaction parameter
U , for L = 80 sites with N = 22 electrons trapped in a parabolic potential Vp. Left panels:
density profiles at each value of U , Right panels: performance of each approximation. The
quantity used to measure the performance of each approximation is the absolute difference
between the exact and approximated densities.
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If we start by looking at the case of weak interaction (U = 1), Figure 3.3a suggests that all

approximations provide a fair description which is more clear in Figure 3.3b where the differences

in |∆〈n̂i〉| between all approximations are small (note that the highest value on the y-axis is 0.04).

The most interesting aspect in this case is that it is the only case where all variants of NLA per-

form better than LHFA. However, the center site approximation appears to dominate at this point.

Looking at the case with medium interaction (U = 3), we notice that LSA and RSA fall behind

while CSA preserves its superiority over LHFA as shown in Figure 3.3c and Figure 3.3d. Finally, the

case of strong interaction (U = 7) corroborates its predecessor and concludes that CSA is the best

approximation whilst RSA and LSA do not offer any correction over LHFA, rather, they make things

worse. This is shown in Figure 3.3e and Figure 3.3f. We notice that the graphs of |∆〈n̂i〉| are even

for LHFA and CSA as shown in figures 3.3b, 3.3d and 3.3f which is a result of the symmetry in the

external potential, as well as the symmetry of the approximations. However, it is not the case for

LSA and RSA, rather, they appear to have a common parity property which will be addressed at

the end of this section.

Figure 3.4 shows the same comparison for a different system, however, the external potential

used is Vmixed. Taking a general look, we immediately notice that no symmetry is observed in

figures 3.4b, 3.4d and 3.4f which is a consequence of the distorted potential. Looking at Figure

3.4b, we notice that almost at all sites, RSA and LSA no longer perform better than LHFA as in

Figure 3.3b. Although LSA approaches the exact solution at i = 30 and predicts the value of 〈n̂i〉
closest-to-exact at i = 35, the number of sites where LSA and RSA perform well are too few for

them to be reliable approximations. In a similar fashion to the previous system, CSA appears to

dominate over LHFA according to Figure 3.4b as the number of sites where LHFA performs better

than CSA is only one. This is also the case in Figure 3.4d and Figure 3.4f where the number of

sites where LHFA outperforms CSA are 4 and 3 respectively (the range of interest is 22 sites).

The figures also show a deteriorating performance (especially on the boundaries of the electronic

density distribution) of LSA and RSA which confirms our initial conclusion in accordance with

Figure 3.4b. Finally, in both systems considered previously, the restriction of the electronic density

towards the middle of the lattice is a result of the external potentials, which both exhibits minimas

towards the middle of the lattice. This results in electrons being drawn to states with lower energy

towards the minimas of the potentials. The effect of interaction is the opposite of this behavior

where electrons in the middle of the lattice repel each other and the density profile in the case of

interaction has a wider range of sites where the density is non-zero than the case of no interaction.

Looking at the symmetry of the LSA and RSA behavior2, it is tempting to consider mixing

schemes for the densities and/or the potentials. What prevents us from attempting this is that

there is no general and conceptually robust guidance of how to choose the mixing, and if doing this

on a tentative basis would bring us away from a generic DFT way of thinking. Further elaboration

of this point is left for future work.

2The density profile produced by LSA is that of RSA with a reflection around the y-axis and vice versa.
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Figure 3.4: Performance of LHFA, LSA, CSA and RSA at different values of the local interaction parameter
U , for L = 64 sites with N = 20 electrons trapped in a mixed potential Vmixed. Left panels:
density profiles at each value of U , Right panels: performance of each approximation. The
quantity used to measure the performance of each approximation is the absolute difference
between the exact and approximated densities.



Chapter 4

Conclusions and Outlook
In this thesis, we have developed and tested a near-local approximation for long-ranged electronic

interactions in one-dimensional lattice systems. The model we have used is the extended Hubbard

model under the Hartree-Fock approximation that accommodates an exponentially decaying long-

ranged interaction effect in the presence of an external potential. NLA provided us with three

different ways to achieve an approximation based on a reference system that is homogenous up

to three consecutive sites, namely LSA, CSA and RSA. All approximations were compared, along

with an LDA variant tailored to fit in the HF scheme which we called LHFA, to the exact HF

method solution. We have also offered a numerical characterization of the solution for an arbitrary

reference system that is homogenous up to three consecutive sites in the case of local interaction

only by studying the DoS in a unit cell of the reference system.

In the case of an external parabolic potential, we have found that at low interaction all variants

of NLA outperform LHFA, however, at any case of stronger interaction the performances of LSA

and RSA are lacking. Albeit LSA and RSA fall behind dramatically (specifically on the boundaries),

our results suggest that CSA always performs better than LHFA. For an external potential with a

degree of disorder, we have found that the situation is not changed greatly compared to that of

its predecessor. The results we have presented indicate a deteriorating performance of LSA and

RSA with increased interaction. Furthermore, LHFA outperforms CSA at a few number of sites,

nevertheless, CSA remains the best approximation. This leads us to conclude that a near-local

treatment can in fact produce better results than a local one which opens the door for a more

thorough and accurate implementation of NLA in the future.

In this respect, the next step would be to explicitly consider correlation effects in a 1D reference

system with a 3-site supercell, where the densities inside the cell are varied independently to

produce an exchange-correlation term Exc(〈n̂l〉, 〈n̂c〉, 〈n̂r〉). Differently from the fully homogenous

1D Hubbard model, there is no exact analytical solution for this case, and numerical methods as

e.g. density matrix renormalization group (DMRG) [22] should thus be considered. Alternatively,

correlation effects could be introduced in a perturbative way. Through many-body perturbation

theory, it is possible to consider approximations of increasing complexity and with them to compute

the total energy, from which Exc (and thus Vxc) would be extracted. In this case, already a simple

1D system with on-site-only interaction, and correlations treated in a low-level description such as

second Born [23], would be enough to further test and qualitatively validate the effectiveness of

our proposal of a near-local approximation.
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Appendix A

Notation
The following notations are used throughout this thesis unless stated otherwise. Boldface upper-

case denote matrices (e.g. A), boldface lowercase denote vectors (e.g. a) and standard letters

denote scalars (e.g. a). By x we will always mean a four-dimensional vector that consists of the

3-dimensional spatial vector r and a spin coordinate s ∈ {↑, ↓}. ↑ denotes spin-up and ↓ denotes

spin-down.
δ

δf(x)
denotes the variational derivative with respect to f(x). eig(A) denotes the set

of eigenvalues of the matrix A and diag(a1, a2, a3, · · · , an) denotes a diagonal matrix (with dimen-

sions made clear from the context) with diagonal entries {a1, a2, a3, · · · , an}. (·)∗ denotes complex

conjugation. (̂·) denotes an operator and 1 denotes the identity operator. (̂·)† and 〈(̂·)〉 denote the

conjugate transpose (Hermitian conjugate) and the expectation value of an operator respectively.

δij denotes the Kronecker delta and δ(x) denotes the Dirac delta function centered at x = 0. By

the symbol L we will always mean the number of unit cells or number of sites depending on the

context whether finite or infinite. Summations or counts taken over non-specified indices should

have an upper limit of L where appropriate. Finally, we shall adapt the following abbreviation:

det{ℵ1(x1)ℵ2(x2) · · · ℵN (xN )} ≡

∣∣∣∣∣∣∣∣∣∣∣

ℵ1(x1) ℵ2(x1) . . . ℵN (x1)

ℵ1(x2) ℵ2(x2) . . . ℵN (x2)
...

...
. . .

...

ℵ1(xN ) ℵ2(xN ) . . . ℵN (xN )

∣∣∣∣∣∣∣∣∣∣∣
. (A.1)
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Derivations

A derivation of Approximation 2: Additional details

We start from equation (2.21). After expanding the summation over α′ and replacing 〈n̂j′α′〉 by

〈n̂α′〉 since it is independent of the unit cell index j′ by construction, we get:

V NLA
jα =

∑
j′

[
Ujαj′l(1− δjj′δαl)〈n̂l〉+ Ujαj′c(1− δjj′δαc)〈n̂c〉+ Ujαj′r(1− δjj′δαr)〈n̂r〉

]
. (B.1)

If we now choose α=l, i.e. we want to find the potential felt at the left site of an arbitrary unit cell

j, we get:

V NLA
jl =

∑
j′

[
Ujlj′l(1− δjj′δll)〈n̂l〉+ Ujlj′c(1− δjj′δlc)〈n̂c〉+ Ujlj′r(1− δjj′δlr)〈n̂r〉

]
=
∑
j′

[
Ujlj′l(1− δjj′)〈n̂l〉+ Ujlj′c〈n̂c〉+ Ujlj′r〈n̂r〉

]
.

(B.2)

Since the reference system is infinite, there are infinite unit cells to the left and right of j. If we

start the summation in equation (B.2) from j′ = j and expand to the left and right of j in a similar

fashion to what we did in the case of LHFA, we get:

V NLA
jl =

[
Ujljl(1− δjj)〈n̂l〉+ Ujljc〈n̂c〉+ Ujljr〈n̂r〉

+ Ujl(j+1)l(1− δj(j+1))〈n̂l〉+ Ujl(j+1)c〈n̂c〉+ Ujl(j+1)r〈n̂r〉

+ Ujl(j+2)l(1− δj(j+2))〈n̂l〉+ Ujl(j+2)c〈n̂c〉+ Ujl(j+2)r〈n̂r〉

+ Ujl(j−1)l(1− δj(j−1))〈n̂l〉+ Ujl(j−1)c〈n̂c〉+ Ujl(j−1)r〈n̂r〉

+ Ujl(j−2)l(1− δj(j−2))〈n̂l〉+ Ujl(j−2)c〈n̂c〉+ Ujl(j−2)r〈n̂r〉

+ ...
]
.

(B.3)

If we further assume, as in the case of LHFA, that Ujαj′α′ = U(k) = Uk where k denotes the

distance between the sites jα and j′α′ (k=1 for consecutive sites), the above equation reads:

V NLA
jl =

[
U1〈n̂c〉+ U2〈n̂r〉+ U3〈n̂l〉+ U4〈n̂c〉+ U5〈n̂r〉+ U6〈n̂l〉+ U7〈n̂c〉+ U8〈n̂r〉+ ...

]︸ ︷︷ ︸
right of j

+
[
U3〈n̂l〉+ U2〈n̂c〉+ U1〈n̂r〉+ U6〈n̂l〉+ U5〈n̂c〉+ U4〈n̂r〉+ ...

]︸ ︷︷ ︸
left of j

.
(B.4)
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Figure B.1 shows an illustration of equation (B.4), which after rearrangement reads:

V NLA
jl = U1(〈n̂c〉+ 〈n̂r〉) + U2(〈n̂c〉+ 〈n̂r〉) + 2U3〈n̂l〉

+ U4(〈n̂c〉+ 〈n̂r〉) + U5(〈n̂c〉+ 〈n̂r〉) + 2U6〈n̂l〉

+ U7〈n̂c〉+ U8〈n̂r〉+ ...

=
∞∑
k=1

Uk(〈n̂c〉+ 〈n̂r〉)(1− δ0mod(k,3)) + 2
∞∑
k=1

Uk〈n̂l〉δ0mod(k,3)

(B.5)

where mod(k, 3) = 0 if k/3 is an integer and non-zero otherwise which is known as the modulus (or

modulo) arithmetic operation. Further rearrangement after adding and subtracting the quantity∑∞
k=1 Uk〈n̂l〉(1− δ0mod(k,3)) would yield the final result for V NLA

jl given by:

V NLA
jl = 〈n̂cell〉

∞∑
k=1

Uk(1− δ0mod(k,3)) + 〈n̂l〉
∞∑
k=1

(3U3k − Uk) (B.6)

where 〈n̂cell〉 = 〈n̂l+ n̂c+ n̂r〉 = 〈n̂l〉+ 〈n̂c〉+ 〈n̂r〉. Equation (B.6) holds in general, that is, whether

we chose the left, center or right site the expression remains analogous to that of V NLA
jl . It can be

shown by direct calculation that for α ∈ {l, c, r}, we have:

V NLA
jα = 〈n̂cell〉

∞∑
k=1

Uk(1− δ0mod(k,3)) + 〈n̂α〉
∞∑
k=1

(3U3k − Uk). (B.7)

Infinite reference system: Long-ranged 
interaction potential at the left site of the unit 

cell j

U(1) U(1)c r l c r llr

j-1

l c r

j j+1
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U(3)U(3)
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U(5) U(5)

U(6)U(6)

U(7)

U(8)

Figure B.1: A sketch that shows the contribution of neighboring sites to the long-ranged interaction poten-
tial at the left site of the unit cell j. Note that the lattice is infinite and the figure only shows
the nearest and second nearest neighboring unit cells to the unit cell j.

The lingering α ∈ {l, c, r} degree of freedom in V NLA
jα is problematic for extracting an approxima-

tion for Vi from such reference system. For a system under study that has inherently a degree of

homogeneity similar to that of the reference system we used, the problem is avoided by dividing

the system under study to unit cells in the same manner as we have done for the reference sys-

tem. The approximation for Vi can be readily used in accordance with equation (B.7). However,

most realistic systems we are interested in have not any degree of homogeneity. In fact, a simple
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parabolic potential (which is vastly used to study trapped ultra-cold atoms) would get rid of any

translational symmetry of the problem at hand.

In the most general case where 〈n̂j〉 6= 〈n̂j′〉 when j 6= j′ (here j and j′ are site indices) for the

system under study, we can choose to treat any arbitrary site i as either a left, center or right site in

a corresponding reference system with the corresponding approximation given by equation (B.7).

The mapping between the density at site i and the corresponding reference system is no longer

unique due to the approximation depending on the density at an extra pair of sites neighboring i.

In fact, by virtue of the expression given by equation (B.7) for V NLA
jα , there are exactly three possible

approximations extracted from three possible reference systems having the degree of homogeneity

as mentioned above. The reference systems, and therefore the approximations, differ from each

other in the value of 〈n̂cell〉. If we choose the site i to be a left site, then 〈n̂cell〉 = 〈n̂i〉 + 〈n̂i+1〉 +

〈n̂i+2〉 and so on, giving a left site approximation, a center site approximation and a right site

approximation. This is illustrated in Figure 2.2. Finally, taking all possible approximations into

account, we get A 2.
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A derivation of Equation (2.25)

We start by writing the tight-binding Hamiltonian in the lattice-site single particle states {|j〉}j , we

get:

ĤTB = −t
∑
〈i,j〉

ĉ†i ĉj = −t
∑
j

(ĉ†j ĉj+1 + ĉ†j+1ĉj) = −t
∑
j

(|j〉〈j + 1|+ |j + 1〉〈j|). (B.8)

According to Bloch’s theorem, the k states {|k〉}j are given by:

|k〉 =
1√
L

∑
j

eikj |j〉 (B.9)

where L is the number of unit cells. If we now use the above equations to calculate the matrix

elements of ĤTB in the basis {|k〉}j , we get:

〈k′|ĤTB|k〉 = −t 1√
L

∑
n

e−ik
′n〈n|

∑
j

(|j〉〈j + 1|+ |j + 1〉〈j|) 1√
L

∑
m

eikm|m〉

= −t 1

L

∑
j

[∑
n

e−ik
′n〈n|j〉

∑
m

eikm〈j + 1|m〉+
∑
n

e−ik
′n〈n|j + 1〉

∑
m

eikm〈j|m〉
]

= −t 1

L

∑
j

(e−ik
′jeik(j+1) + e−ik

′(j+1)eikj) = −teik 1

L

∑
j

ei(k−k
′)j − te−ik′ 1

L

∑
j

ei(k−k
′)j

(B.10)

where we have used the fact that the states {|j〉}j constitute a complete basis. Finally, using the

identity:
1

L

∑
j

ei(k−k
′)j = δkk′ (B.11)

(B.10) reads:

〈k′|ĤTB|k〉 = −tδkk′(eik + e−ik
′
) =

−t(e
ik + e−ik) = −2t cos k k = k′

0 k 6= k′
(B.12)

which indicates that the matrix for ĤTB in the basis {|k〉}j is diagonal. In other words, the states

{|k〉}j are eigenstates of ĤTB and the energy values allowed are the eigenvalues of the matrix

representing ĤTB. The eigenvalues of a diagonal matrix are simply the entries of the diagonal of

the matrix, that is, the matrix elements 〈k|ĤTB|k〉 which completes the proof.
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A derivation of Statement 1

Let the lattice-site single particle states be denoted by {|jα〉}jα where α ∈ {c, l, r} and construct

the single particle states {|kpα〉}pα where for a given, yet arbitrary, kp = k we have1:

|kl〉 =
1√
L

∑
j

eikj |jl〉

|kc〉 =
1√
L

∑
j

eikj |jc〉

|kr〉 =
1√
L

∑
j

eikj |jr〉.

(B.13)

This is in accordance with the periodic boundary conditions and conservation of the total particle

(states) number. Namely, the number of k states is the same as the number of unit cells L, and

the number of single particle states is 3L, which is the number of lattice sites where each site

accommodates at most one electron in the spinless case. The Bloch states given by (B.13) are not

guaranteed to be energy eigenstates in general. This is evident by the quantum number α which

holds information about the position, therefore, the states {|kα〉}α are not purely k states. The

summation in the tight-binding Hamiltonian Ĥref
TB as given in (2.23) is over ordered pairs 〈jα, j′α′〉

and thus, unlike the one-dimensional homogenous Hubbard model, hopping inside the same unit

cell with index j (or j′) is allowed. After expanding the summations over α and α′, the Hamiltonian

Ĥref
HF in (2.23) reads:

Ĥref
HF =− t

∑
j

(ĉ†jcĉjr + ĉ†jr ĉjc + ĉ†jcĉjl + ĉ†jlĉjc + ĉ†jr ĉ(j+1)l + ĉ†(j+1)lĉjr)

+
∑
j

[
(εc + Unjc)n̂jc + (εl + Unjl)n̂jl + (εr + Unjr)n̂jr

]
.

(B.14)

If we furthermore write Ĥref
HF in terms of the single particle states {|jα〉}jα we get:

Ĥref
HF =− t

∑
j

(|jc〉〈jr|+ |jr〉〈jc|+ |jc〉〈jl|+ |jl〉〈jc|+ |jr〉〈(j + 1)l|+ |(j + 1)l〉〈jr|)

+
∑
j

[
(εc + Unjc)|jc〉〈jc|+ (εl + Unjl)|jl〉〈jl|+ (εr + Unjr)|jr〉〈jr|

]
.

(B.15)

From (B.13), we have:

|kα〉 =
1√
L

∑
m

eikm|mα〉

〈k′α′| = 1√
L

∑
m′

e−ik
′m′〈m′α′|.

(B.16)

1In this proof, we will adapt the notation 〈n̂〉 = n to make it easier to read.
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Evaluating the matrix elements 〈k′α′|Ĥref
HF|kα〉 using (B.15) and (B.16), we get:

〈k′α′|Ĥref
HF|kα〉 = − t

L

∑
j

[∑
m′

e−ik
′m′〈m′α′|jc〉

∑
m

eikm〈jr|mα〉

+
∑
m′

e−ik
′m′〈m′α′|jr〉

∑
m

eikm〈jc|mα〉

+
∑
m′

e−ik
′m′〈m′α′|jc〉

∑
m

eikm〈jl|mα〉

+
∑
m′

e−ik
′m′〈m′α′|jl〉

∑
m

eikm〈jc|mα〉

+
∑
m′

e−ik
′m′〈m′α′|jr〉

∑
m

eikm〈(j + 1)l|mα〉

+
∑
m′

e−ik
′m′〈m′α′|(j + 1)l〉

∑
m

eikm〈jr|mα〉
]

+
1

L

∑
j

[
(εc + Unjc)

∑
m′

e−ik
′m′〈m′α′|jc〉

∑
m

eikm〈jc|mα〉

+(εl + Unjl)
∑
m′

e−ik
′m′〈m′α′|jl〉

∑
m

eikm〈jl|mα〉

+(εr + Unjr)
∑
m′

e−ik
′m′〈m′α′|jr〉

∑
m

eikm〈jr|mα〉
]

= − t
L

∑
j

[
e−ik

′j〈jα′|jc〉eikj〈jr|jα〉+ e−ik
′j〈jα′|jr〉eikj〈jc|jα〉

+e−ik
′j〈jα′|jc〉eikj〈jl|jα〉+ e−ik

′j〈jα′|jl〉eikj〈jc|jα〉

+e−ik
′j〈jα′|jr〉eik(j+1)〈(j + 1)l|(j + 1)α〉

+e−ik
′(j+1)〈(j + 1)α′|(j + 1)l〉eikj〈jr|jα〉

]
+

1

L

∑
j

[
(εc + Unjc)e

−ik′j〈jα′|jc〉eikj〈jc|jα〉

+(εl + Unjl)e
−ik′j〈jα′|jl〉 eikj〈jl|jα〉

+(εr + Unjr)e
−ik′j〈jα′|jr〉eikj〈jr|jα〉

]
= − t

L

∑
j

ei(k−k
′)j
[
〈jα′|jc〉〈jr|jα〉+ 〈jα′|jr〉〈jc|jα〉

+〈jα′|jc〉〈jl|jα〉+ 〈jα′|jl〉〈jc|jα〉

+eik〈jα′|jr〉〈(j + 1)l|(j + 1)α〉

+e−ik
′〈(j + 1)α′|(j + 1)l〉〈jr|jα〉

]
+

1

L

∑
j

ei(k−k
′)j
[
(εc + Unjc)〈jα′|jc〉〈jc|jα〉

+ (εl + Unjl)〈jα′|jl〉 〈jl|jα〉

+ (εr + Unjr)〈jα′|jr〉〈jr|jα〉
]
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where the completeness of the basis {|jα〉}jα was used in the second equality. According to above

calculations, the matrix elements for Ĥref
HF are given by:

〈k′α′|Ĥref
HF|kα〉 =

1

L

∑
j

ei(k−k
′)j(P +Q) (B.17)

where P and Q are defined as:

P ≡ −t
[
〈jα′|jc〉〈jr|jα〉+ 〈jα′|jr〉〈jc|jα〉+ 〈jα′|jc〉〈jl|jα〉+ 〈jα′|jl〉〈jc|jα〉

+ eik〈jα′|jr〉〈(j + 1)l|(j + 1)α〉+ e−ik
′〈(j + 1)α′|(j + 1)l〉〈jr|jα〉

]
Q ≡ (εc + Unjc)〈jα′|jc〉〈jc|jα〉+ (εl + Unjl)〈jα′|jl〉 〈jl|jα〉+ (εr + Unjr)〈jα′|jr〉〈jr|jα〉.

(B.18)

Given the completeness of {|jα〉}jα, it is easy to check that the following relations hold:

P (α′ = α) = 0

Q(α′ = α) = εα + Unjα

P (α′ 6= α) =


−teik α′ = r andα = l

−te−ik′ α′ = l andα = r

−t otherwise

Q(α′ 6= α) = 0.

(B.19)

Using (B.17), (B.19) and (B.11) , the matrix elements for Ĥref
HF can be written as:

〈k′α′|Ĥref
HF|kα〉 =



(εα + Unjα)
1

L

∑
j e

i(k−k′)j = (εα + Unjα)δkk′ α′ = α

−teik 1

L

∑
j e

i(k−k′)j = −teikδkk′ α′ = r andα = l

−te−ik′ 1
L

∑
j e

i(k−k′)j = −te−ik′δkk′ α′ = l andα = r

−t 1

L

∑
j e

i(k−k′)j = −tδkk′ otherwise

=





εα + Unjα α′ = α

−teik α′ = r andα = l

−te−ik′ α′ = l andα = r

−t otherwise

k′ = k

0 k′ 6= k

. (B.20)

The last step is to find the eigenvalues of the matrix generated by the matrix elements given by

(B.20). For a particular choice of basis ordering, the problem is simplified. Consider the following

map {|kpα〉}pα 7−→ {es}3Ls=1, where {es}3Ls=1 is the set of ordered standard basis vectors living in a
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3L dimensional space, given by:

|k1c〉 7→ e1 |k1l〉 7→ e2 |k1r〉 7→ e3

|k2c〉 7→ e4 |k2l〉 7→ e5 |k2r〉 7→ e6

|k3c〉 7→ e7 |k3l〉 7→ e8 |k3r〉 7→ e9

...
...

...
...

...
...

|kLc〉 7→ e3L−2 |kLl〉 7→ e3L−1 |kLr〉 7→ e3L

(B.21)

Using (B.21), the matrix Href
HF representing the HF Hamiltonian Ĥref

HF in the basis {|kpα〉}pα with

elements given by (B.20) reads:

Href
HF = diag(Ak1 ,Ak2 , · · · ,AkL) (B.22)

where the matrices {Ak1 ,Ak2 , · · · ,AkL} are obtained using:

Ak =

Dc −t −t
−t Dl −te−ik

−t −teik Dr


Dc = εc + U〈n̂c〉

Dl = εl + U〈n̂l〉

Dr = εr + U〈n̂r〉.

(B.23)

The task of finding the eigenvalues of the matrix Href
HF (allowed energy values for the Hamiltonian

Ĥref
HF) is simplified (at least analytically) by virtue of Href

HF being a block-diagonal matrix. The

eigenvalues (eigenvectors) of such matrix are simply the eigenvalues (eigenvectors) of each block-

matrix combined. That is, the allowed energy values at each allowed value of the wave-vector k

are the eigenvalues of the corresponding matrix Ak given by (B.23) which completes the proof.
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A derivation of Statement 3

We start by evaluating the quantity
∣∣〈km|jα〉∣∣2 for a given kp = k, from (2.28) and (B.16), we have:

|km〉 =
∑
β

Ckmβ |kβ〉 =
1√
L

∑
β

Ckmβ
∑
n

eikn|nβ〉. (B.24)

By taking the complex conjugate, it follows that:

〈km| = 1√
L

∑
β

(
Ckmβ

)∗∑
n

e−ikn〈nβ|. (B.25)

Multiplying (B.25) by |jα〉 from the right, we get:

〈km|jα〉 =

 1√
L

∑
βn

(
Ckmβ

)∗
e−ikn〈nβ|

 |jα〉 =
1√
L

∑
βn

(
Ckmα

)∗
e−ikn〈nβ|jα〉. (B.26)

By the completeness of the basis |jα〉jα, the only non-vanishing summation term in (B.26) is the

n = j and α = β term, that is, (B.26) is reduced to:

〈km|jα〉 =
1√
L

(
Ckmα

)∗
e−ikj . (B.27)

Multiplying both sides of (B.27) with the complex conjugate, it follows that:

∣∣〈km|jα〉∣∣2 =
1

L

∣∣∣Ckmα ∣∣∣2 . (B.28)

Now we wish to calculate the DoS functions {fα(E)}α within a unit cell with sites {l, c, r}. The

value of fα(ξ) at E = ξ, denotes the number of states available per unit energy for the energy

value ξ at site α. This is independent of j (which unit cell) due to the degree of homogeneity of

the system by construction. The integral of fα(E) over all possible energy values, would result in

the total number of states available at site α. That is, for the spinless case, we have:∫ ∞
−∞

fα(E)dE = 1. (B.29)

This is nothing but the fact that the maximum number of electrons occupying one site is 1. In

the ground state, the total number of states available coincides with the total number of occupied

states. However, the total number of occupied states at site α is the same as the electronic density

〈n̂α〉. If we instead change the upper limit of integration to µ, where µ is the chemical potential, we

are leaving vacancies in states. Namely, the states where E > µ, which indicates that the system is

partially filled. The value of the integration is in general less than one (given that fα(E) ≥ 0). In

the ground state2, we start filling the system with electrons in energy states from E = −∞ until

2Other than the ground state, we would have
∫∞
−∞ fα(E)Pα(E)dE, where Pα(E) is the probability of occupancy.
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E = µ, the density is then given by:

〈n̂α〉 =

∫ µ

−∞
fα(E). (B.30)

Now we set to find fα(E). We need to find the expectation value of δ(E − Ĥref
HF) in the basis

{|jα〉}jα, that is:

fα(E) = 〈jα|δ(E − Ĥref
HF)|jα〉. (B.31)

Note that due to the completeness of {|kpm〉}pm, we can make use of the closure relation given by:∑
pm

|kpm〉 〈kpm| = 1. (B.32)

From (B.31) and (B.32), we get:

fα(E) = 〈jα|δ(E − Ĥref
HF)|jα〉 =

∑
pm

〈jα|kpm〉δ(E − Ekpm)〈kpmkp |jα〉

=
∑
pm

∣∣〈jα|kpm〉∣∣2 δ(E − Ekpm)

=
1

L

∑
pm

∣∣∣Ckpmα

∣∣∣2δ(E − Ekpm)

(B.33)

where we have used (B.28) in the last equality.
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Further Results: DoS
Figure C.1 shows a case of a system described by the energy shifts εc = 0, εl = −2 and εr = 3. All

other parameters of the system under study are in accordance with what we presented in Chapter

3. The non-symmetric set {εα}α of said system reflects no symmetry on the corresponding DoS

functions {fα(E)}α. Other than the special symmetry attained in the system described in Figure

3.1, the discussion is not changed. However, the system considered in Figure C.1 does shed light

on the final remark we gave regarding the relationship between U and 〈n̂α〉.
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Figure C.1: Comparison between the density of states functions {fα(E)}α at four different values of the
interaction parameter U , for εc = 0, εl = −2 and εr = 3. Left upper panel: U = 0, Right upper
panel: U = 2, Left lower panel: U = 4, Right lower panel: U = 6. The densities {〈n̂α〉}α are
also displayed for each case. Note the lost symmetry around ε′c compared to Figure 3.1.

Both systems presented in Figure 3.1 and Figure C.1 indicate that the total density within one unit

cell 〈n̂cell〉 decreases as U increases, which is in agreement with intuition as mentioned previously.

However, for a given site density 〈n̂α〉, the statement does not hold. Figure C.1 shows an increase in

both 〈n̂c〉 and 〈n̂r〉 when U increased from 2 (Right upper panel) to 4 (Left lower panel), followed

37
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by a slight increase in 〈n̂r〉 only, when U increased from 4 to 6 (Right lower panel). We notice that

this increase in the density occurred when 〈n̂α〉 was relatively small and can be traced back to the

effect of the interaction on the range of energy values in which fα(E) is non-zero. The introduced

interaction does indeed make the system accommodate less electrons, however, it does create in

some cases enough diversity in the occurring energy values that results in populating vacancies at

low density sites. In other words, for a small 〈n̂α〉, if the interaction parameter U is high enough,

the effect of the diversity in the energy ranges in which the area under fα(E) is non-zero will win

over the shift to the right in fα(E) due to the repulsive interaction.

Figure C.2 shows the DoS functions for a system described by the energy shifts εc = 0, εl = −0.1

and εr = 0.1 at different values of the local interaction parameter U . All other parameters of the

system under study are in accordance with what we presented in Chapter 3.
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Figure C.2: Comparison between the density of states functions {fα(E)}α at four different values of the
interaction parameter U , for εc = 0, εl = −0.1 and εr = 0.1. Left upper panel: U = 0, Right
upper panel: U = 2, Left lower panel: U = 4, Right lower panel: U = 6. The densities {〈n̂α〉}α
are also displayed for each case.

Note that due to the energy shifts {εα}α being small in magnitude, the DoS functions are interwind

in intervals where they are non-zero as opposed to all other systems considered in this thesis where
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the shifts {εα}α are relatively large. It is also worth noting that as the local interaction parameter

U becomes bigger, the DoS functions approach the limit of ε′α = U〈n̂〉 ∀α ∈ {l, c, r} where 〈n̂〉 here

is uniform.


