Improving the OpenStreetMap Data Set
using Deep Learning

Hampus Londogérd Hannah Lindblad
datl3hlo@student.lu.se eltl3hli@student.lu.se

June 19, 2018

Master’s thesis work carried out at AF Digital Solutions.

Supervisors: Pierre Nugues, Pierre.Nugues@cs.lth.se
Thomas Hermansson, thomas .hermansson@afconsult.com

Examiner: Jacek Malec, Jacek .Malec@cs.lth. se

mailto:dat13hlo@student.lu.se
mailto:elt13hli@student.lu.se
mailto:Pierre.Nugues@cs.lth.se
mailto:thomas.hermansson@afconsult.com
mailto:Jacek.Malec@cs.lth.se

Abstract

OpenStreetMap is an open source of geographical data where contributors
can change, add, or remove data. Since anyone can contribute, the data set
is prone to contain data of varying quality. In this work, we focus on three
approaches for correcting WAy component name tags in the data set: Correct-
ing misspellings, flagging anomalies, and generating suggestions for missing
names.

Today, spell correction systems have achieved a high correction accuracy.
However, the use of a language context is an important factor to the success of
these systems.

We present a way for performing spell correction without context through
the use of a deep neural network. The structure of the network also makes it
possible to adapt it to a different language by changing the training resources.
The implementation achieves an F'; score of 0.86 (ACR 0.69) for WAy names
in Denmark.

Keywords: MSc, Machine Learning, OpenStreetMap, Random Forest, Neural Net-
work, Sequence-2-Sequence

Acknowledgements

We would like to thank Pierre Nugues for the feedback he has given us on this thesis.

We would also like to thank Marcus Klang for his invaluable input on neural networks
and Daniel Palmqvist for his feedback and knowledge of algorithms and geographical in-
formation systems.

Last but not least, we would like to thank AF and Thomas Hermansson for giving us
the opportunity to work on this thesis.

Contents

(I__Introduction 9
(1.1 Background| 9
................................... 10
(L3 Problem Formulationl 10

(1.3.1 Challenges| 11
(.32 Constraintsl oL 11
(L4 Related Workl 11
M3 Outlinel oo 12
(.6 Work Distributionl o o 12

13

[2.1 Introduction to Machine Learning| 13
2.1.1 Central Concepts| 14
[2.1.2 Bootstrapping Data 15

22 DecisionTreesl 15

2.3 Ensemble Learning| 15
3.1 RandomUForest] 15
232 XGBoostl 16

2.4 Neural Networksl 17
AT 0SS . - o oo 18
242 GradientDescentl 18
[2.4.3 Hyperparameters| L. 19
[2.4.4 Optimization Algorithms and Updaters| 20

21

22

23

2.5.3 Bidirectional RNNs and Bil.STM 23

24

2.7 Compound Words in Danish| 25
2.8 OpenStreetMap and Tags| 26

CONTENTS

3

App h
3.1 CRISP-DMI|
32 Methodl e e

[3.3.2 DeeplLearningd4Javal.
[3.3.3 Algorithmic Spell Correction|

Implementation|

4.1 S/SS Spell Checkingl o oo
4.1.1 Experimental Setup|.
4.1.2 Baseline Implementation|
#4.1.3 Random Forest Implementation|
4.1.4 Feed Forward Neural Network Implementation|

4.2 Way Name Spell Checking|
4.2.1 Experimental Setup|.
4.2.2 RNN and BiRNN Implementations|

4.3 Speed Limit Anomalies| 0 L.
4.4 Name and Tag Anomalies|.
4.4.1 Experimental Setup|.
4.4.2 RNN Implementation|.
4.4.3 XGBoost Implementation|

M5 MissingNames| Lo

[5.1 Interpretationof Results|
[5.2 Spell Checking Results|
[5.2.1 Difference Between Test and Reality|

[5.2.3 Misspelled Names in Estonia
[5.3 Improving Uncertain Predictions|
[35.3.1 Propagation|. o
[5.3.2 SymSpell
0.4 Saturation of the Networkl
[5.5 Reduction of Aggression| L L L

31
31
33
33
34
37
37
37
38

41
41
41
42
42
43
43
43
43
44
44
46
46
46
47
48
48
48
49

CONTENTS

[5.6 Weight of Suffix Extraction|
[5.7 Name and Tag Anomalies|.

6__Conclusions!
7__Future Work]

[/.1 Historylog
[/.2 Improving the Data Sets|
(/.3 _Meta Informationl
(7.4 Alphabet|.
[/.5 DataSetBalancing|

[Appendix A Missing Name Figures|

[Appendix B Generating Danish|

57

59

.............. 59
.............. 59
.............. 60
.............. 60
.............. 60

67

71

CONTENTS

Chapter 1

Introduction

In this chapter, we introduce the motivations for this thesis. The first two sections present
the background and purpose. We then continue to cover the research questions, related
work, outline and work distribution.

1.1 Background

OpenStreetMap (OSM) is an initiative to create a free, editable map of the world. The
project maintains an open data set of geographical data which can be used for any purpose
as long as OpenStreetMap is credited. Anyone can become a contributor and add data to
the project.

The OSM data set consists of three basic components: Nobpes, WAYs, and RELATIONS.
An example of a component is the Way component which is a list of between 2 and 2000
nodes. WAY components are used to represent linear features like rivers and roads (Open-
StreetMap), 2017).

The components can also have tags attached to them. A tag consists of key and value
fields in free text format. The tags are used to describe the elements they are attached to.
An example of a tag is the name tag which is used to convey the name of a component. The
city of Copenhagen is for instance a node with the key-value name tag name=Kpbenhavn.

Conventions for the meaning and use of tags have been agreed upon by the OSM com-
munity. These are however not enforced by any particular entity and thus the data contained
in the OSM data set is of varying quality. In the name tag case, there are occurrences of
misspelled, missing, and incorrect names. For WAy components, the names should match
the street name depicted on the street sign for the road in question (OpenStreetMap, 2018]).

9

1. INTRODUCTION

1.2 Purpose

In this thesis, we focus on name tags for Way components in the OSM data set of Den-
mark. Our goal is to predict if the instances are correct or incorrect given the name tag,
potentially in combination with other tags like maximum speed, highway type, and sur-
face. If possible, suggestions should also be generated in combination with the prediction
of an incorrect instance. The suggestions could then be used for manual correction of the
instance.

With the resulting algorithm, we aim to assist the ongoing work of improving the qual-
ity of the data contained in the OSM data set. We intend to integrate the end result into
the open source tool Atlas Checks (Apple Inc, 2018), which tests Atlas file data integrity
by traversing the OSM data set and applying different kinds of checks. An example of a
check that is performed today is a test that finds duplicate NopEgs. By integrating the work
into Atlas Checks, the data set can be monitored for erroneous data without the need for
manually searching the data.

1.3 Problem Formulation

We aim to improve the quality of the OSM data set by increasing the number of accurate
Way components and hence smooth the data set. This should be achieved by flagging pos-
sibly incorrect instances for manual correction. By requiring manual correction instead of
performing changes automatically, we lower the expectations on the system. The proposed
solution should answer the following questions:

1. How to identify misspelled names in WAy components?

2. How to generate suggestions for a misspelled name?

3. How to generate suggestions for WAy components with missing names?
4.

Is it possible to find anomalies in names in combination with other tags like maximal
speed?

Short motivations for the different research questions are listed below.

* A quality issue in the data is the occurrence of misspelled names. In order to correct
these instances, they first need to be identified.

* When a misspelled instance has been identified, a suggestion for a correction should
also be proposed by the system to simplify the correction process.

* Another issue is missing names for Way instances. A WAy is considered to have a
missing name if neither the name tag nor the noname tag is present. These instances
should be flagged and suggestions provided algorithmically.

* The last step in our attempt to smooth the data set is by identifying anomalies in the
data. One relation could be the Danish word for street (“gade”) and the maximum
speed limit of 50 km/h or less. If a WAy name’s suffix is “gade”, it’s 25 times more
probable to have a max speed limit of max 50 km/h in comparison to a Way with the
suffix “vej”. By taking advantage of relations like these, anomalies could possibly
be identified and flagged.

10

1.4 RELATED WORK

1.3.1 Challenges

Given related work and research, it is not reasonable to expect ideal performance from
a spell corrector without annotated data nor context. Whitelaw et al.| (2009) showed the
possibility of creating a spell corrector without annotated data by using the frequency of
words on the web. However, they used the context of a sentence to improve their perfor-
mance. In our case of WAy name tags, it is often not possible to find the name on the Web,
except for in other map services such as Google Maps. This is especially true in countries
like Denmark. Way names in Denmark are often compounds of two or more words which
means that the name is often a non-existing word. In addition, WAy names always lack the
context of surrounding words, as opposed to spell correction of texts, which adds another
layer of complexity to the problem.

1.3.2 Constraints

This thesis focuses on WAy component names in the data set that are present. The cases
where the name tag is missing has only been considered briefly.

The algorithm uses solely the OSM data set. There wasn’t enough time to investigate
conflation with other data sets. In addition, conflation would be difficult to extend to cover
other countries besides Denmark.

1.4 Related Work

Whitelaw et al.| (2009) designed and implemented an end-to-end system that included spell
checking and auto correction without requiring manually annotated training data. In this
proceeding, the system is shown to perform better than candidate corrections based on
hand-curated dictionaries — all without a manually annotated corpus. The World Wide
Web is used as a large noisy corpus from which they infer knowledge about misspellings.
Their work is differentiated from ours by the fact that that they make use of the surrounding
language context.

An example of why the context is important is the misspelling “goint”. ‘Goint” could
refer to both “joint” or “going” depending on the context. The phrase

Companies typically pursue joint ventures for one of four reasons.

is more probable than
Companies typically pursue going ventures for one of four reasons.

Whitelaw et al.| (2009) introduce a method that adds artificial noise to data. The core
concept is to perform an experiment where participants copy a Wikipedia article with
the addition of not being allowed to edit what they have written. No backspace or arrow
keys can be used by the participants. The authors then base the artificial noise that they
introduce to their training data on the errors generated from the experiment. We used this
approach to introduce artificial errors to our training sets.

Max and Wisniewski (2010) present a study of naturally occurring errors in Wikipedia.
They created the Wikipedia Correction and Paraphrase Corpus (WiCoPaCo), which is

11

1. INTRODUCTION

a freely available resource built by automatic mining of the Wikipedia revision history.
To create this detailed corpus, Max and Wisniewski| show how to infer when a word is
different. This includes not only misspellings but also synonyms, like how the word ideal
is a different word for perfect. They also arrange their findings in a visually pleasing way
that maintains a great detail of the errors. This arrangement of information and analysis
of data inspired us on how to analyze the OSM data and where to look for misspellings.

Karpathy (2015) showed that a sequence to sequence (seq-2-seq) neural network de-
livers a powerful performance in the case of generating texts with a special style such as
C code or Shakespeare. In addition, (Chollet (2017) describes how to use the seq-2-seq
architecture to translate texts from English to French. More about seq-2-seq networks can
be found in the Theory section on recurrent neural networks.

1.5 Outline

In this report, we begin by introducing the theory behind the implementations. We then
explain the method we applied when approaching the problem, and tools used during this
process. After the approach, the implementations and results are presented, followed by a
discussion of the results and improvements that were tried during the thesis work. Finally,
we conclude what knowledge was gained in this thesis and suggest possible future work.

We also include an appendix with Danish text that was generated by the system together
with figures showing missing names suggestions by the missing names algorithm.

1.6 Work Distribution

The thesis work has been completed in full collaboration.

12

Chapter 2
Theory

In this section, we introduce the theoretical background that is needed to understand our
work. We begin with a short introduction to machine learning followed by a presentation of
the machine algorithms used in this thesis. We continue with sections on neural networks
where we describe central theoretical concepts that we have applied to our work. The
following sections present natural language processing concepts used and OpenStreetMap
tags that were utilized to extract information from the OSM data set. Lastly, the evaluation
metrics are introduced.

2.1 Introduction to Machine Learning

Machine learning is a way for a computer to learn —i.e. progressively improve performance
on a specific task — from data instead of being explicitly programmed how to do so.

In the grand scheme, there are two different types of machine learning: supervised and
unsupervised. In the supervised case, the computer is presented with example inputs and
their desired outcome, also known as a label. In the unsupervised case, no labels are given
to the computer, leaving it to find a pattern in the data and to label it itself.

Another way to divide machine learning systems into different types is by categorizing
the desired output from the system. In this thesis, we have decided to use a supervised
classifier. In supervised classifiers, outputs are divided into two or more classes and the
learning system has to produce a model that assigns the input to one of these classes.

Below follows two sections on central concepts. The first section details central con-
cepts such as under- and overfitting and early stopping. The second section describes how
data can be bootstrapped.

13

2. THEORY

2.1.1 Central Concepts

When training a machine learning system, there is always a danger of the system exces-
sively tailoring itself to the data. There is also a risk of the system ending up being too
general. These two cases are known as overfitting and underfitting.

Underfitting means that the system over generalizes the data. By doing this, the system
will produce a high error rate during both the training and test phase.

Overfitting means that the system excessively tailors the parameters to the training set
which in turn lowers the ability of the algorithm to generalize on new data. Due to this
specificity, the error rate during the training phase will be low. However, during the test
phase, when new data is presented, the error rate will be significantly increased. This is
one of the reasons to split the available data into two separate test and training sets. If
testing is performed on the same data as the training, there will be no indication when the
system is overfitted. A visualization of these concepts is shown in Figure [2.1]

"’bo° o . ’boo
% %

h ° o . o o
I -, I

Figure 2.1: Underfitting and overfitting in machine learning. The
leftmost figure shows a case of underfitting while the rightmost
shows the case of overfitting. The middle figure shows a reason-
able fit given the training data.

’bo
"-._o
”

ag

Early stopping is a form of regularization to combat overfitting when training with an
iterative method, such as gradient descent (Patterson and Gibson, 2017). These types of
methods update the learner to better fit the training data for each iteration. This indirectly
improves the learner’s performance on the test data set or any data outside of the training
set. Past a point, however, further iterations come at the cost of reduced generalization and
the algorithm becomes overfitted. See Figure [2.2]

14

2.2 DEcIsioN TREES

Error

Validation

Training

Desired stop Epochs

Figure 2.2: Visualization of when to perform an early stop as the
validation error score starts to increase.

2.1.2 Bootstrapping Data

Bootstrapping data is a way of creating a balanced data set where the number of examples
of each class is about the same. It is performed by drawing random samples from a data set
in a systematic manner where each class is selected at the same probability. Bootstrapping
does not only reduce the risk of overfitting the data during training but also improves the
systems ability to solve edge cases.

2.2 Decision Trees

A decision tree is a non-parametric supervised learning approach used for classification
and regression. The goal is to learn to classify the data based on rules that can be inferred
from training on its features. The structure is flowchart-like and therefore easy to visualize
and interpret. A visualization of a decision tree can be found in Figure 2.3 where each
tree in the figure shows a decision tree.

2.3 Ensemble Learning

An ensemble is composed of a set of individually trained predictors. Maclin and Opitz
(2011) show that ensemble learning models are often more accurate than any individual
predictor in the ensemble. Two important ensemble methods are bagging and boosting.
Bagging refers to models where independent predictors produce a prediction by an averag-
ing process. Boosting methods instead focus on building a series of classifiers where each
member is constructed based on the performance of the previous classifier in the series.

2.3.1 Random Forest

The Random Forest ensemble learning method is based on decision trees in the sense that
the model consists of multiple decision trees that through a voting phase produce a final
output. Hence, random forests are a bagging method. A simplified visualization of the

15

2. THEORY

random forest structure is shown in Figure 2.3 Each subtree 1..N is a decision tree by
itself. Because of this structure of using multiple decision trees and then having a voting
phase, the random forest classifier reduces the behaviour of overfitting the data as decision
trees tend to do (Breiman, 2001)).

Random Forest Simplified

Instance
Random Forest PR ol (. T
" [T
sl Y T
e AN "N
\ I\ \ N\ ™\ \ .I"II \ PN N\ y 3 \

Sod0dbdd dodbEbLEL dodb dodd

Tree-1 Tree-2 Tree-n

Class-A Class-B Class-B

’ Majority-Voting |

Final-Class

Figure 2.3: Random forest classifier simplified (Wikimedia Com-
mons, [2017al)

2.3.2 XGBoost

In contrast to random forests, XGBoost uses the boosting ensemble technique. That means
that the model of predictors (decision trees) is built sequentially instead of independently.
The aim is that predictors created later in the learning process will learn from the previous
predictors’ mistakes. [Maclin and Opitz| (201 1) mention that boosting methods aim to min-
imize the error in the bias term — how close the resulting model is to the target function —
which may result in models not reproducible by the individual learning algorithms. That
makes boosting methods ideal for cases where weaker learning algorithms are combined
in one model.

More specifically, each tree x; in the ensemble receives its input from the previous tree
x;—1. The sum of all outputs is the result. See Equation 2.1 where y; is the output of tree
x; and N is the number of trees.

N
>y 2.1)
j=0

16

2.4 NEURAL NETWORKS

2.4 Neural Networks

Neural networks is a subgroup of machine learning. The fundamental unit of a neural net-
work is an artificial neuron which is loosely based on the biological neuron in the mam-
malian brain. Like the biological neuron with its synapses, the artificial neurons are con-
nected to several other neurons. The neurons can be trained to pass along useful signals
to its neighbors. The term deep neural networks refers to neural networks with more than
two layers.

The activation function is the key to successful learning in machine learning. The
artificial neuron, like the biological neuron, is stimulated by inputs. The connections in
the network are made automatically as the network weights itself during training. The goal
of the training phase is to let the artificial neurons know what signals to pass on so that
they only pass along useful signals.

See Figure [2.4 on how the input is first transformed into a value which either will be
sent forward or not depending on the result from the activation function.

weights

inputs
Ay

x net input
- net;

activation
functon

QO o;

activation

transfer
function

. 9
o @ threshold

Figure 2.4: A diagram of a perceptron node where a perceptron
is the most basic artificial neuron (Eclipse Deeplearning4j Devel-
opment Team, 2018]).

Feed forward neural networks (FFNN) are a class of artificial neural networks where
the connections don’t form cycles. Data is inputted to the network which then produces an
output that is unconnected to earlier and later inputs. In some cases, such as with sequences
of either images (video), text or audio, FFNNs do not perform well. To combat this, a new
type of Neural Network, the recurrent neural network (RNN), was created. RNNs form
cycles with the data (explained further in section 2.5 on RNNs) which means that they can
handle an infinite input.

The following measurements are used during training of a neural network to change
and improve the training process:

An epoch describes the number of times the network sees the entire data set. Each time
the network has seen all examples, an epoch has passed.

In our case, the definition of an epoch is a bit redefined. An epoch is rather a subset
of the complete data set. Because of this definition of an epoch, we can add more
data on-the-fly and note how much it helps to improve our system. This also means
that we can interactively test with new data — similar to K-folding but the knowledge
of how much the increase of data improves the system is added.

17

2. THEORY

A batch is the number of examples that are propagated through the network before a
parameter (weight) update is performed. To optimize the system, it is important to
have a suitable batch size. The smaller batch size, the longer time required for the
system to converge to a local minima and the larger the less likely the minima is to
be global. Running multiple epochs helps the system to learn more but if the number
of epochs is too large the system will overfit the data.

An iteration describes the number of times that a batch of data has passed through the
network. In the case of neural networks, this means the forward and backward pass.
Every time you pass a batch of data through the network, an iteration has been com-
pleted.

2.41 Loss

The concept of loss is integral to machine learning. All types of machine learning algo-
rithms have the primary goal of minimizing loss. Loss is calculated on the training and
test set and is an interpretation of how well the model is doing for these two sets. It is a
summation of the errors made for each example in the training or test set.

In the case of neural networks, the loss is usually negative log-likelihood for classifi-
cation and the main objective in a learning model is to minimize the loss function’s value
with respect to the parameters of the model by changing the weight vector through different
optimization methods, such as backpropagation.

The value of the loss function implies how well a certain model behaves after each
iteration of optimization. Ideally, one would expect a reduction of loss after multiple iter-
ations.

2.4.2 Gradient Descent

A gradient is defined as the generalization of the derivative of a function in one dimension
to a function f in several dimensions. It is represented as a vector of n partial derivatives
of the function f. To summarize, the gradient is important in optimization because the
gradient points in the direction of the greatest rate of increase of the function. The magni-
tude of this is the slope of the graph in that direction. The gradient descent measures this
slope, that is the change in error caused by a change in the weight, and takes the weight
one step toward the bottom of the valley, see Figure[2.5] It does so by taking the derivative
of the loss function to produce the gradient. As we want to minimize the loss we want to
find the minimum of the loss function. Figure [2.5]shows a small visualization of this in a
two dimensional space.

18

2.4 NEURAL NETWORKS

,fsradient

; Global
E minimum

Cost

Weight value

Figure 2.5: Gradient Descent

The stochastic gradient descent (SGD) is an implementation of gradient descent
where the gradient is computed and then the parameter vector is updated after each train-
ing sample. Batches can also be used where a number of samples are processed before the
update.

2.4.3 Hyperparameters

Hyperparameters can be tuned to make the network train more efficiently. Hyperparameter
selection refers to the selection of the controlling optimization functions as well as the
model selection during training with a chosen learning algorithm. The focus is on learning
the structure of the data as quickly as possible, while making sure that the model neither
underfits nor overfits to the training data.

The learning rate decides the scaling factor of the gradient which in turn will influ-
ence at which rate the parameters are adjusted during optimization. This adjustment of
parameters is made in order to minimize the error in the network’s predictions. The value
scales the size of the steps (updates) a neural network takes to its parameter vector x as it
crosses the loss function space.

A large learning rate (e.g. 1) will yield large leaps and a small learning rate (e.g.
0.00001) will result in slow progress. Large rates will save time initially but might become
disastrous if they lead the system to overshoot the minimum. This follows from the fact
that the algorithm will bounce back and forth on either side of the minimum and possibly
escape the valley and move onto the next valley.

In contrast, a small learning rate should always lead to a minimum but can be incredibly
slow. The time consuming part is not the only con of a small learning rate but also, the
minimum found might be a local minimum rather than a global one.

The main purpose in training of machine learning algorithms is to control overfitting.
This is done by helping the system with the effects of out-of-control parameters by using
different methods to minimize parameter size over time.

Momentum helps the learning algorithm to not get stuck in a local minima in the
search space. In other words, momentum does to the learning rate what the learning rate
does to the weights. It gives a momentum to the learning rate based on current status and
in the end this leads to a model of higher quality.

19

2. THEORY

2.4.4 Optimization Algorithms and Updaters

DeepLearning4Java (DL4J), a framework for deep neural networks in Java, introduces two
new terms — optimization algorithms and updaters — in addition to the previously men-
tioned hyperparameters. The optimization algorithm is the back propagation algorithm
and the updater refers to the updater used during the back propagation when weights and
learning rate are updated.

Optimization Algorithms

DLA4J supports four different optimization algorithms out of the box. The first one is SGD,
which was described earlier. DL4J also includes SGD with line search, conjugate gradient
line search and LBFGS (Hinton and Salakhutdinovl, 2006). DL4J notes that these three
are more powerful than the vanilla SGD but much costlier during each update for the
parameters due to the line search component (DL4J, [2018).

Updaters

There are five different updaters included in the DL4J package. The first and most basic
one is Stochastic gradient descent (SGD). SGD only uses the learning rate.

The second updater is Nesterov which is a reference to Nesterov’s momentum. Nes-
terov’s momentum is a variant of the standard momentum. Standard momentum can be
thought of as a ball that rolls down a hill, along the slope. Nesterov’s momentum tries
to make this ball smarter by giving it a notion of where it is going so it knows to slow
down before the hill slopes up again. By knowing how the parameters will be updated, the
approximate position of the parameters in the next iteration can be calculated.

— « — . standard momentum

— accumulated gradient
— = — correction

Figure 2.6: Image of Nesterov’s Updater.

This is shown in Figure[2.6] Normally, momentum methods computes the gradient at
the current location first and then takes a big leap in the direction of the updated accumu-
lated gradient — like in Figure The idea of Nesterov is to instead make a jump in the
direction of the previous accumulated gradient and then measure the gradient where you
end up and make a correction accordingly. The idea is that it’s better to correct a mistake
after you have made it. Figure [2.6]shows that the second jump (dotted line) does the same
jump as the previous accumulated gradient and then corrects itself.

This approach of anticipatory update prevents the system from updating too fast and
results in an increased responsiveness. According to Bengio et al. (2012)), this significantly

20

2.5 RECURRENT NEURAL NETWORKS

increased performance of recurrent neural networks on a number of tasks. A simplified
version of how the ball rolls down the slope can be seen in Figure 2.7

» P o

&("l r"l-) i("'uu!.)

>
-

\'J

(a) Momentum (b) Nesterovs Momentum

Figure 2.7: A comparison between Momentum and Nesterovs
Momentum (Eclipse Deeplearning4j Development Team, [2018)).

The third updater is Adagrad. Since Nesterov lets us adapt the update to the slope of
the error function and speed up SGD, the idea is to adapt the update to each of the individ-
ual parameters in order to perform larger or smaller updates depending on their relative
importance. In practice, this means that Adagrad updates less frequent parameters with a
larger factor and more frequent parameters with a smaller weight. There exists a modifi-
cation of Adagrad named Adadelta which seeks to reduce the aggressive and monotonical
reduction of learning rate. Adadelta is also included as an updater in the DL4j package.

The fourth updater is RMSProp. Hinton (2018) proposes RMSProp as an adaptive
learning rate method. It was developed independently from Adadelta and seeks to solve
the same issues as Adadelta. To summarize, RMSProp is a more advanced version of
Adadelta with the difference that RMSProp divides the learning rate by an exponentially
decaying average of squared gradients.

The fifth and final updater is Adaptive Moment Estimation (Adam). Adam is an-
other method to compute an adaptive learning rate. Adam expands upon Adadelta and
RMSprop by also storing an exponentially decaying average of past gradients. Kingma
and Ba (2014) show empirically that Adam works well in practice and compares favorably
to other adaptive learning method algorithms.

2.5 Recurrent Neural Networks

Unlike FFNNSs, a recurrent neural network (RNN) forms cycles with the data. It retrieves
context out of a time sequence and adjusts its decision on the current sequence depending
on earlier input and output as shown in Figure 2.8] Connections between units form a
directed graph along a sequence. This allows the input to be a sequence, or rather to
behave like a time sequence since the network can form a sense of context by knowing

21

2. THEORY

what the input has been before. Therefore, an RNN can be implemented as a sequence to
sequence (seq-2-seq) neural network. In sequence to sequence learning, the aim is to train
models from one domain to another. A common example is translation where for instance
a text in English is converted into a text in French. In the context of this thesis, we can
think of the conversion as being from a misspelled Danish word to a correct Danish word.
In this case, we use a character level sequence to sequence, meaning that the sequence
consists of characters instead of words.

Unfold I I I

[H H Jv

@@@

Figure 2.8: A recurrent neural network and the unfolding in time
of the computation involved in its forward computation (Wikime-
dia Commons, [2017D)).

Another property of sequence to sequence is the ability to have different input and out-
put lengths. The approach is to determine a fixed length and pad the remaining characters
with a null character for shorter words. In addition to the padding, we require a masking
mechanism during training to determine whether there is an input/output present for a cer-
tain time step or if it is just padding. Using this approach, we can construct networks with
different input and output lengths as shown in Figure [2.9]

Many to Many Many to One One to Many Many to Many

$943 2999 8300 gpes

Figure 2.9: Different kind of RNNs where the lower row repre-
sents the input mask and the upper row represents the output mask.
In the first case from the left, no masking is required whereas the
second and third cases only require an output and input mask re-
sepectively. The last case requires both an input and output mask
(Eclipse Deeplearning4j Development Team, 2018)).

2.5.1 Back Propagation

Back propagation is a problem that eluded a practical solution for decades. The problem
is to calculate the partial derivative of error with respect to the weight parameters and

22

2.5 RECURRENT NEURAL NETWORKS

iteration round (Sathyanarayana, 2014). A solution was introduced by Rumelhart et al.
(1986) where they explain it as

The procedure repeatedly adjusts the weights of the connections in the net-
work so as to minimize a measure of the difference between the actual output
vector of the net and the desired output vector. As a result of the weight adjust-
ments, internal ‘hidden’ units which are not part of the input or output come
to represent important features of the task domain, and the regularities in the
task are captured by the interactions of these units. The ability to create use-
ful new features distinguishes back-propagation from earlier, simpler methods
such as the perceptron-convergence procedure.

The reason why we want to be able to calculate the partial derivative at each iteration
is to know the slope and find the minimum error, as explained with the example involving
a ball earlier in this chapter.

In other words, the goal of back propagation is to update the weights in the network
so that they cause the output to be closer the target output. By doing this, the error is
minimized for each output neuron and the network as whole.

2.5.2 LSTM

Hochreiter and Schmidhuber| (1997) introduced Long Short-Term Memory (LSTM) for
the first time and later |Gers et al.| (2000) improved upon the concept by adding a forget
gate to the LSTM cell. Before forget gates, an LSTM cell could grow indefinitely and
eventually break down if not completely reset. Adding a forget gate enables the possibility
of an LSTM cell to reset itself at appropriate times.

LSTM units were created to counter the issue of vanishing gradients that RNNs are
prone to produce during training. The vanishing gradient problem is the problem of gra-
dients growing too large or too small during training which makes it difficult to model long
range dependencies, e.g. more than 10 time steps (Patterson and Gibson, [2017).

The critical part of the LSTM is the memory cell and its gates: the forget, output,
and input gate. The contents of the memory cell is modulated by the input and forget
gates. If both gates are closed, the memory cell will stay unmodified during that one time
step. This gating structure allows information to be retained across multiple time steps
and thereby allows gradients to flow across multiple time steps. This allows the LSTM
model to overcome the vanishing gradient problem. Patterson and Gibson| (2017) stress
how important and central the LSTM unit is for RNNs as it enables the network to maintain
a state over time.

2.5.3 Bidirectional RNNs and BILSTM

For many sequence labelling tasks, it would be beneficial to not only have access to past
context but also future context. In the case of letters and classifying a certain letter, it’s use-
ful to know both past and future letters. However, since standard RNNs process sequences
as a time sequences, future context is ignored.

23

2. THEORY

Graves (2008) discusses two approaches on how to implement the Bidirectional RNN
(BiRNN). The obvious solution of adding a time window for future context to the net-
work input suffers from intolerance of distortions and a fixed range of context which isn’t
compatible with the unfixed range of context required for RNNs.

A distortion is when the data differentiates itself to earlier data in other ways than added
noise. In an image, a distortion would bend and change the form while noise would just
make it harder to see the shape.

The other solution is to introduce a delay between the input and output and thereby
give the network a few time steps of context. This method allows the RNN to retain the
robustness towards distortion but the issue of fixed range of context remains. In addition,
it also places an unnecessary burden on the network. Neither of these approaches remove
the asymmetry between the past and the future information.

The BiRNN presented by Baldi and Pollastri| (2003); Schuster and Paliwal| (1997);
Schuster| (1999) offers a more elegant solution. The idea is that during training, each
sequence is presented both backwards and forwards to two separate hidden layers, both
of which are connected to the same output layer as shown in Figure [2.10] |Graves| (2008)
goes on to say that “BiRNNs consistently outperform unidirectional RNNs on real-world
sequence labeling tasks”.

A Bidirectional LSTM (BiLSTM) network is an implementation of the LSTM cell that
supports BiRNN as explained above.

<

O

(a) (b)
Structure overview

(a) unidirectional RNN
(b) bidirectional RNN

&
O_
G

OO

QY
53
OO0

OO

Figure 2.10: Standard and bidirectional RNNs (Wikimedia Com-
mons), 2015)).

2.6 Autoencoder

An autoencoder automatically encodes the input to classify it and hence is an unsupervised
method of learning. As shown in Figure 2.T1] the autoencoder is symmetrical with a
bottleneck in the middle. The idea is that compressing the data will force the system to
find patterns hidden in it. These patterns will automatically be found by the system as it
evaluates its weights during training.

24

2.7 ComPoUND WORDS IN DANISH

Deep Autoencoder

Encoding DBN Decoding DBN

Input Output

0000
00O
OO0
0000
O00O0O0

@)
I

O000O0

Compressed
Feature Vector

Figure 2.11: How an autoencoders layers are built (Eclipse
Deeplearning4j Development Team, 2018)).

2.7 Compound Words in Danish

In the Danish language, words are often a compound of words which means that two words
are merged into one word. Two examples of this are:

anders + gade — andersgade
pant + brev — pantebrev

Note that in the latter, an e is applied as a binder between the words. The compounding
means that these words include a suffix and a prefix that are complete words themselves.

As shown in Figure [2.12] almost 92% of the name tags for WAy components in the
OSM data set contain one of 24 different suffixes. The most common suffixes are “vej”
and “gade”. The label other spans 22 common suffixes - sti, boulevard, alle/allé, vang,
bakk, park, bro, led, veng, plads, hgj, passage, sted, bane, trede, promenad, spor, hav,
torv and esplanad. The label missing denotes names that don’t contain any of these 24
suffixes.

25

2. THEORY

145 Missing
802 gade
27 other
vej
614

Figure 2.12: Pie chart displaying the different suffixes of name
tags in the OSM dataset.

Sjobergh and Kann| (2004) explain how there are a few common ways to create a com-
pound in the Nordic languages, or Danish in our case. See Table [2.1] for the operations
with examples.

Type Example
Null operation | 0 Corselitze+vej

. +e Torv+e+gade
Addition +s Shetland+s+gade

Table 2.1: The null and addition operations for compounding
forms in Danish.

2.8 OpenStreetMap and Tags

In OpenStreetMap, each component can have multiple tags. These tags might contain
information that is valuable to provide a greater understanding of the component. In this
thesis we have used the following tags:

Name: The name tag contains the name of the Way component where the name should
reflect what is denoted on the street sign.

26

2.9 DAMERAU-LEVENSHTEIN DISTANCE

Noname: The noname tag is a Boolean that is true if the WAy has no name. If a Way
has a name but it hasn’t been provided yet, the noname tag shouldn’t be used.

Surface: The surface tag explains the type of surface that the Way component has. This
can be paved, cobbled or any of 27 other classes.

Highway: The highway tag explains the type of WAy component. This can be motorway,
pedestrian or any of 17 other classes.

Maxspeed: The maxspeed tag contains the maximum speed for the WAy component.
This can be numeric or text like for instance signals or none.

2.9 Damerau-Levenshtein Distance

The Damerau-Levenshtein distance is a string metric used to measure the edit distance
between two sequences. The edit distance between two sequences is the minimum number
of operations required to change one word into the other. The following operations are
supported.

1. Delete a character.
2. Transpose, swap two characters next to each other.
3. Insert a character.

4. Replace a character with different one.

Damerau| (1964)) states that these four operations correspond to more than 80% of all
human misspellings when considering misspellings that can be corrected with at most one
edit operation. Throughout this document, the term edit distance will be a reference to the
Damerau-Levenshtein distance.

A practical example of two words that are one edit distance apart are “live” and “hive”
since only one edit is required to change one into the other, replace / with 4 and “live”
becomes “hive”.

2.10 Evaluation Metrics

To evaluate our results, we have primarily used the F; score. The F; score is briefly pre-
sented in the first subsection below. Another important visualization tool that we have
used, the confusion matrix, is explained in the following section. In order to further im-
prove the understanding of how well the system is performing in the case of spell correction
with the specific prerequisites for this thesis, we introduced an Accurate Correction Rate
which is defined in the last section.

2.10.1 F-measure

The evaluation of the classifiers’ performances have been partially made based on the
precision, recall, accuracy, and F-measure metrics. These measurements are made for

27

2. THEORY

each class and then weighted together into an average (given that the classification is a
multi-class classification).

Precision, also called positive predictive value, is the fraction of relevant instances
among retrieved instances. For example: If we have a system that predicts if an image
contains a hot dog or not and our system classifies the image as a hot dog eight times
out of twelve whereas only five of those were a hot dog in reality we would have had a
precision of % Precision can be seen as a measurement of exactness.

Recall, also called sensitivity, is the fraction of relevant instances that have been re-
trieved among all relevant instances. Using the example from precision, with the addition
that only six out of the twelve images is of a hot dog, the recall would be % as we did
the correct classification of the hot dog in five out of six cases. Recall can be seen as a
measurement of completeness.

One way of getting an overview of a system’s performance is to use the harmonized
mean created out of the precision and recall. This harmonic mean is called the F score.
Throughout this report, the F'; score will be used to measure how well the system is per-
forming. The F; score is calculated using equation 2.1.

) precision - recall

F, (2.2)

precision + recall

2.10.2 Confusion Matrix

A confusion matrix is a matrix which visualizes the accuracy of the predictions performed
by an algorithm. Figure [2.13]shows a confusion matrix where the diagonal is highlighted.
We can see that the values along the diagonal are greater than the surrounding values. The
diagonal values are central and tell us how well a system has performed. The rows are the
system’s predictions and the columns are the true labels. In the case of Figure 2.13] the
situation is reversed. If the diagonal value for class Y is 1.0, the system labels the input
100% correctly in the case of Y.

Normalized confusion matrix

1.0

setosa 0.00

versicolor

True label

0.4

0.2
virginica 0.00

B
&
<O

&

Predirtad lahel

Figure 2.13: Example of a confusion matrix (Pedregosa et al.,
2011).

28

2.10 EvALUATION METRICS

2.10.3 Accurate Correction Rate

Accurate Correction Rate (ACR) is a normalized value/ratio of how many corrections
that are introduced in comparison to errors. Below, the rest of the metrics used for the
evaluation of the spell corrector are defined.

Errors Introduced (EI): Well spelled words that have been corrected to misspelled
words.

Corrections Introduced (CI): Misspelled words that have been corrected to a well spelled
words.

Erroneous Corrections Introduced (ECI): Misspelled words that have been corrected
to misspelled words.

Unchanged words (U):

C: Number of correct corrections made by the system. This includes CI and correctly
unchanged words i.e. words that shouldn’t be corrected.

Accurate Correction Rate (ACR): A normalized value that gives an overview of how
well the system performs in practice, calculated by

C1

ACR =
¢ EI + CI

29

2. THEORY

30

Chapter 3
Approach

We have used machine learning to attempt to correct Way names in the OSM data set
for Denmark. The aim has been to develop a generalized method that can be adapted
for different countries by changing the data used for training. This section presents the
methodology that we used for the thesis work with subsections for the CRISP-DM process
model, a method section for discussion of choices and considerations made during the
thesis work as well as a section describing the tools used for the implementation.

3.1 CRISP-DM

We have applied the CRISP-DM (CRoss-Industry Standard Process for Data Mining) method-
ology to our thesis work. According to a poll by KDnuggets in 2014, CRISP-DM was
the most common main methodology for analytics, data mining or data science projects
(KDnuggets|, 2014). The process consists of six phases — Business understanding, Data

understanding, Data preparation, Modeling, Evaluation, Deployment — as shown in Figure
3.1 (Harper and Pickett, 2006).

31

3. APPROACH

Business Data
Understanding Understanding

Data
Preparation
L
. —
-~ Modeling

Figure 3.1: The CRISP-DM life cycle model (Wikimedia Com-|

s, 2012).

In Figure [3.1] the arrows imply the main dependencies between phases. The phases
don’t have to be performed sequentially, instead most projects move between the phases
according to the needs of the project (Chapman et al., 2000). Below follows a short de-
scription of the six different phases.

The Business understanding phase focuses on clarifying what the client expects to gain
from the data mining. Project risks can be minimized by clarifying the business
reasons that motivate the project.

The focus of the Data understanding phase is to collect and analyze data in order to
gain a better understanding of the data and to facilitate the data preparation phase.

The Data preparation is one of the most important and time-consuming phases of
CRISP-DM. It’s estimated that data preparation usually takes 50-70% of a project’s
time and effort (Chapman et al., 2000, chap. 2). Tasks during the preparation can
include sorting, cleaning, and merging data records.

The Modeling phase is usually done in multiple iterations with different parameters and
focuses. Often the data can bring different things to light by applying different ap-
proaches.

The Evaluation phase is needed to determine the success of the mining and modeling. In
order to do this, measurements and comparisons have to be made and if the results
are not satisfactory, the above phases can be reiterated until a viable solution has
been found.

The Deployment phase means that the results are integrated into the final system or that
the results are used to make improvements to the organization.

32

3.2 METHOD

3.2 Method

This section describes how we chose to investigate the problem and construct possible so-
lutions. The first section covers pre-work made in accordance with the Data understanding
and the Data preparation phase of CRISP-DM. The second part focuses on the Evaluation
and Modeling phases and the choices and considerations made during the thesis work. The
phase of Business understanding is however excluded as the customer of AF didn’t wish
to reveal the business reasons for this project. The last phase of Deployment can be made
by the customer where the program can be converted into an Atlas Check. Atlas Checks
is an automatic framework for automatic testing on OSM as described in the Introduction.

3.2.1 Pre-work

We began with investigating the corrections made to name tags in the OSM data set. The
change data was extracted and analyzed by comparing an older (2015-01-01) and newer
version (2018-01-18) of the data set. The data sets were retrieved from the Geofabrik
organization. When comparing these two revisions of the data set, we assumed that the
most recent one was correct.

To facilitate the retrieval of data used for creating files to be loaded into RAM by
Atlas (read more on the Atlas tool in the section Experimental Setup), we divided the
geographical area of Denmark into 900 rectangles. This resulted in about 500 usable files
since some were filtered out for containing too little information (like areas covering sea
for instance). Through the use of a custom filter, the WAy segments that had its start
and end nodes on separate sides of a boundary were filtered out. The “way sectioning”
rules performed by Atlas were also omitted. The rules determine how to break ways at
intersections in order to create Atlas Edges. Since we are interested in the WAy names and
not the structures this wouldn’t have an effect on our results for the data.

We then analyzed the collected data. The result can be seen in Figure The edits
with an edit distance greater than three aren’t considered edits but rather name changes as
this was the case when some of the instances were manually inspected. We believe that
even though this does not confirm that 80 percent of all misspellings are within one edit
distance as Mays et al.| and |Damerau proclaimed; their statistic is true and our sample is
too small to confirm this. The distinction that an edit distance greater than three is a change
of name enables us to train a more careful algorithm which handles edit operations of less
complexity.

33

3. APPROACH

Edit Distance

60
50

40

Percentage

30

20

Edit dist 1 Edit dist 2 Edit dist 3 Edit dist > 3

Type

Figure 3.2: OSM change data when comparing the 2015-01-01
and 2018-01-18 data sets.

The total number of edits that could be extracted from the data set was 1,800 compared
to the about 52,000 unique way names in the OSM data set for Denmark. Approximately
300 out of the 1,800 changes were of edit distance 3 or less. This means that of 52,000
unique names, 300 have been updated due to a misspelling of edit distance 3 or less be-
tween 2015 and 2018. To get sufficient data to train a machine learning algorithm, we
constructed an experiment with inspiration from Whitelaw et al.| (2009) where partici-
pants had to type Danish street names on a keyboard without using backspace or delete.
Through this experiment, we gathered almost 1600 hand copied street names. The data
was analyzed and the statistics used to introduce artificial noise to OSM data. The noised
data was in turn used for training the machine learning algorithm. We used the original
experiment data as test data.

The misspellings in the experiment data is not as natural as the OSM change data, but
preferable to artificial noise based on a random function. If the machine learning algorithm
performs well on this type of data, this indicates that the algorithm has learned from the
data. However, to achieve better results when correcting real OSM data, training and test
data of higher quality is required.

3.2.2 Implementation and Evaluation

This subsection covers the modeling and evaluation phases where we iteratively test dif-
ferent models and approaches to the problem and evaluate the progress.

Spelling Corrector

We investigated the most common edit operations of distance one in the OSM change data.

Mays et al.|(1991)) and Damerau (1964)) observe that 80 percent of misspellings are derived
from single instances of insertion, deletion, or substitution — meaning an edit distance of

34

3.2 METHOD

1 — and that words are usually spelled as intended. Our research showed that the most
common edit distance 1 operation was the insertion of an s, see Figure[3.3] When manually
inspected, the s was often inserted next to another s in the word. From this we constructed
a baseline to the problem of spell correction where we trained an algorithm for insertion of
s or double s in words. The results were encouraging for expanding the concept to develop
a machine learning algorithm for general spell correction. By developing the baseline, we
could ensure that there was a simple way to solve an isolated part of the problem. However,
the low amount of change data in combination with the constraint of inserting or deleting
an s next to another s in a name means that no real conclusions can be drawn regarding
the efficiency of a solution for the baseline on the general problem.

Edit Dist 1 Insertion Edits

25

20

15

10
=B B
v i DoT | 1 d SPACE i r e 5

Letter

Number of Changes

Figure 3.3: Insertion edits for changes of edit distance 1.

After implementing the s/ss baseline, we decided to look into algorithmic solutions
to spell correction. Read more on this in Section 3.3.3. By combining the algorithmic
approaches with the final machine learning algorithm in a two-headed approach, we hoped
to achieve higher accuracy. It is also beneficial to be able to compare results from the spell
checker with established spelling correction approaches.

In order to increase the validity of our final solution, we investigated the performance
when the system was trained and tested on a different data set. For this evaluation, we
chose OSM data for Estonia as we wanted a smaller data set that didn’t require much work
when extracting relevant information. Like for the main case of OSM data for Denmark
however, the lack of sufficient data is a concern when interpreting the results. It would be
preferable to evaluate on a country with a larger data set of updates so that the artificial
noise introduced to the training data is more representative of real change data.

The data for the Estonian spell checker was created in the same way as in the Danish
case. The exception is that there was no file with manual, crowdsourced data. We made
use of the edits from 2015 to 2018 to generate new misspellings. Out of the generated data
we shuffled and selected 2000 names to test on — note that these names are a combination
of noised words from both OSM data and Wikipedia.

35

3. APPROACH

During the training of the neural networks, tweaking was required to optimize the
results. This includes regularization such as 12, dropout, and early stopping. Also, the
learning rate and updaters were changed and finally, the network architecture was also
experimented with through different setups where the width and depth of the network
were changed. The tweaking was made on a trial and error basis based on what we deemed
probable to be effective.

Missing Names

The missing names algorithms are baselines to simple problems observed in the data.
The correctness of the algorithms were manually validated since no automatic evaluation
framework was developed. The aim is to integrate the algorithms to the Atlas checks
framework and send the suggested changes to MapRoulette were they can be manually
edited. MapRoulette is a gamified approach to fixing incorrect OSM data by breaking
problems into micro tasks (OpenStreetMap| 2018). Statistics regarding the number of
edges that are missing names are presented in the Results Section.

Anomalies

For anomalies in the data, we decided to work with the name, maxspeed, surface, and
highway tags. We created a data set of artificial anomalies from the OSM data since there
was no data set readily available. By creating a set of all tags that a street name has in
the OSM data, we could determine anomalies from all other possible tags in OSM, see
Figure[3.4] Note that (0, 30..) denotes custom classes created for speeds in order to reduce
dimensions and the complexity of the problem.

A B
‘Jensens Gade”: ‘possible tags™
{speed:[0,30,50], {speed:[0,30,50,
o} 70,90+, missing],
e}

(o]
‘Jensens Gade’:

{speed:[70,90+,
missing], ...}

Figure 3.4: Visualization of how we create the tags that will
later be randomized into anomalies. A denotes all tags that have
been connected with “Jensens Gade”, B denotes all possible tags
throughout OSM and C denotes the difference betweeen these two.
We will generate anomalies by randomizing the tags in C with the
associated WAy name “Jensens Gade”.

36

3.3 TooLs

This method of creating data is simple and time effective but not ideal since some of
the anomalies might never occur in the OSM data.

Another possible approach would be to look at what tags coexist in the data, such as
asphalt and 120 km/h, and connect these to a WAy name that has never occurred together
with these tags. For instance, a path would typically not have asphalt and 120 km/h at-
tached. A path such as “Stenstien” would therefore be combined with these two tags to
create an anomaly.

A third approach would be to manually create the anomaly instances, however, this
would introduce a bias towards what we want to believe is an anomaly.

3.3 Tools

In this section we introduce the different tools used in this master thesis.

3.3.1 Atlas

Atlas is a tool written in Java that is open source on Github under OSM Lab. The main
advantage of Atlas is that it loads OSM data directly into the memory. Having OSM
structured in this way creates the possibility of traversing the OSM data like a routing
algorithm would. This facilitates the process of exploring surroundings in the data set
such as what edges and nodes are connected to a particular edge. The following types are
available in Atlas when loading a map (Apple Inc| 2017).

1. Edges and Nodes are navigable items.

(a) Edges contain a start and an end Node.
(b) Nodes contain out- and in-going edges.

(c) Edges are uni-directional, a two-way road from OSM is represented as two
edges in reverse directions.

2. Area, Line, and Point is used for non-navigable features such as Parks and Points Of
Interests.
3. Relations are a true mirror of relations in OSM. They link features together.

4. ComplexEntity are entities built on the fly for Atlas. These are used for concepts that
are more complex than a simple feature. E.g. ComplexBuilding with multipolygon
and parts.

In our report, we focus on Edges since they correspond to the elements that constitute
Ways.

3.3.2 DeeplLearning4Java

The DeepLearning4Java or DL4J framework has been used as Java was a language re-
quirement. DL4]J is a group of deep learning tools that is packaged together as a suite to
perform functions such as

37

3. APPROACH

* Integration
* Vectorization
Modeling

Evaluation

DL4J is an Open Source project with an active core group of developers that work
daily with DL4J. DL4]J is designed to have modern execution platforms in mind from the
beginning and does not suffer from parallellization issues that some other libraries have
had. DL4J is focused on enterprise-grade functionality and is targeted at practitioners who
need a Java Virtual Machine (JVM) option in deep learning but also want the speed of C++
and the power of Spark for parallel computation.

3.3.3 Algorithmic Spell Correction

To understand how spell correction works and how to do it well we implemented two
different algorithmic solutions to the problem, Norvig’s Spelling Corrector and SymSpell,
where the latter is applied to the end-system.

Norvig’s Spelling Corrector

Norvig (2007) introduced one of the most famous baseline spelling correctors. Norvig
makes use of the Damerau-Levenshtein distance operations and a corpus to identify which
words that exist and how common they are.

To correct a word W with edit distance one, the algorithm iterates the characters cy..c,
of W and applies four different operations at each character c;, creating new versions of
W, where each version is one edit distance from W.

For all the versions of W, the probability of the version being correct is calculated by
dividing the amount of times the word is mentioned by how many words there is in the
corpus. Norvig also applies a heuristic that if W exists in the corpus, that implies that it is
the correct one. This creates a few situations where a word won’t be corrected even though
it’s incorrect. The same applies if one searches with an edit distance of two and a word
exists with edit distance of one — then the edit distance of one is chosen.

We implemented Norvigs spelling corrector in Java but it was lacking performance for
edit distance of two on longer words as the naive approach of Norvig grows exponentially
in time complexity.

SymSpell

SymSpell is a C# library that utilizes a Symmetric Delete Spelling Correction (SDSC)
algorithm. The SDSC algorithm makes the spell correction and fuzzy search about 1
million times faster than the spelling correction algorithm by Peter Norvig when using an
maximum edit distance of 3, as was shown by |Garbe (2015).

The SDSC algorithm reduces the complexity of both edit candidate generation and
dictionary look up for a given edit distance. Since the algorithm only deletes characters
from the word, it is language independent.

38

3.3 TooLs

Dictionary Delete-dictionary
h‘;‘é"e o 22:’0 A. Find out if word
Created during w v hilo exists in the

| deletes-dictionaryw
ello ith <= maxEditDist
to a real word.

prewark-phase

B. Find out if any of

the created deletes
is a real word
(editDist=0)

Create deletes

from input ol } A —p [hello]

Input: hllo —-
R ITLO B. > Qutput: hello
hil !

Figure 3.5: Example of SymSpell with a maximum edit distance
of one.

Transposes, replaces, and inserts of the input word are transformed into deletes of the
dictionary term. Replaces and inserts are not only expensive to do in comparison to deletes
but also language dependent. This is especially notable in languages such as Chinese with
70,000 Unicode Han characters. A lot of the combinations never create an actual word.
By creating the deletes from the dictionary term it is possible to only create the expansions
that lead to an existing word.

Because of the architecture of the algorithm, the pre-work is the hard work. An average
5 letter word has about 3 million possible spelling errors within a maximum edit distance
of 3 and with SymSpell you only need to pre-calculate and store 25 deletes to cover them
all.

Using the example in Figure [3.5] we correct the misspelling “hllo” to “hello” by first
reducing “hllo” to “hlo”, “llo”, and “hll”. Note that if we were looking for a correction
within two edit distances we would’ve applied the same delete to all four versions again.
We then take these versions and try to find the same in the dictionary, where “hllo” is
found. “Hllo” is created in the dictionary by the deletion of “hello” during the pre-work
phase. The dictionary then identifies “hello” within one edit distance from “hllo” by back-
tracking itself. This means that we have done an insert of an “e” between the “h” and “I”
by backtracking our deletion.

Below are descriptions of the customizations we made to the SymSpell framework.

Frequency Dictionary
The quality of the dictionary is of greatest weight to retain a high correction qual-
ity. In the beginning of the project, a dump of the Danish Wikipedia was used.
To improve the performance, it was however decided to instead use a corpus from
korpus.dsl.dk/. This corpus is maintained by Det Danske Sprog- og Lit-
teraturselskab (The Danish Society for Language and Literature) and is therefore
deemed to be of good quality.

39

korpus.dsl.dk/

3. APPROACH

SymSpell Specialized Look Up

We created our own look up method that is specialized to be cautious in finding
corrections. This specialized look up only finds edits within one edit distance and
the method can freely remove characters either from the front or from behind until
a correctly spelled word is found. When a word with edit distance is found on either
side the algorithm will try to correct the leftover word. It then merges the removed
characters with the corrected word and gives this correction a scoring depending
on edit distance, excluding the removal of characters, and term frequency. This
technique was derived from the knowledge of compounding in Danish as was shown
in Section 2.8.

An example of this would be the name “Andersvej”. If we misspell it as “Andrsvej”,
the system would remove characters from the right until it found “vej” and then
attempt to correct “Andrs”. The algorithm wouldn’t find any correction removing
characters from left. The name “Andersvj” would instead be corrected by removing
characters until “Anders” is found and then *“vj” would be corrected into “vej” as the
system wouldn’t find anything when removing characters from the right.

40

Chapter 4

Implementation

The implementation supports finding missing names, correcting misspellings, and finding
anomalies. We decided to split the solution into three different subsystems where each
focuses on one of these different parts. This section covers the s/ss spell checking baseline
together with the three subsystems called WAy name spell checking, missing names and
anomalies. In each section, there is a subsection describing the experimental setup, a short
description of the different approaches and results from each evaluation. The training and
testing was performed on data from the area of Denmark. For the spell checking system,
training and testing was also performed on data of Estonia.

4.1 S/SS Spell Checking

A common edit in OSM involves the insertion and deletion of the letter s. A spell checker
which corrects instances of single or double s in names was therefore developed as a sim-
ple baseline to the problem of name correction. An example is “Korsbakken” which is
correctly spelled with one s. An example of a misspelling is “Haselbo” which should be
spelled “Hasselbo”. This section presents three implementations to the problem: a base-
line, a random forest, and a feed forward neural network (FFNN) implementation.

4.1.1 Experimental Setup

The random forest and FFNN implementation uses the character before and after the s/ss
characters as features in a name and predicts the appropriate s form. By not including
the s/ss classes as input, neither true-negative nor false-positive examples was required.
Instead, the s/ss characters could be used as labels for the input. Hence, we didn’t need to
generate an artificial training set but could instead use the WAy names from the current
OSM data set.

41

4. IMPLEMENTATION

The training data was undersampled in order to minimize the effects of the more com-
mon single s case on the classifier. The ratio was set to 50 percent after experimenting
with different values. See Table 4.1l for details.

Data S SS Total
Original 386,001 25,601 411,602
Bootstrapped | 25,600 25,601 51,201

Table 4.1: Data on s cases in Way names from the OSM data set.

4.1.2 Baseline Implementation

We implemented the first baseline in the easiest possible way. The baseline randomly
replaces instances of either single or double s in names with a random s form (single or
double s). The performance of this baseline is shown in the results section.

4.1.3 Random Forest Implementation

In order to further boost the F'; score of the classifier, a limit is set on the level of certainty
required in order to make a prediction. The final version requires a prediction certainty of
90% or above. From this follows a lower number of predictions for the data set with a new
total of 4,392 examples (a 67% decrease).

In Table 4.2} confusion matrices for the random forest classifier with and without a
certainty requirement are shown. The certainty requirement was chosen by comparing
different requirements between 50 and 95 percent and thereafter using the best one.

ss 267 2,547 2,814 ss 59 20 79
s 49 10,846 10,895 s 0 4313 4313
316 13,393 13,709 59 5,628 4,392

Table 4.2: Confusion matrix for the Random Forest classifier
without a certainty requirement to the left. To the right, the same
classifier but with a certainty requirement of 90% or above.

Initially, the classifier model was a decision tree but the random forest model was tried
and yielded better results and was therefore chosen. A gradient boosting classifier was also
developed using the Python library XGBoost (eXtreme Gradient Boosting). XGBoost
did not offer an improvement compared to the decision tree classifier with the certainty
requirement. The results are shown in Table [4.3]

ss 126 92 218
s 2 5628 5630
128 5720 5848

Table 4.3: Confusion matrix for XGBoost classifier.

42

4.2 Way NAME SPELL CHECKING

4.1.4 Feed Forward Neural Network Implementation

Stochastic gradient descent (SGD) was used as optimization algorithm. The updater was
chosen to RMSProp. RMSProp gave, tied with Adam, the best performance when com-
pared to Nesterov’s momentum, Adagrad, and SGD — where SGD means that you only
use the learning rate. Multiclass cross entropy was used since it meant the output could
be in the format [X, Y] where X is probability of first class and Y is the probability of the
second class. Since we only have two classes, the network is a binary classifier.

The results are shown in Table 4.4

ss 108 208 316
s 288 13,106 13,394
396 13,314 13,214

Table 4.4: Confusion matrix for the feed forward neural network.

4.1.5 Results

As shown in Table the Random Forest classifier resulted in the best score and the Feed
Forward Neural Network performed the worst out of the three.

Class Precision Recall F; Support
Random Baseline | ss 0.02 0.50 0.04 316

S 0.98 0.50 0.66 13,393
Random Forest ss 0.75 1.0 0.86 59

S 1.0 1.0 1.0 4,333
Feedforward NN | average 0.63 0.66 03 13,710

Table 4.5: Results for s/ss spelling correctors.

4.2 Way Name Spell Checking

The spell checker predicts misspelled Way names and generates suggestions. If the sug-
gestion is the same as the label in the test set, the name is assumed to be correct and
otherwise the name is considered to be incorrect. The section follows the structure of the
previous section with subsections of experimental setup, a description of the implementa-
tions and a results section.

4.2.1 Experimental Setup

The Way name spell checker was trained on the corpus from the Danish Society for Lan-
guage and Literature and the complete OSM data set. These two data set was artificially
noised (misspelled) to fifty percent and then shuffled. The artificial noise was based on
data from the crowdsourcing experiment that was described in the Method section (3.1)

43

4. IMPLEMENTATION

and the differences found in OSM data set from 2015 and 2018. In other words, we applied
the same type of edits that were made historically.
The evaluation was made in three parts.

* Comparison with s/ss baseline: Evaluation on WAy name corrections to see if s/ss
parts in names have been correctly idenfified.

* Crowdsourced data: Correction of data from the experiment for collecting spelling
mistakes.

e OSM data: OSM data sets from 2014 and 2015 were evaluated on and the results
compared to the latest (2018) data set.

The spell checker was also trained and tested for Estonian way names using the BIRNN
from the Danish spell checker. A dump of the Estonian Wikipedia as well as two different
OSM files of Estonia were used as data. The OSM files were retrieved from Geofabrik
where the first was from 2014-01-01 and the second from 2018-04-01.

4.2.2 RNN and BiRNN Implementations

The baseline RNN was implemented as a sequence to sequence (seq-2-seq) network where
each time step is a character and the input/output can be a sequence of undecided length.
The implementation was naive but surprisingly effective.

We improved the baseline by implementing an autoencoder structure and creating a
bottleneck in the layers to compress information and keep the most important features. As
shown in Table this significantly improved the system.

We later reiterated on the structure of the system and converted it to a bi-directional
recurrent neural network (BiRNN). The baseline BiRNN works just like the baseline RNN
except that it is bi-directional, meaning that the input is seen both forward and backwards
before the output is produced.

Following from the previous success of using the autoencoder structure — i.e. bottle-
necking the network — it was the first improvement applied to the BiRNN.

We also improved the system by applying SymSpell on uncertain predictions. Read
more on this in the discussion.

4.2.3 Results

Comparison with S/SS Baseline

The confusion matrices for the s/ss spell checker and the WAy name spell checker on the
test data is shown in Table[4.6] The s/ss spell checker uses a certainty requirement of 90%
or more. This is the reason why the support for its confusion matrix is 461 instead of the
total number of examples, 1184.

44

4.2 Way NAME SPELL CHECKING

ss 13 9 22 ss 26 5 31
s 0 439 439 s 6 1147 1153
13 448 461 32 1152 1184

Table 4.6: Confusion matrices for the s/ss spell checker to the left
and the BiRNN to the right.

Evaluation on crowdsourced Data

Table shows the results for the F; score evaluation for the different implementations
of the Way name spell checker on the crowdsourced test data.

‘ Accuracy Precision Recall F;
RNN Baseline 0.8391 0.7788 0.7235 0.7958
RNN Autoencoder 0.8613 0.8515 0.7495 0.8285
BiRNN Autoencoder | 0.8826 0.8789 0.8105 0.8634

Table 4.7: RNN and BiRNN performance.

Table[d.8|shows the Accurate Correction Rate (ACR) for the different implementations
of the Way name spell checker. In this table we also included the ACR score for SymSpell
as a benchmark score.

ACR EI CI ECI U C
SymSpell 0.1348 231 36 128 1087 888
RNN Baseline 0.0086 231 2 245 1058 620
RNN Autoencoder 0.5143 17 18 118 1382 843
BiRNN Autoencoder 0.6363 20 35 153 1274 903
BiRNN Autoencoder + SymSpell | 0.6949 18 41 153 1270 911

Table 4.8: EI: Errors Introduced, CI: Corrections Introduced,
ECI: Erroneous Correction Introduced, U: Unchanged, C: Num-
ber of correct predictions made by the system.

Evaluation on OSM Data

Table 4.9 shows the results for the Way name spell checker 2014 and 2015 OSM data sets.
ET denotes the Estonian WAy name spell corrector introduced in the next section.

F, ACR EI ClI FC
BiRNN Autoencoder 0.97 0.004 1653 7 173
ET BiRNN Autoencoder | 0.94 0.002 506 1 5

Table 4.9: Performance of the system on the OSM change data.
FC = Failed Corrections, correctly identifying a misspelled word
but applying an incorrect correction. Explanation of labels in text
above.

45

4. IMPLEMENTATION

Estonia

Table [4.10] shows results from evaluating the spell checker on OSM data from Estonia.

ACR F,
SymSpell 036 -
BiRNN Autoencoder (dk_alphabet) | 0.85 0.983
BiRNN Autoencoder (et_alphabet) | 0.88 0.986

Table 4.10: Results when trained on Estonian data for Estonia.

4.3 Speed Limit Anomalies

This network was aimed at detecting anomalies by predicting speed limits from names.
The spell checker network structure was used, but the output was changed to instead be
a speed limit class at the end of the time sequence (name). Also, uni-, bi-, and trigrams
of characters from the name were tried as inputs to the network. First, the amount of
dimensions, or classes, was decreased by filtering the n-grams by occurrence. This reduced
the number of classes to about 100. The other n-gram classes were assigned the class
unknown. Further, an embedding layer was used to reduce the dimensionality of the input
in an unsupervised fashion. We tried four different intervals for speed classes as output
from the network, these can be seen in Table

X classes of speed (one class for each possible maxspeed tag)
5 classes of speed (0-30, 40-50, 50-70, 70+)

4 classes of speed (0-30, 40-50, 60+, missing)

3 classes of speed (0-50, 50+, missing)

Table 4.11: Different intervals for speed classes.

This approach did not converge during training and was therefore abandoned.

4.4 Name and Tag Anomalies

The purpose of the anomalies implementations are to identify anomalies in the data given a
number of inputs. The following subsections describe the implementations which identify
anomalies in the data from the last five characters of a Way name tag together with the
maxspeed, highway and surface tags. This includes a section on the experimental setup,
shorter descriptions of the implementations and a final section presenting the results.

4.4.1 Experimental Setup

There’s a large number of classes in the OSM syntax for the different tags used as input
and these were therefore manually divided into a number of categories. The maxspeed
tag has five categories, the highway tag has eight categories and the surface tag has seven

46

4.4 NAME AND TAG ANOMALIES

categories. The maxspeed categories are listed in Table 4.12] The OSM highway classes
are labelled as shown in Table [4.13]and the OSM surface classes as shown in Table 4.14

Numeric-0: Numeric speed limit below 30.
Numeric-30: Numeric speed limit of 30 or above but below 70.
Numeric-70: Numeric speed limit of 70 and above.
Missing: Missing speed tag.
Other: Other than the above.
Table 4.12: Maxspeed categories.
Motorway: motorway, motorway_link, trunk. trunk_link
Primary: primary, primary_link, secondary, secondary_link,
tertiary, tertiary_link, unclassified
Residential: residential
Pedestrian: pedestrian, living_street
Paths: footway, bridleway, steps, path
Cycleway: cycleway
Missing: Missing highway tag.
Other: Other than the above.
Table 4.13: Highway categories.
Paved: paved, asphalt, concrete, concrete lanes, concrete plates
Paving_stones: paving_stones, sett, unhewn_cobblestone, cobblestone
Metal: metal
Wood: wood
Unpaved: funpaved, compacted, fine_gravel, gravel, pebblestone,
dirt, earth, grass, grass_paver, gravel_turf, ground, mud,
sand, woodchips, salt, snow, ice
Missing: Missing surface tag
Other: Other than the above

Table 4.14: Surface categories.

The training and test sets used were generated according to the methodology presented
in the Method chapter in section 3.2.2.

4.4.2 RNN Implementation

The implementation uses the spell checker network structure. However, the five last char-
acters of a name together with the maxspeed, highway and surface tags are used as input.
The output is also changed to a Boolean to indicate an anomaly or not.

47

4. IMPLEMENTATION

4.4.3 XGBoost Implementation

The implementation uses the same input and output structure as the RNN version except
for the name. The name is instead classified as one of 23 suffix classes depending on
the type of WAy name. These classes have been tailored to Danish according to the data
presented in Section 2.9 on compound words in Danish.

4.4.4 Results

The XGBoost implementation achieves an F'; score of 0.91 on the test data. The RNN im-
plementation achieves an F; score of 0.9. However, when applied to the current OSM data
set, the XGBoost implementation flags 20,531/327,069 (about 6%) instances as anoma-
lies whereas the RNN implementation flags 5,939/327,069 (about 2%). These results were
achieved by setting certainty requirements on the predictions required to flag an anomaly.
For the XGBoost implementation, this limit was set to 0.95. The limit for the RNN imple-
mentation was set to 0.75. The certainty requirements were chosen by comparing different
requirements between 50 and 95 percent and using the best one.

The confusion matrix for the XGBoost implementation is shown in Table§.15]and the
confusion matrix for the RNN implementation is shown in Table

T 71,070 10,735 81,805
F 3,984 77,746 81,730
75,054 88,481 163,535

Table 4.15: Confusion matrix for the XGBoost implementation.

T 3 81,802 81,805 T 72,212 9,593 81,805
F 2 81,728 81,730 F 6339 75391 81,730
5 163,530 163,535 78,551 84,984 163,535

Table 4.16: Confusion matrix for the RNN implementation. The
left matrix shows results without suffix extraction and the right
shows results with suffix extraction.

4.5 Missing Names

For nameless entities, the name tag should be omitted and the noname tag attached (non-
ame=yes). The idea is to indicate that the street doesn’t have a name with the noname tag.
The absence of a name tag is increasingly used to indicate areas which need to be surveyed
still.

To solve the smoothing scenario of a missing name — defined as a Way that is miss-
ing both a name and a noname tag — a basic graph-continuity-checker was implemented.
The finder was implemented using algorithms/checks. The algorithm was never improved
further than the baseline implementation due to time constraints.

48

4.5 MissING NAMES

The algorithm finds the missing name in two different scenarios where the first is a
missing name between two edges if the two edges has the same name. This is often found
in motorway-links for instance. The second scenario is the “small-tail”’-case which means
that we have a small tail that returns to the same node that it exited from. This is often
found in urban areas where a small tail on a road leads to 1-4 houses. An example of this
is shown in Figure [4.1]

D‘amSQérdsvej
7

Figure 4.1: Example of the small-tail case. The image shows
a way with the name Damsgérdsvej. From this way, there are
smaller ways leading up to buildings along the road that could pos-
sible also be tagged with the name Damsgérdsve;j.

4.5.1 Results

Figure [d.2) shows the ratios of present and missing edges in the data set. The total number
of edges with missing names in the data set is 6,066,646. The algorithm identifies 756,245
instances which corresponds to about 12,5%.

Name Tags in Open Street Map Dataset

M Presentor with noname=yes
W Missing

Figure 4.2: Ratio of present and missing names in the OSM data
set from 2018.

49

4. IMPLEMENTATION

We checked 50 random edges that were corrected by the algorithm and as shown in
Table[d.17] around 70 percent of all changes were made correctly. We show a few of these

cases visually in the appendix .1.

Actual Error
No error

34
16

Table 4.17: Manually controlled edges.

50

Chapter 5

Discussion

In this chapter, we interpret the results presented in the Implementation chapter and de-
scribe different approaches that were tried in order to improve those results. The first
subsection briefly discusses the metrics used for evaluation. The following four sections
cover the results for the Way name spell checker together with improvements that were
tried. Finally, the last two sections discuss the knowledge gained from implementing the
subsystem for detecting anomalies.

5.1 Interpretation of Results

We have used two different metrics to evaluate the performance of the spelling correction:
F, score and ACR. ACR is a metric for indicating how well the system is at predicting a
correction for a word.

The F; score is, in our case, skewed since the score is averaged on each individual
character predicted — not if the proposed word is correct. If we predict nine out of ten
characters correctly in a word, the system scores a 90 percent correctness for this name
when in fact, the system didn’t perform a correct spell correction. We therefore invented
the ACR score, which takes the resulting word from the spelling corrector into account
and measures the ratio of correct predictions.

The F; score is useful as well however. The ACR is a quite rigid metric where infor-
mation regarding how close the system was at predicting a correct word is lost.

5.2 Spell Checking Results

The spell checker performs better than the s/ss baseline with a higher total number of
predictions as well as accurate such predictions. The evaluation on the crowdsourced test
also show that the network has developed a language model since it corrects 41 instances.

51

5. Discussion

However, it also misspells 18 instances and fails to correct 153 misspelled instances. It’s
possible that this result could be improved with more and better data but it is also hard to
draw any conclusions since the training data was created by inserting artificial noise. The
network could have modeled the structure behind the insertion of artificial noise.

The test on OSM data show rather depressing results. The spell checker introduces
1653 errors while only correcting 7 instances and failing to correct 73. When comparing
the errors in the OSM data with the training set, there are differences in the types of spell
errors.

5.2.1 Difference Between Test and Reality

When analyzing the edits, we can see that transposes especially have a clear over represen-
tation in the crowdsourced data. We believe this is due to instructions for the participants
to not edit their text. A transpose is an easy error to spot yet is never edited in our case.
This would probably be the case in a real situation when a contributor adds the name to the
OSM data set. The noise is therefore not as close to true spelling mistakes and the system
will be weighted towards correcting a spelling error that is not as common as others.

See Figure [5.1] for a visualization of the errors contained in respective sets. If there
for instance were more examples of deletion edits in the training data, this could possibly
improve the performance of spell correction algorithm.

Edit Types Edit Types

30
25
20
15
10
5
I

transposes insert teplace delete

Percentage
Percentage

=)

delete insert transposes replace

Edit Type Edit Type

(a) OSM data (b) Crowdsourced data

Figure 5.1: Edit type frequency.

5.2.2 Prediction Errors

In order to get an overview of the types of mistakes that the spell correction network makes,
we investigated some erroneous corrections made by the system. The results are shown
in Table [5.1] They indicate that some rare characters have not been present in enough
examples. The examples with characters ’ and - show overfitting since they always produce
the same output. We believe that bootstrapping the data set by the number of characters
present during input and output would improve and stabilize the performance.

Our investigation shows the complexity of spell correction without context. In com-
parison, when correcting a word in a sentence, the surrounding words can be used to infer

52

5.3 IMPROVING UNCERTAIN PREDICTIONS

more information about the word in question. Without context and with several spelling
suggestions of the same edit distance available, a spelling correction system can’t deter-
mine which suggestion is more probable. Table[5.1|shows two erroneous corrections made
by the system that are both correct in the sense that it’s correct Danish.

Type Original Erroneous Correction
Both correct versions | ovrevej overvej

emil bojsens gade emil bossens gade
Failed corrections hndelsvej hindelsvej
'—j christianii's allé christian iijs allé
-—>b ngrre-herlevvej ngrrebherlevvej
. — random i.g. smiths alle img. smiths alle

Table 5.1: Errors introduced by the spell correction network.

In regular auto correction systems, more common terms are often misspelled and cor-
rected. Davies and Gardner| (2011) explain how frequency information has a central role
in learning a language since the most frequent words are enough to understand the context
and meaning of written and spoken sentences. Nation| (1990) shows that the 4,000-5,000
most frequent words account for up to 95 percent of written text and the 1,000 most fre-
quent words account for up to 85 percent of speech. This means that such a spell checker
could achieve good scoring from being successful at correcting the most common words.

When it comes to WAY names in Denmark, the most frequent words are not as occur-
ring since the names are compounds of multiple words. This means that WAy names are
rare and consequently, it’s hard to find data on where misspellings happen.

5.2.3 Misspelled Names in Estonia

The results for the misspellings in Estonia outdid the Danish by a sizeable margin. The F;
score is a slightly more than 10 percent larger and the ACR is almost 20 percent better.

Analyzing the data, we found that there were only 19 edits of edit distance 1 made
between 2014 and 2018 in the data set for Estonia. Out of these, 15 were unique. In
the data set for Denmark there was around 300 edits of edit distance 1 and also 384 new
ones from the crowdsourced data. Since the amount of different types of edits is much
fewer in Estonian, it is probable that our Estonian spell checker had an easier time to learn
correction of these misspellings. Another reason could be that the Estonian language might
be less complex. These findings confirm our goal of having a modular spell corrector that
easily changes language.

5.3 Improving Uncertain Predictions

This section covers the two approaches we implemented in order to improve the accuracy
of the WAy name correction system by targeting uncertain predictions.

53

5. Discussion

5.3.1 Propagation

We experimented with creating edit distance 1 edits of a name if a character in the name
proposed by the system was below a certain threshold in certainty. This was done for all
character positions in the name where the uncertainty was below a threshold. These newly
created versions of the name was then used as a new input to the system. The strategy
didn’t offer any improvements, the uncertain predictions even became even less accurate.
Some instances that were correctly spelled became misspelled.

We believe that the explanation to this failed attempt is that the misspelling is a char-
acter that the system believes, with certainty, is correct. When manually investigating a
few words, this was true. We believe that this strategy is almost impossible to do correctly
as we can’t know which character is incorrect when the uncertainty is not at the location
of the misspelling.

5.3.2 SymSpell

Instead of propagating different versions of the name to the system, we applied SymSpell
with the specialized look up to the name. The result was successful and often improved
the F'; score by a net of circa 8-12 percent in the number of corrections introduced. As
mentioned, the system gets an additional hint on correctness from SymSpell. However,
the specialized look up method relies heavily on heuristics and should be further worked
upon in order to improve the accuracy of the spell correction.

5.4 Saturation of the Network

This section describes an approach to introduce a form of context to the spell checking
network in addition to the name. We tried to add the contents of the max speed tag to the
Way name spell checking network input in hopes of improving the results. Our hypothesis
however, was that the experiment would result in no improvement since the network is built
as a seq-2-seq. Each character is often followed by the correct character and the max speed
tag would therefore be ignored.

Despite this, we wanted to try the approach. The results are shown in Table [5.2]

In conclusion, we believe that it is debatable if the system actually performed worse or
if the difference is small enough to be considered a variance. We choose to consider the
difference non-existent and believe that the network learned to ignore the max speed tag.

| ACR ECI F,
BiRNN Autoencoder 0.6363 153 0.867
BiRNN Autoencoder + speed tag | 0.5912 159 0.858

Table 5.2: Comparison of system with and without an appended
max speed tag.

54

5.5 REDUCTION OF AGGRESSION

5.5 Reduction of Aggression

This section describes different ways of training the network to improve the score on the
OSM data set.

We trained the same BiRNN Autoencoder network on different data sets to investigate
what kind of impact the training sets have on the result.

BiRNN Autoencoder 1 is trained on the data that was presented in the Results chapter.
The data is a combination of the corpus and the OSM data set and was artificially noised
as described in the Method section. We introduced noise to fifty percent of the names in
the data set.

BiRNN Autoencoder 2 is trained on the OSM data set without any artificially inserted
noise. The data set was split in 2 parts, 2/3 to train on and 1/3 to test on.

BiRNN Autoencoder 3 is a combination of BIRNN Autoencoder 1 and 2. We combined
the training data used in BIRNN Autoencoder 2, the crowdsourced data, and the corpus.
We then applied noise to this training data. However, we did not apply as much noise as in
BiRNN Autoencoder 1, we only applied five percent noise in comparison to fifty percent.

Table [5.3| shows that both BIRNN Autoencoder 2 and 3 improved their scores and we
believe that the data set is one of the more important features to experiment on.

F, ACR EI CI FC
BiRNN Autoencoder 1 | 0.97 0.004 1653 7 73
BiRNN Autoencoder 2 | 098 0.011 93 1 42
BiRNN Autoencoder 3 | 0.99 0.167 5 1 3

Table 5.3: Performance of the different versions of the BIRNN
Autoencoder on the OSM change data. FC = Failed Corrections,
correctly identifying a misspelled word but applying an incorrect
correction. EI = Errors Introduced, CI = Corrections Introduced,
ACR = Accurate Correction Rate.

5.6 Weight of Suffix Extraction

This section covers the reason behind the failed speed limit network attempt. It also dis-
cusses the importance of suffix extraction for achieving better results in the case of the
anomalies network.

We believe that the reason for the poor performance of the speed limit anomalies net-
work is difficulties in finding a structure in a name with n-grams. By using suffix extrac-
tion, a form of tokenization, we managed to improve the results immensely in the case of
the name and tag anomalies network. Our idea of suffix extraction, where we retrieve a
suffix of five characters, originates from the information presented in Section 2.8 — in the
Danish language, compound words are often used and street names are even more likely
to be a compounds. This was shown to be true in Figure[2.12]where 61.4% of Danish road
names end in “vej”.

In addition to the difficulties in finding connections between n-grams and speeds, we
also realized that the first approach used speed and the full name as input while the second

55

5. Discussion

approach used multiple tags and the name suffix. The conclusion we draw from this is that
reduction of dimensionality is important for training the network. By extracting the suffix
of the WAY name and thereby reducing the input size by a order of 10, we improved our
scoring and the system converged faster.

5.7 Name and Tag Anomalies

There was no time to manually retrieve name and tag anomalies from the OSM data set.
Instead, we created an artificial data set where we introduced anomalies as described in
the Method section.

Because of how this data set is generated, the credibility of the results is questionable,
at least in a practical sense. We applied the system on today’s OSM data set without any
generated noise and noted that the RNN seemed more selective in its approach. Although,
when inspecting the results further we found that many of the flagged anomalies probably
weren’t anomalies at all.

We want to put emphasis on the issue that this is a neural network — we don’t know
why the network has made a certain prediction. The system might actually not make use
of the street name at all but learn to only find an anomaly by using the highway, surface
and, max speed tags.

56

Chapter 6

Conclusions

The first conclusion that we draw from this thesis is that the missing names problem can be
solved to a decent level using basic algorithms. We suggest corrections for 12.5 percent
of all missing names using two basic algorithms which are correct in approximately 70
percent of the cases. We don’t believe deep learning is required to solve the problem of
missing names.

The second conclusion is that deep neural networks work well for finding anomalies in
data. We show that even though the data is artificially generated, the network can identify
anomalies. We believe that with more and better data, the system’s performance on today’s
OSM data set could be improved.

The third conclusion we draw from this thesis is that the WAy name spell corrector is
restrictive yet effective as it corrects more cases accurately than it misspells on the crowd-
sourced data. Also, we improved the performance on the OSM data set immensely by
reducing the noise in the training data. The spell checker is on par with our baseline S cor-
rector as well. We have shown that the spell checker language is exchangeable by applying
it to Estonian data.

Our implementation’s main contribution is that while the system incorporates several
known techniques, it does not require any manually annotated resources and is focused
on the difficult instances of compound Way names. We have not seen this implemented
anywhere else.

Finally, we would like to emphasize that the results show that the neural network can
learn a language model and correct misspellings. We also believe that data is a huge
problem for training neural networks to do these kinds of corrections. Especially Way
data is difficult to retrieve in the vast amounts needed to train a network. Deep neural
networks require a huge amount of data with both erroneous and correct instances where
the former simply is not available in our case.

To summarize, we have shown the following

* Missing names can be filled to an extent using basic algorithms.

57

6. CONCLUSIONS

* Anomalies can be found using deep learning.

* A Way name spell corrector was implemented without language context and with
the ability to change language by changing the training data. The performance never
achieves the goal but with better, and more, data it could prove very useful as it has
shown the ability to learn how to correct misspellings.

58

Chapter 7
Future Work

In this section, future improvements that can be made to the implementations are presented.

7.1 History log

By looking at the editing log for a WAy component, we believe that there’s a possibility
to know if the component has a greater chance of being correct. A component that has
been edited more than x times should be more trustworthy since it has been under scrutiny
several times. We could not include this in the thesis work because the calls to the REST
API of OSM was too slow and our time was limited.

We trust that this could improve the system significantly. Perhaps a simple heuristic
like ““if the element has been edited more than five times, it is assumed to be correct” would
be helpful to remove some uncertain predictions.

7.2 Improving the Data Sets

A better data set with more realistic errors and a larger variety of changes would increase
the accuracy of the system. As mentioned, the difference between the crowdsourced data
and OSM data was significant. We also showed that the system learns a language model
and corrects errors that is presented to it. By having a large number of natural misspelled
Way names, the system should be able to correctly identify and correct more errors. The
same applies to the data supplied to the anomalies network.

59

7. FUTURE WoORK

7.3 Meta Information

We believe that with more resources, planning, and time, a network could make use of meta
information such as geographical knowledge and named entity-recognition to improve its
correction rate. We found that when looking at street names, many streets - especially in
towns and cities - are named after famous events, cities, or persons.

An example of this is “Jens Lillelunds Vej” where Jens Lillelund is a famous director
in the automotive business. This way exists in Charlottenlund which belongs to Gentofte
— where Jens Lillelund died. In this case, both the geographical location and the name
belongs to a person that could have been identified with named entity-recognition.

Another example is “Mariebjergvej” which is located next to the graveyard “Mariebjerg
Kirkegédrd”. This means that by using the location of the way, we could find the graveyard
and thereby cross-reference the name.

7.4 Alphabet

We also believe that the accuracy of the spell checker could be improved by using a full
alphabet, especially if time is available to train the system over a long time. Including
information such as uppercase letters means more information and possibly also more
accuracy. Streets often capitalize the first letter in each word and this is sometimes missed
by the editors. The system could also learn to difference capitalized and non-capitalized a
and thereby differentiate the probability of a certain character to come thereafter.

More characters, such as numbers. which is currently not included would probably
also benefit the system as the system currently performs poorly if a number is included in
the WAy name.

It has to be noted however that in this case of adding more characters, one has to
find large amounts of training data with these characters and also bootstrap the data set.
We have noted that the system underperforms for more rare characters such as ii. Also,
some characters are always predicted when the input is a certain another character which
indicates severe overfitting.

7.5 Data Set Balancing

We managed to improve the score by training the BiRNN Autoencoder network with data
sets that had less noise introduced than the original version. It has to be noted that this
also leads to reduced correction rate which means that the total amount of corrections are
also reduced.

We believe that further balancing with the data set could lead to further improvements.

60

Bibliography

Apple Inc. 2017. Atlas - osm in memory. https://github.com/osmlab/atlas.

Apple Inc. 2018. Atlas checks - osm data integrity checks with atlas.
https://github.com/osmlab/atlas-checks.

Pierre Baldi and Gianluca Pollastri. 2003. The principled design of large-scale recur-
sive neural network architectures—dag-rnns and the protein structure prediction prob-
lem. Journal of Machine Learning Research 4:575-602.

Yoshua Bengio, Nicolas Boulanger-Lewandowski, and Razvan Pascanu. 2012. Advances
in optimizing recurrent networks. CoRR abs/1212.0901. http://arxiv.org/abs/1212.0901.

Leo Breiman. 2001. Random forests. Machine Learning 45(1):5-32.
https://doi.org/10.1023/A:1010933404324.

Pete Chapman, Julian Clinton, Randy Kerber, Thomas Khabaza, Thomas Reinartz, Colin
Shearer, and Rudiger Wirth. 2000. Crisp-dm 1.0 step-by-step data mining guide. Techni-
cal report, The CRISP-DM consortium. https://www.the-modeling-agency.com/crisp-
dm.pdf.

Francois Chollet. 2017. https://blog.keras.io/a-ten-minute-introduction-to-sequence-to-
sequence-learning-in-keras.html.

Fred J. Damerau. 1964. A technique for computer detection and correction of spelling
errors. Commun. ACM 7(3):171-176. https://doi.org/10.1145/363958.363994.

Mark Davies and Dee Gardner. 2011. A frequency dictionary of contemporary american
english: Word sketches, collocates and thematic lists. Reference Reviews 25(1):36-36.
https://doi.org/10.1108/09504121111103191.

DL4J. 2018. Troubleshooting neural networks: Updater and optimization algorithm.
https://deeplearning4j.org/troubleshootingneuralnets#updater.

61

https://github.com/osmlab/atlas
https://github.com/osmlab/atlas
https://github.com/osmlab/atlas-checks
https://github.com/osmlab/atlas-checks
http://arxiv.org/abs/1212.0901
http://arxiv.org/abs/1212.0901
http://arxiv.org/abs/1212.0901
https://doi.org/10.1023/A:1010933404324
https://doi.org/10.1023/A:1010933404324
https://www.the-modeling-agency.com/crisp-dm.pdf
https://www.the-modeling-agency.com/crisp-dm.pdf
https://www.the-modeling-agency.com/crisp-dm.pdf
https://blog.keras.io/a-ten-minute-introduction-to-sequence-to-sequence-learning-in-keras.html
https://blog.keras.io/a-ten-minute-introduction-to-sequence-to-sequence-learning-in-keras.html
https://doi.org/10.1145/363958.363994
https://doi.org/10.1145/363958.363994
https://doi.org/10.1145/363958.363994
https://doi.org/10.1108/09504121111103191
https://doi.org/10.1108/09504121111103191
https://doi.org/10.1108/09504121111103191
https://deeplearning4j.org/troubleshootingneuralnets#updater
https://deeplearning4j.org/troubleshootingneuralnets#updater

BIBLIOGRAPHY

Eclipse Deeplearning4j Development Team. 2018. Deeplearning4j: Open-source
distributed deep learning for the jvm, apache software foundation license 2.0.
http://deeplearning4j.org.

Wolf Garbe. 2015. [Fast approximate string matching with large edit distances in big
data. http://blog.faroo.com/2015/03/24/fast-approximate-string-matching-with-large-
edit-distances/.

Felix A. Gers, Jirgen A. Schmidhuber, and Fred A. Cummins. 2000. Learning
to forget: Continual prediction with Istm. Neural Comput. 12(10):2451-2471.
https://doi.org/10.1162/089976600300015015.

Alex Graves. 2008. Supervised Sequence Labelling with Recurrent Neural Networks. PhD
dissertation, Technische Universitiat Miinchen.

Gavin Harper and Stephen D. Pickett. 2006. Methods for mining hts data. Drug Discovery
Today 11(15):694 — 699. https://doi.org/https://doi.org/10.1016/j.drudis.2006.06.006.

Geoffrey Hinton and Ruslan Salakhutdinov. 2006. Reducing the dimen-
sionality of data with neural networks. ScienceMag 313:504 - 507.
http://www.cs.toronto.edu/hinton/science.pdf.

Geoffry E. Hinton. 2018. Overview of mini-batch gradient descent.
http://www.cs.toronto.edu/tijmen/csc321/slides/lecture_slides_lec6.pdf.

Sepp Hochreiter and Jiirgen Schmidhuber. 1997. Long short-term memory. Neural Com-
put. 9(8):1735-1780. https://doi.org/10.1162/neco.1997.9.8.1735.

Andrej Karpathy. 2015. http://karpathy.github.io/2015/05/21/rnn-eftfectiveness/.

KDnuggets. 2014. Poll: What main methology are you using?
https://www.kdnuggets.com/polls/2014/analytics-data-mining-data-science-
methodology.html.

Diederik P. Kingma and Jimmy Ba. 2014. Adam: A method for stochastic optimization.
CoRR abs/1412.6980. http://arxiv.org/abs/1412.6980.

Richard Maclin and David W. Opitz. 2011. Popular ensemble methods: An empirical
study. CoRR abs/1106.0257. http://arxiv.org/abs/1106.0257.

Aurélien Max and Guillaume Wisniewski. 2010. Mining naturally-occurring corrections
and paraphrases from wikipedia’s revision history. In LREC.

Eric Mays, Fred J. Damerau, and Robert L. Mercer. 1991. Context based
spelling correction. Information Processing & Management 27(5):517 — 522.
http://www.sciencedirect.com/science/article/pii/030645739190066U.

L.S.P. Nation. 1990. Teaching and Learning Vocabulary. Teaching Methods. Heinle &
Heinle. https://books.google.se/books?id=1Qd_QgAACAAI.

Peter Norvig. 2007. How to write a spelling corrector. http://norvig.com/spell-
correct.html.

62

http://deeplearning4j.org
http://deeplearning4j.org
http://deeplearning4j.org
http://blog.faroo.com/2015/03/24/fast-approximate-string-matching-with-large-edit-distances/
http://blog.faroo.com/2015/03/24/fast-approximate-string-matching-with-large-edit-distances/
http://blog.faroo.com/2015/03/24/fast-approximate-string-matching-with-large-edit-distances/
http://blog.faroo.com/2015/03/24/fast-approximate-string-matching-with-large-edit-distances/
https://doi.org/10.1162/089976600300015015
https://doi.org/10.1162/089976600300015015
https://doi.org/10.1162/089976600300015015
https://doi.org/https://doi.org/10.1016/j.drudis.2006.06.006
https://doi.org/https://doi.org/10.1016/j.drudis.2006.06.006
http://www.cs.toronto.edu/~hinton/science.pdf
http://www.cs.toronto.edu/~hinton/science.pdf
http://www.cs.toronto.edu/~hinton/science.pdf
http://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf
http://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.1162/neco.1997.9.8.1735
http://karpathy.github.io/2015/05/21/rnn-effectiveness/
https://www.kdnuggets.com/polls/2014/analytics-data-mining-data-science-methodology.html
https://www.kdnuggets.com/polls/2014/analytics-data-mining-data-science-methodology.html
https://www.kdnuggets.com/polls/2014/analytics-data-mining-data-science-methodology.html
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1106.0257
http://arxiv.org/abs/1106.0257
http://arxiv.org/abs/1106.0257
http://www.sciencedirect.com/science/article/pii/030645739190066U
http://www.sciencedirect.com/science/article/pii/030645739190066U
http://www.sciencedirect.com/science/article/pii/030645739190066U
https://books.google.se/books?id=IQd_QgAACAAJ
http://norvig.com/spell-correct.html
http://norvig.com/spell-correct.html
http://norvig.com/spell-correct.html

BIBLIOGRAPHY

OpenStreetMap. 2017. Elements. https://wiki.openstreetmap.org/wiki/Elements.
OpenStreetMap. 2018. Maproulette. https://wiki.openstreetmap.org/wiki/MapRoulette.

OpenStreetMap, 2018. 2018. Editing standards and conventions.
https://wiki.openstreetmap.org/wiki/Editing_Standards_and_Conventions.

Josh Patterson and Adam Gibson. 2017. Deep Learning: A practitioner’s approach.
O’Reilly, United States of America.

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blon-
del, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau,
M. Brucher, M. Perrot, and E. Duchesnay. 2011. Scikit-learn: Machine learning in
Python. Journal of Machine Learning Research 12:2825-2830.

David E. Rumelhart, Geoffrey E. Hinton, and Ronald J. Williams. 1986. Learn-
ing representations by back-propagating errors. Nature 323(6088):533-536.
http://dx.doi.org/10.1038/323533a0.

Shashi Sathyanarayana. 2014. A gentle introduction to backpropagation .

M. Schuster and K.K. Paliwal. 1997. Bidirectional recurrent neural networks. Trans. Sig.
Proc. 45(11):2673-2681. https://doi.org/10.1109/78.650093.

Michael Schuster. 1999. On supervised learning from sequential data with applications
for speech recognition. Ph.D. thesis, Nara Institute of Science and Technology.

Jonas Sjobergh and Viggo Kann. 2004. Finding the correct interpretation of swedish com-
pounds, a statistical approach. In In Proc. 4th Int. Conf. Language Resources and Eval-
uation (LREC. pages 899-902.

Casey Whitelaw, Ben Hutchinson, Grace Young, and Ellis Gerard. 2009. Using the web
for language independent spellchecking and autocorrection. In Proceedings of the 2009
Conference on Empirical Methods in Natural Language Processing. ACL and AFNLP,
pages 890-899.

Wikimedia Commons. 2012. Crisp-dm process diagram.
https://sv.wikipedia.org/wiki/Fil: CRISP-DM_Process_Diagram.png.

Wikimedia Commons. 2015. Rnn brnn. https://commons.wikimedia.org/wiki/File:RNN_BRNN.png.

Wikimedia Commons. 2017a. Random forest diagram complete.
https://commons.wikimedia.org/wiki/File:Random_forest_diagram_complete.png.

Wikimedia Commons. 2017b. Recurrent neural network unfold.
https://commons.wikimedia.org/wiki/File:Recurrent_neural_network_unfold.svg.

63

https://wiki.openstreetmap.org/wiki/Elements
https://wiki.openstreetmap.org/wiki/Elements
https://wiki.openstreetmap.org/wiki/MapRoulette
https://wiki.openstreetmap.org/wiki/MapRoulette
https://wiki.openstreetmap.org/wiki/Editing_Standards_and_Conventions
https://wiki.openstreetmap.org/wiki/Editing_Standards_and_Conventions
http://dx.doi.org/10.1038/323533a0
http://dx.doi.org/10.1038/323533a0
http://dx.doi.org/10.1038/323533a0
https://doi.org/10.1109/78.650093
https://doi.org/10.1109/78.650093
https://sv.wikipedia.org/wiki/Fil:CRISP-DM_Process_Diagram.png
https://sv.wikipedia.org/wiki/Fil:CRISP-DM_Process_Diagram.png
https://commons.wikimedia.org/wiki/File:RNN_BRNN.png
https://commons.wikimedia.org/wiki/File:RNN_BRNN.png
https://commons.wikimedia.org/wiki/File:Random_forest_diagram_complete.png
https://commons.wikimedia.org/wiki/File:Random_forest_diagram_complete.png
https://commons.wikimedia.org/wiki/File:Recurrent_neural_network_unfold.svg
https://commons.wikimedia.org/wiki/File:Recurrent_neural_network_unfold.svg

BIBLIOGRAPHY

64

Appendices

65

Appendix A

Missing Name Figures

67

A. MissiING NAME FIGUREs

Figure A.1: Example of correct naming by Missing Names.

68

Figure A.2: Example of correct naming by Missing Names.

69

A. MissiING NAME FIGUREs

Figure A.3: Example of incorrect naming by Missing Names.

70

Appendix B

Generating Danish

As a side-experiment we learned the system to generate Danish. It was interesting to follow
how the danish was generated and learned. To begin with the system overused the enter
character, that is new line, but later learned to form sentences such as in

Itag iarti—t%e!oL! smtugu fn m9¢dod i r deunennB

Further training it learned how to use common charcters instead of just randomly throwing
them out

gpnr,inao mssk ijd—emCtui tsaln e rr1 ae genoe dgvicedredeg gaafrasv r Eead-
rro mori nnrr en Gdt

After a while it learned to spell danish but still couldn’t use paranthesis and such correctly.

Adugig Anha!jc hygge kdenn mid storfi!g kag 1545 bever leg fag so! M!tek
er neski &v Reg tar mer 1025 itbad ges 1Fkemaudsredersenis Fans, "deget
Grandet ske!,ns tgn!r 115 jeg Ik!ilsiglen fid 2928) at 1..

And in the end the system got really well and actually wrote danish sentences correctly.

Allerede har private udgave af Sveriges Universitet startede pa den tyske hen-
des mor ved Kulturituativet af Arsham og hendes hovedvandgrundssgersJacki
Bletvei fra alle baner ville gi fra dem af ..

It even learned to use paranthesis and citation correctly such as in.

Ad Disservation (naturlig omfang) Niels Hgyens and the Plantetysk Introduc-
tion Donago (1731-1912). Nr 4 blev dbnet i 1689-06 i Tromsdau, modelen
fra 1917 og i 1830’erne og 1905 abnede..

Alubeney (fodt 7 februar 1955 i Vaerken University, England) er en dansk
politiker fra Portugal i Karl Curvell Holstein Lars at CIA (1418-1755) var
brudt til kuppet Feach Mendeloven 21metre i Kristiana..

71

	Introduction
	Background
	Purpose
	Problem Formulation
	Challenges
	Constraints

	Related Work
	Outline
	Work Distribution

	Theory
	Introduction to Machine Learning
	Central Concepts
	Bootstrapping Data

	Decision Trees
	Ensemble Learning
	Random Forest
	XGBoost

	Neural Networks
	Loss
	Gradient Descent
	Hyperparameters
	Optimization Algorithms and Updaters

	Recurrent Neural Networks
	Back Propagation
	LSTM
	Bidirectional RNNs and BiLSTM

	Autoencoder
	Compound Words in Danish
	OpenStreetMap and Tags
	Damerau-Levenshtein Distance
	Evaluation Metrics
	F-measure
	Confusion Matrix
	Accurate Correction Rate

	Approach
	CRISP-DM
	Method
	Pre-work
	Implementation and Evaluation

	Tools
	Atlas
	DeepLearning4Java
	Algorithmic Spell Correction

	Implementation
	S/SS Spell Checking
	Experimental Setup
	Baseline Implementation
	Random Forest Implementation
	Feed Forward Neural Network Implementation
	Results

	Way Name Spell Checking
	Experimental Setup
	RNN and BiRNN Implementations
	Results

	Speed Limit Anomalies
	Name and Tag Anomalies
	Experimental Setup
	RNN Implementation
	XGBoost Implementation
	Results

	Missing Names
	Results

	Discussion
	Interpretation of Results
	Spell Checking Results
	Difference Between Test and Reality
	Prediction Errors
	Misspelled Names in Estonia

	Improving Uncertain Predictions
	Propagation
	SymSpell

	Saturation of the Network
	Reduction of Aggression
	Weight of Suffix Extraction
	Name and Tag Anomalies

	Conclusions
	Future Work
	History log
	Improving the Data Sets
	Meta Information
	Alphabet
	Data Set Balancing

	Appendix Missing Name Figures
	Appendix Generating Danish

