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Abstract 

Both automation and climate change are important topics on today’s policy agenda. Automation is 

often argued to have environmental benefits in terms of energy efficiency, however, no attempt has yet 

been made to empirically address the relation between automation and energy consumption. Therefore 

this paper aims to fill this gap by exploring whether automation and energy intensity developments 

follow similar trends and tests for the existence of a correlation. Another contribution of this paper is 

the evaluation of energy intensity developments and automation in global value chains, as this 

accounts for the effect of offshoring and enables the incorporation of the rebound effect commonly 

discussed in the ICT-energy intensity literature. The first part of the analysis is focused on deriving 

labor income shares, which serve as a proxy for automation, and energy intensity levels in German 

GVCs. In order to do so, a multi-region input-output model is employed in combination with data 

from the WIOD. Subsequently, the existence of a relationship between labor income share and energy 

intensity developments is examined based on a simple regression model. The main findings show that 

(i) automation was present in all GVCs as labor income shares declined and were not found to be 

related to offshoring; (ii) energy intensity initially increased, but started to fall after 2000; (iii) overall 

automation was associated with a small reduction in energy intensity; and (iv) automation in foreign 

production stages was accompanied by a rise in energy intensity.  
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1. Introduction 

Approximately ten years ago, Stern (2007: pp 1) referred to climate change as ‘the greatest 

and widest-ranging market failure ever seen’. Throughout the last decade, increased 

awareness for the need to drastically reduce our greenhouse gas (GHG) emissions has been 

raised. The most prominent example is the Paris Agreement, which is the first internationally 

coordinated and legally binding framework designed to tackle climate change on a global 

scale (Climate Focus, 2015). By the end of 2016, the Paris Agreement entered into force as 55 

countries that are responsible for at least 55 percent of the global GHG emissions had adopted 

the agreement and this list is still growing (United Nations, 2017). Executing the ambitious 

plans of the agreement requires a deeper understanding of where and how emissions in our 

global economy are generated.  

Technological change has raised the efficiency of production processes and thereby reduced 

the amount of inputs required to produce a particular level of output. According to Schwab 

(2016) the new technologies of the ‘fourth industrial revolution’, which are characterized by 

connecting things (products, services or places) with people, yield the capability to reduce 

negative externalities that accompany economic, such as carbon emissions.  Several studies 

have found that technological progress has indeed been the main driver of reduced energy 

intensity over the last few decades (Henriques and Kander, 2010; Groot and Mulder, 2012; 

Voigt et al., 2014). Energy intensity is commonly used as a proxy for energy efficiency and 

refers to the amount of energy consumed per unit of GDP. According to Bonavita (2013), 

process automation is one of the most important drivers of raising energy efficiency in 

industrial production plants. Moreover, automation through for example cloud computing can 

also reduce energy consumption in non-industrial occupations (Schwab, 2016).  A recent 

study has concluded that almost fifty percent of all jobs are susceptible to automation and in 

fourteen percent of the jobs more than two-thirds of the tasks are easily automated 

(Nedelkoska and Quintini, 2018). The authors show that in Germany, there has already been a 

transition towards jobs less exposed to automation enabled by training that requalifies 

workers for such occupations. As argued by Autor (2015), continuous restructuring of jobs 

will take place due to technological progress. If the new task sets carried out by workers 

consist of less energy consuming activities, automation can contribute to emission abatement 

in the overall economy.  

As outlined by Barnett et al. (2017), the application of robots in production processes can 

affect energy consumption in several ways. In example, energy savings can be realized by 
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substituting traditional machine tasks with robots that are more efficient or the use of 

completely automated dark factories that do not require light and heating. However, increased 

application of robots can also expand energy intensity as automation instead of manual 

assembly in manufacturing processes can raise the energy inputs used in production processes 

(Barnett et al., 2017). Consequently, it is still uncertain whether process automation relieves 

the pressure on the environment or has a less beneficial impact than is generally assumed by 

proponents of automation, such as Gurney (2014). To my knowledge, no previous attempts 

have been made to quantify the environmental impact of automation. Hence, this paper is the 

first to explore the question whether automation can relieve environmental degradation 

through a reduction in energy intensity. Due to data limitations, changes in the labor income 

share will serve as a proxy to identify the presence of automation. Moreover, in order to 

account for energy intensity changes related to offshoring and include the energy 

consumption related to the production of automation equipment, complete value chains are 

analyzed. Consequently, an input-output model is appropriate to derive labor income share 

and energy intensity developments. Finally, this paper focuses at German manufacturing 

value chains, because the country is associated with high levels of automation.  

The remainder of this paper is structured as follows. Section 2 will discuss all the relevant 

literature related to automation and environmental degradation. Based on the literature, the 

following propositions are derived: (i) declining labor income shares are present in German 

manufacturing GVCs; (ii) the former is related to offshoring; and (iii) GVCs that conform to 

only proposition (i) are characterized by reduction in energy intensity. Section 3 explains the 

decision to focus on German GVCs into more detail and provides some background 

information regarding automation and energy intensity in the German economy. Moreover, 

section 4 describes the data used in the analysis and illustrates the interpretation of multi-

region input-output tables. All data is extracted from the World Input-Output Database. 

Subsequently, section 5 will introduce the input-output methodology based on Los et al 

(2015) and explains how the labor income shares and energy intensity levels are derived. 

Additionally, a simple regression model is introduced which serves to examine the existence 

of a correlation between labor income share and energy intensity developments. Section 6 and 

7, present and discusses the results from the input-output model and the regression analysis 

and the main results are as follows: (i) labor income share declined in nearly all GVCs and 

was not related to offshoring; (ii) energy intensity initially increased in all GVCs, but 

followed a steep downward trend after 2000; (iii) automation, proxied by labor income share, 
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was on average found to reduce energy intensity to a small extend; (iv) automation in foreign 

GVC stages was accompanied by a rise in energy. Finally, section 8 provides some 

concluding remarks, limitations and suggestions for future research.  

2. Theory and Previous Research 

As discussed above, the objective of this study is to provide a link between the literatures on 

automation and the field of environmental economics. Automation has been a widely 

discussed topic in terms of its impact on the labor force, however, its environmental 

implications have received very little attention so far. On the other hand, the energy 

economics literature has tried to quantify the impact of information and communication 

technologies (ICT) on energy and electricity consumption (amongst others Romm, 2002; Cho 

et al, 2007; Bernstein and Madlener, 2010; Saidi et al, 2015). Since automation technologies 

such as industrial robots and labor-saving software rely heavily on the use of ICT, evaluating 

empirical research from this field can provide useful insights into the expected effect of 

automation on energy use in production processes. Moreover, it is important to discuss the 

literature on international fragmentation of production processes as offshoring can affect the 

proxy for automation, which is the labor income share, in global value chains (GVCs) and as 

such it is difficult to disentangle the effect related to automation and international trade in 

intermediates.   

As such, this section will start by reviewing the theory and existing empirical work on 

automation. Hereafter, I will touch upon the literature on international fragmentation due to its 

capability to affect the measurement of automation, which is followed by a discussion 

regarding the presence of automation in the German economy. Finally, a review of the 

literature on the environmental impact of technological progress should provide a better 

understanding of how the adoption of ICT in production processes affects the environment, 

with a special focus on energy intensity.  

2.1 Automation 

Automation anxiety has been a topic of discussion since the first industrial revolution, as 

workers actively resisted against the employment of new machines that were designed to 

replace tasks previously carried out by manual labor (Brynjolfsson and Mcafee, 2012; 

Economist, 2015).  Although the body of literature on automation is still relatively new, the 

recent developments in the field of artificial intelligence (AI) have increasingly attracted the 

interest of economists and rekindled the discussion about the impact of automation on the 
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labor force. Before starting to review this strand of literature, it is important to clarify what 

the term automation comprises. First of all, the Cambridge dictionary defines automation as 

follows: ‘to make a process in a factory or office operate by machines or computers in order 

to reduce the amount of work done by humans and the time taken to do the work’. Another 

definition describes industrial automation as ‘the control of machinery and processes used in 

various industries by autonomous systems through the use of technologies like robotics and 

computer software’ (Rouse, n.d.). In other words, automation is adopted with the aim to raise 

the productivity of production processes and thereby replaces labor by capital in the form of 

machines and software. According to the International Society of Automation (n.d.), the 

application of automation technologies can benefit virtually all industries and names the 

transport equipment, food and pharmaceutical, chemical and petroleum, pulp and paper 

industries as some examples were automation is successfully applied.  

2.1.1 Measuring the Presence of Automation 

Even though automation technologies take over tasks previously performed by human labor, it 

has remained unclear whether it displaces or expands employment in the overall economy. As 

such, most of the existing literature on automation has mainly focused on answering this 

question. In mainstream economics, it is generally believed that there is a factor saving bias to 

technical change, meaning that less factor inputs are required to produce the same amount of 

output, which affects the relative factor prices and shares (Blaug, 1997). Consequently, how 

the prices and shares of labor and capital develop with respect to each other depends on which 

factor is saved. In turn, this implies that technical change can either expand the amount of 

labor embodied in the production process (labor augmenting) or raise the capital input 

component of the final output value of a good or service (capital augmenting). However, it 

should be noted that both labor- and capital augmenting technical change can occur at the 

same time and hence the direction of the change in labor income share is determined by the 

net effect of the change in capital and labor employed (see Lawrence, 2015). Based on this 

rationale, machine learning can thus be perceived as a form of capital augmenting technical 

change, since it raises the share of capital income by being a close substitute for human labor.   

A recent study by Acemoglu and Restrepo (2017) has investigated the relationship between 

automation and the local labor markets in the US. By the development of a model that allows 

robots to compete with workers, the authors show that automation can reduce the level of both 

employment and wages. Furthermore, regressing the change of employment and wages in 

local labor markets on their respective exposure to industrial robots reveals that wages and 
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employment levels are negatively affected by automation (Acemoglu and Restrepo, 2017). 

Since competition between man and machine reduces the price of labor and in addition 

replaces part of the human labor inputs with capital inputs, the labor income share in the total 

output value of a product or service is expected to decline. 30 years earlier, Leontief and 

Duchin (1986) already studied the impact of automation on employment over the period 1963 

– 2000. Based on their input-output model they estimated that the increased adoption of 

automation could result in labor savings of 10 percent over the upcoming 20 years. However, 

they predicted that due to the increased demand for investment in capital goods, at least 

during the initial stages of automation, the share of production workers in the labor force 

would remain stable. Most of the labor savings were expected to occur in middle-skilled 

clerical jobs. The existence of such skill biased technical change has later been confirmed by 

several studies (amongst others Goldin and Kats, 2007; Acemoglu and Autor, 2011; Autor 

and Dorn, 2013; Goos et al 2011, 2014; Michaels et al 2014; Frey and Osborne, 2017). As 

argued in these papers, a substantial part of displaced middle-skilled workers seek 

employment in lower-skilled professions, which drives down the low skilled wages due to 

increased competition. If this is the case, the labor income share in the economy can fall as the 

price of labor declines relative to the price of capital. 

Multiple scholars have argued that recent technological developments, especially within the 

field of AI, have increased the amount of jobs that are at risk of being automated (amongst 

others Brynjolfsson and McAffee, 2011, 2012; Schwab, 2016). This is due to the development 

of machines, software and robots that provide close to perfect substitutes for labor at different 

skill levels and the fear of automation is thus no longer restricted to the middle- and low-

skilled routine based tasks (Economist, 2016; Prettner, 2016; Acemoglu and Restrepo, 2017; 

Manyika et al., 2017).  Hence, increased application of automation technologies throughout 

the entire economy yields the capability to replace labor without generating sufficient new 

tasks for the displaced workers as the autonomously operating technologies do no longer 

require the involvement of human labor (Prettner, 2016). Put differently, ‘automation 

competes with labor and therefore its widespread adoption reduces wages, while, at the same 

time, the income that automation generates is channeled to the capital owners’ (Prettner, 

2016: pp 9). As such, the growing application of robots and ICT in production processes is 

expected to increase the economy wide share of capital income at the expense of labor 

income, which is according to Prettner consistent with the declining labor income shares 

observed in most developed countries throughout the last decades.  
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As outlined above, the phenomenon of automation has been measured by economists in 

various ways. First of all, Acemoglu and Restrepo (2017) and Dauth et al (2017) include a 

direct measure by employing a model that accounts for automation based on the exposure of 

local labor markets in the U.S. to industrial robots. Unfortunately, the required data is not 

publicly accessible and displacement of jobs can also occur with the introduction of 

automated software and as such fails to capture the entire automation effect. Apart from the 

aforementioned studies, automation is usually accounted for by indirect measures. In 

example, the literature on skill-biased technical change uses a Routine Task Intensity (RTI) 

index as a proxy for automatability of particular occupations. Moreover, Prettner (2016) 

argues that a declining labor income share can serve as a proxy for automation. The 

theoretical foundation of the relationship between automation and a declining labor income 

share discussed in the previous paragraph has been empirically investigated by multiple 

scholars. For example, Karabarbounis and Neiman (2013: pp 3) find that the net and gross 

labor shares declined in most countries around the world during the last four decades and 

show that the simultaneous reduction in both labor share measures is pointing towards 

‘technology-driven changes in the relative price of investment goods’. Such investment goods 

can thus include capital augmenting ICT and industrial robots.  Furthermore, Prettner (2016) 

has incorporated automation in the form of industrial robots into a standard Solow growth 

model and consequently shows that amongst others a unique share of savings is invested in 

automation, which in turn maximizes the long-run growth of the economy. Moreover, this 

model shows that an increase in the stock of robots reduces the labor income share of the 

economy. Using parameter values obtained from the existing literature and the World Bank, 

plus the assumption that between 1970 and 2007 share of industrial robots in the capital stock 

of advanced countries has risen from zero to 2.25 percent, the model estimates a 5.5 

percentage point decline in the US labor income share, which is similar to the observed labor 

income share reductions in the the data. This is only 14 percent of the effect found by 

Karabarounis and Neiman, but Prettner acknowledges that this estimate is likely to be a lower 

bound since industrial robots comprise only a fraction of the automation technologies 

employed in the economy. Finally, Graetz and Michaels (2015) confirm that the period 1993-

2007 was characterized by an intensification in the use of industrial robots, which was found 

to be negatively related to the labor income share.   

In contrast, Lawrence (2015) states that the previously mentioned studies assume that labor 

and capital are gross substitutes and as such result in capital deepening. However, he argues 
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that the elasticity of substitution between capital and labor in the US was actually lower than 

one, which would mean that on average capital increases have a labor-augmenting rather than 

declining effect. In contrast, he finds that in the US the labor income share declined due to the 

complementary nature of the two factors, which occurs when a 1 dollar reduction in capital is 

accompanied by a decline in labor that is larger than 1 dollar. Hence, explaining the labor 

income share changes depends on the elasticity of substitution between labor and capital. 

Mućk (2017) confirms that this elasticity of substitution in developed economies usually takes 

a value below one, which means that on average labor and capital are gross complements. 

Consequently, it is difficult to identify whether labor income share reductions should be 

attributed to automation or a decrease in the capital inputs employed.  

2.1.2 International Production Fragmentation 

In the previous subsection the literature on automation in the field of economics has been 

reviewed. However, these studies have mainly focused on measuring automation and its 

impact on the labor force at the country or state level. As outlined before capital and labor can 

be gross complements or substitutes, which is dependent on the nature of the capital good.  

However, declining labor income shares in GVCs can also relate to offshoring of production 

stages to low wage economies. The basic intuition behind this is as follows. Baldwin and 

Evenett (2011) argue that the ICT revolution has enabled companies to perform different 

stages of a production process in distinct geographical locations and consequently value 

chains have become increasingly internationally fragmented. The existence of such 

fragmentation has been confirmed by Los et al. (2015) as they show a rise in the value added 

generated outside the country-of-completion for most manufacturing production chains since 

1995. The decision to offshore certain stages is often related to the lower production costs 

associated with the foreign location. Due to the low wages in developing countries, low-

skilled labor intensive processes are increasingly performed overseas, whereas the higher 

value added stages that generally require more skilled workers remain within the home 

country (Baldwin and Evenett, 2011). Hereby, the labor income share in an entire value chain 

can decline when the average labor compensation falls as a result of offshoring.   

However, Fröhm et al. (2008) state that increased competition from low wage economies has 

given rise to the adoption of automation technologies within advanced economies. In similar 

vein, Bloom et al (2011) find that trade induced technical change, particularly caused by 

import competition from China, has stimulated innovation and raised total factor productivity 

in surviving European firms. If companies decide to keep their routine based, low-skilled 
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tasks within the home country and replace human labor by industrial robots, the labor income 

share in domestic stages of a production chain reduces as well. In example, both the US and 

Europe have seen a substantial rise in robot density (the amount of industrial robots per 

thousand workers) between 1993 and 2008 (see figure 2.1). Hence, labor income share 

reductions in the overall GVC can reflect the presence of automation for these countries. 

Turning to Germany, a country characterized by a very high robot density and a large 

manufacturing employment share compared to other developed countries (with the exception 

of Asia), displacement of workers seems to be less of a worry than for the US (Restrepo and 

Acemoglu, 2016; Dauth et al, 2017; IFR, 2017).  However, Dauth et al (2017) show that this 

is mainly due to the fact that new entrants in the labor market find jobs in services rather than 

in manufacturing and even though the currently employed manufacturing workers are not 

fired, they will see their wages decline. Finally, based on the adoption of a model similar to 

that of Acemoglu and Restrepo (2017) the authors conclude that ‘robots seem to have 

contributed to the declining labor income share, which has been noted in many countries and 

which is perhaps among the most important economic challenges for the future’ (Dauth et al, 

2017: pp 42).  

Hence, focusing on the production chains of manufacturing industries is likely to reveal a 

declining labor income share over the period 1995-2008. However, we do need to consider 

that the effects can be partially canceled out as for example activities related to management 

functions are included within these manufacturing supply chains, which are complemented by 

technology and thus can raise income in the presence of automation. This is in line with the 

earlier mentioned simultaneous occurrence of labor-augmenting and capital-augmenting 

technological change that was proposed by Lawrence (2015) and as such the magnitude of the 

impact of automation on the labor income share might be understated.  
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Figure 2.1 - Industrial Robot Density in Europe, Germany and the US 

 

Source: Dauth et al, 2017 

The above discussion of the literature on automation and international fragmentation of 

production processes has shown that it is difficult to identify the decline in labor income share 

specifically related to automation since other factors such as offshoring can also affect labor 

income shares in GVCs. Direct measurement of this automation effect is only possible for the 

part of automation related to industrial robots as ICT capital has heterogeneous effects on the 

labor income share (Dauth et al, 2017). However, the IFR data on industrial robot exposure is 

not publicly available and as such the labor income share will serve as a proxy for automation, 

although the automation effect might be understated. Using a multiregional Input-Output 

model can, however, provide insights whether the labor income share adjustments in a GVC 

are possibly related to offshoring to low wage countries. In such a situation we will observe a 

rise of value added generated by foreign stages in the GVC, but at the same time the labor 

income share of the foreign stages will fall as a result of lower prices of the factor input labor. 

In contrast, when the foreign value added share of the GVC remains more or less stable, but 

the labor income share of the entire production chain falls, this provides a strong indication 

for the presence of automation. Because Germany serves as a good example of a developed 

country with a large manufacturing sector which is highly exposed to automation, the analysis 

in this paper will be focused on German manufacturing industries.  
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2.2 The Environmental Impact of Automation 

Now that the literature on automation has been reviewed, it is time to turn to the theory and 

empirical research from the field of environmental economics. As was briefly touched upon in 

the first section of this paper, it has generally been assumed that technological progress yields 

the capability of reducing environmental degradation. As explained by Mäler (2011), an 

economy without technological progress cannot produce beyond the point where natural 

resources are depleted. Since natural resources are scarce, extending this horizon is only 

possible by technical progress through (i) innovations related to new ways of producing 

energy at low constant cost and that enable the use of waste as a source of energy or (ii) 

innovations that reduce the amount of resources that are embodied in goods and services. The 

latter can be related to the impact of automation as the use of industrial robots can have 

beneficial environmental effects due to increased efficiency in production processes (IFR, 

2017). This section will further explore the relation between technological development in the 

form of ICT capital and energy consumption in order to get a better understanding regarding 

the expected direction of the environmental impact of automation.   

2.2.1 Environmental Kuznets Curve 

First of all, the Environmental Kuznets Curve (EKC) hypothesis refers to relationship 

between economic development and environmental degradation and proposes that 

environmental pressure in terms of quantity and intensity rises from early stages of 

development until a certain level of income per capita is reached, after which the pressure on 

the environment starts to follow a downward sloping trend (Panayotou, 1993; Stern et al, 

1996; Dinda, 2004). This inverted-U-shaped relationship is based on the by Kuznets (1955) 

proposed relationship between income inequality and economic development, which proposes 

a rise in income inequality up to a certain income level after which income inequality starts to 

fall.  

According to Panayotou (1993) there are multiple theoretical explanations underlying the in 

relationship presented in figure 2.2. First of all, the following five factors determine ‘the state 

of natural resources and the environment: (i) the level of economic activity and the size of the 

economy; (ii) the sectoral structure of the economy; (iii) the vintage of technology; (iv) the 

demand for environmental amenities; and (v) the conservation and environmental 

expenditures and their effectiveness’ (Panayotou, 1993: pp 2). With respect to the subsequent 

analysis, factor (ii) is relevant for hypothesizing the environmental impact of automation as it 

depends on the sectoral structure how much room there is for technological progress to reduce 
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environmental pressure. In example, an industrial economy can realize large environmental 

improvements as heavy manufacturing is often characterized by high energy intensity, 

whereas a service economy is already performing less energy intense activities. Additionally, 

factor (iii) is relevant as automation technologies are at forefront of technological progress 

and as such manufacturing industries that adopt industrial robots at an increasing rate are 

expected to see substantial improvements in energy intensity levels compared to the ones that 

are operating below the technological frontier.   

Figure 2.2 - Environmental Kuznets Curve 

 

 Source: Panayotou (1993) 

Although several studies have shown that the EKC shape holds for some pollutants at the 

country level, there has been widespread criticism that questions the empirical relevance of 

this theory [see Lieb (2003) for a survey]. One very important limitation is the failure to 

account for international trade and as such offshoring of energy intense manufacturing 

activities can be a major reason of the reduced environmental degradation in developed 

economies. Of course this does not make a difference on the global level and as such this 

paper considers the developments for complete production chains, which means that rises in 

environmental degradation through offshoring are incorporated.  

2.2.2 Energy Intensity  

Turning to the evaluation of the environmental impact of automation, I will first define the 

concept of energy intensity and then discuss why this will serve as the unit of measurement in 

the subsequent analysis. First of all, the term energy intensity refers to the quantity of energy 

required to produce one unit of output (Kander et al., 2013). As such energy intensity (i) is 

obtained by the following equation where 𝐸𝑖 represents total energy input and 𝑌 is GDP:  
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 𝑖 =
𝐸𝑖

𝑌
     (1) 

Energy intensity is the inverse of energy productivity, meaning that a more energy intense 

economy is characterized by lower energy productivity. According to Kander et al. (2013), 

adjustments in energy productivity can take place due to the following three, not mutually 

exclusive, developments: (i) technological progress; (ii) changes in general knowledge and 

competence; and (iii) structural change. It has often been argued that the decline in energy 

intensity observed in for example the European Union (see Figure 2) is caused by a transition 

towards a more service oriented economy. However, based on a shift-share and logarithmic 

mean Divisia index (LMDI) decomposition analysis Henriques and Kander (2010) found that 

this assumption is invalid as structural change only accounts for a small share of the 

reductions in energy intensity. Instead, they conclude that particularly in developed OECD 

countries the manufacturing sector delivered the largest contribution to the decline in energy 

intensity. Earlier, Kander (2005) argued that the observed downward pressure on energy 

intensity in the Swedish manufacturing sector was enabled by ICT developments as (i) 

industrial structures have become lighter due to the application of microelectronics; (ii) 

microelectronics in the form of process computers have raised the efficiency of material and 

energy flows; and (iii) microelectronics have reduced the energy consumption of households. 

The last reason can of course be questioned as ICT has probably raised the amount of 

electricity consuming appliances within households. Later on, I will return to the importance 

of ICT for automation of production processes and their expected effect on energy intensity. 

Apart from energy intensity, the level of CO2 emissions produced in the economy is driven by 

population and income per capita growth, which both affect the output level, and changes in 

CO2 intensity due to fuel switching (Henriques and Borowiecki, 2017). Hence, changes in the 

level of CO2 emissions can be decomposed according to the Kaya-identity in order to 

determine the drivers of CO2emissions (Kaya, 1989; Kander et al, 2013; Henriques and 

Borowiecki, 2017): 

𝐶𝑂2 =  
𝑌

𝑃
∗ 𝑃 ∗

𝐸

𝑌
∗

𝐶𝑂2

𝐸
    (2) 

Here, the first two terms reflect the scale effects related to changes in income per capita and 

population, respectively. Moreover, the third term is the energy intensity effect as presented in 

equation (1) and finally the last term represents the carbon intensity of energy measured as the 

emissions per unit of energy consumed. Kander et al. (2013) show that over the period 1870-
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2008 both scale effects have contributed to an increase in carbon emissions in Europe. 

Especially the impact of income per capita growth was an important determinant as it 

accounted for a 1.71 percent rise in CO2 emissions annually, whereas the population growth 

effect was slightly less than a third of this figure. In contrast, the energy intensity effect 

accounted for a reduction in CO2 emissions of 0.85 percent per year, whereas the carbon 

intensity effect reduced CO2 emission by a negligible amount (0.032 percent). Consequently, 

it can be argued that energy intensity has been the most important driver of CO2 reductions in 

Europe.  

Figure 2.3 - Energy Intensity in the European Union 1990 – 2014 

 

Source: Worldbank Data (2018) 

As discussed earlier, Henriques and Kander (2010) found that energy intensity reductions 

were not substantially driven by structural change. Hence, it can be assumed that 

technological change within sectors, manufacturing in particular, has been the main source of 

this observation. However, it should be noted that sub-sectoral structural changes, such as 

shifts towards the production of different manufactured goods, are not separately accounted 

for as all industrial sectors are aggregated. A decomposition with greater sectoral detail by 

Groot and Mulder (2012) shows that the larger extent of energy intensity reductions between 

1970 and 2005 are indeed related to (technology-driven) efficiency improvements within 

sectors. However, due to further disaggregation of the manufacturing and service sectors that 

were used by Henriques and Kander (2010), structural shifts that otherwise would have been 

attributed to within sector efficiency improvements are now accounted for.  Hence, they find 

that for the most recent period structural changes have become increasingly important as they 
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explained 42 percent of the energy efficiency reductions over 1995-2005 compared to just 22 

percent over 1980-2005. In similar vein, Voigt et al. (2014) make use of the 34 different 

sectors contained in the World Input-Output Database to show that in most of the 40 countries 

under evaluation, energy intensity reductions were indeed driven by technological change 

rather than structural change. Especially in the case of Canada, Germany, France, Spain, 

China, India and Poland reductions in energy intensity were strongly related to the 

employment of more efficient production technologies. However, the US, Japan and Italy saw 

their energy intensity decline based on shifts toward less energy intensive sectors.   

However, one important drawback of the above mentioned papers is that they do not account 

for international trade. As a consequence, the identified intra-industry efficiency gains could 

also be related to specialization of industries in less energy intense stages of production 

processes, whereas the ones with high levels of energy consumption per unit of output are 

outsourced to developing countries. A large strand of literature has aimed to answer the 

question where emissions are generated by examining the emissions embodied in trade based 

on different types of input-output models (for a review see Wiedmann et al, 2007). On the one 

hand, such models allow for the determination of emissions embodied in production processes 

in a particular country, whereas on the other hand they can account for the emissions 

produced globally to satisfy the consumption of final goods in that same country. Comparing 

the production- and consumption-based perspectives can then identify whether countries are 

net importers or exporters of emissions. Hence, the consumption based perspective can reveal 

if a reduction in carbon emissions produced locally is offset by a rise in emissions produced 

elsewhere, which is referred to as ‘carbon leakage’ (Botier, 2012). This is important in the 

light of the climate change debate, because the decline in energy intensity observed for most 

developed countries could thus be partially caused by offshoring ‘dirty’ production stages, 

which is empirically supported by several studies (see Davis and Caldeira, 2010; Knight and 

Schor, 2014). 

2.2.3 ICT and Energy Intensity  

Now that we have established that most of the energy intensity reductions observed in Europe 

over the past decades were to the largest extend explained by technological progress, I will 

devote some attention to the relationship between technological change in the form of ICT 

capital and energy consumption. Since ICT is an important component of automation 

technologies [see Schwab (2016) for an overview of ICT applications], the literature on the 
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relationship between ICT and the environment can help us to gain useful insights into the 

expected impact of automation on energy intensity.  

It is important to acknowledge that the increased application of ICT can both be energy 

expanding and energy saving and hence, the net effect is determined by the balance between 

these contrasting forces (Mattern et al, 2010; Kander, 2013). According to Kander (2013), the 

former effect is said to occur through the large amount of resources required to produce ICT 

equipment such as micro-chips. Moreover, expansion of energy consumption can arise as the 

wide application of electrical appliances in the economy raises the aggregate energy 

consumption. As such, production processes may become more energy intense as they require 

more electricity to power their equipment. On the other hand, Kander (2013) argues that 

energy savings arise through more energy efficiency created by the application of ICT in 

production processes.  A rise in overall energy consumption even though technological 

progress has made production more energy efficient is more commonly referred to as the 

rebound effect (Plepys, 2002; Gossart, 2015). As outlined by Gossart (2015) the price 

reductions of ICT have increased its application as an intermediate input in production 

processes and since ICT is energy consuming, this could increase the total level of energy 

consumption in the economy. We can extend this reasoning to automation technology. 

Consequently, we cannot simply assume that increased adoption of automated processes 

always contributes to a decline in energy intensity. It might be the case in sectors that are 

initially characterized by high energy intensity, but could be the opposite when workers are 

replaced by machines in less energy intense sectors. 

Thus far empirical investigations of the relationship between ICT and energy consumption 

have not reached consensus on the direction of the effect. In example, Cho et al. (2007) show 

that for most manufacturing sectors in South Korea ICT investments have increased energy 

consumption in the form of electricity by increased use of electricity at the expense of labor. 

Moreover, Bernstein and Madlener (2010) investigated the electricity intensity in five of the 

largest manufacturing industries (chemical, food, metal, pulp & paper and textile) in 8 

European countries, including Germany. Their overall findings imply that ICT capital 

diffusion reduced the electricity intensity of production in all sectors, but for computers and 

software systems the direction of the effect was different across industries. On the other hand, 

increased ICT applications are found to reduce energy intensity in the US (Romm, 2002; 

Laitner and Ehrhardt-Martinez, 2008). Moreover, Rexhaueser et al. (2014) evaluated the 
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environmental impact of ICT for 27 industries in 10 OECD countries and find that ICT capital 

significantly reduces energy demand. 

However, these empirical studies do not account for trade and as such, a rise in energy 

consumption through the production of ICT equipment might not show up in the effect when 

ICT capital is imported. Similarly, the previously mentioned structural change towards less 

energy intensive production sectors in advanced economies is usually accompanied by 

offshoring of more energy intensive production to developing countries (Bernstein and 

Madlener, 2010). Such measurement issues can be illustrated by the following example. 

According the IFR (2017), Germany ranks as the fifth robot dense country and as such is one 

of the largest buyers of industrial robots in the world. If these robots or parts of them are 

produced abroad, looking at the energy intensity of manufacturing industries within Germany 

does not include the potential increases in energy consumption related to the production of 

this equipment. Now consider the automotive industry which employs large amounts of 

industrial robots. If we would only look at the energy intensity of production stages that are 

using automated equipment, such as the assembly of a car, we fail to account for the upstream 

stages of the supply chain that deliver robots to the car manufacturer. Consequently, 

evaluating the energy intensity changes of the entire GVC is a better way to evaluate whether 

automation is in net energy expanding or saving. An Input-Output model can be used to 

derive the energy consumption levels required by all production stages to produce a particular 

level of final goods from any country-industry combination. This method will be further 

explained in sections 3 and 4.  

2.3 Propositions: Automation and Energy Intensity in GVCs 

Since the aim of this paper is to provide a link between the literature on automation and 

environmental economics, the above reviewed theory and empirical research is used to 

hypothesize the relationship between automation an energy intensity. In order to do so, I will 

first evaluate whether the following two propositions hold to identify the presence of 

automation. 

Proposition 1: The labor income share of German manufacturing GVCs has decreased 

over the period 1995 – 2008. 

Proposition 2: Labor income share reductions of German GVCs can be explained by 

offshoring to low wage economies.  
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If only proposition 1 is confirmed, the reductions in the labor income share are most likely 

caused by capital deepening and hence point towards the presence of automation. However, if 

both proposition 1 and 2 are confirmed, the labor income share reductions can also relate to 

lower labor costs associated with offshoring and as such the automation measure might be 

biased.   

After the first two propositions have been evaluated, I will turn to the environmental aspect of 

the analysis by evaluating the changes in energy intensity observed in German manufacturing 

GVCs. Since the theory and empirical research on the effect of ICT on energy intensity is 

divided, the final proposition takes the position of the positivist side. 

Proposition 3: For the GVCs that conform to only proposition 1, the energy intensity of the 

GVC will decline.  

However, due to the rebound effect it might well be that the findings will show opposite 

effects. The subsequent analysis will reveal the direction of the net effect.  

3. Background Information on the German Economy 

3.1 Sectoral Structure  

As mentioned earlier, international fragmentation of production processes has led to the 

emergence of global value chains (GVCs). Consequently, the production of a particular final 

good does not only generate labor and capital income in the country-of-completion, but also 

abroad. According to a study by the OECD (2015), German value chains are mostly 

fragmented across European countries, but have started to incorporate upstream suppliers 

from China to an increasing extend as well. One of the key findings from this study is that 

‘German manufacturing drives Germany’s integration within global value-chains, with the highest 

export orientation of manufacturing among the G7 and BRIICS economies, but services play an 

important role too, contributing 37.5% to the value of all manufactured exports in 2011’ (OECD, 

2015:pp.1). Besides high foreign demand for manufactured goods from German industries, the country 

also has access to a large domestic market. 
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Figure 3.1 - Manufacturing VA share of GDP in Europe (2010) 

 

Source: Author’s calculations based on World Input-Output Database, June 2017 

Looking at figure 3.1 reveals that manufacturing industries are still very important for the German 

economy as most of the Southern regions are characterized by a manufacturing value added share of 

more than 25 percent, which is exceptionally high compared to other European countries (with the 

exception of Ireland and some Central European countries). These high shares are especially visible in 

Baden-Württemberg and Bayern, which are both seen as one of Europe’s most competitive industrial 

regions which is mainly related to the importance of the following manufacturing industries: 

automotive, electrical engineering, mechanical engineering, automation and robotics (European 

Commission, 2018).  This manufacturing value added can be either generated by labor or capital 
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income. According to the Economist (2017), Germany has been able to maintain its position as a large 

manufacturer through ‘innovative engineering’, which has brought off-shored production stages back 

to the country. Due to such developments, it is likely that the capital income share of value added has 

increased with respect to the labor income share. As argued before, this can affect the energy 

efficiency of production chains in two ways through process optimization on the one hand and the 

increased application of energy consuming equipment on the other. Therefore, it is interesting to 

evaluate how the labor income share and the energy intensity in German manufacturing GVCs have 

developed over time.  

3.2 Automation in German Industries 

The previously discussed fourth industrial revolution, also referred to as ‘Industry 4.0’, has recently 

gained support of an increasing amount of organizations, which include the World Economic Forum, 

the European Parliament, McKinsey and Deloitte (Prakash, 2017). The developments in the field of 

artificial intelligence will be the driving force in this ‘next era of industrialization’ and Germany is 

expected to take a leading position in the transformation of industrial production since it has been at 

the forefront of both production and adoption of automated technologies (Prakash, 2017; Dauth et al., 

2017). Dachs et al. (2017) have found a significant positive correlation between the application of 

Industry 4.0 enabling technologies and the probability of reshoring in German manufacturing firms, 

which they attribute to the rise in factory site automation and productivity levels associated with these 

technologies. In turn, this implies that re-shored production stages are becoming more capital intense.   

According to a report by the International Federation of Robotics (2017), Germany is the third most 

automated country in the world, ranking behind the Republic of Korea and Singapore. The German 

robot density, measured as the amount of industrial robot installations per 10,000 manufacturing 

workers, has reached 309 units in 2016, which is more than 4 times as large as the global average of 

74 units (IFR, 2017). Additionally, the IFR (2017) states that compared to Asia and the Americas, 

Europe was the region with the highest average robot density in 2016. Since German manufacturing 

GVCs were found to be mostly dispersed across European countries (see Los et al., 2015; OECD, 

2015), increased automation might not only have taken place within domestic production stages, but 

also in the upstream stages performed abroad. Most of the worldwide robot installations in 2016 were 

attributed to process automation in the automotive industry, which accounted for 1,131 robot 

installations per 10,000 workers in the German car manufacturing industry. Additionally, general 

industry in Germany saw their robot density rise to 181 units per 10,000 workers.  Dauth et al. (2017) 

indicate based on data from the IFR that the following German manufacturing industries saw the 

largest increases in robot density per 1,000 workers over the period 1994-2014:  

• Leather, Leather and Footwear with an average increase of about 35 robots; 

• Pulp, Paper and Paper Products with an average increase of about 15 robots;  
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• Rubber and Plastics with an average increase of about 15 robots; 

• Electrical Equipment with an average increase of about 20 robots; 

• Transport Equipment with an average increase of about 80 robots; 

• Manufacturing, Nec. with an average increase of about 40 robots.  

It should be noted that the above rise in industrial robots does not include automation of processes 

related to ICT enabled software and does not account for increased automation in foreign production 

stages of German manufacturing firms, which will both be incorporated in the subsequent analysis.   

3.3 Energy Intensity Developments 

Since 1995 there has been a voluntary agreement between the German industrial sector and 

the federal government with the aim to substantially reduce CO₂ emissions. In order to realize 

this goal, policies such as promoting energy efficiency improving investments have entered 

into force (IEA, 2013). Based on these efforts, a reduction in energy intensity in German 

manufacturing over the period 1995-2008 can be expected. Turning to the developments in 

energy consumption, the German Federal Statistical Office shows that domestic primary 

energy consumption was by far the largest in manufacturing sectors and has on average 

increased by 0.6 percent between 2005 and 2015 whereas energy consumption in service 

activities declined by 0.8 percent over the same period (Destatis, 2018). This was mainly 

caused by large rises of energy consumption in the following industries: wood and products of 

wood and cork, coke and refined petroleum products, rubber and plastics and other non-

metallic mineral. However, large reductions are observed for textiles, paper and paper 

products, and other transport equipment.  

However, a rise in energy consumption can also be related to a rise in output produced by an 

industry and as such energy intensity reveals more about rising efficiency of production 

processes with respect to the use of energy inputs. Martínez (2009) shows that between 1990 

and 2005 energy consumption in the German industrial sector grew by 2.3 percent, while 

simultaneously energy intensity declined by 12 percent. Based on a decomposition analysis 

she finds that German industry is overall more capital intensive than Colombian industry, 

whereas energy intensity in the former is lower. Hence, this implies that the adoption of more 

advanced technologies reflected by higher capital intensity is an important driver of energy 

intensity. On the other hand, more capital intensive industries within Germany were found to 

be more energy intensive than less capital intensive ones. However, this could be explained 

by the fact that energy intense manufacturing industries, initially require more capital goods 
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in their production processes. In this case, capital deepening does not necessarily result in 

rising energy intensities.   

Schlomann et al. (2015a) show that the energy efficiency improvements in German 

manufacturing after 2000 were mainly related to structural changes towards less energy 

intense manufacturing, such as transport equipment production. Similar results are presented 

in the report on German energy efficiency by ABB (2012). Furthermore, between 1992 and 

2010 an annual reduction in energy intensity of only 0.2 percent was due to within sector 

improvements and that for the latter part of the period the non-structural element was even 

positive (see figure 3.2). As argued by Schlomann et al. (2015b), this rise in energy intensity 

within sectors could have been an effect of underutilization of production facilities after 2007.  

Figure 3.2 - Trends in the energy intensity of manufacturing and structural effect 

 

Source: ABB energy efficiency report (2012) 

Moreover, it should be noted that these statistics only account for energy intensity of 

manufacturing activities itself, whereas the subsequent analysis looks into the energy intensity 

of an entire value chain in order to account for the energy efficiency changes of upstream 

linkages that produce automation equipment and to prevent overstating of efficiency 

improvements in the country-of-completion related to off-shoring of energy intense stages. 

Considering the previously discussed rise in foreign value added by other European countries 

identified by Los et al (2015), efficiency developments in the rest of the EU can also affect 

energy intensity in German GVCs. Schlomann et al. (2015b) show that the EU average energy 

intensity reduction of manufacturing at constant structure (so within sector improvements) 

between 2000 and 2007 was just below 2 percent, whereas the structural change component 

amounted to approximately 0.6 percent. Consequently, the energy efficiency of German 



 

26 

 

manufacturing GVCs might decline due to less energy intense production of intermediate 

inputs in other EU countries.  

4. Data 

As outlined before, the imperative of this paper is to examine the environmental impact of 

automation in German manufacturing GVCs, meaning that Germany is the country-of-

completion. Due to the data limitations, direct measurement of automation is not possible. 

Instead, labor income share developments will serve as a proxy for automation, since both 

theory and empirical evidence suggest that automation affects the labor income share. 

Moreover, the environmental impact of automation will be measured by changes in energy 

intensity as this was found to be the main driver of CO2 reductions in Europe 

In order to determine the changes in labor income share of value added and energy intensity 

for the GVCs of 14 German manufacturing industries over the period 1995-2008, I make use 

of the world input-output tables (WIOTs) from the 2013 release of the World Input-Output 

Database (Timmer et al., 2015). The WIOD also covers the years 2009 - 2011, but these are 

not considered in the analysis as the start of the Great Recession might bias the results 

through underutilization of production facilities, which can cause energy intensity to rise. The 

WIOTs contain bilateral trade data on 35 different industries in 40 different countries and an 

additional region that is called ‘rest of the world’, which contains estimated data for the 

remaining part of the world economy. Most of the industries are at the two-digit ISIC rev.3 

level and include agriculture, mining, construction, utilities, 14 manufacturing industries, 

telecom, finance, business services, personal services, eight trade and transport services 

industries and three public services (see Appendix A).  

Since the WIOTs only contain data on trade flows and value added expressed in millions of 

current US dollars, additional information is needed to determine the changes in labor 

compensation and energy consumption. Data on labor compensation is drawn from the socio-

economic satellite accounts (Timmer et al., 2015) and data on energy use is taken from the 

environmental satellite accounts, which are also constructed for the WIOD (Genty, 2012). The 

dataset contains information on both gross energy use and emission relevant energy use. The 

difference between the two indicators is that gross energy use includes the total amount of 

energy inputs required to produce a particular level of output, which means that when we look 

at the final production stage all energy inputs of the upstream stages are included and that 

emission relevant energy use only accounts for the energy inputs related to a particular 
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production stage. Using the former measure to evaluate the energy use of an entire GVC 

results in double counting of emissions. Consequently, the subsequent analysis uses the 

emissions relevant energy use. Such data is available for all regions including ‘rest of the 

world’ and is expressed in terajoules (TJ), which can be directly used in combination with the 

WIOTs expressed in millions of US$. 

On the other hand, the labor compensation is initially expressed in millions of local currency 

units and as such is not directly compatible with the WIOTs. The WIOD provides a 

supplementary document containing the exchange rates that have been used to transform all 

bilateral trade data in the WIOTs into their respective US$ values. Consequently, I have 

applied these exchange rates to express the labor compensation data in millions of US$. 

Another problem for the subsequent input-output analysis is that there is no labor 

compensation data available for the ‘rest of the world’ region (RoW). To counter this issue, I 

have estimated the values for RoW as follows. First, I took the average labor compensation 

and value added levels over all country-industry combinations other than RoW. Subsequently, 

dividing the average labor compensation by the average value added provides the average 

labor income share. Now the labor compensation in the 35 RoW industries are determined by 

multiplying the value added levels with the average labor income share for each year.  

Table 4.1 - A Stylized World Input-Output Table (adapted from Los et al., 2015) 

 Intermediate Inputs 

(n columns per country) 

Final Demand 

(one column per country) 

Total 

Output 

        1         …        N        1         …        N  

n industries, country 1 

             ... 

n industries, country N 

 𝐙11  𝐙1. 𝐙1𝑁

𝐙.1 𝐙.. 𝐙1𝑁

  𝐙𝑁1   𝐙𝑁.  𝐙𝑁𝑁

 

 𝐲11 𝐲1.  𝐲1𝑁

𝐲.1 𝐲.. 𝐲.𝑁

  𝐲𝑁1   𝐲𝑁.   𝐲𝑁𝑁

 

 𝐱𝟏

𝐱 .

  𝐱𝑵

 

Value Added (𝐰1)′ (𝐰.)′ (𝐰𝑁)′   

Total Output (𝐱1)′ (𝐱 .)′  (𝐱𝑁)′   

  

A stylized example of a WIOT is presented in table 4.1 in order to provide some intuition of 

how these tables can be employed for the determination of value added, labor compensation 

and energy use in GVCs. First of all, it can be observed that a distinction is made between 

demand for intermediate inputs (presented by matrix Z) and final goods and services 

(presented by matrix Y). This separation is characteristic to input-output models, as it allows 

for the determination of domestic value added versus foreign value added generated in a 
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GVC, since the total value added embodied in final goods cannot be fully attributed to the 

country-of-completion. The most important feature of such a method is the incorporation of 

value added generated by upstream suppliers through input-output linkages. Consequently, 

the use of WIOTs enables the determination of the labor income share of value added in all 

stages of the production process. Moreover, the ability to identify the location where 

intermediate inputs are produced, at home or abroad, can reveal useful information about the 

causes of labor income share changes as has been discussed in the previous section.  

To further clarify the difference between intermediate inputs and final demand, I will now 

provide an illustration of how the elements in Figure 3.1 should be interpreted. Both the 

intermediate and final demand matrices Z and Y consist of multiple smaller ‘blocks’ that 

contain matrices and vectors, respectively.1 For example, matrix 𝐙1𝑁 represents an n x n 

matrix and its typical element 𝑧𝑖𝑗
1𝑁 indicates the delivery of intermediate inputs from industry i 

in country 1 to industry j in country N. In example, 𝑧𝑖𝑗
1𝑁 can thus refer to the inputs used by 

the ‘Transport Equipment’ industry in Germany, which are produced by the ‘Electrical and 

Optical Equipment’ industry in Japan. It is important to keep in mind that i,j = 1,..., n, where n 

identifies the number of industries. As previously mentioned, the WIOTs used for the 

subsequent analysis have 35 industries, so i,j = 1,…,35 throughout the remainder of this 

paper. Because matrix 𝐙1𝑁 represents the intermediate inputs used by the industries in country 

N that are produced by industries located in country 1, this matrix consists of the exports from 

country 1 to country N. Moreover, matrix 𝐙11 refers to the intermediate inputs used by 

industries in country 1 that were also produced in this particular country, so that typical 

element 𝑧𝑖𝑗
11 represents the inputs produced by industry i in country 1 used by industry j in 

country 1.  

Now shifting focus to the final demand matrix,  𝐲1𝑁 represents an n-element vector and its 

typical element  𝑦𝑖
1𝑁 indicates the consumption in country N of final goods and services 

produced by industry i in country 1. Note that n will refer to the number of industries 

throughout the remainder of this paper. Included in the final demand vector 𝐲 are the 

following four final use categories: final consumption expenditure by households and non-

profit organizations; final consumption expenditure by the government; net capital formation; 

and inventory adjustments. To illustrate,  𝑦𝑖
1𝑁 can thus refer to the total German demand for 

                                                           
1 Matrices are indicated by bold capital letters, whereas bold lower case letters represent vectors. All scalars that 

represent a specific matrix or vector element are identified by italicized lower case letters.  
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final goods produced in the ‘Mining and Quarrying’ industry in Sweden. Also here applies 

that  𝐲1𝑁 represents the demand in country N for imported final goods and services from the 

industries in country 1. Moreover,  𝐲11  indicates the final demand by country 1 for 

domestically produced goods and services.  

Besides, 𝐱𝑁 represents an n-element vector containing total output levels, which corresponds 

to the intermediate input use and value added (sum over the rows) or the intermediate inputs 

plus final demand (sum over the columns) of country N. Here the typical element 𝑥𝑖
𝑁 indicates 

the total output of industry i in country N. Additionally, vector 𝐰𝑁 represents total value 

added for country N and its typical element 𝑤𝑖
𝑁 thus refers to the value added generated in 

industry i of country N. Moreover, this vector can be further disaggregated into a labor 

compensation and other value added vector which also consist of n-elements. In addition, the 

energy consumption levels can be determined by replacing the value added vector w by vector 

em, which contains the amount of emission relevant energy use (in TJ).  

As previously touched upon, the domestic labor income and value added levels obtained from 

the input-output analysis will be used to determine the change in labor income shares over the 

period 1995 – 2008 in order to identify the presence of automation. Hereafter, the energy 

intensity will be obtained by dividing the emission relevant energy use levels by GDP (equals 

value added) as was suggested in equation (1). These series will then be used as variables in 

the regression equation.  

5. Methodology  

Since the previous section explained into more detail how all elements in a WIOT should be 

interpreted, I will now proceed with a discussion of the methodological approach adopted in 

this paper. In order to determine the total value added and labor compensation required for the 

production final output of industry i in country N, all intermediate input linkages should be 

considered. The upstream suppliers of this industry can both be located within the country-of-

completion, but also abroad. A stylized example of such an internationally fragmented value 

chain is presented below to illustrate the relevance of the input-output framework.  
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Figure 5.1 - A stylized example of a Global Value Chain (adapted from Los et al., 2015) 

 

If we consider figure 5.1 to present the production process of a car in the German transport 

equipment industry, it can be observed that the production process is geographically dispersed 

across three countries. Here country 3 represents Germany, which is the country-of-

completion, whereas country 2 delivers intermediate inputs such as steel sheets and tires. In 

turn, the inputs used to produce these steel sheets and tires are delivered by either domestic 

industries in country 2, or imported from industries in country 1. All these production stages 

contribute to final output value of the German car as they add value in the form of labor and 

capital inputs. International fragmentation allows the German car manufacturer to structure 

the value chain in such a way that each of the stages is performed in the most cost effective 

location. If intermediate inputs that were previously produced in country 3 are now offshored 

to country 2 due to lower labor costs, this can affect the share of labor compensation with 

respect to value added in the overall GVC. Moreover, automation of stages in any of the three 

countries will result in a reduction of value added in the form of labor compensation and a rise 

in the value added generated by capital inputs. As such, making use of input-output (IO) 

models enables us to track the changes in total value added and labor compensation embodied 

in the production of final goods in the German transport equipment sector over time. 

Additionally, an IO model enables the decomposition of value added and labor compensation 

into a domestic and foreign component. In similar vein, the above rationale can also be 

applied to determine the total energy consumption related to the production of final output in 

the German transport equipment sector.  

As was outlined in section 2, it is important to account for the possibility of declining labor 

income shares and changes in energy intensity being related to offshoring. Consequently, 
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analyzing the developments in entire GVCs instead of evaluating the developments in 

industries at the country level will enable us to gain more insights into the actual source of 

labor income share changes. Moreover, examining the energy intensity developments of the 

entire production chain captures the earlier discussed rebound effect related to the production 

of automation technology in more upstream stages of a GVC.  

5.1 Deriving the Labor Income Share 

First of all, I will start by explaining how the total value added and labor compensation levels 

of GVCs can be derived through the use of an IO-model. Subsequently, the obtained value 

added and labor compensation levels will be used to obtain the labor income (LI) share of a 

particular GVC.  

The matrices below represent a simplified example of a WIOT including two regions, where s 

represents the country under evaluation and r represents all remaining countries. As outlined 

in section 3, matrix Z contains the data on intermediate goods or services produced in 

industries in either country s or r and are used by industries in country s or r. Hence, 𝐙𝑠𝑟 

identifies the intermediates produced by region s that are used in the production processes in 

region r. In similar vein, matrix Y represents the production of final goods and services in 

country s and r, that are consumed by both s and r, such that 𝐲𝑠𝑟 represents the final output 

produced in country s in order to satisfy final demand in country r.  

𝐙 = [
𝐙𝑠𝑠 𝐙𝑠𝑟

𝐙𝑟𝑠 𝐙𝑟𝑟
] ,  𝐘 = [

𝐲𝑠𝑠 𝐲𝑠𝑟

𝐲𝑟𝑠 𝐲𝑟𝑟
] and 𝐀 = [

𝐀𝑠𝑠 𝐀𝑠𝑟

𝐀𝑟𝑠 𝐀𝑟𝑟
] 

Matrix Z can thus be further decomposed into four smaller n x n matrices, where matrix 𝐙𝑠𝑠 

refers to the domestically produced intermediate inputs consumed by domestic industries. The 

intermediate inputs produced in s that are used by foreign industries are represented by 𝐙𝑠𝑟. 

Furthermore, matrix Y consists of four n-element vectors, where 𝐲𝑠𝑠 contains the demand 

levels in country s for domestically produced final goods and services. Hence,  𝐲𝑟𝑠  represents 

the demand in region s for final goods and services produced abroad. Dividing each element 

in matrix Z by the corresponding element of the gross output vector x, such that typical 

element 𝑎𝑖𝑗
𝑠𝑟 =  𝑧𝑖𝑗

𝑠𝑟/𝑥𝑗
𝑟, creates the direct input coefficients matrix A. Here typical element 

𝑎𝑖𝑗
𝑠𝑠 in 𝐀𝑠𝑠represents the amount of inputs from industry i in country s required to produce one 

unit of gross output in industry j in country s. 

Additionally, the value added coefficients are contained in an n x k-element vector labeled v, 

where k indicates the amount of countries in the model and is constructed by dividing the 
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elements in w by the corresponding elements of x. Hence, typical element  𝑣𝑖
𝑠 refers to the 

amount of value added created per unit of gross output of industry i in country s (𝑣𝑖
𝑠 =

 𝑤𝑖
𝑠/𝑥𝑖

𝑠). In order to determine the value added created by each industry i in country j related 

to the final demand for goods of industry i in country s, which is reflected by 𝐲𝑖
𝑠𝑠 +  𝐲𝑖

𝑠𝑟, the 

methodology  adopted in Los et al. (2015) is followed.2 

g  = 𝐯′(𝐈 − 𝐀)−1𝐘𝐢                  (3) 

In this equation, vector g contains the value added generated in each of the country-industry 

combinations involved in the entire GVC. Furthermore, the GVC under consideration is determined by 

Y in the sense that only the elements of Y that relate to a particular country-industry combination take 

their original values, whereas all other elements are set to zero. As such, the adjusted Y matrix will 

look as follows if we consider the GVC of industry 1 in country s: 

𝐘∗ = [
𝐲𝑠𝑠

∗ 𝐲𝑠𝑟
∗

0 0
]  with  𝐲𝑠𝑠

∗ =  (

𝑦𝑖
𝑠𝑠

0
⋮
0

)   and    𝐲𝑠𝑟
∗ =  (

𝑦𝑖
𝑠𝑟

0
⋮
0

) 

Additionally, recall that A contains the direct inputs needed to fulfill one unit of total output. 

However, the production of these intermediate inputs also requires inputs and in a similar vein 

the production processes of those inputs again use inputs. Therefore (𝐈 − 𝐀)−1  in equation (3) 

represents the Leontief inverse (L), which specifies the total value of intermediate inputs (so 

from first-, second-, third-tier suppliers, and so forth) needed to produce one unit of final 

demand. Furthermore 𝐢 represents a summation vector consisting of ones, for which the 

number of rows is equal to the amount of columns in Y. As such, equation (3) can be written 

in matrix notation as follows: 

𝐠 =  𝐯′ [
𝐋𝑠𝑠 𝐋𝑠𝑟

𝐋𝑟𝑠 𝐋𝑟𝑟] [
𝐲𝑠𝑠

∗ 𝐲𝑠𝑟
∗

0 0
] 𝐢    (4) 

Hence, the final output value of goods produced by industry i in country j, denoted by 

FINO(i,j), consists of the sum of value added in industries i in all countries k required for 

production of good (i, j). Vector g contains the corresponding VA(k)(i, j) levels for each (i, j) 

such that: 

𝐹𝐼𝑁𝑂(𝑖, 𝑗) = ∑ 𝑉𝐴(𝑘)(𝑖, 𝑗)𝑘     (5) 

                                                           
2 This methodological approach has been commonly used in input-output analysis for a long time. A more 

detailed explanation can be found in Miller and Blair (2009). 
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Since the value added vector w can be further decomposed into labor income and capital 

income, the above methodology can also be employed to derive the labor compensation 

embodied in a particular GVC. In order to do so, vector w is replaced by a vector of the same 

dimensions, which contains labor compensation levels per for each industry i in country j. 

Similar to the derivation of v, the vector with labor income coefficients called l is obtained by 

dividing the elements of the labor compensation vector by the corresponding elements of x. 

Vector li contains the labor income generated in each of the country-industry combinations involved 

in the entire GVC and is derived by the following equation: 

li  = 𝐥′(𝐈 − 𝐀)−1𝐘𝐢                  (6) 

Since li contains the corresponding LI(k)(i, j) levels for each (i, j) the labor income related to the 

production of final good (i, j), denoted by LIFINO (i, j), is derived as follows: 

𝐿𝐼𝐹𝐼𝑁𝑂(𝑖, 𝑗) = ∑ 𝐿𝐼(𝑘)(𝑖, 𝑗)𝑘     (7) 

After the labor compensation and value added levels for each GVC are computed, it is now 

possible to determine the labor income share ratio as follows: 

𝐿𝐼 𝑠ℎ𝑎𝑟𝑒 (𝑖, 𝑗) =  
𝐿𝐼𝐹𝐼𝑁𝑂(𝑖,𝑗)

𝐹𝐼𝑁𝑂(𝑖,𝑗)
      (8) 

For the ease of notation the above equations do not incorporate a time indicator. However, the 

equations are executed for each year of the period under evaluation. As such, it can be 

evaluated how the labor income share of a particular GVC has developed over time.  

5.2 Accounting for Offshoring 

In order to evaluate whether offshoring might have affected the LI share, I will continue to 

follow the approach of Los et al. (2015) by deriving the foreign value added of a GVC, which 

is denoted by FVA (i, j). It contains all value added outside country-of-completion j and is 

obtained by the following equation: 

𝐹𝑉𝐴(𝑖, 𝑗) = ∑ 𝑉𝐴(𝑘)(𝑖, 𝑗) = 𝐹𝐼𝑁𝑂(𝑖, 𝑗) − 𝑉𝐴(𝑗)(𝑖, 𝑗)𝑘≠𝑗  (9) 

Moreover, this can be expressed as a share of total value added in the production of good (i, j) 

in order to measure whether foreign stages became more important throughout the period of 

interest: 

𝐹𝑉𝐴𝑆(𝑖, 𝑗) =
𝐹𝑉𝐴(𝑖,𝑗)

𝐹𝐼𝑁𝑂(𝑖,𝑗)
    (10) 
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First a visual inspection of the developments in LI share and FVA share will be carried out to 

see whether there seems to be a relation between the two variables. In addition, a simple 

regression model will be employed to identify whether it is plausible that the LI share is 

affected by a rise in offshoring. Since the results obtained from the IO-analysis contain data 

on the years 1995 until 2008 for 14 German GVCs, a fixed effects model is employed to 

account for unobserved heterogeneity that might arise due to unobserved characteristics 

related to each individual GVC. It should be noted that the model is only used to detect 

whether the LI share is significantly affected by a rise in the FVA share and is limited as there 

are no control variables included. Moreover the percentage change in LI share and FVA share 

with respect to the year before are used instead of the levels, which leads to the following 

regression equation: 

∆𝐿𝐼 𝑠ℎ𝑎𝑟𝑒𝑖,𝑗 𝑡 = 𝛽0 + 𝛽1∆𝐹𝑉𝐴𝑆𝑖,𝑗 𝑡 + 𝛼𝑖,𝑗 + 𝑢𝑖,𝑗 𝑡  (11) 

Here ∆𝐿𝐼 𝑠ℎ𝑎𝑟𝑒𝑖,𝑗 𝑡 represents the percentage change in LI share of GVC (i, j) at time t and 

∆𝐹𝑉𝐴𝑆𝑖,𝐽 𝑡 the percentage change in FVA share of GVC (i, j) at time t. Moreover, 𝛼𝑖,𝑗 is the 

unobserved GVC heterogeneity effect and 𝑢𝑖,𝑗 𝑡 is the normal error term.  

5.3 Deriving Energy Intensity 

Now the methodology used to derive value added and labor compensation levels of a value 

chain will be adapted in order to determine the energy use of a particular GVC. In order to do 

so, vector w is replaced by vector em, which contains emission relevant energy use data for 

each industry i in country j. Similar to the derivation of v and l, the vector with energy use 

coefficients called ec is obtained by dividing the elements of the labor compensation vector 

by the corresponding elements of x. Vector e contains the energy use levels in each of the 

country-industry combinations involved in the entire GVC and is derived by the following equation: 

 

𝐞 = 𝐞𝐜′(𝐈 − 𝐀)−1𝐘𝐢                  (12) 

Here vector e contains the corresponding Energy Use (k)(i, j) levels for each (i, j) related to the 

production of final good (i, j). As such, the sum over the vector denoted by E (i, j) presents the total 

energy use embodied in the production of (i, j), which is derived as follows: 

𝐸 (𝑖, 𝑗) = ∑ 𝐸𝑈(𝑘)(𝑖, 𝑗)𝑘      (13) 

Consequently, energy intensity will be derived in accordance with equation (1) introduced in section 2, 

which means that energy input levels will be divided by GDP. The total value added generated in a 
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GVC represents the contribution of this value chain to GDP levels across the countries where the 

stages are located. As such, equation (14) provides the energy use related to the creation of one US$ of 

value added in the GVC under evaluation. 

 𝐸𝑛𝑒𝑟𝑔𝑦 𝐼𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦 (𝑖, 𝑗) =  
𝐸 (𝑖,𝑗)

𝐹𝐼𝑁𝑂(𝑖,𝑗)
    (14) 

Note that also here the equations (12) – (14) do not include a time indicator. However, they 

will be repeated for each year of the period under evaluation to track the energy intensity 

development over time.  

5.4 Automation and Energy Intensity 

Again, a visual inspection of the developments in energy intensity and LI share will be carried 

out to see whether there seems to be a relation between the two variables. Hereafter, a simple 

regression model similar to equation (11) will be used to assess whether energy intensity is 

positively or negatively correlated with LI share. Furthermore, the percentage change in 

energy intensity and LI share with respect to the previous year are used instead of the levels, 

which leads to the following regression equation: 

∆𝐸𝑖,𝑗 𝑡 = 𝛽0 + 𝛽1∆𝐿𝐼 𝑠ℎ𝑎𝑟𝑒𝑖,𝑗 𝑡 + 𝛼𝑖,𝑗 + 𝑢𝑖,𝑗 𝑡  (15) 

Here ∆𝐿𝐼 𝑠ℎ𝑎𝑟𝑒𝑖,𝑗 𝑡 represents the percentage change in LI share of GVC (i, j) at time t and 

∆𝐸𝑖,𝑗 𝑡 the percentage change in energy intensity of GVC (i, j) at time t. Moreover, 𝛼𝑖,𝑗 is the 

unobserved GVC heterogeneity effect and 𝑢𝑖,𝑗 𝑡 is the normal error term.  

6. Results  

This section will explore if automation seems to have affected environmental degradation and 

if so, whether the effect was positive or negative. For the ease of the analysis, each 

proposition will be evaluated independently. As such, the results for the labor income share 

developments in the 14 German manufacturing GVCs are presented first. Hereafter, the 

developments of foreign value added (FVA) shares are presented and linked to the labor 

income share developments. Subsequently, the energy intensity developments are presented, 

after which they are compared to the developments of the labor income share in order to 

answer the question whether labor income shares are correlated with energy intensity.  

6.1 Labor Income Share 

Table 6.1 presents the developments of the labor income share in all 14 German 

manufacturing GVCs. It can be observed that the labor income share in 2008 was 
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substantially lower than in 1995 for all GVCs under consideration, which provides a strong 

indication that production processes have indeed been subject to automation during this 

period.  However, it is interesting to note that the labor income share has increased for nearly 

all GVCs between 2007 and 2008.  An explanation for this observation could be the rising 

labor productivity and corresponding wage increases that occurred at the outset of the crisis 

(Mulligan, 2011).   

Comparing the labor income share developments of different GVCs shows that the initially 

more capital intense sectors, characterized by a labor income share below 0.7 in 1995, 

maintained this position over the period under evaluation. This observation was particularly 

evident for ‘coke, refined petroleum and nuclear fuel’, ‘pulp, paper, printing and publishing’ 

and ‘chemicals and chemical products’ GVCs, which all saw their labor income share fall 

below 0.6 in 2008. Even though, ‘rubber and plastics’ and ‘other non-metallic minerals’ still 

belonged to the bottom 6 in terms of their labor income share in 2008, their labor income 

share did not show a declining trend prior to 2001. In contrast, the initially most labor intense 

GVCs were ‘manufacturing’, ‘wood and products of wood and cork’, electrical and optical 

equipment’ and ‘basic and fabricated metals’. The latter joined the most capital intense 

sectors at the end of the period as its labor income share fell dramatically. Additionally, large 

labor income share reductions are observed for the other 3 most labor intense GVCs, meaning 

that most automation took place in the rather capital intense sectors and very labor intense 

sectors. 
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Table 6.1 - Labor Income share developments German manufacturing GVCs 1995-2008 

 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 

Food, Beverages & Tobacco               

LI share  0.708 0.705 0.692 0.693 0.697 0.694 0.686 0.688 0.703 0.678 0.688 0.672 0.656 0.670 

∆ LI share (%) n.a. -0.39 -1.90 0.15 0.69 -0.53 -1.11 0.36 2.15 -3.58 1.48 -2.34 -2.30 2.13 

               

Textiles and Textile Products               

LI share 0.734 0.738 0.720 0.705 0.708 0.701 0.696 0.695 0.694 0.674 0.673 0.650 0.635 0.649 

∆ LI share (%) n.a. 0.61 -2.49 -2.07 0.48 -1.03 -0.74 -0.13 -0.06 -2.89 -0.21 -3.39 -2.39 2.27 

               

Leather, Leather & Footwear               

LI share 0.738 0.741 0.729 0.735 0.710 0.733 0.712 0.673 0.691 0.655 0.658 0.651 0.650 0.673 

∆ LI share (%) n.a 0.40 -1.60 0.70 -3.30 3.21 -2.90 -5.45 2.74 -5.33 0.54 -1.12 -0.11 3.56 

               

Wood and Products of Wood 
and Cork 

              

LI share 0.779 0.797 0.746 0.740 0.743 0.732 0.736 0.736 0.727 0.722 0.694 0.661 0.647 0.646 

∆ LI share (%) n.a. 2.36 -6.40 -0.86 0.48 -1.47 0.53 0.02 -1.22 -0.71 -3.90 -4.80 -2.05 -0.10 

               

Pulp, Paper, Paper , Printing 
and Publishing              

 

LI share 0.682 0.670 0.673 0.668 0.603 0.608 0.608 0.617 0.624 0.605 0.588 0.575 0.576 0.565 

∆ LI share (%) n.a. -1.70 0.42 -0.70 -9.75 0.77 0.11 1.36 1.26 -3.04 -2.80 -2.34 0.25 -1.99 

               

Coke, Refined Petroleum and 
Nuclear Fuel              

 

LI share 0.622 0.621 0.595 0.553 0.623 0.536 0.531 0.574 0.564 0.542 0.522 0.514 0.530 0.534 

∆ LI share (%) n.a. -0.09 -4.29 -7.02 12.67 -14.05 -0.91 8.12 -1.71 -3.91 -3.72 -1.38 3.02 0.75 

               

Chemicals & Chemical Prod.               

LI share 0.652 0.651 0.635 0.639 0.640 0.641 0.633 0.618 0.626 0.600 0.586 0.577 0.571 0.583 

∆ LI share (%) n.a. -0.16 -2.40 0.60 0.19 0.01 -1.26 -2.33 1.40 -4.30 -2.25 -1.55 -1.03 2.15 
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Table 6.1 (continued) - Labor Income share developments German manufacturing GVCs 1995-2008 

 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 

Rubber and Plastics               

LI share 0.668 0.668 0.662 0.661 0.657 0.675 0.682 0.658 0.660 0.646 0.633 0.615 0.615 0.634 

∆ LI share (%) n.a. -0.05 -0.92 -0.16 -0.62 2.73 1.05 -3.52 0.37 -2.16 -2.02 -2.84 0.09 2.95 

               

Other Non-Metallic Mineral               

LI share  0.652 0.673 0.669 0.668 0.666 0.684 0.700 0.695 0.694 0.662 0.676 0.637 0.612 0.625 

∆ LI share (%) n.a. 3.22 -0.66 -0.13 -0.23 2.62 2.38 -0.69 -0.13 -4.59 2.03 -5.70 -3.96 2.09 

               

Basic Metals and Fabricated 

Metal 

              

LI share 0.750 0.758 0.738 0.717 0.728 0.711 0.722 0.709 0.700 0.670 0.657 0.629 0.612 0.627 

∆ LI share (%) n.a. 1.16 -2.69 -2.84 1.48 -2.31 1.57 -1.73 -1.34 -4.24 -2.04 -4.20 -2.78 2.55 

               

Machinery, Nec               

LI share 0.740 0.740 0.722 0.709 0.727 0.721 0.725 0.720 0.719 0.703 0.673 0.655 0.637 0.659 

∆ LI share (%) n.a 0.06 -2.50 -1.81 2.58 -0.91 0.61 -0.69 -0.14 -2.23 -4.19 -2.75 -2.79 3.53 

               

Electrical and Optical 

Equipment 

              

LI share 0.762 0.748 0.725 0.719 0.707 0.697 0.728 0.743 0.716 0.691 0.676 0.662 0.634 0.675 

∆ LI share (%) n.a. -1.83 -3.05 -0.82 -1.70 -1.45 4.57 2.02 -3.63 -3.46 -2.21 -2.07 -4.26 6.53 

               

Transport Equipment               

LI share 0.716 0.736 0.708 0.698 0.715 0.734 0.710 0.708 0.693 0.691 0.677 0.662 0.638 0.674 

∆ LI share (%) n.a. 2.80 -3.76 -1.46 2.53 2.65 -3.26 -0.38 -2.02 -0.31 -2.00 -2.31 -3.66 5.75 

               

Manufacturing, Nec; 

Recycling              

 

LI share 0.802 0.801 0.774 0.760 0.756 0.749 0.738 0.747 0.736 0.718 0.710 0.672 0.675 0.686 

∆ LI share (%) n.a. -0.07 -3.40 -1.82 -0.51 -0.88 -1.48 1.21 -1.57 -2.40 -1.06 -5.44 0.53 1.61 
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Based on the previously discussed number of robot installations between 1994 and 2014 

identified by Dauth et al. (2017), the transport equipment sector is expected to show a 

substantial decline in labor income share. Interestingly, this is not observed for the period 

before the turn of the century. However, from 2000 onwards the labor income share indeed 

fell sharply. This could mean that initially automation was labor complementing or that 

displaced workers were assigned other tasks within the production process, but eventually led 

to the inability to absorb excess labor within this GVC. Moreover, the German manufacturing, 

nec. sector saw a large rise in industrial robot installations, which is in line with the results. In 

addition, large labor income share declines in the electrical and optical equipment and pulp, 

paper and paper products GVCs also coincide with the increased amount of industrial robots 

within these industries. On the contrary, leather and footwear has seen a considerable increase 

in industrial robot adoption, whereas this did not translate into large labor income share 

reductions. This might be caused by structural changes within the GVC towards other related 

industries, such increased employment in the production of automation equipment as was 

predicted by Leontief and Duchin (1986). Similarly, rubber and plastics were characterized by 

an above average rise in industrial robot installations, while the labor income share reductions 

did not materialize until 2001. Hereafter the labor income share started to decline, which 

could again mean that throughout the first phase of automation excess labor was absorbed 

elsewhere in the GVC, whereas the amount of newly created jobs within the sector or in 

related industries was eventually not sufficient.  

Based on the aforementioned results, we can confirm proposition 1 for most GVCs as the 

developments exhibit a downward sloping trend in labor income shares for twelve out of 

fourteen industries. However, for most industries this trend was more pronounced after the 

turn of the century. The two exceptions are the ‘food, beverages and tobacco’ and ‘basic and 

fabricated metal’ industries, which both seem to stagnate around their initial labor income 

share levels between 1995 and 2008. 

6.2 Offshoring 

Now that we have confirmed the presence of labor income share declines in most GVCs, I 

will turn to the evaluation of proposition 2 in order to determine whether offshoring has 

played a role in the labor income share reductions. In line with the findings of Los et al. 

(2015), the FVA shares have increased substantially over the period 1995-2008 for all 

German GVCs, which means that the value added created outside of the country-of-

completion has risen (the results are presented in appendix B.1). Consequently, we might 
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worry that the declining labor income shares are partially determined by lower labor costs 

within the entire GVC due to offshoring. However, Los et al. (2015) showed that a large share 

of the trade in intermediate inputs in German manufacturing GVCs takes place within the 

European Union. Since the IFR (2017) showed that Europe was the most robot dense region 

in the world, it is unrealistic to assume that declining labor income shares are solely related to 

lower wages in foreign production locations. In contrast, the OECD (2015) found that Chinese 

suppliers were to a rising extend involved in German GVCs. However, even though lower 

labor costs could have affected the labor income share, it should be noted that for example the 

German transport equipment sector generated only 4.3 percent of its total value added in East 

Asia (Los et al., 2015). Hence, the impact of lower wages is likely to be limited.  

Figure 6.1 - Scatterplot foreign value added shares and labor income shares 1995-2008 (% changes) 

 

The relationship between the labor income share and FVA share changes is presented in 

figure 6.1 and does indicate a strong correlation between the two series. In order to ensure that 

labor income shares are not determined by offshoring, the simple fixed effects model 

introduced as equation (11) is employed.  The regression results are presented in Appendix 

B.1 and show that a rise in FVA share reduces the labor income share by a negligible amount 

and the effect is not significant. Based on this sample, there is no statistical evidence in favor 
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of proposition 2, which means that the observed labor income share reductions were probably 

not related to increased offshoring of production stages. 

6.3 Energy Intensity  

Now that the presence of automation in German GVCs has been examined, the energy 

intensity developments over the period 1995-2008 are presented. As was discussed in section 

3, between 2005 and 2015 large reductions in energy consumption were observed for the 

German textiles industry, which could have been driven by either a drop in final output or less 

energy intensive production processes. Figure 6.2 shows that until 2004, the changes in 

energy consumption seemed to be related to changes in the output level. However, after 2004 

the GVC income continued to rise, whereas the energy consumption level dropped below its 

2002 value. As such, energy efficiency improvements were an important driver of energy 

consumption reductions from 2004 onwards. Looking at table 6.4 confirms that energy 

intensity indeed started to decline after 2001, implying that more output could be produced 

with less energy inputs.   

Figure 6.2 - VA and Energy Use developments 1995-2008 

 

Similar trends are visible for all other GVCs, as the energy intensity levels rose during the 

first years of the period under evaluation, reaching their highest values around the turn of the 

century (see table 6.2). Hereafter, they started to decline rapidly and eventually the energy 

intensity levels in 2008 were substantially lower than the initial levels in 1995 (with the 

exception of ‘wood and products of wood and cork’).  Since energy efficiency is partially 

determined by energy prices, energy intensity is likely to be higher in regions or periods with 

low energy prices (IEA, 2008). As can be observed from figure 6.3, the energy commodity 
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prices were relatively low in the period 1995-1999, after which they started to rise rapidly. 

Hence, this commodity price boom is likely to have raised incentives to adopt more energy 

efficient technologies, which would explain the observed similarity of energy intensity trends 

across different GVCs.  

Figure 6.3 - Global Commodity Price Developments 1960-2008 

 

  Source: World Development Indicators, 2009 

In turn, the commodity price boom also provides an explanation for the fact that the most 

pronounced energy intensity reductions took place within GVCs characterized by high energy 

intensity levels. In example the German other non-metallic mineral, basic and fabricated 

metals, chemicals, chemical products and coke, refined petroleum and nuclear fuel industries 

and textiles and textile products saw the largest absolute declines, resulting in convergence of 

the energy intensity disparities across GVCs. These industries are both relatively energy and 

capital intense, which is in line with the findings from Martínez (2009).  The commodity price 

boom probably raised the production costs of the aforementioned industries to such a large 

extend that they were forced to become more energy efficient. However, looking at the energy 

intensity reductions as a percentage of their highest value, many of the less energy intense 

sectors show energy efficiency improvements of almost the same magnitude. This is 

especially evident for the machinery, nec., electrical and optical equipment and transport 

equipment  GVCs.     



 

43 

 

 

Table 6.2 - Energy Intensity developments German manufacturing GVCs 1995-2008 

 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 

Food, Beverages & Tobacco               

Energy Intensity 8.56 8.95 9.51 9.85 10.00 11.29 11.09 10.65 9.78 8.63 8.37 7.89 6.64 6.18 

∆ Energy Intensity (%) n.a. 4.54 6.21 3.58 1.49 12.97 -1.74 -4.02 -8.14 -11.75 -3.06 -5.67 -15.90 -6.87 

               

Textiles and Textile Products               

Energy Intensity 10.33 10.66 11.41 11.84 12.08 13.63 13.65 12.88 11.93 10.78 9.50 8.85 7.78 6.84 

∆ Energy Intensity (%) n.a. 3.24 7.00 3.82 2.00 12.80 0.13 -5.65 -7.38 -9.61 -11.91 -6.80 -12.08 -12.12 

               

Leather, Leather & Footwear               

Energy Intensity 9.14 8.44 8.93 9.65 9.95 11.65 12.16 11.19 9.81 8.95 8.05 7.48 6.55 5.31 

∆ Energy Intensity (%) n.a. -7.67 5.81 8.07 3.10 17.03 4.35 -7.95 -12.35 -8.74 -10.03 -7.14 -12.45 -18.92 

               

Wood and Products of Wood 

and Cork 

              

Energy Intensity 8.04 8.21 8.70 9.23 9.72 11.65 11.89 11.76 11.41 10.12 9.32 8.80 8.66 8.29 

∆ Energy Intensity (%) n.a. 2.09 6.03 6.08 5.32 19.85 1.99 -1.08 -2.97 -11.31 -7.91 -5.53 -1.64 -4.22 

               

Pulp, Paper, Paper , Printing 

and Publishing              

 

Energy Intensity 8.53 8.53 9.24 9.37 9.82 11.65 11.63 11.06 10.76 9.82 8.98 8.82 8.03 7.34 

∆ Energy Intensity (%) n.a. -0.02 8.33 1.44 4.85 18.55 -0.16 -4.93 -2.64 -8.75 -8.53 -1.81 -8.97 -8.64 

               

Coke, Refined Petroleum and 

Nuclear Fuel              

 

Energy Intensity 63.69 62.62 69.72 69.45 76.61 71.55 55.99 54.15 50.17 39.49 33.66 27.49 26.32 20.27 

∆ Energy Intensity (%) n.a. -1.67 11.33 -0.39 10.31 -6.61 -21.75 -3.28 -7.36 -21.29 -14.75 -18.34 -4.24 -23.00 

               

Chemicals & Chemical Prod.               

Energy Intensity 12.10 13.58 14.98 14.53 15.10 16.62 16.27 15.16 13.59 11.82 10.99 10.23 9.16 8.35 

∆ Energy Intensity (%) n.a. 12.24 10.31 -3.01 3.92 10.08 -2.15 -6.78 -10.39 -13.01 -7.03 -6.88 -10.54 -8.84 
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Table 6.2 (continued) - Energy Intensity developments German manufacturing GVCs 1995-2008 

 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 

Rubber and Plastics               

Energy Intensity 8.84 9.73 10.76 10.73 11.43 11.71 11.57 11.07 10.46 9.65 8.53 8.20 7.39 6.72 

∆ Energy Intensity (%) n.a. 10.02 10.57 -0.25 6.47 2.52 -1.19 -4.37 -5.45 -7.78 -11.67 -3.87 -9.78 -9.06 

               

Other Non-Metallic Mineral               

Energy Intensity 14.31 15.69 17.68 17.92 17.81 21.04 20.85 20.01 18.03 15.68 14.48 13.44 12.60 11.45 

∆ Energy Intensity (%) n.a. 9.62 12.67 1.39 -0.63 18.15 -0.90 -4.02 -9.92 -13.02 -7.63 -7.19 -6.26 -9.10 

               

Basic Metals and Fabricated 
Metal 

              

Energy Intensity 15.74 16.34 17.78 17.91 18.02 20.18 19.32 18.46 16.34 15.20 13.45 12.88 10.98 9.79 

∆ Energy Intensity (%) n.a. 3.83 8.83 0.74 0.61 11.96 -4.25 -4.42 -11.51 -6.99 -11.50 -4.23 -14.77 -10.84 

               

Machinery, Nec               

Energy Intensity 6.80 6.82 7.16 7.46 7.85 8.78 8.51 7.79 7.20 6.60 6.11 5.93 5.27 4.71 

∆ Energy Intensity (%) n.a. 0.26 5.07 4.12 5.25 11.85 -3.08 -8.43 -7.62 -8.29 -7.44 -3.01 -11.13 -10.60 

               

Electrical and Optical 

Equipment 

              

Energy Intensity 6.20 6.39 6.76 7.08 7.42 7.96 8.44 7.71 6.99 6.43 6.07 5.87 5.20 4.53 

∆ Energy Intensity (%) n.a. 3.08 5.83 4.73 4.76 7.22 6.12 -8.71 -9.32 -8.00 -5.68 -3.15 -11.43 -12.92 

               

Transport Equipment               

Energy Intensity 7.83 8.09 8.37 8.84 9.29 10.46 9.72 9.04 8.13 7.61 7.15 6.76 5.97 5.60 

∆ Energy Intensity (%) n.a. 3.32 3.35 5.62 5.19 12.55 -7.06 -6.99 -10.12 -6.33 -6.10 -5.48 -11.73 -6.12 

               

Manufacturing, Nec; 

Recycling              

 

Energy Intensity 7.03 7.83 8.32 8.28 8.98 9.50 9.30 8.99 8.27 7.64 6.89 6.53 5.93 5.97 

∆ Energy Intensity (%) n.a. 11.32 6.28 -0.44 8.45 5.82 -2.12 -3.40 -7.94 -7.65 -9.87 -5.10 -9.28 0.66 
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Recall that energy intensity in Europe has declined substantially since the 1970s (see figure 

2.3). From the results presented here, it becomes clear that this was not the case for German 

manufacturing GVCs during the period 1995-2000. There are multiple possible reasons for 

this contrasting observation. First of all, structural changes towards services or less energy 

intense manufacturing industries are not of major importance when we look at the 

developments within a particular GVC as the production of final output in such value chains 

requires the performance of certain production activities. These activities can become more 

energy efficient as a result of technological change, but structural chance is only relevant 

when looking at the domestic stages versus the foreign stages as the former may specialize in 

less energy intense activities, while the more energy intense activities are moved abroad. 

Since this analysis evaluates the overall GVC developments with respect to energy intensity 

levels, offshoring of dirty production stages should not reduce the energy intensity of the 

entire value chain. Secondly, Dauth et al (2017) argued that an increasing amount of the 

people entering the labor force find employment in the service industry. This analysis focuses 

on energy intensity developments within GVCs and as such does not consider the relative 

importance of more and less energy intense GVCs for the energy intensity of the overall 

German economy.  

Decomposing the energy intensity developments into changes in foreign and domestic 

production stages reveals that initially energy intensity was much higher in foreign production 

stages, but these levels started to converge after 2000 (results presented in Appendix B.3). 

This implies that offshored stages during the period 1995-1999 were more energy intense than 

the production stages that remained within the home country, whereas the higher energy costs 

after 2000 resulted in substantial energy efficiency improvements at home as well as abroad. 

As such, energy prices are likely to have affected the rate of technological progress in the 

overall value chain. Even though the domestic stages were overall less energy intense, some 

GVCs still saw energy intensity reductions of up to 50 percent. Consequently, it can be argued 

that in the domestic stages both structural change towards less energy intense value chain 

activities and technological advance could have contributed to energy intensity reductions. 

However, the domestic energy intensity reductions were not matched by a rise in energy 

intensity abroad, which implies that the overall production process has become more energy 

efficient due to technological progress.  
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6.4 The Environmental Impact of Automation 

As has become clear from the results presented earlier, labor income shares in nearly all 

GVCs have shown a downward trend over the period 1995-2008 and energy intensity levels 

have initially increased, but fell sharply after 2000. Consequently, regression results following 

from equation (15) will be evaluated in order to determine whether energy intensity and labor 

income share developments might be correlated. Hereafter, I will zoom in on the 

developments within specific GVCs as it is interesting to examine whether the industries with 

the strongest labor income reductions also saw the largest reductions in energy intensity. Due 

to space limitations, not all individual GVCs are discussed. However, the remaining GVC 

specific developments can be found in Appendix B.4.  

Figure 6.4 - Scatterplot labor income shares and energy intensity developments 1995-2008  

 

First of all, figure 6.4 shows that there might be a small positive correlation between the labor 

income share and energy intensity developments. Labor income share increases (decreases) 

seem to coincide with a rise (decline) in energy intensity.  The fixed effects regression results 

are presented in table 6.4 and column 1 confirms that over the entire sample period, there is 

statistical support for the existence of a small positive correlation between labor income share 

changes and energy intensity changes. On average, a one percent rise in the labor income 

share is associated with a 0.386 percent reduction in energy intensity. However, the rising 
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labor income shares in the year 2008, which were as previously mentioned likely related to 

wage increases caused by the macroeconomic conditions at the time, might have suppressed 

the effect that automation had on labor income shares. Hence, column 2 presents the results 

for the restricted sample period of 1995-2007 and shows that excluding 2008 almost doubles 

the size of the coefficient. Moreover, energy intensity was found to have increased in all 

GVCs until the years around the turn of the century. Therefore, column 3 presents the results 

for the years 2000-2008, which reveals that the relationship between labor income shares and 

energy intensity was indeed somewhat stronger after the year 2000. However, the coefficient 

is loses some significance and the increase is only 0.44 percentage point.  

Table 6.3 - Fixed Effects regression of the changes in energy intensity and labor income shares for 

German manufacturing GVCs 1995-2008 

 (1) (2) (3) (4) (5) 
VARIABLES 

Energy Int. 

(% change) 

Energy Int. 

(% change) 

Energy Int. 

(% change) 

Foreign 

Energy Int. 

(% change) 

Domestic 

Energy Int. 

(% change) 

      

Sample full sample excluding 

2008 

2000-2008 full sample  full sample 

      

LI share (% change) 0.386*** 0.768*** 0.430**   

 (0.120) (0.185) (0.156)   

Foreign LI share (% change)    -0.669***  

    (0.203)  

Domestic LI share (%  change)     0.502*** 

     (0.110) 

      

Constant -2.068*** -0.897*** -5.129*** -4.776*** -1.898*** 

 (0.102) (0.208) (0.139) (0.116) (0.077) 

      

Observations 182 168 126 182 182 

R-squared 0.018 0.068 0.068 0.018 0.186 

Number of Industry_ID 14 14 14 14 14 
Robust standard errors in parentheses 

*** p<0.01, ** p<0.05, * p<0.1 

 

Finally, the regression has been performed for both foreign and domestic stages only.3 Based 

on the literature presented in section 2, we might expect that foreign stages exhibit a negative 

correlation between labor income shares and energy intensity as offshoring to low wage 

economies suppresses the labor income share in foreign stages, while energy intensity in those 

locations is assumed to be relatively high. In contrast, labor income share reductions in the 

                                                           
3 The domestic and foreign labor income share results are not presented, but available upon author’s request. 
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domestic stages were assumed to be related to automation and as such expected to have 

environmental benefits in terms of their energy intensity. Column 4 indeed exhibits a 

significant negative correlation as on average a one percent decrease in foreign labor income 

share is associated with a rise in energy intensity of 0.669 percent. Turning to the results for 

the domestic stages in column 5, it can be seen that there is a highly significant positive 

correlation that implies a decline in energy intensity of 0.502 percent when the labor income 

share falls by one percent.  As such it can be argued that the energy efficiency improvements 

associated with automation only observed in production activities performed in the German 

stages of the value chain.  

In order to gain some more insights about which GVCs conform to the aforementioned 

relationship between energy intensity levels and labor income shares, the developments over 

the entire period under evaluation and the years before and after the turn of the century are 

analyzed. First of all, the German leather and footwear industry has seen a large increase in 

industrial robot installations between 1994 and 2014 (Dauth et al., 2017). Hence, it is 

interesting to examine the changes in the labor income share and energy intensity of this GVC 

into more detail. Figure 6.5 shows that over the entire period under evaluation, average annual 

growth rates of -1.1 percent and -3 percent are observed for labor income share and energy 

intensity, respectively. However, the period before the turn of the century exhibits a large 

increase in energy intensity combined with a small reduction in labor income shares. In 

contrast, for the period 2000-2008 a positive correlation between labor income shares and 

energy intensity levels seems to exist.  

Figure 6.5 – Annual Growth Rates of Labor Income Share and Energy Intensity: Leather & Footwear 

GVC 
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Turning to the transport equipment sector, which saw the largest rise in industrial robot 

installations and is the most automated industry in terms of robot density, shows that energy 

intensity and labor incomes shares indeed followed similar trends. Figure 6.6 presents the 

coexistence of labor income share reductions (increases) and declining (rising) energy 

intensity levels for the entire period under evaluation and both subsamples. This exact pattern 

is also visible for the other non-metallic mineral GVC even though this industry was not 

identified as having a sharp rise in industrial robot installations and contributed substantially 

to the overall energy consumption rise in the German industrial sector (see figure 6.7). The 

latter can be explained by the large decline in energy intensity of observed in the foreign 

stages of this GVC, while the domestic energy intensity levels remained more or less stable. 

Consequently, automation might have played a more prominent role for upstream supply 

linkages located abroad.  

Figure 6.6 - Labor Income Share and Energy Intensity Developments in Transport Equipment GVC 

 

Finally, the German manufacturing industry has seen a large rise in industrial robots over the 

period 1994-2014 (Dauth et al., 2017). Consequently, it would have been expected to see 

patterns similar to those observed for the transport equipment sector. However, the labor 

income share declined at an annual rate of 1.5 percent before the turn of the century, whereas 

this was slightly lower between 2000 and 2008 (see figure 6.8). Interestingly, energy intensity 

rose considerably during the former period and declined in the latter, which indicates that the 

initial phase of automation might have actually put a larger pressure on the environment. 

Moreover, it should be pointed out that the magnitude of the labor income share reductions 

before 2000 was quite large compared to other industries, which could mean that large scale 
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automation occurred relatively early. Since the energy prices were rather low during this 

period, these early automation technologies might have been focused on improving labor 

productivity, but not on reducing the amount of energy inputs.  

Figure 6.7 - Labor Income Share and Energy Intensity Developments in Other Non-Metallic Mineral 

GVC 

 

Figure 6.8 - Labor Income Share and Energy Intensity Developments in Electrical & Optical 

Equipment GVC 

 

7. Discussion 

The aim of this paper is to gain insights in the relationship between automation and 

environmental degradation. In light of the results presented in the previous section, the first 

proposition regarding the presence of labor income share reductions can be confirmed as all 

German manufacturing GVCs show substantial declines over the period 1995-2008. 
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Moreover, no statistical support in favor of the second proposition is found. Hence, it is 

inferred that relocating production stages to low wage economies did not sufficiently affect 

labor income shares in the GVCs under evaluation. Consequently, the observed reductions in 

the labor income share are at least partially related to process automation. Finally, the third 

proposition hypothesized that automation positively affects environmental degradation as 

most of the existing literature advocates the energy efficiency benefits arising from these 

technologies. The analysis reveals the existence of a statistically significant correlation 

between labor income share changes and energy intensity changes, which is particularly 

pronounced for the domestic production stages within the GVCs. Therefore, it can be 

concluded that within Germany the increased adoption of automation technologies has 

contributed to declining energy intensity levels.  

However, the largest declines in energy intensity are observed in the foreign production 

stages, which has led to conversion of energy intensity levels between domestic and foreign 

stages over the period under evaluation. In contrast, it is interesting to note that on average a 

one percent reduction in the labor income share of foreign production stages has actually been 

accompanied by a rise in energy intensity of 0.669 percent. Consequently, the significant 

negative correlation implies that on average years characterized by a reduction in the foreign 

labor income share which can be related to offshoring to low wage countries or automation 

exhibited a rise in energy intensity. If the former was the reason for the labor income share 

reductions, it can be inferred that energy intensity in developing economies was relatively 

high, which is in line with the literature on consumption versus production based emissions. 

Alternatively, if the labor income share reductions are related to automation, it could be the 

case that more energy intense production stages, such as manufacturing of microchips used in 

automation equipment, were located abroad. Since the electronics clusters that employ great 

amounts of industrial robots in their production processes are mainly located in (South-) East 

Asia, automation in these upstream stages could have raised energy intensity (IFR, 2017).  

Hence, the observed energy intensity reductions in offshored stages after 2000 are likely to be 

related to other types of technological progress rather than to automation. A possible 

explanation for this observation could be the presence of so called ‘technological 

leapfrogging’, which refers to the idea that ‘today’s developing countries have access to a set 

of efficient technologies that was not available to rich countries in the past, when they were at 

similar stages of economic development’ (van Benthem, 2015: pp.94). In other words, when a 

developing country imports cleaner technologies from advanced economies, the production is 
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usually perceived to become less energy intense. Relating this to the EKZ hypothesis 

discussed in section 2, this would imply that developing economies peak at a lower level of 

energy intensity (Reddy and Goldemberg, 1990). Since energy intensity level in foreign 

production stages started to fall at the same time as the emergence of the commodity price 

boom, it could be the case that the German firms exported new technologies to their off-

shored production sites in order to suppress severe increases in production costs. Moreover, 

the accession of China to WTO in 2001 may have raised the ease with which Chinese 

producers could import technologies from abroad. Since China has become increasingly 

integrated in German GVCs over the last two decades, this might have contributed to the rise 

in energy efficiency within foreign production stages (Los et al., 2015; OECD, 2015).  

Even though a significant positive correlation between labor income shares and energy 

intensity is found for the overall GVCs and domestic stages, the size of the coefficients are 

not particularly large considering the tremendous reduction in energy intensity observed after 

the year 2000. As mentioned before, a one percent decrease in the overall GVC labor income 

share was estimated to reduce energy intensity by less than 0.5 percent between 2000 and 

2008. Furthermore, the estimated coefficient for the domestic stages over the entire period 

under evaluation was slightly larger, but still small. Therefore, other forms of technological 

progress are likely to be responsible for the larger share of the observed energy intensity 

declines. An additional explanation for these results could be related to the rebound effect (see 

section 2.2.3). On the one hand, the production of ICT related equipment, such as microchips, 

was argued to be considerably energy consuming and decreasing prices of ICT equipment 

have resulted in more widespread application of these energy using technologies (Kander, 

2013). On the other hand, the application of ICT can raise energy efficiency through process 

optimization and better coordination of production activities. In similar vein, increased 

adoption of automation technologies in production processes can simultaneously improve 

energy efficiency within GVCs and raise energy intensity due to a higher amount of electrical 

equipment embodied in the production of final output. Consequently, the energy efficiency 

improvements realized through automation probably created energy intensity reductions in 

certain parts of the GVCs, which in turn are partially offset by a rise in energy consumption in 

order to power and produce the automation equipment. Since the results presented in columns 

1-3 of table 6.3 incorporate all upstream supply linkages, the rebound effect is captured and as 

such the estimated relationship between labor income share and energy intensity 

developments represents the net effect.   
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Turning to the period prior to 2000, all GVCs under evaluation exhibited a substantial rise in 

energy intensity levels in both foreign and domestic operations, while labor income share 

reductions were present in nearly all of them. As such, this could mean that labor income 

share reductions were not caused by automation, but occurred due to a decline in capital 

investments in the presence of a complementary relation between labor and capital 

(Lawrence, 2015). Even though it is beyond the scope of the model to determine whether 

automation or lower levels of capital were the main driver of labor income share reductions, 

most GVCs saw a reduction in value added during this period. This provides an indication 

that reduced capital investments may have played a role. Another possible explanation could 

be that during the initial phase of automation, the rebound effect was larger than the energy 

efficiency improvements obtained from process automation.  

Finally, the results from this study show that although the effects might not be exceptional, 

automation can potentially contribute to emission abatement, especially with respect to 

German GVC stages. As such, the generally negative attitude towards automation held by 

society might need to be reconsidered. The current developments in the field of AI may 

augment the potential of reducing energy efficiency through the adoption of industrial robots 

or automated software systems. However, it should be noted that the impact of energy 

efficiency gains in technologies that complement rather than substitute labor is probably more 

powerful, as a large share of the energy intensity reductions cannot be explained by declining 

labor income shares. Consequently, the relationship between different types of technological 

progress and energy consumption should be investigated into more detail in order to identify 

where the largest potential of further reductions in energy intensity resides. Moreover, climate 

change is not a local, but a global phenomenon. The finding that labor income share declines 

were associated with a rise in energy intensity confirms that environmental regulations and 

policies aimed at reducing energy intensity should reach beyond the borders of the country-of-

completion. As such, policy makers will need to provide incentives to raise energy efficiency 

in all stages of the value chain in order to maintain and accelerate the downward trend that has 

set in at the start of the new millennium.  

8. Conclusion 
Over the past decades, increased awareness with respect to the importance of combatting 

climate change has resulted in a considerable amount of initiatives aimed at understanding the 

nature of energy consumption within the global economy. In mainstream economics, 

technological progress is generally considered to be factor saving and as such has the 
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capability of reducing both labor and energy inputs. Therefore it is interesting to examine 

whether automation, which is usually characterized as labor saving technological change, has 

reduced the amount of energy inputs embodied in the production of final output. If this is 

indeed the case, stimulating automation could provide a fruitful policy tool in reducing energy 

intensity levels.  

Multiple empirical studies have investigated the impact of ICT on energy intensity, however, 

no consensus has yet been reached. Some outcomes show that increased application of these 

technologies has raised energy intensity as ICT consumes more energy than it saves, whereas 

other studies have found that process optimization through the employment of ICT has 

reduced energy intensity within production processes. Since, automation technologies are 

heavily integrated with ICT, the aforementioned studies can be extended to explore the 

environmental impact of automation.  

8.1 Main Results 

This study aims to examine whether automation improves or deteriorates the energy intensity 

levels in German manufacturing value chains. The decision to focus on German GVCs is 

related to its prominent role in the adoption and productions of automation technology, such 

as industrial robots. Due to data limitations, automation is a difficult topic to address 

empirically and to my knowledge this paper is the first one to evaluate whether process 

automation could have implications for climate change. Additionally, the analysis accounts 

for the so-called rebound effect by evaluating complete value chains instead of focusing on 

domestic industries. Hereby, it is prevented that energy intensity reductions related to 

offshoring of energy intense production stages are interpreted as energy efficiency 

improvements related to automation. As such, the central question in this paper is: 

Does automation seem to affect energy intensity levels in German GVCs and if so, what is the 

direction of the effect? 

The findings show that on average, labor income share reductions of one percent are 

associated with a decline in energy intensity of less than 0.5 percent. Energy intensity levels 

declined to a much larger extend than the labor income shares over the period 2000-2008 and 

as such the largest part of energy efficiency improvements cannot be explained by 

automation. Similar to the simultaneous energy expanding as well as reducing effect of ICT, 

automation can simultaneously increase or reduce energy intensity. Hence, the small 

correlation between the two variables could be related to the presence of such as rebound 
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effect. Turning to the developments in domestic stages also reveals a positive correlation 

between labor income share and energy intensity developments, which is slightly more 

pronounced than that for the overall GVC. However, if energy intense production of for 

example microchips used in automation technologies takes place abroad, this rebound effect is 

not incorporated.  

Another interesting finding is related to the developments within the foreign production 

stages. The results show that energy intensity was initially much higher for these stages, but 

that over the period under evaluation they have converged considerably relative to the energy 

intensity levels in domestic stages. However, a negative correlation between labor income 

share and energy intensity developments is found, which implies that automation did not 

contribute to the observed energy intensity reductions. An explanation could be that the 

rebound effect entirely offsets the energy efficiency gains. Other forms of technological 

progress thus played a more prominent role in the energy intensity decline abroad.  

8.2 Limitations and Future Research  

As outlined before, this study is the first one to investigate the relationship between 

automation and energy intensity. The lack of publicly available data on automation made it 

impossible to employ a direct measure of automation. Hence, the labor income share served 

as a proxy because most of the literature assumes that labor and capital are gross substitutes. 

However, a major limitation lies in the fact that capital and labor can also be gross 

complements (Lawrence, 2015). If this is indeed the case, the labor income share reductions 

provide an imperfect measure for automation as they could be related to a reduction in capital 

inputs. For the first 5 years of the period under evaluation, this might indeed have been the 

case as total value added declined in nearly all GVCs. On the other hand, value added levels 

rose sharply after the turn of the century, which makes it unlikely that reduced capital 

investments were a problem for the period 2000-2008. 

Moreover, the energy intensity is defined as the amount of energy inputs (in TJ) required to 

create one million US$ of value added. However, value added is measured in current instead 

of constant prices and therefore might have overstated the actual energy intensity reductions. 

Nevertheless, between 1995 and 2008 the European Union was characterized by low inflation 

rates (about two percent per year). Since most of the total value added of German GVCs is 

generated within this region, using constant prices is not expected to alter the results to a large 

extend.  
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Finally, this paper is aimed at exploring whether automation could be related to energy 

intensity. As a consequence, no causal inferences can be made based on this analysis.  

Additionally, the regression model used to evaluate the existence of a correlation between the 

two variables is very limited as there was no data for control variables. Energy intensity can 

for example be determined by other types of technological change that are labor 

complementing or fuel switching. Hence, omitted variable bias is probably an issue, which 

should be considered when interpreting the results.  

Since significant correlations are found between energy intensity and labor income share 

developments, it is interesting to further explore the relationship between the two variables. 

First of all, the development of a more robust methodology could greatly improve the 

accuracy of the results. In example, the construction of a satellite account containing data on 

robot density per industry would give better insights in how large of a role automation 

actually plays in individual GVCs. Such data would allow for a derivation of the number of 

robots engaged in the production of a particular level of final goods in any country-industry 

combination. Comparing this to emission levels can then reveal whether robot intense GVCs 

are indeed more or less energy intense, which would greatly enhance our understanding of the 

environmental impact of automation technologies.  
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Appendices 

A. Industry Aggregation 

Table A.1 - Sectoral Coverage WIOD 2013 release 

Industry No. Code Name 
c1 AtB Agriculture, Hunting, Forestry and Fishing 

c2 C Mining and Quarrying 

c3 15t16 Food, Beverages and Tobacco 

c4 17t18 Textiles and Textile Products 

c5 19 Leather, Leather and Footwear 

c6 20 Wood and Products of Wood and Cork 

c7 21t22 Pulp, Paper, Paper , Printing and Publishing 

c8 23 Coke, Refined Petroleum and Nuclear Fuel 

c9 24 Chemicals and Chemical Products 

c10 25 Rubber and Plastics 

c11 26 Other Non-Metallic Mineral 

c12 27t28 Basic Metals and Fabricated Metal 

c13 29 Machinery, Nec 

c14 30t33 Electrical and Optical Equipment 

c15 34t35 Transport Equipment 

c16 36t37 Manufacturing, Nec; Recycling 

c17 E Electricity, Gas and Water Supply 

c18 F Construction 

c19 50 Sale, Maintenance and Repair of Motor Vehicles and Motorcycles; Retail Sale of Fuel 

c20 51 Wholesale Trade and Commission Trade, Except of Motor Vehicles and Motorcycles 

c21 52 Retail Trade, Except of Motor Vehicles and Motorcycles; Repair of Household Goods 

c22 H Hotels and Restaurants 

c23 60 Inland Transport 

c24 61 Water Transport 

c25 62 Air Transport 

c26 63 Other Supporting and Auxiliary Transport Activities; Activities of Travel Agencies 

c27 64 Post and Telecommunications 

c28 J Financial Intermediation 

c29 70 Real Estate Activities 

c30 71t74 Renting of M&Eq and Other Business Activities 

c31 L Public Admin and Defence; Compulsory Social Security 

c32 M Education 

c33 N Health and Social Work 

c34 O Other Community, Social and Personal Services 

c35 P Private Households with Employed Persons 

 

B. Additional Results 
 

B.1 Foreign Value Added Shares 
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Table B.1 - Foreign value added share developments German manufacturing GVCs 1995-2008 

 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 

Food, Beverages & Tobacco               

Foregin VA share 0.148 0.149 0.161 0.163 0.159 0.179 0.176 0.172 0.179 0.180 0.197 0.215 0.224 0.245 

∆ Foreign VA share (%) n.a. 1.28 8.04 0.83 -2.33 12.51 -1.84 -2.00 4.05 0.44 9.31 9.28 4.26 9.17 

               

Textiles and Textile Products               

Foregin VA share 0.242 0.243 0.259 0.242 0.272 0.262 0.262 0.245 0.245 0.269 0.284 0.302 0.307 0.307 

∆ Foreign VA share (%) n.a. 0.25 6.79 -6.39 11.97 -3.38 -0.22 -6.57 0.22 9.92 5.49 6.35 1.48 0.22 

               

Leather, Leather & Footwear               

Foregin VA share 0.235 0.233 0.253 0.262 0.269 0.271 0.289 0.265 0.258 0.286 0.304 0.319 0.340 0.296 

∆ Foreign VA share (%) n.a -0.83 8.34 3.66 2.58 0.82 6.65 -8.36 -2.63 10.88 6.24 5.00 6.62 -12.85 

               

Wood and Products of Wood 

and Cork 

              

Foregin VA share 0.147 0.146 0.154 0.164 0.171 0.197 0.203 0.202 0.206 0.207 0.230 0.249 0.256 0.255 

∆ Foreign VA share (%) n.a. -0.64 5.81 6.25 4.46 15.11 3.16 -0.62 1.97 0.73 11.08 7.93 2.82 -0.27 

               

Pulp, Paper, Paper , Printing 

and Publishing              

 

Foregin VA share 0.141 0.135 0.142 0.145 0.153 0.185 0.183 0.176 0.179 0.181 0.188 0.208 0.212 0.217 

∆ Foreign VA share (%) n.a. -4.79 5.15 2.69 5.49 20.36 -0.71 -4.19 1.83 1.06 3.95 10.63 2.13 2.40 

               

Coke, Refined Petroleum and 

Nuclear Fuel              

 

Foregin VA share 0.373 0.382 0.431 0.313 0.401 0.546 0.460 0.468 0.504 0.512 0.602 0.627 0.619 0.709 

∆ Foreign VA share (%) n.a. 2.31 12.79 -27.34 28.03 36.20 -15.72 1.77 7.62 1.69 17.53 4.03 -1.18 14.51 

               

Chemicals & Chemical Prod.               

Foregin VA share 0.173 0.175 0.192 0.202 0.212 0.240 0.245 0.216 0.223 0.230 0.244 0.267 0.275 0.287 

∆ Foreign VA share (%) n.a. 0.95 9.67 5.21 5.32 13.08 1.88 -11.62 2.91 3.14 6.18 9.59 3.01 4.18 
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Table B.1 (continued) – Foreign value added share developments German manufacturing GVCs 1995-2008 

 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 

Rubber and Plastics               

Foregin VA share 0.181 0.177 0.192 0.204 0.216 0.227 0.232 0.211 0.216 0.227 0.245 0.270 0.276 0.281 

∆ Foreign VA share (%) n.a. -2.11 8.03 6.70 5.84 4.77 2.18 -8.75 1.99 5.50 7.91 9.99 2.07 2.13 

               

Other Non-Metallic Mineral               

Foregin VA share 0.110 0.114 0.126 0.127 0.133 0.164 0.171 0.166 0.169 0.176 0.194 0.209 0.208 0.221 

∆ Foreign VA share (%) n.a. 3.51 10.56 1.11 4.92 22.84 4.37 -2.97 2.17 3.92 10.03 7.86 -0.57 6.34 

               

Basic Metals and Fabricated 
Metal 

              

Foregin VA share 0.208 0.206 0.215 0.213 0.207 0.252 0.250 0.240 0.244 0.274 0.297 0.340 0.356 0.364 

∆ Foreign VA share (%) n.a. -0.66 4.47 -1.24 -2.62 21.60 -1.00 -3.74 1.67 12.14 8.37 14.47 4.76 2.20 

               

Machinery, Nec               

Foregin VA share 0.163 0.164 0.172 0.177 0.187 0.211 0.210 0.201 0.204 0.217 0.230 0.248 0.260 0.264 

∆ Foreign VA share (%) n.a 0.76 5.12 2.85 5.53 12.60 -0.02 -4.62 1.83 6.33 5.70 7.72 5.08 1.55 

               

Electrical and Optical 

Equipment 

              

Foregin VA share 0.184 0.182 0.194 0.197 0.209 0.238 0.253 0.233 0.231 0.243 0.256 0.265 0.278 0.275 

∆ Foreign VA share (%) n.a. -0.97 6.27 1.74 6.15 13.83 6.34 -7.81 -1.04 5.40 5.18 3.49 4.76 -1.10 

               

Transport Equipment               

Foregin VA share 0.211 0.226 0.238 0.249 0.263 0.280 0.268 0.262 0.267 0.286 0.301 0.312 0.322 0.340 

∆ Foreign VA share (%) n.a. 6.72 5.50 4.41 5.89 6.43 -4.25 -2.13 1.77 7.01 5.33 3.70 3.27 5.35 

               

Manufacturing, Nec; 

Recycling              

 

Foregin VA share 0.155 0.154 0.163 0.169 0.177 0.199 0.196 0.192 0.193 0.206 0.220 0.233 0.242 0.247 

∆ Foreign VA share (%) n.a. -0.71 5.89 3.99 4.23 12.67 -1.43 -1.91 0.37 6.64 6.80 5.73 3.96 2.34 
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B.2 Regression Results Foreign Value Added and Labor Income Share 

 

Table B.2 - Fixed Effects regression of the changes in foreign value added shares and labor income 

shares for German manufacturing GVCs 1995-2008 

  
Dependent var: LI share (% change) Fixed Effects 

  

FVAshare (% change) -0.0281 

 (0.0254) 

Constant -0.736*** 

 (0.105) 

  

Observations 182 

Number of industries 14 

R-squared 0.005 

Industry FE YES 
Robust standard errors in parentheses 

*** p<0.01, ** p<0.05, * p<0.1 
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B.3 Foreign versus Domestic Energy Intensity Developments 

 

Table B.3- Domestic and Foreign Energy Intensity in German GVCs 1995-2008 

 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 

Food, Beverages & Tobacco               

Energy Intensity Domestic 6.86 7.33 7.91 8.05 7.89 8.89 8.88 8.52 7.82 6.93 6.61 6.30 5.16 4.84 

Energy Intensity Foreign 18.37 18.20 17.80 19.07 21.14 22.32 21.48 20.89 18.77 16.40 15.54 13.70 11.77 10.33 

               

Textiles and Textile Products               

Energy Intensity Domestic 8.12 8.72 9.44 9.36 9.49 10.60 10.83 10.22 9.37 8.27 6.60 5.98 5.10 4.51 

Energy Intensity Foreign 17.26 16.72 17.05 19.60 19.03 22.15 21.58 21.07 19.79 17.59 16.80 15.48 13.85 12.09 

               

Leather, Leather & Footwear               

Energy Intensity Domestic 6.90 6.20 6.60 7.08 7.03 8.61 9.36 8.41 7.24 6.26 5.14 4.61 3.85 3.11 

Energy Intensity Foreign 16.45 15.81 15.83 16.90 17.92 19.82 19.03 18.91 17.21 15.67 14.74 13.59 11.77 10.53 

               

Wood and Products of Wood 

and Cork 

              

Energy Intensity Domestic 5.75 6.11 6.48 6.70 6.86 8.35 8.82 8.72 8.59 7.75 6.84 6.45 6.94 6.98 

Energy Intensity Foreign 21.36 20.52 20.92 22.15 23.60 25.14 23.91 23.78 22.30 19.18 17.60 15.93 13.67 12.14 

               

Pulp, Paper, Paper , Printing 

and Publishing              

 

Energy Intensity Domestic 6.48 6.66 7.27 7.16 7.37 8.67 8.89 8.41 8.45 7.85 6.98 6.87 6.32 5.86 

Energy Intensity Foreign 20.98 20.54 21.13 22.33 23.39 24.81 23.84 23.46 21.38 18.78 17.64 16.25 14.38 12.66 

               

Coke, Refined Petroleum and 

Nuclear Fuel              

 

Energy Intensity Domestic 71.18 72.87 89.67 76.02 83.09 80.15 65.45 66.79 61.34 48.26 46.51 42.72 40.60 37.01 

Energy Intensity Foreign 51.11 46.05 43.37 55.04 66.92 64.40 44.88 39.80 39.18 31.14 25.18 18.42 17.54 13.40 

               

Chemicals & Chemical Prod.               

Energy Intensity Domestic 9.46 11.47 13.00 12.08 12.19 12.79 13.28 12.36 10.84 9.43 8.58 8.02 7.20 6.61 

Energy Intensity Foreign 24.71 23.58 23.34 24.24 25.90 28.74 25.50 25.33 23.20 19.85 18.46 16.30 14.32 12.66 
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Table B.4 (continued) - Domestic and Foreign Energy Intensity in German GVCs 1995-2008 

 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 

Rubber and Plastics               

Energy Intensity Domestic 5.82 7.15 8.26 7.76 8.19 7.74 7.91 7.62 7.20 6.75 5.35 5.13 4.70 4.27 

Energy Intensity Foreign 22.52 21.71 21.28 22.29 23.13 25.27 23.74 23.91 22.35 19.52 18.29 16.49 14.49 12.99 

               

Other Non-Metallic Mineral               

Energy Intensity Domestic 12.86 14.51 16.61 16.55 16.11 19.12 19.41 18.61 16.50 14.40 13.21 12.42 11.91 11.00 

Energy Intensity Foreign 26.12 24.88 25.12 27.33 28.84 30.87 27.86 27.06 25.54 21.66 19.77 17.33 15.25 13.07 

               

Basic Metals and Fabricated 
Metal 

              

Energy Intensity Domestic 12.50 13.76 15.27 14.87 14.91 16.93 16.43 15.71 13.62 12.80 11.05 10.42 8.79 8.12 

Energy Intensity Foreign 28.07 26.25 26.93 29.17 29.92 29.82 28.01 27.17 24.75 21.55 19.15 17.67 14.93 12.71 

               

Machinery, Nec               

Energy Intensity Domestic 4.10 4.35 4.71 4.65 4.66 5.27 5.16 4.68 4.28 3.86 3.41 3.20 2.76 2.51 

Energy Intensity Foreign 20.68 19.40 18.94 20.49 21.70 21.95 21.06 20.18 18.56 16.47 15.16 14.20 12.40 10.83 

               

Electrical and Optical 

Equipment 

              

Energy Intensity Domestic 3.66 4.06 4.42 4.41 4.46 4.59 5.06 4.54 4.02 3.54 3.22 3.08 2.58 2.21 

Energy Intensity Foreign 17.48 16.86 16.51 18.00 18.63 18.74 18.43 18.11 16.88 15.40 14.33 13.64 12.03 10.67 

               

Transport Equipment               

Energy Intensity Domestic 4.85 5.30 5.59 5.61 5.70 6.62 6.20 5.72 4.97 4.64 4.23 3.84 3.31 3.23 

Energy Intensity Foreign 18.97 17.68 17.24 18.59 19.35 20.35 19.35 18.39 16.78 15.05 13.94 13.18 11.54 10.21 

               

Manufacturing, Nec; 

Recycling              

 

Energy Intensity Domestic 4.39 5.52 5.96 5.50 5.98 5.79 5.87 5.72 5.21 4.89 4.13 3.89 3.53 4.07 

Energy Intensity Foreign 21.40 20.50 20.44 21.94 22.95 24.47 23.35 22.70 21.07 18.25 16.67 15.25 13.44 11.75 
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B.4 Annual Energy Intensity and Labor Income Share Growth Rates 

The figures below present the annual growth rates of the labor income share and energy 

intensity in German manufacturing GVCs over the period 1995-2008, with a further 

decomposition of the effect between 1995-2000 and 2000-2008, respectively.  

Figure B.1 - Labor Income Share and Energy Intensity Developments: Food, Beverages & Tobacco 

GVC 

 

Figure B.2 - Labor Income Share and Energy Intensity Developments: Textiles & Textile Products 

GVC 

 

-10% -8% -6% -4% -2% 0% 2% 4% 6%

2000-2008

1995-2000

1995-2008

Food, Beverages & Tobacco

Energy Intensity LI share

-10% -8% -6% -4% -2% 0% 2% 4% 6%

2000-2008

1995-2000

1995-2008

Textiles and Textile Products

Energy Intensity LI share



 

70 

 

Figure B.3 - Labor Income Share and Energy Intensity Developments: Wood & Products of Wood and 

Cork GVC 

 

Figure B.4 -Labor Income Share and Energy Intensity Developments: Pulp, Paper, Printing & 

Pusblishing GVC 

 

Figure B.5 - Labor Income Share and Energy Intensity Developments: Coke, Refined Petroleum & 

Nuclear Fuel GVC 
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Figure B.6 - Labor Income Share and Energy Intensity Developments: Rubber & Plastics GVC 

 

Figure B.7- Labor Income Share and Energy Intensity Developments: Chemicals and Chemical 

Products GVC 

 

Figure B.8 - Labor Income Share and Energy Intensity Developments: Basic Metal and Fabricated 

Metal GVC 
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Figure B.9 - Labor Income Share and Energy Intensity Developments: Machinery, Nec.  GVC 

 

Figure B.10 - Labor Income Share and Energy Intensity Developments: Electrical & Optical 

Equipment GVC 
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