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Abstract

Periodic electron and ion density modulations in near critical density plas-
mas induced by counterpropagating femtosecond pulses of intensities on the
order of 1015 to 1016 Wcm−2 are described in a linear and stationary regime
and investigated using particle-in-cell simulations in one and two dimensions.
The periodic gratings produce transient plasma photonic crystals lasting up
to several picoseconds with ultra-wide angle-selective band gaps on the order
of ∆ω/ω0 ≈ 10 − 20%. The slow light effects and transmission of ultra-short
pulses of intensities up to 1017 Wcm−2 near the band gap are studied both as
a function of frequency and angle of incidence, demonstrating group velocities
which are consistently below those in a uniform plasma of the same average
density. The velocities are found to approach zero near the gap at the cost of
high reflection and dispersion. Furthermore, the effect of ion mass and driving
pulse chirp on the transient structures are studied. Finally, the band gaps may
be used to repeatedly reflect a short intense pulse in a waveguide-like fashion
with effective propagation velocity as low as ∼ 10% of the speed of light.
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Chapter 1

Introduction

Since the invention of the technique known as chirped pulse amplification (CPA)
pulsed lasers have reached ever higher intensities with femtosecond pulses of
intensities as high as 1022 Wcm−2, far above the thresholds where traditional
materials break down [1]. These ultra-high intensities have opened up the field
of research known as relativistic optics [2], allowing among other things efficient
acceleration of both ions and electrons, usually through the methods of target
normal sheath acceleration (TNSA) and laser wakefield acceleration (LWFA)
[3, 4]. These have the benefit of being much more compact than the massive
conventional particle accelerators. Due to the large mass difference in ions and
electrons the former is not directly accelerated by the ultra-high intensity laser
but rather by electric fields established as the electrons are pulled away.

Recently, other methods of ion acceleration have been proposed such as
chirped standing wave acceleration (CSWA) and relativistic slow light in near
critical density plasmas (densities between those found in solids and gases) [5,
6]. In a very simplified picture, the principle of these two very different methods
is the use of initially slow light to accelerate the ions. The speed of the light is
then allowed to slowly accelerate to allow a continued acceleration of the ions
in an efficient manner.

Slow light is defined by a group velocity which is much lower than the va-
cuum speed of light. Such slow light is often divided into two categories: ma-
terial and structural slow light, which have been shown to be of very different
character [7]. Material slow light is characterised by a group velocity of a light
pulse which is inversely dependant on the change of refractive index with fre-
quency, i.e. a rapid change in refractive index of a material, as a function of
frequency, would drastically change the group velocity. Material slow light has
even reached speeds as low as the speed of a bicycle by using ultra-cold gases
[8]. Meanwhile, structural slow light is, as the name suggests, rather an effect
of structural properties than material ones. A one dimensional example of this
type of slow light would be a Fibre Bragg Grating (FBG), a type of photonic
crystal, consisting of alternating sheets of materials with different refractive in-
dices. As a simple picture this can be understood from the fact that at each
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interface light is both reflected and transmitted and as such on average it takes
longer for the light to propagate [7].

Photonic crystals have been studied as far back as 1887 by Lord Rayleigh
in the form of Bragg gratings. The research area got its name much later
after papers published by Yablonovitch on full photonic band gaps in 1991 and
has expanded immensely since [9]. Slow light in photonic crystals is used in
for example delay lines in optical communication and slow light across wide
frequency bands with low dispersion has been demonstrated in photonic crystal
waveguides [10–12].

Photonic crystals and photonic band gaps are similar to the electron band
structures of solid state physics. In the electron case one can describe the
existence of the bands by starting from the discrete energy levels of a single atom
where adding more atoms in periodic structures, each one giving more possible
energy levels, slowly builds the allowed bands. In the case of photonic crystals
the picture is reversed, by starting from a single slab of transparent material
all photon energies are allowed to propagate with low reflection. Adding more
layers of material gives rise to reflections at each interface, slowly building the
band gaps through destructive interference. The band structures of photonic
crystals has been exstensively studied in for example [13–15]. The effect of
introducing layers of low density plasma has also gained attention, in this case
they are often called plasma photonic crystals (PPCs) [16].

The ultra-high intensity pulses obtained with CPA would destroy all of these
crystals, however periodic structures made completely out of density modula-
tions in plasmas, produced from the standing wave formed by two counter-
propagating pulses of intensities on the order of 1015 Wcm−2, have been invest-
igated theoretically and experimentally on the surface of solid density targets
and in gas targets for optical manipulation such as analysis of high harmonics
and pulse shaping [17–19]. Theoretical work has also been done on bulk density
gratings in near critical density plasmas where angle dependent photonic band
gaps have been observed [20–22].

This type of plasma grating, which exists on the picosecond time scale and
hence is called transient plasma photonic crystal (TPPC), has much higher
damage threshold than ordinary dielectric materials and could offer slow light
propagation of ultra intense pulses and potentially open up for other schemes of
ion acceleration if reliable sources of uniform near critical density targets can be
produced, which is currently also of interest in order to investigate many other
plasma phenomena [23].

The aim of this thesis is to theoretically investigate the slow light capab-
ilities of TPPCs for ultra-intense pulses on the femtosecond scale and expand
on previous result on the formation of the bulk density gratings by considering
possible limiting experimental factors. This is achieved by plasma simulation
using a particle-in-cell (PIC) code.

This thesis is divided into six chapters. Chapters 2-4 contain the necessary
background and for completeness include rigorous derivations when possible.
Broken down into constituents, chapter 2 begins by defining a plasma and in-
troduces fundamental parameters in laser-plasma interactions followed by giving
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a detailed analytic description of the formation of plasma density gratings in
the linear and stationary regimes as well as their dispersion relations. Chapter
3 briefly discusses the concept of slow light and its limitations. In chapter 4 a
short description of the PIC code used in the simulations is described for the
interested reader. Chapter 5 presents the results of simulations, making com-
parisons to previous work and discusses the slow light observed in the TPPCs.
Chapter 6 contains conclusions of the work and gives an outlook with other
possible ways of obtaining ultra intense slow light in plasma structures.
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Chapter 2

Transient Plasma Photonic
Crystals

2.1 Plasmas

In this chapter various essential concepts of plasmas and light-plasma interac-
tions for laser pulses with intensities on the order of 1015 Wcm−2 are described.

Plasma is considered the fourth state of matter along with solids, liquids
and gases and is the the most abundant matter in the observable universe. The
latter three are however much more common on earth, where plasmas only exist
under special conditions, such as in lightning or in the laboratory.

A plasma is in principle an ionised gas, but to be considered a plasma it
must display collective behaviour. This collective behaviour arises when enough
particles have been ionised so that a single charged particle in the gas interacts
with many other charged particles through the Coulomb force. This long range
interaction is the main difference to the other three states of matter and is the
reason for many unique properties and phenomena.

In the laboratory a plasma is produced either through kinetic effects, where
an electric field is applied to accelerate electrons which through collisions further
ionise the medium, or by photoionisation where photons excite electrons into
continuum states. Since the effect of ionisation is gradual it is not possible to
define a thermodynamic phase transition as between the other states of matter.

At equilibrium a plasma will be neutral in the absence of external effects
as even a small deviation from neutrality imposes huge Coulomb forces which
could only be balanced by thermal effects if the plasma had a temperature of
several million Kelvin. Plasmas are still generally quite hot, in this thesis the
unit used to describe electron and ion temperatures is 1 eV = 11605 K.

To summarise, plasmas can be treated in a number of different cases and
are divided into for example hot or cold, high or low degree of ionisation, high
or low density and whether the plasma is magnetised or not. In this thesis the
plasmas to be considered are cold, fully ionised and unmagnetised.
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2.2 Plasma Frequency

In order to properly simulate laser plasma interaction, it is first necessary to
consider the time and length scales at which the phenomena to be studied
occur. The characteristic time scale of a plasma are the inverse of the plasma
frequencies of the different particle species, of which the electron frequency is
generally the most important.

An expression for the latter, denoted ωpe, can be derived by considering a
slab of cold electrons (thermal motion is neglected) and stationary ions with
charge neutrality, i.e. Zni = ne, where nα (α = e,i) is the species density and Z
is the ion charge. The slab has a width L along the x-axis and extends to infinity
in y and z, see Figure 2.1. By shifting the electrons from their equilibrium
by some small amount ∆x � L, a positive charge region with charge density
σ = ene∆x, where e is the elementary charge, forms on the left side and a
region of opposite charge forms on the right side. The resulting electric field is
Ex = σ/ε0 = ene∆x/ε0, where ε0 is the vacuum permittivity.
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Figure 2.1: Neutral Plasma where electrons have shifted by ∆x.

The force on one of the electrons is F = −eEx, hence Newton’s second law
gives

me
d2∆x

dt2
= −eEx = −e

2ne

ε0
∆x ⇔

d2∆x

dt2
+
e2ne

ε0me
∆x = 0,

(2.1)

where me is the mass of the electron. This is the standard harmonic oscillator
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where the natural frequency is identified as

ω = ωpe =

√
e2ne

ε0me
. (2.2)

The characteristic time scale is then τpe ≡ 1/ωpe and the inverse of particle
mass shows why the electron plasma frequency is most important as this gives
a natural limit on timescales. To reproduce plasma physics correctly in simu-
lations it is generally desirable to have a time step which is smaller than τpe.
Furthermore, only when the phenomena to be studied occur on timescales τ
such that τpe � τ is the system considered to be a plasma [24, p. 5]. For a more
rigorous derivation of the plasma frequency, see e.g. [25, p. 270].

For example, an electron density of ne = 0.5 · 1027 m−3 gives a plasma
frequency of ωpe ≈ 1.3 · 1015 s−1 and a natural timescale of τ ≈ 0.8 fs.

2.3 Debye Length

Debye shielding is the screening of external electric fields from the interior of a
plasma through the redistribution of charges in the plasma. The length at which
this shielding takes place is the Debye length λD. In the following it is assumed
the plasma is initially uniform and quasi-neutral plasma (ne ' Zni = n0) of
electrons and ions where the species temperatures are assumed equal, Ti = Te.
The plasma is perturbed by a single positive charge Q at the origin. The goal is
to find the resulting electrostatic potential, E = −∇φ(r), close to the perturbing
charge. Assuming the plasma is at thermal equilibrium, the species number
densities take the form, given by the Maxwell-Boltzmann law [25, p. 274],

ne = n0exp

[
eφ(r)

kBT

]
,

ni = n0exp

[
−eφ(r)

kBT

]
,

(2.3)

where n0 is the number density far away from the charge perturbation and kB

is the Boltzmann constant.
Inserting equation (2.3) into Poisson’s equation, the following expression is

obtained

∇2φ(r) =
e

ε0
(ne − ni)−

Q

ε0
δ(r) =

en0

ε0

(
exp

[
eφ(r)

kBT

]
− exp

[
−eφ(r)

kBT

])
− Q

ε0
δ(r)

(2.4)

where δ(r) is the Dirac delta function. Assuming the electrostatic energy is small
compared to the thermal energy, eφ� kBT , the two exponential functions can

be expanded to exp
[
± eφ(r)

kBT

]
≈ 1 ± eφ(r)

kBT
. The ones cancel and equation (2.4)

can be rewritten as

∇2φ(r)− 2

λ2
D

φ(r) = −Q
ε0
δ(r), (2.5)
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where the Debye length has been identified as λD =
√

ε0kBT
n0e2

. This equation is

most easily solved in Fourier space where it becomes(
k2 +

2

λ2
D

)
φ(k) =

Q

ε0
⇔ φ(k) =

Q

ε0

1

k2 + 2
λ2
D

. (2.6)

The potential in real space follows after taking the inverse transform

φ(r) =
1

(2π)3

∫
d3k

Q

ε0

eik·r

k2 + 2
λ2
D

=
Q

4πε0r
e
−

√
2r
λD . (2.7)

A similar expression can be obtained by assuming that the ions are stationary
with a uniform number density n0 equal to the unperturbed electron number
density, in which case the factor

√
2 in equation (2.7) disappears [26, p. 14]. In

any case, the potential shows that at lengths greater than the Debye length the
electric field of the perturbing charge is screened, hence to be able to assume
macroscopic charge neutrality it is necessary to consider phenomena which occur
on length scales L such that λD � L holds [24, p. 5].

Continuing on the example given for the plasma frequency, for a number
density n0 = 0.5 · 1027 m−3 and a temperature T = 25 eV the Debye length is
λD ≈ 1.7 nm.

2.4 Electromagnetic Waves in Plasmas

Plasmas can sustain a number of different types of wave phenomena depending
on for example the existence and direction of magnetic fields in relation to the
direction of the wave vector k. Indeed, one type has already been shown, namely
the natural oscillation of electrons. This is however not a travelling wave and as
such permits no propagation of energy/information. To study the properties of
waves in physics it is common to find dispersion relations, which are equations
relating the frequency to the wavenumber. From these it is then possible to
find such things as the phase velocity, group velocity, dispersion, band gaps and
more.

In this section the theory of electromagnetic wave propagation in plasmas
will be considered by finding the dispersion relation subject to the following
approximations (the conditions can be relaxed somewhat by not including con-
dition iv [25, p. 402]):

i Homogeneous & infinitely extending plasma

ii Cold plasma (∇p = 0)

iii No external magnetic field (B0 = 0)

iv Collisionless plasma (ν � ω)

v Stationary ions (ωpi � ω)
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where ∇p is the pressure gradient, ν is the collision frequency, ωpi and ω are
the ion plasma frequency and electromagnetic wave frequency. For convenience
the index e denoting electrons is dropped from all quantities as currently the
ions are not of any concern.

Under these conditions and for small amplitude waves, the light-plasma in-
teraction is described by the zeroth and first order moments of the distribution
function∗, which are the electron number density n(r, t) and the average electron
velocity u(r, t), through the linearised force equation

m
Du

Dt
= q(E + u × B), (2.8)

and Maxwell’s equations

∇ ·E =
ρ

ε0
, (2.9)

∇ ·B = 0, (2.10)

∇× E = −∂B

∂t
, (2.11)

∇× B = µ0

(
J + ε0

∂E

∂t

)
, (2.12)

where D
Dt ≡

∂
∂t+u·∇ is the total derivative†. The electron number density enters

through the current density J = −enu which depends only on the electrons
because the ions were assumed stationary.

Assuming wave solutions of the form

E(r, t) = E(r)e−iωt (2.13)

and neglecting second order terms such as u · ∇u and u × B, equation (2.8)
reduces to (this is valid when u� ω/k [25, p. 403])

∂u

∂t
=

q

m
E(r)e−iωt. (2.14)

Taking the time derivative of J and inserting into equation (2.14) yields

∂J

∂t
= −en∂u

∂t
=
e2n

m
E(r)e−iωt = ω2

pε0E(r)e−iωt, (2.15)

where the electron plasma frequency ωp in equation (2.2) has been used. After
integration the current is found to be

J =
iω2

pε0

ω
E(r)e−iωt. (2.16)

∗The n:th moment of a point quantity f is simply rnf where r is a distance, for example the
first few moments of mass are: total mass, centre of mass and moment of inertia (n = 0, 1, 2).
The distribution function describes the ensamble average distribution in (r,v)-space (phase
space).
†The total derivative is also known under many other names, e.g. material derivative and

Lagrangian derivative. It is easily obtained by the multivariate chain rule.
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With this expression for the current density, equation (2.12) becomes

∇× B = −iωµ0ε0ε(ω)E(r)e−iωt, (2.17)

where the dielectric function in the plasma has been introduced as ε(ω) = 1− ω2
p

ω2 .
Taking the curl of equation (2.11) and (2.12), using the identity ∇× (∇×A) =
∇(∇ ·A)−∇2A and substituting gives the wave equations

−∇(∇ ·E) +∇2E +
ω2

c2
ε(ω)E = 0, (2.18)

∇2B +
ω2

c2
ε(ω)B = 0. (2.19)

Assuming transverse plane waves, i.e. the spatial part of of the field is of
the form E(r) = E0eik·r, with k ⊥ E0, and carrying out the derivatives gives
the dispersion relation in a homogeneous plasma

ω2 = c2k2 + ω2
p. (2.20)

It should be noted that when ω < ωp the wavenumber k = c−1
√
ω2 − ω2

p is

purely imaginary. Inserting this wavenumber into the spatial part of the plane
wave gives E(r) = e−Im(k)·r which is an exponentially decaying wave, hence
frequencies below the cutoff frequency ωp will not propagate. Recall that the
plasma frequency depends on the electron number density, it is then possible
to define a cutoff density from the condition ω = ωp called the critical density,
given by

nc =
ε0me

e2
ω2. (2.21)

Plasmas of densities below nc are often called underdense whereas plasmas of
densities exceeding nc are called overdense. With this definition it is possible
to rewrite the wavenumber as

k = k0

√
1− n/nc, (2.22)

where k0 = ω/c is the vacuum wavenumber.
Figure 2.2 shows the dispersion relation and cutoff frequency in comparison

to the free space dispersion relation. It is seen that the plasma light wave
asymptotically approaches the free space light wave in the high frequency limit
or equivalently in the low electron density limit.
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Figure 2.2: Dispersion relation (the speed of light has been set to c = 1) of a
propagating plane wave sustained by a homogeneous plasma (solid line), dis-
persion relation of plane wave in vacuum (dashed line) and cutoff frequency ωp

(dotted line).

As a final note, if one assumes longitudinal waves (k ‖ E0) in equation
(2.18), the resulting dispersion relation turns out to be just ω2

p = ω2, which is
to say longitudinal waves can be sustained for the conditions specified at the
start of this section, but only as oscillations at the frequency exactly matching
the natural oscillation frequency of electrons. In chapter 3 the phase and group
velocities of these plasma waves and oscillations are discussed.

2.5 Ponderomotive Force

The ponderomotive force, which is a net force on charged particles subject to the
oscillations of a light wave, has to be introduced before discussing how plasma
density gratings can be formed through laser-plasma interactions. The field
strengths used in the simulations in this thesis are non-relativistic to weakly re-
lativistic (I < 1018 Wcm−2), hence a classical description of the ponderomotive
force will suffice. Following the derivation of [27, p. 256-258], neglecting zero
order field terms B0, E0, assuming a wave of the form

E = E(r) cosωt (2.23)
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and considering the motion of a single electron in this field, described by

m
dv

dt
= −e (E + v × B) . (2.24)

As in the previous section, v × B = v1 × B1 + O(r3) is now second order
and neglected to begin with. Inserting the field into the equation of motion
evaluated at the initial position of the electron, r0, gives by integrating twice

m
dv

dt
= −E(r0) cosωt⇒ (2.25)

v1 = − e

mω
E(r0) sinωt =

dr1

dt
⇒ (2.26)

∆r1 =
e

mω2
E(r0) cosωt, (2.27)

where averaging over one period in the last expression one finds 〈∆r1〉 = 0.
Thus to first order the electron returns to its initial position and equation (2.27)
describes the quiver motion in an electric field.

Proceeding to second order by Taylor expansion of the electric field around
r0 results in

E = E
∣∣
r=r0

+ (∆r1 · ∇)E
∣∣
r=r0

+ ..., (2.28)

which should be combined with the previously neglected second order term
v1 × B1 to arrive at the equation of motion to second order. To do this B1 is
first found using the Maxwell-Faraday equation

∇× E = −dB

dt
⇒ (2.29)

B1 = − 1

ω
∇× E(r)

∣∣
r=r0

sinωt. (2.30)

The second order term of equation (2.24) is then

m
dv2

dt
= −e [(∆r1 · ∇)E + v1 × B1] , (2.31)

which after insertion of equations (2.26), (2.27) and (2.30) and averaging over
one period and simplifying becomes〈

dv2

dt

〉
= − e2

4mω2
∇E2(r) ≡ fP. (2.32)

This is the ponderomotive force on a single particle, which by multiplication
of a density n0 becomes the force on a volume of particles

FP = −
ε0ω

2
p

2ω2
∇〈E2〉, (2.33)

where the constants have been expressed in the electron plasma frequency and
E2(r) = 2〈E2〉 has been used. The ponderomotive force is interesting because
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it is independent of the sign of charge of the particle being affected, so that
both electrons and ions will be pushed in the same direction. Furthermore it
scales with the mass as FPe = me

mi
FPi which will be used in the next section to

neglect the force on protons. Finally, it can be seen that the particles will be
pushed out of strong fields, into the troughs of the potential, independently of
the polarisation of the field. In the general case including relativistic fields or
particles the theory is usually much more complicated [28].

2.6 Laser Induced Plasma Density Gratings

In this section the interaction between two counterpropagating laser pulses form-
ing a standing wave in an initially homogeneous underdense plasma is con-
sidered. A detailed derivation of the electron and ion motions due to the pon-
deromotive force is given in the linear regime, which for high intensity pulses is
valid only for very short times. It does however provide some insight into the
formation of the density variations as a result of the standing wave. To com-
plement this picture a stationary solution of the density grating is also given,
which is then used to estimate the maximum density and contrast∗ of the density
grating. The derivations confirm previous expressions given in [20, 22].

The basic idea is this: The waves form a standing wave which through the
ponderomotive force acts to push electrons into low intensity troughs forming
density peaks. The moving electrons makes the plasma locally non-neutral
which generates electrostatic fields. The ions are in turn accelerated by this
field to restore neutrality. If the driving pulses are long, the standing wave will
be present long enough to build a large density variation. As a consequence of
this long-lasting standing wave, the ions will gain a large momentum so that
they can reach the electron density peaks even after the driving pulses have
propagated through the plasma. As a result of this large momentum the ions
subsequently overshoot so that the density grating slowly dissipates.

2.6.1 Linear Solution

Plane waves are assumed counterpropagating along the x−axis which reduces
the problem to one dimension, these waves are described by the vector potentials

a1,2 = a1,2 cos(k1,2x− ω0t)ey (2.34)

where k2 = −k1 = k0

√
1− n0/nc is the wave vector in plasma as derived in

section 2.4 and a is the vector potential normalised to mc2/e. For convenience
a is often related to the laser intensity I through

a = λ[µm]
√

7.3 · 10−19I[ Wcm−2], (2.35)

where λ is the laser wavelength.

∗The contrast is defined as the ratio between the maximum and minimum density found
in the structure.
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The equations describing the laser-plasma interaction are [22]

∂pe,x

∂t
= c

∂(φ− γ̄)

∂x
, (2.36)

∂ne

∂t
+ c

∂(neve,x)

∂x
= 0, (2.37)

∂pi,x

∂t
= −c m

M

∂φ

∂x
, (2.38)

∂ni

∂t
+ c

∂(nivi,x)

∂x
= 0, (2.39)

∂2φ

∂x2
=
ω2

p

c2
(ne − Zni), (2.40)

where equations (2.36) and (2.38) are the simplified cold plasma fluid equations
of motion for electrons and ions respectively (see appendix A for a derivation),
equations (2.37) and (2.39) are the continuity equations for electrons and ions
(implying conservation of mass) and equation (2.40) is Poisson’s equation.

In these equations pe,x and pi,x are the electron and ion momentum x-
components normalised to mc and Mc where m and M are the rest masses
of electrons and ions, φ is the scalar potential normalised to mc2/e, ne and ni

are the electron and ion number densities normalised to the unperturbed dens-
ity n0, ve,x and vi,x are the electron and ion x-component velocities normalised
to the speed of light c and γ̄ is the relativistic factor time averaged over a laser
cycle.

Here γ̄ is to be interpreted as the ponderomotive potential. As mentioned
before, the ponderomotive force is neglected from the ion equation of moment
because of the way it scales with mass.

For plane waves it can be shown to be given by γ̄ =
√

1 + 〈a · a〉 where 〈·〉
denotes the time average over one laser cycle [29]. With the vector potentials
in equation (2.34) the time averaged term for the standing wave is

〈a · a〉 = a2/2 =
1

2

[
a2

1 + a2
2 + 2a1a2 cos(2k1x)

]
(2.41)

Non-relativistic intensities and typical laser wavelengths imply a� 1. This
allows γ̄ to be expanded as γ̄ ≈ 1 + a2/4. With this approximation the pon-
deromotive force takes the form

FP = −∂γ̄
∂x

= k1a1a2 sin(2k1x). (2.42)

It is possible to solve equations (2.36)-(2.40) in the linear case by assuming
the ponderomotive force initially gives small variations in density so that the
total electron density is written as ne = 1 + ñe (ñe � 1) where terms like ∂ñe

∂x
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are small so that

∂ne

∂t
=
∂ñe

∂t
= −c∂ve,x

∂x
, (2.43)

∂ve,x

∂t
= c

∂φ

∂x
+ c

Fp
m
, (2.44)

∂2φ

∂x2
=
ω2

p

c2
ñe. (2.45)

Taking the time derivative of equation (2.43) and inserting equation (2.44)
gives

∂2ñe

∂t2
= −c∂

2ṽe,x

∂x∂t
= −c2

[
∂2φ

∂x2
+
∂FP
∂x

]
, (2.46)

where inserting equation (2.45) into the equation above and rewriting yields

∂2ñe

∂t2
+ ω2

pñe = −2c2k2
1a1a2 cos(2k1x). (2.47)

This equation is solvable by the assumption that the plasma is initially
homogeneous, expressed through the initial conditions ñe|t=0 = 0 and ∂ñe

∂t |t=0 =
0 which gives the final solution of the density variation of electrons

ñe = −2k2
1c

2

ω2
p

a1a2 cos(2k1x) [1− cos(ωpt)] . (2.48)

From E = −∇φ and equation (2.45) it is then possible to find the electric
field and scalar potential by integration as

Ex = −k1a1a2 sin(2k1x) [1− cos(ωpt)] , (2.49)

φ =
a1a2

2
cos(2k1x) [1− cos(ωpt)] , (2.50)

where Ex is normalised to mc2/e. By inserting the induced electrostatic field
into equation (2.38) and integrating one finds the ion momentum and in a similar
way the electron momentum

pi,x = k1c
m

M
a1a2 sin(2k1x)

[
t− ω−1

p sin(ωpt)
]
, (2.51)

pe,x =
k1ca1a2

ωp
sin(2k1x) sin(ωpt). (2.52)

Finally inserting the momentum into equation (2.39), introducing ni = 1 +
ñi (ñi � 1) keeping only first order terms in the same way as for electrons,
the ion density perturbation becomes

ñi = −k2
1c

2 m

M
a1a2 cos(2k1x)

[
t2 − 2ω−2

p (1− cos(ωpt))
]
, (2.53)

these expressions are equivalent to those given in [20, 22]. Equations (2.48) and
(2.53) both have the same periodic spatial structure of period π/k1, dependent
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only on the laser wavenumber in the plasma. For a 0.8µm wavelength and
homogeneous density of n0 = 0.3nc this corresponds to a spatial period of
0.478µm. Additionally the ion density develops more slowly due to the scaling
with mass as m/M . Considering an electron-proton plasma and laser intensities
a1 = a2 = 0.05 (approximately corresponding to I = 5 · 1015 Wcm−2 one finds
from the condition (ñe ∼ 1) that the linear approximation is valid for times
t < 23 fs.

2.6.2 Stationary Solution

As mentioned, to complement this linear approximation, it is possible to find a
stationary solution for infinite plane waves. Recall that the cold plasma equation
neglects the pressure term, in order to find the stationary solution it has to be re-
introduced. Maximum density and the width of the peaks are a balance of three
forces, the thermal pressure force acting as an outward push, the electrostatic
force pulling particles of opposite charge together and the ponderomotive force
pushing both electrons and ions into the troughs of the corresponding poten-
tial [30]. The pressure terms for electrons and ions are 1

nemc
dPe

dx and 1
niMc

dPi

dx
respectively, where Pα = nαkBTα and are introduced on the left hand sides
of equations (2.36) and (2.38). The stationary assumption makes the terms
∂pα
∂t = 0, giving

1

nemc

dPe

dx
= c

∂(φ− γ̄)

∂x
, (2.54)

1

niMc

dPi

dx
= −c m

M

∂φ

∂x
. (2.55)

The spatial derivative of the temperature is neglected by assuming the elec-
tron bunching is an isothermal process, giving a first order linear ODE with
solutions for nα(x) given by

ne = C1eβ1(φ−γ̄), (2.56)

ni = C2e−β2φ, (2.57)

where β1 = mc2

kBTe
and β2 = mc2

kBTi
and C1 and C2 are integration constants to be

determined. From requiring quasi charge neutrality (ne ' Zni) and equating
exponents it is seen that

φ =
β1γ̄

(β1 + β2)
, (2.58)

where γ̄ is the known ponderomotive potential, giving

Zni = ne = Ce−β cos(2k1x), (2.59)

where C is a new constant containing all components not spatially varying and

β = mc2a1a2
2kBTe(1+

Ti
Te

)
. The final constant C is determined through conservation
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of particle number by assuming no particles are created or destroyed. This
condition is given by a spatial integral over one period

1 = C

∫ π/k1

0

dx e−β cos(2k1x) = CI0(β), (2.60)

so that C = 1/I0(β) where I0 is the modified Bessel function of the first kind of
order zero. Equation (2.59) with this constant C is similar to that of [22] and
equivalent to that found in [31]. Assuming temperatures Te = 25 eV, Te/Ti =
10 and laser intensity a1 = a2 = 0.05 one gets β ≈ 23 for which 1/I0(β) ≈√

2πβe−β . With these considerations the density grating is that shown in Figure
2.3. Here the maximum density is approximately 12n0, which in simulations
will be shown to be an overestimation by a factor three, in some part due to
neglecting heating from the electrostatic field.
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Figure 2.3: Stationary solution of electron density grating normalised to initial
homogeneous density n0, with temperature Te/Ti = 10 and laser intensity a1 =
a2 = 0.05.

2.6.3 Dispersion Relation for Periodic Structures

Similar to how in section 2.4, where it was shown that homogeneous plasmas can
sustain propagating electromagnetic waves, this section describes the properties
of waves in periodic dielectric structures. Assuming the wave incident on the
periodic structure in Figure 2.3 is a transverse plane wave travelling along the
x−axis it is possible to treat the problem using the wave equations derived in
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section 2.4

−∇(∇ ·E) +∇2E +
ω2

c2
ε(ω)E = 0, (2.61)

∇2B +
ω2

c2
ε(ω)B = 0. (2.62)

Furthermore assume the wave is s-polarised∗, E = Ez(r)eiωtez, i.e. the
electric field is perpendicular to the plane of incidence which is spanned by the
two vectors of incident and reflected rays. This corresponds to solving equation
(2.61) where inserting the field, noting the first term becomes zero, leaves us
with (

∂2

∂x2
+

∂2

∂y2

)
Ez(r) + ε(ω, x)

ω2

c2
Ez(r) = 0, (2.63)

where the dielectric function is now a function of both frequency and space due
to the varying density since

ε(ω, x) = 1−
ω2

p

ω2
= 1− ne(x)e2

ε0meω2
. (2.64)

To solve this equation one notes that the dielectric function is periodic in
L = π/k1 since ne(x+L) = ne(x) and makes use of the Floquet-Bloch theorem
[32, 33], which states that a wave solution subject to an infinitely periodic
potential can be expressed as

E(r) = eik·ru(r), (2.65)

where u(r) is a function with the same periodicity as ne(x) and k = (kx, ky, 0)
is called the Bloch wavenumber. Expanding ne(x) and u(r) in complex Fourier
series gives

ne(x) =
∑
p

ηpe
i 2πpL x, (2.66)

u(r) =
∑
bp

cp(bp)e
ibp·r, (2.67)

where p ∈ Z and bp = ( 2πp
L , 0, 0) are lattice vectors which only has an x-

component since this is the only direction the density is periodic in. The Fourier
coefficients of ne normalised to n0, applied to the stationary solution found in
the previous section, are given by

ηp =

∫ L

0

dxne(x)
e−i 2πpL x

L
=

∫ L

0

dx
e−β cos(2k1x)

I0(β)

e−i 2πpL x

L
=
Ip(β)

I0(β)
, (2.68)

where the Ip(β) is the modified Bessel function of the first kind of integer order
p [34, p. 376].

∗The designation s-polarised stems from the German word senkrecht, meaning perpendic-
ular, whereas p-polarised waves are parallel to the plane of incidence.
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Inserting equations (2.64)-(2.67) into equation (2.63) and normalising so that
ne,unit = nc, tunit = ω−1

0 , xunit = c/ω0, and Eunit = mecω0

e yields

∑
p

cp

[(
∂2

∂x2
+

∂2

∂y2

)
+
ω2

ω2
0

]
ei(k+bp)·r−

∑
p

cpe
i(k+bp)·r

∑
p

ηpe
i 2πpL x = 0⇒

∑
p

cp

[
−
(
kx +

2πp

L

)2

− k2
y +

ω2

ω2
0

]
ei(k+bp)·r−

∑
p

(∑
p′

ηp−p′cp′

)
ei(k+bp)·r = 0

(2.69)

where the second term involving a product of two Fourier series has been rewrit-
ten using an identity for the convolution of Fourier coefficients. Next, requiring
the coefficients to be zero then results in an infinite set of coupled equations [21]

cp

[
−
(
kx +

2πp

L

)2

− k2
y +

ω2

ω2
0

]
−
∑
p′

ηp−p′cp′ = 0. (2.70)

It is instructive to use the two band model through which assuming the first
two coefficients p = 0,−1 are the most important it is possible to estimate the
width of the first band gap by solving near the edge of the first Brillouin zone
[35, p. 177]. For normal incidence of the waves (ky = 0) equation (2.70) on
matrix form for these two coefficients becomes[

−k2
x − η0 + ω2

ω2
0

−η−1

−η−1 −(kx − 2π
L )2 − η0 + ω2

ω2
0

] [
c0
c−1

]
= 0. (2.71)

Non-trivial solutions are found when the determinant of the 2 × 2 matrix is
zero, giving the two solutions evaluated at the edge of the first Brillouin zone
(gaps are generally expected at points of high symmetry, see e.g. [36, p. 31])
located at kx = k1 rather than kx = k0 due to the reduced wavenumber in the
plasma

ω1,2

ω0
=

√
π2

L2
+ η0 ± η−1. (2.72)

Assuming n0 = 0.3nc, the width of the band gap is then given by

∆ω

ω0
≈
√
π2

L2
+ η0 + η−1 −

√
π2

L2
+ η0 − η−1 ≈ 28%, (2.73)

similar to the expression in [21]. This procedure is easily repeated for other
periodic variations in density, in particular those obtained from simulations.
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Figure 2.4 shows the band structure including terms up to p = ±4 where
it is clear the structure shows photonic band gaps, the largest of which is the
first one at almost 30%. Solid lines correspond to propagating Bloch modes
whereas dashed lines are the solutions with complex kx which similarly to the
case of cutoff frequency defined by nc leads to exponentially decaying modes.
The larger the amplitude of the Im(kx) the faster the modes decay. Note that
this has been shown for infinitely periodic plasmas, however with enough periods
also finite structures should approximately reproduce this band diagram.

Since there is no structure along the y-axis oblique incidence (ky 6= 0) allows
continuum bands of propagating modes because for each allowed kx it is possible
to choose any ky since these are not limited by any Bloch condition. Because
of this continuum, a wave with oblique incidence can for some angles propagate
even for frequencies corresponding to the middle of the band gap for normal
incidence. The angle of incidence with respect to the normal of the grating
surface is determined via ky/kx = tan(θ).
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Figure 2.4: Real and complex band structure of the density grating obtained in
the stationary approximation using temperature Te/Ti = 10 and laser intensity
a1 = a2 = 0.05 and initial density n0 = 0.3nc (for which the edge of first
Brillouin zone is located at kx/k0 ≈ 0.836).
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Chapter 3

Slow Light

As mentioned previously, a dispersion relation gives insight into the propagation
characteristics of the wave. This chapter briefly discusses the different types of
effects which modify the propagation velocity of light, under what conditions
these occur and some basic limitations.

3.1 Material Slow Light

Each wave is characterised by two different velocities. The first is the phase
velocity which for transparent nondispersive media is simply defined by

vph = ω/k = c/n, (3.1)

where ω is the frequency, k is the wavenumber, c is the speed of light in vacuum
and n is the refractive index of the media. The second one is the group velocity,
the speed at which an electromagnetic pulse propagates, defined by

vg =
∂ω

∂k
, (3.2)

which for nondispersive media is identical to the phase velocity.
Slow light is further divided into two subcategories, material and structural.

Material slow light is the slowing of light in a uniform, dispersive medium where
the refractive index is strongly frequency-dependent. In this case the phase
velocity is defined in the same way and the group velocity can be shown to be
[37]

vg =
∂ω

∂k
=

c

n+ ω dn
dω

, (3.3)

where it is common to define the group index as ng = n + ω dn
dω . Since n is

usually on the order of unity, the slow light is mainly governed by the speed
at which the refractive index changes with frequency. This term can be both
positive and negative, where the positive case gives slow light and the negative
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case is associated with fast light phenomena. In many cases, it can be shown
that the group velocity is also the same as the velocity of energy transfer [38].

As an important example, consider the dispersion relation for electromag-
netic waves in a homogeneous plasma derived previously, where the refractive
index n becomes

n =

√
1−

ω2
p

ω2
. (3.4)

In this case the phase and group velocities become

vph =
c√

1− ω2
p

ω2

, (3.5)

vg = c

√
1−

ω2
p

ω2
. (3.6)

As the frequency approaches the cutoff frequency ωp the phase velocity be-
comes infinite and the group velocity approaches zero. Note also that ωp is
dependent on the electron number density. The group velocity as a function of
frequency for three different densities are shown in Figure 3.1, these curves are
important as a comparison when investigating the second type of slow light, i.e.
structural slow light.
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Figure 3.1: Group velocity in homogeneous plasma for different densities given
by equation (3.6). The intersection with the y-axis is at ω = ωp.
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3.2 Structural Slow Light

Structural slow light is fundamentally different to material slow light. As the
name implies it is not the material properties, but rather the structure of the
material, usually periodic crystals in one or more dimensions, which modifies
the propagation of pulses. The most simple such photonic crystal is the periodic
stack of two materials with different dielectric constant, a very similar system is
that described in section 2.6, where the dispersion relation of a photonic crystal
structure, consisting of a plasma density grating, with continuously varying
dielectric function was shown. A heuristic explanation of the slow light origin
in this case is that the pulse is partially reflected at each interface, making
the average photon and thus the pulse envelope propagate through the crystal
slower.

The speed of a light pulse in a dielectric structure is still described by
vg = ∂ω

∂k , where k is now the Bloch wavenumber of the propagating mode [38].
Looking at the dispersion relation in Figure 2.4 it is easy to see the lower band
close to the band gap gives rise to a slow light mode. The upper band is a bit
more subtle. In this case the group velocity and phase velocity become anti-
parallel, i.e. vg < 0 and vph > 0, at first glance one might assume the negative
slope must correspond to fast light as the pulse leaves the material before it
enters. This is however not a complete picture as the dispersion relation dis-
plays reflection symmetry, so that for negative kx the upper band instead has a
positive slope near the band gap, giving instead vg > 0 and vph < 0. A detailed
discussion on how to determine which of these solutions is correct a priori is
outside the scope of this thesis, but it has been argued that applying causality,
only one solution is valid in each scenario [39].

3.3 Limitations

Finally, since an electromagnetic pulse is assumed finite in time it must contain
a band of frequencies. This necessarily leads to a relation limiting how slow
a pulse can propagate given some bandwidth [40]. To see this, let ∆k be the
range of Bloch wavenumbers and ∆ω be the range of frequencies of the pulse.
Under the assumption that

∆k < 2π/L, (3.7)

where L is the periodicity of the crystal, and the assumption that the periodicity
is of the order of a wavelength

L ∼ λ0 = 2πc/ω, (3.8)

one finds the average group velocity 〈vg〉 = ∆ω
∆k to be limited by

c
∆ω

ω
∼ ∆ω

L

2π
< 〈vg〉. (3.9)

For example, a 30 fs Gaussian pulse with λ0 = 0.8µm gives 〈vg〉 & 0.04c.
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Chapter 4

Numerical Methods

4.1 PIC codes and EPOCH

In this chapter the simulation methods used in this thesis and the stability
conditions required to run simulations of physical significance are described
briefly. All simulations are run with the particle in cell (PIC) code EPOCH
[41]. The core of any collisionless PIC algorithm is based on two coupled solvers,
one solving Maxwell’s equation called the field solver, and the other moving the
charged particles under the influence of the electromagnetic fields, called the
particle pusher.

Maxwell’s equations are solved using the finite difference time-domain (FDTD)
method on a fixed spatial grid. The E- and H-field components are defined on a
staggered grid as introduced by Yee [42], although EPOCH supports use of sev-
eral other field solvers. The positions in three dimensions are shown in Figure
4.1. This staggered grid makes central derivatives of E-field components second
order accurate∗ at the positions where they are used to solve for the H-field
components and vice versa.

Many PIC codes, including EPOCH, use a leapfrog method which solves the
fields at full and half time steps. The half time-step values are needed for the
particle pusher in order to make it second order accurate as well.

In the ideal case the particle pusher would solve the relativistic equation of
motion for every single particle, this is however a computationally impossible
task. To remedy this, each computational particle (CP) represents a large
amount of real particles by using the sum of charges and currents of the real
particles. Because of this CPs are often called super particles or macro particles.
In the next chapter these will simply be referred to as particles when specifying
how many particles have been used per cell in a simulation.

∗A numerical solution is called n:th order accurate when the error of the solution, E , is
proportional to the step size to the power n, i.e. E ∝ (∆α)n. Here, ∆α is either the time step
or spatial step size.
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Figure 4.1: The staggered positions of E and H fields on a 3D cell [43].

The particle pusher in EPOCH uses a leapfrog method, calculating the mo-
mentum and position at alternating half time-steps which, as mentioned, is why
the fields are needed at half time-steps. From the particle motions the current
densities needed for Maxwell’s equations are then obtained through the flux
of charge, as opposed to calculating it from the moments of the distribution
function as is done in some other PIC codes.

The particles are free to move in a continuum space, that is, they are not
defined on nodes as the fields are. This introduces the issue of determining
how much of the current density of a particle should be used to update the
fields at the closest lying nodes. Figure 5.3 shows in the two dimensional case
how the charge is assigned to grid points. For example, the point labelled B
is assigned the amount of charge proportional to the area b, logically since
the particle is closest to B, this point is assigned most of the charge. Clearly,
the fields need to be interpolated to the positions of particles in a similar way.
Figure 4.3 contains a flow chart of the most basic four steps of a PIC code,
after initialisation the charge is interpolated to the grid to calculate the fields.
The fields are then interpolated to the particle positions to calculate the new
velocities and positions.
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Figure 4.2: Linearly weighted charge assignment in the PIC bilinear interpol-
ation interpretation [44]. The sizes of the circles denote the relative amount
of charge of the particle which is deposited to each grid point and the colours
denote the corresponding area.
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Figure 4.3: The basic four steps of the coupled solvers in a PIC code.

There are several stability conditions to take into consideration when using
PIC codes. The most fundamental as with any partial differential equation
solved using the finite difference method is the CFL condition, given in two
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dimensions by (see e.g. [45] for a detailed derivation)

∆t ≤ c−1

(
1

(∆x)2
+

1

(∆y)2

)−1/2

, (4.1)

where ∆x and ∆y are the grid spacings in the x and y directions and ∆t is the
time step, or in one dimension, letting ∆y →∞, giving ∆t ≤ ∆x/c. When the
spatial resolution in all directions is the same, ∆x = ∆y = ∆, this condition
takes its simplest form

∆t ≤ ∆

c
√

2
. (4.2)

In principle, when interested in simulating a travelling wave, the CFL condition
describes the necessity to have a time step so small that the travelling wave does
not have time to propagate to a new grid point during the time of a single time
step.

The other stability conditions are defined from the fundamental time and
length scales as given in section 2.2 and 2.3. In order to have a physically
correct picture it is necessary to have ∆t ≤ 2ω−1

p however even smaller time
steps are recommended to avoid instabilities such as self heating, where instead
∆t ≤ 0.1ω−1

p [46]. The other condition is related to the Debye length, suggesting
that it is necessary to resolve it in order to avoid potentially large self heating,
thus ∆x ∼ λD approximately, but this is not as strict as the other conditions. In
short, self heating is a numerical instability where energy is not conserved and
increases approximately linearly over time. To reduce self heating in EPOCH
it is possible to use higher order shape functions. With the most simple shape
function the charge of a computational particle is distributed in a top-hat (0th
order b-spline) distribution in space, by default EPOCH uses a triangle (1st
order b-spline) but higher order b-splines can be used as well. A detailed study
of the effects of shape functions in EPOCH is included in [41].
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Chapter 5

Results and Discussion

In this chapter the PIC simulation results of the formation of TPPCs by coun-
terpropagating femtosecond laser pulses and the allowed angles of transmission
are presented, confirming and expanding on earlier work by [20–22]. The results
of the slow light properties of the TPPCs are also presented.

5.1 Formation of TPPCs

The formation of the density grating was first obtained in the one-dimensional
case where a short 5µm, fully ionised electron-proton plasma (masses mi =
1836.2me) of initially homogeneous density ne,0 = ni,0 = 0.3nc with 1.5µm
long Gaussian tails decaying to nα = 0 on each side was irradiated by two
counterpropagating Gaussian pulses of intensities a1 = a2 = 0.05. The pulses
were 300 fs long and reached the centre of the plasma simultaneously, creating a
standing wave expanding from the centre outwards. The electron temperature
Te was 25 eV and the ion temperature Ti was 2.5 eV. The Debye length was
resolved by letting the grid spacing be ∆x = 1 nm. Because the simulation
was one dimensional a high number of particles per cell could be used, set to
1000 for each species. The choice of density is motivated by the need for near
critical density plasma to produce gratings with large photonic band gaps. The
temperatures are chosen based on temperatures found in near critical density
materials [23].

Figure 5.1 shows the electron density as a function of time near the centre
of the plasma, displaying how two of the density peaks evolve. Three different
times are indicated in the figure, T1 = 175 fs is the time when the two coun-
terpropagating pulses begin forming the standing wave and T2 = 475 fs mark
the time the pulses have propagated through the plasma. The time T3 = 675 fs
is the time when the grating is maximally developed. Between T1 and T2 an
electrostatic field Ex is formed as described in section 2.6.

The pulses overlapped long enough for the ions to gain enough momentum
to drive the formation of the density grating even after the electrostatic field
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had vanished. The peaks obtained a maximum density of almost 1.4nc ≈ 4.5n0

while the lowest density observed between the peaks was 0.1nc, giving a density
contrast factor of 14. The density grating obtained in the stationary solution
in the theory clearly overestimated the results, mostly because of neglecting
temperature, this can be seen from Figure 5.2 where the electron temperature
across the two peaks is shown. Setting the electron temperature to 100 eV in the
stationary solution to account for the heating gives a maximum density of ne =
4n0, making the theoretical density grating match that of the simulation quite
well. The periodicity of the grating L ≈ 480 nm is half the wavelength of the
laser in the plasma, corresponding to the intensity troughs of the standing wave.
The peak width is approximately L/6, also agreeing well with the stationary
solution. Meanwhile, the maximum density variation predicted by the linear
theory is

ñe,max =
2k2

1c
2

ω2
p

a1a2 = 5 · 10−3nc, (5.1)

which is far below the simulated values. Note that the driving pulses are
not greatly affected by the density variations as they have already propagated
through the plasma before these build up to considerable levels.

Figure 5.1: Two periods of the electron density grating showing peaks forming
over time. Driving pulses overlap between T1 and T2 and the density reaches
its maximum at T3.

The maximum electrostatic field observed in the simulation as a result of
the overlapping pulses was Ex ≈ 1 · 1010 Vm−1, which can be compared to that
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calculated in the linear case where the maximum electrostatic field is given by

Ex,max = k1a1a2 = k0a1a2

√
1− ne,0/nc (5.2)

where Ex was normalised to e/mec
2. Inserting the values used in the simulation

gives Ex,max ≈ 8.4 · 109 Vm−1, in good agreement with the simulation.
The linear model gives particle velocities as well which allows to estimate

the maximum ion velocity and time to build the grating,

vi,max/c ∼ k1c
m

M
a1a2τL = 8 · 10−4, (5.3)

for τL = 300 fs as used in the simulation. The ions are accelerated towards
the nearest peak, on an average distance L/4 away (L = 478 nm using the
parameters from the simulation) which means they reach the centre of the peak
at the latest T = L

4vi,max
= 500 fs after T2. From Figure 5.3 the time is instead

just 200 fs, but accounting for translation of protons between T1 and T2 the
linear model gives a quite good approximation of the time for the grating to
form.

Figure 5.2: Electron temperature over two periods of plasma grating over time.

Figure 5.3 shows the deviation from charge neutrality in the same simulation
by plotting Znp − ne. During most of the simulation the protons follow the
electrons to preserve charge neutrality, between T1 and T2 when the laser pulses
overlap there is a slight surplus of electrons around where the peaks eventually
form. After T2 charge neutrality is quickly restored but once the fastest protons,
accelerated by the electrostatic field, have reached the peaks slightly before T3
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and continued their ballistic trajectory into the centre of the peak a charge
density mismatch forms. Two sheets of local electron dominance form on the
sides of each peak and a bulk proton surplus is seen at the centre of the peak,
quickly splitting into two sheets next to the electron sheets.

Figure 5.3: Charge density over two periods of plasma grating over time. Driving
pulses overlap between T1 and T2 and the density reaches its maximum at
T3. Negative values correspond to negative charge surplus and positive values
positive charge surplus.

In Figure 5.4 the phase space of electrons and ions is shown over a single
period of the density grating shortly after the grating has developed fully, at
time T = T2 = 475 fs. Electrons have already started to bunch up at the
peak centre and the rest are slowly approaching with velocities of below 0.01c.
The protons have a Maxwellian velocity distribution and have reached their
maximum velocity of 8 · 10−4c which is identical to the maximum ion velocity
found in the linear approximation. Similarly electron velocity is seen to be of
magnitude 2 · 10−2c, larger than the estimated value of 4 · 10−3 by almost one
order because the electron velocity is strongly influenced by the temperature.

Figure 5.5 shows the same phase spaces at a later time T = 690 fs, shortly
after the maximum density has developed. Electrons are seen to be mostly con-
fined to the peak and higher temperatures have made the maximum velocity
increase slightly to around 0.045c. The protons at this time have now also been
confined to the peak, with protons on both sides still travelling towards the
centre. The thin spike present on each side is initially a result of the fastest pro-
tons which were not stopped in the peak and continued their ballistic trajectory
away from the peak. When the charge sheets in Figure 5.3 form, an electric
field is induced (seen in Figure 5.6). This electric field acts to deflect incoming
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protons and also pull protons out of the peak [21], which leads to further decay
of the peaks. The maximum proton velocity of max vi ≈ 8 ·10−4 is still the same
as there are no accelerating forces left after T2.

Figure 5.4: Phase space (x, vx) of electrons (left) and protons (right) around the
same two peaks as in Figure 5.1 at the time T = T2 = 475 fs, when the driving
pulses have propagated through the plasma.

Figure 5.5: Phase space (x, vx) of electrons (left) and protons (right) around
the same two peaks as in Figure 5.1 at the time T = 690 fs, shortly after the
maximal density has developed.

Figure 5.6 shows a cross section of the two peaks at time T = 690 fs where
in the left panel the electron density is shown and in the right panel the proton
density is shown. The electric field across the two periods is also shown in units
of 1011 V/m. The electron and proton density minima are seen to be equal
at slightly above 0.1nc. The proton density spikes formed around the electric
field are seen on the edges of the density peak. The sheets of electron surplus
are more difficult to see, they come from the fact that the electron peak is
slightly wider. The reason for the wider electron distribution is the difference
in temperature (Te > Ti) leading to increased thermal pressure which expands
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the peak. In simulation where Te = Ti the peak charge density is a factor 20
smaller, around 0.01nc.

The electric field is as high as 0.4 ·1011 V/m which is about four times larger
than the electrostatic field present during the time the laser pulses overlapped.
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Figure 5.6: Cross section of two central peaks of the density grating at the time
T = 690 fs when the electron sheets have formed. The electron density (left,
dashed line) and proton density (right, dashed line). The electrostatic field Ex
is also shown across both peaks (solid line).

The stationary solution predicts a strong dependence of the density peak
height on the temperature of the plasma. Furthermore, plasma temperatures
can vary experimentally depending on for example target material and time
after plasma creation. Thus it is of interest to study the effects of temperature
on the grating formation. Figure 5.7 shows how the maximum density evolves
over time for four different temperatures, Te = 5 eV, 10 eV, 25 eV and 50 eV. In
each case the ion temperature is Ti = Te/10. Everything else except for the
plasma length and simulation box size is identical to the previous simulation.
The larger simulation box is the reason the peak density appears slightly later
at T ≈ 800 fs.

In all four simulations the initial build up proceeds identically until around
650 fs. The temperature dependence is clear, for higher initial temperatures the
outward thermal pressure in the peaks becomes larger and acts to widen them,
leading to lower maximum density. The highest obtained peak however, occurs
mostly at the same time, with just a slight delay for lower temperatures. The
above results are in excellent agreement with previous studies of the development
of the density gratings using Maxwell-Vlasov codes in [20, 21].
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Figure 5.7: Temporal evolution of the maximum peak density of a plasma grat-
ing for different electron temperatures, Te = 5 eV (solid line), 10 eV (dashed
line), 25 eV (dash-dotted line) and 50 eV (solid line with stars). In each case
the ion temperature is given by Ti = Te/10.

As producing materials of near critical densities can be challenging, the effect
of initial density was studied. Figure 5.8 shows how the maximum peak density
evolves over time given different initial densities ne,0 = 0.01nc, 0.05nc, 0.1nc and
0.3nc. The overall dynamics of the grating do not change drastically, but in each
case the maximum density is ne,max ≈ 4n0. Since the dielectric constant was
found to be dependent on density this means a low initial density will give a
small variation in dielectric constant and as a result the photonic crystal will
have a small or nonexistent band gap.
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Figure 5.8: Temporal evolution of the maximum peak density of a plasma grat-
ing for different initial densities, ne,0 = 0.01nc (solid line), 0.05nc (dashed line),
0.1nc (dash-dotted line) and 0.3nc (solid line with stars).

Since laser power is limited in experiments, it is of interest to find the min-
imum required energy in the driving pulses. Reducing the intensity of the driving
pulses and keeping everything else the same has two effects, first the maximum
density is reduced because the ponderomotive force becomes weaker, second
because the ponderomotive force is weaker the overall dynamics is also slower.
The result is longer lasting but weaker gratings. For higher intensities the result
is the opposite, short lived gratings with higher peak density.

Another aspect of the energy needed used to establish a density grating is
the driving pulse length. The length of the desired grating acts as a lower limit
because at the very least the pulses need to overlap across the entire region.
Figure 5.9 shows an example of this, where a 40µm plasma of density 0.3nc

was irradiated with two Gaussian driving pulses of intensity a1 = a2 = 0.05 and
temperature Te = 25 eV, with Ti = Te/10. The plasma consisted of electrons
and protons (mi = 1836.2me. The gratings obtained for four different driving
pulse lengths are shown (symmetric about x = 0). For τL = 100 fs FWHM
the pulses clearly do not cover the entire plasma. With τL = 200 fs the entire
plasma is covered but ions located more than 10µm from the plasma centre are
not accelerated enough to produce an even grating. For τL = 300 fs an even
grating is formed across the entire plasma, note that the midsection has not
increased beyond ne,max ≈ 1nc. Further increasing the driving pulse duration
leads to higher density peaks on the edges.
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Figure 5.9: Electron density gratings formed by pulses of different lengths
to illustrate convergence of the structure. Each grating is symmetric about
x = 0. Clockwise from top left the gratings correspond to pulse lengths
τL = 100 fs, 200 fs, 500 fs and 300 fs.

Another important practical consideration is the effect of chirped driving
pulses on the formation of the grating. High power lasers use chirped pulse
amplification where a short pulse is first stretched, also obtaining a chirp, then
passed through some gain medium to increase the energy. Finally, the pulse
is compressed again, reducing the chirp and producing an ultra high intensity
pulse. One way to generate the required ∼ 2 − 300 fs driving pulses could
then be to not compress the pulse fully. This leaves the driving pulses with a
chirp. Figure 5.10 shows the grating produced in a 20µm plasma around the
times when the plasma grating has reached its maximum density contrast under
the effects of two 200 fs driving pulses with a linear chirp corresponding to the
spectral width of a 30 fs pulse. The intensity and temperatures are the same as
those previously used.

It is evident that the maximum density has decreased slightly at the centre
peaks, however the most important feature is the widening of the peaks as
a result of the wavelength mismatch. As one might expect the mismatch is
greater further out from the centre. As a result of this there is a limit to how
large TPPCs with relatively even features can be created using uncompressed
pulses from typical ultra high intensity laser setups. Of course, as previously
discussed, reducing the width of the plasma in turn requires shorter pulses to
have an overlap of sufficient time to create an even grating, which means driving
pulses with less chirp can be used.
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Figure 5.10: Electron density grating formed in a 20µm plasma (symmetric
around x = 0) using 200 fs pulses with a linear chirp corresponding to the
spectral width of a 30 fs pulse. The grating is shown only during the times
when it is fully developed.

5.2 Photonic Crystal Properties

In this section the photonic crystal properties of the density gratings are presen-
ted as obtained by PIC simulations, in particular the slow light properties are
presented as a function of both frequency and angle of incidence.

The band structure was calculated using the same method of Bloch wave
expansion as in the analytic example in section 2.6, but with the values for
ne(x) needed to calculate the Fourier coefficients ηp instead obtained from the
density in the simulation. Note that this assumes an even density grating with
enough periods to act as a quasi-infinite periodic structure. Figure 5.11 shows
the band structure calculated from the grating in Figure 5.1 using |p| ≤ 3 at
T = 650 fs. The left side shows the case real and complex band structure for
normal incidence, i.e. ky = 0. The result is unsurprisingly more or less identical
to the analytic band structure, with the only difference being the smaller band
gap and smaller complex amplitude due to lower peak density.

The right side shows the projected band structure for ky 6= 0, the boundary
cases k = (0, ky) and k = (k1, ky) are indicated in thick black and thin grey
lines respectively. The shaded region between these mark a continuum of allowed
states. As discussed in the theory these are a result of the grating only being
structured along the x-axis. This is also the reason the band diagram is not
periodic in ky.
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Figure 5.11: Band structure of the grating in Figure 5.1 calculated using the
method of Bloch wave expansion at T = 650 fs. Left shows normal incidence
band structure for real kx (solid line), imaginary kx (dashed line). Right
shows projected oblique incidence band structure (shaded) and in particular
k = (0, ky) (black thick line) and k = (k1, ky) (grey thin line). Light line (dash
dotted) is present on both sides.

As the dielectric function is density dependent, so is the band gap. Figure
5.12a shows how the Fourier coefficients ηp of order p = 1, 2, 3 of the grating in
Figure 5.1 evolve over time. Initially only the first order is important. As the
grating forms higher order coefficients become important.

Figure 5.12b displays the time dependence of the first band gap of the same
grating. As higher order coefficients grow the band gap becomes slightly asym-
metrical around ω0. Note that the largest band gap does not correlate with the
time where the highest density is found, but rather as a function depending on
a combination of peak width and average density across the peak is the highest
(around T = 900 fs).
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Figure 5.12

The band gap of the finite structure is simple to test by sending in a short
pulse and observing the frequency response. Here, a 10 fs Gaussian pulse with
normal incidence and a wavelength λ = 0.8µm was used. The pulse arrived at
the grating at approximately T = 675 fs. The result is shown in Figure 5.13.
The band gap is evident and closely resembles the theoretical first band gap at
the corresponding time.
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Figure 5.13: Incident spectrum (black solid line), reflected spectrum (blue
dashed line) and transmitted spectrum (dotted orange line) of a 10 fs pulse.
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Another important practical aspect is that of ion masses and their effects
on the photonic crystal properties. Whether the method used to produce near
critical plasmas is by low density foams as in [23] which use a combination of
heavier elements (e.g. C15H20O6) or by high pressure gas jets (where hydrogen is
not optimal due to safety concerns), the effect of ion mass is of some importance.

Because of this, simulations as those previously described but with ions of
mass mi = 8mp, where mp is the proton mass, were carried out. Both the
linear theory and stationary theory predict identical results, which one would
expect as the charge to mass ratio remains the same, hence acceleration by the
electrostatic field should not differ. In broad terms the results are more or less
the same, however the grating is observed to develop more slowly and the peak
density is reduced slightly from 1.4nc to 1.1nc. For brevity only the Fourier
modes and first band gap are presented in this case in Figure 5.14a and Figure
5.14b. The Fourier coefficients are seen to be reduced, in particular higher
order coefficients. This in turn reduces the band gap width and the asymmetry
vanishes. The band gap also develops slower and lasts longer.
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Figure 5.14

Next, the group velocity of pulses travelling through density gratings were
investigated in one dimension. A grating of length 50µm identical to those previ-
ously described was obtained and Gaussian probe pulses of 70 fs FWHM arrived
at the grating at a time when the analytic band structure closely resembled that
in Figure 5.11 with ky = 0, when the band gap is still symmetric around ω0.
From the theory, the relation vg = ∂ω

∂k indicates that slow light should appear
near the band gap at the edge of the first Brillouin zone where the derivative
becomes zero. In light of this, the central frequency of the pulse was varied from
ω/ω0 = 0.82 to ω/ω0 = 1.18 and the group velocity was determined from the
velocity of the peak of the pulse envelope.

Figure 5.15 shows the results, marked by crosses for different frequencies,
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compared to the theoretical group velocity obtained from calculating the abso-
lute value of the slope of the dispersion relation. The simulation is in excellent
agreement with theory and for the pulse centred on ω = 1.08ω0 the group velo-
city is found to be as low as 0.43c. Note that the absolute value of the derivative,
|∂ω∂k |, is used in the plot. As mentioned in chapter 3, this gives the velocity of
the envelope of the pulse when the fast light mode is not causal.

The results of vg should be compared to the numerical accuracy of the code
as discretisation leads to numerical dispersion relations with errors depending
on the spatial and temporal step sizes [45]. To test the accuracy the group
velocity of a pulse in a vacuum region and homogeneous plasma were simulated.
The obtained light speed in vacuum and homogeneous plasmas were both within
0.25% of the true speed using the same spatial and temporal step sizes as in the
simulation of the propagation through the density grating.
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Figure 5.15: Group velocity versus frequency across the band gap. The thick
black line is obtained by calculating |∂ω∂k | of the dispersion diagram in Figure
5.11 for the case ky = 0 (normal incidence). Crosses mark the group velocity
observed in PIC simulations of 70 fs pulses with different frequencies.

Another consideration to make is the effective slow down of the structure.
As shown in section 3 (Figure 3.1) the group velocity in a homogeneous plasma
depends on the frequency of light and density of the plasma. Table 5.1 shows
the group velocity in a homogeneous plasma of density n0 = 0.3nc (denoted
vg,0) compared to that obtained in the structure (denoted vg,PPC) as well as
the quotient vg,eff = vg,PPC/vg,0. The structure is seen to have most effect near
the band gap where propagation is still a factor two slower. For frequencies far
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below the band gap the effective slowdown factor approaches unity while for
frequencies above the band gap the approach is slower.

It is also of interest to consider the transmission of each pulse. As Figure
5.16 shows, the transmission decreases almost in parallel to the decrease in group
velocity. For example at ω = 1.08ω0 the transmission was just 40%, furthermore
pulses even closer to the band gap were subject to considerable dispersion as a
result of the rapid change in group velocity.

Table 5.1: Table of group velocities for different frequencies around the first band
gap. The row vg,0 shows theoretical group velocities in a homogeneous plasma
of density ne = 0.3nc, the row vg,PPC shows the group velocities obtained in PIC
simulation (also Figure 5.15), the row vg,eff shows the effective group velocity
of the structure when accounting for the reduction from the average plasma
density.

ω/ω0 0.84 0.86 0.88 0.90 0.92 1.08 1.10 1.12 1.14 1.16
vg,0 0.76 0.77 0.78 0.79 0.80 0.86 0.87 0.87 0.88 0.88
vg,PPC 0.70 0.67 0.62 0.56 0.46 0.43 0.58 0.64 0.70 0.74
vg,eff 0.93 0.87 0.79 0.70 0.57 0.50 0.67 0.73 0.80 0.84
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Figure 5.16: Transmission observed in PIC simulations of different frequencies.
The structure is the same as that used to find the group velocities in Figure
5.15 and Table 5.1.

For oblique incidence at large enough angles propagation is allowed also for
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frequencies which lie in the band gap at normal incidence. A grating was formed
in a two dimensional simulation from two s-polarised Gaussian pulses as in the
one dimensional case. A higher electron temperature was used (Te = 50 eV)
to increase the Debye length in order to allow the grid spacing to be made
larger while still avoiding self heating. To compensate for the smaller grating
peak density due to temperature effects a higher driving laser intensity was
used of a1 = a2 = 0.06. The number of particles per cell used was 25. With
this the grating develops in a similar manner to the one dimensional case, in
particular the calculated band structure at the time when the pulse arrives at
the vacuum-plasma boundary is similar to the one in Figure 5.11.

The angles which allow propagation can be read from Figure 5.11 where it
is seen that for frequencies of ω = ω0 a wavevector of at least k = (k1, 0.35k0)
is required which translates to an angle θ = atan ky/kx = 22.7◦. Figure 5.17
shows the transmission of a 70 fs FWHM Gaussian pulse with peak intensity
I0 = 1 · 1017 Wcm−2 incident with an angle of θ = 28◦, central wavelength
λ0 = 0.8µm and 8µm beam diameter.

Figure 5.17: Transmission of a 70 fs Gaussian pulse of 8µm beam diameter
(colorscale) and central frequency ω = ω0 incident with an angle θ = 28◦ on a 2
dimensional density grating similar to that of Figure 5.1 (greyscale). The pulse
is shown at three different timesteps, entering from bottom left, with intensity
normalised to the maximum intensity I0 = 1 · 1017 Wcm−2 of the pulse prior to
interacting with the grating. Note that the reflected parts are not shown.

Most of the spectral width of the pulse is outside the band gap, allowing
most frequency components to propagate. Reflections do however occur both
on the vacuum-plasma boundary and plasma-vacuum boundary which together
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with the reflections due to the band gap account for total loss of about 10% of
the pulse energy.

Some refraction can be observed away from the normal which is expected
even in homogeneous plasmas as they have refractive indices 0 ≤ n ≤ 1 for
ne ≤ nc. In simulations of different incidence angle the refraction is observed
to be larger than that obtained from the homogeneous plasma with the same
average plasma density, for which Snell’s law agrees with simulations.

Note that the pulse is compressed slightly inside the grating which increases
the intensity to above I0. The compression can be thought of as occurring due
to the front of the pulse starting to move slower while the part of the pulse still
outside the grating is moving at c. The increase in maximum intensity is then
simply due to conservation of energy. It is of course interesting to note that
these TPPCs allow pulses to propagate even though the density exceeds nc.

Figure 5.18 shows the group velocity of 70 fs FWHM pulses of frequency
ω = ω0, incident on the same grating as above, as a function of the angle of
incidence θ. The group velocity was determined from the velocity of the peak
of the pulse envelope. The transmission is also shown in each case. A sharp
decline in transmission and group velocity is seen near the theoretical band
edge θ ≈ 22◦. Since the frequency is ω0 for each case, the effective impact of
the structure is obtained by comparing each value of vg to vg,0|ω=ω0

= 0.836c.
Near the band edge both high reflection and dispersion was observed equivalent
to the one dimensional case of varying frequency but here oblique propagation
allows the use of the same laser for both driving pulses and probe pulses.
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Figure 5.18: Group velocity of 70 fs Gaussian pulse with frequency ω = ω0

incident on the grating seen in Figure 5.17 for varying angles (black squares)
and the respective transmission of each pulse (blue circles).
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Figure 5.19 demonstrates the case of reflection when the angle has been
lowered to θ = 13◦ where 95% of the incident energy is reflected. The simu-
lation was run with the same parameters as in the case of transmission except
with a shorter initial plasma. The reflected pulse can be seen to have a lower
maximum intensity as a result of being stretched in the transverse direction.
The evanescent wave at the vacuum-plasma boundary can also be seen to de-
cay as it penetrates the outermost periods of the grating, dropping to 10% of
the peak initial pulse intensity after five grating periods. The angles allowing
reflection and transmission are in good agreement with those of of Lehmann &
Spatschek who, however, observed larger peak intensity for the reflected pulse
[20].

Figure 5.19: Reflection of a 70 fs Gaussian pulse of 8µm beam diameter (col-
orscale) and central frequency ω = ω0 incident with an angle θ = 13◦ on a 2
dimensional density grating similar to that of Figure 5.1 (greyscale). The pulse
is shown at three different timesteps, entering from bottom left, with intensity
normalised to the maximum intensity I0 = 1 · 1017 Wcm−2 of the pulse prior to
interacting with the grating. Note that the transmitted parts are not shown.

Almost complete reflections were observed up to intensities of 5·1017 Wcm−2

for normal incidence with minor effects on the grating. Initially, when the in-
tensity is increased, only the first two density peaks are affected because this
is where the intensity is the highest. The electrons in the peaks are pushed
backwards between one and two peak widths by the ponderomotive force, cre-
ating thin density spikes of up to several nc. As the intensity increases beyond
1018 Wcm−2 the pulse penetrates into deeper layers but is still reflected, however
it becomes more stretched in the propagation direction. Even higher intensit-
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ies of 1019 Wcm−2 to 1020 Wcm−2 push through the entire grating, creating a
hole in the process. As one would expect, the grating can reflect slightly higher
intensities at oblique incidence, compared to normal incidence, as the pulse is
spread out on a larger area.

The high reflectance at low angles of incidence together with the wide band
gap offers a potential for short pulsed ultra intense slow light without the high
loss observed near the band gap. Figure 5.20 demonstrates the idea. Two
gratings were placed in parallel with a 2µm vacuum space in between. In the
simulations the gratings were introduced by making a fit to the density grating
data with the stationary solution, f(x) = a+ be−c cos(2k1x), where a, b and c are
constants. The other simulation parameters were the same as those used in the
simulation of Figure 5.17.

A 70 fs FWHM s-polarised Gaussian pulse with 6µm diameter enters at an
angle of θ = 8◦ and is reflected back and forth between the gratings creating
a pulse moving in the positive y−direction. The initial velocity of the part of
the pulse which is coupled into the structure is simply v = c sin θ ≈ 0.13c. A
large part of the pulse energy is not coupled and some energy is leaking into
the grating on each pass. The pulse is seen to disperse as it propagates and was
observed to increase in velocity over time reaching v = 0.4c after propagating
30µm along the y−direction.

Figure 5.20: Coupling of a 70 fs Gaussian pulse of 6µm beam diameter (col-
orscale) and central frequency ω = ω0 incident with an angle θ = 8◦ on a 2
dimensional density grating similar to that of Figure 5.1 (greyscale). The pulse
is shown at three different timesteps, entering from bottom left, with intensity
normalised to the maximum intensity I0 = 1 · 1017 Wcm−2 of the pulse prior to
interacting with the grating.
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Chapter 6

Conslusions and Outlook

The aim of this thesis has been to determine the slow light capabilities of 1D
transient plasma photonic crystals by PIC code simulations. In addition the
goal was to diverge from the ideal simulation parameters in order to investigate
some experimental considerations one has to take into account in order to realise
the TPPCs using laser systems as that available in the Ultrahigh intensity laser
physics group at the division of Atomic Physics, Lund.

Slow light for both normal incidence, using frequencies close to the band
gap, and oblique incidence, using the central band gap frequency, have been
demonstrated. The results were shown to be in good agreement with the theory
of group velocity derived from the slope of dispersion relations obtained using
Bloch waves. Pulse velocities of below 50% the speed of light have been observed,
consistently below the velocities obtained in an unstructured plasma of the same
average density. The transmission was observed to be poor and dispersion high
for low pulse velocities.

The observations on the development of the TPPCs from earlier work has
been confirmed, furthermore the structures have been shown to converge to a
grating of peaks and troughs of uniform amplitudes when allowing the time of
overlap of pulses to be neither too long or too short. Additionally, the effect
of chirped pulses have been shown to limit the length of TPPCs by invoking a
gradual widening of peaks further out from the point where the pulses meet.
Also, ions of higher masses have been shown to have a moderate effect on the
band gap width, which can be compensated using higher energy driving pulses.

A slow light pulse with initial velocities depending on the angle of incidence
has been suggested based on repeated reflections in a wave guide consisting of
two PPCs separated by a small space of vacuum. While the coupling efficiency
is poor this structure could allow for ultra-high intensity pulses to propagate
without the high reflection associated with slow light modes near bandgaps.
It would of course have to be confined also in the third dimension as the pulse
would otherwise diverge. Furthermore the ponderomotive forces is not as simple
as that one used to describe the formation of TPPCs in this thesis as it consists
of a semi-standing wave moving transversely. A closer analysis of the nature
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of the ponderomotive force acting on, possibly relativistic, particles would be
necessary to determine whether it could be used to, say, accelerate ions in a two
stage process.

Currently, slow light with higher transmission coefficients at low intensities,
as used in optical communications, are based on either coupled resonators or line
defect waveguides which consist of either holes or pillars of dielectric material in
a bulk dielectric slab, with one line of holes/pillars removed. In these cases there
is also a direct trade-off between the lowest possible speed and spectral width it
permits but wideband slow light have been shown to be possible [10, 11]. Similar
structures made entirely out of plasma could possibly offer ultra-intense slow
light to propagate with a larger transmission coefficient. For example, using
two sets of two counterpropagating driving pulses at a 90◦ angle produces a two
dimensional TPPC which displays large diameter low density circles, or holes,
surrounded by high density regions. Due to the dielectric function being smaller
in high density plasmas this is most similar to the case of line defect waveguides
consisting of high dielectric constant pillars in a vacuum/low dielectric material.
Similarly, it could be possible to ionise a material consisting of a grid of near
critical density pillars to create the TPPC equivalent to an air hole line defect
waveguide.

As a last observation, by sending in a pulse close to the band gap during the
down ramp phase of a TPPC, the time dependence of the band gap could be
used as a gradual speed up, similar to how the gradual change of density can be
used to accelerate a slow relativistic pulse to achieve a gradual ion acceleration
as suggested by Brantov et al. [6].

To summarise, more complex TPPCs obtained by counterpropagating (or
intersecting) laser pulses could potentially offer slow ultra-intense light over
short propagation distances and times but requires further work. In particular
further development of reliable near critical density targets is also of importance
in order to bridge theory to experiments.
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Appendix A

Simplified Equations of
Motion

Here the simplified cold plasma equations of motion used to describe the laser-
plasma interaction in section 2.6 are derived starting from the usual form of the
equation of motion of a cold electron fluid

DP

Dt
=
∂P

∂t
+ v · ∇P = −e

(
E +

1

c
v × B

)
, (A.1)

where D/Dt is the full derivative, P = γmv is the relativistic momentum and
γ =

√
1 + (P/mc)2 =

√
1− (v/c)2 is the Lorentz factor, also called relativistic

factor. The magnetic vector potential A(r, t) and electric potential Φ(r, t) are
given by the relations

E = −∇Φ− 1

c

∂A

∂t
, (A.2)

B = ∇× A. (A.3)

Inserting these equations into equation (A.1) and introducing the normalised
momentum p = P/mc = γv/c gives

∂p

∂t
+ v · ∇p = − e

mc

[
−∇Φ− 1

c

∂A

∂t
+

1

c
v ×∇× A

]
. (A.4)

The second term on the left can be rewritten with a vector identity as

v · ∇p =
c

γ
p · ∇p =

c

γ

[
p × (∇× p)− 1

2
∇p2

]
=

c

γ

[γv

c
× (∇× p)− γ∇γ

]
= v × (∇× p)− c∇γ.

(A.5)
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Inserting this into equation (A.4) one finds

∂p

∂t
=

e

mc2
∂A

∂t
+

e

mc
∇Φ− e

mc2
v × (∇× A) + v × (∇× p)− c∇γ ⇒

1

c

∂(p− a)

∂t
= ∇(φ− γ) +

v

c
× [∇× (p− a)] ,

(A.6)

where the normalised scalar potential φ = e
mc2 Φ and the normalised vector

potential a = e
mc2 A have been introduced and p−a is the canonical momentum.

The following part is outlined in [47, 48]. Taking the curl of both sides of
equation (A.6) yields the relation

∂

∂t
[∇× (p− a)] = ∇× {v × [∇× (p− a)]} . (A.7)

Assuming the canonical momentum is zero before some time t0 before the laser
pulse arrives means ∇× (p − a) = 0 holds initially. This represents the laser
not being turned on prior to some time. If this is true, the relation will hold for
all later times as well so that equation (A.6) reduces to

1

c

∂(p− a)

∂t
= ∇(φ− γ) (A.8)

Continuing, the plasma density is assumed underdense (equivalent to ωpe �
ωL) so that the fields can be split into fast and slow components , af and as,
where the fast field is varying on the timescales of the laser ω−1

L and the slow
field on the timescale of the electron ω−1

pe . Averaging over one laser cycle to
remove the fast oscillations equation (A.8) becomes

1

c

∂(p− a)

∂t
= ∇(φ− γ̄), (A.9)

where the slowly varying component of the relativistic factor is denoted γ̄.
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Appendix B

Populärvetenskaplig Artikel

B.1 L̊angsamma ljuspulser med ultrahög inten-
sitet i plasmastrukturer

L̊angsamma pulser är intressanta för acceleration av till exempel protoner. Pro-
toner som accelereras till höga hastigheter kan i förlängningen användas till mer
skonsam behandling av cancer, där en större del av energin dödar cancercellerna
istället för friska celler runt om. Det är emellertid mycket sv̊art att f̊a protoner
att färdas i de hastigheter som krävs. Konventionella partikelacceleratorer är
ofta enorma ringformade byggnader, som kan vara flera kilometer l̊anga. För
att vara tillämpbart i v̊ard behövs en kompakt lösning, n̊agot som använding
av lasrar skulle kunna erbjuda.

För att först̊a hur l̊angsamt ljus kan utnyttjas kan man göra en jämförelse
med en surfare. Surfaren m̊aste paddla upp i en hastighet som matchar v̊agens
för att bli upplockad och ta del av v̊agens energi. P̊a ett liknande sätt behöver
en proton komma upp i ljuspulsens hastighet för att accelereras, men att f̊a
protoner med hög hastighet var precis det problem som skulle lösas. En tänkbar
lösning är därför att istället sakta ner ljuset till protonens hastighet.

För att sänka hastigheten p̊a en ljuspuls kan strukturerade material användas,
i det här fallet plasmastrukturer. Ett plasma är en joniserad gas, allts̊a en gas
där elektronerna har frigjorts fr̊an sina atomer. Genom att använda tv̊a motrik-
tade lasrar inne i ett plasma skapas en st̊aende v̊ag, det vill säga en v̊agform
som inte förflyttar sig i sidled utan bara upp och ner. En st̊aende v̊ag kan man
enkelt se genom att till exempel h̊alla ut ett rep mellan tv̊a personer och skaka
det upp och ner i precis rätt hastighet. I det här fallet best̊ar dock v̊agen av
ljusv̊agor.

Den st̊aende v̊agen används för att skapa strukturen i plasmat. Förenklat
kan man tänka sig att partiklar som befinner sig p̊a toppen av v̊agen kommer
att rulla ner till botten, se Figur B.1. P̊a s̊a vis skapas en upprepande struktur
i plasmat med skikt av l̊ag respektive hög densitet. När den st̊aende v̊agen
försvinner återg̊ar plasmat l̊angsamt till att vara jämnt fördelat.
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Figur B.1: Plasmastrukturen skapas av den st̊aende v̊agen.

S̊a hur kan plasmastrukturen användas för att f̊a l̊angsamt ljus? Man kan
tänka sig varje skikt likt en vägg med m̊anga sm̊a h̊al. Varje foton (ljuspartikel)
har en viss chans att åka igenom och en viss chans att studsa tillbaka. Om en
grupp med m̊anga fotoner infaller p̊a kort tid (en ljuspuls) studsar de enskilda
fotonerna fram och tillbaka mellan skikten ett antal g̊anger. P̊a s̊a vis tar det
i genomsnitt längre tid för den enskilda fotonen att färdas genom strukturen
och därmed har även ljuspulsen som helhet färdats l̊angsammare. Figur B.2
illustrerar detta.

Figur B.2: Schematisk bild av l̊angsamt ljus i strukturer.

Att skikten är uppbyggda av just plasma till̊ater ljuspulser med ultrahög
intensitet att saktas ner. De höga intensiteterna skulle förstöra vanliga material
p̊a ett ögonblick, men är nödvändig för att göra uppställningen kompakt och
accelerera protonerna till höga hastigheter p̊a en kort sträcka.

I arbetet undersöks, med hjälp av datorsimuleringar, hur plasmastrukturer
kan skapas med st̊aende v̊agor samt möjligheterna för dessa strukturer att sak-
ta ner ljuspulser med ultrahög intensitet. Simuleringarna visar att ljuspulserna
kan saktas in till lägre än halva ljusets hastighet i vakuum. För att accelere-
ra protoner krävs dock hastigheter p̊a närmare 10% av ljusets hastighet. Des-
sa hastigheter kan uppn̊as, men de enkla strukturerna har en begränsning: ju
l̊angsammare ljuset g̊ar desto mindre av ljuset släpps igenom. Det g̊ar dock att
komma runt den här begränsningen. Genom att använda tv̊a jämsides placerade
plasmastrukturer, som i Figur B.3, separerade med en smal kanal av vakuum,
kan en ljuspuls med hög intensitet studsa fram och tillbaka inne i kanalen och
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l̊angsamt röra sig fram̊at längs kanalen. I simuleringar uppn̊as p̊a s̊a vis pulser
med hög intensitet och hastigheter nära 10% av ljusets hastighet i vakuum, där
hastigheten längs kanalen beror av vinkeln som ljuspulsen faller in med.

Möjligheten finns även att mer avancerade strukturer skulle kunna ge l̊aga
hastigheter som bevarar den höga ljusintensiteten som krävs för protonaccelera-
tion. S̊adana strukturer kan uppn̊as genom att till exempel använda fler än tv̊a
lasrar, riktade mot plasmat i olika vinklar, för att skapa komplicerade st̊aende
v̊agor.

Figur B.3: Schematisk bild av l̊angsamt ljus längs en kanal av vakuum mellan tv̊a
plasmastrukturer, som i detta fall optimerats för maximal reflektion av intensiva
ljuspulser.
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