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Abstract

Air pollution has become a major worldwide concern due to the high levels of air pollutants
emitted from industrial and traffic related activities. Exposure to air pollution has been linked
to various negative health effects, ranging from asthma to chronic illnesses. Consequently,
analyzing air pollution data has become an essential tool for giving insight about the potential
health effects. Spatial statistics is a field where such analysis is possible by dealing with
geo-referenced data, i.e., including information about space and time.

This dissertation focuses on spatio-temporal patterns of air pollution in Malta. The main
objective is to interpolate concentrations of the nitrogen dioxide (NO2) pollutant across the
country. Two models are presented: a standard Kriging model and a complex spatial-temporal
model. The first model uses a Universal Kriging (UK) structure to interpolate concentrations
at unobserved locations and/or times. The second model consists of a mean field that incor-
porates dependence on geographic covariates together with seasonal and long-term trends;
and a residual field having a spatial correlation structure.

The models are applied to a dataset consisting of monthly NO2 concentrations measured at
99 monitoring sites across Malta in 2014-2016. Geographic covariates such as elevation,
population density, and distances to coast, roads and industrial areas are used to explain
spatial and temporal variations in the NO2 concentrations. The cross-validated R2 of the
UK and spatio-temporal models are 0.52 and 0.55 respectively. Reconstructions of NO2

across Malta reveal interesting seasonal and spatial patterns in air pollution. The models are
implemented using the statistical software R.
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Chapter 1

Introduction

This chapter starts with a brief introduction to air pollution, with focus on the Maltese
scenario. Subsequently, a brief introduction to spatial statistics is given, together with the
major historical developments of spatial analysis in the field of air pollution monitoring.
The problem of interest will be outlined afterwards together with the main objectives of this
dissertation. Finally, the structure of the dissertation is briefly explained.

1.1 Air pollution

According to the United Nations (1997), air pollution is defined as:

"the presence of contaminant or pollutant substances in the air that do not
disperse properly and that interfere with human health or welfare, or produce

other harmful environmental effects"

Air pollution is a major worldwide environmental problem for both ambient (outdoor)
and household (indoor) sources. According to the 2016 environmental report from the
World Health Organization (WHO), air pollution is the biggest environmental risk to health,
accounting for about one in every nine deaths annually. Ambient air pollution alone is
responsible for the death of around 3 million people each year. Exposure to air pollutants can
lead to a wide range of adverse health outcomes such as cardiovascular disease, respiratory
disease, fibrosis, and lung cancer.

There are many sources of ambient air pollution. One of the main sources of outdoor
air pollution is fuel combustion from motor vehicles. Industrial facilities such as oil refineries
and manufacturing factories also contribute to the growth in air pollution. Other sources of
outdoor pollution include heat and power generation and agricultural waste sites.
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The air pollutant studied in this dissertation is nitrogen dioxide (NO2). The gaseous pollutant
is known to be a strong respiratory irritant and an important precursor to another toxic
pollutant, namely ozone (Chisulio et al. 2011). NO2 has adverse affects on health, since
high concentrations of this air pollutant cause inflammation of the airways and reduced lung
function (MITA 2009). Furthermore, high levels of NO2 are correlated with high levels of
mortality (Chen et al. 2012). NO2 is mainly caused by fossil fuel combustion, particularly in
the energy and transport sectors.

1.1.1 Case study – Malta

The country studied in this dissertation, Malta, is an archipelago located in the centre of the
Mediterranean Sea in Europe. The archipelago consists of three main islands (Malta, Gozo
and Comino), with a population of over 410,000 people (NSO 2011).

Air pollution is a major environmental concern in Malta. According to a 2017 study by the
European Environment Agency (EEA), air pollution in Malta is among the worst in Europe,
with the archipelago having the fourth highest levels of particles in the air compared to
all Member States in Europe. The major source of pollution in the Maltese islands is the
increasing use of private cars. According to a 2016 report published by the National Statistics
Office (NSO), the country now has over 350,000 licensed motor vehicles. As a result, air
pollution has increased particularly by volatile organic compounds, particulate matter and
nitrogen oxides.

As a consequence of the growing concern of air pollution worldwide and in Malta, data on
air quality is becoming increasingly available. Various researchers throughout the past years
have employed methods to analyze air pollution monitoring data. A popular field where
statistical methods are employed to analyze such data is spatial statistics, or spatial analysis.

1.2 Spatial statistics

Spatial statistics is a collection of statistical methods that make use of distances and locations
to explain the spatial variability of some response variable when making inferences about the
process involving the response variable. The location can vary from a street address of an
individual to the location of a tree in a forest. Methods involved in spatial statistics include
regression, generalized linear models and stochastic process models.
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In general, there are three types of spatial data involved in spatial analysis. Cressie (1993)
gives the following three main categories:

1. Geostatistical data - In this type of spatial data, there are observations of a continu-
ously varying quantity, which are taken at some fixed locations. Examples of this type
include measures of temperature at fixed monitoring sites, or air pollution measures at
fixed monitoring stations. This type of spatial data will be used in this dissertation.

2. Lattice data – This type of data consists of observations indexed over a lattice of points,
with the lattice being a regularly spaced or an irregularly spaced region. Examples
of this type include images (regularly spaced lattice), or counties in a particular state
(irregularly spaced region). Some of the covariates used to explain air pollution in this
dissertation will be lattice data.

3. Point Pattern data – This type of spatial data consists of observations pertaining
to a set of locations where the locations themselves are of interest. In this case, the
locations are considered to form a random process. An example of point pattern data
would be the location of pine saplings in a Swedish forest.

One of the major developments in the field of spatial statistics is associated with the increase
of computerized systems. Geographic information systems (GIS) takes the locations of the
study subject, and transform them into geographic coordinates. This technique is known as
geocoding. The availability of geocoding and other software has made spatial analysis more
accessible to many researchers. Further developments include the use of Bayesian methods
in spatial analysis due to advances in Markov Chain Monte Carlo (MCMC) algorithms.

1.2.1 Development of spatial statistics in air pollution monitoring

Since the 1990’s, there has been an enormous growth in the statistical models and techniques
to analyze spatial data in the field of air pollution monitoring. One of the first researchers
was Guttorp et al. (1994), who evaluated ozone data collected in connection with a model
study of ozone transport in California. Carroll et al. (1997) formulated a spatial-temporal
model for hourly ozone levels in order to predict ozone levels at several locations in Harris
County between 1980 and 1993. Haas (1995) suggested a prediction method to evaluate a
non-stationary spatio-temporal process. The method was applied to observations on seasonal,
rainfall-deposited sulfate in the United States during a six year period.

In recent years, hierarchical Bayesian modelling for spatial prediction of air pollution have
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been developed. Cressie et al. (1999) compared Kriging and Markov-random field models in
the prediction of particulate matter concentrations around Pittsburgh. Kibria et al. (2002)
predicted particulate matter concentrations in Philadelphia by suggesting a multivariate
Bayesian spatial prediction approach. Cocchi et al. (2007) presented a hierarchical Bayesian
model for daily average particulate matter concentration levels. Sahu et al. (2011) developed
a hierarchical auto-regressive Bayesian model for space-time air pollution data and evaluated
the advantages of Bayesian modeling over other modeling methods with a real data example
on monitoring ozone pollution.

Various authors have gone into analyzing the spatial behaviour of the nitrogen dioxide
(NO2) pollutant. Madany and Danish (1993) reported seasonal and spatial variations in
the ambient air concentration of NO2 throughout Bahrain in 1992. Monitoring sites were
chosen to include urban areas with high traffic density, suburban areas with low traffic density,
commercial, and industrial areas. Lindström et al. (2013a) presented a spatio-temporal model
to predict long-term average concentrations of nitrogen oxides (NOx) in the Los Angeles
area during a ten-year period. The objective for the paper was to investigate the relationship
between chronic exposure to air pollution and cardiovascular disease. Amini et al. (2016)
developed annual and seasonal spatial models for ambient oxides of nitrogen, including NO2

in the city of Tehran, Iran, using 2010 data from 23 fixed monitoring stations.

A number of authors have employed a number of models to analyze air pollution in Malta.
Zammit et al. (2011) suggested a spatio-temporal model using NO2 and benzene data. Camil-
leri (2013) mapped the concentrations of NO2 and identified patterns of the pollutant over
space. Zammit (2013) developed a number of spatio-temporal models to analyze air pollution
patterns associated with traffic, aiming to capture the temporal and spatial relationships
between sites in Malta and Gozo.

1.3 Problem of interest

For the purpose of this dissertation, we will be focusing on spatio-temporal models in the
area of air pollution monitoring. We will delve into questions which are of crucial importance
to the Maltese environmental sector - Is there a significant link between high levels of air
pollution and traffic and/or industrial related areas? Do localities with high population
density generate a higher concentration of air pollution? Do the levels of air pollution change
depending on the season?
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The main interest in this dissertation is the interpolation of nitrogen dioxide across Malta.
Interpolation of air pollution data is essential since it gives insight about the potential health
effects of the pollutant. Furthermore, the government might take measures in order to control
the level of the pollutant. In general, we need modelling tools to be able to interpolate air
pollution concentrations. The main purpose of this dissertation is to develop such tools so
that they can be used in the future to answer the questions above.

The main objectives of this dissertation are to:

• Study spatio-temporal models for air pollution monitoring

• Identify any geographic covariates affecting the pattern and behaviour of NO2 across
Malta

• Analyze spatially and temporally concentrations of NO2 across Malta

1.4 Dissertation structure

Apart from this introductory chapter, the dissertation contains four additional chapters, each
dealing mainly with the theory and application of spatio-temporal models.

Chapter 2 provides an outline of how air pollution is monitored in Malta through the use
of monitoring stations and passive diffusion tubes. This chapter also introduces the NO2

dataset, focusing on the collection and organization of the data for this dissertation.

In Chapter 3, the spatio-temporal framework is presented. First, the standard Kriging
model is theoretically outlined, Then, the spatio-temporal model is theoretically described.
For each model, parameter estimation, predictions and model assessment are explained.

In Chapter 4, the spatio-temporal models described in the previous chapter are applied
to the NO2 dataset. Corresponding outcomes are presented together with interpretation of
results. Reconstructions for the predictions are also provided in this chapter.

Finally, the dissertation ends with Chapter 5, whereby a summary of the most important
concepts is discussed together with an outline of the key findings in the dissertation. Further-
more, limitations of the research are provided together with possible suggestions for similar
future studies.





Chapter 2

Air pollution in Malta

In this chapter, a description of the air pollution monitoring in Malta is outlined, including
monitoring stations and passive diffusion tubes. Then, a description of the dataset is given
together with information on how it was collected and organized for this dissertation.

2.1 Air pollution monitoring in Malta

Monitoring of air pollution is undertaken in Malta through two methods - real-time air
monitoring stations, and passive diffusion tubes. All these monitoring sites are operated by
the Environmental Resource Authority (ERA), a governmental agency in Malta whose aim is
to safeguard the environment to achieve a sustainable quality of life.

2.1.1 Monitoring stations

The real-time air monitoring stations determine concentrations of most pollutants every
quarter of an hour (ERA 2018). Pollutants monitored by the stations include nitrogen diox-
ide, carbon monoxide, volatile organic compounds and particulate matter. The pollutant
monitored in each station depends on the nature of the station, its location and purpose.

In Malta, there are currently four real-time stationary measuring stations (ERA 2018).
One of them is a traffic site in the locality of Msida, close to the capital city Valletta, which
records pollution levels determined mostly by the emissions from nearby traffic. There are
two urban stations in the localities of Zejtun and Attard (see map in Appendix A2). In this
type of monitoring station, pollution levels are not influenced significantly by any single
source or street, but rather by a combination of many sources. Finally, a rural background
site is located on the island of Gozo, outside of urban areas,
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2.1.2 Passive diffusion tubes

Apart from monitoring stations, concentrations of air pollutants can also be measured using
a passive diffusion tube system (Camilleri 2013). Passive diffusion tubes are simple and
cost-effective devices for air quality monitoring. The low operational costs and ease of
usage makes these passive samplers ideal for monitoring the concentration of air pollutants
across large areas. According to Nash and Leit (2010), these tubes can also measure much
lower concentrations of the same pollutants if exposure time is extended. Therefore, passive
diffusion tubes can be useful for indoor and outdoor air quality studies where the objective is
to identify locations where average concentrations are particularly low or high.

In Malta, the passive diffusion tube network was introduced in 2004 to have a better spatial
coverage over Malta. ERA has installed a number of diffusion tubes measuring the concen-
tration of different air pollutants in many localities throughout Malta and Gozo. The tubes
are exposed for a period of 4 weeks after which they are sent to a laboratory for analysis.

2.2 NO2 Dataset

The dataset analyzed in this dissertation consists of 4-week average concentration levels of
the nitrogen dioxide measured at 94 passive diffusion tubes and 51 fixed monitoring stations
located in Malta and Gozo for the years 2014-2016 (Figure 2.1). Apart from the concentration
measurements, the dataset includes the latitude and longitude of each monitoring site.

All in all, there are 33 4-week exposure periods for each monitoring network in the dataset -
13 observations in 2014, 10 observations in 2015 and 10 observations in 2016. To encode
the timing of each measurement period, we used the middle date of each exposure period,
e.g. the 24th of December 2013 was taken to represent the middle date of the first exposure
period 9 December 2013 - 6 January 2014.

2.2.1 Geographic covariates

In order to model the air pollutant concentrations, and to predict at unobserved locations, a
number of geographic covariates were added to the NO2 dataset. These include elevation,
distance to coast, distance to trunk, primary and secondary roads, distance to industrial areas
and population density.

1In the dataset, there are five fixed monitoring stations – the other fixed monitoring station located at Kordin
has since been shut down.
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Fig. 2.1 Location of monitoring diffusion tubes and stations in the Maltese Islands. The blue
and red triangular dots correspond to the monitoring stations and diffusion tubes respectively.

Spatial information for the elevation was given in the form of Shuttle Radar Topography
Mission (SRTM) gridded data from Becker et al. (2009), with average elevation for each
gridcell. The elevation in Malta is shown in plot a) from Figure 2.2. As can be seen the
elevation is higher in the South Western part of Malta. The elevation for each monitoring site
was assigned according to the corresponding gridcell.

The coastline data was provided as a set of hierarchically arranged closed polygons from
Wessel and Smith (1996). The distance to coast for each monitoring site was determined
by calculating the distances from the site to each polygon data point, and then taking the
smallest distance.

The population density was provided in shapefile format from the National Statistics Office
(NSO) in Malta. The shapefile includes 68 localities in Malta and Gozo, and the population
density in each locality is given. The population density (measured in km2) is calculated by
dividing the number of people in the locality by the total locality area. According to the 2011
Census of Population Housing report published by the NSO, Malta had a population density
of over 1,300 people per square kilometer, making it one of the most densely populated
countries in the world. Plot b) from Figure 2.2 shows the population density in Malta and
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Gozo. As can be seen, the region including the Southern and Northern harbour districts, have
a higher population density (Malta is divided into 6 districts, and each district has a number
of localities. Maps of Malta visualizing the 6 districts and the 68 localities are shown in
Appendices A1 and A2). Furthermore, Gozo is less densely populated than Malta.

For the NO2 dataset, each monitoring site was assigned the population density of the locality
in which it is situated. So for instance, the passive diffusion site ATD1 and the monitoring
station ATD2 are both situated in the locality of Attard, and thus were each assigned the
population density of that locality.

Information about major roads (Figure 2.2 (c)) and industrial areas (Figure 2.2 (d)) were
provided in shapefile format using the OpenStreetMap online tool2. The major roads are
divided into three classes namely trunk, primary and secondary roads. The first class refers
to high-capacity urban roads which are typically divided. Primary roads are low-to-moderate
capacity roads which move traffic from one locality to another. Secondary roads refer to
major roads within a locality.

2http://download.geofabrik.de/europe/malta.html
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(a) Elevation (b) Population density

(c) Major roads (d) Industrial areas

Fig. 2.2 Geographic covariates. Plot (a) shows the elevation. Grey areas have the highest
elevation above sea level whilst green areas have the lowest elevation. Plot (b) shows the
population density. Blue areas have a low population density whilst red areas have a high
population density. Plot (c) shows the road network in Malta. Trunk, primary and secondary
roads are represented by green, red, and blue lines respectively. Plot (d) shows the industrial
areas in Malta.





Chapter 3

Spatio-temporal modelling

In this chapter, we will lay the theoretical foundations of the spatio-temporal framework
that will be used to study the NO2 concentration levels in the Maltese Islands. First, we will
describe the standard Kriging model which will be applied to the long-term average NO2

concentrations. Then, we will shift to the spatio-temporal model which consists of temporal
basis functions. For each model, theoretical details about parameter estimation, predictions
and prediction accuracy will be outlined.

3.1 Standard Kriging model

In this section, we will theoretically describe a Kriging model used to analyze the long-term
average (LTA) concentrations of NO2 at each monitoring site. The method is named after
D. G. Krige, a South African mining engineer who was the first person to construct and apply
them (Zimmerman and Stein 2010). Before describing the model, we will introduce some
notation.

Let y(s, t) denote logged NO2 concentrations at location s and time t. Let N and T de-
note the total number of observations and the number of observation time points, respectively.
Let n and p denote the number of observed monitoring sites and the number of geographic
covariates, respectively. The LTA y(s) at each location s is given by:

y(s) =
∑T

t=1 y(s, t)
T

(3.1)
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A linear regression model for the observations in (3.1) is constructed as:

y(s) = X(s)β + ε(s) (3.2)

where X(s) is an n× p matrix denoting the geographic covariates used in the regression
model, and β is a p-dimensional vector of regression coefficients. ε(s) is an error term which
is assumed to be normally distributed with mean 0 and variance τ2

ε . In matrix notation, (3.2)
can be written as:

Y = Xβ +E (3.3)

where E ∈ N(0,τ2
ε I). We will denote this model as the LTA regression model.

Reasonable estimates for β and τ2
ε in (3.2) are

β̂ = (XT X)−1(XTY ) τ̂2
ε =

||Y −X β̂ ||22
n− p

If we let y0 denote an unobserved location and x0 a covariate observed at y0, then the
conditional expectation of y0 given β̂ is:

E(y0|β̂ ) = x0β̂ (3.4)

Accounting for the uncertainty in the regression coefficients, the prediction variance of y0

given τ2
ε is:

V(ŷ0|τ2
ε ) = τ2

ε + x0V(β̂ |τ2
ε )x

T
0 (3.5)

where V(β̂ |τ2
ε ) = τ2

ε (X
T X)−1. The model (3.2) assumes independent and identically dis-

tributed (i.i.d.) errors. However, to accommodate for spatial variability in the data, we can
shift from a linear regression model to the following Gaussian random model as described in
Zimmerman and Stein (2010):

y(s) = µ(s)+η(s)+ ε(s) (3.6)

where µ(s) = X(s)β is the mean (or trend) component of the model. In this dissertation, we
will focus on a Universal Kriging (UK) approach where β is assumed to be unknown. The
second term of (3.6), η(s) is a zero-mean stochastic process with a parametric stationary
covariance function C(||si−s j||;θ), where si and s j denote two spatial locations for i ̸= j, and
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θ is a vector of unknown parameters - partial sill (σ2) and range (φ ). ε(s) are uncorrelated
measurement errors (or nugget effect) with variance τ2

ε (nugget variance). Now, (3.6) gives a
multivariate Gaussian model for the observations:

Y ∈ N(Xβ ,Σ) (3.7)

where Σ is defined as:

Σ = Ση +Σε =
[
C(||si − s j||;θ)

]
i j
+ τ2

ε III. (3.8)

For notation purposes, we can collect the covariance parameters in Ψ = {θ ,τ2
ε }. We will

denote this model the LTA UK model.

3.1.1 Parameter estimation

Parameter estimates for the LTA UK model can be obtained via maximum likelihood (ML)
by maximizing the log-likelihood of (3.7). Since Y is Gaussian distributed with mean Xβ
and variance Σ, then its probability density function f (Y ) is:

f (Y ) =
1

(2π)
n
2 |Σ(Ψ)| 1

2
exp(−1

2
(Y −Xβ )T Σ(Ψ)−1(Y −Xβ )) (3.9)

The log-likelihood of (3.7) l(Ψ,β |Y ), is obtained by taking the logarithm of (3.9). Thus,
the likelihood of (3.7) is:

l(Ψ,β |Y ) =−n
2

log(2π)− 1
2

log |Σ(Ψ)|− 1
2
(Y −Xβ )T Σ−1(Ψ)(Y −Xβ ) (3.10)

Parameter estimates then can be obtained by maximizing (3.10) with respect to β and Ψ:

Ψ̂, β̂ = argmax
Ψ,β

l(Ψ,β |Y )

Profile likelihood

According to Lindström et al. (2013a, b), estimating parameters of a large dataset using the
ML approach may take considerable computational time. One way to speed up the estimation
process is to reduce the number of parameters. The profile likelihood successfully reduces
the number of parameters by replacing β with its generalized least square (GLS) estimate
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βGLS, and thus the problem is reduced to just estimating Ψ. The GLS estimate of β is:

βGLS(Ψ) = (XT Σ−1(Ψ)X)−1XT Σ−1(Ψ)Y (3.11)

Replacing β with (3.11) in (3.10), parameter estimates are obtained by maximizing l(Ψ, β̂ |Y )
with respect to just Ψ:

Ψ̂ = argmax
Ψ

l(Ψ,βGLS(Ψ)|Y )

3.1.2 Predictions

Having obtained parameter estimates, predictions can be computed at unobserved locations.
The following setup and computations for the predictions are outlined by Cressie (1993). For
the LTA UK model predictions, we can divide the data into known (observed) locations Yk

and unknown (unobserved) locations Yu. Let µk and µu denote the expectations of Yk and
Yu respectively. Moreover, denote Σku as the cross-covariance structure between observed
and unobserved points, and Σkk and Σuu as the covariance structure for the observed and
unobserved points respectively. Accounting for the observed and unobserved points, the
Gaussian model can be written as:

[
Yk

Yu

]
∈ N

([
µk

µu

]
,

[
Σkk Σku

Σuk Σuu

])
=

([
Xkβ
Xuβ

]
,

[
Σkk Σku

Σuk Σuu

])

where Xk and Xu denote geographic covariates corresponding to Yk and Yu respectively. If
yu denotes an unobserved location, then the conditional expectation of yu given Yk and θ is:

E(yu|Yk,θ) = Xuβ̂ +ΣukΣ−1
kk (Yk −Xkβ̂ ) (3.12)

where β̂ is the GLS estimate given in (3.11). The conditional variance of yu given Yk, θ and
β̂ is:

V(yu|Yk,θ , β̂ ) = Σuu −ΣukΣ−1
kk Σku (3.13)

Adding the uncertainty in the regression parameters, the conditional variance of yu given Yk

and θ becomes:

V(yu|Yk,θ) = V(yu|Yk,θ , β̂ )

+(XT
u −XT

k Σ−1
kk Σku)

T (XT
k Σ−1

kk Xk)
−1(XT

u −XT
k Σ−1

kk Σku) (3.14)
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3.1.3 Prediction accuracy

The predictive accuracy of the LTA UK model can be assessed using leave-one-out cross
validation. In this method, each location is removed from the data set and the LTA at this
location is predicted using the remaining locations.

Given the predictions (3.12) and the prediction variances in (3.13) and (3.14) of the LTA
UK model, cross-validated statistics such as the root mean squared error (RMSE) and the
coefficient of determination R2 can be computed. The RMSE is computed as:

RMSE =

√
1
n ∑

n
(y(s)− ŷ(s))2 (3.15)

where ŷ(s) denotes the predicted y(s) observations. R2 ranges from 0 to 1, and values closer
to 1 correspond to less measurement error. This statistic is computed as:

R2 = max
(

0,1− RMSE2
LTA

V(y(s))

)
(3.16)

3.2 The spatio-temporal model

Having outlined the standard Kriging model, we will now describe theoretically the spatio-
temporal model. The model is based on the notion of smooth temporal basis functions and
represents one of the many ways that spatio-temporal dependencies can be modelled. The
model has been developed in a series of papers including Szpiro et al. (2010) and Lindström
et al. (2013a). The latter implemented the model in an R package called SpatioTemporal
(Lindström et al. 2013b). This package will be used to implement the spatio-temporal model
in this dissertation.

We will theoretically describe the model using a similar approach presented in Lindström et
al. (2013a, b). For notation purposes, we let y(s, t), N and T be defined earlier in section 3.1.
The spatio-temporal model consists of the equation:

y(s, t) = µ(s, t)+ ε(s, t) (3.17)

where µ(s, t) is the space-time mean field and ε(s, t) is the space-time residual field. Fol-
lowing the methodology presented in Fuentes et al. (2006), µ(s, t) can be modelled as
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follows:

µ(s, t) =
m

∑
i=1

βi(s) fi(t) (3.18)

where fi(t) is a set of known and fixed smooth temporal basis functions for i = 1, ...,m
where m is typically a small number of temporal basis functions (including the intercept).
It is assumed that we have an intercept, f1(t) = 1, and that the remaining basis functions
f2(t), ..., fm(t) have mean zero. The βi(s) are spatially varying regression coefficients for the
temporal functions.

The βi(s) in (3.17) are modelled as spatial fields with a UK structure, allowing the tem-
poral structure to vary between locations. The trend in the UK structure is constructed as a
linear regression on the geographic covariates. The spatial dependence structure is modelled
using a set of covariance matrices Σβi(θi). Thus, the model for βi(s) is:

βi(s) ∈ N(Xiαi,Σβi(θi)) for i = 1, ...,m (3.19)

where Xi are n× pi design matrices that can incorporate intercept terms and may include
different geographic covariates for the different spatial fields. This component can be denoted
as a "land use regression" (LUR) component. Here, pi denotes the number of LUR-basis
functions for the ith temporal basis function, for i = 1, ...,m. The αi are corresponding pi ×1
matrices of unknown regression coefficients, and Σβi(θi) are n×n covariance matrices. The
β -fields are assumed to be a priori independent of each other.

What remains to specify is a model for the residual space-time field ε(s, t) in (3.17).
Since the temporal basis functions in (3.18) should account for the temporal correlation in the
data, ε(s, t) is assumed to be independent in time, but dependent in space. The residual field
is modelled using a Gaussian distribution with zero mean process and a spatial covariance as
follows:

ε(s, t) ∈ N(0,Σt
ε(θε)) for t = 1, ...,T (3.20)
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where θε is a multi-dimensional covariance parameter and Σt
ε(θε) is the spatial covariance

block matrix:

Σt
ε(θε) =




Σ1
ε(θε) 0 0

0 . . . 0
0 0 ΣT

ε (θε)


 (3.21)

Here, the size of each covariance matrix, Σt
ε(θε), is given by the number of observa-

tions nt , at time t. The independence of (3.21) is needed for computational efficiency (see
Lindström et al. (2013a) for details). Thus, we have assumed a common family of spatial
covariance functions for ε(s, t) and the various spatial fields embedded in µ(s, t).

Similar to the LTA UK model, the covariance structures in (3.19) and (3.20) are characterized
by a range φ , a partial sill σ2, and a nugget τ2. In this case, the nugget term in the β -field is
assumed to be zero, implying a high correlation between the mean value and the seasonal
trend at locations adjacent to each other. The parameters of the spatio-temporal model consist
of regression parameters for the geographic covariates:

α = (αT
1 , ...,α

T
m)

T (3.22)

Spatial covariance parameters for the βi field:

θB = (θ1, ...,θm) (3.23)

where

θi = (φi,σ2
i ) for i = 1, ...,m

and spatial covariance parameters for the spatio-temporal residuals:

θε = (φε ,σ2
ε ,τ

2
ε )

For simplification of notation, we can combine all the covariance parameters into a parameter
Ψ:

Ψ = (θB,θε)
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Combining (3.17) and (3.18), the spatio-temporal model can be written as:

y(s, t) =
m

∑
i=1

βi(s) fi(t)+ ε(s, t) (3.24)

In order to simplify the notation of the model, Szpiro et al. (2010) introduced a sparse
N ×mn-matrix F = ( fst,is′) with elements

F = ( fst,is′) =





fi(t) s = s′

0 otherwise

They also introduced the N ×1 vectors Y = y(s, t) and E = ε(s, t) by stacking the elements
into single vectors, varying first s and then t. Therefore,

Y =
[
y(s1,1) y(s2,1) ... y(s1,2) y(s2,2) ... y(sn,T )

]T

E =
[
ε(s1,1) ε(s2,1) ... ε(s1,2) ε(s2,2) ... ε(sn,T )

]T

Components of the β -fields are assembled into block matrices as

B =




β1(s)
...

βm(s)


 , X =




X1 0 0

0 . . . 0
0 0 Xm


 , ΣB(θB) =




Σ1(θ1) 0 0

0 . . . 0
0 0 Σm(θm)


 (3.25)

Using the aforementioned matrices, the model in (3.17) can be written in matrix form as:

Y = FB+E; (3.26)

where

B ∈ N(Xα,ΣB(θB)) and E ∈ N(0,Σε(θε))

Here, X ,ΣB(θB) and Σε(θε) are block diagonal matrices with diagonal blocks {Xi}m
i=1,{

Σβi(θi)
}m

i=1 and
{

ΣT
ε
}T

i=1, respectively. Figure 3.1 illustrates the structure FB decomposed
into FXα using two temporal basis functions.
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Fig. 3.1 Structure of FXα . Note that F will be a large sparse matrix.

It can be noted that (3.26) is a linear combination of independent Gaussians, therefore
we introduce the matrices:

X̃ = FX and Σ̃(Ψ) = Σε(θε)+FΣB(θB)FT (3.27)

Consequently. the distribution of Y given the covariance parameters Ψ and the regression
parameters α can be written as

[Y |Ψ,α] ∈ N
(
X̃α, Σ̃(Ψ)

)
(3.28)

3.2.1 Temporal basis functions

The aim of the smooth temporal basis functions, fi(t), is to capture the temporal variability
in the data. These functions are computed using singular value decomposition (SVD) of a
data matrix. In this case, f1(t) = 1, thus we end up with m−1 smoothed singular vectors. In
order to derive the m−1 smoothed singular vectors, a T ×n data matrix D is constructed
such that:

D =





Y observation Y exists

NA otherwise
(3.29)

To deal with missing observations, an iterative algorithm introduced by Fuentes et al. (2006)
is used:
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Step 1: Centre and scale each column to mean zero and variance one, and compute the mean
of all available observations for each time-point, µ1(t). Imputation is done for any
missing values in D by fitted values from a linear regression model. In this case, each
column of D is regressed onto u1.

Step 2: Compute the SVD of the new data matrix with any missing values imputed

Step 3: Regress each column of the new data matrix on the first m − 1 orthogonal basis
functions from Step 2. The missing values are then replaced by the fitted values from
regression.

Step 4: Repeat from Step 2 until convergence. Convergence is measured by the change in the
imputed values between iterations.

The technique of cross-validation (CV) can be used in order to identify the number of
smooth temporal basis functions needed to capture the temporal variability in data. In a
cross-validation approach, a column of D is held out and smooth temporal functions are
computed for the reduced matrix. The functions are evaluated by how well they explain the
held out column of D. Repeating for all other columns in D, a set of regression statistics
is obtained describing how well the left out columns are explained by smooth temporal
functions based on the remaining columns. We can make use of several statistical measures
in order to identify a suitable number of temporal basis functions. These include the mean
squared errors (MSE), the coefficient of determination R2, and information criteria such as
the Akaike nformation criterion (AIC), and the Bayesian information criterion (BIC).

3.2.2 Parameter estimation

The procedure for parameter estimation is similar to the procedure outlined for the LTA UK
model in section 3.1.1. For the spatio-temporal model, parameter estimates can be obtained
via ML by maximizing the log-likelihood of (3.28). Since Y |Ψ,α is Gaussian distributed
with mean X̃α and variance Σ̃(Ψ), then its probability density function f (Y ) is:

f (Y ) =
1

(2π)
N
2 |Σ̃(Ψ)| 1

2
exp(−1

2
(Y − X̃α)T Σ̃−1(Ψ)(Y − X̃α))) (3.30)

The log-likelihood l(Ψ,α|Y ), is obtained by taking the logarithm of (3.30). Thus, the
likelihood of (3.30) is:

l(Ψ,α|Y ) =−N
2

log(2π)− 1
2

log |Σ̃(Ψ)|− 1
2
(Y − X̃α)T Σ̃−1(Ψ)(Y − X̃α) (3.31)
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Parameter estimates then can be obtained by maximizing (3.31) with respect to α and Ψ:

Ψ̂, α̂ = argmax
Ψ,α

l(Ψ,α|Y )

As described in section 3.1.1, the profile likelihood version is obtained by replacing α with
its GLS estimate (3.11).

3.2.3 Prediction

Having obtained the estimates of the unknown parameters, the next step is to predict con-
centrations at unobserved locations and/or times. The different predictions and prediction
variances are presented in Lindström et al. (2013b). Before providing predictions for Y , we
introduce some notation.

Let Xu and Fu denote the geographic covariates, and temporal basis functions at unob-
served locations and/or times, respectively. Furthermore, let Bu denote the collection of
β -fields at the unobserved locations. Let ΣB,uo and Σε,uo denote the cross-covariance matrices
between observed and unobserved points, and ΣB,uu and Σε,uu are the covariance matrices for
unobserved points. Using this notation relevant variations on the matrices in (3.27) are

X̃u = FuXu and Σ̃uo(Ψ) = Σε,uo(θε)+FuΣB,uo(θB)FT (3.32)

The model is multivariate normally distributed as seen from (3.28) and the full predictions
of unobserved Y’s are standard kriging estimates. Therefore, the conditional expectation of
the unobserved Yu given Y and Ψ is:

E(Yu|Y,Ψ) = X̃uα̂ + Σ̃uoΣ̃−1(Ψ)(Y − X̃α̂) (3.33)

where α̂ is the GLS estimate (3.11) The corresponding conditional variance of Yu given Y , α
and Ψ is:

V(Yu|Y,Ψ,α) = Σ̃uu − Σ̃uoΣ̃−1Σ̃uu (3.34)
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Adding the uncertainty in the regression parameters, the conditional variance of Yu given
Y and Ψ is:

V(Yu|Y,Ψ) =V(Yu|Y,Ψ,α)+

(X̃u − Σ̃uoΣ̃−1X̃)(X̃T Σ̃−1X̃)−1(X̃u − Σ̃uoΣ̃−1X̃)T (3.35)

Given the structure of the model (3.17) with a mean component (3.18) and β -field (3.19),
the contribution to any predictions of unobserved Y ’s can be decomposed into the following
components:

Regression component: µ(s, t) = Σm
i=1Xiαi fi(t) (3.36)

Mean component: µβ (s, t) = Σi=1 fi(t)E(βu|Y,Ψ) (3.37)

where

E(Bu|Y,Ψ) = Xuα̂ +ΣB,uoFT Σ̃−1(Y − X̃α̂)

The components (3.36) and (3.37) play a vital role in model evaluation by highlighting
at which level of the model different features of the data are captured. Equations for the
predictions of the β -fields and unobserved time points are given in Appendix A3.

3.2.4 Prediction accuracy

The predictive accuracy of the model can be assessed through K-fold cross-validation. This
method uses part of the available data to fit and a different part to test it. A CV setup is
performed by dividing the observed locations into K groups of a reasonably equal size.
Figure 3.2 shows a visual diagram of the CV setup when K = 5. For the first CV group
(Experiment 1), the model is fitted using the other 4 CV groups, and prediction errors are
calculated when predicting for the first CV group. A similar approach is done for the other 4
CV groups, and then the 5 estimates of prediction error are combined
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Fig. 3.2 5-fold CV. Source: Zhang et al.(2013)

As outlined in section 3.1.3, cross-validated statistics such as the RMSE and R2 can be
computed. The only difference is that computations are evaluated for N observations instead
of n.





Chapter 4

Analysis

Having described the theory, we will now apply the theory to our NO2 dataset, described in
Chapter 2. We will start off with the spatio-temporal model of the dataset, describing the
model and analyzing the results obtained. Finally, we will delve into linear regression and
standard Kriging models for long-term average concentrations.

4.1 Initial descriptives

Before analyzing the temporal structure in the data, we evaluated the seasonality and normal-
ity in the observations. Simple plotting of the observations at different locations indicated
whether there was any seasonal pattern present in the NO2 observations. Figure 4.1 shows the
times series plots of 4 passive diffusion tube locations. Seasonality is evident at all locations,
with higher NO2 concentrations occurring the winter season, and lower NO2 concentrations
occurring during the summer season.

The distribution of the observations was evaluated though a normal Q-Q plot as shown
in the two plots in Figure 4.2. The left-hand plot shows the Q-Q plot for the raw observations,
whilst the right-hand plot shows the Q-Q plot for the logged observations. In both cases, there
were evident heavier tails. In the raw observations, there seemed to be more deviations than
the logged observations. Thus, from now onwards, we will focus on logged NO2 observations
for our analysis.
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Fig. 4.1 Time Series plots of 4 locations.

(a) Raw data (b) Logarithmic data

Fig. 4.2 Q-Q plot of observations.

4.2 Temporal basis functions

After analyzing the seasonality and normality assumptions of the observations, the next
step was to evaluate the temporal structure and determine the number of spatially varying
smooth temporal basis functions. To determine a suitable number of basis functions, the
cross-validation technique described in section 3.2.1 was used. Figure 4.3 shows the cross-
validation statistics MSE, R2, AIC, and BIC for each of the number of basis functions



4.3 Modelling the β and ε-fields 29

evaluated. With regards to information criteria, the basis number having the lowest AIC and
BIC should be preferred. In this case, the AIC indicated that the number of basis functions
should preferably be 3, whilst the BIC showed that the number of basis functions should
preferably be 2. All four statistics seemed to flatten out mostly after 2 basis functions,
indicating that 2 basis functions is likely to provide the most efficient description of the
temporal variability.

Fig. 4.3 Cross-validated results.

4.3 Modelling the β and ε-fields

After determining suitable temporal basis functions. the type of spatial covariance model to
use for each β and ε fields was specified. Furthermore, the LUR covariates for each of β
fields were identified.

Since we have 2 temporal basis functions, 2 latent β -fields (β1 and β2) and another la-
tent β0-field corresponding to the intercept were modelled. The three β -fields were estimated
by regressing the observations for each site on the temporal trends. The regression coeffi-
cients and standard deviations for each of the β -fields were also extracted.
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Plotting the regression coefficients against the covariates gave us a rough idea regarding
which covariates to include in the β -fields. Figure 4.4 shows two plots. Both plots show
the regression estimates of the β0 field at each location, with 95% confidence intervals,
as a function of distance to trunk road. The only difference is that in the first plot, the
distance to trunk road is analyzed in its original scale, whilst in the second plot, the same
covariate is transformed in logarithmic scale. As can be seen, the second plot shows a
clearer negative linear pattern. Thus, the logarithmic version seems to be a more reasonable
covariate to include in the β0-field. Following similar analysis, it was decided to include
the log-transformation of the population density, distance to roads and distance to industrial
areas in the spatio-temporal model.

Fig. 4.4 Regression estimates of β0 field at each location, with 95% confidence intervals, as a
function of distance to trunk roads in natural and log scale.

Apart from plotting, a stepwise selection approach based on AIC, and using the step
function in R was used to identify the most suitable covariates to include for each of the
β -fields. The second column of Table 4.1 shows the selected variables for the β -fields.

Having obtained covariate specifications for the β -fields, the next step was to determine
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covariance specifications for both the β and ε-fields. For the latter, we used an exponential
covariance with a nugget:

σ2
ε exp(− d

φε
)+ τ2

ε (4.1)

where d denotes the distance between observation locations. Covariance specifications
for β0, β1, and β2-fields were determined by analyzing the variogram of the residuals from
the regression models of the β -fields, as displayed in Figure 4.5. In all variograms, there
seemed to be hardly any spatial dependence, except for a few spatial effect in the β0-field.
Consequently, all three β -fields were modelled using an independent and identically dis-
tributed covariance, meaning that only a nugget is included.

Having defined model specifications for the β and ε-fields, we specified a list of coor-
dinates for the observations. In this case, the latitude and longitude of the monitoring sites
were taken to be the coordinates used to compute distances between observation locations.
Table 4.1 gives a summary of the spatio-temporal model, including covariate selections for
the β -fields, and covariance specifications for the β and ε-fields.

4.4 Parameter Estimation

Given model specifications for the β and ε-fields, parameters of the spatio-temporal model
were estimated by using the ML approach described in section 3.2.2. The parameters include
the regression coefficients (intercepts and coefficients of the selected covariates) and the 6
covariance parameters shown in Table 4.1. The resulting parameter estimates of the β and ε
fields are shown in Appendix A4.
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(a) β0 (b) β1

(c) β2

Fig. 4.5 Variograms of the β -field residuals. The top and bottom curves shown in each plot
are called the variogram envelopes. The envelopes are computed based on permutations of
the data values across the spatial locations, meaning that the envelopes are constructed under
the assumption of no spatial dependence (Ribeiro and Diggle 2001).

Field Selected Covariates Covariance function Covariance parameters
β0 Elevation, latitude, distances to

trunk, primary and secondary roads
i.i.d. τ2

0

β1 Elevation, population density, dis-
tances to trunk, primary and sec-
ondary roads, distance to coast and
industrial areas

i.i.d. τ2
1

β2 Latitude, longitude, elevation, popu-
lation density and distance to coast

i.i.d. τ2
2

ε Exponential θε = (σ2
ε ,φε ,τ2

ε )
Table 4.1 Summary of the spatio-temporal model.
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4.5 Predictions

Given estimated parameters, predictions were computed for the Gaussian model. These
include conditional expectations (3.33) and prediction variances (3.34) of the NO2 observa-
tions. It is assumed that regression parameters are known and prediction variances do not
include uncertainties in regression parameters. Contributions to the predictions from the
regression component (3.36) and the mean component (3.37) are also computed.

Figure 4.6 shows the predicted and observed data for 4 out of the 99 monitoring sites.
It can be noted that in all four locations, the different predictions approximately capture the
seasonal variations in the data. The contribution from the regression component seems to
capture less seasonality than the other predictions. This can be noted by the deviations from
the confidence intervals at certain periods of time.

Fig. 4.6 Observations and different predictions in 4 monitoring sites. The red lines denote
observations, whilst the black line and gray shading give predictions and 95% confidence in-
tervals at unobserved time-points respectively. The green and blue lines give the contribution
to the predictions from the regression and mean components, respectively.
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4.6 Cross-validation and Model Assessment

The model’s predictive ability was assessed through the cross-validation method described
in section 3.2.4. The observations were split into 6 cross-validation groups. Points closer
than 0.01 were forced into the same group. Thus, the number of observations in each group
was roughly even. Table 4.2 shows the 6 CV groups and the number of observations in each
group.

CV group 1 2 3 4 5 6
Observations 327 677 784 422 473 526

Table 4.2 Cross-Validation groups.

4.6.1 Cross-validated Estimation and Prediction

Having created the CV groups, parameters were estimated for each CV group using the
covariance estimates obtained in section 4.4 as starting values. The CV estimation results are
shown in Table 4.3. We can see that the parameter estimates for all 6 CV groups converged.
The table also gives the optimal log-likelihood value for each estimate.

CV group Log-likelihood Convergence
1 4786.74 TRUE
2 4217.15 TRUE
3 3982.43 TRUE
4 4580.00 TRUE
5 4440.47 TRUE
6 4416.75 TRUE

Table 4.3 Cross-validated Estimation results.

Figure 4.7 shows the estimated covariance parameters, on a log-scale, and approximate
95% confidence intervals (red) compared to covariance estimates from the 6-fold cross-
validation (box-plots). In this case, there seems to be a reasonable agreement with values and
uncertainties for most of the estimates.
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Fig. 4.7 Estimated log-covariance parameters and approximate 95% confidence intervals
(red) compared to parameter estimates from 6-fold cross-validation (box-plots).

Given the estimated parameters, predictions were computed for each of the CV-groups.
This was achieved by computing the conditional expectations for the left-out observations,
given all other observations and the estimated parameters.

4.6.2 Model Assessment

Having obtained CV estimations and predictions, the predictive ability of the spatio-temporal
model was evaluated. The statistical measures RMSE and R2 were used to assess the accuracy
of the model.

Table 4.4 shows the CV statistics for all the observations, using three different components of
the spatio-temporal model - conditional expectation (3.33), the regression component (3.36)
and the mean component (3.37). As can be seen, the R2 of all components is quite low both
indicating that the spatio-temporal model is not of a reasonable good fit and thus, needs to be
improved.
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Model components RMSE R2

E(Yu|Y,Ψ) 0.46 0.55
µ(s, t) 0.47 0.54
µβ (s, t) 0.47 0.54

Table 4.4 Cross-validation statistics for the observations.

Apart from cross-validation statistics, model assessment was evaluated graphically as
shown in Figure 4.8 and Figure 4.9. Plotting all predictions against observations seems rea-
sonable, although some locations exhibit biases. The predicted LTA’s match the observations,
but with rather large prediction intervals. The width of the intervals is caused by a number of
monitoring sites only having a few years of data to average over. Analyzing the residuals
for the Gaussian model, (Figure 4.9), we see that they are close to normal, but have slightly
heavier tails than expected.

Fig. 4.8 Cross-validation plots. The left-hand side plot compares the CV predictions with the
observations. The points are coloured by location and grouping of data from single locations
as well as site specific biases can be seen. The right-hand side plot compares the predictions
with long-term averages.
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Fig. 4.9 QQ-plot for the residuals. To evaluate seasonal patterns, the plot is colour coded by
season - winter (black), spring (red), summer (green) and autumn (blue). The dashed line in
the plot gives the theoretical behaviour of normally distributed residuals.

4.7 Reconstruction and prediction uncertainties

In this section, the reconstructed prediction fields are presented. These include the recon-
struction fields of the prediction using various components of the spatio-temporal model.
The components include the conditional expectations (Figure 4.10), and contributions from
the regression (Figure 4.11 plot (a)) and mean (Figure 4.11 plot (b)) part of the model.
Furthermore, prediction uncertainties are also plotted (Figure 4.12).

In order to plot the reconstructions, a prediction grid was constructed. A regular latitude-
longitude grid with resolution 0.05 covering the whole archipelago of the Maltese islands
was created. The LUR covariates for each coordinate were generated using the methods
described in 2.2.1. To avoid issues with the log-transformation due to zeros, distances to
coast were truncated from below to the smallest distance to coast from all monitoring sites.

Evaluating the conditional expectation reconstruction field (Figure 4.10), there seems to be
higher level of NO2 concentration levels during the winter season. A major source could
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be motor vehicles driven by people for work or school purposes, leading to busy traffic
roads. It can be seen from all the plots that the most densely populated areas have a higher
level of NO2 concentrations. If we analyze the island of Gozo, we can see that the small
island has a lower level of NO2 concentration than in Malta due to its low population density.
Furthermore, Gozo is considered to be greener and more rural with less traffic. Contrary to
Malta, the prediction in Gozo seems to be higher in summer than in winter. This could be
due to the large numbers of vehicles crossing between Malta and Gozo during the summer
period (NSO 2018). A source for lower NO2 predictions during winter in Gozo could be the
clear, fresh weather induced by the north-westerly wind. According to NSO (2011b), this
wind is the most common wind direction in Malta, and it is stronger during the winter period.

Fig. 4.10 Reconstructed prediction field. In the figure, there are 4 plots with each plot
corresponding to a different observation date. Each date corresponds to a different season.
The top plots include observations during the summer, whilst the bottom plots include
observations from winter. It can be seen from the bottom-left hand plot, that there are areas
with high level of predicted NO2 concentration levels, particularly in the eastern part of the
island.
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(a) Regression component

(b) Mean component

Fig. 4.11 Reconstructed prediction field using the regression component (a) and the mean
component (b) of the spatio-temporal model. All plots look very similar to the reconstructed
field in Figure 4.10, indicating that the different components of the spatio-temporal model do
not contribute to any spatial effect in the model.
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(a) Lower confidence interval

(b) Upper confidence interval

Fig. 4.12 Reconstructed prediction uncertainty (95% confidence interval) plots.
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4.8 Long-term averages

After analyzing the spatio-temporal model for the NO2 observations, the focus is placed on
the LTA concentrations at each monitoring site. The LTA regression model and the LTA
UK model outlined in section 3.1 will be applied to the long-term averages. This is done to
notice any spatial patterns, and to evaluate the differences between this approach and the
spatio-temporal model analyzed before.

4.8.1 LTA regression model

The long-term averages were extracted using (3.1). The linear regression model outlined in
(3.2) was applied to the LTA observations, where the latter served as the response variable,
and the LUR covariates were included as explanatory variables. All covariates were included
in the model, and a stepwise approach using AIC was used in order to determine the most
suitable covariates to include in the LTA regression model. Table 4.5 shows the selected
covariates together with regression estimates.

Figure 4.13 shows the comparison between the true observations (shown in red) and the
predicted observations from the LTA regression model (shown in blue). Except for a few
minor deviations, the LTA regression model provides a reasonable good fit for the long-term
averages.

Fig. 4.13 True observations vs LTA regression predictions.
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4.8.2 LTA UK model

The variogram of the residuals from the LTA regression model was analyzed in order to
detect any spatial dependence. This is shown in Figure 4.14. From the variogram, almost
all residual points are enclosed within the variogram envelope, indicating a minimal spatial
effect.

Fig. 4.14 Variogram of LTA regression model residuals.

Despite little spatial structure, the LTA UK model (3.6) was constructed for comparison
purposes. As outlined in (3.6), the model consisted of a mean (trend) component µ(s), a
spatial component η(s) and an error component ε(s). In this case, the former consisted of
the LUR variables included in the LTA regression model (Table 4.5); η(s) consisted of the
covariance parameters σ2 (partial sill) and φ (range); and the latter component consisted of
τ2

ε (nugget variance). Since the exponential function was used to model the ε-field in the
spatio-temporal model, the same covariance function was used in the LTA UK model.

Parameter estimation

The regression and covariance parameters for the LTA UK model were estimated using the
ML procedure described in section 3.1.1. The values of the estimated parameters for the 3
components of the LTA UK model are shown in Table 4.5.
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Component Parameters Selected Regression UK
Covariates Estimates Estimates

Mean

β0 (Intercept) 6.047 5.972
β1 Elevation -0.003 -0.003
β2 Distance to trunk road -0.213 -0.212
β3 Distance to primary road -0.151 -0.151
β4 Distance to secondary road -0.116 -0.110

Spatial
σ2 0.02
φ 0.036

Error τ2
ε 0.192 0.183

Table 4.5 Summary of LTA Regression & UK models.

Model assessment

The validity of the LTA UK model was assessed through leave-one-out cross validation as
described in section 3.1.3 . Figure 4.15 shows a plot of the LTA observations against the
predicted values after performing cross-validation. The predicted values seem to be close
to the true observations for most monitoring locations as evidenced by the linear pattern in
the plot. However, there are a few points which deviate a bit from each other. A noticeable
example is situated at the bottom left hand corner of the plot. This corresponds to station
GRB 2 in Gozo, which recorded the lowest NO2 concentrations throughout the whole 3 years.

The R2 value for the LTA UK model was computed using (3.16), generating a value of
approximately 0.52. This is quite low, indicating that the LTA UK model needs to be
improved.
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Fig. 4.15 Cross-validation for the LTA UK model.

4.8.3 Predictions and reconstructions

Using the LTA regression model parameters and the LTA UK model parameters from Ta-
ble 4.5, predictions can now be computed at unobserved target locations over the entire
Maltese Islands. For the LTA regression model, conditional expectations and variances are
computed as shown in (3.4) and (3.5) respectively. For the LTA UK model, conditional
expectations and variances are computed as shown in (3.12) and (3.13), respectively.

In order to perform predictions, the prediction grid described in section 4.5.1 was used.
Figure 4.16 shows the reconstruction plots of the predicted values. All plots look very similar
to each other, indicating that both the LTA UK model and the LTA spatio-temporal model
are capturing minimal additional spatial effect. As can be seen in all of the plots, higher
predictions (shown in red and yellow) occur in areas characterized mostly by trunk and
primary roads whilst lower predictions (shown in blue and black) occur in areas characterized
mostly by secondary roads.
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(a) LTA UK model (b) LTA UK model - Mean component

(c) LTA Regression model (d) LTA Spatio-temporal model

Fig. 4.16 Reconstructions of the predicted LTA observations. Plot (a) shows the LTA UK
model predictions; plot (b) shows the predictions using just the mean component of the LTA
UK model; plot (c) shows the predictions of the LTA regression model and plot (d) shows
the predicted LTA values extracted from the spatio-temporal model.

Figure 4.17 shows the reconstructed field of the prediction uncertainty (standard deviation)
of the LTA regression model. Elevation seems to be a contributing geographic variable in the
prediction uncertainty, since the standard deviation is higher for areas with a high elevation.
Furthermore, there seems to be points (shown in black) which clearly stand out from the rest.
These points have a lower standard deviation compared to other neighbouring prediction
points. After closely analyzing the LUR covariates associated with these prediction points, it
turns out that such points have much smaller distances to primary roads compared to other
prediction points nearby.
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Fig. 4.17 Prediction uncertainties in the LTA regression model.



Chapter 5

Conclusion

5.1 Dissertation summary and key findings

In this dissertation, it was seen how spatio-temporal models are efficient tools to analyze
data from air pollution monitoring. The introductory chapter included a brief overview of air
pollution and the current situation in Malta. An outline of spatial statistics was also given
together with a history of the main developments of spatial statistical models in air pollution
monitoring. The monitoring of air pollution in Malta through the use of fixed stations and
passive diffusion tubes was described in Chapter 2. This chapter also introduced the dataset,
which consisted of NO2 concentrations measured at 99 monitoring locations during a 3-year
period. Geographic covariates such as elevation, population density, distances to roads, and
industrial areas were added to the dataset to explain the spatial and temporal variations of the
NO2 concentrations.

Two spatial models were considered in this dissertation, and these were theoretically outlined
in Chapter 3. The first model used a Universal Kriging structure to interpolate concentrations
at unobserved locations and/or times. The second model consisted of a space-time mean
field that incorporated dependence on geographic covariates together with seasonal and
long-term trends; and a residual field having a spatial correlation structure. This model used
smoothed orthogonal basis functions to capture the temporal variability in the data. In all
models, parameter estimation was performed using maximum likelihood, and conditional
expectations and reconstruction plots were reported. The predictive accuracy of both models
was evaluated using cross-validation.

The two models were applied to the NO2 dataset in Chapter 4. The spatio-temporal model
was analyzed first. Two temporal basis functions were considered in the model. An indepen-
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dent and identically distributed covariance function was used to model the latent β -fields,
whilst an exponential covariance function was used to model the ε-field. Suitable LUR
covariates were chosen for the different β -fields. Assessing the model’s predictive ability,
the cross-validated R2 value of approximately 0.55 suggests room for improvement in the
spatio-temporal model..

The UK model was used to analyze the long-term average (LTA) of NO2 at each mon-
itoring location. First, a linear LTA regression model was constructed using elevation,
distance to trunk, primary and secondary roads as explanatory variables. By comparing
the raw observations together with the predicted observations, the LTA regression model
provided a reasonably good fit. However, the variogram of the residuals showed no spatial
dependence. For comparison purposes, a UK LTA model was constructed. Assessing the
predictive ability of the UK model, the cross-validated R2 value of approximately 0.52 is an
indication for further improvement in the UK model.

Reconstructions of NO2 across Malta identified interesting seasonal and spatial patterns
of the pollutant. Evaluating the reconstructions from the spatio-temporal model, higher NO2

concentrations were noted during winter. Furthermore, Gozo generated lower levels of NO2

concentrations than in Malta. From the LTA reconstructions, higher predictions were seen in
areas characterized mostly by trunk and primary roads, whilst lower predictions were seen in
areas characterized mostly by secondary roads.

5.2 Limitations of the research

Due to the restriction of time and resources, the research conducted in this dissertation had
some limitations. First and foremost, the geographic covariates did not help to establish
a spatial effect in both the UK LTA model and the spatio-temporal model. Some of the
covariates were transformed (such as taking truncated distances), however this still did
not help in identifying spatial variability. If there was more time, other transformations
would have been considered. Furthermore, problems were encountered when encoding the
model. Some simulations with regards to parameter estimation and cross-validation took
considerable time to generate a result.
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5.3 Recommendations for future studies

In this dissertation, only the NO2 pollutant was analyzed. Other air pollutants could be
considered in the future such as particulate matter (PM) and volatile organic compounds
(VOC’s). These pollutants are present in motor vehicle emissions and industry related activi-
ties, which are major sources of air pollution in Malta.

Another recommendation would be to analyze air pollution using mobile stations. There are
limitations in Malta since only one mobile station exists (Balzan 2012). However, adding this
station to the other fixed stations would serve as a useful study to highlight any differences
between the two types of stations.

Other adjustments of the spatio-temporal model could be made such as choosing differ-
ent model specifications for the β -field and the ε-field. Furthermore, other transformations
of the LUR covariates could be added to the model. All of these adjustments might help to
capture any spatial and temporal variability in the data. Finally, a further improvement could
be induced by grouping neighbouring stations and diffusion tubes together and performing
the same analysis.
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Appendix

A1 The districts of Malta

Fig. A1 The 6 districts of Malta are divided according to the Nomenclature of Territorial
Units for Statistics (NUTS) classification. This is a hierarchical classification which divides
the economic territory of the European Union for the purpose of producing regional statistics
that are comparable across the European Union. Source (NSO 2016)
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A2 The localities of Malta

Fig. A2 A map of Malta divided into 68 localities of Malta in graphical form. The names of
the numbered localities on the map are given in Table A1. Source: NSO (2016)
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Number Locality
1 Valletta
2 Mdina
3 Vittoriosa
4 Senglea
5 Cospicua
6 H̄̄al Qormi
7 H̄̄aż-Żebbug
8 H̄̄aż-Żabbar
9 Siġġiewi

10 Żejtun
11 Victoria
12 H̄̄’Attard
13 Balzan
14 Birkirkara
15 Birżebbuġa
16 H̄̄ad Dingli
17 Fgura
18 Floriana
19 Fontana
20 Gudja
21 Gżira
22 Gh̄ajnsielem and Comino
23 Gh̄arb
24 H̄̄al Gh̄argh̄ur
25 Gh̄asri
26 H̄̄al Gh̄axaq
27 H̄̄amrun
28 Iklin
29 Kalkara
30 Ta’ Kerċem
31 H̄̄al Kirkop
32 H̄̄al Lija
33 H̄̄al Luqa
34 Marsa

Number Locality
35 Marsaskala
36 Marsaxlokk
37 Mellieh̄a
38 Mġarr
39 Mosta
40 Mqabba
41 Msida
42 Munxar
43 Nadur
44 Naxxar
45 Paola
46 Pembroke
47 Tal-Pieta’
48 Qala
49 Qrendi
50 Rabat (Malta)
51 H̄̄al Safi
52 St Julian’s
53 San Ġwann
54 San Lawrenz
55 St Paul’s Bay
56 Ta’ Sannat
57 Santa Luċija
58 Santa Venera
59 Tas-Sliema
60 Swieqi
61 Ta’ Xbiex
62 H̄̄al Tarxien
63 Xagh̄ra
64 Xewkija
65 Xgh̄ajra
66 Żebbug (Gozo)
67 Żurrieq
68 Mtarfa

Table A1 The names of the 68 localities in Malta corresponding to Figure A2. Source: NSO
(2016)
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A3 Prediction of β -fields and unobserved time points

The following predictions are presented in Lindström et al. (2013b). Given the estimated
parameters, the predictions of β -field are given by the conditional expectation of Bu given Ψ
and Y :

E(Bu|Y,Ψ) = Xuα̂ +ΣB,uoFT Σ̃−1(Y − X̃α̂) (.1)

The corresponding conditional variance of βu given Ψ, α and Y is:

V(Bu|Y,Ψ,α) = ΣB,uu −ΣB,uoFT Σ̃−1FΣB|Y ΣB,ou (.2)

Adding the uncertainty in the regression coefficients, (.2) becomes:

V(Bu|Y,Ψ) =V(Bu|Y,ψ,α)+([0 Xu]+ΣBuoFT Σ̃−1
v X̃)(X̃T Σ̃−1X̃)−1

([0 Xu]+ΣBuoFT Σ̃−1X̃)T (.3)

Let y(s, tu) denote an unobserved time point. The conditional expectation of y(s, tu) given Y
and Ψ is:

E(y(s, tu|Y,Ψ) = FuE(Bu|,Y,Ψ) (.4)

The corresponding conditional variance of y(s, tu) given Y , Ψ and α is:

V(y(s, tu)|Y,Ψ) = FuV(Bu|Y,Ψ,α)FT
u +Σv,uu (.5)
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A4 Parameter estimates for the spatio-temporal model

Field Parameter Estimated value

β0

Intercept 5.63
Elevation 0.01
Latitude -1.41
Distance to trunk road -0.19
Distance to primary road -0.15
Distance to secondary road -0.11
τ2

0 -1.69

β1

Intercept 0.28
Elevation 0.01
Population density -0.02
Distance to trunk road -0.01
Distance to primary road -0.01
Distance to secondary road -0.01
Distance to industrial road 0.01
Distance to coast road -0.01
τ2

1 -6.47

β2

Intercept -26.40
Latitude 0.50
Longitude 0.57
Elevation 0.02
Population density 0.03
Distance to coast 0.01
τ2

2 -6.79

ε
φε -2.22
σ2

ε -5.05
τ2

ε -4.85
Table A2 Parameter estimates for the spatio-temporal model.
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