
Insider Threat detection using Isolation
Forest

Joakim Bülow
joakim.bulow@gmail.com

Maja Scherman
maja.scherman@gmail.com

June 21, 2018

Master’s thesis work carried out at Elastic Mobile Scandinavia AB and
Lund University.

Supervisors: Emma Fitzgerald, emma.fitzgerald@eit.lth.se
Richard Niklasson, richard.niklasson@elasticmobile.se

Examiner: Christian Nyberg, christian.nyberg@eit.lth.se

mailto:joakim.bulow@gmail.com
mailto:maja.scherman@gmail.com
mailto:emma.fitzgerald@eit.lth.se
mailto:richard.niklasson@elasticmobile.se
mailto:christian.nyberg@eit.lth.see

Abstract

In contrast to the need for companies to get real time information about
insider threats, there is a privacy and integrity based limitation of what the
individual accepts as acceptable surveillance. This creates a problem since
performing online surveillance would pose an infringement on the employees
privacy and integrity.

Therefore we present a model using Isolation Forest to solve this problem.
We focus on analyzing the non-intrusive features in a real time, event based
approach. We process our features using periodic features, which we have sta-
tistically proven to be more effective than periodic features used with Isolation
Forest.

Our results show that by analyzing employees login and logout times, we
can detect 76% of all insider threats while only falsely classify 7% of all nor-
mal instances. The recall rate, which shows how complete the results are, is
76%.

Keywords: MSc, Insider Threats, Isolation Forest, Machine Learning, Security

2

Acknowledgements

Wewould like to thank our supervisor, Emma Fitzgerald, for good feedback and taking her
time to assist us throughout the process. We would also like to thank Christian Nyberg for
being engaged in the projects process from day one. We would also like to thank Richard
Niklasson and the rest of our colleagues for supporting us so we could combine work with
studies.

3

4

Contents

1 Introduction 9
1.1 Problem definition . 9
1.2 Objective . 10
1.3 Limitations . 10

1.3.1 Synthetic Data . 10
1.3.2 Data encoding . 11
1.3.3 Randomness . 11

1.4 Contributions . 11

2 Related Research 13
2.1 Insider threats . 13
2.2 Data set description . 14

2.2.1 Brief Scenario Descriptions . 16
2.3 Isolation Forest . 17
2.4 Detecting anomalous user behavior using Isolation Forest 19
2.5 Related Research using the CERT data set 19
2.6 Conclusion . 20

3 Theory 21
3.1 Machine Learning . 21

3.1.1 Categorical Classifiers . 21
3.1.2 Supervised Learning . 22
3.1.3 Unsupervised Learning . 23
3.1.4 Anomaly Detection . 23

3.2 Evaluation of Machine Learning Models 24
3.2.1 Kolmogorov–Smirnov test . 24
3.2.2 Confusion matrix . 25
3.2.3 Matthews Correlation Coefficient 25
3.2.4 F1 score . 25
3.2.5 Precision Recall . 26

5

CONTENTS

3.3 Conclusion . 26

4 Approach 29
4.1 Approach summary . 29
4.2 Choice of Machine Learning Algorithm 29
4.3 Data preprocessing . 30

4.3.1 Preprocessing . 30
4.3.2 Handling Categorical Features 31
4.3.3 Periodic Features . 31

4.4 Feature optimization . 33
4.5 Evaluation metrics . 34
4.6 Conclusion . 34

5 Evaluation and discussion 35
5.1 Choosing evaluation metrics . 35
5.2 Combining features . 36

5.2.1 Preprocessing . 36
5.2.2 Evaluation . 36

5.3 Label Encoding . 37
5.4 One Hot Encoding . 37

5.4.1 Preprocessing . 37
5.4.2 Evaluation . 37

5.5 Periodic Features . 38
5.5.1 Preprocessing . 38
5.5.2 Evaluation . 38

5.6 Significant features . 41
5.7 Evaluating the results . 41

5.7.1 Anomaly score . 41
5.7.2 Detection rate . 42

5.8 Limitations . 43
5.9 Conclusion . 43

6 Conclusions 45
6.1 Analysis . 45
6.2 Improvements and open research areas 46

Bibliography 47

Appendix A Implementation Code 53

Appendix B Simulation results 55
B.1 KS-evaluation of logon data set . 55
B.2 Without periodic features . 59

Appendix C Information from data set 61

6

Popular Summary

Digitalization has brought us great opportunities for economic growth and there has been
a global trend for companies to store more and more of their assets and products in digital
form for many years. But digitalization also brought new types of risks and vulnerabilities
and to stay secure companies needs to invest in countermeasures. Companies are prone
to put great recourses into securing their digital perimeters and exposure to the Internet
to prevent cyber-crime and digital theft. What is commonly ignored is the possibility of
threats from within the company perimeters, so called insider threats. What if we could
detect and prevent insider threats before they ever occurred? For example, if an employee
feels let down by the company and decides to sell information to the highest bidder; this
might be preceded by certain actions that could be detected. In this thesis we have im-
plemented a model for detection of insider threats adapted for companies which is usable
when trying to reduce the risk of insider threats.

Detection of insider threats can be done with the help of machine learning. Ma-
chine learning is when a computer learns from input data without being specifically pro-
grammed. In our case we use a machine learning algorithm, called Isolation Forest, which
is specialized in detecting anomalies. Machine learning typically needs a large amount of
data to be able to perform well. This leads us to a common problem among researchers
of insider threats - real data is often not made public. Most companies treat data of inter-
nal attacks, insider threats, with high confidentially, and do not make it publicly available.
This led a team of researchers to develop a synthetic data set, adapted for researches who
research about insider threats. The data set consists of lots of normal employee behavior
as well as a small part of suspicious events that indicates insider threats. The small part
of only only 0.023% suspicious events introduces problems that several machine learning
algorithms have a hard time to handle, but anomaly detection algorithms such as Isolation
Forest can deal with it quite well.

Inspired by the current discourse with legislations related to privacy and integrity for
citizens of the EU (General Data Protection Regulation, EU ePrivacy Regulation) we have
decided to restrict our data usage to monitor data that is less of a privacy concern for a
company’s employees. Specifically login times and logout times at office computers.

Preprocessing of the input data is an important aspect of machine learning. To be able
to get as good results as possible from the machine learning algorithm, one need to have

7

CONTENTS

adapted the raw data for the algorithm. Different methods of preprocessing gives large
differences in accuracy of the machine learning model. By evaluating different ways of
preprocessing our data set, we could conclude that periodical features where better than
ordinal features.

In this thesis we have concluded that by designing a model for detecting insider threats
using arrival and departure times, we were able to detect 76% of all insider threats while
only falsely classify 7% of all normal events as threats. Although the false positives can
be expensive to handle in terms of manpower and further analysis, the detection rate of
76% could potentially save a company from a otherwise very expensive data breach.

8

Chapter 1
Introduction

Companies face a common problem: they need employees but their employees can also be
a potential threat to the company. This is a problem that we call insider threat. To prevent
the problem, a company usually secure its assets using security policies. But a security
policy is a blunt weapon against insider threats and is often overlooked, either intentionally
or unintentionally, by employees [13].

What if we could detect and prevent insider threats before they ever happen? For ex-
ample, if an employee feels let down by the company and decides to sell information to the
highest bidder; this might be preceded by certain actions that could be detected. In turn,
the threat could be avoided by involving the human resources department to talk to the
individual and resolve the conflict before the fault ever appeared. Simply put, a preemp-
tive approach could prevent the damage from ever happening. But the approach needs to
be respectful and cost-effective, to prevent further losses. With this idea in mind we want
to evaluate the possibilities to develop a system that can detect insider threats without
violating employees’ integrity.

1.1 Problem definition
Since a security breach initiated by an employee can have severe consequences for a com-
pany, we believe that there is much to gain by implementing control systems that monitor
employees in order to detect and prevent such breaches. At the same time companies need
to ensure individual’s privacy and integrity. With the pressure from new regulations such
as the General Data Protection Regulation (GDPR) [1] and the anticipated EU ePrivacy
Regulation (EPR) [2] to ensure integrity on a personal level, it is interesting to know how
well insider threats can be detected using as little information as possible. To balance be-
tween an effective system and integrity we decided to analyze how many insider threats
that can be detected by only analyzing the log on and log off times. Analyzing log on, log
off times could be compared to analyzing when an employee is present at the workplace.

9

1. Introduction

1.2 Objective
The purpose of our data analysis is to determine what behavior is relevant to discover who
poses an insider threat. We will propose a method that provides real time information
about potential threats and evaluate different methods of processing the input data in order
to achieve accurate predictions. We will discuss different angles of evaluating the results
in terms off different evaluation metrics and what they may correspond to in a real life
scenario. Below are the key objectives that fall into the scope of this thesis.

• Make an exploratory analysis of the CERT 1 insider threat data set.

• Preprocess data in order to improve the quality of our proposed algorithm

• Extract relevant features for insider threat analysis

• Apply the Isolation Forest Machine learning algorithm to the data set

• Analyze which features that are most important to get a sufficiently reliable result

• Evaluation of how these results can be used to increase security and reduce profit
loss in a company

1.3 Limitations
To narrow down the scope of analysis we have chosen to analyze one Machine Learning
algorithm. We have chosen to focus on unsupervised learning and anomaly detection since
it is well suited for anomaly detection. When the data is sparse, with few true positives,
it is hard to train a model using traditional supervised learning approaches [23]. After
considering several algorithms including among others: Isolation Forest, Random Forest,
SVM, K-nearest neighbor and K-means clustering; we choose to limit our scope to Isola-
tion Forest. This is motivated by Isolation Forests characteristics. Isolation Forest shows
promising results using sparse data sets and works well in high dimensional problems
which have a large number of irrelevant attributes, and in situations where the training set
does not contain any anomalies [18].

1.3.1 Synthetic Data
To be able to do thorough research that prevents insider threats, data is needed, but it is
difficult to obtain real insider threat data. An organization would need to monitor and
record the actions of its employees. This raises integrity and privacy concerns. One major
limitation is the data needed for analysis and to avoid this, synthetic data is often used for
research purposes [12]. This is obviously a limiting factor.

In order to facilitate research on insider threats, CERT [12] has created a data set that
is open access. We have chosen to use this data. The synthetic data generated by CERT

1CERT (Computer Emergency Response Team) division at the Software Engineering Institute at
Carnegie Mellon University, in partnership with ExactData LLC, and under sponsorship from DARPA’s
Information Innovation Office [12]

10

1.4 Contributions

mimics real insider threat data and is developed specifically for research about insider
threats.

Fully synthetic data can not replace real data, but it proves useful, especially for testing
confirmatory hypotheses [12]. Several research papers use synthetic data to conclude if
their schemes perform well [4][18], which led us to consider synthetic data to be sufficient
for our thesis.

1.3.2 Data encoding
Machine Learning algorithms can be expensive in terms of computational power andmem-
ory requirements. The data set used in this paper includes two categorical features that
consist of 1000 unique categories each. Certain encoding methods, like the so-called one-
hot-encoding method, can be very useful in machine learning, but also very costly. To
perfectly encode the two mentioned features using this method requires a large amount of
memory as it would result in 2000 new features. This has somewhat limited our evalu-
ation using this encoding method. Another encoding method, which does not have this
limitation, is the Label Encoder. Using this encoding method we can run the algorithms
quickly and efficiently. However Label Encoding introduces another unwanted property
as it causes the machine learning algorithm interpret the features as if they are in some
inherent order.

1.3.3 Randomness
In this thesis we have evaluated some methods of data-preprocessing in order to see if they
contribute to the isolation of the threat-labeled data points. The evaluation has been per-
formed by running the Isolation Forest algorithm on all combinations of features and then
calculating the two-tailed Kolmogorov-Smirnov score between threat-labeled and non-
threat-labeled data points. This method is effective in giving an indication to which pre-
processing method of the input data that gives us a better isolation of the threat-labeled
data. However, since there is a random component to the Isolation Forest algorithm each
time one run the Isolation Forest algorithm one will end up with slightly different re-
sults. Therefore we must run the evaluation several times in order to gather enough data
to determine that the different results between runs with different features are statistically
significant and not due to the random deviation added by Isolation Forest.

1.4 Contributions
This project contributes to the current research by proposing a scheme indicating how in-
sider threats can be prevented by analyzing information that can be obtained without online
surveillance. By focusing on logon data we have a chance of finding a method of insider
threat detection that is more easily generalizable to other areas of surveillance. If for ex-
ample it is not possible to monitor the network and/or computers in use to gain knowledge
about email content, website visits or usage of external devices, it might still be possible
to monitor activity similar to logging in and out on a PC. In a work environment where
bring-your-own-device (BYOD) is employed or when employees are working from home

11

1. Introduction

and connecting to the corporate network using VPN, the logon and logoff activities might
still be detectable by logging when a known computer’s network interface is activated in
the office or when a VPN user is connecting to the network.

As opposed to previous work conducted by Aaron et al. [30] we provide insider threat
detection in real time. Rather than aggregating data over time and analyzing it retroac-
tively on a per-day basis we analyze the data on a per-event basis. Aaron et al. use an
online surveillance approach to detecting insider threats, using a similar data set as we
do. However they use the whole v6.2 data set, while we use only the logon file from the
v4.2 data set. Since we limit ourselves to analyzing information that is socially acceptable
to use (only when you are working), compared to using the complete data set of another
version, our results are not directly comparable.

We seek to find an efficient way to find insider threats in real time. In order to do this
we must minimize the dimensions of the data in order to do fast processing while still
keeping as much of the entropy as possible in order to detect threats with high accuracy.
Furthermore, we aim to protect the individuals Privacy and Integrity which we consider
important when GDPR and the anticipated ERP is coming into place.

12

Chapter 2
Related Research

In this chapter we introduce the data set upon which we base our research. We discuss
research related to insider threat detection and what impact insider threats may have on
a company. To determine if a company should invest in insider threat risk reduction is a
hard decision to make. To begin with, how will an insider threat that is carried out impact
the company, and what drives a person to commit fraud? Research about these aspects
are discussed in Section 2.1. After determining that there exists a need for insider threat
detection, how to detect insider threats using machine learning is analyzed in the following
sections. Isolation Forest is one unsupervised machine learning algorithm adapted for
sparse data sets, which is useful for insider threat detection where the number of positives
are low.

Lastly, an insider detection scheme using online surveillance is presented. For compa-
nies prepared to perform online surveillance on their employees, their scheme is suitable.

2.1 Insider threats
Our objective is to reduce the risk of insider threats. Therefore the insider threat needs to
be defined. AsimMajeed et al. [19] have defined insider threats and what potential impact
they may inflict on a company. As more and more companies are embracing BYOD, where
employees work on their own computers and devices that the company has no control over,
the risk of insider threats is increasing. An employee posing an insider threat may do it both
intentionally and unintentionally. An inside attack can be severe, and descriptions of some
possible scenarios are shown in Table 2.1, which shows the information, potential leak,
unintended visibility to outsiders and its impact on the enterprise. Threats from within
organizations shall definitely not be overlooked when considering digital theft and cyber-
crime. According to a survey by the US Justice Department [24] 40% of all computer
security offenses reported where suspected to involve insiders.

As an explanation for why an employee might commit fraud; and thereby pose an in-

13

2. Related Research

sider threat, we have analyzed the research by Wolfe and Hermanson [31]. They propose
that themotivations for committing fraud are based on four conditions, which can be drawn
in a so called fraud diamond, see Figure 2.1. The fraud diamond was proposed after an-
alyzing why employees are inclined to commit fraud. There are four conditions that need
to be present for fraud to occur — pressure, opportunity, rationalisation and capability. In
our data set, we can see in the scenario description in Section 2.2.1 that all of the scenarios
shows signs of Pressure, Opportunity, Ability and Rationalisation. According to the fraud
diamond, this leads to fraud.

Also Solomon Mekonnen et al. [20] use the fraud diamond. They present a privacy
preserving context-aware insider threat prediction and prevention model where the predic-
tion and prevention is based on the components of the fraud diamond. To get a broader
incite to insider threat the reader is referred to [10] where insider threats are thoroughly
analyzed from a corporate and commercial angle as well as from the view point of a state
or government.

Figure 2.1: The Fraud Diamond [31], shows which conditions
that are needed for fraud to occur: Pressure, Opportunity, Ability
and Rationalisation.

Abdulaziz Almehmadi and Khalil El-Khatib [5] have presented a futuristic approach
to how insider threats can be prevented, since Machine Learning is not the only approach.
Abdulaziz Almehmadi and Khalil El-Khatib [5] claim that all existing access control sys-
tems rely on identity authentication on design, which means that they are not suitable for
insider threat detection. Since there is no continuous evaluation of the user’s level of trust,
the high risk of insider threat remains the most common threat to an organization. Abdu-
laziz Almehmadi and Khalil El-Khatib [5] have developed a scheme using Intent Based
Access Control (IBAC) that uses brain signals as an intention access control. The IBAC
scheme is a non identity-based access control as it requires knowledge only of why access
is being requested, not of who is requesting access. [5]

2.2 Data set description
The CERT division at the Software Engineering Institute at Carnegie Mellon University,
in partnership with ExactData LLC, and under sponsorship from DARPA’s Information

14

2.2 Data set description

Table 2.1: Insider threats table from Asim Majeed et al. [19]

Insider Threats

Information Potential Leak
Unintended
Visibility to
Outsiders

Impact

Trade Secrets
Stored on the
network and
shared drive

Competitors Company
Defamatio

Financial Details

Copied on
external
removable media
device

Regulators

Monetary
Expense for
each record
lost

HR and
Personnel details

Transmitted
electronically e.g.
email

Unauthorized
internal users

Legal
Liabilities

Intellectual
Property Press or Media Loss of Assets

Personal Health
Records

Breach of
Customer and
Clients Trust

Management/pla
nning and
Strategic Leaks

Closing of the
Business

Innovation Office has created the data set used in this thesis [12]. The data set is entirely
synthetic. Both the background data and the data representing malicious actors are syn-
thetically produced by their software.

Some "dirty data" — logical errors that could not possibly happen in real life — are
deliberately inserted into the data set. However, it is likely that real world data would con-
tain a higher degree of dirty data due to software exceptions, network problems, untimely
shut downs of systems etc.

The data set used is the 4.2 data set. It is a so-called dense needle, which means that
it contains an unusually large number of insider threats compared to the other data sets by
CERT. This means that we can get more confident results. The other data sets contain too
few insider threats to be able to evaluate our model.

The files in the 4.2 data set are as follows:

• logon.csv
• device.csv
• email.csv
• file.csv
• http.csv
• psycometric.csv
• LDAP - folder with 18 files, one for each month.

The description of these files is found in the readme included in the data set, and is

15

2. Related Research

attached in Appendix C, the description of the logon.csv file is described in Figure
2.2. We focus on the logon.csv file, which contains 854 859 lines, where the first line
contains the fields id, date, user, pc and activity (Logon/Logoff).

logon.csv
* Fields: id, date, user, pc, activity (Logon/Logoff)
* Weekends and statutory holidays (but not personal vacations)
are included as days when fewer people work.
* No user may log onto a machine where another user is already logged on,
unless the first user has locked the screen.
* Logoff requires preceding logon
* A small number of daily logons are intentionally not recorded to simulate dirty data.
* Some logons occur after-hours

- After-hours logins and after-hours thumb drive usage are intended to be significant.
* Logons precede other PC activity
* Screen unlocks are recorded as logons. Screen locks are not recorded.
* Any particular user’s average habits persist day-to-day

- Start time (+ a small amount of variance)
- Length of work day (+ a small amount of variance)
- After-hours work: some users will logon after-hours, most will not

* Some employees leave the organization:
no new logon activity from the default start time on the day of termination
* 1k users, each with an assigned PC
* 100 shared machines used by some of the users in addition to their assigned PC.
These are shared in the sense of a computer lab, not in the sense of a
Unix server or Windows Terminal Server.
* Systems administrators with global access privileges
are identified by job role "ITAdmin".
* Some users log into another user’s dedicated machine from time to time.

Figure 2.2: The readme of the logon.csv

The data set only contains data about how the company’s employees are acting; the data
about who is an insider threat is found in the answers directory. The malicious activity data
is found in the answer key file, where there is also data about which insider threat scenario
is relevant for each of the data sets as well as data about each of the insiders, so their actions
can be analyzed.

2.2.1 Brief Scenario Descriptions
The data set contains a description of the so-called red alert scenarios. These scenarios
are series of events that are typically found when an insider threat is apparent. The data set
is generated based on these red alert scenarios and every event found as a row in the files
in the data set (such as a row in the logon.csv file) that is generated in correlation to
these red alert scenarios is defined as a threat; and we mark them as a insider threat while
evaluating our model.

The description is as follows [12].

1. [A] User who did not previously use removable drives or work after
hours begins logging in after hours, using a removable drive, and up-
loading data to wikileaks.org. [The user] Leaves the organization shortly
thereafter.

2. [A] User begins surfing job websites and soliciting employment from
a competitor. Before leaving the company, they use a thumb drive (at
markedly higher rates than their previous activity) to steal data.

16

2.3 Isolation Forest

3. [A] System administrator becomes disgruntled. [She] Downloads a key-
logger and uses a thumb drive to transfer it to his supervisor’s machine.
The next day, he uses the collected keylogs to log in as his supervisor
and send out an alarming mass email, causing panic in the organization.
He leaves the organization immediately.

4. A user logs into another user’s machine and searches for interesting files,
emailing to their home email. This behavior occurs more and more fre-
quently over a 3 month period.

5. A member of a group decimated by layoffs uploads documents to Drop-
box, planning to use them for personal gain.

2.3 Isolation Forest

Isolation Forest is a machine learning anomaly detection algorithm created by Fei Tony
Liu et al. [18]. According to them, most existing model-based approaches to anomaly
detection construct a profile of normal instances, then identify instances that do not con-
form to the normal profile as anomalies. Isolation Forest on the other hand uses a different
approach that explicitly isolates anomalies instead of profiling normal points. Isolation
Forest isolates anomalies using their quantitative properties: they are few and different.
They have shown that a tree structure can be constructed effectively to isolate every single
instance. In multiple dimensions this is done by randomly constructing hyperplanes that
separates instances from one another. The number of hyperplanes needed in order to sep-
arate out a single instance corresponds to the instances’ anomaly score. Below we try to
exemplify how this would work in two dimensions, where the instances are separated by
lines. Illustration can be found in Figure 2.3.

1. A line is randomly drawn through the collection of instances.

2. An orthogonal line is randomly drawn.

3. The above process continues until all instances are isolated.

4. The iTree is built based on the instances. Each Instance is a leaf in the iTree, see
Figure 2.4. Each line represent a node, in other words a decision point where the
choice is made if the specific instance is larger or smaller than the value.

17

2. Related Research

Figure 2.3: Steps for isolating instances. A normal instance (a) x0
have an isolation path of five, and an anomaly (b) x1 has a shorter
isolation path of two.

Figure 2.4: Example of the beginning of an Isolation tree, only
containing x0 and x1, isolating x1(Anomaly instance) only takes
one step, which is found closer to the root of the tree compared
to the normal instance x0 found further away. The numbers repre-
sents the lines in Figure 2.3

Isolation Forest locates anomalies effectively since they are close to the root of the
tree. It works well in high dimensional problems which have a large number of irrelevant

18

2.4 Detecting anomalous user behavior using Isolation Forest

attributes and in situations where the data set does not contain any anomalies [18]. This
makes Isolation Forest a good choice for our data set where the data is biased, with very
few true positives, only 0.23%�. Isolation Forest can also be used using only normal data,
without any significant loss of performance [18], which is very useful in insider detection
[18] since one never know if there exists positives in the data set when it is biased.

2.4 Detecting anomalous user behavior us-
ing Isolation Forest

Li Sun et al. [28] use an extended version of the Isolation Forest algorithm to detect
anomalous user behavior. They use the Isolation Forest algorithmwith a naive approach to
extend the algorithm to use categorical features. Their method requires that the categorical
data have an ordering, which may be arbitrary. Our results show that this approach can be
improved by transforming the categorical features into periodic features.

They use a data set called CA RiskMinder user payroll access logs which consists of
25,991,654 logs, covering a total of 89 days over 14 weeks. Their approach of focusing on
5 out of 42 features and selecting users with an access frequency of 501-600 and building
a model for only these users is well suited for the CA RiskMinder user payroll access logs
data set. We also use a similar but different approach when we choose to focus on the
logon.csv file in the data set from CERT. We do not remove users from the data set.

2.5 Related Research using the CERT data
set

Aaron et al. [30] have published a paper on a similar subject with a similar approach, and
they have also used the CERT data set. They use features which require that you constantly
monitor employees’ computers and network activity, while we find that approach infeasible
for companies due to privacy and integrity concerns. We do not seek to monitor online
activities, but rather activities commonly accessible such as arrival and leaving times for
the employee.

They [30] use the 6.2 version of the data set and present an online, unsupervised deep
learning approach to detect anomalous network activity from system logs in real time.
When they extract features they categorize them into two categories: categorical user
attribute features and continuous ”count” features. Categorical user features refer to at-
tributes such as a user’s role, department, and supervisor in the organization. Continuous
”count” features refers to, for example, the number of uncommon non-decoy file copies
from removable media between the hours of 12:00 p.m. and 6:00 p.m.

Aaron et al. [30] assess the effect of including or excluding the categorical variables
in their models. They conclude that their model performs better without the categorical
variables that were given to provide context to the model. This led them to only use count
features for most of their experiments. An important detail is that Aaron et al. [30] aggre-
gate the events to so called user days, and they only analyze weekdays and not weekends.

19

2. Related Research

They use five sources of events: logon/logoff activity, http traffic, file operations, and ex-
ternal storage device usage.

As explained in Chapter 4, we do not aggregate the events to the so-called user days,
but we rather analyze the events on their own. Therefore the event of a login action at 3 am
on a weekend could raise suspicion but the same user’s action of login at noon the same day
may not raise suspicion, since the actions are not aggregated. We analyze both weekdays
and weekends. Furthermore, we find that http traffic, file operations and external device
usage is unfeasible when trying to protect the employee’s privacy and integrity. The three
previously mentioned sources all demands installation of surveillance software, which is
not combinable with BYOD.

Cumulative Recall k, (CR-k) is used by Aaron et al. [30] as a tuning criteria. CR-k
can be thought of as an approximation of the area of the recall curve. The recall curve is
defined as:

Recall =
TP

TP + FN
(2.1)

(where TP is true positive and FN is false negatives). Inspired by Aaron et al. [30], we use
recall as an evaluation metric. Recall is well fit for biased data set since it does not take
the large amount of negatives into consideration.

2.6 Conclusion
As seen in Section 2.1 it is important that companies considers the insider threat when
they are evaluating how to secure their assets. A security breach initiated from within a
company could potentially be expensive. This is obviously an incitement for companies to
put control mechanisms in place that could detect and prevent these breaches. To evaluate
how this is best done one has to consider what data is technically available as well which
part of that could be used when taking the privacy and integrity of the employees into
account.

Related research suggests that Isolation Forest is a suitable algorithm for classifying
anomalies. We will use this algorithm in order to classify the events in the CERT data set
either threats or non-threats as effectively as possible by examining the not so intrusive
information of employees logging in and out of computers in an office environment.

20

Chapter 3
Theory

3.1 Machine Learning
Machine learning is a field of computer science that uses statistical mathematical tech-
niques to make predictions and estimations or to identify certain patterns from data with-
out being explicitly programmed. A widely accepted definition is the definition by Tom
M. Mitchell [21]. He formally defines machine learning as follows:

”A computer program is said to learn from experience E with respect to some
class of tasks T and performance measure P if its performance at tasks in T,
as measured by P, improves with experience E”

Machine learning is a broad concept and is applied in several areas, such as identifica-
tion of objects in images, determining diseases and anomaly detection. Machine learning
is used to estimate the outcome of a situation. Such outcomes are divided into two groups:
quantitative (such as prices) and categorical (such as cats and dogs).

3.1.1 Categorical Classifiers
Machine learning can be used to solve so-called classification problems. Here the prob-
lem is that the algorithm needs to determine the category of the data, where the possible
categories are included in a discrete set, as described by Tom M. Mitchell [21]. The sim-
plest kind of categorical classifier is the binary classifier. The binary classifier is used in
situations where the answer is always one out of two options, commonly seen in yes/no
classifications. If the machine learning problem is to determine if an animal is a dog or
not, one can use the binary classifier. On the other hand, if the problem is to determine
what kind of animal the animal is - dog, cat, mouse and so fourth, one cannot use the
binary classifier. This thesis will focus on binary classifiers since determining whether an
employee poses an insider threat or not is a binary classification problem.

21

3. Theory

3.1.2 Supervised Learning
Supervised learning is when the model is trained on a training set and then the trained
model is used to predict results in a machine learning problem, either quantitative or cat-
egorical. Labeled training data is needed to use supervised learning. Examples of su-
pervised learning algorithms are introduced in Table 3.1. Supervised learning algorithms
require a potentially expensive training process and are therefore obstructed by a typically
small quantity of insider threat data available for training [23].

While choosing the best algorithm for the problem, four major issues should be taken
into account: Bias-Variance Trade-off, Function Complexity and Amount of Training
Data, Dimensionality of the Input Space and Noise in the Output Values; these are fur-
ther explained below. By carefully analyzing these issues, choosing an effective algorithm
can be simplified.

Bias-Variance Trade-off

While choosing the algorithm, two sources of error need to be minimized at the same time.
One is bias and the other is variance. The bias is an error resulting from a wrong assump-
tion in the learning algorithm. High bias can cause the algorithm to underfit meaning and
thus miss relevant relations between features and target outputs. The variance is an error
resulting from sensitivity to small fluctuations in the training set. High variance can cause
the algorithm to overfit by modeling noise in the training data. This leads to a dilemma,
since minimizing the bias will increase the variance error and vice versa [14]. Therefor a
trade-off has to be made, in order to choose the best algorithm for the current case.

Function Complexity and Amount of Training Data

A simple function can be easily determined by a learning algorithm with high bias and low
variance from a small set of data. But if the function is highly complex the best approach
is to use an algorithm with low bias and high variance as well as a large set of training
data [7]. This problem is often found in supervised learning for Insider Threat detection
scenarios, such as in the research by Pallabi Patveen et al. [23].

Dimensionality of the Input Space

If the input vector has a high dimension, the learning problem can be difficult even if the
result depends on only a few of the features. This can give an error since the model trains
on features which are not relevant to the outcome. This causes confusion for the algorithm,
leading to high variance. This error can be reduced by proper data preprocessing such as
manually removing irrelevant features. Furthermore, there are many algorithms for feature
selection, which have the goal of identifying the most relevant features [4]. Dimensionally
reduction, in the sense of finding out the most relevant features to detect insider threats, is
an objective of this thesis.

22

3.1 Machine Learning

Noise in the Output Values
As a fourth aspect, the acceptable degree of noise in the output is important. If the desired
output values are often incorrect, the method should not attempt to find a function that
exactly matches the training data. Attempting to fit the data too tightly to the training data
leads to overfitting. It is possible to overfit both if there are stochastic errors and if there
is a too complex function that the model is trying to mimic [25].

Table 3.1: Supervised machine learning algorithms from Chunx-
iao Jiang et al. [15].

Category Learning techniques Key characteristics

Supervised
Learning

Regression models Estimate the variables’ relationships
Linear and logistics regression

K-nearest neighbor Majority vote of neighbors

Support Vector Machines Non-linear mapping to high dimension
Separate hyperplane classification

Bayesian learning A posteriori distribution calculation

3.1.3 Unsupervised Learning
Unsupervised learning is the machine learning task of analyzing data that does not con-
tain labels in order to receive a prediction. Unsupervised algorithms cannot learn from
previous data, in the sense of a given behavior leading to a given result, and be sure that
the result is correct. An unsupervised algorithm uses another approach,to detect data that
behaves in a similar fashion. Many unsupervised algorithms are so-called anomaly de-
tection algorithms [6]. Examples of unsupervised learning algorithms are introduced in
Table 3.2. We have considered these algorithms in regard to biased anomaly detection, and
our conclusion was that although not mentioned by Chunxiao Jiang et al. [15], Isolation
Forest were better adapted to our objective.

Table 3.2: Unsupervised machine learning algorithms from
Chunxiao Jiang et al. [15].

Category Learning techniques Key characteristics

Unsupervised
Learning

K-means clustering K partition clustering
Iterative updating algorithm

PCA Orthogonal transformation
ICA Reveal hidden independent factors

3.1.4 Anomaly Detection
Anomaly detection algorithms are often used in intrusion detection, fraud detection and
fault detection. These use cases typically have very unbalanced data sets, which neces-
sitates a different approach than those used on balanced data sets to achieve reliable re-
sults. Anomaly detection algorithms can be implemented using different types of models:

23

3. Theory

unsupervised learning, supervised learning and semi-supervised learning [28]. We have
chosen to use Isolation Forest which is an example of a unsupervised learning approach
for anomaly detection.

Unsupervised Learning
Unsupervised learning algorithms detect anomalies in unlabeled test data sets by assuming
that themajority of the events in the data set are normal. The algorithm is looking for events
that do not fit the majority of the events and labels them as anomalies. The problem with
this approach is that the algorithm can only detect anomalies that conform with its model,
due to lack of anomaly instances [28]. Isolation Forest fits into this category of anomaly
detection models.

Supervised Learning
Supervised learning techniques require that the training data set is labeled in a binary way
with what is normal and which events that are anomalies. Many algorithms not adapted
for anomaly detection have trouble doing this, due to the unbalanced nature of anomalies.
Examples of anomaly detecting using supervised learning include support vector machines
[29] and Bayesian networks [8][28].

Semi-Supervised Learning
Semi-Supervised learning methods construct a model representing normal behavior from
a normal data set. Then the method predicts if the test data is likely to have been generated
by the learned model [28]. Using these models, a normal data set labeled can be used first,
and with continued training on a unlabeled data set, the model can learn from this too by
recognizing similarities between instances present in both of the data sets.

3.2 Evaluation of Machine Learning Mod-
els

To be able to evaluate how well a machine learning model performs, standard metrics are
used. We use these metrics to evaluate how well our model performed, and by using the
same standard metrics researchers can compare their results. The relevant theory for these
evaluation techniques are presented in this section.

3.2.1 Kolmogorov–Smirnov test
The Kolmogorov-Smirnov test is a non-parametric test for measuring the strength of a
hypothesis that some data is drawn from a fixed distribution (one-sample test), or that two
sets of data are drawn from the same distribution (two-sample test) [17]. We use the two-
sampled Kolmogorov-Smirnov test, henceforth referred to as KS-test, to determine if an
event is likely to be a normal event, i.e. non-threat or an anomalous event, that is an insider
threat.

24

3.2 Evaluation of Machine Learning Models

3.2.2 Confusion matrix
The confusion matrix is commonly used to determine how well a classification model
performs [28]. Classification results belonging to two classes, True and False, are listed in
a 2x2 confusion matrix, see Table 3.3. By analyzing the number of True Negative (TN),
False Negative (FN), False Positive (FP) and True Positive (TP) we can determine the
effectiveness of the approach.

Table 3.3: Confusion matrix with insider threats and normal be-
havior mapped as the categories.

Actual
Predicted Normal Insider Threat

Normal TN = True Negative FP = False Positive
Insider Threat FN = False Negative TP = True Positive

3.2.3 Matthews Correlation Coefficient
For weighted binary classification problems, it is recommended by Davide Chicco [9]
to evaluate the algorithm’s performance using Matthews Correlation Coefficient (MCC).
Commonly, two other scores are used to determine how well a model is performing, accu-
racy and F1 score [9], but these are often misleading [9] since they do not fully consider
the size of the four classes of the confusion matrix in their final score computation. MCC
takes into account the balance ratios of the four classes of the confusion matrix. The MCC
value takes both accuracy and F1 score into consideration which is parameters one want
to optimize to find a harmonic mean where detection rate is maximized and the false de-
tection rate is minimized. Using the MCC value one can avoid to tune the ML model to
detect all positives and thereby introducing a large error rate.

MCC =
TP · TN − FP · FN

√
(TP + FP) · (TP + FN) · (TN + FP) · (TN + FN)

(3.1)

Accuracy is the proportion of true results (both true positives and true negatives)
among the total number of cases examined. In our case, it is the relation of correctly
identified threats and normal situations, to the total number of all cases examined. The
result of this metric may be misleading in cases like ours where the data is heavily unbal-
anced. Identifying every situation as a normal situation would produce a result very close
to 1, but would also make the result meaningless.

Accuracy =
TP + TN

TP + TN + FP + FN
=

0 + largenumber
Totalnumberindataset

≈ 1 (3.2)

3.2.4 F1 score
The F1 score is the harmonic mean of precision and recall and is used as a measure of a
test’s accuracy. The F score can be weighted to emphasis whichever of the precision and
recall parameters is deemed the most important, if the F score is weighted to its harmonic

25

3. Theory

mean it is called the F1 score. If recall is more important, the F2 score can be used, the
F2 score weighs recall higher than precision.

F1Score =
2 · TP

2 · TP + FP + FN
=

2
1

Recall +
1

precision

= 2 ·
precision · recall
precision + recall

(3.3)

3.2.5 Precision Recall
Since we are using a sparse data set with many negative instances and very few positive
instances, it is hard to find any evaluation metrics that fit our data set. MCC takes all
of the four metrics in the confusion matrix under consideration, which in our case can
be misleading. Our insider threat detection problem bears similarities to computational
biology problems, in that it has many negative instances and very few positive instances.
For these kinds of problems, it is wise to avoid the involvement of TN (True Negatives),
since this will weight the problem negatively [9].

Precision
In the classification problem, precision shows how many instances were correctly identi-
fied in the positively identified set. Since we seek to identify insider threats whilst keeping
the false positives low to reduce cost, this is an important metric.

Precision =
TP

TP + FP
(3.4)

Recall
Recall shows how complete the results are. This is done by taking the correctly identified
insider threats in relation to all of the insider threats. The higher recall, the more threats the
model has been able to identify. Recall is a good metrics in biased data sets since it does
not take any negatives into account. It is not fit as a tuning criteria for the same reason,
only taking recall into consideration while tuning the model can give misleading results,
since classifying everything as a positive would maximize the recall. We use recall as an
evaluation metric.

Recall =
TP

TP + FN
(3.5)

3.3 Conclusion
What machine learning algorithm that is suitable for a classification problem depends on
the input data. Also the method when it comes to evaluating the quality of results is largely
dependent on what kind of data is analyzed. When suitable learning algorithms and eval-
uation methods are chosen a lot of focus needs to go in to processing the input data so that
it can be used for classification as effectively as possible.

26

3.3 Conclusion

After running the machine learning model, it is also important to be able to evaluate
the model. The model needs to be tuned taking several parameters into consideration,
leading us to choose Matthews Correlation Coefficient as a tuning criteria, since it repre-
sents a harmonic mean where the detection rate is maximized and the false detection rate
is minimized. For evaluation of biased data sets after tuning recall is a better evaluation
metric.

27

3. Theory

28

Chapter 4
Approach

4.1 Approach summary
Our approach can be summarized by the following steps:

1. Choose a relevant machine learning algorithm for prediction

2. Extract features, data preprocessing

3. Do feature optimization i.e analyze which features that are most important

4. Use these to determine at which confidence level an inside threat can be predicted

5. Analyze the prediction results using evaluation metrics

4.2 Choice of Machine Learning Algorithm
The data set we use contains only 0.23%� positives, which makes it a sparse data set. This
introduces complexity in that we need to choose an algorithm appropriate to sparse data
sets. Many supervisedmachine learning algorithms do not performwell on sparse data sets
since such data sets have too little training data [4][23]. After considering the capabilities
of supervised and unsupervised machine learning algorithms, described in Section 3.1, we
concluded that an unsupervised approach would be a better fit for our problem.

Unsupervised algorithms have the advantage that they do not need to be trained, which
also opens up the door for smaller data sets. There are many different unsupervised al-
gorithms but by reviewing several papers [18][15][30][28] and searching for an algorithm
that could handle our classification problem using a sparse data set, we found Isolation
Forest. These papers use sparse data sets and Isolation Forest in combination with good
results, and averagely it seemed like the best standardized algorithm for the usage with

29

4. Approach

sparse data sets. Furthermore, Isolation Forest has been proven efficient in prediction us-
ing sparse data sets [18]. This led us to choose Isolation Forest as a basis for our thesis,
with the possibility of improvement of the thesis by comparing with other algorithms.

4.3 Data preprocessing
The logon.csv file from the data set from CERT [12] contains five parameters and they
are generated in a way that is humanly understandable, see Table 4.1. Thus comes the need
for preprocessing and feature extraction in order to be able to use the data with machine
learning algorithms. In our case, the data preprocessing is essentially about converting
the human readable data in our data set to a form that is more useful for the machine
learning algorithm. Preprocessing is often a time consuming but important part ofmachine
learning.

4.3.1 Preprocessing
We use the data set from CERT [12], and focus specifically on thelogon.csv file. The
file is formatted as in Table 4.1.The data in the file needs to be preprocessed and changed
into a form that a machine learning algorithm can make sense out of. In particular, if the
datetime stamp in the second column were to be interpreted just as a string, the algorithm
would not find any meaningful relationships between different datetime stamps.

Converting the features to ordinal integer data, e.g. number of seconds since 1st of
January 1970, would make them comparable relative to each other but a lot of information
would be lost. We estimated that information such as month, day of month, hour of the
day and day of the week could be significant information that is possible to extract from
a datetime stamp. By parsing the CSV file line by line using Python and its datetime
module as well as some string manipulation, the datetime feature in the data set was split
up into three new features: weekday, month, and hour. To avoid noise we choose to exclude
the minutes.

The id column of the CSV file was also used in order to create the threat column.
By searching for the id in the answers file the threat column was populated with a binary
representation of the answer; a ’1’ indicates that the row represents an insider threat and
a ’0’ indicates that it does not. After processing we obtained a new CSV file that could
more easily be interpreted by machine learning algorithms. The new file content is shown
in Table 4.2.

Table 4.1: Format of the Login.csv file.

id datetime user pc activity
{X1D9-S0ES98JV-5357PWMI} 01/02/2010 06:49:00 NGF0157 PC-6056 Logon
{G2B3-L6EJ61GT-2222RKSO} 01/02/2010 06:50:00 LRR0148 PC-4275 Logon
{U6Q3-U0WE70UA-3770UREL} 01/02/2010 06:53:04 LRR0148 PC-4124 Logon

30

4.3 Data preprocessing

Table 4.2: Format of the transformed file.

user pc activity weekday hour month threat
NGF0157 PC-6056 Logon 0 6 2 0
LRR0148 PC-4275 Logon 0 6 2 0
LRR0148 PC-4124 Logon 0 6 2 0

4.3.2 Handling Categorical Features

We are using the sklearn.preprocessing.LabelEncoder library [27] in order
to encode the categorical features in our data set. This encoding method translates each
unique category into an integer value that can be used by the isolation forest algorithm.

We have followed the method for feature pre-processing described in the paper written
by Aburomman and Reaz [4]. Aburomman and Reaz [4] use the KDD99 data set which
exhibits similar difficulties to the data set from CERT that we are using. The KDD99
data set contains some categorical features such as protocol type, service and flag. These
categorical features are converted using so-called one hot encoding. This encodingmethod
creates a new feature — a new column in the data set — for each unique category in a
feature. For this we are using the Python library pandas.get_dummies [22]. One hot
encoding on our data set is evaluated in Section 5.4.

4.3.3 Periodic Features

In [16] David Kaleko explains that as an alternative to handling features such as time
with integers 0-23, where 23 and 0 are very far apart, as seen in Figure 4.1, one could
convert the features into a periodic form. The numerical features that can be produced by
preprocessing the datestamp in our data set are all ordinal in their simplest representation.
After hour 14 comes hour 15, after Monday (day 0) comes Tuesday (day 1). However
using this representation we lose the information that after hour 23 comes hour 0 and
after Sunday comes Monday. In an attempt to solve this problem we converted each of
these features into two coordinates on the unit circle (see Figure 4.2 and Figure 4.3). By
representing the coordinates with their sinusoidal and co-sinusoidal values respectively,
we have added the sought-after attribute of periodicity. Table 4.3 shows how the data set
looks after encoding the categorical features and transforming the periodic features.

31

4. Approach

230 1 ...a.

b.
Figure 4.1: Ordinal representation of time. The distance between
the data points in a. is much smaller than in b.

wsin = sin(
2πwi

7
) (4.1)

wcos = cos(
2πwi

7
) (4.2)

Figure 4.2: Periodic representation of weekdays

32

4.4 Feature optimization

Figure 4.3: Periodic representation of months

Table 4.3: Format of the transformed file with periodic features

Parameters Event 1 Event 2 Event 3
user 707 620 620
pc 589 425 410
activity 1 1 1
threat 0 0 0
hour_sin 1 1 1
hour_cos 6.123234E-17 6.123234E-17 6.123234E-17
month_sin 0 0 0
month_cos 1 1 1
weekday_sin 0.866025 0.866025 0.866025
weekday_cos -0.5 -0.5 -0.5

4.4 Feature optimization
After preprocessing the data another problem with the data arises: the need to optimize
the data according to the information content in different features. We do this by making
a KS-evaluation of every possible combination of the logon data set. This to determine
which features contain the most information value. The results for this evaluation can be
found in Appendix B.1 and Appendix B.2.

By running the machine learning algorithmmultiple times with different combinations
of features we can determine which features are most significant in order to determine the

33

4. Approach

inside threats. We used seven different features, so n = 6 (n includes 0), which means that
the total number of unique combinations of features is 63, as seen in the formula below.

n∑
k=1

(
n
k

)
=

n∑
k=1

n!
k!(n − k)!

=

6∑
k=1

6!
k!(6 − k)!

= 63 (4.3)

4.5 Evaluation metrics
When we evaluated our results, we used the KS-test to determine if an event is a insider
threat or not. Then we used the confusion matrix to calculate quality scores for our results.
By maximizing MCC we determined the best limit value for the model. The MCC value
will be low because of the high degree of negatives in the data set, but maximizing the
MCC value still optimizes our function effectively. Lastly, we use Recall to evaluate the
model since the number of negatives does not influence the result, as our data set has only
0.23%� positives.

4.6 Conclusion
Data preprocessing and feature engineering is a very important part of machine learning.
When being limited to using just a few features as input to the classification algorithm
even more emphasis needs to be put into extracting high quality features and filter out
noisy and/or redundant data. The best preprocessing method is the one that gives us the
best results of the classification problem given some method of evaluation.

34

Chapter 5
Evaluation and discussion

Using the methods of evaluation presented in Section 3.2 we will in this chapter present
howwe determinedwhat was themost important features in order to solve the classification
problem. Also, we evaluate some different ways of doing data preprocessing in the form
of encoding methods and feature engineering is evaluated. In order to ensure our results
are statistically significant each evaluation process is run multiple times.

5.1 Choosing evaluation metrics
The evaluation metrics for machine learning models, such as those referred to in Table 3.1
and Table 3.2, are often different depending on what problem the machine learning models
are trying to solve. Still, the confusion matrix stands as a base through the evaluation of
most models. We found that the confusion matrix, on its own, was sufficient to answer
simpler questions such as how many threats we identified and at what cost in terms of
false positives.

In order to make better use of the data from the confusion matrix, we mainly used
Matthews Correlation Constant (MCC) and recall. MCC is a good metric to optimize
since it uses both recall and accuracy. When we evaluated some of our test results using
MCC, we obtained a very small value, 0.04. In the literature it is mentioned that a value
close to 0 means the model is comparable with random guessing, whereas close to 1 means
that the model is accurate. At first glance, this seems to indicate that our model performs
badly, however this is not the case. Our value becomes small because we used a data set
with only 0.23%� positives. Therefore we chose to evaluate our model with recall instead
and to use MCC to find the best limit value. MCC nonetheless shows the best limit value
since we seek to maximize both recall and accuracy, but recall better captures the actual
performance of our model compared with our objective of identifying potential insider
threats.

35

5. Evaluation and discussion

5.2 Combining features
5.2.1 Preprocessing
Since the algorithm is evaluating the input data on a per-event basis, i.e row by row, it does
not have any sense of how long a user stays logged in. This, together with the fact that the
time for log in and log out seem to be more relevant to the outcome compared to the other
features (pc and user, see Section 5.6) led us to try some feature engineering.

We parsed the data set line by line using Python. If the line was a log-in event we
saved the datestamp for this event together with PC and user and started looking for the
corresponding logout event. When the logout event was found we calculated the time
difference between log in and log out and created a new feature out of this.

5.2.2 Evaluation
The resulting table, shown in Table 5.1 essentially consists of time of log in, time of log
out and how long each user has been logged in on a per-PC basis. As stated in the data set
description, Section 2.2, there are some inconsistencies in the data set. For example

A small number of daily logons are intentionally
not recorded to simulate dirty data.

also,

Screen unlocks are recorded as logons.
Screen locks are not recorded.

This led us to remove some rows of the transformed data set. Specifically we removed rows
with a timediff larger than 1440 since it corresponds to 24 hours and it seems unlikely that
a real user would be logged in for more than 24 hours. In general we do not want to remove
input data in this blunt way but we considered users being logged in for this long a time
as outliers that might have been introduced by inconsistencies in the data set and therefore
might lead to the model performing worse.

Table 5.1: Table after transformation based on the time difference

weekday_in month_in hour_in weekday_out month_out hour_out timediff
5 01 06 5 01 17 616
5 01 06 5 01 17 617
5 01 06 5 01 07 32
5 01 07 5 01 16 556
5 01 07 5 01 17 617
5 01 07 5 01 18 681
5 01 07 5 01 18 672
5 01 07 5 01 18 669
5 01 07 5 01 17 614

36

5.3 Label Encoding

We hypothesized that by using all existing features to create session data and a new
feature, timediff, we would improve the accuracy of the model. However, after running
the model on the data preprocessed according to this scheme we actually received a higher
p-value than the approach with periodic features and no session data. This particular fea-
ture extraction method was proved not to be useful. It is possible that the feature that we
introduced had no significance when it comes to determining an insider threat and that it
therefore just added additional noise. It is also possible that the inconsistencies in the data
set, the so called "dirty data" that were deliberately inserted by CERT, had a greater effect
on the algorithm after we did the feature combination.

5.3 Label Encoding
The model used, sklearn.ensemble.IsolationForest, cannot handle features
made up of strings. Therefore we had to encode our categorical features from string val-
ues to integers. By doing so the Isolation Forest algorithm could separate the different
categories from one another, which is an important characteristic. At the same time, this
method of encoding implies an inherent ordering between the categories, which is not true
in reality for our categorical features pc, user and activity. Naturally, this is an unwanted
property that will have a negative impact on our model.

5.4 One Hot Encoding
5.4.1 Preprocessing
We ran the Isolation Forest model with one hot encoding using the following features:
hour_sin, hour_cos, month_sin, month_cos, weekday_sin, week-
day_cos, pc, user, activity where the features pc and user were one hot
encoded. When applying one hot encoding on the user column, it means that each user is
not represented by an id number, as they were at first, but as a column. This results in 1000
different user columns, mainly filled with zeros. Correspondingly, pc was also similarly
encoded.

5.4.2 Evaluation
Since there were 1000 users and 1000 computers, it led to a matrix with 854859 rows and
2007 columns. This is too large a matrix to run the calculation using a modern consumer
laptop. However, by using a large computing instance on Amazon AWS, 2007 columns
are less of a problem. In 2 hours and 35 minutes the calculation finished. The instance
used was AWS Sagemakers largest current generation machine learning adapted standard
instance. The instance was called ml.m4.16xlarge and had 64 CPUs, 256 GB RAM and a
25 Gigabit Ethernet connection [3].

This resulted in a p value of 0.0249. This is significantly larger than without one hot
encoding, which gave a p-value of 5.75 × 10−64. In this case, a lower p-value means a
better result. It is possible that the one hot encoding shifted the weighing of the features,

37

5. Evaluation and discussion

putting too much weight on the 2000 one-hot-encoded features resulting in a larger p-
value. Considering the results in B the one-hot-encoded features pc and user are amongst
the least significant which would explain the worsened results if more weight are put in
these features.

5.5 Periodic Features

5.5.1 Preprocessing

As explained in Section 4.3.3 we converted all time based features from ordinal represen-
tation to periodic form. The reasoning behind this was to better mirror the time features
periodicity so that the distance between two successive hours for example are always inter-
preted as the same. This was done by using trigonometric functions in the Python numpy
library.

5.5.2 Evaluation

By converting the ordinal features month, weekday, and hour into periodic features, the
mean p-value of the KS-test over all features, combinations was improved from 0.0274
to 0.0161, which is an improvement with a factor 1.7. The order of importance of the
different combinations of features only changes slightly in a few cases when comparing
the runs before and after converting the features. This could be explained by the inherent
randomness of the isolation forest algorithm. The improvement of the mean p-value, on
the other hand, is statistically significant with a t-score of 4.72 and a p-value of 2.47×10−6.

By iterating over several limit values of the anomaly function and maximizing the
MCC, we determine the best limit value. Fixing this limit to the MCC-determined value,
we can calculate several parameters that can evaluate how well the model has performed,
as seen in Table 5.2.

By changing the parameterization to be periodic, the accuracy (d-value) was improved
by 15.65% on average when comparing all combinations of features, 15.6 = (0.602−0.52)×100

0.52 .
The d value calculated using all features was increased from 0.52 using ordinal features to
0.60 using periodic features. Considering the improved p-value and the improved d value
we chose to use periodic features for our model.

Max(MCC) = 0.04→ limit = −0.13 (5.1)

38

5.5 Periodic Features

Table 5.2: Values calculated based on the limit determined by the
best MCC value.

Best MCC 0.04
Limit -0.139
TP 0.76
TN 0.93
FP 0.071
FN 0.24
Precision 0.0025
Recall 0.76
F1 Score 0.0050

Figure 5.1: The anomaly score plotted against the density of pos-
itives and negatives respectively

39

5. Evaluation and discussion

As seen in Figure 5.1 the anomaly score differs substantially between the threats/positives
and non-threats/negatives. The mean anomaly score is represented by a horizontal line in
each distribution. The mean value for the positives were located around anomaly score
-0.13 whereas the mean of the negatives is located around +0.03. This indicates that we
were able to distinguish between the two classes. What were not shown in the graph was
that the negatives dramatically outnumber the positives and even though the relative den-
sity of the negatives is located at a higher anomaly score compared to the positives, the
absolute number of negatives located on the lower anomaly scores is still much higher
compared to the positives. This, of course, is due to our unbalanced data set.

Figure 5.2: MCC score based on different anomaly score limit
values for the combined features data set

Table 5.3: Confusion matrix with anomaly score limit based on
MCC evaluation

Actual
Predicted Normal Insider Threat

Normal TN = 92.9% FP = 7.06%
Insider Threat FN = 24.2% TP = 75.8%

Choosing the limit as -0.139 according to the maximized MCC score of 0.04, which
can be seen in Figure 5.2, we receive a precision of TP

TP+FP = 0.0025. This means that by
identifying 1000 actions as a potential threats we can find 2.5 actions that are real insider
threats.

Precision = 0.0025 (5.2)

Identi f iedThreats = TP + FP = 1000 (5.3)

Precision =
TP

TP + FP
=

TP
1000

= 0.0025→ TP = 2.5 (5.4)

40

5.7 Evaluating the results

The number of false positives per true positive (TP = 1) is:

Precision =
TP

TP + FP
→ 0.0025 =

1
1 + FP

→ FP =
1 − 0.0025

0.0025
= 399. (5.5)

This means that for every one correctly identified threat, the model identifies 399 false
threats. The large number of false positives that we get when optimizing the results by
MCC score is due to our very imbalanced data set.

5.6 Significant features
We calculated the anomaly score for each combination of features and evaluated them
using the KS-test. In Appendix B.2 we presented the results sorted by the anomaly score
with the best (lowest) anomaly score on top. The top ten combinations of features are
presented in Table 5.4. As it appears, the best combination of features is activity and hour.

After converting the features weekday, month and hour into periodic features we did
the same evaluation to find the best combination of features. We analyzed both the sin and
cos values together as a pairs, since they are related to each other. In this case also the
best combination turns out to be activity together with hour_sin and hour_cos. The table
is found in Appendix B.1

Table 5.4: Top 10 results using KS-Test evaluation without peri-
odic features

Features used KS - D Statistic P-Value
hour, activity 0.738 6.58 × 10−96

month, hour, activity 0.696 2.58 × 10−85

weekday, hour, activity 0.696 2.66 × 10−85

hour, user, activity 0.692 2.53 × 10−84

weekday, month, hour, activity 0.689 1.57 × 10−83

hour, pc, activity 0.687 4.08 × 10−83

month, hour, user, activity 0.673 7.69 × 10−80

month, hour, pc, activity 0.668 1.86 × 10−78

weekday, hour, user, activity 0.657 4.97 × 10−76

weekday, hour, pc, activity 0.646 1.60 × 10−73

hour, user, pc, activity 0.639 5.81 × 10−72

5.7 Evaluating the results
5.7.1 Anomaly score
According to the decision function in thesklearn.ensemble.IsolationForest li-
brary [26] the more abnormal the data is, the lower anomaly score it will have. Comparing
Figure 5.3 and Figure 5.4 indicates that the Isolation Forest algorithm has successfully la-
beled the threat data as anomalous compared to the non-threat data. This is confirmed

41

5. Evaluation and discussion

when comparing the two histograms using the Kolmogorov-Smirnov test. With the null
hypothesis that the two samples are drawn from the same distribution, Scipy’s two-fold
KS-test [11] returns a low p-value of 2.29×10−94 (see row 1, Table B.1), thereby rejecting
the null hypothesis. The p-value is equal to the chance of the Kolmogorov-Smirnov D
statistic being as large or larger than that observed, if the two samples were indeed drawn
from the same distribution.

Figure 5.3: Isolation forest non threats

5.7.2 Detection rate

Through the confusion matrix for our best model, described in Section 5.3 we can see that
the model was able to determine 75.8% of all the insider threats, while falsely classifying
7.06% of normal events as threats. According to the MCC test this is the best detection
rate of real threats weighted against the falsely detected non-threats that our model could
achieve. Whether or not this is a sufficiently good result depends on the implementation.
While it might be very helpful to identify about 3/4 out of all insider threats it might
also be very expensive to analyze the 7.06% false positives, especially considering how
unbalanced our data set is. 75.8% out of all the insider threats in the data set corresponds
to 150 threats while a rate of 7.06% false positives corresponds to 60339 events being
falsely identified as threats. As indicated by the KS-tests it is obvious that the algorithm
is able to isolate the threats to a degree that is statistically significant. On the other hand,
as indicated by the relatively large number of false positives and by the precision value of
0.0025 there is room for improvement.

42

5.8 Limitations

Figure 5.4: Isolation forest threats

5.8 Limitations
Only analyzing the logon data set is a significant limitation for this project. Only a certain
degree of information can logically be deducted from the time a person enters and leaves
work. Despite this limitations, we were able to determine 76% of the insider threats us-
ing our model. The combination of event-based detection using both logon/arrival and
logoff/leaving times, as well as psychometrics, could potentially yield further interesting
results. Keeping our approach of analyzing parameters attainable without constant online
surveillance, adding psychometrics would be the next step in order to add additional in-
formation to solve our classification problem. Using the psychometrics data would not
require any additional real time monitoring as the features in this data set does not change
over time. In a real world scenario they could potentially be determined at some point
during the job interview or on boarding process.

5.9 Conclusion
It is not easy to know beforehand which features are most important in order to classify the
insider threat. We decided on a few ways to evaluate and quantify the results and then ran
the Isolation Forest algorithm on all possible combinations of features to seewhich features
were most important. The same method was used when evaluating different encoding
methods. Using this approach we proved that the most valuable information in order to
classify the insider threat lay in the time for login and logoff and that it was possible to
improve the results by converting the time features into a periodic form. As the main
method of evaluation we used the MCC score. By optimizing the anomaly score limit
using MCC we concluded that the best performance we could get out of our algorithm

43

5. Evaluation and discussion

was a recall rate of 75.8%, detection rate (true positives) of 75.8% with a false positives
rate of 7.06%.

44

Chapter 6
Conclusions

In this chapter we analyze our findings in this thesis and we discuss areas open for im-
provement and further research. In the analysis we present a summary of our results and
an evaluation. In order to assist further research in the area, we share our insights regarding
open research areas in Section 6.2.

6.1 Analysis
We were able to detect 76% of all insider threats using only the logon file. Logically, only
analyzing data at this simple level, login and logoff, it should be hard to actually detect
so many insider threats. Being able to detect this many insider threats, while only falsely
classifying 7% of the negatives, is therefore a helpful filter. Still, given the nature of our
heavily unbalanced data set and the 76% true positives and 7% false positives means that
there are 399 false positives for every true positive. It will certainly require resources in a
company to analyze these 400 suspected threats to detect the true insider threat. However,
this cost may still be viable in certain situations since the cost of letting an insider threat
take place can be much higher, and the model still filters away the bulk of the non relevant
events.

An important aspect in analyzing this data is that under the scope of our thesis, we
have only taken the logon data set under consideration. By simple deduction, there are
and should be many insider threats that are impossible to detect using this scheme. Con-
structing a scheme by only taking times for log in and log out into consideration gives a
limited view of the classification problem, but by using machine learning algorithms even
a hard problem such as this can be solved to a certain extent.

Previously Isolation Forest is used in combination with ordinal features, but we can
conclude with statistical significance that preprocessing the data using periodic features
is more efficient than using ordinal features, using Isolation Forest. By converting the
ordinal features into periodic features, the mean p-value of the KS-test over all features,

45

6. Conclusions

was improved with a factor 1.7. This is a significant improvement.
A benefit of our approach of keeping the set of features to only time of login and logout

is that it may be generalizable to other methods of surveillance. For example, logging on
to an office PC may be analogous to remotely logging on to the corporate network or
inserting the key card at the office door. This kind of information should be relatively
easily accessible for a company and compared to the features like website history or email
content that is used as features in some of our related research, in Section 2, is much less
intrusive when it comes to integrity of the employees.

6.2 Improvements and open research ar-
eas

We have chosen to limit the scope by only analyzing what we deemed to be the best fit
machine learning algorithm for the task, Isolation Forest. The data from multiple machine
learning algorithms could be compared in order to find the one best adapted for this case.
Supervised and unsupervised machine learning algorithms could be compared in order to
empirically validate our hypothesis that an unsupervised machine learning algorithm such
as Isolation Forest is best suited for this classification problem.

In our scope we limited ourselves to analyzing the logon data set. A continuation
of our research could use our approach to analyze other files in the data set provided by
CERT [12]. For example, the psychometrics file. Psychometrics could be obtained at the
requiting process and can be viewed as information the employee has allowed the company
to use, by. would combining logon times with psychometrics give a better result, or is
the extra information found in the psychometric file merely a distraction to the machine
learning model, leading to poorer performance?

The feature extraction method tested in this thesis, where we combined a number of
features in order to produce a new feature, timediff, did not improve the quality of the
results. It is entirely possible that there are other types of feature extraction methods that
could do so. At the very least there there are many others that could be evaluated.

46

Bibliography

[1] Regulation (eu) 2016/679 of the european parliament and of the council of 27 april
2016 on the protection of natural persons with regard to the processing of personal
data and on the free movement of such data, and repealing directive 95/46/ec
(general data protection regulation). https://eur-lex.europa.eu/
legal-content/EN/TXT/HTML/?uri=CELEX:32016R0679&from=EN,
April 2016. Online; accessed 25 May 2018.

[2] Proposal for a regulation of the european parliament and of the council concerning
the respect for private life and the protection of personal data in electronic commu-
nications and repealing directive 2002/58/ec (regulation on privacy and electronic
communications). http://eur-lex.europa.eu/legal-content/EN/
TXT/HTML/?uri=CELEX:52017PC0010&from=en, January 2017. Online;
accessed 25 May 2018.

[3] Amazon sagemaker ml instance types. https://aws.amazon.com/
sagemaker/pricing/instance-types/, 2018. Online; accessed 17 May
2018.

[4] Abdulla Amin Aburomman and Mamun Bin Ibne Reaz. Ensemble of binary svm
classifiers based on pca and lda feature extraction for intrusion detection. pages
636–640, 2 2017.

[5] Abdulaziz Almehmadi and Khalil El-Khatib. On the possibility of insider threat
prevention using intent-based access control (ibac). IEEE SYSTEMS JOURNAL,
2015.

[6] Amos Azaria, Ariella Richardson, Sarit Kraus, and V S. Subrahmanian. Behavioral
analysis of insider threat: A survey and bootstrapped prediction in imbalanced data.
1:135–155, 06 2014.

[7] Jason Brownlee. How much training data is required for ma-
chine learning? https://machinelearningmastery.com/

47

https://eur-lex.europa.eu/legal-content/EN/TXT/HTML/?uri=CELEX:32016R0679&from=EN
https://eur-lex.europa.eu/legal-content/EN/TXT/HTML/?uri=CELEX:32016R0679&from=EN
http://eur-lex.europa.eu/legal-content/EN/TXT/HTML/?uri=CELEX:52017PC0010&from=en
http://eur-lex.europa.eu/legal-content/EN/TXT/HTML/?uri=CELEX:52017PC0010&from=en
https://aws.amazon.com/sagemaker/pricing/instance-types/
https://aws.amazon.com/sagemaker/pricing/instance-types/
https://machinelearningmastery.com/much-training-data-required-machine-learning/
https://machinelearningmastery.com/much-training-data-required-machine-learning/
https://machinelearningmastery.com/much-training-data-required-machine-learning/

BIBLIOGRAPHY

much-training-data-required-machine-learning/, July 2017.
Online; accessed 27 May 2018.

[8] Christopher J. C. Burges. A tutorial on support vector machines for pattern recogni-
tion. Data Mining and Knowledge Discovery, 2:121–167, 1998.

[9] Davide Chicco. Ten quick tips for machine learning in computational biology. Bio-
Data Mining, 10, 2017.

[10] Eric Cole and Sandra Ring. Insider threat. [Elektronisk resurs] protecting the en-
terprise from sabotage, spying, and theft. Rockland, Mass. : Syngress ; [S.l.] : Dis-
tributed by O’Reilly Media, 2006., 2006.

[11] The Scipy community. scipy.stats.ks_2samp. https://docs.scipy.org/
doc/scipy-0.14.0/reference/generated/scipy.stats.ks_
2samp.html, 2014. Online; accessed 03 May 2018.

[12] Joshua Glasser and Brian Lindauer. Bridging the gap: A pragmatic approach to
generating insider threat data. 2013 IEEE Security and Privacy Workshops, 2013.

[13] S. Hina and D. D. Dominic. Information security policies: Investigation of compli-
ance in universities. pages 564–569, Aug 2016.

[14] Gareth M. James. Variance and bias for general loss functions. Machine Learning,
51:115–135, 2003.

[15] C. Jiang, H. Zhang, Y. Ren, Z. Han, K. C. Chen, and L. Hanzo. Machine learning
paradigms for next-generation wireless networks. IEEE Wireless Communications,
24(2):98–105, April 2017.

[16] David Kaleko. Periodical features. http://blog.davidkaleko.com/
feature-engineering-cyclical-features.html, 2017. Online; ac-
cessed 14 May 2018.

[17] A. Lall. Data streaming algorithms for the kolmogorov-smirnov test. In 2015 IEEE
International Conference on Big Data (Big Data), pages 95–104, Oct 2015.

[18] Fei Tony Liu, Kai Ming Ting, and Zhi-Hua Zhuo. Isolation forest. 2008 Eight IEEE
Internal Conference on Data Mining, 51:115–135, 2003.

[19] Asim Majeed, Anwar Ul Haq, Arshad Jamal, Rehan Bhana, Funke Banigo, and Said
Baadel. Internet of everything (ioe) exploiting organisational inside threats: Global
network of smart devices (gnsd). 2016 IEEE International Symposium on Systems
Engineering (ISSE), 2016.

[20] Solomon Mekonnen, Keshnee Padayachee, and Million Meshesha. A privacy pre-
serving context-aware insider threat prediction and prevention model predicated on
the components of the fraud diamond. Annual Global Online Conference on Infor-
mation and Computer Technology, 2015.

[21] Tom M Mitchell. Machine Learning. The McGraw-Hill Companies, Inc, 1997.

48

https://machinelearningmastery.com/much-training-data-required-machine-learning/
https://machinelearningmastery.com/much-training-data-required-machine-learning/
https://machinelearningmastery.com/much-training-data-required-machine-learning/
https://docs.scipy.org/doc/scipy-0.14.0/reference/generated/scipy.stats.ks_2samp.html
https://docs.scipy.org/doc/scipy-0.14.0/reference/generated/scipy.stats.ks_2samp.html
https://docs.scipy.org/doc/scipy-0.14.0/reference/generated/scipy.stats.ks_2samp.html
http://blog.davidkaleko.com/feature-engineering-cyclical-features.html
http://blog.davidkaleko.com/feature-engineering-cyclical-features.html

BIBLIOGRAPHY

[22] pandas developers. pandas.get_dummies. https://pandas.pydata.org/
pandas-docs/stable/generated/pandas.get_dummies.html,
2017. Online; accessed 14 May 2018.

[23] P. Parveen, Z. R. Weger, B. Thuraisingham, K. Hamlen, and L. Khan. Supervised
learning for insider threat detection using stream mining. In 2011 IEEE 23rd In-
ternational Conference on Tools with Artificial Intelligence, pages 1032–1039, Nov
2011.

[24] R. Rantala. Cybercrime against businesses, 2005. Bureau of Justice Statistics Special
Report, page 6, 2008.

[25] Stuart J. Russell and Peter Norvig. Artificial Intelligence: AModern Approach. Pear-
son Education, 2 edition, 2003.

[26] scikit-learn developers. sklearn.ensemble.isolationforest. http:
//scikit-learn.org/stable/modules/generated/sklearn.
ensemble.IsolationForest.html, 2017. Online; accessed 03 May 2018.

[27] scikit-learn developers. sklearn.preprocessing.labelencoder. http:
//scikit-learn.org/stable/modules/generated/sklearn.
preprocessing.LabelEncoder.html, 2017. Online; accessed 14 May
2018.

[28] Li Sun, Steven Versteeg, Serdar Boztas, and Asha Rao. Detecting anomalous user be-
havior using an extended isolation forest algorithm: An enterprise case study. CoRR,
abs/1609.06676, 2016.

[29] Pang-Ning Tan, Michael Steinbach, and Vipin Kumar. Introduction to Data Mining,
(First Edition). Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA,
2005.

[30] Aaron Tuor, Samuel Kaplan, Brian Hutchinson, Nicole Nichols, and Sean Robinson.
Deep learning for unsupervised insider threat detection in structured cybersecurity
data streams. Proceedings of AI for Cyber Security Workshop at AAAI 2017, 10 2017.

[31] David T. Wolfe and Dana R. Hermanson. The fraud diamond: Considering the four
elements of fraud. CPA Journal 74.12, pages 38–42, 2004.

49

https://pandas.pydata.org/pandas-docs/stable/generated/pandas.get_dummies.html
https://pandas.pydata.org/pandas-docs/stable/generated/pandas.get_dummies.html
http://scikit-learn.org/stable/modules/generated/sklearn.ensemble.IsolationForest.html
http://scikit-learn.org/stable/modules/generated/sklearn.ensemble.IsolationForest.html
http://scikit-learn.org/stable/modules/generated/sklearn.ensemble.IsolationForest.html
http://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.LabelEncoder.html
http://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.LabelEncoder.html
http://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.LabelEncoder.html

BIBLIOGRAPHY

50

Appendices

51

Appendix A
Implementation Code

Our code for running the simulations is publicly available and can be found at: https:
//github.com/JoakimBulow/InsiderThreatIsolationForest/

53

https://github.com/JoakimBulow/InsiderThreatIsolationForest/
https://github.com/JoakimBulow/InsiderThreatIsolationForest/

A. Implementation Code

54

Appendix B
Simulation results

B.1 KS-evaluation of logon data set

55

B.Sim
ulation

results

Table B.1: KS-evaluation of logon data set

Features used KS - D Statistic P-Value
activity, hour_sin, hour_cos 0.733 2.289 × 10−94

activity, hour_sin, hour_cos, month_sin, month_cos 0.729 1.454 × 10−93

weekday_sin, weekday_cos 0.697 1.486 × 10−85

pc, activity, hour_sin, hour_cos, month_sin, month_cos, weekday_sin, weekday_cos 0.682 7.065 × 10−82

activity, hour_sin, hour_cos, weekday_sin, weekday_cos 0.680 1.689 × 10−81

pc, activity, hour_sin, hour_cos 0.678 6.086 × 10−81

user, activity, hour_sin, hour_cos 0.674 7.122 × 10−80

pc, activity, hour_sin, hour_cos, month_sin, month_cos 0.669 8.772 × 10−79

user, activity, hour_sin, hour_cos, month_sin, month_cos, weekday_sin, weekday_cos 0.660 1.133 × 10−76

user, activity, hour_sin, hour_cos, month_sin, month_cos 0.649 3.159 × 10−74

user, activity, hour_sin, hour_cos, weekday_sin, weekday_cos 0.644 4.057 × 10−73

user, pc, activity, hour_sin, hour_cos 0.640 4.431 × 10−72

pc, activity, hour_sin, hour_cos, weekday_sin, weekday_cos 0.635 6.418 × 10−71

user, pc, activity, hour_sin, hour_cos, month_sin, month_cos 0.633 1.685 × 10−70

user, pc, activity, hour_sin, hour_cos, weekday_sin, weekday_cos 0.614 2.164 × 10−66

user, pc, activity, hour_sin, hour_cos, month_sin, month_cos, weekday_sin, weekday_cos 0.602 5.754 × 10−64

hour_sin, hour_cos, month_sin, month_cos, weekday_sin, weekday_cos 0.584 4.180 × 10−60

hour_sin, hour_cos, month_sin, month_cos 0.562 1.055 × 10−55

hour_sin, hour_cos 0.559 3.191 × 10−55

pc, hour_sin, hour_cos, month_sin, month_cos 0.549 3.296 × 10−53

user, hour_sin, hour_cos 0.523 2.726 × 10−48

pc, hour_sin, hour_cos 0.516 4.335 × 10−47

hour_sin, hour_cos, weekday_sin, weekday_cos 0.515 6.306 × 10−47

pc, hour_sin, hour_cos, month_sin, month_cos, weekday_sin, weekday_cos 0.510 4.962 × 10−46

user, hour_sin, hour_cos, month_sin, month_cos 0.501 1.883 × 10−44

56

B.1
K

S-evaluation
of

logon
data

set

Table B.1 continued from previous page
Features used KS - D Statistic P-Value
user, hour_sin, hour_cos, weekday_sin, weekday_cos 0.470 3.647 × 10−39

pc, hour_sin, hour_cos, weekday_sin, weekday_cos 0.467 1.335 × 10−38

user, hour_sin, hour_cos, month_sin, month_cos, weekday_sin, weekday_cos 0.463 6.194 × 10−38

activity, month_sin, month_cos 0.427 2.155 × 10−32

month_sin, month_cos 0.421 1.740 × 10−31

user, pc, hour_sin, hour_cos 0.400 2.004 × 10−28

user, pc, hour_sin, hour_cos, month_sin, month_cos, weekday_sin, weekday_cos 0.391 4.006 × 10−27

user, pc, hour_sin, hour_cos, month_sin, month_cos 0.390 4.653 × 10−27

user, pc, hour_sin, hour_cos, weekday_sin, weekday_cos 0.380 9.282 × 10−26

month_sin, month_cos, weekday_sin, weekday_cos 0.375 4.700 × 10−25

pc, month_sin, month_cos 0.367 5.061 × 10−24

pc, activity, month_sin, month_cos 0.337 2.880 × 10−20

user, activity, month_sin, month_cos 0.336 3.813 × 10−20

activity, month_sin, month_cos, weekday_sin, weekday_cos 0.327 3.362 × 10−19

user, month_sin, month_cos 0.313 1.536 × 10−17

pc, activity, month_sin, month_cos, weekday_sin, weekday_cos 0.290 3.913 × 10−15

user, pc, month_sin, month_cos 0.268 5.667 × 10−13

pc, month_sin, month_cos, weekday_sin, weekday_cos 0.252 1.389 × 10−11

user, pc, activity, month_sin, month_cos 0.197 3.289 × 10−07

user 0.195 4.538 × 10−07

user, month_sin, month_cos, weekday_sin, weekday_cos 0.189 1.081 × 10−06

pc, weekday_sin, weekday_cos 0.186 1.693 × 10−06

user, pc, activity, month_sin, month_cos, weekday_sin, weekday_cos 0.178 5.383 × 10−06

user, activity, month_sin, month_cos, weekday_sin, weekday_cos 0.175 8.423 × 10−06

user, pc, weekday_sin, weekday_cos 0.170 1.861 × 10−05

user, weekday_sin, weekday_cos 0.163 4.203 × 10−0557

B.Sim
ulation

results

Table B.1 continued from previous page
Features used KS - D Statistic P-Value
user, pc, month_sin, month_cos, weekday_sin, weekday_cos 0.152 1.896 × 10−04

user, pc, activity 0.148 2.990 × 10−04

user, activity 0.147 3.345 × 10−04

activity, weekday_sin, weekday_cos 0.146 3.578 × 10−04

user, pc 0.142 6.104 × 10−04

pc, activity 0.133 1.675 × 10−03

pc 0.131 1.946 × 10−03

user, pc, activity, weekday_sin, weekday_cos 0.128 2.762 × 10−03

weekday_sin, weekday_cos 0.121 5.259 × 10−03

user, activity, weekday_sin, weekday_cos 0.102 2.961 × 10−02

pc, activity, weekday_sin, weekday_cos 0.096 4.836 × 10−02

activity 0.051 6.827 × 10−01

58

B.2 Without periodic features

B.2 Without periodic features

Table B.2: KS-Test evaluation without periodic features

Features used KS - D Statistic P-Value
activity, hour 0.738 6.58 × 10−96

month, hour, activity 0.696 2.58 × 10−85

weekday, hour, activity 0.696 2.66 × 10−85

hour, user, activity 0.692 2.53 × 10−84

weekday, month, hour, activity 0.689 1.57 × 10−83

hour, pc, activity 0.687 4.08 × 10−83

month, hour, user, activity 0.673 7.69 × 10−80

month, hour, pc, activity 0.668 1.86 × 10−78

weekday, hour, user, activity 0.657 4.97 × 10−76

weekday, hour, pc, activity 0.646 1.60 × 10−73

hour, user, pc, activity 0.639 5.81 × 10−72

weekday, month, hour, pc, activity 0.621 7.54 × 10−68

weekday, month, hour, user, activity 0.605 1.68 × 10−64

month, hour 0.598 5.32 × 10−63

weekday, hour 0.596 1.62 × 10−62

weekday, hour, user, pc, activity 0.561 1.63 × 10−55

hour 0.559 3.19 × 10−55

month, hour, user, pc, activity 0.548 4.96 × 10−53

weekday, month, hour, user, pc, activity 0.521 6.173 × 10−48

hour, user 0.508 1.414 × 10−45

hour, pc 0.505 5.316 × 10−45

weekday, month, hour 0.503 1.071 × 10−44

month, hour, pc 0.493 4.788 × 10−43

month, hour, user 0.479 1.622 × 10−40

weekday, month, hour, pc 0.468 8.371 × 10−39

weekday, month, hour, user 0.434 2.423 × 10−33

weekday, hour, user 0.418 4.607 × 10−31

weekday, hour, pc 0.416 9.301 × 10−31

month, hour, user, pc 0.413 2.358 × 10−30

hour, user, pc 0.371 1.452 × 10−24

weekday, month, hour, user, pc 0.364 1.139 × 10−23

weekday, hour, user, pc 0.355 1.513 × 10−22

month, activity 0.348 1.197 × 10−21

month 0.348 1.328 × 10−21

weekday, month 0.235 4.379 × 10−10

weekday, user 0.210 4.035 × 10−08

month, pc 0.206 7.532 × 10−08

month, pc, activity 0.199 2.168 × 10−07

pc, activity 0.192 6.987 × 10−07

59

B. Simulation results

Table B.2 continued from previous page
Features used KS - D Statistic P-Value
weekday, user, pc 0.188 1.214 × 10−06

weekday 0.186 1.839 × 10−06

weekday, month, activity 0.185 2.104 × 10−06

user 0.173 1.166 × 10−05

weekday, month, pc 0.163 4.526 × 10−05

month, user 0.162 4.784 × 10−05

user, pc 0.162 4.920 × 10−05

weekday, user, pc, activity 0.160 6.967 × 10−05

user, pc, activity 0.155 1.172 × 10−05

weekday, pc 0.141 6.681 × 10−04

weekday, user, activity 0.141 6.927 × 10−04

user, activity 0.140 7.565 × 10−04

pc 0.138 9.287 × 10−04

month, user, pc 0.132 1.754 × 10−03

weekday, activity 0.121 5.259 × 10−03

month, user, activity 0.113 1.134 × 10−02

weekday, month, pc, activity 0.111 1.342 × 10−02

weekday, month, user, activity 0.102 3.117 × 10−02

weekday, pc, activity 0.088 8.94 × 10−02

month, user, pc, activity 0.084 1.13 × 10−01

weekday, month, user 0.083 1.24 × 10−01

weekday, month, user, pc, activity 0.072 2.48 × 10−01

weekday, month, user, pc 0.063 3.97 × 10−01

activity 0.051 6.82 × 10−01

60

Appendix C
Information from data set

This is the contents of the readme.txt file in the data set.

Release 4, Dataset 2 Notes

Major Changes
* Content is integrated with the graph structure.
* A user’s topics of interest can drift over time.
* Email now includes CC/BCC.
* Email table now includes user ID and PC.
* Users can have one or more non-work email addresses.
* A latent job satisfaction variable was added.
It might make sense for us to specify exactly
how this affects observable variables, so let us know if that information is desired.
* An additional red team scenario was added.
(All previous red team scenarios also occur in the dataset.)
* This is a "dense needles" dataset.
There is an unrealistically high amount of red team data interspersed.

license.txt
* ExactData license information

logon.csv
* Fields: id, date, user, pc, activity (Logon/Logoff)
* Weekends and statutory holidays (but not personal vacations)
are included as days when fewer people work.
* No user may log onto a machine where another user is already logged on,
unless the first user has locked the screen.
* Logoff requires preceding logon
* A small number of daily logons are intentionally not recorded to simulate dirty data.
* Some logons occur after-hours

- After-hours logins and after-hours thumb drive usage are intended to be significant.
* Logons precede other PC activity
* Screen unlocks are recorded as logons. Screen locks are not recorded.
* Any particular user’s average habits persist day-to-day

- Start time (+ a small amount of variance)
- Length of work day (+ a small amount of variance)
- After-hours work: some users will logon after-hours, most will not

* Some employees leave the organization:

61

C. Information from data set

no new logon activity from the default start time on the day of termination
* 1k users, each with an assigned PC
* 100 shared machines used by some of the users in addition to their assigned PC.
These are shared in the sense of a computer lab, not in the sense of a
Unix server or Windows Terminal Server.
* Systems administrators with global access privileges
are identified by job role "ITAdmin".
* Some users log into another user’s dedicated machine from time to time.

device.csv
* Fields: id, date, user, pc, activity (connect/disconnect)
* Some users use a thumb drive
* Some connect events may be missing disconnect events,
because users can power down machine before removing drive
* Users are assigned a normal/average number of thumb drive uses per day.
Deviations from a user’s normal usage can be considered significant.

http.csv
* Fields: id, date, user, pc, url, content
* Has modular/community structure, but is not correlated with social/email graph.
* Domain names have been expanded to full URLs with paths.
* Words in the URL are usually related to the topic of the web page.
* Content consists of a space-separated list of content keywords.
* Each web page can contain multiple topics.
* WARNING: Most of the domain names are randomly generated,
so some may point to malicious websites.
Please exercise caution if visiting any of them.

email.csv
* Fields: id, date, user, pc, to, cc, bcc, from, size, attachment_count, content
* Driven by underlying friendship and organizational graphs.
* Role (from LDAP) drives the amount of email a user sends per day.
* The vast majority of edges (sender/recipient pairs)
are exist because the two users are friends.
* A small number of edges are introduced as noise.
A small percentage of the time, a user will email someone randomly.
* Emails can have multiple recipients
* Emails can have a mix of employees and non-employees in dist list
* Non employees use a non-DTAA email addresses;
employees use a DTAA email address
* Terminated employees remain in the population,
and thus are eligible to be contacted as non-employees
* A friendship graph edge is not implied between
the multiple recipients of an email.
* Unlike the previous release, we do not believe
the observed email graph follows graph power laws
because the power-law-conforming friendship graph is
overwhelmed by the organizational graph.
* Email size and attachment count are not correlated with each other.
* Email size refers to the number of bytes in the message, not including attachments.
* Content consists of a space-separated list of content keywords.
* "Content" does not specifically refer to the subject or body.
We have not made that distinction.
* Each message can contain multiple topics.
* Message topics are chosen based on both sender and recipient topic affinities.

file.csv
Fields: id, date, user, pc, filename, content
* Each entry represents a file copy to a removable media device.
* Content consists of a hexadecimal encoded file header
followed by a space-separated list of content keywords
* Each file can contain multiple topics.
* File header correlates with filename extension.
* The file header is the same for all MS Office file types.
* Each user has a normal number of file copies per day.
Deviation from normal can be considered a significant indicator.

62

psychometric.csv
* Fields: employee_name, user_id, O, C, E, A, N
* Big 5 psychometric score
* See http://en.wikipedia.org/wiki/Big_Five_personality_traits
for the definitions of O, C, E, A, N ("Big 5").
* Extroversion score drives the number of connections
a user has in the friendship graph.
* Conscientiousness score drives late work arrivals.
* This information would be latent in a real deployment,
but is offered here in case it is helpful.
* A latent job satisfaction variable drives some behaviors.

Malicious actors
* This data contains two instances of insider threats.
* Data dimensions that are fair game for anomaly detection
(not all are used in red team scenarios)

- In general, radical changes in behavior
- Unusual logon times (for that user)
- Unusual logins to another user’s dedicated machine
(for users that don’t do this normally)
- Device usage for users who aren’t normally device users,
or increased device usage for those that are.
- Radical increases in the amount of device usage by a user
- Employee termination
(as an indicator, but not anomaly detection per se)
- Number of emails sent / day
- Change in web browsing habits
(visits to unusual websites are interesting, but also common)
- Radical change in social graph behavior
(unexpected email recipients, perhaps)
- Topics of web sites visited, emails, and files copied.

* We can reveal as much as you would like about the red team scenarios.
* This is a "dense needles" dataset.
There is an unrealistically high amount of red team data interspersed.

Errata:
* Field Ids are unique within a csv file (logon.csv, device.csv)
but may not be globally unique.

63

	Introduction
	Problem definition
	Objective
	Limitations
	Synthetic Data
	Data encoding
	Randomness

	Contributions

	Related Research
	Insider threats
	Data set description
	Brief Scenario Descriptions

	Isolation Forest
	Detecting anomalous user behavior using Isolation Forest
	Related Research using the CERT data set
	Conclusion

	Theory
	Machine Learning
	Categorical Classifiers
	Supervised Learning
	Unsupervised Learning
	Anomaly Detection

	Evaluation of Machine Learning Models
	Kolmogorov–Smirnov test
	Confusion matrix
	Matthews Correlation Coefficient
	F1 score
	Precision Recall

	Conclusion

	Approach
	Approach summary
	Choice of Machine Learning Algorithm
	Data preprocessing
	Preprocessing
	Handling Categorical Features
	Periodic Features

	Feature optimization
	Evaluation metrics
	Conclusion

	Evaluation and discussion
	Choosing evaluation metrics
	Combining features
	Preprocessing
	Evaluation

	Label Encoding
	One Hot Encoding
	Preprocessing
	Evaluation

	Periodic Features
	Preprocessing
	Evaluation

	Significant features
	Evaluating the results
	Anomaly score
	Detection rate

	Limitations
	Conclusion

	Conclusions
	Analysis
	Improvements and open research areas

	Bibliography
	Appendix Implementation Code
	Appendix Simulation results
	KS-evaluation of logon data set
	Without periodic features

	Appendix Information from data set

