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Abstract
This Master Thesis proposes to use a Spatial Hawkes Process to model the news
flow in the world. The spatial part is divided in both geographical areas as well
as different topics. Therefore, in the Hawkes model every news article corresponds
to a point in space and time. In a certain region and topic the intensity of the
released articles will be modelled with the Hawkes Process. This can be of interest
for various applications depending on the topic and region chosen. The data in this
project comes from the company RavenPack which has labelled every news article
with a topic and a region. The area specifically examined in this report will be the
relations between the different areas in the news flow. A comparison will also be
done between some different spatial divisions to see if different behaviour can be
captured with a more complex model, with more regions and topics.

The model is compared to a Poisson Process model. It seems that the Hawkes
model works better than the Poisson Process to model the intensity of the different
parts of the news flow in all cases. The results also indicates that a very flexible
model will be able to capture more cases that are known from history. The complex
model sees connections that increase the intensity during hectic times in the recent
past news flow, for example during Brexit and the Arab Spring. However it seems
that with more regions the model is prone to overfit and a simpler model may be
preferable for out of sample uses.
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Popular Science Summary
The news is a massive source of information in the world today. Every
day thousands of articles describe the world we live in. This information
is very hard to use because of its complexity however. This is why an
automatic method to gather information from the news flow can be in-
strumental in many applications. In this thesis methods to estimate the
amount of news that will be written is proposed.

A news article is a very complex source of information. All articles’ texts are unique
even though they describe similar events. Also the events themselves can sometimes
be very much alike another earlier event or a unique time stamp in recent history.
The company RavenPack has provided a database of articles from all around the
world where the unique texts are read through by a computer and sorted into topics
and regions in the world.

In this thesis a model has then been tested that will estimate the amount of news
that will arrive in a certain region and topic. This is done by making the model learn
by historic news feed and then we can use it on future news. The expectation of the
amount of news that will be produced in a certain area can reflect the happenings in
the real world and may be used to see crime waves in a region or identify a financial
crisis.

The learning of the model corresponds to finding relations between the correct re-
gions and topics in the news flow. This is the primary result in this thesis. It is
possible to select a single topic in a region and see what it affects and what affects it.

Finally it can be noted that the model used in this thesis is called a Hawkes model.
This model has historically been used to predict earthquakes and re-tweet waves
on twitter. This is because of the model’s nature which is that a single event may
cause several events in the aftermath. In the case of earthquakes an earthquake is
often followed by another in the same general area. If a famous twitter account is
posting something, there will be a re-tweet flood afterwards. In the news flow an
event like Brexit will create an increased amount of news for a time. The results can
be presented with a map of nodes and arrows between where the size corresponds
to the importance. In the figure below one such node map from the region Northern
Europe and topic Economic Union Negative can be seen. This topic is almost only
written about during Brexit the last few years and as expected mostly economic
topics in Europe are affected by Brexit.
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A visualisation of the relations from Northern Europe Economic Union Negative.
This group has a couple of weeks during Brexit where the news flow explodes.
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Chapter 1

Introduction

1.1 Background
Every day we get millions of news articles, press releases and blog posts. This is a
massive source of information. These articles and reports can be used to understand
what is happening in the different parts of the world and possibly what is to come
as well. Because of the complex structure of the news flow though it is in general
hard to extract any valuable information and the amount of data available makes
manual methods impractical.

If the information from the news flow could be extracted though, it is reasonable
to assume that there are a lot of applications. This thesis is written in collabora-
tion with the hedge fund Lynx Asset Management and financial applications to this
information are not far fetched to think about. But understanding the news flow
could prove useful in other areas as well.

When doing a statistical analysis of something that is not directly measurable, such
as articles, the first step is to get a practical representation of the article. Classifying
if the article is from a certain country, if it is negative or what the topic is could be
more practical fields than a free text. The next step is to aggregate the result. This
aggregated signal will then be the news flow that can approximate the real world
events..

In this thesis we are interested in the last part where we already have access to
a few values of articles and try to model the actual flow of the news using that.
For example interesting information could be if there is a big flow of positive news
about America’s economy right now or identifying an epidemic by finding clusters
of negative health related news.
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1.2 Related Work
Analysis and prediction of news data has gained an increased interest in recent
years. This is partially due to the attention from the financial sector, but also from
news providers, social media channels and other organisations looking to optimise
their user experience and marketing efforts. The spectrum of analysis is rather wide
and involves many different stages, e.g. natural language processing to interpret the
text, data mining to handle large sets of information as well as a range of statisti-
cal methods to model data flows. The paragraphs below are relevant to this thesis
project.

News analytics as a subject in the financial sector is discussed extensively in the
book "The Handbook of News Analytics in Finance" [Mitra and Mitra, 2011], which
presents several frameworks and techniques for handling news data as well as both
its potentials and risks in predicting financial assets. Similarly, the articles
[Heston and Sinha, 2017, sto, 2010] both deal with prediction of stock prices using
news data. The first article uses a support vector machine approach using features
extracted from financial news articles and historic stock prices, whereas the second
article examines the prediction accuracy of neural networks for predicting stock re-
turns. An interesting topic here is the time horizons within which the predictions
are accurate. Finally, the article "Applications of a multivariate Hawkes process to
joint modelling of sentiment and market return events" [Yang et al., 2017] explores
the use of point processes and Hawkes processes to model events in financial mar-
kets. More specifically, the study analyses how positive and negative sentiments in
news events connect to positive and negative returns in the context of multivariate
Hawkes processes.

Another related area is that of modelling and prediction of events on social me-
dia, e.g. how trending content goes viral and spreads on different channels as well
as how it can be used to predict events outside the social media platforms. The
article [Asur and Huberman, 2010] uses data from Twitter to forecast the revenues
of box-office movies. In addition, [Yu and Kak, 2012] discusses several topics within
the subject, such as marketing, information validity and prediction of election out-
comes. Lastly, the article "A tutorial on Hawkes Processes for Events in Social
Media" [Rizoiu et al., 2017] provides an introduction to the concept of Hawkes pro-
cesses and the self-exciting properties, with a focus on social media events.

More specifically on the topic of Hawkes processes, it has been used in for ex-
ample earthquake forecasting as well as modelling epidemic outbreaks in addi-
tion to the financial applications introduced above. The common characteristic
in these areas is the self-exciting property. For instance, for epidemic diseases it
may be reasonable to suggest that observing a case of the disease will increase
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the risk (i.e. the intensity) to see more cases in that region within the near fu-
ture, thus making the Hawkes process model a suitable candidate. One such study
is [Schoenberg et al., 2017], which uses Hawkes process as well as another type of
point process to model measles occurrences between 1906 and 1956. Another rele-
vant article is [Bray and Paik Schoenberg, 2013], which reviews the Hawkes process
among other model alternatives for earthquake forecasting. In this context, the ex-
citation function is modelled to take the form of the so called Omori’s law, which is
an important concept in seismology.

1.3 Hypothesis and Purpose
In this Thesis we aim to see patterns in the news flow. The main goal was to be
able to tell how plausible it is that an article of some specified parameters are to
appear in the news flow in the near future.

1.4 Outline
Chapter 1: The introductory chapter have hopefully given the reader a reason to
read further and insight towards where the research frontier stands today.

Chapter 2: Chapter 2 is supposed to give the reader a quick understanding of
the aim of the models. How they work and what sort of characteristics they may
pick up from the news flow. No details concerning what mathematical constructions
that will be made will be in this chapter.

Chapter 3: Chapter 3 will handle all things related to the data set. The data
used in the thesis has to be cleaned before use. This chapter describes the raw data
so that the reader can understand what sort of modification had to be done to the
data.

Chapter 4: In Chapter 4 all mathematical definitions and theorems will be pro-
vided. Basic discussions relating the processes and statistical tools will also be here
for readers that need some recapitulation regarding those subjects. Some statistical
knowledge will be expected from the reader. The models used in this thesis will get
a general introduction.

Chapter 5: Succeeding the mathematical definitions the actual details of the im-
plementation of the models will be provided in Chapter 5. What modifications that
has been done to ensure good and computationally feasible results. Both the likeli-
hood derivation and the algorithms that are used to maximise them can be found
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in this chapter.

Chapter 6: Chapter 6 handles the experiment setup. What results that can be
expected in the result section can be seen as well.

Chapter 7: This chapter is exclusively for the results of the thesis. Likelihoods
and BIC for the different models and intensity curves will be here. The main result
from this thesis, the connections between news topics and regions will take up the
main part of this chapter, presented as node graphs.

Chapter 8: This chapter will have a brief discussion of how to understand the
results and how the calibration step of the models could have been done better.
The last section will be an outlook towards further research and how to use the
results from this project.

Chapter 9: In the Conclusion chapter there will be a summary of the results
and how the results relate to the subject studied in this thesis.

4



Chapter 2

Modelling Background

Modelling the news flow is in extension an attempt to model the events happening
in the real world. In this thesis models which treat the news articles as the whole
truth will be used. This is in distinction with models that use the news articles as
reports of what is happening in the world which is of course a more accurate model
since that is in fact what a news report is. In a model setting this can be fit into the
framework as the driving process and the observable states. In our case the news
feed is both the driving process and the observable states. This is as noted above a
simplification since the events in the world is not, at least not completely, dependent
on what is written in the news. In this model world every article will correspond
to exactly one event in the setting since the news feed is the driving process. The
notation event further down in the thesis will therefore be used for both articles and
the events they describe.

A driving process with events happening at certain time stamps has to be able
to create a time span with simulated events. This is done by creating a model with
certain characteristics. That can be knowledge from the world or something that
depends on past data. In our models we will hypothesise that the news flow can
be split up in 2 parts, the news that depend on other news and news that occur
independently.

2.1 Dependent and Non-dependent News
The first part is the non-dependent news articles. These include all articles that over
a given time span occurs with the same probability uncorrelated with the events in
the world. One can imagine that this is almost true for news reporting results of a
sports team or standard weather reports.
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On the other hand one can also imagine that there sometimes occurs something
extraordinaire with the sports team or weather in question. Maybe there is a hail
storm which prevents that football match to be played in the first place. Then the
expected result report from the match would not happen. This part of the feed will
be taken care of by the second part of the models. This will try to capture the
dependent part of the news feed.

This will be done by saying that an event in a certain topic or country has an
increased probability to happen if an event has happened in another dependent
topic-country combination. On a very small scale we can concretize this with an
example where we have a murder report. The days following it there is a higher prob-
ability of a report of a caught murderer than if there was no murder in the first place.

Of course this is very simple with hand picked examples like this. In the actual
model there has to be compromises because of data and computational power avail-
able. If the model is too fine, with a lot of topics and countries, there will not be
enough observations for every topic to calibrate the model. On the other hand if the
model is too crude it will be hard to know what an event in the topic is about. Also
too many groups of countries and topics brings problems in terms of computational
power.

The dependence will further down in the thesis this will be called excitation. This is
because in the model used in this thesis the dependence is directed. Then one topic
excites the other. With the excitation between the topics there is also a question
of what time span the excitation is apparent. In this thesis we have chosen to let
the decay of the excitation be exponentially decaying over time with a limit on the
half-time of 2 years.

2.2 The Two Models
In this thesis we will compare two different models. The description above con-
cludes the similarities between the two. There are some small differences between
the models even though they are in principal based on the same ideas. In the first
model, Discrete Classes, every news article will be assigned to a topic-country com-
bination in which it is written. These combinations can then be clustered together
into bigger groups. These groups however will contain all of the subgroups’ articles.

In the second model, Overlapping Classes, these groups can be thought of as a mul-
tivariate density of subgroups. For example two groups might be primarily Nordic
countries and Russia. News written in Finland might have big similarities with the
Nordic group and a minor similarity with the Russia group. In the opposite way,
both news that should affect the Nordic and Russia will affect Finland. A visual-
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isation of this can be seen in figure 2.1 where the green and red graph shows how
much each country is related to group Nordic(red) and group Russia(green).

Figure 2.1: An illustration of the densities that describe the classes in the Overlap-
ping Classes model. Two classes are here represented by the colour red and green.
Their respective density can be seen in the figure. The red density contain more of
the Swedish news and the green more Russian news. Both classes will contain news
from Finland.

The attentive reader can in the figure see that groups contain a certain percentage
of different countries/topics but every country does not necessarily have an impact
in any group or impact in more than summed 100% in different groups. This will
be explained in detail later when the models are fit into a mathematical frame work.

The overlapping behaviour was explained using countries since it is very intuitive
but for the topics the exact same thing can be done. This gives model 2 a bit more
flexibility when calibrating which hopefully results in a more precise model.

2.3 Adapting Classes
However there is an, probably more important, advantage with the second model
than more flexibility which is the differentiable groups. This comes back to the
intricate problem of making the groups. In the discrete model we have to customise
the groups and find manually what countries that probably are affected by the same
countries and affect the same countries. With differentiable groups this step could
be done in the calibration of the model. In figure 2.1 this corresponds to tuning the
densities.
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2.4 News Flow
In this thesis there is a distinction made between the news feed and the news flow.
This can be seen as the input and the output of the model. Or rather, the feed as
a time series of events and the flow as the expected articles incoming in the near
future, the intensity. The output news flow or intensity could then be used to sim-
ulate a fictional news feed either to reconstruct the past as good as possible or to
predict the future.

However, we will never be able to reconstruct the news articles exact location in
time since the intensity is a probability that an event will happen over a time span.
This is why the intensity itself probably is more interesting to look at and most
results will be revolving around that instead of predicting actual upcoming news.
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Chapter 3

Data

This sections presents some insight into the important properties of news data in
general. Before using the data in the calculations, it was important to carefully study
the structure of the data as well as identify potential flaws or problems that may
affect the results. Therefore, this chapter first provides some general information
about the structure of news data. Thereafter, an overview of the structure and
characteristics of the specific dataset used in this study is presented. Given this
information, a motivation about how the data ought to be used is formulated, which
in turn motivates the choices of mathematical models in the next chapter.

3.1 Dataset Overview
The dataset used throughout this study contains news data from January 1st 2000
until February 28th 2017. Even though the original source of each data point is
an actual article or press release, the information available in the dataset has been
processed to obtain a more compact representation. That is, each original news
piece is first processed by the dataset provider and translated into their standardized
framework. In this framework, each point is represented as a vector with a set of
pre-specified attributes, some of which are numerical values and some categorical.
One important observation here is that several data points may relate to the same
original article, for instance if the article is long and contains information about
different entities. The table 3.1 presents a list of some of the most important fields
with corresponding descriptions.

Table 3.1: Dataset significant fields

TIMESTAMP_UTC
A date-time stamp on the form YYYY-MM-DD-hh:mm:ss.sss indicating
when the news data was received by the interpreting system.
HEADLINE
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The headline text of the original news article
RP_STORY_ID
Unique ID to each data point in the system, distinct across all records.
ENTITY_TYPE
The type of identified entity, which can be either Commodity, Company,
Currency, Nationality, Organization, People, Place, Product or Sports
teams.
ENTITY_NAME
The name of identified entity, e.g. the name of a company or currency
ENTITY_ID
Unique ID related to the identified entity, i.e. all news data points with with
this entity ID is also about the same entity.
COUNTRY_CODE
Two-character string with the ISO-3166 country code associated with the
news data point, e.g. US, CH, XX.
RELEVANCE
A score taking integer values between 0-100 which specifies how strongly
related the identified entity is to the original article, where 0 means it was
merely passively mentioned and 100 means it was considered central to the
story.
EVENT_SENTIMENT_SCORE
The event sentiment score states hos positive/negative that event is. More
specifically, it is a score between -1 and 1 with 2 decimal places that repre-
sents the news sentiment where -1 is very negative and 1 is strongly positive.
EVENT_RELEVANCE
An integer score taking values 0-100 that indicates the relevance of the
identified event. A score of 100 means that it is important and stated in
the headline, whereas a lower score means it was less central and stated
further down in the article.
FACT_LEVEL
String indicating whether the news story is considered a fact, forecast or
opinion.
PROVIDER_ID
The ID of the provider of the news content, e.g. AN for Alliance News and
DJ for Dow Jones Newswires.
NEWS_TYPE
String that specifies the type of news, e.g. FULL-ARTICLE or NEWS-
FLASH.

In addition to these fields, RavenPack has a hierarchical taxonomy system to classify
the content of the news data points. This particular subset of fields enables catego-
rization and filtering on different levels of granularity. The layers in this hierarchical
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structure are as presented below in Table 3.2.

Table 3.2: Dataset hierarchical fields

TOPIC
Highest order in the classification. Can take either of the 5 labels: economy,
business, society, politics or environment
GROUP
Second level classifier, which has a total of 56 possible values, e.g. foreign-
exchange, war-conflict, acquisition-mergers, government and stock-prices
TYPE
A more fine-grained version of Group with 495 different labels. For instance,
the group war-conflict has types violence, military-action, bombing etc.
SUB_TYPE
A further subdivision of the type attribute. For instance, the group war-
conflict has sub-type labels attack, threat, exercise etc.
PROPERTY
An attribute of the event, such as a role or entity. For instance, the group
war-conflict has property labels target, attacker, location etc.
CATEGORY
The most detailed level, being a combination of sub-type and property

One key observation from the data is the existence of an event and how it affects
the structure of the corresponding data point. More specifically, the data can very
broadly be separated into two categories; those with an identified event and those
without. The points without an event contain substantially less information and
lack both sentiment score as well as the hierarchical field structure. Out of the total
amount of data points, 8.4% contain an event and related information. Throughout
this study, the points without an event were deemed to contain too little information
and were thus left out of the analysis. That is, only points containing an event and
the related information were used in order to perform the desired calculations.

3.2 Visualisations of Important Fields
In this section, a number of visualisations are presented to provide a better insight
into the data characteristics and the distributions of important fields. All plots con-
sider data with existing sentiment from all countries and throughout the entirety of
the time frame.

Firstly, Figure 3.1 presents a histogram with the number of news data points from
the 20 countries with the largest news flows. The countries are represented by their
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two-figure country code, see appendix A for country names. One important reali-
sation here is the large over-representation of news from USA, having a flow eight
times larger than the second largest source Great Britain. In addition, the country
code XX indicates international news that were not tied to a specific country. A
total of 253 distinct country codes were present in the data set, out of which some
had a very small appearance frequency.

Figure 3.1: Number of articles from the 20 largest provider countries.

Next, Figures 3.2 and 3.3 shows pie charts of the distributions of relevance and event
relevance fields respectively.
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Distribution of the Relevance fields

Figure 3.2: Relevance R
Red: 0 ≤ R < 80
Cyan: 80 ≤ R < 90
Green: 90 ≤ R < 100
Blue: R = 100

Figure 3.3: Event Relevance ER
Red: 0 ≤ ER < 80
Cyan: 80 ≤ ER < 90
Green: 90 ≤ ER < 100
Blue: ER = 100

Another topic worth examining is the size of the news data flow over time. Figure
3.4 presents a histogram with the yearly amount of news. Here, it is noticeable that
the number of news data points has increased quite steadily over the years. One
explanation for this is the increased availability of online news. Note here that the
year 2017 only contains data points from the months January and February.
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Figure 3.4: Number of articles per year Jan 2000 - Feb 2017.

Other properties can be seen when examining smaller time scopes. Figure 3.5 shows
the daily amount of news for the month of December in 2014. Here, a seasonality
phenomenon can be seen, where the news data flow is substantially smaller dur-
ing weekends in comparison to the week days. Additionally, the flow of news is
seen to decrease over the Christmas holidays, indicating that there is a seasonality
component for larger holidays as well.
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Figure 3.5: Number of articles per day in Dec 2014.

Moreover, figure 3.6 shows the news data count for a selection of groups. It can
be seen that there are quite noticeable difference in the amounts, where groups like
stock-prices have substantially higher frequency than for instance pollution.
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Figure 3.6: Number of articles for 20 of the 56 Group labels in the data.

Lastly, Figure 3.7 shows the distribution of the event sentiment score field with the
range interval 0.05 between -1 and 1. Everything between -0.3 and 0.3 is treated as
a neutral sentiment.
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Figure 3.7: Event sentiment score distribution. A neutral article is defined as be-
tween -0.3 and 0.3 sentiment score. Lower and higher than that yields a negative
and positive article respectively.

3.3 Using the Data
To get a good data set to work with out of this we want as many observations as
possible split up in a convenient amount of groups. To do this we will use data from
January 2007 to December 2016. This is to try to get a somewhat homogeneous flow
where the internet at least existed in the beginning. Also some financial depressions
and wars/conflicts has occured since then which should make the data a bit diverse.

To get as many observations as possible we will not limit anything according to
relevance. That is, in figure 3.2 and figure 3.3 all observations will be used. This
will of course give a higher variance to our results however when not filtering on
relevance the data set goes from 30 million to 170 million observations. Our hope in
this is that the increase in observations will be more significant than the increased
variance because of not filtering.

For country and sentiment the respective label in Ravenpack will be used and for
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topic the second layer group in the hierarchy will be used. Later in the thesis this
group will be called topic occasionally since that is a more common name for it.
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Chapter 4

Mathematical Background

In this chapter, a formal mathematical background of the models utilized in this
thesis project is given. To begin with, some theory about stochastic processes is
presented. In particular, this part focuses on presenting the Hawkes process, its
important properties as well as how it is different from more simple models. There-
after, the models for the news data flows are formalized, which ties back to both
the data structure presented in Chapter 3 as well as the stochastic process theory
provided in the first section of this chapter. After this, the chapter provides some
background theory on the optimization algorithms and parameter estimation pro-
cedures used in the implementation. (Lastly, some background for the clustering
methods used throughout the study are presented.)

4.1 Stochastic Processes
This part provides some important mathematical background on stochastic pro-
cesses and the Hawkes process in particular, which is an essential part of modeling
the news data flow in this thesis project. However, prior to defining the Hawkes
process model, some more basic concepts are outlined.

4.1.1 Basic Stochastic Processes

Firstly, the topic of point processes is an important concept in probability theory and
is especially central in modeling spatial data. In the setting of news data flow, a point
process can intuitively be thought of as the random variables describing the news
arrival times. The formal definition of a point process [Laub et al., 2015, Karr, 1986]
is stated below.

Definition 4.1. (Point process)
A sequence of non-negative random variables T = {T1, T2, . . . } on a probability space
(Ω,F ,P) is a point process if
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(i) P(0 ≤ T1 ≤ T2 ≤ . . . ) = 1,

(ii) The number of points in a bounded region of [0,∞) is finite almost surely, i.e.
P
(

lim
n→∞

Tn <∞
)

= 1.

In many cases, a point process has a corresponding count process that describes
the cumulative count of arrivals. The definition of the counting process is presented
below.

Definition 4.2. (Counting Process)
A stochastic process N : [0,∞) × Ω → N0 on a probability space (Ω,F ,P), with
Nt : Ω→ N0 such that Nt(ω) = N(t, ω) ∀ ω ∈ Ω, is a counting process if

(i) P(N0 = 0) = 1,

(ii) P(Nt <∞) = 1, ∀ t ∈ [0,∞),

(iii) it holds for all s, t ∈ [0,∞) with s < t that P(Ns ≤ Nt) = 1,

(iv) it holds that N is a non-decreasing right-continuous step function with incre-
ment size 1.

Furthermore, a useful concept related to the point- and counting processes is the
history sigma algebra. That is, for each time t ∈ [0,∞), the history sigma algebra
Ht of a counting process N is given as Ht = σ ({Nu : 0 ≤ u ≤ t}). Consequently,
the sequence H = {Ht}t∈[0,∞) is a filtration on the measurable space (Ω,F). How
a counting process depends on its related filtration is of great significance in many
applications and its importance for this study will be presented later. An important
counting process with some special such properties is the Poisson process, which is
defined below.

Definition 4.3. (Homogeneous Poisson Process)
A counting process N : [0,∞)×Ω→ N0 on a probability space (Ω,F ,P) is a homo-
geneous Poisson process with intensity λ ≥ 0 if for arbitrary t ∈ [0,∞) it holds for
all h ≥ 0 that

P (Nt+h −Nt = m) =


1− λh+O(h), m = 0,
λh+O(h), m = 1,
O(h), m > 1,

(4.1)

where O signifies some function o : [0,∞)→ R with the property

lim
h↘0

o(h)
h

= 0, (4.2)
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which also gives that o(0) = 0. This definition in turn implies that non-overlapping
intervals of N are independent random variables, i.e. for all combinations s, t ∈
[0,∞) such that s < t it holds that the increment Nt −Ns is independent of Hs.
Moreover, the increments are stationary and Nt −Ns ∼ Po(λ(t− s)). The term
homogeneous specifies that there is no time dependency in the intensity, However in
some situations it may happen that the intensity is not a constant but instead vary
with time, e.g. with some linear increase or seasonal oscillations. In such a case,
an inhomogeneous Poisson process is obtained. The definition of such a process is
presented below.

Definition 4.4. (Inhomogeneous Poisson process)
A counting process N : [0,∞)×Ω→ N0 on a probability space (Ω,F ,P) is an inhomo-
geneous Poisson process with intensity function λ : [0,∞) → [0,∞) if for arbitrary
t ∈ [0,∞) it holds for all h ≥ 0 that

P (Nt+h −Nt = m) =


1− λ(t)h+O(h), m = 0,
λ(t)h+O(h), m = 1,
O(h), m > 1,

(4.3)

where as in the homogeneous case, O signifies some function o : [0,∞)→ R satisfying
the property in equation 4.2. For this case, it is given that

Nt+h −Nt ∼ Po

 t+h∫
t

λ(u) du

 , t ∈ [0,∞). (4.4)

4.1.2 The Hawkes Process

Now, it is time to formally introduce the Hawkes process, which is a fundamental
part in this thesis study. The Hawkes process is in some ways a generalization of
the Poisson process, however where the process is self-exciting. This means that
every observed arrival in the process causes an increase in the value of the intensity
function, thus also increasing the probability of observing more arrivals in the future.
In addition, this implies that the intensity does not only vary with time, but also
depends on the history sigma algebra generated by the process up until the current
time point. The definition of the Hawkes process is thus presented below.

Definition 4.5. (Hawkes process)
A counting process N : [0,∞) × Ω → N0 on a probability space (Ω,F ,P) with asso-
ciated filtration H is a Hawkes process if for arbitrary t ∈ [0,∞) it holds that
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(i) for all h ≥ 0

P (Nt+h −Nt = m |Ht) =


1− λ∗(t)h+O(h), m = 0,
λ∗(t)h+O(h), m = 1,
O(h), m > 1,

(4.5)

(ii) the conditional intensity function λ∗ is given as

λ∗(t) = b+
t∫

0

ν(t− u) dNu, t ∈ [0,∞) (4.6)

where b > 0 is defined as the background intensity and ν : (0,∞) → [0,∞) is
defined as the excitation function.

As before, O signifies some function o : [0,∞)→ R satisfying the property in equa-
tion 4.2. Here, the conditional intensity function is an important difference from the
previous Poisson process since it depends on the history of the process and so its fu-
ture values are not deterministic. More formally, the conditional intensity function
λ∗ can be defined as

λ∗(t) = lim
h↘0

E[Nt+h −Nt |Ht]
h

, t ∈ [0,∞). (4.7)

Furthermore, the choice of excitation function ν may vary between applications and
used data. One popular choice that has been used in for example seismological
modelling is a function, also called Omori’s law, on the form

ν(t) = k

(c+ t)p , , t ∈ [0,∞), (4.8)

where k, c, p are positive constants. Another common option is an exponential kernel
on the form

ν(t) = V e−γt, , t ∈ [0,∞), (4.9)

where V, γ are some positive constants. Moreover, it can be noted that if
ν(t) = 0 ∀ t ∈ (0,∞), the Hawkes process becomes identical to the homogeneous
Poisson process. For an observed sequence of arrival times t = {t1, t2, . . . } of the
process during a time interval [ta, tb] ⊂ [0,∞), the conditional intensity function
presented in equation 4.6 can be written as
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λ∗(t) = b+
∑
tl∈t:
tl<t

ν(t− tl), t ∈ [0,∞). (4.10)

Consequently, the likelihood function and corresponding log-likelihood function of
such a realisation can be written as

L =
∏
tl∈t

λ∗(tl)e
−

tb∫
ta

λ∗(u) du
, (4.11)

logL =
∑
tl∈t

log (λ∗(tl))−
tb∫
ta

λ∗(u) du. (4.12)

The proof for deriving this likelihood is left out of this report, however a derivation of
the expression can be found in the literature reference [Laub et al., 2015]. Next, the
first Hawkes process can be extended to the case where multiple counting processes
are considered. In such a case, the processes can have both self- and mutually-
exciting properties, i.e. each process’ intensity is not only influenced by itself but
also by the other counting processes. Such a scenario can be modeled using the
multivariate Hawkes process, which is defined below.

Definition 4.6. (Multivariate Hawkes Process)
Consider a collection of n counting processes N = {N (1), . . . , N (n)} on a probability
space (Ω,F ,P) with associated filtration H. Then N is a multivariate Hawkes process
if for each i ∈ {1, . . . , n} it holds that

(i) for all h ≥ 0

P
(
N

(i)
t+h −N

(i)
t = m |Ht

)
=


1− λ∗i (t)h+O(h), m = 0,
λ∗i (t)h+O(h), m = 1,
O(h), m > 1,

(4.13)

(ii) the conditional intensity function λ∗i corresponding to N i can be written on
the form

λ∗i (t) = bi +
n∑
j=1

 t∫
0

νij(t− u) dN (j)
u

 , t ∈ [0,∞), (4.14)

where bi is the background intensity function and νij : (0,∞) → [0,∞) is the
excitation function from N (j) to N (i).
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As before, O signifies some function o : [0,∞)→ R satisfying the property in equa-
tion 4.2. Next, consider an observed sequence of arrival times ti = {ti1, ti2, . . . }
corresponding to each counting process N (i), i ∈ {1, . . . , n} during a time interval
[ta, tb] ⊂ [0,∞). The conditional intensity function λ∗i for each i can thus be written
as

λ∗i (t) = bi +
n∑
j=1

∑
tj
l
∈tj :
tj
l
<t

νij(t− tjl ), t ∈ [0,∞), (4.15)

with the likelihood function and corresponding log-likelihood taking the forms

L =
n∏
i=1

∏
ti
l
∈ti

λ∗i (til)e
−

tb∫
ta

λ∗i (u) du
, (4.16)

logL =
n∑
i=1

∑
ti
l
∈ti

log
(
λ∗i (til)

)
−

tb∫
ta

λ∗i (u) du

 , (4.17)

i.e. the total likelihood is a product over terms similar to those presented in equation
4.11. Additionally, the exponential excitation function introduced in equation 4.9
can be extended to the multivariate case to model the excitation from N (j) to N (i)

using the form

νij(t) = Vije
−γjt, (4.18)

where Vij , γj are constants, which inserted in equation 4.14 gives the conditional
intensity function for each i to take the form

λ∗i (t) = bi +
n∑
j=1

∑
tj
l
∈tj :
tj
l
<t

Vije
−γj(t−tj

l
), t ∈ [0,∞) (4.19)

Here, Vij can be thought of as elements in an excitation amplitude matrix V ∈ Rn×n.
Similarly, the parameters bi and γj and can be thought of as elements in vectors
b ∈ Rn and γ ∈ Rn respectively. Of course, alternative expressions for the excitation
function can also be proposed, e.g. by stating a non-stationary model where the
parameters can vary with time. For instance, by redefining the background intensity
constant bi as a function bi : [0,∞) → [0,∞) a case similar to the one with the
inhomogeneous Poisson processes presented in Definition 4.4 is obtained. This will
further down be called an Inhomogeneous Hawkes Process.
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4.2 Modeling News Data
This section provides a description for how the news data is modeled throughout
this study. To begin with, every news data point observed during some time interval
[ta, tb] ⊂ [0,∞) is represented by a point yi such that

yi = (ti, xi) ∈ [ta, tb]×X , (4.20)

where ti is time stamp at which the piece of news was observed, xi is the set of
attributes assigned to the point by the text interpretation system and X is the
attribute space. For instance, if the data point is described with m real-valued
numerical attributes it is obtained that

xi ∈ X ⊆ Rm. (4.21)

Next, the sequence of observed data is defined by y = {y1, y2, . . . } with associated
arrival times and attributes defined as t = {t1, t2, . . . } and x = {x1, x2, . . . } respec-
tively. This data sequence includes the whole set of observed news data points,
i.e. there is no sorting process based on the content of news. However, in order to
properly apply the multivariate Hawkes process model, the aggregated news data
ought to be partitioned into classes where each class is characterized by containing
homogeneous types of news. In this study, the model for partitioning the news flow
into classes have two different versions; distinct classes and overlapping classes. In
short, distinct classes here means that the attribute space X is divided into dis-
tinct subsets, where each subset corresponds to a class, whereas overlapping classes
means that each class is represented by a probability density over the whole at-
tribute space. Illustrations of these two concepts are presented below in Figures 4.1
and 4.2. Both of these two model alternatives are also outlined more in detail in
the next subsections.

Figure 4.1: Distinct classes Figure 4.2: Overlapping classes
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4.2.1 Distinct Classes

In the first model it is assumed that the attribute space X is separated into disjoint
classes. That is, if there is a total of n classes it is assumed that

X =
n⋃
i=1
Xi, Xi ∩ Xj = ∅, i 6= j (4.22)

where Xi is the part of the attribute space corresponding to class i. With this
assumption, the flow of news data from each class i is denoted as the sequence
yi = {yi1, yi2, . . . } with associated time sequence ti = {ti1, ti2, . . . } and attribute se-
quence xi = {xi1, xi2, . . . }, similarly as in the general model but here separated by
class, i.e. yi = {yj ∈ y : xj ∈ Xi}.

The news flow is modeled with a multivariate Hawkes process N = {N1, . . . , Nn}, as
presented in the previous section, such that each class i is represented by a counting
process Ni modeling the arrival times and cumulative count of news data points in
that specific class. Furthermore, by using the likelihood expression stated in equa-
tion 4.16 as well as the generalized exponential excitation function for multivariate
Hawkes processes introduced in equation 4.18 with the parameters b, V, γ in the
conditional intensity functions, the likelihood for the arrival times t of an observed
news data sequence y during the time interval [ta, tb] is given by

p(t|b, V, γ) =
n∏
i=1

∏
ti
l
∈ti

λ∗i (til|b, V, γ)e
(
−
∫ tb

ta
λ∗i (t|b,V,γ) dt

)
, (4.23)

where λ∗i (t|b, V, γ) indicates the function in equation 4.19 with the specific parame-
ter choice b, V, γ.

Next, the spatial attributes of a news data points generated in class i is deter-
mined by a probability density function fi : Xi → [0,∞). Since they are categorical
and probability attributes, this density can be partitioned into a product of multi-
nomial densities. For each class i, the multinomial parameters can be denoted by
ρi, which contain the point-wise probabilities in the categorical domain.

Using this density model for the spatial attributes, the likelihood for an attribute
sequence x corresponding to an observed news data sequence y can be written as

p(x|ρ) =
n∏
i=1

∏
xi

l
∈xi

fi(xil|ρi), (4.24)
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where ρ = {ρi}ni=1. Next, it is modeled that the prior distribution for the parameters
b, V, γ, ρ can be factorized such that

fbV γρ(b, V, γ, ρ) = fbV γ(b, V, γ)fρ(ρ)

= fV (V )
n∏
i=1

fbi
(bi)fγi(γi)fρi(ρi).

(4.25)

Finally, given the parameterization of the time- and space factors for the news data
flow as well as the factorization of the parameters’ prior distribution, the likelihood
function for the observed news data sequence y also factorizes and can be written
as

p(y|b, V, γ, ρ) = p(t|b, V, γ)p(x|ρ). (4.26)

This gives the posterior distribution over the parameters to be

p(b, V, γ, ρ|y) = p(y|b, V, γ, ρ)fbV γρ(b, V, γ, ρ)
p(y)

= p(t|b, V, γ)fbV γ(b, V, γ)
p(t)

p(x|ρ)fρ(ρ)
p(x) .

(4.27)

From this expression, it can be concluded that the distinct class model with the
presented properties yields the time- and attribute aspects to be separated in the
posterior distribution, which in turn means that the time parameters and attribute
parameters can be optimised independent of each other.

4.2.2 Overlapping Classes

A generalization of the first model would as mentioned be to no longer require the
attribute space to be separated into disjoint classes. In such a case, the condi-
tional intensity function related to the Hawkes process is redefined as a function
λ∗ : [0,∞)×X → [0,∞) such that for a sequence of data y = {y1, y2, . . . } observed
during the time interval [ta, tb] it is given that

λ∗(t, x) = b(x) +
∑

(tl,xl):
tl<t

ν(t− tl, x, xl), t ∈ [ta, tb], x ∈ X . (4.28)

In this setting, how much the news flow at a point x ∈ X is influenced by other
observations is determined by functions gi : X → [0,∞), i ∈ {1, . . . , n}, such that
each gi is a density function that represents a class in this new setting, which ties
back to the structure introduces in Figure 4.2. Taking the sum over these densities,
a function g : X → [0,∞) is defined such that
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g(x) =
n∑
i=1

gi(x), x ∈ X . (4.29)

Furthermore, it is modeled that the parts in the conditional intensity function take
the forms

b(x) =
n∑
i=1

big
i(x), x ∈ X , (4.30)

and

ν(t− t′, x, x′) =
n∑
i=1

n∑
j=1

Vijg
i(x)g

j(x′)
g(x′) e

−γj(t−t′), (4.31)

where bi, Vij , γi ∈ R are constants. Each element in the first sum can be interpreted
as how a point x in class i is affected by an observed data point x′, weighted by the
probability gj(x′)

g(x′) that point a x′ is in class j.

As shown in Figure 4.2, a point in the attribute space can be contained in sev-
eral classes with different probabilities. This probability will in a general context
with both real and categorical variables such that for each i it holds that

gi(x) = f(x|ρi), x ∈ X . (4.32)

where ρ = {ρi}ni=1 represent the multinomial parameters describing the distribu-
tion over the categorical variables. It can be noted that this setup is the same as
in the distinct classes model. However, even though the overlapping and distinct
models show similarities when written this way, there are important differences. A
significant difference is that the spatial and time dependent parts of the likelihood
no longer are independent. The likelihood p(y|b, V, γ, ρ) for an observed news data
sequence y has to be written in the full form as

∏
yl∈y

λ(tl, xl|b, V, γ, ρ)e
−

tb∫
ta

∫
x∈X

λ(t,x|b,V,γ,ρ) dx dt
, (4.33)

and the posterior distribution of the parameters is obtained to be

p(b, V, γ, ρ|y) = p(y|b, V, γ, ρ)fbV γρ(b, V, γ, ρ)
p(y) . (4.34)
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Now as an appetiser for the next section it can be noted that the weighting of the
model is what makes this model more flexible. The gradient descent methods that
are used to estimate the excitation and background intensities can in this framework
be used on the multinomial distributions. That is not possible in the distinct class
version where the class optimisation would be a combinatorical problem which is
time consuming to the point where it is impossible.

4.3 Optimization and Parameter Estimation
To estimate the parameters in the mathematical expressions that model the news
data flow was central in this thesis. More specifically, given the observations in the
provided dataset and the underlying model, the likelihood function for the observed
sequences could be formulated. Having stated this function, the parameters could
be estimated by maximizing the likelihood with respect the these parameters in a
maximum-a-posteriori manner. However with the complex models used throughout
this study, closed-form solutions for the parameters could not be formulated. In
addition, a large number of parameters needed to be estimated simultaneously and
the size of the input data was generally very large. Dealing with big datasets
as well as high-dimensional parameter spaces was therefore of vital importance.
Hence, iterative methods had to be used to numerically optimize the likelihood and
estimate the desired parameters. This section provides some information about
these numerical methods used to estimate the parameters.

4.3.1 Gradient Descent

The gradient descent method is one of the most basic methods in numerical optimiza-
tion. This subsection provides a description of the algorithm in a general setting.
Consider the problem of minimizing an objective function F : Rm → R, m ∈ N.
That is, the goal is to identify an optimal solution w∗ ∈ Rm such that F (w∗) ≤
F (w), ∀w ∈ Rm. Note that this is analogous to maximizing −F . In general, a
closed-form solution for w∗ can not be derived. In such a case, the gradient descent
algorithm can be used to find an estimate for w∗. This algorithm requires F to be
differentiable and can be described by the following steps

a. Define a prior guess w0 for the minimum of the objective function.

b. Given current iteration index t, update the estimated solution by

wt+1 = wt − ηt∇F (wt) (4.35)

where ηt is the learning rate in iteration t.

c. Check convergence criteria |F (wt+1) − F (wt)| < δ for some predefined small
constant δ. If convergence criteria satisfied, break the algorithm. Otherwise,
repeat from point 2.
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Here, the learning rate ηt can be defined as a function of t. This rate is of importance
and has to be tuned to the specific problem in question in order to produce a solu-
tion that converges to the optimal value. For a suitable choice of the learning rate,
the solution is guaranteed to converge to a local minimum. However, the objective
function F is in general not convex, which means that the obtained approximate
local minimum is not necessarily the global minimum. Consequently, the obtained
solution will often heavily depend on the prior guess w0.

In some problems it is of usage to adapt the algorithm to the problem-specific
geometry in order to achieve faster convergence. An example of such an algorithm
is ADAM [Kingma and Ba, 2014], which can be seen as an extension to gradient de-
scent that uses a cumulative gradient as well as an estimate for the second moment.
This method will be used exclusively in the thesis.

4.4 Statistical Model Evaluation
When evaluating a statistical model there are some things to consider. This includes
both assessment for how well a specific model fits provided data as well as compar-
ison of hierarchical models. Typically, this becomes a trade-off between choosing
a more complex model, which can adapt to the data more flexibly but may cause
computational issues and overfitting, or choosing a simpler model, which may be
more easily handled but provide a worse fit. This is an important part of this study.
Hence, this section provides some mathematical background to the statistical evalu-
ation tests that were utilised to compare the mathematical models examined in this
study.

Firstly, perhaps the most fundamental concept in this area is the likelihood func-
tion, which has been used earlier in this report, e.g. in equations 4.11 and 4.16.
Here, given the suggested underlying model and a set of observations, the likelihood
function can be stipulated. More formally, the likelihood function can be presented
in the following way:

Consider a collection of parameters θ for a suggested underlying modelM(θ). Let
the random variables X1, . . . , Xk have a joint density function f(X1, . . . , Xk|M(θ))
based on this model. For a given sequence of observations X1 = x1, . . . , Xk = xk
the likelihood function L is given as

L = f(x1, . . . , xk|M(θ)). (4.36)

This means that L is the likelihood of the observations given that the model is true.
Using this formulation, L can be thought of as a function of θ and thus maximised
with respect to these parameters. Note that maximising the likelihood function L is
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analogous to maximising logL of the monotonous logarithmic function, or likewise
to minimise − logL. This is also the procedure used to estimate the model param-
eters in this study, as presented in Sections 4.1-4.3 above. However, the maximised
likelihood function L̂ is not necessarily the best measure of assessment and can not
always be used to compare different models. This is the case since a larger model
with additional parameters has more flexibility and will therefore always yield a
larger likelihood for the same set of data. For such a case, the likelihood function
says nothing about overfitting. Hence, regularisation terms can be introduced to
take this into account when evaluating the statistical models.

Two such alternatives which include regularisation terms are the AIC and BIC
measures [Akaike, 1973, Schwarz, 1978]. Consider a dataset containing k observa-
tions and a model with q parameters. Given the maximised likelihood function L̂
obtained from the optimisation step, the AIC and BIC measures are defined as

AIC = −2 log L̂+ 2q, (4.37)

BIC = −2 log L̂+ log(k)q. (4.38)

Here, the BIC measures takes into account the number of observation in the input
dataset and thus more heavily penalizes model complexity in the cases when k >
exp(2). Thus, in the context of this study, the negative log-likelihood and BIC
measures will be the primary statistics in assessment and selection of models.
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Chapter 5

News Flow Models

With the theory down we are ready to finalise how the models will come together
with the data seen in chapter 3.

5.1 Bucketing
To be able to actually go through the massive amount of data, the estimation of the
parameters has to be done very efficiently. The data comes at a resolution of 0.001
seconds which means that there are over 1010 time stamps for the whole data set
over 10 years. Over this time there are also about 170 million actual events recorded
that are classified with a sentiment by RavenPack.

The structure of Hawkes processes are heavily dependant on old values. Becuase of
this the implementation in this thesis uses recursive computation, see further down.
However even though this recursive trick is used, the nature of a recursive model
makes looping over old values unavoidable. Therefore every iteration of the loop has
to be done in sequence. This makes parallelism of the whole program impossible
and therefore that time consumption runs away quickly.

Our solution to this was to zoom out and lower the resolution of the data. To
get reasonable run times the final resolution used was 1 week. This means that
every article produced in the same week got the same time stamp. This is a re-
duction of time consumption approximately with a factor 170000000

52∗10 ≈ 330000. This
comes from the amount of events divided by the time steps of the new resolution.
The reason why it is possible to get this fast computation with lower resolution is
because of bucketing. If the amount of events are greater than the number of time
stamps it is faster to use a representation of the data as ”the number of articles in a
day” than the time stamp of every article. With a few thousand optimisation steps
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needed to get optimised values this takes a few hours or days depending on model.
Using a higher resolution would have been possible if the data set was cut to a way
shorter time period or cutting the data in other ways, for example only looking at
a single news type.

However, having a higher resolution is not something that is necessarily good for
the interpretation of the results. In our models the excitation kernel only consists
of 1 decay time per class. This has some implications. Compare that to another
example model

vij(t) = (e−γ1jt + e−γ
2jt + e−γ

3jt + e−γ
4jt)V ij (5.1)

where it is possible to find the 4 most important decay times. With the model used
in this thesis the only decay time found will be the most important one. That is,
we will neglect everything that are not the most important excitation.

What happens when bucketing the articles in the same bucket is that excitation
between these articles are neglected. This means that interactions that are faster
than a week are erased in an artificial way. If we were to model high-frequency
trading news model this is extremely bad since we might be interested in what will
happen with the news flow intra-second. In this thesis though we are focused on
trying to model the news flow over a longer time period to be able to see if trends in
the news flow can be seen for example during economic crisis or a migration stream.

Because of this erasing the fast excitations is probably beneficial for our results
since a lot of the excitations otherwise would be very fast and therefore the results
we are after would only be visible in a model with more decay parameters, which
are very hard to optimise compared to linear parameters. With both computation
times and excitation in focus, the choice to bucket together the articles at a suitable
resolution seems like a good idea.

With this bucket method, a given time interval [0, T ] becomes a grid with inter-
vals of increment size ∆t. Thus in this setting, every observation will be on one
of the grid points. Likewise, this means that every grid point, or bucket, can store
several events. The input time sequence t is projected on the grid according to

tG = projG(t), (5.2)

where tG is the projected time sequence and projG is the operator which projects
the observed time sequence onto the discretized grid G. Here, the number of events
in every bucket in class i and grid point k is denoted by ni,kG . In addition, TG is
denoted as the total number of buckets.

Another thing to note about using exactly 1 week as bucket size is that we limit
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the day effects. This is nice because the news flow is considerably lower during
the weekends, as was presented in the data chapter, see figure 3.5. This is very
bothersome when using a Hawkes model since the excitations does not depend on
the weekday. To avoid this some adjustments has to be made but they are either
extremely complex or not very good. Because of this, with a normal Hawkes model,
the week bucketing will increase our accuracy.

5.2 Hierarchical Structure
In the data set used in the end there are 254 country codes, 56 news groups and 3
sentiments. This makes for (254 ∗ 56 ∗ 3)2 = 1820899584 parameters in the excita-
tion matrix. To get a more stable and robust result decided to decrease the amount
of variables. To achieve this two approaches have been taken. First some of the
256 country codes have extremely sparse news reporting. This fact and that some
countries should have similar behaviour enabled the clustering of countries close to
each other. See table 10.4-10.9 in Appendix A how the regions were defined.

This projection was from 256 dimensions to 34 geography dimensions. These new
34 regions then could be grouped together but they were never split apart. These
34 were the initial grouping of countries in the thesis. No tampering was done with
the 56 news groups or the 3 sentiments.

5.3 Time-dependent Background Intensity
Furthermore the news flow is as stated in the data chapter extremely non-stationary.
It is increasing in time it seems, at least during the recent years with internet and
social media where there are many new platforms to release news. There are also
periodic behaviour in most topics, especially the economic news.

This will if left alone create many artificial excitations between classes that share
the same type of periodicities or growth but have little to no real correlations be-
tween each other. Here the base assumption that the news flow drives itself and that
there are no outside factors, such as that seasons exist, falters. The assumption is of
course not correct since everything happens in the real world but for an unexpected
event the difference is small since that event will spawn articles that exhibit the
behaviour of that the first article spawned them. The difference with known outside
effects is that the behaviour is uninteresting and the result will be misleading.

This is why it would be optimal to use a background intensity that takes care
of all the known outside effects so the excitations are interesting and not used to
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model seasonality. This turns out to be not so easy since some of the news topics
and countries have very unique patterns. However most news topics have a trend
of growing news flow and at least the economic news has a quarter year periodicity.
The inhomogenous poisson procees that make up the time-dependent background
intensity for the Hawkes Process will therefore be

b(t) = b+ btt+Asin(wquartert+ φ) (5.3)

where b is the constant base intensity, bt models the linear trend, A the amplitude,
wquarter is the quarter year frequency and φ the phase shift. All these variables are
the estimated for each class in the models in the optimisation step. The phase shift
represents that not every country release their quarterly reports at the same time.

5.4 Model 1: Discrete Classes

5.4.1 Spatial Likelihood

From equation 4.27 now the p(x|ρ) is to be calculated to get the posterior of the
parameters to be able to maximise the likelihood. In fact as stated in the theory
section, fx(x) does not depend on the time likelihood why this spatial likelihood
part only is needed to compare different class setups. It serves as a penalty to hav-
ing many article types in 1 class. With this the Bayesian Information Criteria, BIC,
can be used to find a good balanced class setup.

Assume that the news are Multinomial distributed. The news types in the classes
just projects the news articles from the original class space to the new class space
and in that new space get the distribution of old classes in the new classes to get
out the probability that an article in a new class is from a certain news type.

xt = Pxtold (5.4)

nx is here the number of articles in the spatial value in the new space, P the
projection matrix and xtold the number of articles in every old class every time
step (the bucket implementation discussed in the previous section). Using this the
spatial likelihood is just the logarithm of the projection matrix times the amount of
old articles in every class

∑
t

xtold ln P ◦
∑
t x

t
old∑

X P ◦
∑
t x

t
old

(5.5)

where ◦ indicates the element wise product.
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5.4.2 Time-dependent Likelihood

The likelihood of the multivariate Hawkes Process can be seen in (4.16). Given the
bucketing procedure described in the previous section and the projected sequence of
times tG , the integral term in the log-likelihood of the multivariate Hawkes process
stated in equation 4.16 can be written as

T∫
0

λ∗i (u) du =
TG∑
k=0

tk+1∫
tk

λ∗i (u) du. (5.6)

Consequently, the total log-likelihood of the projected time sequence becomes

logL =
n∑
i=1

 TG∑
k=0

ni,kG log (λ∗i (tk))−
TG∑
k=0

tk+1∫
tk

λ∗i (u) du

 (5.7)

Here, it is convenient to write the intensity as a recursive sum. For each i and for
all k ∈ {1, . . . , TG} it holds that

λ∗i (tk) = bi +
n∑
j=1

k−1∑
m=0

Vijn
j,m
G e−γj(tk−tm)

= bi +
n∑
j=1

Vij

(
nj,k−1
G e−γj(tk−tk−1) +

k−2∑
m=0

nj,mG e−γj(tk−tm)
)

= bi +
n∑
j=1

(
Vijn

j,k−1
G e−γj(tk−tk−1) + λ∗,bij (tk−1)e−γj(tk−tk−1)

)

= bi +
n∑
j=1

λ∗,b,+ij (tk−1)e−γj(tk−tk−1)

(5.8)

For the point where k = 0 it holds that λ∗i (t0) = λ∗i (0) = bi. Here, the exponent
label + indicate that it is to the right of the discontinuity. Similarly, the exponent
label b indicates that the base intensity has been left out. The last equality comes
from the definition that

λ∗,b,+ij (tk) = Vijn
j,k
G + λ∗,bij (tk). (5.9)

Because of the time discretisation, the excitation jumps only occur at the grid
points. Hence, the integral in equation 5.7 will just be an exponential decay scaled
with λ∗,b,+ij (tk). It is here obtained that
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n∑
i=1

 TG∑
k=0

ni,kG log (λ∗i (tk))−
TG∑
k=0

tk+1∫
tk

λ∗i (u) du


=−

n∑
i=1

biT +
n∑
i=1

TG∑
k=0

ni,kG

(
log (λ∗i (tk))

−
n∑
j=1

λ∗,b,+ij (tk)
tk+1∫
tk

e−γj(u−tk) du
)

=−
n∑
i=1

biT +
n∑
i=1

TG∑
k=0

(
ni,kG log

bi +
n∑
j=1

λ∗,b,+ij (tk)e−γj(tk+1−tk)


−

n∑
j=1

λ∗,b,+ij (tk)
1− e−γj∆t

γj

)
.

(5.10)

This form of the time-dependent likelihood now has a typical recursive form. With
this recursive way of describing the likelihood we can construct an algorithm like
algorithm 1

Algorithm 1 Distinct Classes Log-likelihood, Explanatory
1: procedure LogLike
2: Project old classes on new class space
3: Calculate ∆t
4: while t < T do:
5: Propagate the intensities 1 time step
6: Integrate intensities 1 time step, subtract from log-likelihood
7: Take the logarithm of the intensities, add to log likelihood
8: Add new articles in every class this time step
9: Sum up log-probabilities for the new classes, add to log-likelihood

10: return log-likelihood.

which is easy enough to understand. Apart from the bucketing version of this al-
gorithm a partly similar algorithm is also proposed in [Bowsher, 2007] and used in
[Yang et al., 2017]. However there are ways to make this algorithm even faster than
how it is stated above which is beneficial for fast computation.

In the introduction to the model in the theory section it is mentioned that the
decay time, γ, is the same for every emitter of excitation. This means that every
news article type affects all other news types the same amount of time, but with dif-
ferent amplitude. As a contrast a more complex model could have been used where
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γ has an index for both sender and recipient of excitation. This simplification is
very convenient for the algorithm since it is possible to propagate the exponentials
without taking the linear combination to get out the intensities in every recursive
step. The last term above with all sums rearranged for clarity is

n∑
i=1

TG∑
k=1

n∑
j=1

λ∗b+ij (tk−1)1− e−γj∆t

γj
. (5.11)

This means that every time step, which goes over the middle sum, it sums over the
emitting class j. When the class number becomes large this is very time consuming.
The faster version instead is to do the recursive sum first and then sum over the
emitting and receiving classes.

n∑
i=1

n∑
j=1

TG∑
k=1

λ∗b+ij (tk−1)1− e−γj∆t

γj
. (5.12)

Now recall that the only i-dependence in λ∗b+ij (tk−1) is in Vij . Now take out the
factor Vij and denote that λ∗bV+

j (tk−1) and the term becomes

n∑
i=1

n∑
j=1

Vij

TG∑
k=1

λ∗bV+
j (tk−1)1− e−γj∆t

γj
. (5.13)

which is suited for parallel computations. With this we can construct an algorithm
to calculate the log-likelihood which is faster than the original setup. Using the
notation that a variable without index i or j is the respective matrix or vector it
becomes

n∑
i=1

V
TG∑
k=1

λ∗bV+(tk−1)1− e−γ∆t

γ
, (5.14)

and with this the algorithm can be constructed which can be seen in algorithm 2
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Algorithm 2 Discrete Classes Log-likelihood, Mathematical
1: procedure LogLike
2: tG ← ProjG(t)
3: ∆t← T

TG

4: I∆t ← 1−e−γ∆t

γ
5: t = −1
6: λ∗,b,V,+−1 ← 0
7: while t < TG do:
8: λ∗,V,bt+1 ← λ∗,b,V,+t e−γ∆t

9: llog,t+1 ← nt+1
G log (b+ V λ∗,V,bt+1 )

10: λ∗,b,V,+t+1 ← λ∗,b,Vt+1 + nt+1
G

11: t← t+ 1

12: log p(t|b, V, γ)← sum
(
−bT +

TG∑
t=0
llog,t − V

TG∑
t=0

(λ∗,b,Vt I∆t)
)

13: Calculate log p(x|ρ)
14: log p(y|b, V, γ, ρ)← log p(t|b, V, γ) + log p(x|ρ)
15: return log p(y|b, V, γ, ρ).

Note here row 9 in the algorithm which is the big time consumer. This is because
the logarithm is not a linear operator and hence taking the sum over t first is not
possible like (5.14) showed was possible for the integral part of the likelihood. This
would be a big increase in performance if any fast approximations to calculate this
could be made, but this has not been tested in this thesis.

5.5 Overlapping Classes
When the classes are overlapping the likelihood function can no longer be split up
in time and space. This is because the excitation kernel will be dependent on both
variables whereas before it was only dependent on time. As in the time dependent
part of the discrete classes it is convenient to start with the log-likelihood which
with the same bucketing and hierarchical structure as before

logL =
n∑
i=1

 TG∑
k=0

nxk,k
G log (λ∗i (tk, xk))−

TG∑
k=0

tk+1∫
tk

∫
x∈X

λ∗i (u, x)dxdu

 (5.15)

The trouble for the computations is now that the intensity no longer is just the
intensity of a categorical variable in time but an intensity in space and time. The
recursive behaviour needed to speed up everything now has to include the spacial
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variable and then

λ(tk, xk) = b(xk) +
k−1∑
m=0

ν(t− tm, x, xm) =

=
N∑
i=1

big
i(xk) +

k−1∑
m=0

N∑
i=1

N∑
j=1

Vijg
i(xk)

gj(xm)∑N
l=1 g

l(xm)
nxm,m
G e−γj(tk−tm) =

=
N∑
i=1

big
i(xk) +

N∑
i=1

N∑
j=1

Vijg
i(xk)

(
gj(xk−1)∑N
l=1 g

l(xk−1)
n
xk−1,k−1
G e−γj(tk−tk−1)+

+
k−2∑
m=0

gj(xm)∑N
l=1 g

l(xm)
nxm,tm
G e−γj(tk−tm)

)
=

=
N∑
i=1

big
i(xk) +

N∑
i=1

N∑
j=1

(
Vijg

i(xk)
gj(xk−1)∑N
l=1 g

l(xk−1)
n
xk−1,k−1
G e−γj(tk−tk−1)+

+ λ∗bij (tk−1, xk−1)e−γj(tk−tk−1)
)

=

=
N∑
i=1

bigi(xk) +
N∑
j=1

λ∗b+ij (tk−1, xk−1)e−γj(tk−tk−1)



(5.16)

where just as in the discrete case the last equality is just a simplification of the
terms above with

λ∗b+ij (tk−1, xk−1) = Vijg
i(xk)

gj(xk−1)∑N
l=1 g

l(xk−1)
n
xk−1,k−1
G + λ∗bij (tk−1, xk−1). (5.17)

Before the expression is inserted into the log likelihood the reader should be re-
minded that gi(x) is the probability density function of a class and therefore by
definition ∫

x∈X
gi(x) = 1. (5.18)

Now inserting the recursive expression for the intensity into the log likelihood
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TG∑
k=0

nxk,k
G log (λ∗(tk, xk))−

TG∑
k=0

tk+1∫
tk

∫
x∈X

λ∗(u, x)dxdu =

=
TG∑
k=0

nxk,k
G log

 N∑
i=1

bigi(x) +
N∑
j=1

λ∗b+ij (tk−1, xk−1)e−γj(tk−tk−1)

−
−

TG∑
k=0

tk+1∫
tk

∫
x∈X

N∑
i=1

bigi(x) +
N∑
j=1

λ∗b+ij (tk−1, xk−1)e−γj(tk−tk−1)

 dxdu =

=
TG∑
k=0

nxk,k
G log

 N∑
i=1

bigi(x) +
N∑
j=1

λ∗b+ij (tk−1, xk−1)e−γj(tk−tk−1)

−
−

TG∑
k=0

tk+1∫
tk

N∑
i=1

bi +
N∑
j=1

λ∗bg+ij (tk−1, xk−1)e−γj(tk−tk−1)

 dxdu =

=
TG∑
k=0

nxk,k
G log

 N∑
i=1

bigi(x) +
N∑
j=1

λ∗b+ij (tk−1, xk−1)e−γj(tk−tk−1)

−
−

N∑
i=1

biT −
N∑
i=1

N∑
j=1

TG∑
k=0

λ∗bg+ij (tk−1, xk−1)1− e−γj∆t

γj
.

(5.19)

This log likelihood has great similarities with the one for the discrete classes case.
This version includes some additional computational difficulties from the density
functions which are not present in the discrete case.

The algorithm used in Tensorflow to estimate the parameters using this can be
seen in algorithm 3. Because of the similarities with the discrete case the explana-
tory version of the algorithm is omitted since the differences are better highlighted
in a detailed framework.
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Algorithm 3 Overlapping Classes log-likelihood, Mathematical
1: procedure LogLike
2: g(x)← g(x)
3: d(x)← g(x)∑N

l=1 g
l(x)

4: I∆t ← 1−e−γ∆t

γ

5: b(x)←
N∑
i=1

big
i(x)

6: while t < T do:
7: λV bt+1 ← λV b+t e−γ∆t

8: λ(x, k)← b(x) +
N∑
i=1

g(x)V. ∗ λV bt+1

9: llog,t+1 ← nx,k
G log (λ(x, k))

10: λV b+t+1 ← λV bt+1 + d(x)nt+1
x

11: ln Likelihood←
∑N
i=0(V

∑T
t=0(−λV bt I∆t)− bT ) +

∑T
t=0 llog,t

12: return ln Likelihood.
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Chapter 6

Methodology

The way this study was set up two new methods to model the flow of news and
sentiment was tried out. To get a base line the Poisson model was used. This com-
parison is because the Hawkes process is a Poisson process with added complexity
in terms of the excitation kernel.

For the different models is important to get results which are interpretable and
comparable. This is to be able to tell which model is actually beneficial to use. Also
it is needed for the reader to be able to grasp the results from the study. To be able
to achieve both these this thesis was conducted testing a few different cases.

6.1 Initialisation and Prior, Classes
How to divide the classes is a very difficult question in this thesis which we are
not to delve too deep into. We are interested in what countries should be in the
same groups to see maximal excitations. The trouble here is that discrete classes
are not differentiable and class optimisation for a Poisson model makes little to no
sense. In the overlapping model the classes are optimisation is possible, however the
problem is not convex and what initialisation is used is important for the end result.
This will not be examined too much but more give a comparison to the distinct case.

There is also another complexity which is time consumption, data and number
of variables. The natural starting point and base line would obviously be to test
the classes which Ravenpack is using in their hierarchy, all countries separately and
the sentiments separately. However as discussed above the 56 news topics and 34
regions will here be treated as the ground truth, the most complex case.

There are 56 different topics in the Ravenpack data. The first tests will be done
with all of them in different groups. We also want to see if there is a merit in using
the overlapping classes and for that we are mostly interested in projecting the 56
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groups on a lower dimensional space. We will therefore limit the number of groups
with a prior of 5 to see if the amount of groups are vastly exaggerated in Ravenpack.
To initialise the overlapping case the multinominal distribution with just random
initialisation will be done.

In the second layer of the hierarchy we will try 3 different initialisations/prior com-
binations. In the first case the 34 regions described in section 5.2 will be used. The
second one will be all regions in the same group. This is the same as saying that the
news flow does not depend on where the article comes from but only the content of
it. Lastly like for the topics we will have 5 groups for the overlapping model to see
if 34 regions are needed at all.

For the sentiment all the three groups negative, neutral and positive news will all
be used in every test to see if it is possible to see if there is a generally positive or
negative news flow right now in a certain group.

6.2 Data Set
In the data section there are some important things to consider when choosing the
final data set. The bucketing mentioned in the model section directly affects the
behaviour of the model. There are however some cleaning of the data that can be
done to get more meaningful results. In this study 2 main problem with data were
found out.

Firstly some topic-region combination were very rare in the news flow. An example
of that is War related news about Antarctica. Out of the 5712 topic-region-sentiment
combinations in the thesis 2449 were happening in less than 100 weeks out of the
521 weeks ranging from January 2007 to December 2016. This is a huge problem in
numerical optimisation since it is very likely that there can be found a connection
between to classes by coincidence. In figure 6.1
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Figure 6.1: Number of articles per week in group Negative news in Europe in orange.
The green is the expected number of observations in the group. Notice the weird
jump at week 270 from the group Negative news in Antarctica.

there is a test without the cleaned data set where a single observation of news in
Antarctica at week 270 affects the news flow of news in Europe. This excitation is
magnitudes bigger than the other excitations in this early test and it would mean
that Europe is closest connected to Antarctica when it comes to news flow. Because
of this the data set used in the actual tests had all these 2449 combinations with
very few observations taken away.

The other big characteristic that some groups had were that they were extremely pe-
riodic. These groups were big economic groups and even though there probably are
some information in the news flow our models were unable to detect it. Instead the
only behaviour that was caught was the periodic behaviour using whatever excita-
tion it could to model this, or in the time-dependent model there were no excitation
at all, only a sinusoid with the correct amplitude. in figure 6.2 4 groups are shown.
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Figure 6.2: To the left, two types of classes that are taken away from the study. In
the top left corner too few observations and in the bottom right too periodical news
flow. To the right are two groups that are kept.

The groups to the left are examples of groups that were take away because of too
few observations or too periodic news flow. To the right in the figure are examples
of groups that were kept. The periodic topics that were taken away were Earnings,
Dividends and revenues. They were taken away for all regions and sentiments. The
small groups that were taken away were more random since some topics only contain
positive news and vice versa and some countries contain less news about a specific
topic. The condition was as stated above though, observations in more than 100
weeks over the 10 years and the group was kept.

The 3 periodic topics consist of 918 total region-topic-sentiment combinations which
were also taken away from the data set. The final data set hence consisted of
5712 − 2449 − 918 = 2345 groups in total. In the top right figure one can also see
the Christmas week dips every year which are not handled in any way. As with the
argument about using week buckets instead of days where some days had lower flow
the same is true for the Christmas week. To solve this a more complex model or
yearly buckets would be needed.
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6.3 Largest Excitation Model Choice
The structure of the multi-variate Hawkes process with a large amount of classes
is one that contain a massive amount of excitation parameters. This is a classic
problem that might lead to overtraining and will therefore get less predictive power.
Even though the likelihood of the training set is high it does not necessarily mean
that the parameters are well tuned for the future. For this the BIC is used and this
measure will be better if the amount of variables decreases.

Therefore the lasso model selection can be used where variables are forced towards
0 and when an appropriate amount of parameters are 0 the non-zero elements will
be re-estimated. In the cases that we are interested in it seems that most of the
parameters that are uninteresting are already estimated to almost 0 when not using
penalty since the model notices that there are no excitation. Therefore a slightly
simpler version will be used where if Vij

∑TG
t=0 n

t
G is bigger than a certain threshold

the parameter is kept and otherwise made constant 0. This threshold is chosen
so the visible excitations are kept while the excitation that are not noticeable are
thrown away.

6.4 Likelihood and Results
In this thesis there is a real question what results should actually be presented.
Displaying all optimised values will not be possible simply because of how many
they are.

The most obvious result that will be presented is of course which models that are
the most likely. This will be related to the amount of variables with the BIC which
can give an indication on what model that should be used.

6.4.1 Excitation

The main result for this thesis though is to show how different topics and regions
are related in the news flow. This is hidden in the excitation matrix of the models.
Because of the sheer size of this matrix though it is not possible to extract any
meaningful information by presenting the matrix itself. Instead a node graph will
be displayed that will function as a world map of how closely related different groups
are to each other.

Specific excitation results from interesting groups will also be presented individ-
ually. This is to get a qualitative feeling on how intuitive the excitations found in
the thesis are. These results should of course be read with caution since the classes
shown in the report will have been hand picked to show the interesting part of them.
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6.4.2 Intensity

The excitations are a paramter that in themeselves have interpretation value in the
sense that they model dependence. The main result of the models however are the
intensities of the different groups. Getting a feeling for how good the model is at
capturing the behaviour of the classes will be much easier by watching the intensity
graph instead of trying to figure out what a good likelihood should be.

The maximum likelihood estimate can then be tried out on test data by using the
estimated excitations and plotting the intensity of the test year. This will also be
done and will provide the reader material to determine if the models are overfitted
to the training set or how well it performs on future data.

The last thing that will be presented in this thesis is the performance of the model
during some of the extreme events during the last few years. This will be a zoom in
version of the test above where Brexit and the Arab Spring will be examined. This
will by no means be a quantitative part of the study, but a part where it is possible
to understand the models limits and merits in a crisis.
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Chapter 7

Results

This now brings us to the result part. In this section there will be a variety of Hawkes
process and Poisson process groups compared to each other as explained in the
previous chapter. To compare the different groups the aforementioned the Bayesian
Information Criteria and Likelihood will be used. To get a deeper understanding
about how groups affect each other the excitations will be studied in detail as well.

7.1 Group Selection A: 53 News Types, 1 Geography
Section, 3 Sentiments

For the first 2 group selections, A and B, the focus is to see whether there are some
dependencies that are apparent in only one dimension, either in the News space in
A or the Geography space in B. For A the negative log likelihoods can be found in
table 1

Table 7.1: Likelihoods of different models. There are 171 728 259 observations.

Model Log Likelihood Parameters BIC
Homogeneous Poisson -617 285 166 2 345 1 234 614 797
Homogeneous Hawkes -608 963 096 30 737 1 218 509 009

Time-dependent Poisson -609 285 099 2 849 1 218 624 219
Time-dependent Hawkes -606 954 583 31 241 1 214 501 540
Reduced T-d. Hawkes -606 949 327 4 658 1 213 986 976

The BIC indicates that the reduced version of the Hawkes process seems to be the
best. This is reasonable since the Hawkes model is more advanced than the Poisson
process and with the addition of variable reduction the amount of parameters de-
creases to a point where the important excitations shine through. In figure 7.1 the
different models are compared. The homogeneous poisson is left out since it is just
a straight line in the middle.
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Figure 7.1: The group Negative Analyst Ratings plotted against the expected num-
ber of articles of the different models.

In the top left image we can see that it is beneficial for the model to have some
seasonality. Also a growing trend seems preferable, at least when not having exci-
tations. The seasonsality seems to be kept when using the Hawkes models at the
bottom. We can not the Brexit spike in the end that will be seen more further down.

7.1.1 Excitation Between Classes

The excitation between the news groups placing all regions in the same bucket can be
seen in figure 7.2. In the figure an algorithm called Force Atlas 2 [Jacomy et al., 2014]
is used. This work as a gravitational model where more excitations attract to a
larger degree. This will cluster together groups that are closely related. We want
in this first example show the connections between economic news and news related
to something else.
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Figure 7.2: A visualisation of the dependencies of the Reduced Time-dependent
Hawkes model between the news groups. The green nodes and arrows represent
the economic news of the news flow and excitations from them. The red nodes and
arrows are the counterpart for the news not directly related to economic reporting.
The size of the group is represented by the size of the node and the size of the
excitation by the size of the arrow.

In the figure big nodes corresponds to classes with a large amount of news and the
size of the arrows corresponds to the size of the excitation of between the classes. In
the figure on can see that most of the economic news are in the bottom right corner.
In the green part of the graph the biggest node is negative war and conflict. The
nest in the green part that excites a lot of groups is the negative aid group. Other
groups around those nests seem to be groups related to the world in general with
war, civil unrest and natural disasters among them. In the red economic corner the
only big influencer seem to be negative price targets. From it is Bankruptcy, Credit
ratings and alike excited.
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To get a better understanding of specific excitations between the classes the reader
can see the excitations from some of the nodes zoomed in in the following figures.
In figure 7.3 the big green node Negative War and Conflict is highlighted.

Figure 7.3: A visualisation of the dependencies between the news group Negative
War and Conflict and its dependent groups.

As can be expected migration and aid seems to be related to the war group. Natural
disasters may not be as intuitive. From the results it seems though that an unstable
weather highly affects the conflicts in the world. The excitation is quite strong and
it seems unlikely that this should be a coincidence, but it is a possibility. Moving on
to the economic part of the graph there is an interesting result in the group Negative
Domestic Product, figure 7.4.
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Figure 7.4: A visualisation of the dependencies between the news group Negative
Domestic Product and its dependent groups.

The most prominent excitation is from positive interest rates. Having some caution
towards the direction of the arrow it seems that a weak domestic product is related
to interest rates changes that will affect the market in a positive way. This has
been seen time and time again the last few years when the governments are trying
to manoeuvre the tough financial times that have been. The big influencer in the
economic news flow was though as stated the negative price targets, for that node
see figure 7.5.
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Figure 7.5: A visualisation of the dependencies between the news group Negative
Price Targets and its dependent groups

That the price targets are the origin for bankruptcy is quite hard to imagine. Again
we have to consider the possibility that the arrow direction is not correct. In section
7.3.2 there is a discussion whether the size of the groups affect the direction of the
excitation too much. If that is the case is hard to know from our results. Of course
the result can be correct since the news flow could start report that the financial
times are tough before many companies declare bankruptcy.

The other groups excited from the negative price targets seem to almost exclu-
sively be negative groups. It is very reasonable with how one would think it should
be. Employment and labour issues are the only groups that are not directly eco-
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nomic groups that are affected. Going deeper in the analysis it can be noted that the
three groups that are connected to employment are negative bankruptcy, negative
business activity and negative price targets. This could be valuable information to
catch an increasing unemployment rate just by watching the news flow.

7.2 Group Selection B: 1 News Type, 34 Geography
Sections, 3 Sentiments

In table 7.2 the likelihoods and BIC is shown when only splitting the data set over
regions. All news topics are placed in the same bucket and the 34 regions and 3
sentiments make up the groups.

Table 7.2: Likelihoods of different models. There are 171 728 259 observations.

Model Log Likelihood Parameters BIC
Homogeneous Poisson -617 285 166 2 345 1 234 614 797
Homogeneous Hawkes -609 648 087 12 851 1 219 539 847

Time-dependent Poisson -610 375 511 2 651 1 220 801 289
Time-dependent Hawkes -608 700 453 13 157 1 217 650 381
Reduced T-d. Hawkes -608 697 141 3 811 1 217 466 544

First we note that the likelihoods in general are higher than when dividing the
groups in topics. We note that the amount of groups are fewer though so the BIC
may be a better measure. These are however also worse than their topic groups
counterpart. We can also seen in figure 7.6 that the fit seems to be worse than in
the other example.
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Figure 7.6: The group Negative news in USA plotted against the expected number
of articles of the different models.

To compare random groups is definitely not a perfect way to evaluate a model but
the figures are meant to show the reader whats captured in the respective model.
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For example the peak in the beginning and the dip at week 150 are completely
missed by the model. When examining the node map, the knowledge of that the
model might not be perfect is good to have.

7.2.1 Excitation Between Classes

To see what regions that affect each other we will define larger regions than the 34
where regions that are close to each other make up a bigger new region. This is to
see if regions close to each other will be close to each other in the map. The division
of these new regions can be seen in figure 7.7. Each colour in the map will then
represent the area in the node map in figure 7.8.

Figure 7.7: A map over the new bigger regions that will have their own colour in
the following node maps. The colour in this map corresponds to the colour in the
graphs following.
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Figure 7.8: A visualisation of the dependencies between the news groups for the 155
most important excitations of the Reduced Time-dependent Hawkes model. Each
big region is represented by a unique colour. The size of the group is represented
by the size of the node and the size of the excitation by the size of the arrow.

In the map the North American news flow dominate in terms of amount of news and
many groups are exciting that region. It seems that North America does not excite
any other country though. A cluster of the larger group Eastern Europe can be seen
in the bottom left part with the groups Negative Russia and Negative, small region,
Eastern Europe in the center. Also the East Asia cluster in then top seems to have
noticeable excitations between each other. All different regions in that larger group
are represented with big excitations to or from China, Japan/Korea, Indochina and
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South East Asia. Lastly we notice the large purple arrows exciting news from the
Middle East big group, including North Africa, affecting the North American news
flow in a very substantial way. This will be seen more in detail in the next section,
with the more complex model with both regions and topics.

7.3 Group Selection C: 53 News Types, 34 Geography
Sections, 3 Sentiments

The results in each dimension indicates that there the dependencies in both topics
and region are the strongest in regions that are close to each other and in topics
that by intuition seems to be closely related. This brings us to the results that takes
into account both topics and regions at the same time. In table 7.3 the likelihoods
and BIC for the test with 2345 total classes can be seen.

Table 7.3: Likelihoods of different models. There are 171 728 259 observations.

Model Log Likelihood Parameters BIC
Homogeneous Poisson -617 285 166 2 345 1 234 614 797
Homogeneous Hawkes -597 915 193 5 503 715 1 300 188 659

Time-dependent Poisson -607 324 146 9 380 1 214 826 150
Time-dependent Hawkes -596 481 879 5 510 750 1 297 455 425
Reduced T-d. Hawkes -595 931 403 84 966 1 193 473 882

As expected if the optimisation found a global minimum the likelihood for the most
complex case is better than for the simpler cases. Also if using the reduced model
choice the BIC indicate that predictions when splitting up regions and topics are
more powerful.

When looking at the expected observations every week in figure 7.9 one can see
extreme behaviour at week 490. This is Brexit and the actual group exciting is Neg-
ative Economic Union in Great Britain. This is a problem even with our reduced
model. It has chosen the excitations that are most important, but with foreknowl-
edge of what has happened. This is something that would need more investigation
if using the model in prediction purpose. In this thesis we are primarily interested
in finding the connections in the news world in the recent years so we will not delve
too deep into this.
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Figure 7.9: The group Negative Analyst Ratings plotted against the expected num-
ber of articles of the different models.

At week 240 there is also a big excitation. This time from Negative Security in the
Nordic. These are both groups that got through our cleaning of the data since they
have observations often but a few times extreme excitations. It is a difficult question
if these should be in the results or not. To get a better understanding for this we
will examine the excitations a bit more in detail for this complex model than for the
smaller models.
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7.3.1 Excitation Between Classes

When splitting up the topics and regions the amount of groups though are too many
to show in a single graph and get an interpretable result. Therefore only the most
important excitations are shown in figure 7.10. In the picture the colours represent
a geographical area that are slightly bigger than the 34 regions to see if regions close
to each other are more exciting inside the big region.

Figure 7.10: A visualisation of the dependencies between the news groups for the 878
most important excitations in the Reduced Time-dependent Hawkes model. Each
big region is represented by a unique colour. The size of the group is represented
by the size of the node and the size of the excitation by the size of the arrow.

As in the other node maps it is produced using the method Force Atlas 2. This
means that nodes that are affected by the same things will be together. In the
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figure there is a pink cluster extremely visible and also just under that there is a
cluster of East Asia groups. This means that, as hypothesised, the events that occur
closer geographically have a tendency to affect geographically close areas to a certain
degree. The green colour of Western Europe is also very clear in the picture but
spread out to a larger degree. In the plot only the 878 most impactful excitations
are plotted and therefore only 552 nodes out of the 2345 nodes are in the picture.
Because of this the regions that are in the picture are the ones that affect the news
flow the most and North America, East Asia and Western Europe seems dominant
in the news flow. In the node map a few important source nodes can be found.
Some of these will be examined closer in the following sections.

7.3.1.1 Brexit

In the top right corner of figure 7.10 there is a green cluster of Western European
nodes. The central groups in that cluster are Negative Economic Union in Northern
Europe and Negative Economic Union in Great Britain. The Northern European
node zoomed in can be seen in figure 7.11 where the region colours are the same as
in figure 7.10.
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Figure 7.11: A visualisation of the dependencies between the news group Northern
Europe Economic Union Negative and its dependent groups. This group has a
couple of weeks during Brexit where the news flow explodes.

In the figure it is very obvious that Brexit mostly affected the European news flow
based on the colour of the nodes. Secondly one can look at the actual group labels
in the figure and see that most topics that are related are economic and government
related news. Another thing to note is that most negative news seem to be excited
by the Brexit news. This may indicate that experts generally think that Brexit is
negative for the markets.

Lastly there seem to be excitation from unrest and crime in USA. This is one of
those excitations where one should use caution. The Economic Union news flow is
extremely centered around the events following Brexit. This means that if some-
thing happened in USA just before the algorithm will find that excitation to be
certain. This is one of the hard problems when cleaning the data. If the important
extreme events are left out the dynamics of Brexit will never be found but if the
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data is kept some weird connections may be suggested by the model. However it
is very hard to determine if this is a coincidence or if the Brexit supporters got
increasingly eager because of unrest in the world.

7.3.1.2 Arab Spring

Another event that happened one time in the recent history is the Arab Spring. In
figure 7.10 the news flow in the Northern part of Africa are very much dominated
by the break out and aftermath of the Arab spring that started in the end of 2010.
In the colour coding the countries concerned are all in the Middle East group even
though they are in the Northern Africa. In the middle of the figure the purple nodes
representing this event can be seen. The most prominent node of the purple cluster
is Negative Civil Unrest in Northern Africa which excitations can be seen in figure
7.12.

Figure 7.12: A visualisation of the dependencies between the news group Negative
Civil Unrest in Northern Africa and its dependent groups. This group has a couple
of weeks during the Arab Spring where the news flow explodes.

The node map shows that the civil unrest and the government related news are very
related. Considering that much of the events revolved around revolutions this is to be
expected. However in the map it does not show any implications of the outer world.
Since only about 1 percent of the excitations in even the reduced model is shown
in the figures there might be less significant relationships not visible. Moreover the
Hawkes model will only use the optimal excitations. In figure 7.13 the excitations
of the node Negative Government news in Northern Africa is shown instead.
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Figure 7.13: A visualisation of the dependencies between the news group Negative
Government in Northern Africa and its dependent groups. This group has a couple
of weeks during the Arab Spring where the news flow explodes.

This group is also extremely focused around the Arab Spring time line. It seems
that most of the excitations to the outer world was put on this group instead though,
even though it is the same events that were the origin of the excitation. This is a
very important thing to note when examining the results. If there are many groups
that will pick up the same events the excitation some groups will not have the ex-
pected excitation because another group takes care of it.

Looking at the result of this node instead the interesting interaction that nega-
tive government news seem to affect some commodity and stock prices positively.
Since the arrows are quite large in comparison to the size of the brow nodes that
excitation is also quite a big part of the total news flow in those groups. That can
indicate that the Arab Spring had a huge impact on several markets. It can be
added that another African one time event, the ebola epidemic is another big in-
fluencer of the groups International commodity prices and stock prices. However in
that case the connection is even larger and it is affecting the negative counterparts
of the groups.
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7.3.1.3 East Asia stocks

These last examples are very important for the reader to grasp how the model cap-
tures some known behaviour in the news flow. This is probably the most interesting
fact about the results for both Brexit and the Arab spring. Knowing this is nice
since the amount of variables in the model makes it hard to say anything concrete
using confidence intervals or statistical significance of the parameters. Instead we
now know that some happenings in the news flow are captured in an intuitive way
and therefore the unintuitive but strong excitations may be more trusted. These
unintuitive, or not known beforehand, excitations are what makes this study inter-
esting in the first place. One could for example use the information of the news flow
to predict how a crime wave in a certain area would affect other regions if there are
any excitations pointing towards that. Another way to use the information would
be for investors to see how different markets excite each other to understand when
to invest. With the help of figure 7.14 one such investment strategy could maybe
be formed.

Figure 7.14: A visualisation of the dependencies between the news group Positive
Stock Picks in Indochina and its dependent groups.

It seems that when the stock prices goes up in the region Indochina, experts will
pick stocks there as recommendations. Then in turn the stock and commodity prices
in China and India goes up. This excitation is very strong in relation to how small
the groups are as is suggested by the big arrows and small nodes. Since the decay
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times are in weeks this information could maybe be used in some smart way where if
the Indochina stock market is thriving we buy chinese and Indian stocks and hold a
few weeks. If the information can be used to formulate a good trading strategy will
not be investigated further in this thesis though but could be an interesting topic
to pursue.

7.3.1.4 Interest rates

In the world of macro economics the interest rates play a big role. This can be seen
in the model since many of the big emitters are interest rate reports from the big
regions. In figure 7.15 the positive sentiment news about the Interest Rates in USA
is shown.

Figure 7.15: A visualisation of the dependencies between the news group Positive
Interest Rates in USA and its dependent groups.

Various groups seems to be affected by it, mostly in USA and Asia. It is in turn
excited by the negative sentiments of the Japanese Interest Rates. That node can
be seen in figure 7.16.
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Figure 7.16: A visualisation of the dependencies between the news group Positive
Interest Rates in Japan/Korea and its dependent groups.

Even though both groups are relatively small they excite a lot of economic news
in primarily America and Asia. They both also have an effect on the International
stock and commodity market. Looking into that more in detail in figure 7.17.
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Figure 7.17: A visualisation of the dependencies between the news group Positive
Commodity Prices in International group and its dependent groups.

One can see what was noted before that the Arab Spring had an effect on this market
as well. There also seem to be some government related groups in Caribbean and
Russia and finally the Interest Rates of China are also important. It seems that the
interest rates in general has a small effect on many things but that more specific
events can affect the flow more than every small interest rate report. This is also
reasonable since there are only a few reports that actually should chock the market
and that most reports of the interest have little to no effect.

7.3.1.5 Conflicts

The news flow are of course not only economic reports of different kinds. Some
things related to the conflicts in the world can also be found, more general than
the effects of the Arab Spring. If moving in the opposite directions of the arrows
there will eventually be a group without excitation towards it, that maybe affects
many groups. In the economic news that was the interest rates. In the conflicts
department the group Transportation in Russia is one of those nodes as well. It can
be seen in figure 7.18.
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Figure 7.18: A visualisation of the dependencies between the news group Negative
Transportation in Russia and its dependent groups.

Russia has been relatively close geographically to many recent conflicts, that took
place in the Middle East and they are just as USA a big power that always are
mentioned in news in times of uncertainties. It is therefore not surprising that they
have a big presence in the department. The excitation towards Northern Europe
may seem unexpected. An explanation may be that even though Northern Europe
are not often mentioned in conflict related news the closeness to Russia makes every
report from Russia very important even for Northern Europe.

We will end this whole node map examination with a last node map of the con-
flict in the Middle East. In the figure 7.19 the excitation from Transportation in
Russia can be seen.
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Figure 7.19: A visualisation of the dependencies between the news group Negative
War and Conflict in the Middle East and its dependent groups.

It can also be seen that aid from Eastern Europe is a good indicator that something
is happening in the Middle East. Also some interaction seem to exist with Northern
Africa and the Sahara region. All regions seem to be in the same area as the conflict.
As an introduction to the next section it can be noted that the size of the Middle
East War group is much larger than the other groups in the figure.

7.3.2 Size of Groups

Lastly we need to touch upon one detail that has been emerging in the results. In
the chapters describing how the data was cleaned it was mentioned that one of the
side effects of taking away the most periodic groups, the largest groups were also
taken away. This was good since the groups became more balanced when taking
away both the smallest and biggest groups. The attentive reader has seen in most
of the node maps shown though that still the small groups excite the big groups
and almost never the opposite way around. This is not something that is preferable
since we lose the nice causality property of the model if there can only be excitation
one way between two groups.

In the last figure concerning the Middle East conflicts it may be more sensible that
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the war excite the aid and not the other way around. The really big exciters, the
interest rates, were all small groups that often excited larger groups. There are some
examples of almost equally sized groups having excitation to each other but never
when the groups are of different size. This is another thing that has to be taken
into consideration when watching these node maps. If the nodes are not of equal
size the direction of the arrow can only be in one direction it seems. Fortunately in
the East Asia stock example where we want to use the direction of the arrow the
groups are of equal size so this complication should not affect that example.

7.4 Overlapping Classes
Some results above indicates that the amount of groups are too many in the tests
above, for example in figure 7.10 where it seems that the continents excite them-
selves in a large part. One could think that in the news groups many of the economic
news may report the same event many times why they should also behave the same
way. The problem here is how to change the classes without interfering too much
with intuition so the result gets tampered with.

For this we have the other more complex model where all news exist in a space
and the groups are densities in this space rather than categorical variables. The
results for this model when the news topics and regions are made up of only 5 densi-
ties each can be seen in table 7.4. Only the Homogeneous Hawkes model was tested
with in the Overlapping Classes framework. This is because the arguments that will
be made further down will apply for all models but are easiest displayed with that
model.

Table 7.4: Likelihoods of different models. There are 171 728 259 observations.

Model Log Likelihood Parameters BIC
Homogeneous Discrete Hawkes -606 719 122 34104 483 078 266

The results indicates that likelihood favour the more advanced Overlapping model
when considering that there are very few classes. The reason why the amount of
classes is small is that when all classes are used this model becomes identical to the
distinct model almost. The reason to use this model in the first place is to reduce
the amount of classes. One problem here is that the new classes became very unin-
teresting. Instead of clustering together groups with similar behaviour it seems to be
clustering together groups so that the new groups are easy to predict the intensity of.

This problem has its origin in that the estimation of the intensities for the more
feisty groups are not that good, so even if the spatial penalty will be big it is still
favourable to just create easy groups with an almost constant news flow. The easy
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estimates will then prove to not fit the original classes at all when using the new
projected class on the original group space, see figure 7.20.

Figure 7.20: To the left: The group Negative Analyst Ratings in USA plotted against
the expected number of articles of the Homogeneous Hawkes model. To the right:
The group Negative War and Conflict in the Middle East.

The problem is that the intensity is very close to a constant intensity even though
the group intensity is changing. This is because the model will cluster together and
then say how much of the news that should be in every group but only with a scaled
intensity. This makes for a relatively high likelihood but an uninteresting result.
We can in the figure see that both War in the Middle East and Negative Analyst
Ratings in USA have much the same shape of the intensity. This is because the
get most expected observations from the same class density. This would be good if
their observations had the same shape. This seems to not be the case however which
means the model has clustered together groups that are not behaving the same. If
the model were more exact this would not happen because then the spatial penalty
of clustering together groups with different behaviour would be too great. There
was one class that caught the Arab Spring though, see figure 7.21.
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Figure 7.21: To the left: The group Negative War and Conflict in Northern Africa
plotted against the expected number of articles of the Homogeneous Hawkes model.
To the right: The group Negative Government in Northern Africa.

In this figure we see two war related groups in Northern Africa that has been clus-
tered together. This group got all the groups with a clear Arab Spring peak which
indicates that for obvious enough similarities the model works. Therefore it is plau-
sible that the extensions that will make this model a contender to the distinct model
are not far away. It is also possible that the amount of classes in this overlapping
test were too few to get interesting results. This may call for additional tests that
were not conducted in this thesis.

This result therefore has to be seen as an extension to the distinct class result in the
sense that the classes there may not be optimal since the likelihood in the overlap-
ping case is indeed better when considering the amount of classes used. Though for
the results produced in this thesis the distinct class case has better interpretability
in terms of excitations and is for all intents and purposes likely a better model.
However, in this thesis the ground work of the model in terms of algorithms and
model can be seen as a result itself. If a more exact fit is found for a distinct model,
the extensions to make it overlapping are probably the same and may prove to give
better results.

7.5 Prediction
As a last note in the result department the predictive power of the Distinct Classes
model will be discussed. This will not be an extensive quantitative result. This
section is supposed to give the reader an understanding just how bad the overfitting
problem is for the models. In this thesis the aim is to see the connections. This
section will reach just outside the scope and see what is beyond.

In the figure 7.22 the same result as in 7.9 is shown with the additions of expected
observations when training until the end of 2012, 2014 and 2015 respectively.
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Figure 7.22: The observations of the group Negative Analyst Ratings in USA plotted
against the expected number of articles the Time-dependent Hawkes model with
2345 groups. The different colours represent in the end of what year the training
data stops at. The rest of the data is unknown for the model.

In the figure all intensities are following each other in the beginning but the blue
curve of 2012 is really guessing too high around week 390. They all converge again
at around week 480 but then around week 490 Brexit hits. Because the red curve
is trained on the whole data set it can capture it. All the other three are missing
it completely. The later the training stopped the higher the guess is after week 500
though so it is possible that some hints of Brexit were caught in the 2015 model
that were not caught in the 2012 model. The differences are extremely small though.
One obvious example of that the model may be overtrained for predictive purposes
can be seen in figure 7.23.
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Figure 7.23: The observations of the group Negative War and Conflict in the Middle
East plotted against the expected number of articles the Time-dependent Hawkes
model with 2345 groups. The different colours represent in the end of what year the
training data stops at. The rest of the data is unknown for the model.

In the figure the War and Conflict in the Middle East is once again examined. There
are 2 big peaks, one around week 400 and one around week 470. This is autumn and
winter 2014 and 2015 respectively. This means that the blue curve, trained until
end of 2012 will not have any of these peaks in the training. As can be seen it misses
both peaks. The green curve, trained until end of 2014 will have the first peak in
its training set. The second peak is completely missed by it. For the last peak only
the red and yellow curve picks it up and those were trained on sets containing it.
This is extremely bad if the model were to be used as a predictive model.

To get a comparison the different test sets are plotted for 2 economic groups in
the simpler model with all countries in the same bucket as well. This can be seen
in figure 7.24.

76



Figure 7.24: The observations of the group Negative Negative Analyst Ratings
plotted against the expected number of articles the Time-dependent Hawkes model
with 53 news groups. The different colours represent in the end of what year the
training data stops at. The rest of the data is unknown for the model.

Here we see that the 2012 model is really bad on the test data. However in con-
trast to the model with countries it actually happens things after the training data
set stopped. In the previous case almost all excitation were in the training part
of the data set. This points towards that our cleaning of the data for that model
should have been even stricter. Groups with an extremely non-stationary distribu-
tion should maybe have been left out.

Because all countries are placed in the same bucket, this phenomenon is less ap-
parent with the simpler model, meaning that this problem is less visible. Of course
with the addition that complex connections cannot be found at all. This small qual-
ity section about prediction will conclude the result section and hopefully the reader
realises that depending on what the use of the model is, a more complex or simple
model could be favoured.
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Chapter 8

Discussion

In this chapter there will be a brief discussion of the project in general and the
results in chapter 7. Also some outlook and possible further work will be proposed.

8.1 Results

8.1.1 Numerical Optimisation

Most of the work has been related to estimate the parameters using the gradient
methods to maximise the likelihood. The computational problems because of the
massive amount of data and groups led to some of the more important decisions of
the project. The final 2345 groups, after the data set was cleaned, could not have
been many more with the same hardware even if the data set had been larger. With
the single GPU that were used every likelihood function took about 5-10 seconds to
calculate and convergence were not reached until at least 20-50 thousand iterations
which is a couple of days. With more groups the results could take weeks to produce.

To reduce the amount of time every single model took to train, transfer learn-
ing were applied after the models were trained to the applicable parameters. The
excitations and base intensities found in one model were used as starting values for
the other more computationally hard models. As an extension this could possibly
have been used to speed up computations even further if transfer learning were to
be applied from training on a shorter time span. One such algorithm could training
on 1 month, then 1 year and then 10 years. Convergence should be much faster this
way and it would enable the possibility of a more complex model if there should be
an application for it. As it is now though we think that more data would be needed if
the data is split up much more to avoid the problems with few observations touched
upon earlier.

Closely linked to the subject of transfer parameters from shorter learning data set
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is the predictive power of the model. Some important observations that were not in
the shorter time span will not get trained on. This could have been researched more
in this thesis. How the different training sets affect the end result. It is obvious that
the Brexit events will not be caught in the model if the years of the event is not in
the training data. This is of course a big problem with the model. There will always
be events in the future that the model can’t predict. It would have been interesting
to measure the test accuracy versus the training accuracy more quantitatively than
what was done.

One last note about the estimation of the parameters is that it is peculiar that
the reduced model have a better likelihood than the full model in all optimisations.
This is of course an impossibility if the optimisation went perfect since the reduced
model is a subgroup of the full model. This might be because that it is hard for
the optimiser to estimate the parameter to exactly 0 and because of the number of
parameters even a small difference from 0 tampers with the result. A solution to it
might be to lower the learning rate for the full model. As it is done in the project
the same learning rate is used in all estimations.

8.2 Interpretation of Results
When dealing with as many parameters as has been done in this project the sig-
nificance of the estimated parameters is a big concern. How to distinguish a weird
coincidence from an extremely important single event is almost impossible. This
has been a struggle from the beginning. By only accepting large enough excitation
the numerical errors will be few but weird random correlations may still exist. This
is something the reader has to take into consideration when examining the results.

We really do think that a large amount of the information can be trusted though.
This is because there are an abundance of intuitive results. This is an indication of
that the model works and we will therefore probably be able to use the unexpected
results, at least if they are strong.

As for what model we would suggest, the reduced model seems like a very nice
option. There is a possibility to tune it to the size of excitations that are wanted
and it seems that Hawkes in general actually gives a way better fit than the Poisson
case. This is also an indication that the hypothesis works, that the Hawkes model
is a model that can be used for the news flow in the first place.

One thing to remember when examining the results is that the decay time of the
excitation kernel is pretty important to get sensible results. If the decay time tend
to infinity the resulting intensity tend to a step function. This is the reason that
the inhomogeneous model added a trend, but since not all growing trends are linear
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this problem is a recurring one. To deter this behaviour further the half-time for
the decay was capped at 2 years. This was set pretty high to not interfere with
the optimisation too much but it seems that a few groups reached that cap anyway.
This may be an indication of that there are extremely long correlations or that it
is just approximating a step function. These results should be used with caution
in our opinion. Most groups had a half-time of 2-10 weeks and these results should
probably be trusted more in general. This is a reason why in the node graph the
weights are not scaled with decay. Most sensible decay time are almost the same
and some weird long interactions may have gotten a huge weight in the node graph.
There is of course the option to further limit the half-time but the trouble is that
we do not know if some news have longer dependence. There is a possibility that
an election could have effects for 4 full years rather than 5 weeks as an example.

8.3 Outlook and Further Work
During this thesis there were a lot of things that were ultimately dropped because
of time constraints or that they would widen the scope of the project too much.
There were also many paths that were not pursued since the thesis in mathematical
statistics and not in finance or social studies. However these subjects would be very
interesting to study based on the results in this thesis.

8.3.1 Extending the Model

There are many ways in which one could make our model more complex and sophis-
ticated by only simple modifications. By changing the time dependent background
intensity of the Poisson Process or changing the excitation kernel the whole model
could change drastically. It would be interesting how such a model would compare
to our model.

For the overlapping model in our thesis only the surface were scratched in this
thesis. Our tests indicate that the overlapping model may be redundant since the
distinct model will exhibit more interesting excitations. With a more exact excita-
tion kernel this may be avoided and this method may be useful.

For both models it would be very easy to check whether the excitation and cor-
relation between classes give the same results. Otherwise it may be possible to
cluster together topics not by hand or with likelihood optimisation but with how
much correlation there are between them. The thought process behind this is that
if they are highly correlated they may be very much alike and therefore their excita-
tions should be the same. This also gives birth to another interesting subject which
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is if our findings could have been found using simple correlation or if the causality
that the Hawkes Process provides actually is significant.

An even more complex model would be to have a completely different approach
to the problem and use the news flow as observations of a hidden process that is the
real world. This is probably more close to the truth about how the news flow works
but the computational problems may be even greater and the direct interpretability
from the excitations may be lost in such a model.

8.3.2 Other Work

The results from this thesis could very easily be used in other studies. As mentioned
in the introduction the step to model the news flow may not be the last step since
this information should be used in some way.

In an era where machine learning and neural networks are very prominent it is
very tempting to plug in the intensity curve of a few topics and regions and see if
just the general news flow can predict things. Since this thesis is done at a hedge
fund it is close at hand to try this out on different markets. An idea is to identify
which news that affect the negative and positive economic news and use them as fea-
tures in a neural network. Another idea is to directly look at the markets. As stated
in the results the Asian markets seem to be very related according to our results.
Since there are causality in the model it should be possible to establish a trading
strategy based on this information. A side note to this though is that the algorithm
could probably have been used on the markets directly if there is such a relationship.

For a completely different sort of continuation we think that a social study based
on the results could be interesting. Increasing unrest in the world and migration
streams could possibly be studied based on how the war haunted regions excite the
rest of the world. Also political and government related excitations could carry some
indicative power in how the people perceive the current situation of the region.
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Chapter 9

Conclusions

In this thesis our primary goal was to investigate how different parts of the news
flow affected each other. To see if there were any patterns in the data a few different
methods were compared. As a base case the Homogeneous Poisson Point Process
was chosen.

Adding excitation to the Homogeneous Poisson Point Process makes it a standard
form Hawkes Point Process. This model did generally increase the performance by
a big margin and would be possible to use. However a problem that were recurring
was that much of the information that were captured with the model is possibly
redundant since it used excitations to model seasonality and the growing trend in
the data. For this thesis this was misleading since the excitations hinted at close
relations between topics and regions just because their news flow is increasing in
time.

To avoid this behaviour an Inhomogeneous Poisson Point Process was tried out
as well. The time dependence in it consisted of a growing trend and a seasonality of
a quarter of a year. When adding excitation to this process it yielded a result that
were more suited for our purposes.

Finally to add as much predictive power as possible to the complex Inhomogeneous
Hawkes Process some excitations that were very small were deemed exactly 0 to
decrease the amount of variables that were estimated. By doing this the complex
model was always favoured in terms of likelihood and by the Bayesian Information
Criteria in front of the simpler models.

With the Inhomogeneous Hawkes Process node maps with the most important rela-
tions could be constructed. The result seem to capture known events in the recent
history such as Brexit and the Arab Spring. Also there seems to be geographical
dependence in the sense that more countries in the same general area has an affect
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on each other compared to countries far away.

Looking specifically on the topics, the economic news seem to be closely related
to each other with very big excitations between some of the topics. Other topics
that had a big connection were for example natural disasters and migration. Gov-
ernment related areas such as foreign relations and public opinion also were clustered
together by the algorithm.
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Chapter 10

Appendix A
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Table 10.1: Country codes Part 1

Code Country Code Country Code Country

AD andorra CF central african republic GD grenada
AE united arab emirates CG congo GE georgia
AF afghanistan CH switzerland GF french guiana
AG antigua & barbuda CI ivory coast GG guernsey
AI anguilla CK cook islands GH ghana
AL albania CL chile GI gibraltar
AM armenia CM cameroon GL greenland
AN netherlands antilles CN china GM gambia
AO angola CO colombia GN guinea
AQ antarctica CR costa rica GP guadeloupe
AR argentina CS serbia and montenegro GQ equatorial guinea
AS american samoa CU cuba GR greece
AT austria CV cape verde GS south sandwich isl.
AU australia CW curacao GT guatemala
AW aruba CX christmas island GU guam
AX åland CY cyprus GW guinea bissau
AZ azerbaijan CZ czech rep. GY guyana
BA bosnia and herzegovina DE germany HK hong kong
BB barbados DJ djibouti HM mcdonald islands
BD bangladesh DK denmark HN honduras
BE belgium DM dominica HR croatia
BF burkina faso DO dominican republic HT haiti
BG bulgaria DZ algeria HU hungary
BH bahrain EC ecuador ID indonesia
BI burundi EE estonia IE ireland
BJ benin EG egypt IL israel
BL saint barthelemy EH western sahara IM isle of man
BM bermuda ER eritrea IN india
BN brunei ES spain IO br. indian ocean
BO bolivia ET ethipoia IQ iraq
BR brazil EU european union IR iran
BS bahamas EZ euro zone IS iceland
BT bhutan FI finland IT italy
BV bouvet island FJ fiji JE jersey
BW botswana FK falkland islands JM jamaica
BY belarus FM micronesia JO jordan
BZ belize FO faroe islands JP japan
CA canada FR france KE kenya
CC cocos islands GA gabon KG kyrgyzstan
CD dem. Republic of kongo GB great britain KH cambodia

85



Table 10.2: Country codes Part 2

Code Country Code Country Code Country

KI kiribati MY malaysia SG singapore
KM comoros MZ mozambique SH saint helena
KN nevis anguilla NA namibia SI slovenia
KP north korea NC new caledonia SJ svalbard
KR south korea NE niger SK slovakia
KW kuwait NF norfolk islands SL sierra leone
KY cayman islands NG nigeria SM san marino
KZ kazakhstan NI nicaragua SN senegal
LA laos NL netherlands SO somalia
LB lebanon NO norway SR suriname
LC saint lucia NP nepal SS south sudan
LI liechtenstein NR nauru ST sao tome
LK sri lanka NU niue SV el salvador
LR liberia NZ new zealand SX sint marteen
LS lesotho OM oman SY syria
LT lithuania PA panama SZ swaziland
LU luxembourg PE peru TC caicos islands
LV latvia PF polynesia TD chad
LY libya PG papua new guinea TF french s. territories
MA morocco PH philippines TG togo
MC monaco PK pakistasn TH thailand
MD moldova PL poland TJ tajikistan
ME montenegro PM st. pierre and mi. TK tokelau
MF saint martin PN pitcairn island TL east timor
MG madagascar PR puerto rico TM turkmenistan
MH marshall islands PS palestine TN tunisia
MK macedonia PT portugal TO tonga
ML mali PW palau TR turkey
MM myanmar PY paraguay TT trinidad and tobago
MN mongolia QA qatar TV tuvalu
MO macau RE reunion TW taiwan
MP n. mariana islands RO romania TZ tanzania
MQ martinique RS serbia UA ukraine
MR mauritania RU russia UG uganda
MS montserrat RW rwanda UM USA minor isl.
MT malta SA saudia arabia US USA
MU mauritius SB solomon islands UY uruguay
MV maldives SC seychelles UZ uzbekistan
MW malawi SD sudan VA vatican
MX mexico SE sweden VC grenadines
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Table 10.3: Country codes Part 3

Code Country

VE venezuela
VG virgin islands (UK)
VI virgin islands (USA)
VN vietnam
VU vanuatu
WF futuna islands
WS samoa
XK kosovo
XX international
YE yemen
YT mayotte
ZA south africa
ZM zambia
ZW zimbabwe
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Table 10.4: Regions Part 1

Caribbean Polynesia Guinea Mediterranean Eastern Europe Mashriq
AG AS BF AD BG AE
AI CK BJ AL BY BH
AN FJ CI BA CS IL
AW FM CM CY EE JO
BB GS CV ES LT KW
BL GU GA GI LV LB
BM KI GH GR MD OM
BS MH GM HR ME PS
CU MP GN IT PL QA
CW NC GQ MK RO SA
DM NF GW MT RS SY
DO NR LR PT UA YE
GD NU MG SI XK
GF PF SL SM
GP SB SN TR
GY TK ST VA
HT TO TG
JM TV
KN VU
KY WF
LC WS
MF
MQ
MS
PN
SR
SX
TC
TT
UM
VC
VG
VI
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Table 10.5: Regions Part 2

Swahili Coast Central America Sahara Nordic France Germany
BI BZ CF AX BE
KM CC EH DK DE
MU CR ML FI EU
MW GT MR FO EZ
MZ HN NE GL FR
RE MX NG IS LU
RW NI SD NO MC
SC PA SS SE NL
TZ PR TD
UG SV
YT

Table 10.6: Regions Part 3

South East Asia Middle East Southern Africa India Central Asia Central Europe
BN AF BW BD KG AT
CX AM LS BT KZ CH
ID AZ NA IN MN CZ
MY GE SZ IO TJ HU
PH IQ ZA LK TM LI
PW IR ZM MV UZ SK
SG PK ZW NP
TL

Table 10.7: Regions Part 4

Arctic-America Indochina Horn of Africa Northern Africa Great Britain
AQ KH DJ DZ GB
BV LA ER EG GG
HM MM ET LY IE
PM TH KE MA IM
SJ VN SO TN JE
TF
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Table 10.8: Regions Part 5

Amazon Argentina China Congo Japan Korea Oceania
BO AR CN AO JP AU
CO FK HK CD KP NZ
EC PY MO CG KR PG
VE UY TW SH

Table 10.9: Regions Part 6

Andes USA Brazil Russia International Canada
CL US BR RU XX CA
PE
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