

DIVISION OF PRODUCT DEVELOPMENT | DEPARTMENT OF DESIGN SCIENCES
FACULTY OF ENGINEERING LTH | LUND UNIVERSITY
2018

MASTER THESIS

Johan Helmertz

A Digital App for Early

Programming

A Digital App for Early

Programming

Johan Helmertz

A Digital App for Early Programming

Copyright © 2018 Johan Helmertz

Published by

Department of Design Sciences

Faculty of Engineering LTH, Lund University

P.O. Box 118, SE-221 00 Lund, Sweden

Subject: Interaction Design (MAMM01)

Division: Product Development, Department of Design Sciences, Faculty of

Engineering LTH, Lund University

Supervisor: Magnus Haake

Co-supervisor: Agneta Gulz

Examiner: Mattias Wallergård

Abstract

Today, technology is everywhere in our everyday lives whether it is wanted or not.

The world has become digitalized and this development continues for each year

that passes. The Swedish government has now (2018) updated the curricula for

both kindergarten and elementary school to include more digital aspects in the

teaching.

With this background, this thesis (project) set out to design a digital app for

teaching programming semantics to children in the ages of 4 to 6. The project

explores the aspects of teaching programming as well as the aspect of doing this

using new technology. In order to carry out this endeavor, a series of design

methods were conducted; all the way from background research on early

programming and visiting schools to designing and implementing a product

(programming app for small children). The design methods were executed one by

one, reaching a final design manifesting the subsequent steps of the design

process.

The result of the thesis project and the applied design procedure was FluteBot, an

interactive tablet game designed to teach basic programming semantics to young

children. FluteBot takes new approaches to teach programming by letting children

give instructions in form of music which can be used to control animals. FluteBot

is also taking a new approach, compared to the common navigation based

programming approaches, in that a more event based and conceptually more

accurate representation of programming is explored.

Keywords: Early programming, FluteBot, Kindergarten, Programming semantics

Sammanfattning

Idag är tekniken närvarande överallt i vår vardag, vare sig vi vill det eller inte.

Världen har blivit digitaliserat och den blir mer digital för varje år som går.

Svenska regeringen har också (2018) uppdaterat läroplanen för både förskola och

grundskola till att inkludera mer digitala aspekter i undervisningen.

Målet med detta projekt var att designa en digital app som lär ut “tidig

programmering” till barn i förskolan. Projektet utforskar möjligheterna att lära ut

programmering och att göra detta med ny teknik. För att nå detta mål användes en

sekvens av på varandra följande designmetoder – allt från grundläggande

kartläggning av “programmering för små barn” och besök på skolor, till att

designa och skapa en konkret produkt (en app för tidig programmering). Projektet

följde den specificerade kedjan av designmetoder och den slutgiltiga produkten

(appen) kom på så sätt att manifestera den använda designprocessen.

Den färdiga produkten resulterade i FluteBot, ett interaktivt lek-&-lärspel för

surfplattor som är utformat för att lära ut grundläggande (tidig) programmering i

förskolor. FluteBot använder sig av nya tillvägagångssätt att lära ut

programmering genom att den lär barn att ge instruktioner i form av musik som

användas för att kontrollera djur. I detta skiljer sig FluteBot från de vanliga

navigeringsbaserade apparna för tidig programmering. Därtill undersöker FlutBot-

projektet en mer händelsebaserat och konceptuellt noggrann representation av

programmering.

Nyckelord: tidig programmering, FluteBot, förskola, programmeringssematik

Acknowledgments

I would like to express my sincere appreciation to my supervisor Magnus Haake,

for giving the support and expertise needed to guide me in my work. I would also

like to thank my co-supervisor Agneta Gulz for giving tips and taking her time to

give feedback about the thesis.

I would like to thank all the other people who somehow were involved in making

this thesis, among others: the Educational Technology Group at Lund University,

the schools and kindergartens I visited for research purposes, and the teachers I

have interviewed.

Furthermore, I would like to thank all the Gods who have blessed me with strength

and knowledge to write this thesis. Without them, this would not have been

possible. But most of all I would like to thank my turtle Bob.

Lund, June 2018

Johan Helmertz

Table of Contents

List of acronyms and abbreviations 10

1 Introduction 11

2 Methods 13

2.1 Data collection phase 14

2.2 Data analysis phase 14

2.3 Decision phase 15

2.4 Conceptual design phase 15

2.5 Hi-fi prototype 15

2.6 Implementation phase 15

3 Results 17

3.1 Data collection 17

 Preparations 17 3.1.1

 Study existing programming apps 18 3.1.2

 Interviews 21 3.1.3

 Field observations 22 3.1.4

 Literature studies 23 3.1.5

3.2 Data analysis phase 25

 Identifying recurring patterns and themes 25 3.2.1

 Analysis of critical events 27 3.2.2

3.3 Decision phase 29

3.4 Conceptual design phase 29

 Storyboard 1 29 3.4.1

 Storyboard 2 33 3.4.2

 Encounter of a design problem 35 3.4.3

 Storyboard 3 36 3.4.4

 What is the focus of the teaching? 38 3.4.5

 Instructions for obstacles 40 3.4.6

 FluteBot – the title of the game 41 3.4.7

3.5 Hi-fi prototype 41

 Hi-fi prototype 1 42 3.5.1

 Hi-fi prototype 2 42 3.5.2

3.6 Implementation phase 42

 System Requirement Specification 42 3.6.1

 UML-diagrams 42 3.6.2

 Validation and verification matrix 43 3.6.3

 Homepage 43 3.6.4

 Configuration management 43 3.6.5

 Agile development routines 44 3.6.6

 Artwork and music 44 3.6.7

 Produced app 45 3.6.8

4 Discussions and conclusions 49

4.1 What should be taught in programming education? 49

 History and future of programming 49 4.1.1

 Computational thinking 52 4.1.2

 What is the focus of the teaching? 53 4.1.3

 Tips for programming education 53 4.1.4

4.2 Comparison with other apps on the market 53

4.3 Project plan and design methods 55

4.4 Further development 55

4.5 Conclusion 56

References 57

Appendix A Hi-fi prototype 1 59

Appendix B Hi-fi prototype 2 61

Appendix C UML-diagrams 62

Appendix D Software Requirement Specification 64

1 Introduction 65

2 References 65

3 Background and goals 65

3.1 Goal 65

3.2 Actors and their purpose 65

4 Terminology 66

5 Functional requirements 66

6 Quality requirements 71

6.1 Performance 71

7 Project requirements 72

7.1 Development 72

Appendix E Validation and Verification Matrix 73

10

List of Acronyms and Abbreviations

CS Computer Science.

Kindergarten The definition of kindergarten varies in different countries. In this

thesis, kindergarten refers to the Swedish childcare system for 1-

to 6-years-old children. This kindergarten system (dagis) precedes

the compulsory school system starting with one year in a

preschool class (förskoleklass) and is then followed by (the

traditional) grade 1 to 9.

FluteBot The name of the learn-&.play game for early programing that was

produced. Is also the name of the flute playing character in the

game.

IoT Internet of things.

Jekyll Static website generator (https://jekyllrb.com/).

SRS System Requirement Specification; a structured set of information

listing the requirements of a system.

Git A version control system for tracking changes in computer

programming files (https://git-scm.com/).

GitHub Web-based hosting service for version control using Git

(https://github.com/).

BitBucket Web-based hosting service for version control using Git amongst

others (https://bitbucket.org/).

SourceTree A Git GUI that offers visual representation of your repository;

supports BitBucket (https://www.sourcetreeapp.com/).

STEM Abbreviation for the educational domains of Science, Technology,

Engineering, and Mathematics.

UML Unified Modelling Language; a general-purpose modeling and

visualization tool for software development.

https://www.sourcetreeapp.com/

11

1 Introduction

Technology is taking over the world! Well, not really. But there is no denying that

humans are very much dependent on technology in their everyday life, and that

this dependency is increasing. Our society is becoming more and more digitalized

and all parts of society need to adapt to changing requirements, accordingly and

smoothly, to stay up to date. One important part of society is our schools as a part

of the educational system. The Swedish government has recently decided to make

changes in the 2018 curriculums of both kindergarten and elementary school, to

help children develop an understanding of how technology affects society and its

individuals, including programming (Skolverket, 2017).

The demand for software developers is high in the industry, according to U.S

Department of Labor (2018) the employment of software developers is projected

to grow much faster than the average for all occupations. The number of parents

who puts their children to learn programming in private classes is growing as well,

as described in The Straits Times (2016). But do we teach programming in schools

to prepare all children to become programmers? Do we teach math to prepare all

children to become mathematicians? What is actually the goal of teaching

programming in school?

The development in technology has actually opened doors to use technology in

new ways as tools in schools and education. To introduce technology-based

learning tools in school does not have to be a replacement of traditional tools of

teaching and learning, but can be an addition to already existing ways of teaching.

However, with the use of technology, it is now possible to teach things in ways

that were not possible before. Potentially, educational technology can be used to

reach a view of the taught area and support learners in ways that were difficult or

even impossible to do without the use of technology. To include technology in

teaching can also mean a gain in time and efficiency.

The purpose of this thesis is to develop a digital learning tool that supports

kindergarten teachers in their teaching of programming in a fun and educational

manner without putting too much pressure on the teachers themselves. Many

teachers are excited to learn programming, but some are also afraid since

programming is something that generally is considered difficult and hard.

The result of this became FluteBot, an interactive tablet learn-&-play game that

can be used as a tool by teachers to teach programming semantics to kindergarten

children with using music. A lot of children like music and there are already a lot

12

of music games in kindergarten. By further using this, it becomes more familiar

for both the children and the teachers. This will, hopefully, lead to a more played

down and relaxed view of programming.

The thesis will explain the design processes behind the development of FluteBot

and the decision made in producing this tool, all the way from collecting data

regarding the problem to the implemented software product. This includes

collecting, summarizing, mapping and analyzing data, creating storyboards and hi-

fi prototypes and implementation.

13

2 Methods

Interaction design processes contains four fundamental activities: identifying

requirements, design alternatives, create prototypes, and evaluate (Preece, Rogers,

and Sharp, 2004). A process model based on this was used to bring forth the

design of the tool. This model contained the phases: data collection, data analysis,

decision making, conceptual design, and prototyping. The results of these steps

were then used to implement the software itself (see Figure 1).

To be able to design an interactive tool, knowledge about the target group and

what kind of support the product should contain is needed. Therefore, identifying

requirements are a fundamental part of the interaction design process, and is done

through data collection and data analysis. Design alternatives that fulfill the

requirements are brought forth by conceptual design, which then is tested by

creating prototypes. Evaluation is done to ensure the brought forth design is in line

with the goals of the product, to make requirements aren‟t missing.

Figure 1: The process model for the project and the level of abstraction throughout the

process.

By using this process model, an application with better quality can be made more

efficiently in that each phase of the process is designed in order to steadily and

gradually approach a solution to a well thought out system. For each step of the

way, motivated decisions about the design has to be made. According to Stecklein,

Dabney, Dick, Haskins, Lovell, and Moroney (2004), the cost to fix errors in a

projects life cycle escalate in an exponential fashion. Therefore, it is profitable to

put a lot of effort in the making of the design in order to avoid errors which leads

to an overall higher efficiency. Computer software projects have an

14

embarrassingly high fail rate compared to other projects, and much of this has to

do with insufficient consideration to the importance of well prepared and thought

through specifications of the system (Charette, 2005). Many programmers see pre-

coding work as a nuisance, and this is often neglected in the making of the

software. Another common misconception is that "a little bit of common sense" is

enough, but the complexity and size of the components of the software grows very

fast. As a consequence, design flaws that are not discovered in time and redesigns

are costly, since a lot of work has already been incorporated. It might even be

impossible to fix the flaw properly unless starting over. Without proper structure,

processes, and ways of handling both internal and external factors of the software

process, the production of new software repeatedly turn unbearable and inefficient.

Below the activities for each of the phases of the design model are presented,

describing the methods applied.

2.1 Data collection phase

In this first phase of the design process, information about the problem is collected

by using different data collecting methods.

Before the actual collecting of data, there are five key-questions that should be

attended to according to Preece, Rogers, and Sharp (2004). Setting up a goal,

identify participants, relations to participants, triangulation, and pilot studies.

These five key questions were addressed starting the data collection. After that, the

data collection started by means of literature studies, interviews, field

observations, and studies of similar products.

2.2 Data analysis phase

In this second phase, an analysis of the data from the initial data collection phase

is made by first extracting key points from the data. Then, this data is mapped into

different categories according to common factors and how they relate to each

other. This is done by using quantitative and/or qualitative data analysis methods.

In this project, no quantitative data was collected (surveys, etc.), and only

qualitative data analysis methods were applied.

15

2.3 Decision phase

In this third phase, the focus area of the project is narrowed down by deciding

which parts of the previously analyzed data should be included in the system to be

made. The pros and cons of the different analyzed parts are brought forth, as well

as the requirements from the different stakeholders, to choose the parts to focus

more on.

2.4 Conceptual design phase

In this fourth phase, conceptual models of the chosen parts are brought forth by

generating ideas based on the preceding decision phase, whereafter it is visualized

by creating two different storyboards. Conceptual models are used to make it

easier for the users to understand things in the application by means of metaphors

and analogies that the users already are familiar with. This phase was also made in

order to try out what the application may look like. In doing this, aspects that

otherwise wouldn't be obvious might be easily found.

2.5 Hi-fi prototype

In this fifth phase, two hi-fi prototypes were created in the program InVision. The

hi-fi prototypes were created in order to further verify the design decisions made

during the conceptual design, e.g. how well the actual size of the elements fits on

the screen or if the placements of the different items like buttons are intuitive. This

phase can also further show observations never before noticed just like in the

conceptual design phase.

2.6 Implementation phase

In this sixth and final phase, the implementation requirements for the system were

created from analyzing the hi-fi prototype of the previous phase, whereafter they

were documented in a System Requirement Specification (SRS). The SRS

contains the requirements of the system as well as user cases for the system. The

SRS was created to validate but also verify the software while developing the

system. Validation means that the specified requirements are used for the

development of the system. By using the requirements as to-do items, the

developer can focus on implementing, one item at the time. Verification means

16

that the user cases are used to verify that the developed system actually is

implemented as documented in the SRS. The user cases are used as black box

testing, which are tested with a time-interval of one week.

The architectural design of the system was made by creating two UML-diagrams

(UML: Unified Modeling Language), one representing a more overall structure of

how the application works, and the other representing the structure of the game

level in the application. The UML-diagrams were created by going through the

SRS and create a structure that supports the given functionality.

Defining these things before writing any line of code, is often beneficial with

respect to the overall cost of the system. Problems that were not thought of during

the previous steps might become more obvious and the cost for changes are still at

a relatively low level in this stage compared to the following stage of actual code

implementation. If this stage is ignored and the structure of the program is not well

thought out, there is a risk that quite resourceful changes as to both time and cost

have to be enforced since the way it was first implemented is not compatible with

certain aspects of the functionality of the desired system.

The application FluteBot was developed in the Unity 3D development platform

(https://unity3d.com) and the system is running as an app using the Unity Engine.

In Unity, the application can be exported for iOS, Android, and WebGL by means

of Unity‟s wide platform support. The code was written in C# using the Microsoft

Visual Studio IDE (https://www.visualstudio.com).

The website to host the application via WebGL was created with the help of Jekyll

(https://jekyllrb.com/), which uses GitHub (https://github.com) to host and run a

static website. The website was primarily created to test the application and its

dimensions on an iPad. Because Apple‟s policy for developing and distributing

application, the simplest way to test the game was to run the application on an

iPad via the iOS Safari web browser.

For configuration of the project, BitBucket (https://bitbucket.org/) and SourceTree

(https://www.sourcetreeapp.com/) was used. BitBucket is a web-based version

control repository hosting service and SourceTree is a client that can be used to

simplify how to interact with a BitBucket repository. Since the development team

was a one person team, the configuration management tool was primarily used to

backup the system, but also to maintain a history of the development process in

case it would be needed to revert to a certain commit. The tools were also used to

switch between two different computers, a stationary computer and a laptop. The

development itself was made mostly on the stationary computer, while the

graphics and music were made on the laptop.

Images and animations were produced in Adobe Flash (https://www.adobe.com/)

by using a Wacom Cintiq interactive pen display (https://www.wacom.com/).

Music and melodies were composed, mixed, and mastered in Cubase

(https://www.steinberg.net/).

17

3 Results

The results of the different phases in this thesis are described in this section, all the

way from the initial data collection to the implementation of a software prototype.

3.1 Data collection

According to Preece, Rogers, and Sharp (2004) the activities of the data collection

must be planned and executed properly. Therefore, some preparations were made

before initiating the data collection itself.

 Preparations 3.1.1

Four out of the five key points listed in Preece, Rogers, and Sharp (2004) were

used to prepare the data collection: goals, participants, relations, and triangulation.

The fifth key point (pilot studies) were neglected due to lack of time and

resources.

3.1.1.1 Goals of the data collection

The goal of the data collection is to find out what is necessary as well as desirably

to include in an educational app for teaching programming in small children, and

why. The following questions were set up to help the collection of data.

 What does the learning of programming look like today?

 What kind of materials/tools exists for teachers today?

 How do the teachers do today? What do they think regarding the subject?

 Where are the flaws in today‟s system? Why?

 How do children look at programming?

 How do teachers look at programming?

3.1.1.2 The participants of the data collection

The primary users of the system are 4- to 6-years-old children. The secondary

users are preschool teachers, early elementary teachers and parents. The tertiary

users are the institutions (schools, etc.).

18

3.1.1.3 Relations

Before the interviews and the field observations, the involved parties were always

told about the intention of the data collection.

3.1.1.4 Triangulation

Triangulation is when something is examined from more than two different

perspectives (Denzin, 2006; Jupp, 2006). Jupp (2006) defines four types of

triangulation and „methodological triangulation‟ was deemed most appropriate for

the data collection in this. In methodological triangulation, different data

collection methods are conducted to collect the data.

The methods used for triangulation were: literature studies, field observations in

kindergarten and cram schools, interviews, studying existing programming tools,

and discussions with the Educational Technology Group at Lund University.

 Study existing programming apps 3.1.2

One part of the data collection involved studying products that are used to teach

children programming. This was done to see which approach others had taken

towards „programming for (young) children‟. The games were tested individually

and if there was something that stood out or something that was different, it was

documented.

3.1.2.1 Scratch & ScratchJr

The most widely used product for teaching programming for children are Scratch

and ScratchJr (https://scratch.mit.edu/), developed in co-operation with MIT.

These programs are very popular and seem to be a tool that is being used

everywhere, especially in elementary school. Scratch and ScratchJr were the tools

that were used in the cram school that was visited during field observation as well

as the tool the interviewed teacher used in her programming lectures. ScratchJr is

designed for children 5 to 7 years of age, while Scratch is designed for children 8

to 18 years of age. The products are building on the same concept, however,

ScratchJr is more simple and is less text-based.

Scratch has its own programming language, which consists of putting together

blocks of code and in this way building a program that can be executed. The

program can be used to create everything from a simple animation sequence, to an

interactive game.

Pros with Scratch:

 The program is colorful and visually appealing. Especially, each

type/kind of block is represented by a specific color.

 There are many possibilities for children to be creative. The program

has support for drawing, changing background picture, choose

19

characters, record sounds, show their program to each other, create

their own games, etc.

 Has received positive feedback from students.

 There seems to be a lot of information about the program. There are

many tutorials and guides on how to teach with Scratch.

 Doesn't need too much work to give visual feedback from “coding”.

 Instead of jumping right into programming, Scratch provides

intermediate learning steps adapted to children.

 Easy to set up an environment for the teachers.

Cons with Scratch:

 Thus, the children‟s learning in the end becomes rather dependent on

teachers as well as parents. This became very obvious at the field

observation made at the cram school, but it was also mentioned in

some of the interviews. At the cram school, for example, the teachers

wrote code for everyone to see, everyone copied the written code but

most of the children didn‟t seem to understand (this way of teaching

programming was also used when I first learned programming in high

school).

 In the interviews, the teachers thought children tended to focus more

on drawing than actual programming. In other words, even if Scratch

is designed to be used in a certain way, how it is actually used in

schools is very important because that is the actual reason to why

these tools are being developed.

 According to Ben Shapiro at the University of Colorado, there are a

number of problems with using blocks instead of code. Blocks do help

with syntax errors, type hinting, and API discovery. But the hardest

part with learning programming is the semantics, and not the syntax

(Shapiro, 2016.

 Learning to not use blocks becomes a challenge for those who

progresses beyond Scratch (Shapiro, 2016).

 Scratch is a virtual programming language, meaning the language is

designed for the purpose of leaning, unlike other programming

languages that are designed for a functional reason.

3.1.2.2 Other existing apps

In the other apps designed to teach children programming, to give instructions to

navigate a character was a very reoccurring way of introducing programming. To

make a character move, turn, jump, and to create loops were very common

instructions. The following apps were looked into: The Foos, LightBot Jr, Daisy

the Dinosaur, Coda game, LOOPIMAL, Reduct, Bee-Bot, and Blue-Bot. The apps

were found by researching online and by talking to the Educational Technology

Group.

20

Bee-Bot (https://www.bee-bot.us/) is a robot designed for ages 3 and up, where

children can instruct the robot to navigate through a grid-carpet by using the

instructions: forward, turn right, turn left and start (see Figure 2).

Figure 2: Photo taken at the kindergarten visited for field observation.

The Foos (https://codespark.com/) seemed to be built on a lot of great design

decisions made from a game developing perspective. The sounds when pressing

objects and finishing levels were very appealing. To press on the character for it to

start executing code was intuitive. Their way of implementing the loop function

was also very well made. The game also included an interesting platform runner

game, where the player needed to apply what they learned to manipulate the level

to complete it.

Coda game has a quite different approach to teaching programming than the other

apps. With this game, children can create their own whack-a-mole game by

dragging in "attribute boxes" into different triggers/methods. The attributes can be

personalized and will be included in the game when the created program is

executed, e.g. different sounds can be used when moles are whacked or the

amount of mole holes can be customized. Once the game has been played a few

times, however there isn‟t much more to do.

LOOPIMAL is an app where children can create their own songs by dragging in

melodies into a looping sequence. To use something creative as music or dance

might bring a nice element to the learning that is fun and also play down otherwise

mentally discouraging themes.

Reduct is an educational game that teaches functions, Booleans, equality,

conditionals and mapping functions over sets with a comprehension-first

approach. The game was developed by Arawjo, Wang, Myers, Andersen and

Guimbretiére (2017) at the Department of Computer Science, Cornell University.

https://www.bee-bot.us/

21

Even if better conceptual models could have been used to make it easier to

motivate students, what is being taught is very precise. Since the game is focusing

on semantics, what to teach to student and when students are done learning

becomes clearer.

 Interviews 3.1.3

Three interviews were conducted to collect information from people who are

already involved in teaching programming to young children. The interviews were

semi-structured, meaning that the interview was conducted as an open discussion

about the topic of interest, but with some underlying key topics to be answered

(Preece, Rogers, and Sharp, 2004). By doing this, it is possible to get into tracks

that were not thought of before, and at the same time keep the discussion within

the domain of the central topic.

3.1.3.1 Interview 1

Interview 1 was with a math teacher with no programming experience at a local

school who had used ScratchJr to introduce programming to 8 years olds. The

group consisted mostly of boys who were interested in games. The teacher said the

children enjoyed playing with ScratchJr and were excited to be able to create

games. Frustration occurred when getting stuck, but the children solved it by

talking to each other. The teacher had also used Bee-Bot, but the children got more

frustrated using that compared to ScratchJr. Some children just gave up when

things didn‟t go as planned, while others got interested in why things didn‟t work

out.

3.1.3.2 Interview 2

Interview 2 was with a math teacher with no programming experience at a local

school who had used Scratch to introduce programming to children in the age of

12. The teacher printed out template programs and helped the children create these

programs. However, many times the children got stuck with an error that the

teacher could not solve. The teacher thought the children focused more on drawing

than actual programming, and found it hard to give a proper programming

education when not knowing programming.

3.1.3.3 Interview 3

Interview 3 was with a teacher who has been involved in programming for young

children. The teacher had been using tools like Scratch, Makey Makey

(https://makeymakey.com/), and Hopscotch (https://www.gethopscotch.com/), but

also analog dancing as a playful introduction when new children arrives. The

teacher told that the creative aspects are the most appreciated by the children. The

teacher told that many times the programming gets neglected, and the children

22

need to be led into the right direction. The teacher was also thinking about the

effects of introducing programming to children in the age of 4 to 6. Will it help

learning programming later? That there is non-compliance about what the well-

known term computational thinking is came up as well.

 Field observations 3.1.4

Two field observations were conducted to collect information about how it

actually works in schools today when having programming lectures. The

observations can help understand the user‟s context, activities, and goals. The

observations can help fill in details about how users behave and how they are

using techniques and nuances that do not emerge in other forms of data

collections.

The following framework presented by Preece, Rogers, Sharp (2004) was used to

help documenting what was happening on the field observations:

 Who is using the technology?

 Where is it used?

 What is done with it?

 What are the specific individual actions?

 Is what is observed a part of a special event?

 What are the sequences of the events?

 What are the involved parties trying to do?

 What mood does the group and the individual have?

In order to not disturb the data collection during the observational field study, the

„observer‟ stayed in the background, keeping a low presence. Documentation was

done by taking notes on the mobile phone during and after the lesson was taking

place.

3.1.4.1 Field observation 1

The second field observation was an observation of a programming session in a

kindergarten in Vellinge.

Three children, 4 to 5 years of age, were observed while engaged in a

programming activity using the Bee-Bot toolkit. The programming play time was

conducted on the kindergartens living room floor. A big grid sheet with shapes

(circles, squares, triangles, etc.) was placed on the floor and the children had the

objective to make the Bee-Bot move to a specific square on the sheet. The teacher

placed the Bee-Bot and told one of the children to get the Bee-Bot to a certain

square. The child then programmed the Bee-Bot and watched if the Bee-Bot acted

as intended or not.

23

3.1.4.2 Field observation 2

The first field observation was an observation of a beginners programming lesson

at a local cram school in Malmö.

The students of this lesson were 10 children around the age of 9. The lesson was

taken place in a computer lab; the room looked very “techy”. The walls were

covered like the theme from the movie the Matrix and the room was a little dark

apart from dim lights.

During the visited lesson, the students were going to build a pong game with

Scratch from scratch. The teacher wrote some lines of block-code, and explained

what each block did. Then the teacher walked around and helped all the children

until everyone had that bit of code working. This procedure was repeated for every

few lines of code for about one and a half hours until the game was finished. The

lecture reminded me a lot of when I started learning programming in high school.

The teacher wrote code on the board and tried to explain, but nobody really

understood so they just copied the code without any understanding of what was

actually done. There were quite some differences in the abilities of the students;

some needed almost no help and some needed help all the time. The students who

finished the parts quickly had to spend quite a lot of time waiting for the teacher to

finish helping all the others, something that lead to a lot of waiting time. Not a lot

of own creative coding and code testing was done during that time; however there

were quite a lot of testing by changing parameters while waiting. Another

observation was that since Scratch has a lot of features, buttons, and such in the

editor, some students had trouble finding the feature they were looking for in the

jungle.

 Literature studies 3.1.5

One very important part of the data collection was to look at what the current field

of teaching programming to children looks like.

One interesting track was the work of Ben Shapiro at University of Colorado. He

is running a research group called laboratory of playful computation that is

focusing on teaching programming through “creative expression and through the

design of networked technologies to solve problems in their homes and

communities”. The following extracts from was made from his research (Shapiro,

2017; Guzdiaz, 2017).

 Distribution is also of interest when teaching children programming. To

teach them how computers, computer programs, computer components,

etc. communicate with each other and how they send each other messages.

 Synchronization, bug-finding, machine learning concepts, functional

programming, locking and blocking are also things that can be taught to

24

children in order for them to get a better understanding of how

programming and computers works.

 To teach how interactive technology works is also good for children to get

a better understanding of how computers and programming works, i.e.

going from input to processing/decision making to output.

 Blocks are boring. Blocks are made to avoid syntax errors, help type

hinting and API discovery, but are the same as text in some senses. Syntax

isn't the hard part about learning programming, semantics are. If blocks

can't have more meaning than text, they are expressively 1:1 to text and do

not make it more powerful. When introducing the use of blocks, the

challenge of leaning to not use blocks is also introduced.

 Detached editors limit semantic support.

 Schneiderman's golden rules for interface design: prevent, detect, and

warn about errors (Schneiderman, 1986). This is missing in Scratch.

 We know little about how those who develop their knowledge within

computing, especially in groups. How individuals develop computational

ideas are being focused on in most research on cognition in computing and

STEM, as well as research that includes social dynamics in learning. New

theories that adopt social aspects for cognition are necessary to really

know how children actually learn.

Another researcher is Mark Guzdiaz at School of Interactive Computing, Georgia

Institute of Technology. He is running a blog about computing education where he

discusses what it means to teach Computer Science (CS). Below follows a set of

extracts from his blog (Guzdiaz, 2017):

 CS should be taught because CS is a science like any other science. Just

like we teach chemistry because we live in a world with chemical

interactions, we shall teach CS because we live in a world with

interactions with computers according to Jones, Bell, Cutts, Iyer, Schulte,

Vahrenhold and Han (2011).

 To study and understand processes.

 Even if you are not building the algorithms, it is powerful to know about

them.

 CS is a medium with great possibilities, and should be available to

anyone.

 It can also be used as a new way to learn math and other sciences.

25

 To not teach programming to prepare children to become programmers.

Because the industry is calling for programmers is a bad reason to why

programming should be taught to children in schools. Not everyone will

be programmers, and it is not logical to prepare everyone for a job that

only a few will have.

 To be able to use computers better.

 To learn how to solve problems.

Some additional remarks were found in other parts of the literature review:

 To learn semantics before learning a programming language seems to be a

more efficient and long lasting approach to teach programming according

to Nelson, Xie, and Ko (2017).

 To learn programming is hard, and therefore it requires strong motivation

from the child in order to succeed according to Wang, Wand and Liu

(2014).

 The effects of early introduction of computational thinking is good

according to Portelance, Strawhacker, and Bers (2016).

3.2 Data analysis phase

For analyzing the data brought forth from the data collection methods, the

following two types of qualitative analysis were conducted: identifying recurring

patterns and themes and analysis of critical events.

 Identifying recurring patterns and themes 3.2.1

To identify recurring patterns and themes, an affinity diagram was created.

Elements were extracted from the collected data and recurring themes and patterns

were found.

The result of the affinity diagram is the following:

 What to teach.

 Logic.

 Ones and zeroes & true and false.

 AND, OR, XOR, etc.

 Conditional statements (If/else).

 Problem solving.

 To solve problems by dividing a task into smaller tasks

and then put them together.

26

 Sequencing.

 To teach what kind of problems can occur when things

are executed sequentially.

 Instructions can depend on each other. E.g. one

instruction needs to be execute first in order for an

another one to work as intended.

 Locking/blocking.

 Understand processes.

 Giving instructions.

 Synchronization.

 E.g. Input -> processing/decision making -> output.

 To give instructions to set functions/methods (main-

method, triggers, onMouseClick, etc.).

 Bug finding/fixing.

 Automation.

 Loop functions.

 Distribution/communication.

 Database.

 Different components communicating to solve a problem.

 Many ways to solve the same problem.

 Others.

 To be able to use a computer.

 History of computers.

 Programming languages.

 Introducing common terms.

 Machine learning.

 AI.

 Agile development.

 Testing.

 Hierarchy.

 Functional programming.

 Understand algorithms.

 Even when not building algorithms, it can be

powerful just to know them and understand them.

 How to teach it.

 By including creative aspects like drawing, changing background

picture, choose characters, record sounds, create your own game,

show the peers what has been made, etc. without taking the focus

away from the programming.

 Feedback.

 Quick and clear feedback with clear consequences.

 If you do something wrong, the feedback should be

different and not wrong.

27

 Avoid copy and paste. Invite children to think and try on their

own.

 Avoid teaching something that needs to be unlearned later.

 Navigation (walk, turn, jump, etc.)

 By letting children create things.

 By using dance or music.

 Have a system that prevents, detects, and warns about errors.

 To learn in group (e.g. pair programming).

 To learn semantics before coding.

 Programming is plain hard, and requires a lot of motivation from

the children.

 Blocks are not helpful in the learning of semantics.

 Classroom adaptation.

 Support for the classroom and the teachers.

 Tutorial/instructions/template for teachers and/or children.

 Design.

 To make it visually appealing by using many colors, shapes,

animals, etc.

 Press on the character to “run code”, instead of pressing a button.

 Keep it simple.

 Intuitive.

 Game design.

 Three stars for how well the level has been done.

 Stimulating sounds when things happen in game. Just something

like an appealing click sound when pressing button adds a lot.

 To be able to do the same thing again in many different ways.

 To think about.

 Children in the age of 4-6 are hungry to learn.

 Children in the age of 4 can have trouble to think just two steps

ahead (walk forward, turn, walk forward).

 Analysis of critical events 3.2.2

Pretty early, the complexity of what programming actually is became apparent. Is

programming problem solving? Is it logic? Is it to create programs? Is it to know a

programming language? The field of computer science is broad and complex.

Programming in school is not introduced to make every child prepared to become

a programmer, but rather to make them understand more about how programming

and computers “think” and work. Therefore, we need to ask what it is that we want

children to learn, and in what way we want to teach it. Since the target audience of

this app is all children, an all-round education is preferred.

28

Something that was quite occurring during the data collection was the fact that it

very much depends on the children and the teachers how well a child learns and

understands programming.

To learn semantics and comprehension first before starting to code, generally

gives better results according to Nelson, Xie and Ko (2017).

When studying similar products, it was noted that most games teaching children

programming used the same concept of giving instructions to a figure that are

supposed to move from one place to another. This concept lets children practice to

know how many specific instructions need to be given in order to get to the right

place. But is that really what we want to teach children? It does teach the fact that

it is needed to break down the problem into smaller parts, but it also requires the

child to use math and be able to make a mental twist of the plane. Are these two

things really programming related? It is said that math is a recurring element in

programming, but math is a recurring element in everything since we live in a

world with rules that are possible to describe with math. But the question is: How

much math is there really in programming? It really depends on what kind of

programming that is done. There is much math involved in the creation of

algorithms, but not so much in the creation of e.g. webpages. What does the

history of programming say? Back in the days, programmers needed to e.g.

implement algorithms and structures on their own. Today it can be achieved by

importing a library and use super optimized algorithms by just writing a function

call. Guitarists back in the days had to forge their own effect pedals by putting

together circuits to manipulate the electric signals of a guitar. Today it is possible

for guitarists to access hundreds of complete guitar sounds, each containing

simulations of several effect pedals, just with the press of a button. Things that are

possible to automate will, in time, most likely be automated. The programming

education today needs to be questioned. Programming is a fairly new art, and it is

still evolving a lot. The way programming is being taught today has not changed

very much during the past years, and Scratch is jumping on the same train and in

many ways it is not that different learning programming by learning a typical

programming language like java. First, one learns if/else statements and then one

learn for-loops, etc. These are valid things to learn in terms of programming, but is

are there other ways to learn programming? How relevant is what is taught from a

broader perspective? And more importantly: How relevant will this be in 20 years

when the children of today are adults? Rosling, Rosling, and Rosling (2005)

showed in an analysis of collected data that the inequality between the western

world and the rest of the world is much smaller than people think, and that it is

getting smaller for every year. Still people believe inequalities are getting worse.

Hans Rosling explained that one of the reasons for this is that people in media do

not know how the world looks today, and also mentioned another important point

about this. That outdated history books are still being used in school, and teachers,

people in the media and other adults, who grew up learning one world view, are

teaching children an outdated world view from when they were younger.

29

When children are being taught something that is evolving, the way of teaching

this must be adapted accordingly. The fact that programming is something that

changes over time needs to be considered when teaching programming to children.

It was very clear when visiting the cram school that the teacher taught

programming with Scratch probably how he had first started learning

programming. So how will future programming look like? Some things might not

change much in the near future, but others will. Just like it is now possible to

create games in game engines like Unity, or create web pages from templates with

Jekyll, it is possible today to create programs out of already premade system parts.

3.3 Decision phase

Entering the decision phase, it was decided that the focus of the programming app

should focus on:

 Sequencing.

 Understanding the processes involved in instructing computers.

It was also decided that the app should be designed to help teachers and support

them as much as possible, not put another teaching burden onto them. The goal of

the app should be to try to give a richer experience in the teaching of

programming, as well as to try to broaden the target group as much as possible in

order to create a game that all children can enjoy.

3.4 Conceptual design phase

To develop conceptual models, two batches of storyboards were created. A

conceptual model is a “high-level description of how the system is organized and

works” (Johnson & Henderson, 2002, p. 26), meaning conceptual models are used

to make the user understand certain functionality of the system by using something

that the user is familiar with.

During all the previous phases, ideas and thought about the subject were

documented. Thus, by using the ideas relevant to what was decided in the decision

phase, one batch of storyboards were created, the Storyboard 1.

 Storyboard 1 3.4.1

The conceptual model brought forth for giving instructions, was the flute player

aka FluteBot. The flute player receives a sheet music containing instructions made

by the user, which the flute player then interprets in order to play the melodies

30

instructed by the user. The user creates instructions by adding melodies in the

sheet music as shown in Figure 3. This is an analogy to when a computer takes

instructions written by a user (code), processes the instructions, interprets them

and acts accordingly. A musician processes instructions just like a computer,

sequentially and one by one.

Figure 3: In the upper picture FluteBot is playing its flute, and in the lower picture FluteBot‟s

sheet music is shown. FluteBot needs sheet music to play its flute. The children are supposed to

drag melodies from a library into the sheet music. Then when the child presses on the FluteBot,

it gets a copy of the sheet music and starts to play.

Another conceptual model used is a book where the instructions are stored. This

book contains all the available instructions and can be opened and accessed by the

user when creating instructions. This is an analogy to looking in libraries to find

the right instruction to use when writing code.

The instructions are meant to be used to solve problems, and different levels can

be designed that needs to be completed by using the music metaphor. Figure 4,

Figure 5, and Figure 7 shows examples of what a level could look like. Figure 6

shows an example of an introduction level.

31

Figure 4: The first picture (upper left) shows the display screen and the objects on the screen.

The next picture (upper right) shows what happens when the library is pressed upon in the left

lower corner of the screen. All available melodies appear in the top part of the screen, and the

user can then drag melodies to the sheet music in the lower right corner. The lower two

pictures show FluteBot being pressed upon, whereafter FluteBot receives a copy of the sheet

music made by the user (lower right).

32

Figure 5: The first screen (upper left) shows FluteBot playing the first melody in the sheet

music instructed by the user. This melody makes the monkey move to the tree. The next screen

(upper right) shows the next melody being played, which makes the monkey climb the tree.

Then, the next screen (lower left) shows the next melody being played, which makes the

monkey throw an apple down from the tree. The final screen (lower right) shows a completed

level, and everybody is happy.

Figure 6: An introduction level demonstrating the monkey in the tree throwing an apple to the

baby monkey.

The sheet music is an analogy to a main method, in which instructions are

executed sequentially. The melodies are an analogy to function calls.

The possibilities to further develop the levels:

 More baby monkeys (= the monkey needs to throw down more apples).

 Baby monkeys and apples with multiple colors, where the baby monkey of

a certain color only wants apples of a certain color.

 Different fruits for different animals, e.g. bananas for elephants.

 Fruits must be thrown in a certain order to complete the level.

 There are several trees that the climbing monkey needs to switch between.

33

Figure 7: Example of a level where the user needs to take in consideration a dependency in

order to finish the level. A gorilla is in the way, and will eat all the fruits that are thrown. A

new “make the gorilla sleep”-melody is introduced in a new section in the library, which needs

to be played before the fruits are thrown in order to get the fruits down to the babies. It

introduces the concept of the fact that one thing needs to be done before in order to finish the

level.

After Storyboard 1, a new revised storyboard (Storyboard 2) was developed

including: Start menu and navigation between different screens in game, how to

build own levels, and how to navigate to levels, build-mode, etc.

 Storyboard 2 3.4.2

The following was decided to be included in the first part of the game:

 Explanations on how the game works, what the objective is and how to

complete a level. Might even have some sort of introduction movie clip.

 Some guide/help to show what to press when.

 An introduction of the instruction-concept of the game, which is to give

instructions to FluteBot by dragging melodies to the sheet music.

 An instruction of the execution-concept of the game, which is that the

melodies (instructions) that are written in the sheet music (main-method)

are given to FluteBot who interpret the sheet music (compiling) and acts

accordingly (generate an output).

 An instruction of the sequencing concept of the game, which is that the

melodies are played one by one top-down.

34

Figure 8: Storyboard with six screens, displaying design suggestions of how to navigate

through different screens.

The first screen in the top left corner of Figure 8 shows the title screen of the

game, i.e. the first screen that shows up when the game starts. This purpose of the

screen is to try to give an as good first impression of the game as possible, as well

as giving space to navigate both to the actual game but also information about the

game.

The next three screens are examples of how navigating to different levels in the

game are accessed. The functionality of being able to unlock levels was held

desirable in order to gradually introduce new concepts for the users. But it was

35

also deemed desirable to have the ability to go back and replay certain already

completed levels, since the game is designed as a tool for kindergarten teachers to

use in their teaching. To repeat is also an important aspect of learning.

The second screen in Figure 8 is a Super Mario inspired solution to the progress

functionality. This is a very well-known concept that is used in a lot of games, but

it is also a concept that is easy to understand for someone who has never seen it

before. In this screen, a number of levels are displayed and represented as points

or nodes on a map. The nodes are connected, and all except the first node is

locked. A level needs to be completed in order to unlock the connected nodes,

which allows levels to be playable according to how much the user has previously

completed.

The following two screens are basically the same, but with some minor differences

in layout. Each chapter contains four buttons in the middle of the screen, each

representing a pair of levels. The idea behind the pair was to let the children sit in

pairs and with a teacher, meaning one kid will try as the other kid watches. If the

levels come in pairs, the kids can play one similar level each. The first pair in a

chapter is an introduction to the chapter. These levels will introduce what is new to

the chapter. The second and third pair in a chapter are repeating what has been

introduced, but where the levels gradually becomes harder or trickier. Then the

fourth pair will be a “build your own” levels, which is demonstrated in the last two

screens in Figure 8. The objective is to create your own level with the things that

has been introduced so far, and then let a friend try to play the level that has been

created. This is to get a new perspective of what has been taught this far, as well as

adding a social and interactive element where things that the child has made can

be used by others. In the build level, another library that contains objects that can

be placed on the level is introduced. The children can drag the objects into the

level and when the child is done, a finished button is pressed, and the created level

can be played just like the regular premade levels.

 Encounter of a design problem 3.4.3

When further developing the different obstacles and problems that could be added

in the game, there were some problems with the approach where a monkey throws

apples or other fruits to the baby. Each new obstacle or melody that was

introduced, would be adding something completely new to the game. The

objective of each level is so solve some sort of problem. With the throwing-apple

approach, it was hard to add new parts of the problem without introducing

completely new things about the problem itself. This approach is very limited, and

to create new problems in an easy and clear way is not possible. In e.g. BeeBot, a

new problem can be generated by just changing the start and end position of the

robot. The instructions are the same, but there are quite a lot of different possible

problems to be generated. The problems with this primarily concern the

36

implementation of the game; a lot of work is needed to create variations of the

problems. A lot of work needs to be done for little play-time.

Therefore, a new approach to the game itself was further developed. One idea that

was documented during the data collection phase was some kind of obstacle

course inspired from ball machines. To instead have the same start and end points

for all the levels, but to create different levels by having obstacles in between these

points. This way, the objective of all levels becomes to clear the obstacles to

complete a level.

 Storyboard 3 3.4.4

The idea of the new approach developed into a game where the objective is to get

the sheep from the right side to the grass meadow on the left side. In the sheep‟s

path there are obstacles that need to be removed or fixed in order for the sheep to

get to the meadow. The principle with the FluteBot remains, where the flute player

is given instructions by dragging melodies from the book, but this time, the

melodies will be used to remove obstacles from the path, see Figure 9.

Figure 9: A sketch of the new approach where the sheep need to get to the meadow by walking

a path from the right part of the screen to the left. In the first picture, a tree is in the path

blocking the sheep from crossing. A “lift the tree” melody is given to the FluteBot. In the next

picture, the FluteBot is playing the melody which allows the sheep to get to the meadow.

The overall objective of the game becomes clearer, different types of obstacles can

be added and the order of the obstacles can easily be changed to create a wider

variety of levels without introducing new melodies. See Figure 10 and Figure 11

for other examples of obstacles.

37

Figure 10: The pictures demonstrate the river obstacle and the Moses melody. As seen in

picture two, the Moses melody is played to divide the river. In the third picture, the “life the

tree” melody is played and the sheep can reach the meadow without any problem. In the last

picture, it shows what happens if the “lift the tree” melody is played before the Moses melody,

the sheep float away.

Figure 11: The pictures demonstrate the gorilla obstacle and its corresponding melody. As

shown in the first picture, the sheep are afraid of the gorilla and cannot pass. The gorilla

melody is played in the second picture, which makes the gorilla sleep and allows the sheep to

pass.

38

 What is the focus of the teaching? 3.4.5

It was decided that the app should focus on teaching children to understand how

computer processes instructions given by a human, and that a computer execute

these instructions sequentially. When trying to further design what kind of

obstacles that were fit for these purposes in the game, further clarification and

definition of these areas were needed to get more precision in what was going to

be the aim of the teaching.

3.4.5.1 A model of the process of a computer

This was inspired by a model explained by Ben Shapiro that a computer takes an

input, which then does some processing/decision making, which then generates an

output. In reality, this is of course more complex than that, but some further

development can be done to the model.

Figure 9: A developed model of how a computer works.

1) The user creates a set of instructions. In FluteBot, melodies (instructions)

are dragged from the book (library) to the sheet music (code). The

melodies are meant to represent function calls, and the sheet music is

meant to represent a code-file. Later, it is possible to introduce more sheet

musics for other instruments. Other instruments can either interact with

each other directly or that they manipulate the same objects.

2) The user created set of instructions are processed, read, interpreted and

executed. Can also be seen as compiled and run. In FluteBot, the sheet

music (set of instructions) is given to FluteBot (computer). FluteBot reads

the sheet music, interpret it and plays the melodies according to what has

been given.

3) The user created set of instructions that are executed, and an output is

generated one by one. In FluteBot, the melodies that are played by

FluteBot are the outputs, which results in consequences, which can be

used to solve puzzles/problems. Since instructions are executed

39

sequentially, outputs are also be generated sequentially. The generated

outputs will lead to a consequence. In FluteBot, it could be that a certain

melody that is being played (outputs) makes the sheep jump

(consequence).

4) There are consequences that can alter the state of the environment that the

computer is within reach of. They do not necessarily have to. In FluteBot,

after the sheep have jumped, everything in the game environment is in a

state exactly like before the jump. But after playing the sleep gorilla

instruction, the state of the environment the computer (FluteBot) has

access to, is now changed (if the gorilla was, of course, sleeping before).

5) There are instructions that can be affected by different inputs. In FluteBot,

the bison instruction (see Table 1 in Section 3.4.6) will result in a different

output depending on what state the bison has when the instruction is

executed. If the bison is closing the road when the instruction is executed,

the instruction will turn the bison to open up the path. The same

instruction will turn the bison to close the path if the bison is opening up

the path when the instruction is executed. The state of the surrounding

environment alters the effects of the same instruction.

3.4.5.2 Execution flow

The distance from right to left that the sheep needs to travel is meant to visualize

the execution flow of the program. The closer the sheep are to the meadow, the

more the program has done to get to the point wanted to achieve. In order to reach

the meadow, instructions have to be executed to overcome obstacles in the way,

which can be seen as a computer program executing a number of instructions to

achieve a certain goal.

Some instructions needs to be executed when the sheep have reached a certain

point in the execution flow of the program, meaning these instructions are

dependent of order. How the environment looks like needs to be observed and the

obstacles and their order needs to be understood, and then instructions are

constructed in order to let the program flow reach the goal.

3.4.5.3 Dependencies of instructions

To teach about how instructions work, further elaboration on the effects and the

attributes of instructions needs to be defined.

Sequential execution is a red line in the process model. Multithreaded processes

are just a combination of a sequential process model, just like in assembly.

Instructions can have the following attributes:

 Execution of instruction is independent. Meaning when the instruction is

executed, the outcome (output) of that instruction will always be the same.

40

 Execution of instruction is dependent. Meaning when the instruction is

executed, the outcome will lead to different outcomes depending on other

factors (inputs in the model).

 Outcome of instruction is independent. Meaning that the outcome of the

instruction will never affect an execution of other instructions.

 Outcome of instruction is dependent. Meaning that the outcome of the

instruction can affect an execution of other instructions.

There are different scenarios of the consequences of instructions. Here are the

results of what were developed:

 Independent instructions

o Execution of instruction is independent. Outcome of instruction is

independent.

 Dependent instructions

o Execution of instruction is independent. Outcome of instruction is

dependent.

o Execution of instruction is dependent. Outcome of instruction is

independent.

o Execution of instruction is dependent. Outcome of instruction is

dependent.

Conclusion:

1. Instructions have the attribute of being affected or not being affected by

inputs.

2. Instructions have the attribute of giving an output that turn into inputs to

other instructions or not.

In the process model, this can be seen as instructions that do or do not have the

steps 4 and 5.

 Instructions for obstacles 3.4.6

Different designs of obstacles were further developed to conceptualize that

different instructions will affect the program flow differently. See the list of

instructions to overcome the obstacles and their characteristics in Table 1.

41

Table 1: List of instructions.

Instructions Specificities

Jumping

sheep

When this melody is being played, the sheep will jump. If the sheep are having

trouble getting past a fence, this melody can be used to make the sheep jump over it.

The jumping sheep instruction needs to be executed in the right time in the program

flow (be in front of the fence) in order for the sheep to jump over the fence.

Turning

bison

When this melody is being played, the bison will turn 90 degrees. If the bison is

turned vertically, the sheep can‟t walk past it. If the bison is turned horizontally, the

sheep can walk past it.

Sleeping

gorilla

When this melody is being played, the gorilla will start sleeping if it was awake. The

sheep can walk past a sleeping gorilla.

Waking

gorilla

When this melody is being played, the gorilla will become awake if it was sleeping.

The sheep are too scared to walk past a gorilla that is awake.

Crushing

rhino

When this melody is being played, the rhino will start running and destroy rocks that

are in the path blocking the sheep from walking. Once the rocks are destroyed, the

sheep can pass the path.

The different obstacles can be combined in many ways to create variety in the

problems that the children can solve.

 FluteBot – the title of the game 3.4.7

The name FluteBot arrived from the fact that other apps that were teaching

programming for children often had this in the name of the app, e.g. BlueBot,

BeeBot, or LightBot Jr. Bot is short for robot, and is often used to describe

automated scripts. Even if the flute player in FluteBot is not a robot, the name was

chosen to present the user (not the least a parent or a teacher) with an element he

or she might associate with a programming app for children just by looking at the

title.

3.5 Hi-fi prototype

A series of hi-fi prototypes were created in InVision (www.invisionapp.com) – a

tool for designing and evaluating user interfaces – to further test the conceptual

models generated using the storyboards.

42

 Hi-fi prototype 1 3.5.1

A hi-fi prototype based on the first two storyboards (Storyboard 1 and Storyboard

2) was created in InVision in order to further test the conceptual models generated

in the storyboards (see the snapshots in Appendix A).

 Hi-fi prototype 2 3.5.2

A second hi-fi prototype based on Storyboard 3 was likewise created in InVision to

further test the conceptual models generated in the storyboards (see the snapshots

in Appendix B).

3.6 Implementation phase

Based on all the design decisions made, a first alpha version of the game was

developed for tablet and PC.

 System Requirement Specification 3.6.1

The implementation phase started with defining what was going to be included in

the software in a System Requirement Specification (SRS). In this, requirements

and cases of the software to be developed were specified based on what had been

brought forth in hi-fi prototype 2.

In the SRS (Appendix D), the initial requirements for the implementation were

defined based on what had been defined in the previous phase. The requirements

were created so that when implementing, the requirements could act as a to-do list.

In this way, there will be no need to go back to the previous steps in order to figure

out what is the next thing to do while implementing. This also impose some sort of

structure telling what to do next, both in order to make it easier but also to avoid

the appearance of sloppy to-do items slowing down the implementation.

User cases were also defined in the SRS to check that what has been implemented

corresponds to what has been previously decided, and to see whether implemented

services and functions stops working.

 UML-diagrams 3.6.2

Next, two UML-diagrams (UML: Unified Modeling Language) were created

based on the SRS. The UML-diagrams displays what the architectural design of

43

the code could look like in order to be able to support the requirements defined in

the SRS (see UML-diagrams in Appendix C).

While the implementation was based on these UML-diagrams, the final structure

of the program ended somewhat different. Many of the differences were a result of

the development environment Unity with its editor based programing that support

2D and 3D graphics, drag and drop functionality and scripting in C#.

 Validation and verification matrix 3.6.3

A matrix listing all the requirements as well as the cases from the SRS was

created. At the end of each day of implementation, the requirements that are

implemented to the software are marked with an “X”. If there were requirements

that were partly completed, that row was marked with a “/” and a comment about

what needs to more needs to be done was added (see the matrix in Appendix D).

 Homepage 3.6.4

A homepage to make the game accessible through the web was created with

Jekyll, a simple, fast, and robust website generator. The website was then pushed

into a GitHub repository:
https://bigballsdontlie.github.io/flutebot/

After that, the game was compiled to WebGL, added to the page, and

synchronized with the repository, whereafter it could be tested on a tablet (iPad).

 Configuration management 3.6.5

In order to manage the implementation of the Unity-based programing game

project, BitBucket was used for the version control repository with SourceTree as a

GUI (graphical user interface). During the implementation, the project was

continuously pushed to the repository providing the project with the following

traits:

 Continuous backup; since it is possible to retrieve the project from the

web, this management configuration works as a backup in case something

happens to the project locally on a computer.

 Tracking of changes; since older versions of the project are accessible, it is

possible to go back to older versions of the project to solve problems.

 Multiple workplace support; facilitating import of artwork and music into

the project from other sources (computers).

https://bigballsdontlie.github.io/flutebot/

44

 Agile development routines 3.6.6

The structure of the development process was designed and executed as a series

smaller iteration steps, inspired from agile development.

Each development day started with an update of the current situation by checking

the notes and comments from the previous day. Then, the requirements to work on

for that day were decided by choosing new requirement(s) or continue working on

a not finished requirement in progress. Requirements were sometimes divided into

smaller assignments when needed. During development, notes and comments

about the work were documented, i.e. if a new requirement needs to be added to

the SRS, etc. At the end of the day, the validation and verification matrix was

updated.

Once a week, there was a verification check-up where the user cases were tested to

ensure that nothing had stopped functioning or that a requirement wasn‟t

incorrectly implemented. After doing this, the SRS was reviewed to see whether it

needed to be updated with new/changed requirements.

 Artwork and music 3.6.7

The artwork style was first decided to be cartoonish and strive for „child

friendliness‟ as demonstrated by the roughly made hi-fi prototype 1 in Appendix

A. But since the concept of programming education for small children is relatively

new, the possibilities for a more „fresh‟ design was further investigated. Upon

researching for inspiration, a picture where single colored objects were drawn on

top of a grid paper was found. The concept of having single colored objects

seemed more original, why this idea was further developed. Different approaches

to the artwork were tested, and in the final solution the objects were filled with

white color which made them pop out more. The animations then made use of a

traditionally frame by frame technique relying on a series of individually

(redrawn) objects – making the animated objects more alive with slightly

flickering contour lines (see: https://bigballsdontlie.github.io/flutebot/game).

For the production of background music, the following requirements were set up:

 Written in the key of C-major.

 Playful.

 Subtle (not too much in your face). The music should be in the

background and only draw little attention.

 Slow tempo, but still with high intensity; meaning it should not be slow as

in making someone want to sleep, more like slow as in “take your time” or

“just calm down and you can do it”.

45

The idea was to have something very rhythm based to avoid the flute melodies

to collide with the background music. A drum beat was arranged, recorded,

and edited, after which some midi-bass was added on top of the beat.

 A demo app 3.6.8

With the above mentioned methods in this section, a demo app of the game was

produced, available at:
https://bigballsdontlie.github.io/flutebot/game

Screenshots of the different screens in the game are shown in Figures 12 to 18.

Figure 12: The title screen of the game. The game title is placed in the center of the screen.

Under the title, a play button is positioned that takes the user to the next screen when clicked

upon. In the background, there are sheep walking around, a shining sun, and two moving

clouds.

https://bigballsdontlie.github.io/flutebot/game

46

Figure 13: The „level map screen‟, where different levels can be chosen by clicking on the red

circles.

Figure 14: The introduction level. Three sheep are seen in the middle right part of the screen,

walking on the path towards the meadow in the middle left part of the screen – but the fence is

in the way for the sheep.

47

Figure 15: When pressing the book (library) in the bottom left part of the screen, a bigger book

appears in the middle left part of the screen displaying the melodies available. In the

introduction level, only the sheep „melody‟ (making the sheep jump over the fence) is available.

Figure 16: A „melody‟ has been dragged from the book (library) to the sheet music.

48

Figure 17: When pressing the play button, the instructed „melody‟ is played and the sheep start

jumping over the fence.

Figure 18: The sheep have successfully reached the meadow.

49

4 Discussions and Conclusions

Since analyses steps are involved in several of the individual phases of the process

model used to create the software in this project, these analyses have been

continuously presented in this thesis. Discussions about the process, the designed

product, and the programming education subject are further elaborated below.

4.1 What should be taught in programming education?

It became very clear in the beginning of the data collection phase, that the

definition of programming is far more complex than imagined. What is

programming really? Before starting this thesis, the personal answer would have

been something in line with: “Giving instructions, sequential execution, logic,

conditional statements (like if and else statements), problem solving, etc.” This is a

view that many programmers probably share if given this question. Now, when

finishing this thesis, the answer would have been vastly different. Not because the

things that were listed above aren‟t included in programming, but because it all

depends on what is being programmed. The definition of programming itself is to

create a set of instructions that a computer can interpret to perform a task. As long

as it complies with the definition, it is regarded as programming. Thus,

programming can still be these things listed above, but it can also be something

else.

 History and future of programming 4.1.1

Why is programming so hard to define? Well, first of all, the domain of

programming is huge and vast. Programming can be anything from low-level

programming like assembly to high-level programming using programming

environments that support scripting. Programming can also be very math oriented

focused on algorithms or a tool to organize the communication between

components and programs in order to execute a task.

The answer can, however, be found in the history of computers. Modern

programming started with, among others, giving instructions with punched tapes

(papers with holes) to make different calculations. Since then, layers and layers of

50

human invented improvements have been made on top of the transistors that are

the foundation of logic (0/1, true/false) that the modern computer is built upon.

The layers are constantly evolving, both because new hardware is made available

with new technology, and because new and more efficient ways of using the

hardware is designed. There might also be flaws in these layers for different

reasons, e.g. the null reference (a reserved value indicating that a pointer does not

refer to a valid object) which even its founding father Tony Hoare called “My

billion dollar mistake” (Hoare, 2009). The null reference was invented due to the

fact that it was a very simple solution to secure all references when the compiler

automatically checked the code.

By today, the added layers have turned into different clusters that have specific

purposes and communicate with each other. Open up a computer to see the

different clusters that has become components that interact with each other. Or

consider how a message travels from a cellphone through the internet; crossing

satellites in space, passing through optical fibers at the speed of light, being

directed by gigantic electricity-devouring servers located in north of Sweden, to

congratulate a friend on their birthday that would otherwise not be remembered.

With the same principle, software creates layers and clusters that together provide

the services needed to use technology. When broken down, programming is a ton

of layers built onto and into each other. Therefore it is hard to say what

programming really is and is not since it depends on a lot of things and is

constantly changing.

As computers and technology are constantly evolving, programming is evolving.

As discussed in Section 3.2.2, programming education also needs to take this into

account. Here follows some predictions that can be made from a broader

perspective:

 Things that can be automated will most likely be automated. For example,

to be able to write algorithms was more important for the average

programmer 30 years ago compared to now. And it will be even less

important for the average programmer in 30 years as premade super-

optimized algorithms becomes more accessible. However, as mentioned

before, knowing what is automated and how can be powerful.

 Information on the internet is close to infinite. Documentation and guides

are available for helping a programmer in need. There are two types of

programmers: one that tries to find answers on the internet when a

problem occurs and the one that lies about not doing so. Jokes aside, there

is nothing wrong by doing this. If screening the internet was all that

requires to become a programmer, everyone would be making software.

Without the comprehension, you are powerless, but if combined with

comprehension this strategy is very powerful. It can be used in many

ways, e.g. checking syntax when switching between languages, finding

documentation, finding help for incomprehensible bugs, etc. A

51

programmer is not an all-knowing inhuman creature, even though it might

seem like it to some people.

 Programming is getting more team oriented. Working together with things

like pair programming, agile development, and sharing-&-merging

repositories are widely used. Stories of single programmers that are in

charge of big software are well known, but having one person being the

only one who can understand how the code works for a large system can

result in a lot of problems – especially if the software is critical for a lot of

people and something happens to that single person. This is in popular

terms called the bus factor; the number of key persons who needs to be hit

by a bus in order for a project to be unable to continue. Just as there are

architects, bricklayers, painters, electricians, etc. – instead of a house-

builder, there will be different programmers as well. If workload can be

distributed to more people with the benefit of efficiency, it certainly will.

 Open Source Software (OSS) comes with many great benefits. Some are

afraid that it is less secure to use public software code, but this has been

proven to be the opposite, e.g. bugs and security breaches are more easily

found when there are more people keeping an eye on the code. The

principle is to share and work together instead of everyone trying to

reinvent the wheel, so to speak.

 The future of logic, for-loops, and even conditional statements might be

looking bleak in future programming. Why? The definition of

programming is to tell the computer to do work. The reason these things

are included in programming is because the foundation, which is in the

core of computers, build upon these principles. Machine learning and

constraints programming are programming concepts getting developed

rapidly today, which does not require the use of logic for the programmer.

Memory allocation, pointers, etc., are also principles that are in the

foundation of computers. But what do history tells about what has

happened to these things over time? In modern programming, these things

are taken care of by compilers when allocating memory from higher level

of programming. The compilers are smart, and will continue getting even

smarter. Computer engineers should know how to allocate memory

properly. Computer engineers should know how to use logic, for-loops,

conditional statements, etc. These things will not disappear. But should

everyone be prepared to become computer engineers from an early age? It

may be good for children to encounter and to learn these principles, but it

ultimately depends on what the focus of the teaching is. Is programming

education in public schools there to make children computer engineers or

to make children understand better the increasingly technological world

they live in?

Looking into the future, the research on quantum computers is going forward.

Instead of the traditional two states of 0 and 1 that exists in computers today,

52

quantum mechanics opens up the ability to have more states. This also means

that these computers will need their own programming languages, different

from the existing ones that are based on two states. However, the technology

is still far from cost effective and it is impossible to predict when quantum

computers may become consumer products. Most likely, quantum computers

will not replace all computers all of a sudden, but rather slowly be integrated

with what exists in places more applicable at that time.

 Computational thinking 4.1.2

Computational thinking is a well-known and widely used concept that describes

how a human can understand the powers and limits of computing processes, which

then can be used to make a computer do tasks (Wing, 2006). However, the

definition of computational thinking is vague and extremely general as mentioned

by Tedre and Denning (2016) as well as Jones (2011). The term is deeply

problematic because there is no clear definition of what it is and the definition tries

to explain something that, as previously discussed, is broad and constantly

evolving. New hardware and software is constantly being developed, meaning the

programming that controls these things are also constantly being developed.

Programming, in its core definition, is to give instructions to a computer so that it

can perform a task. How this is done all depends on the current technology that

exists.

Whenever a new way of computers to perform a task comes around, it

automatically becomes a part of computational thinking. When there is no clear

definition, creating a curriculum becomes a nuisance. How are the teachers

supposed to teach something that is not defined and can be broken down?

Programming can be broken down in definable individual parts as done in, for

example, the affinity diagram in Section 3.2.1. What programming actually is, is

complex to define, since it can be done very differently and is constantly evolving.

Just because it is complex and hard to understand, does not mean we need an all

mighty entity that can have an answer to everything. There are things that can be

defined, and further definitions of different programming concepts or commonly

recurring programming problems can be made in order to help teachers in what

they actually should teach.

As a conclusion, computational thinking was taken into consideration in this

thesis, however it was neglected due to lack of definition and resonance with the

rest of the findings.

53

 What is the focus of the teaching? 4.1.3

In Section 3.4.5, attempts to further define the process and instruction concepts

were made. This is a step on the way of defining what processes and instructions

are, but they need further development. Especially the dependencies described in

Section 3.4.5.3 are alone insufficient in defining the properties of an instruction.

 Tips for programming education 4.1.4

The teachers‟ perspective is very important when developing these tools as these

tools are meant to act as an extension for their teachings. By designing the tools

with regards to them, a more efficient programming lesson can be given. To

evaluate what has been built is in the center of interaction design according to

Preece, Rogers, and Sharp (2004). Involving the teachers in the design process by

talking and interviewing them, as well as observing them teach programming or

using the product can be done in order to further ensure that the product is in line

with its goal. Involving the children in the process is of course important, but

involving children together with the teachers is more important.

As for the youngest children in kindergarten and the like, it could be argued that if

the teachers are comfortable and even engaged in teaching programming and using

certain dedicated apps and materials, the children will probably join in and quickly

learn.

4.2 Comparison with other apps on the market

The two kindergartens visited both used BeeBot as part of their programming

“play times”; therefore it was included in the comparison. ScratchJr is designed

for ages 5-7, which is a older target group than FluteBot, but since ScratchJr is so

established it was also included in the comparison. See Table 4.1 to see the

comparisons between the products.

The biggest difference between FluteBot and other products is the new approach

of giving instructions. In the majority of the other products, the purpose of giving

instructions is to navigate a character by giving walk/move and turn instructions.

But as mentioned in Section 3.4.3, to design something both purposeful and simple

is hard. The navigation approach is probably the most common approach because

it is easy to implement and it does the job. A large variety of problems can be

created by only creating a small set of instructions (go forward, turn left, and turn

right) – but programming can be so much more than to navigate.

As an answer to this, the execution flow design was developed. This design

provides a representation that in some ways are a more correct view of

54

programming. The path and meadow in FluteBot is representing the purpose of the

programming. When programming, there is a goal to achieve which is represented

by the meadow. To reach the goal, a path has to be taken programming wise,

which is represented by the road/path. In order for the program created to reach the

goal, sub goals must be solved with a programming approach. The sub goals in the

game are represented by the obstacles. This is where problem solving comes in to

programming; these sub goals needs to be solved in order for the „sheet music‟

program to do what was intended with it. This representation of the flow of a

program is unique among the programming apps aimed at young children.

To use music as a representation for giving instructions, execute instructions, and

see the effects of the instructions is also something new. This hopefully makes the

process of how a computer works clearer and (not the least), music adds a nice,

creative, and joyful element that is in line with what children tend to like.

Table 2: Comparison.

Functionalities FluteBot BeeBot ScratchJr

Giving instructions. X X X

Instructions created are visually displayed. X – X

Shows instructions given from the user being

processed by the computer and generating an

output.

X – –

Sequential execution. X X X

Physical robot. – X –

Tablet support. X X X

Semantics before coding-approach. X X –

Supports libraries where instructions can be

found.
X – X

Supports synchronization. X
2
 – –

Support bug-finding with step-by-step

execution.
X

1
 – –

1
 Has the possibility to support synchronization by adding more musicians (further

elaborated in Section 4.4)
2
 Has not been implemented in the final product, but the concept design is

developed and decided upon.

55

4.3 Project plan and design methods

Before starting the thesis, a rough plan was outlined of how much time should be

distributed to the different phases of the project. The fact that things usually take

longer to do was taken into account, by having buffer-zones in between phases

that could easily and dynamically be altered.

The design part of the project took a little bit more time than planned. More

information about what programming really is turned out to be decisive and a new

game design was developed following shortcomings in the first hi-fi prototype. By

working through all the presented design methods and slowly progressing the

design of the product, especially the theoretical quality of this project became

distinguishable when comparing with other products for children programming.

The implementation part of the project was much more efficient than initially

expected. As the parts to implement was already carefully thought out and

documented in the design documents (SRSs and UML-diagrams) combined with

the structured assembly line resembling procedures, the bigger picture was quite

clear when implementing. Especially the to-do items presented was of high

enough quality; they showed to be accurate and robust, and all what was needed

was to follow the order of the to-do items. Otherwise, thoughts about improvement

of design or code architecture, etc., usually occur while implementing something.

It can also be that big flaws in the design shows itself during implementation,

which then has to be redesigned and fixed in order to continue.

The biggest surprise was the time it took to write the report itself. Throughout the

process, what had been done in each phase and its sub-phases had been

documented. The time it took to put it together in a flowing narrative was much

more than expected. The size of the report is considerably bigger than any other

previously made as part of the education, therefore the estimation was only based

on recommendations. Unfortunately, this was the biggest reason to less time in the

implementation phase. However, with respect to the overall project the quality of

the project was much higher.

4.4 Further development

There is plenty of room for this game to be further developed. Everything needed

to create a complete game out of this is already designed. How well the game

would perform in practice is, however, unknown. The game has not yet been

properly tested on children in a kindergarten context, but nothing points to that the

game would not work in practice. In theory, the game is built upon a robust

foundation and the potential for the tool to be applicable in kindergarten is

56

probably considerable since programming now has become a part of the

curriculum, and tablets (iPads) are generally accessible.

Possible expansions of FluteBot:

 A pause button that replaces the play button after the melodies have

started (in coherence with many common media players). This feature can

be used to play the melodies one by one. If a student creates a sequence of

instructions that does not complete the map, the set of instructions can be

replayed one by one as a kind of bug-finding help. The teachers can use

this to help students break down the problem and tell where things go

wrong.

 More musicians besides the flute player can be added, where the different

musicians need to cooperate in order to solve the problem. Such a feature

can be used to represent different kinds of computers needing to cooperate

to perform a task. They might need different kinds of instructions and

need to be synchronized in order to overcome an obstacle.

 Obstacles that needs to be solved using logical semantics can be added. If

an obstacle is in the way or not in itself can be seen as 0 or 1. The gorilla

obstacle for example can be seen as switching between 0 (awake) and 1

(asleep) when the gorilla melody is being played. Also more complex

logical operations can be added, where an obstacle needs to be solved

using concept of AND, OR, XOR, NOT, etc.

 Obstacles that need to be solved using communication can be added.

Obstacles can be inspired from e.g. Internet of Things (IoT) where

different items (or animals in the game) can interact with each other in

order to solve an obstacle.

4.5 Conclusion

What programming actually is turned out to be a very complex question, and there

are frequent misconceptions of what it is and what it isn‟t. The newly added

programming aspects in the Swedish school curriculums are a first step forward,

but what is actually being taught should be further discussed to get a higher quality

in the teaching for all children. In retrospect, I realize that even as an almost

graduated M.Sc. in Computer Engineering, after this thesis, the way I view

programming has changed immensely. I hope it will do the same to you.

57

References

Arawjo, I., Wang, C.Y., Myers, A.C., Andersen, E. and Guimbretière, F., 2017, May.

Teaching Programming with Gamified Semantics. In Proceedings of the 2017

CHI Conference on Human Factors in Computing Systems (pp. 4911-4923).

ACM.

Bureau of Labor Statistics, U.S. Department of Labor, Occupational Outlook Handbook,

Software Developers, accessed 16
th

June

2018, https://www.bls.gov/ooh/computer-and-information-technology/software-

developers.htm

Charette, R.N., 2005. Why software fails [software failure]. Ieee Spectrum, 42(9), pp.42-

49.

Denzin, N., 2006. Sociological Methods: A Sourcebook. Aldine Transaction. 5
th

 ed.

Guzdial, M., 2017, October. School of Interactive Computing, Georgia Institute of

Technology, accessed 29
th

 May 2018,

https://computinged.wordpress.com/2017/10/21/what-we-should-be-teaching-

kids-about-cs-and-changing-our-tools-to-get-there-ben-shapiro/

Guzdial, M., 2017, October. School of Interactive Computing, Georgia Institute of

Technology, accessed 29
th

 May 2018,

https://computinged.wordpress.com/2017/10/18/why-should-we-teach-

programming-hint-its-not-to-learn-problem-solving/

Hoare, T. (25 August 2009). Null References: The Billion Dollar Mistake. InfoQ.com

Johnson, J. and Henderson, A., 2002. Conceptual models: begin by designing what to

design. interactions, 9(1), pp.25-32.

Jones, E., 2011. The Trouble with Computational Thinking. University of South Carolina.

Jones, S.P., Bell, T., Cutts, Q., Iyer, S., Schulte, C., Vahrenhold, J. and Han, B., 2011.

Computing at school. International comparisons. Retrieved May, 7, p.2013.

Jupp, V., 2006. The Sage Dictionary of Social Research Methods. Sage.

Nelson, G.L., Xie, B. and Ko, A.J., 2017, August. Comprehension First: Evaluating a

Novel Pedagogy and Tutoring System for Program Tracing in CS1.

https://www.bls.gov/ooh/computer-and-information-technology/software-developers.htm
https://www.bls.gov/ooh/computer-and-information-technology/software-developers.htm
https://computinged.wordpress.com/2017/10/18/why-should-we-teach-programming-hint-its-not-to-learn-problem-solving/
https://computinged.wordpress.com/2017/10/18/why-should-we-teach-programming-hint-its-not-to-learn-problem-solving/

58

In Proceedings of the 2017 ACM Conference on International Computing

Education Research (pp. 2-11). ACM.

Portelance, D.J., Strawhacker, A.L. and Bers, M.U., 2016. Constructing the ScratchJr

programming language in the early childhood classroom. International Journal of

Technology and Design Education, 26(4), pp.489-504.

Preece, J., Rogers, Y. and Sharp, H., 2004. Interaction design. Apogeo Editore.

Rosling, H., Rosling, R.A. and Rosling, O., 2005. New software brings statistics beyond

the eye. Statistics, Knowledge and Policy: Key Indicators to Inform Decision

Making. Paris, France: OECD Publishing, pp.522-530.

Schneiderman, B., 1986. Eight golden rules of interface design. Disponible en.

Shapiro, R.B. and Ahrens, M., 2016. Beyond blocks: Syntax and

semantics. Communications of the ACM, 59(5), pp.39-41.

Shapiro, R.B., 2017, October. Emerging Paradigms for CS Education and Their

Implications for Visual Languages, accessed 29
th

 May 2018,

https://www.youtube.com/watch?v=XSKfHDMXIgg

Skolverket, 2017, December. Tydligare om digital kompetens I läroplaner, kursplaner och

ämnesplaner, accessed 16
th

June 2018, https://www.skolverket.se/laroplaner-

amnen-och-kurser/nyhetsarkiv/nyheter-2016/nyheter-2016-1.247899/digital-

kompetens-och-programmering-ska-starkas-i-skolan-1.247906

Stecklein, J.M., Dabney, J., Dick, B., Haskins, B., Lovell, R. and Moroney, G., 2004. Error

cost escalation through the project life cycle.

Tedre, M., and Denning, P.J., 2016, November. The long quest for computational thinking.

In Proceedings of the 16th Koli Calling International Conference on Computing

Education Research (pp. 120-129). ACM.

The Straits Times, 2016, March. Coding Classes for kids in high demand, accessed 16
th

June 2018, https://www.straitstimes.com/tech/coding-classes-for-kids-in-high-

demand

Wang, D., Wang, T. and Liu, Z., 2014. A tangible programming tool for children to

cultivate computational thinking. The Scientific World Journal, 2014.

Wing, J.M., 2006. Computational thinking. Communications of the ACM, 49(3), pp.33-35.

https://www.skolverket.se/laroplaner-amnen-och-kurser/nyhetsarkiv/nyheter-2016/nyheter-2016-1.247899/digital-kompetens-och-programmering-ska-starkas-i-skolan-1.247906
https://www.skolverket.se/laroplaner-amnen-och-kurser/nyhetsarkiv/nyheter-2016/nyheter-2016-1.247899/digital-kompetens-och-programmering-ska-starkas-i-skolan-1.247906
https://www.skolverket.se/laroplaner-amnen-och-kurser/nyhetsarkiv/nyheter-2016/nyheter-2016-1.247899/digital-kompetens-och-programmering-ska-starkas-i-skolan-1.247906

59

Appendix A Hi-fi prototype 1

Here are some snapshots of the first hi-fi prototype.

60

61

Appendix B Hi-fi prototype 2

Here are some snapshots of the second hi-fi prototype.

62

Appendix C UML-diagrams

63

SPECIFICATION

Prepared by Document number

 Johan Helmertz FLUTE01

Document responsible Date Revision

 Johan Helmertz 2018-04-04 PA2

64

Appendix D Software Requirement

Specification

SRS - Software Requirements Specification: FluteBot

Table of content

Introduction 65

References 65

Background and goals 65

Goal 65

Actors and their purpose 65

Terminology 66

Functional requirements 66

Quality requirements 71

Performance 71

Project requirements 72

Development 72

SPECIFICATION

Prepared by Document number

 Johan Helmertz FLUTE01

Document responsible Date Revision

 Johan Helmertz 2018-04-04 PA2

65

1 Introduction

This document contains the requirements and specification for FluteBot, an

educational app that teaches young children programming.

2 References

Storyboards.

3 Background and goals

3.1 Goal

The goal is to create a tool which teachers in kindergarten can use to introduce

children to programming. The tool will be in the form of a game designed for

tablets as an app, but will also be accessible via a website. The game is designed in

a way to contain as much of the teaching material in itself, to relieve teachers from

the many times complex matter that is programming.

A very important aspect is to design the game in a way so that teachers find it

easy, fun but also rewarding to use. The purpose of the game is to subtly introduce

a programming way of thinking to the children, without the children to really

know what they are learning. To children it should be fun, new ways of making

stuff happen by programming concepts.

3.2 Actors and their purpose

The application uses no external actors. Everything that is used is made from

scratch upon the Unity engine and contained inside the app.

SPECIFICATION

Prepared by Document number

 Johan Helmertz FLUTE01

Document responsible Date Revision

 Johan Helmertz 2018-04-04 PA2

66

4 Terminology

WebGL WebGL is a Javascript API for rendering graphics within a web

browser without the use of plug-ins.

5 Functional requirements

This section will specify all the functional requirements for the application.

5.1 Title screen

Req 5.1.1 There shall be a title text with the name of the app.

Req 5.1.2 There shall be a play button that leads to the Level map

screen when clicked on.

Req 5.1.3 There shall be a about button that leads to the About screen

when clicked on.

Req 5.1.4 There shall be a theme music playing subtly in the

background in all screen at all times. Song should be in the key of

C. Song shall be simple, stripped and have a lot of “room”, so that

melodies easily can be played over without conflicting.

Case 5.1.1 Go to Level map screen.

Preconditions: The app is running and is in Title screen.

1. Press the play button.

2. The Level map screen shall appear.

Case 5.1.2 Go to About screen and back.

SPECIFICATION

Prepared by Document number

 Johan Helmertz FLUTE01

Document responsible Date Revision

 Johan Helmertz 2018-04-04 PA2

67

Preconditions: The app is running and is in Title screen.

1. Press the about button.

2. The About screen shall appear.

3. Press the home button.

4. The Title screen shall appear.

Case 5.1.3 Music is playing.

Preconditions: The app is running and is in Title screen.

1. The theme music shall be playing subtly in the background.

2. Go all the way to a level and then back to the title screen. The

music shall not stop or be interrupted in any way while changing

screens. When song ends it should repeat again.

5.2 Level map screen

Req 5.2.1 There shall be an overview of all the levels in the style of

classic super mario-world, where levels are connected and needs

to be unlocked in order to be played.

Req 5.2.2 There shall be a home button in the top left corner that

leads to the Title screen when clicked on.

Req 5.2.3 A level that is unlocked will lead to the Level screen and

load the corresponding level when clicked on.

Req 5.2.4 When a new level is unlocked, an animation that unlocks

that level with sound shall be played.

Req 5.2.5 Level-unlocking progress should automatically be saved.

Case 5.2.1 The unlocked levels are saved.

Preconditions: The app is running and is in the Level map screen.

SPECIFICATION

Prepared by Document number

 Johan Helmertz FLUTE01

Document responsible Date Revision

 Johan Helmertz 2018-04-04 PA2

68

1. Remember what levels are unlocked.

2. Shut down the app.

3. Restart the app.

4. Go to Level map screen.

5. The unlocked levels shall be the same as in step 1.

Case 5.2.2 Start unlocked level.

Preconditions: The app is running and is in Level map screen.

1. Press on a unlocked level.

2. The Level screen should appear and the corresponding level shall

be loaded.

Case 5.2.3 Initial progress.

Preconditions: The app has not yet been opened for the first time.

1. Start the app.

2. Go to Level map screen.

3. All levels shall be locked except the first level.

Case 5.2.4 Go to Title screen.

Preconditions: The app is running and is in Level map screen.

1. Press the home button.

2. The Title screen shall appear.

Case 5.2.5 Unlock animation.

Preconditions: The app is running and is in Level map screen. There are

locked levels.

1. Press on the lastest unlocked level.

2. The Level screen should appear and the corresponding level shall

be loaded.

3. Finish the level.

4. The Level map screen shall appear.

5. The unlock level animation and sound shall play as the next level

is unlocked.

5.3 Level screen

SPECIFICATION

Prepared by Document number

 Johan Helmertz FLUTE01

Document responsible Date Revision

 Johan Helmertz 2018-04-04 PA2

69

Req 5.3.1 There shall be a flute player in the middle bottom of the

screen, the so called FluteBot. There shall be a play button on the

FluteBot, and when clicked, FluteBot recieves a copy of the sheet

music and plays accordingly. While playing, a pause button shall

replace the play button. While playing, FluteBot should do an

animation where he is playing the flute.

Req 5.3.2 There shall be a sheet music in the right bottom of the

screen. The user shall be able to drag melodies into it, drag

melodies out of it and rearrange the order of the melodies. When

FluteBot plays the music, the melody that is currently being

played is marked in the sheet music.

Req 5.3.3 There shall be a book in the left bottom of the screen. When

pressed, a library of all melodies available to the user shall appear

in some sort of menu. It shall be possible to then drag melodies

from the menu to the sheet music.

Req 5.3.4 There shall three sheeps in the middle right of the screen.

They shall constantly be trying to moving towards the left. They

shall be blocked by the edge of the road as well as obstacles.

Req 5.3.5 There shall be a meadow in the middle left part of the

screen where the level ends when the sheeps reaches it.

Req 5.3.6 There shall be a back button in the top left corner. When

clicked on, a popup with a text saying “Exit?” with two buttons

“Yes”, “No”. If yes is pressed, it will lead to the Level map

screen, if no, close popup.

Req 5.3.7 Each melody should be unique and be in the key of C.

SPECIFICATION

Prepared by Document number

 Johan Helmertz FLUTE01

Document responsible Date Revision

 Johan Helmertz 2018-04-04 PA2

70

Case 5.3.1 Go to Level map screen.

Preconditions: The app is running and is in Level screen.

1. Press the home button. Pop-up shall appear.

2. Press the “No” button. Should close pop-up screen and stay at the

same screen.

3. Press the home button again.

4. Press the “Yes” button.

5. The Level map screen shall appear.

Case 5.3.2 Play empty sheet music.

Preconditions: The app is running and is in Level screen. Sheet music is

empty.

1. Press play on the FluteBot.

2. FluteBot gets a copy of the sheet music, but will make some sort

of confused animation.

Case 5.3.3 Play sheet music.

Preconditions: The app is running and is in Level screen.

1. Press on the book.

2. Library menu shall appear.

3. Drag melodies into the sheet music. It shall be possible to drag

melodies out from the sheet music, as well as changing the order

of them.

4. Press play on the FluteBot. The FluteBot shall recieve a copy of

the sheet music, and shall start playing the melodies accordingly

to the order the user has written.

5.4 Levels

Req 5.4.1 Level 1 shall have the following obstacles: one fence.

 Level 1 shall be an introduction map, and have

inducators/help animations that guides the user through how the

basics of the game works. E.g. the book blinks or have some sort

of eye drawing animation until the user opens the library, and so

on.

SPECIFICATION

Prepared by Document number

 Johan Helmertz FLUTE01

Document responsible Date Revision

 Johan Helmertz 2018-04-04 PA2

71

Req 5.4.2 Level 2 shall have the following obstacles: two fences.

Req 5.4.3 Level 3 shall have the following obstacles: one gorilla.

Req 5.4.4 Level 4 shall have the following obstacles: one bison.

Req 5.4.5 Level 5 shall be a build your own level.

6 Quality requirements

This section will specify all the non-functional requirements for the application.

6.1 Performance

Req 6.1.1 The memory usage shall be kept on a level so that the

WebGL version of the game on a browser of an iPad can handle

the game.

6.2 Maintenance

Req 6.2.1 The code shall be made more easy to understand by using

relevant name convention that is as self explanatory as possible.

Req 6.2.2 When code is harder to understand, clear comments should

exist.

Req 6.2.3 Commit messages should include a clear and informative

description of the changes made.

SPECIFICATION

Prepared by Document number

 Johan Helmertz FLUTE01

Document responsible Date Revision

 Johan Helmertz 2018-04-04 PA2

72

7 Project requirements

This section will specify all the requirements for how the project shall be

developed.

7.1 Development

Req 7.1.1 The application shall be developed in Unity.

Req 7.1.2 The application shall be designed for tablet.

Req 7.1.3 The unity project shall be on a BitBucket repository.

Req 7.1.4 The project shall be frequently pushed to the remote

repository.

Req 7.1.5 The WebGL version of the game shall be available on the

FluteBot project page powered by jekyll on GitHub.

73

Appendix E Validation and

Verification Matrix

74

